This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Batch
Updating

Introduction

In the preceding tutorial we saw how to extend the Data Access Layer to add support for database transactions.
Database transactions guarantee that a series of data modification statements will be treated as one atomic
operation, which ensures that all modifications will fail or all will succeed. With this low-level DAL functionality
out of the way, we’re ready to turn our attention to creating batch data modification interfaces.

In this tutorial we’ll build a GridView where each row is editable (see Figure 1). Since each row is rendered in its
editing interface, there’s no need for a column of Edit, Update, and Cancel buttons. Instead, there are two “Update
Products” buttons on the page that, when clicked, enumerate the GridView rows and update the database.

N Untitled Page - Microsoft Internet Explorer =13 =T
Ble Eck Wew Faortes ook Help i3

. D M @ | Hsewct JrFavokes @ (3w S] - € 8
Address ':‘“_1fﬂu:.l'.n'.f.dlliJ!.lizaﬁ?.lﬁ5W‘E-‘ﬁuLi_T'.ELtId_ﬁ*_cﬁ.'ﬂﬂ!l[}ddgladl‘l_we A » ﬂ &
-~
Working with Data Tutorials Home > Working with Batshed Data > Batch
Batch Updating
Sirrple Display [_undate Products]
Declarative
pAranE s Chai Tea Beverages W b 1996 [
ﬁm R Chang Beverages ¥ |4 19.00 []
Filtaring Reports aniseed Syrup Condiments % 10.00 |
Filtar by Drop-Tiown Chef anton's Cajun Se: | Condimants ¥ 2662]
List Chef Anton's Gumbo Mi| | Condiments | &21.35 =
Mas ter=Details- Grandma's Boysenbermy, Condiments | 30.25]
Details Uncle Bob's Onganic Dri| | Produce ¥ 430.00 O
?:ED;E?;M S Northwonds Cranbemy Condimants W | § 3600]
Datale aF Gaiead Mishi Kobe Miku et/ Poultry w9700
Fow lkura Seafood Wi 31.00]
12245..>>
Format Colors
Custom Content n a el | -
{i - e h£|mﬂrm S

Figure 1: Each Row in the GridView is Editable

Let’s get started!

1 of 22

Note: In the Performing Batch Updates tutorial we created a batch editing interface using the DataList
control. This tutorial differs from the previous one in that is uses a GridView and the batch update is
performed within the scope of a transaction. After completing this tutorial I encourage you to return to the
earlier tutorial and update it to use the database transaction-related functionality added in the preceding
tutorial.

Examining the Steps for Making All GridView Rows Editable

As discussed in the An Overview of Inserting, Updating, and Deleting Data tutorial, the GridView offers built-in
support for editing its underlying data on a per-row basis. Internally, the GridView notes what row is editable
through its EditIndex property. As the GridView is being bound to its data source, it checks each row to see if the
index of the row equals the value of EditIndex. If so, that row’s fields are rendered using their editing interfaces.
For BoundFields, the editing interface is a TextBox whose Text property is assigned the value of the data field
specified by the BoundField’s DataField property. For TemplateFields, the EditItemTemplate is used in place of
the ItemTemplate.

Recall that the editing workflow starts when a user clicks a row’s Edit button. This causes a postback, sets the
GridView’s EditIndex property to the clicked row’s index, and rebinds the data to the grid. When a row’s Cancel
button is clicked, on postback the EditIndex is set to a value of -1 before rebinding the data to the grid. Since the
GridView’s rows start indexing at zero, setting EditIndex to -1 has the effect of displaying the GridView in read-
only mode.

The EditIndex property works well for per-row editing, but is not designed for batch editing. To make the entire
GridView editable, we need to have each row render using its editing interface. The easiest way to accomplish this
is to create where each editable field is implemented as a TemplateField with its editing interface defined in the
ItemTemplate.

Over the next several steps we’ll create a completely editable GridView. In Step 1 we’ll start by creating the
GridView and its ObjectDataSource and convert its BoundFields and CheckBoxField into TemplateFields. In
Steps 2 and 3 we’ll move the editing interfaces from the TemplateFields’ EditItemTemplates to their
ItemTemplates.

Step 1: Displaying Product Information

Before we worry about creating a GridView where are rows are editable, let’s start by simply displaying the
product information. Open the BatchUpdate.aspx page in the BatchData folder and drag a GridView from the
Toolbox onto the Designer. Set the GridView’s ID to ProductsGrid and, from its smart tag, choose to bind it to a
new ObjectDataSource named ProductsDataSource. Configure the ObjectDataSource to retrieve its data from the
ProductsBLL class’s GetProducts method.

20f22

Configure Data Source - ProductsDataSource

J Choose a Business Object

or App_Code directary For this application).

Chonse your business objact:

ProductsBLL

w Show only data components

Morthaind T ableadapters. EmployessTableadapter
MorkhwaindT ableAdapbers. ProductsT ableAdapter
Mor thaaind T ableAdapters, SuppliersTableAdapter
ProdiscksBLL

ProductsCL
ProducksOptimisticConcurrencyBLL
StaticCache

SuppliersBLL

EERE

Select a business object that can be usad ko refrieve or update data (for example, an object defined in the Bin

Cancel

Figure 2: Configure the ObjectDataSource to Use the ProductsBLL Class

30f22

Configure Data Source - ProductsDataSource

1!_'_/ Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

Chaoss & mathod of the business object that returns daks bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or stronghy-typed collection,

Exarmpbe; GetProducts{Int32 categoryid), returms a Dataset,

Chonse 3 method:

GetProducks(), returns ProductsDiataTable w I
reburns ProducksDataTsble

taetProducks)), returns ProductsDabaTable
GetProductsasPagedDataSource(Int32 pagelndesx, Int3Z2 pageSize]), returns PagedDataSource
GetProductsEyCategoryID{INt32 categoryiD), returns ProductsDataTable
GetProductsBySupplierIDInt32 supplisrlD), returns ProductsDakaTable
GetProductsPaged{Int32 startRowindex, Ink32 maximumRows), returns ProductsDataTable
GetProductsPagedandSortediSkring sortExpression, Int32 startRowlnds:, Int32 maximumPows), retums Product
GetProducksSorkedAsPagedDataSourceString sortExpression, Int32 pagelndex, Ink32 pageSize), returns Paged!

o> | () oot]

Figure 3: Retrieve the Product Data Using the GetProducts Method

Like the GridView, the ObjectDataSource’s modification features are designed to work on a per-row basis. In order
to update a set of records, we’ll need to write a bit of code in the ASP.NET page’s code-behind class that batches
the data and passes it to the BLL. Therefore, set the drop-down lists in the ObjectDataSource’s UPDATE,
INSERT, and DELETE tabs to “(None)”. Click Finish to complete the wizard.

4 of 22

Configure Data Source - ProductsDataSource

J Define Data Methods

=

SELECT | UPDATE | INSERT | DELETE |

Chaoes & mathad of the business objeck to associate with the UPDATE operation, The method shauld
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

| Examples: UpdateProduck{Product p), or UpdateProduck(Int32 productlD, String name, Double price)

| Choose a methad:
‘ (one) w

UipdateProduct{String productiame, Mullable <Decimal> unkPrice, Int32 productID), returrns Boolean
LipdateProduct{String productiame, Nullable <Decimal> unitPrice, Nullable <Int16 > unitsInStock, Int32 productiD
| LipdateProduct{ String productiame, Mullable <Ink32 = categoryID, Mullable<Int32 = supplier]lD, Bookean discontin
UpdateProduct(String productianme, Mullable <Int32 = supplierlD, Mullable <Int32 = cateqoryID, String quantityPer
| UpdateProduct{String producthame, String quantityPerlnit, Int32 productiD), returns Boolean

o> | (o) oot]

Figure 4: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE Tabs to “(None)”

After completing the Configure Data Source wizard, the ObjectDataSource’s declarative markup should look like
the following:

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetProducts" TypeName="ProductsBLL">
</asp:0bjectDataSource>

Completing the Configure Data Source wizard also causes Visual Studio to create BoundFields and a
CheckBoxField for the product data fields in the GridView. For this tutorial, let’s only allow the user to view and
edit the product’s name, category, price, and discontinued status. Remove all but the ProductName, CategoryName,
UnitPrice, and Discontinued fields and rename the HeaderText properties of the first three fields to “Product”,
“Category”, and “Price”, respectively. Lastly, check the “Enable Paging” and “Enable Sorting” checkboxes in the
GridView’s smart tag.

At this point the GridView has three BoundFields (ProductName, CategoryName, and UnitpPrice) and a
CheckBoxField (Discontinued). We need to convert these four fields into TemplateFields and then move the
editing interface from the TemplateField’s EditItemTemplate to its ItemTemplate.

Note: We explored creating and customizing TemplateFields in the Customizing the Data Modification
Interface tutorial. We’ll walk through the steps of converting the BoundFields and CheckBoxField into
TemplateFields and defining their editing interfaces in their ItemTemplates, but if you get stuck or need a
refresher, don’t hesitate to refer back to this earlier tutorial.

50f22

From the GridView’s smart tag, click the “Edit Columns” link to open the Fields dialog box. Next, select each field
and click the “Convert this field into a TemplateField” link.

Fields
Available Fields: BoundField properties:
i =] CuantityPerUnit ~| H
=] UnitPrice ' . .
2] UnitsInstock Header Text Discontinued Ll
=] UnitsOnorder = Behavior
=] RecrderLevel i ApplyFormatInEdith False
=] Discontinued CanvertEmplyString True
=] CategoryMame v HtrmlEncade True
T = Insertyisible True
MullDisplay Texk
Selected fields: ReadOnly False
[, 1 ShowHeader True
=lProduct - - -
T ==_| Catetiony SortExpression Discontinued
e ¥ Yisible True v

HeaderText

The text within the header of this field,

Ej Di

scontinued

[] Auto-generate fields f:::unvert this field into & TemplateField]

Refresh Schema [O] [Cancel]

Figure 5: Convert the Existing BoundFields and CheckBoxField Into TemplateField

Now that each field is a TemplateField, we’re ready to move the editing interface from the EditItemTemplates to
the ItemTemplates.

Step 2: Creating the ProductName, UnitPrice, and Discontinued Editing
Interfaces

Creating the ProductName, UnitPrice, and Discontinued editing interfaces are the topic of this step and are
pretty straightforward, as each interface is already defined in the TemplateField’s EditItemTemplate. Creating the
CategoryName editing interface is a bit more involved since we need to create a DropDownList of the applicable
categories. This CategoryName editing interface is tackled in Step 3.

Let’s start with the ProductName TemplateField. Click on the “Edit Templates” link from the GridView’s smart
tag and drill down to the ProductName TemplateField’s EditItemTemplate. Select the TextBox, copy it to the
clipboard, and then paste it to the ProductName TemplateField’s ItemTemplate. Change the TextBox’s ID
property to ProductName.

Next, add a RequiredFieldValidator to the ItemTemplate to ensure that the user provides a value for each
product’s name. Set the ControlTovValidate property to “ProductName”, the ErrorMessage property to “You
must provide the product's name.” and the Text property to “*”. After making these additions to the
ItemTemplate, your screen should look similar to Figure 6.

6 of 22

9 ASPNET Data_Tutorizl_64_C5 - Micresoft Visual Studio B CEE
Bl Edk ew Webgte fuid [ebug Fgrmst Layost Jook Window Communky Melp dekdns

S-il-EEd A DD : b€} 3 updatedsatabie i
B I U A = — L
- A e PP e —— -
»: T . < x _ operes Ex
g1 4+ wead i St i “ ProductsGridiColmmndProdect. Dber +
& P : HTEIE
L Mutiew =R Border Style HotSet ~
] Parel Bgederiatith
: i
<} Macetoider Content - Cortert] (Clstom) = r.n'TD'rddqte Product™amse
o, Casiass
B
H Cisplary Static
| Sbebbotion
(2 Batcn updat.“g EnabieChentSoip True
& Locale Enabind Trug
& CheckBoxVaidator EnableThermng Trus
& Chedanxiistiaidator Enablevisustate True
v Data = A rofesiags You mvwsk provid
iy ProduckeGnd - Colume{ 0] - Product Gl Pk
B Pointer ThemTamplats Fameokor B red
1. = ReguredFisdysbdator ;I - Height
m— Tritialdabus
d g SetFocusOnirror Fala
¥ RegularExpressiond... D
Uy Comparetsldabor ke
% Custoniiafdetor
| WabdsborSummary ToolTip &
+ Mawigakion " Enabiled
+ Login BhjectDataSource - ProductsDataSounce | Enabied stabe of the control.
+ WebParts ¥
WL -
i G " w || P2 | <aspgridview@productsgrkd = || <aspirequinechioklvalidat > clsal pro.., Mgser. [EROa,
- Ervar List| (7] Ceitpk i!’-'-.: Aesubs 1
Aeady

Figure 6: The ProductName TemplateField Now Includes a TextBox and a RequiredFieldValidator

For the unitprice editing interface, start by copying the TextBox from the EditItemTemplate to the
ItemTemplate. Next, place a “$” in front of the TextBox and set its 1D property to “UnitPrice” and its Columns
property to “8”.

Also add a CompareValidator to the UnitPrice’s ItemTemplate to ensure that the value entered by the user is a
valid currency value greater than or equal to $0.00. Set the validator’s ControlTovalidate property to
“UnitPrice”, its ErrorMessage property to “You must enter a valid currency value. Please omit any currency
symbols.”, its Text property to “*”, its Type property to Currency, its Operator property to GreaterThanEqual,
and its ValueToCompare property to “0”.

7 of 22

*20 ASPMET_Data_Twlorial &4_CS - Microsoll Wisual Studio
Fi= Edt wew Webgte Gold [sbog Fomst Layod Took Window Commondy Helb dddine
#rid- e @ % B RaSL i, wodetedatatblo &
k-
w« 3 | Froperties - B x
| ProductsGrid.ColamnZPrice. ftem T =

IO

{Corkrod Tovabdate UnitPrice) .

Cssilass
T Cutturslnsananth Fak=
a i il
Content - Corventl (Cusiom) Dieplay Shabic
= EnstiebentSonp Trus
Batch Updating Enebled frus
EngtleTheming Trus
Product #Giid - ColumnlZ] - Price iz g I,
rroffdedsags You imust enler .
RemTemplals & Fomt
g Fes i - Rl
+ Hasi
T it ThanEau)

SetFoostrErmor Faka
ShiniD

Tabrides (1]

E
Dibject DalaSaunoe - Product gt sSoums TouTip

Yabdebon oy o
Nirahie Truwe
Error™Message

w | | Message to deplay ina
ValmdationTummeary when the valadated |,

w || "o | waspgridviewd product sgrid = <asp:m|1'parwddm#nm:| :i _-’-:] 1 o, e Egla

Figure 7: Add a CompareValidator to Ensure the Price Entered is a Non-Negative Currency Value

For the Discontinued TemplateField you can use the CheckBox already defined in the ItemTemplate. Simply set
its 1D to “Discontinued” and its Enabled property to true.

Step 3: Creating the categoryName Editing Interface

The editing interface in the categoryName TemplateField’s EditItemTemplate contains a TextBox that displays
the value of the CategoryName data field. We need to replace this with a DropDownList that lists the possible
categories.

Note: The Customizing the Data Modification Interface tutorial contains a more thorough and complete
discussion on customizing a template to include a DropDownList as opposed to a TextBox. While the steps
here are complete, they are presented tersely. For a more in-depth look at creating and configuring the
categories DropDownList, refer back to the Customizing the Data Modification Interface tutorial.

Drag a DropDownList from the Toolbox onto the categoryName TemplateField’s ItemTemplate, setting its ID to
Categories. At this point we would usually define the DropDownlLists’s data source through its smart tag,
creating a new ObjectDataSource. However, this will add the ObjectDataSource within the ItemTemplate, which
will result in an ObjectDataSource instance created for each GridView row. Instead, let’s create the
ObjectDataSource outside of the GridView’s TemplateFields. End the template editing and drag an
ObjectDataSource from the Toolbox onto the Designer beneath the ProductsDataSource ObjectDataSource.
Name the new ObjectDataSource CategoriesbataSource and configure it to use the CategoriesBLL class’s
GetCategories method.

8 of 22

Configure Dala Source - CategoriesDataSource

J Choose a Business Object

Select a business object that can be used ko retrieve or update data (for example, an object defined in the Bin
or App_Code direckory for this application),

Choose your business objact:
CategoriesBLL

w Show only data components

EmployeesBLL

Mor thaindCptimisticConcurrency Tableddapters, ProductsOptimisticCancurrency Table ddapter
MorthwindT ableAdapters. CategoresTableAdapter
Morthwind T ablefdaphers. EmpoyessTableddapter
MorthwindT able Adapter s ProductsT ableAdapter
Morthawind T ableadapters, SuppliersT ableAdapter
ProducksBLL]

Mext = Firiis Cancel

Figure 8: Configure the ObjectDataSource to Use the categoriesBLL Clas

9 of 22

Configure Data Source - CategoriesDataSource

j] Define Data Methods
S
| SELECT | UPDATE | INSERT | DELETE |

Chaoss & methad of the business objeck that rakurms daks bo sssociate with the SELECT aparation, The
method can return a DataSet, DataReader, or stronghy-typed collection,

Exarmpbe; GatProducts(Int32 categoryld), returns a DataSst,

Chanse a method:
| GetCategories)), retums CategoriesDataTable W |

et ateqories)), retums CategaoriesDiataTable
GetCategoriesAndiumberOFProducts(), returns CategoriesDiataT able
GetCategoryByCatagory ID(INt32 categoryID), returns CategoriesDataT able
GetlategoryWithBinaryDatabByCategoryID{Int32 cakegoryID), reburns CategoriesDatal able

e | (oo) (ot]

Figure 9: Retrieve the Category Data Using the GetCategories Method

Since this ObjectDataSource is used merely to retrieve data, set the drop-down lists in the UPDATE and DELETE
tabs to “(None)”. Click Finish to complete the wizard.

10 of 22

Configure Data Source - CategoriesDataSource

j Define Data Methods

.'i'l p=t
| SELECT = UPDATE | INSERT | DELETE

Chaose & misthod of the business objeck to associate with the DELETE operation, The methad should
accept a parameter for each primary key For the data object or a sngle parameter which is the data
object to delete

Examplas: DeleteProduck(Product p), or DeleteProduct{Int32 produckID)

i Chaose & method:
| {Mane) W

DeleteCategory;Ink32 categoryID), returns Boolsan

et> | (o) (ot]

Figure 10: Set the Drop-Down Lists in the UPDATE and DELETE Tabs to “(None)”

After completing the wizard, the CategoriesDataSource’s declarative markup should look like the following:

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

With the CategoriesDataSource created and configured, return to the CategoryName TemplateField’s
ItemTemplate and, from the DropDownList’s smart tag, click on the “Choose Data Source” link. In the Data
Source Configuration wizard, select the CategoriesDataSource option from the first drop-down list and choose to
have categoryName used for the display and CategoryID as the value.

11 0f22

Data Source Configuration Wizard

A Choose a Data Source

!

Select a data source:

' CategoriesDataSource w
Select a data field o display in the DropDownList:
| Categoryhame w

Select & dats field for the valee of the OropDowriList:

Caktegoryhlame

Description
MurnberOfProducts

Refresh Schema

Ok]l Cancel J

Figure 11: Bind the DropDownList to the CategoriesDataSource

At this point the categories DropDownList lists all of the categories, but it does not yet automatically select the
appropriate category for the product bound to the GridView row. To accomplish this we need to set the
Categories DropDownList’s Sselectedvalue to the product’s categoryID value. Click on the “Edit
DataBindings” link from the DropDownList’s smart tag and associate the Selectedvalue property with the
CategoryID data field as shown in Figure 12.

12 of 22

Categories DataBindings

Select the property to bind ko, ¥ou can then bind it by selecting a Field. Alternatively, wou can bind it
using a cuskom code expression,

Bindable properties: Binding for SelectedYalue
(4 DataSource (%) Field binding:

% Enabled : T
|l Bound to: | CategoryID |

Farmat: iI:NDI'IE]I |

Sample:

= Twio-way dakabinding

[]5haw all properties

() Custom binding:

Code expression:

Refresh Schema [(8] 4 l [Cancel

Figure 12: Bind the Product’s categoryID Value to the DropDownList’s Selectedvalue Property

One last problem remains: if the product doesn’t have a CategoryID value specified then the databinding statement
on selectedValue will result in an exception. This is because the DropDownList contains only items for the
categories and does not offer an option for those products that have a NULL database value for categoryID. To
remedy this, set the DropDownList’s AppendDataBoundItems property to true and add a new item to the
DropDownlList, omitting the value property from the declarative syntax. That is, make sure that the Categories
DropDownlList’s declarative syntax looks like the following:

<asp:DropDownList ID="Categories" runat="server" AppendDataBoundItems="True"
DataSourcelID="CategoriesDataSource" DataTextField="CategoryName"
DataValueField="CategoryID" SelectedValue='<%$# Bind("CategoryID") %>'>
<asp:ListItem Value="">-- Select One --</asp:ListItem>
</asp:DropDownList>

Note how the <asp:ListItem Value=""> “-- Select One --" has its Value attribute explicitly set to an empty
string. Refer back to the Customizing the Data Modification Interface tutorial for a more thorough discussion on
why this additional DropDownList item is needed to handle the NULL case and why assignment of the value
property to an empty string is essential.

Note: There is a potential performance and scalability issue here that is worth mentioning. Since each row
has a DropDownList that uses the CategoriesbDataSource as its data source, the CategoriesBLL class’s
GetCategories method will be called » times per page visit, where n is the number of rows in the
GridView. These n calls to GetCategories result in n queries to the database. This impact on the database
could be lessened by caching the returned categories either in a per-request cache or through the Caching
Layer using a SQL caching dependency or a very short time-based expiry. For more information on the per-
request caching option, see HttpContext.Items —a Per-Request Cache Store.

Step 4: Completing the Editing Interface

13 of 22

We’ve made a number of changes to the GridView’s templates without pausing to view our progress. Take a
moment to view our progress through a browser. As Figure 13 shows, each row is rendered using its
ItemTemplate, which contains the cell’s editing interface.

W Untitled Papge - Micrasoft Internel Explorer rﬁ"?|
Fle Ect Wew Faontes Took Hebo .

Ok = & _‘-:] % 4 search Favekns 4 - (B~ & » [3 ﬁ:&
g] httpefftocathost: 2267 (ASPHET _Data_Tuborial &4 C5/BatchDataf/BatchUpdate. aep w 0
Working with Data Tutorials Heme> working uim Bstenes nata > Bsten upasting
Batch Updating
f .DISpIE',I' Product Category s continued
Chai Tea Baverages * § 19.9500 O
Declarative 5
Farameters Chang | |Beverages ¥ |4 19,2500 Ll
Sekbirg Pararmetss Anizaed Syrp Condimsnts |4 10,0000 O
Walies . Chef dnton's Cajun Sel Condirménts W4 26,6200]
Chef Anton's Gambo M | Condirents | 421.3500 B
f““rb'l' W_DD'H Grandma's Boysenharry Condimants hatlk - 0, 2800 j
it I :
Uncle Bob's Organic Dn Produce |4 30.0000 Cl
Master-Datads- -
Datalls Morthwoods Cranberry Condiments ¥ (% 36,0000 [
Mﬂﬁtﬂ‘fﬂlﬁtﬂ“ AcToES MMishi Eobe MN&u Meat Foultry ¥ £ 97.0000 il
TR thura Seafond ¥lg3ro000 | L1
Details of Selected 12345 . >
fow
W
£ S Lol nkranst

Figure 13: Each GridView Row is Editable

There are a few minor formatting issues that we should take care of at this point. First, note that the UnitPrice
value contains four decimal points. To fix this, return to the UnitPrice TemplateField’s TtemTemplate and, from
the TextBox’s smart tag, click on the “Edit DataBindings™ link. Next, specify that the Text property should be
formatted as a number.

14 of 22

LnitPrice DataBindings

Select the property to bind ko, ¥ou can then bind it by selecting a Field. Alternatively, wou can bind it
using a cuskom code expression,

Bindable properties: Binding For Text
Enabled (*) Field binding:

- Bound to: LUnitF‘riu:e _ W |
Format:
Sample: | 1.00 |

Twio-way dakabinding
[]5haw all properties

) Custom binding:

Code expression:

I IniERrice!,

Refresh Schema [(8] 4 H Cancel]

Figure 14: Format the Text Property as a Number

Second, let’s center the checkbox in the Discontinued column (rather than having it left-aligned). Click on “Edit
Columns” from the GridView’s smart tag and select the Discontinued TemplateField from the list of fields in the
bottom left corner. Drill down into Itemstyle and set the HorizontalAlign property to Center as shown in
Figure 15.

15 of 22

Fields

Available Fields: TemplateField properties;
| 2] iall Fields) Al ;
=] BoundField ! — ' -
[Z] ProductID | Bl [temstyls
[[£] ProductMame [BackColar]
| [E] supplierID [BaorderZalar |:|
; [£] categoryID | BorderStyle MokSek
i 2] QuantityPerlnit v | Barderwidth
Corem R =i = CssClass
Fart
Selected fields: ForeColor []
[r= I Height
| e=dProduct -
| = | { Horizontaltlign Center |
| ; ¥ Verticaldlign Mokser e
| ==L | 1
ItemStyle
The style applied to rows within this Field,
[] Auto-generate fields
Refresh Sch
T [(] 4 l [Cance

Figure 15: Center the Discontinued CheckBox

Next, add a ValidationSummary control to the page and set its ShowMessageBox property to true and its
ShowSummary property to false. Also add the Button Web controls that, when clicked, will update the user’s

changes. Specifically, add two Button Web controls, one above the GridView and one below it, setting both
controls’ Text properties to “Update Products”.

Since the GridView’s editing interface is defined in its TemplateFields’ TtemTemplates, the EditTtemTemplates
are superfluous and may be deleted.

After making the above mentioned formatting changes, adding the Button controls, and removing the unnecessary
EditItemTemplates, your page’s declarative syntax should look like the following:

<p>
<asp:Button ID="UpdateAllProductsl" runat="server" Text="Update Products" />
</p>
<p>
<asp:GridView ID="ProductsGrid" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourcelID="ProductsDataSource"
AllowPaging="True" AllowSorting="True">
<Columns>
<asp:TemplateField HeaderText="Product" SortExpression="ProductName">
<ItemTemplate>
<asp:TextBox ID="ProductName" runat="server"
Text="<%# Bind("ProductName") $%>'></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
ControlToValidate="ProductName"

16 of 22

ErrorMessage="You must provide the product's name."
runat="server">*</asp:RequiredFieldvValidator>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Category"
SortExpression="CategoryName">
<ItemTemplate>
<asp:DropDownList ID="Categories" runat="server"
AppendDataBoundItems="True"
DataSourceID="CategoriesDataSource"
DataTextField="CategoryName"
DataValueField="CategoryID"
SelectedValue="'<%# Bind("CategoryID") &%>'>
<asp:ListItem>-- Select One --</asp:ListItem>
</asp:DropDownList>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Price"
SortExpression="UnitPrice">
<ItemTemplate>
$<asp:TextBox ID="UnitPrice" runat="server" Columns="8"
Text="<%# Bind ("UnitPrice", "{0:N}") %>'></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl" runat="server"
ControlToValidate="UnitPrice"
ErrorMessage="You must enter a valid currency value.
Please omit any currency symbols."
Operator="GreaterThanEqual" Type="Currency"
ValueToCompare="0">*</asp:CompareValidator>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Discontinued" SortExpression="Discontinued">
<ItemTemplate>
<asp:CheckBox ID="Discontinued" runat="server"
Checked="'<%# Bind("Discontinued") %>' />
</ItemTemplate>
<ItemStyle HorizontalAlign="Center" />
</asp:TemplateField>
</Columns>
</asp:Gridview>
</p>
<p>
<asp:Button ID="UpdateAllProducts2" runat="server" Text="Update Products" />

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetProducts" TypeName="ProductsBLL">
</asp:0bjectDataSource>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

<asp:ValidationSummary ID="ValidationSummaryl" runat="server"

ShowMessageBox="True" ShowSummary="False" />
</p>

17 of 22

Figure 16 shows this page when viewed through a browser after the Button Web controls have been added and the
formatting changes made.

M Untitled Page - Microsoft Internet Explorer

Fle Edt Wew Favorbes Took Help

¥ ¥ M E &) A s Favoribes £ gt L f“‘ﬂ,ﬁ@

Address ':ﬁ_-lrﬂp:J‘Mli.l!J.:m.7.|r'|'5N‘E-TJ:'N.IM_Tduld_ﬁ*_cﬂﬂﬂh[&ﬁdl'l_wt A b ﬂ &
.q.

Working with Data Tutorials Home > Marking with Batabed Dxta > Bateh

Batch Updating

=

Simple Display [Update Products |
Declarative
FArAmATe Chai Tea Beverages ¥|519.96 [
Sethng Paramerar i I -
\fahiss Chang Beverages 4 19.00 []

aniseed Syrup Condiments % 10.00 |

Filtering Feparts
Filtar by — Chef Anton's Cajun Ses | Condimants ¥4 26.62]
List Chef Anton's Gumbo Mi| | Condimanks g 01,35 [
Master-Details- Grandma's Boysenbermy, Condiments o g'e:u 25]
Details Uncle Bob's Onganic Dri| | Produce ¥ 430.00 O
Master/Detall Acass : : i
] Morth ds Cranbs Condimants W & 36.00
T S orthwoods Cranbemy &30]
Datale aF Gali: Mishi Kobe Miku et/ Poultry w9700
Fow lkura Seafood Wi 31.00]
12245..>>
T ¥
Format Colors
: [Update Products |
Custom Content i a -
#1 % Local intranet

Figure 16: The Page Now Includes Two “Update Products” Buttons

Step 5: Updating the Products

When a user visits this page they will make their modifications and then click one of the two “Update Products”
buttons. At that point we need to somehow save the user-entered values for each row into a ProductsDataTable
instance and then pass that to a BLL method that will then pass that ProductsbataTable instance to the DAL’s
UpdateWithTransaction method. The UpdatewithTransaction method, which we created in the preceding
tutorial, ensures that the batch of changes will be updated as an atomic operation.

Create a method named BatchUpdate in BatchUpdate.aspx.cs and add the following code:

private void BatchUpdate ()

{
// Enumerate the GridView's Rows collection and create a ProductRow
ProductsBLL productsAPI = new ProductsBLL() ;
Northwind.ProductsDataTable products = productsAPI.GetProducts();

foreach (GridvViewRow gvRow in ProductsGrid.Rows)

{

// Find the ProductsRow instance in products that maps to gvRow

18 of 22

int productID = Convert.ToInt32 (ProductsGrid.DataKeys[gvRow.RowIndex] .Value);

Northwind.ProductsRow product = products.FindByProductID (productID);
if (product != null)
{
// Programmatically access the form field elements in the
// current GridViewRow
TextBox productName = (TextBox)gvRow.FindControl ("ProductName") ;
DropDownList categories =
(DropDownList)gvRow.FindControl ("Categories") ;
TextBox unitPrice = (TextBox)gvRow.FindControl ("UnitPrice");
CheckBox discontinued =
(CheckBox)gvRow.FindControl ("Discontinued") ;

// Assign the user-entered values to the current ProductRow
product.ProductName = productName.Text.Trim() ;
if (categories.SelectedIndex == 0)
product.SetCategoryIDNull () ;
else
product.CategoryID = Convert.ToInt32 (categories.SelectedValue);
if (unitPrice.Text.Trim() .Length == 0)
product.SetUnitPriceNull () ;
else
product.UnitPrice = Convert.ToDecimal (unitPrice.Text);
product.Discontinued = discontinued.Checked;

// Now have the BLL update the products data using a transaction
productsAPI.UpdateWithTransaction (products) ;

This method starts out by getting all of the products back in a ProductsbataTable via a call to the BLL’s
GetProducts method. It then enumerates the ProductGrid GridView’s Rows collection. The Rows collection
contains a GridviewRow instance for each row displayed in the GridView. Since we are showing at most ten rows
per page, the GridView’s Rows collection will have no more than ten items.

For each row the ProductID is grabbed from the DataKeys collection and the appropriate ProductsRow is selected
from the ProductsbataTable. The four TemplateField input controls are programmatically referenced and their
values assigned to the ProductsRow instance’s properties. After each GridView row’s values have been used to
update the ProductsbataTable, it’s passed to the BLL’s UpdateWithTransaction method which, as we saw in
the preceding tutorial, simply calls down into the DAL’s UpdateWithTransaction method.

The batch update algorithm used for this tutorial updates each row in the ProductsbataTable that corresponds to
a row in the GridView, regardless of whether the product’s information has been changed. While such blind
updates aren’t usually a performance issue, they can lead to superfluous records if you’re auditing changes to the
database table. Back in the Performing Batch Updates tutorial we explored a batch updating interface with the
DataList and added code that would only update those records that were actually modified by the user. Feel free to
use the techniques from Performing Batch Updates to update the code in this tutorial, if desired.

Note: When binding the data source to the GridView through its smart tag, Visual Studio automatically
assigns the data source’s primary key value(s) to the GridView’s DataKeyNames property. If you did not bind
the ObjectDataSource to the GridView through the GridView’s smart tag as outlined in Step 1, then you will
need to manually set the GridView’s DataKeyNames property to “ProductID” in order to access the
ProductID value for each row through the DataKeys collection.

19 of 22

The code used in BatchUpdate is similar to that used in the BLL’s UpdateProduct methods, the main difference
being that in the UpdateProduct methods only a single ProductRow instance is retrieved from the architecture.
The code that assigns the properties of the ProductRow is the same between the UpdateProducts methods and the
code within the foreach loop in BatchUpdate, as is the overall pattern.

To complete this tutorial, we need to have the Batchupdate method invoked when either of the “Update Products”
buttons is clicked. Create event handlers for the c1ick events of these two Button controls and add the following
code in the event handlers:

BatchUpdate () ;
ClientScript.RegisterStartupScript (this.GetType (), "message",
"alert ('The products have been updated.');", true);

First a call is made to BatchUpdate. Next, the ClientScript property is used to inject JavaScript that
will display a messagebox that reads “"The products have been updated.”

Take a minute to test out this code. Visit Batchupdate.aspx through a browser, edit a number
of rows, and click one of the “Update Products” buttons. Assuming there are no input
validation errors, you should see a messagebox that reads “"The products have been
updated.” To verify the atomicity of the update, consider adding a random creck constraint,
like one that disallows unitprice values of "1234.56"”. Then from BatchUpdate.aspx, edit a
number of records, making sure to set one of the product’s unitprice value to the forbidden
value ("1234.56"). This should result in an error when clicking “"Update Products” with the
other changes during that batch operation rolled back to their original values.

An Alternative BatchUpdate Method

The Batchupdate method we just examined retrieves all of the products from the BLL's
cetProducts method and then updates just those records that appear in the GridView. This
approach is ideal if the GridView does not use paging, but if it does, there may be
hundreds, thousands, or tens of thousands of products, but only ten rows in the GridView.
In such a case, getting all of the products from the database only to modify 10 of them is
less than ideal.

For those types of situations, consider using the following Batchupdatealternate method
instead:

private void BatchUpdateAlternate ()

{
// Enumerate the GridView's Rows collection and create a ProductRow
ProductsBLL productsAPI = new ProductsBLL() ;
Northwind.ProductsDataTable products = new Northwind.ProductsDataTable () ;

foreach (GridViewRow gvRow in ProductsGrid.Rows)

{
// Create a new ProductRow instance
int productID = Convert.ToInt32 (ProductsGrid.DataKeys[gvRow.RowIndex] .Value);

Northwind.ProductsDataTable currentProductDataTable =

productsAPI.GetProductByProductID (productlID) ;
if (currentProductDataTable.Rows.Count > 0)

20 of 22

Northwind.ProductsRow product = currentProductDataTable[0];

// Programmatically access the form field elements in the
// current GridViewRow
TextBox productName = (TextBox)gvRow.FindControl ("ProductName") ;
DropDownList categories =

(DropDownList)gvRow.FindControl ("Categories") ;
TextBox unitPrice = (TextBox)gvRow.FindControl ("UnitPrice");
CheckBox discontinued =

(CheckBox)gvRow.FindControl ("Discontinued") ;

// Assign the user-entered values to the current ProductRow
product.ProductName = productName.Text.Trim() ;
if (categories.SelectedIndex == 0)
product.SetCategoryIDNull () ;
else
product.CategoryID = Convert.ToInt32 (categories.SelectedValue);
if (unitPrice.Text.Trim() .Length == 0)
product.SetUnitPriceNull () ;
else
product.UnitPrice = Convert.ToDecimal (unitPrice.Text);
product.Discontinued = discontinued.Checked;

// Import the ProductRow into the products DataTable
products.ImportRow (product) ;

// Now have the BLL update the products data using a transaction
productsAPI.UpdateProductsWithTransaction (products) ;

BatchMethodAlternate Starts by creating a new empty productsbataTable named products. It
then steps through the GridView’s rows collection and for each row gets the particular
product information using the BLL'S GetProductByProductID (productzp) method. The retrieved
ProductsRow iNstance has its properties updated in the same fashion as Batchupdate, but after
updating the row it is imported into the products Productspatatable via the DataTable’s
ImportRow (DataRow) Method.

After the foreach loop completes, products contains one productsrow instance for each row in
the GridView. Since each of the productsrow instances have been added to the products
(instead of updated), if we blindly pass it to the updatewithTransaction method the
ProductsTableAdatper Will try to insert each of the records into the database. Instead, we
need to specify that each of these rows has been modified (not added).

This can be accomplished by adding a new method to the BLL named
UpdateProductsWithTransaction. UpdateProductsWithTransaction, shown bGHJMh sets the rowstate
of each of the productsrow instances in the productsbataTable to Modified and then passes the
ProductsDataTable tO the DAL’S UpdatewithTransaction method.

public int UpdateProductsWithTransaction (Northwind.ProductsDataTable products)
{

21 of 22

// Mark each product as Modified

products.AcceptChanges () ;

foreach (Northwind.ProductsRow product in products)
product.SetModified() ;

// Update the data via a transaction
return UpdateWithTransaction (products);

Summary

The GridView provides built-in per-row editing capabilities, but lacks support for creating
fully editable interfaces. As we saw in this tutorial, such interfaces are possible, but require
a bit of work. To create a GridView where every row is editable, we need to convert the
GridView'’s fields into TemplateFields and define the editing interface within the
ItemTemplateS. Additionally, “"Update All”-type Button Web controls must be added to the
page, separate from the GridView. These Buttons’ c1ick event handlers need to enumerate
the GridView’s rows collection, store the changes in a productspatatable, and pass the
updated information into the appropriate BLL method.

In the next tutorial we'll see how to create an interface for batch deleting. In particular,
each GridView row will include a checkbox and instead of “Update All”-type buttons, we'll
have “"Delete Selected Rows” buttons.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com,
has been working with Microsoft Web technologies since 1998. Scott works as an
independent consultant, trainer, and writer. His latest book is Sams Teach Yourself
ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or via his
blog, which can be found at http://ScottOnWriting.NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial
were Teresa Murphy and David Suru. Interested in reviewing my upcoming MSDN articles?
If so, drop me a line at mitchell@4GuysFromRolla.com.

22 of 22

