This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Implementing
Optimistic Concurrency with the SqlDataSource

Introduction

In the preceding tutorial we examined how to add inserting, updating, and deleting capabilities to the
SqlDataSource control. In short, to provide these features we needed to specify the corresponding INSERT, UPDATE,
or DELETE SQL statement in the control’s InsertCommand, UpdateCommand, or DeleteCommand properties, along
with the appropriate parameters in the InsertParameters, UpdateParameters, and DeleteParameters
collections. While these properties and collections can be specified manually, the Configure Data Source wizard’s
Advanced button offers a “Generate INSERT, UPDATE, and DELETE statements” checkbox that will auto-create these
statements based on the SELECT statement.

Along with the “Generate INSERT, UPDATE, and DELETE statements” checkbox, the Advanced SQL Generation
Options dialog box includes a “Use optimistic concurrency’ option (see Figure 1). When checked, the wHERE
clauses in the autogenerated UPDATE and DELETE statements are modified to only perform the update or delete if the
underlying database data hasn’t been modified since the user last loaded the data into the grid.

Advanced 501 Generation Options

additional INSERT, UPDATE, and DELETE skatements can be generated ko
update the data source,

Generate INSERT, UPDATE, and DELETE statements

Gaenerates INSERT, UPDATE, and DELETE statements based on wour
SELECT statement, You must have all primary ke fields selected For this
option ko be enabled,

Maodifies UPDATE and DELETE statements ko detect whether the
database has changed since the record was loaded into the Dataset,
This helps prevent concurrency conflicks,

[Ok ” Cancel]

Figure 1: You Can Add Optimistic Concurrency Support from the Advanced SQL Generation Options Dialog Box

Back in the Implementing Optimistic Concurrency tutorial we examined the fundamentals of optimistic
concurrency control and how to add it to the ObjectDataSource. In this tutorial we’ll retouch on the essentials of
optimistic concurrency control and then explore how to implement it using the SqlDataSource.

A Recap of Optimistic Concurrency

For web applications that allow multiple, simultaneous users to edit or delete the same data, there exists a
possibility that one user may accidentally overwrite another’s changes. In the Implementing Optimistic
Concurrency tutorial I provided the following example:

1 of 13

Imagine that two users, Jisun and Sam, were both visiting a page in an application that allowed visitors to update
and delete products through a GridView control. Both click the Edit button for “Chai” around the same time. Jisun
changes the product name to “Chai Tea” and clicks the Update button. The net result is an UPDATE statement that is
sent to the database, which sets all of the product’s updateable fields (even though Jisun only updated one field,
ProductName). At this point in time, the database has the values “Chai Tea,” the category Beverages, the supplier
Exotic Liquids, and so on for this particular product. However, the GridView on Sam’s screen still shows the
product name in the editable GridView row as “Chai”. A few seconds after Jisun’s changes have been committed,
Sam updates the category to Condiments and clicks Update. This results in an UPDATE statement sent to the
database that sets the product name to “Chai,” the categoryID to the corresponding Condiments category ID, and
so on. Jisun’s changes to the product name have been overwritten.

Figure 2 illustrates this interaction.

SAM JISUN

B:00 AM: Sam decided (o edi Chai B:03 AM: Jisun decided to edit Chai

B:04 AM: Jisun changes the name 1o “Chai Tea™ and
chicks Update

Erid MadiFs Fhona A s s Foeribie | fmarke

B8:06 AM: Sam changes the Category o Condiments and
clicks Update. Since the Product texdbox contains “Chai
Jisun's change is lost

Produsct Category Supplier

ehe Chal Condirments Exobe Liguids

Frit Mualata inarnan Pl 2 s Fwnfie | i ais

Figure 2: When Two Users Simultaneously Update a Record There’s Potential for One User’s Changes to
Overwrite the Other’s

To prevent this scenario from unfolding, a form of concurrency control must be implemented. Optimistic
concurrency — the focus of this tutorial — works on the assumption that while there may be concurrency conflicts
every now and then, the vast majority of the time such conflicts won’t arise. Therefore, if a conflict does arise,
optimistic concurrency control simply informs the user that their changes can’t be saved because another user has
modified the same data.

Note: For applications where it is assumed that there will be many concurrency conflicts or if such conflicts are not
tolerable, then pessimistic concurrency control can be used instead. Refer back to the Implementing Optimistic
Concurrency tutorial for a more thorough discussion on pessimistic concurrency control.

Optimistic concurrency control works by ensuring that the record being updated or deleted has the same values as
it did when the updating or deleting process started. For example, when clicking the Edit button in an editable
GridView, the record’s values are read from the database and displayed in TextBoxes and other Web controls.
These original values are saved by the GridView. Later, after the user makes her changes and clicks the Update

20f 13

button, the UPDATE statement used must take into account the original values plus the new values and only update
the underlying database record if the original values that the user started editing are identical to the values still in
the database. Figure 3 depicts this sequence of events.

STEP 1: User Clicks Edit Button

The GridView rebinds the data from its data source remembers the
original values for this edited row

Original Values:
Mame = Chal
Camgory = Beverages
Supplier = Exolic Liquids

Chas
Bgvir bged W Ewobe Ligueds

Edit Caleke Aniseed Synug Condiments Exobe Lquids
Bear paiers Chelintor's CaMn oo B PhaArE b i P

STEP 2: The User Enters New Values Into the
TextBoxes / DropDownList

Produdt Category Supplier

Have, the user has changed
ane) T Tea SEaranes pr—— the name o “Chai Tea” and
the suppier fo Mayumi's,

Edit Deiate Chang Baverages Exotic Laguids

Anigesd Syrup Condements Exotic Liguids

o aiare CTELARMON'E COlN e Rbits P i 0 0 e LB

STEP 3: The User Clicks the Update Button

A postback ensues and the SglDataSource's Updace [} method is invoked. The SqlDataSource's
UPDATE statement must take into effect both the original values and the new values

yo.

Original Values:
Marme = Chas
Category = Beverages
Supplier = Exotic Ligusds

Maw Valuas:
MNarmis = Chai Tea
Cateqory = Bavernges
Supplier = Mayumi's

STEP 4: Match Original Values with
Current Values in the Database

The UPoATE statement will only update or delete records whose current Concurrency
values malch the supplied original values

Violation!!

Original Valuos:
Mame = Chai
Category = Beverages

Supplier = Exotic Liquids Name = Chai
Category = Condiments Someone has changed the
Supplier = Exoic Liquids Category for this product

between Step 1 and Step 3!

Figure 3: For the Update or Delete to Succeed, the Original Values Must Be Equal to the Current Database Values

There are various approaches to implementing optimistic concurrency (see Peter A. Bromberg’s Optmistic
Concurrency Updating Logic for a brief look at a number of options). The technique used by the SqlDataSource (as
well as by the ADO.NET Typed DataSets used in our Data Access Layer) augments the WHERE clause to include a

30f 13

comparison of all of the original values. The following UPDATE statement, for example, updates the name and price
of a product only if the current database values are equal to the values that were originally retrieved when updating
the record in the GridView. The @ProductName and @UnitPrice parameters contain the new values entered by the
user, whereas @original ProductName and @original UnitPrice contain the values that were originally loaded
into the GridView when the Edit button was clicked:

UPDATE Products SET

ProductName = @ProductName,
UnitPrice = @UnitPrice

WHERE
ProductID = @original ProductID AND
ProductName = @original ProductName AND
UnitPrice = Qoriginal UnitPrice

As we’ll see in this tutorial, enabling optimistic concurrency control with the SqlDataSource is as simple as
checking a checkbox.

Step 1: Creating a SqlDataSource that Supports Optimistic
Concurrency

Start by opening the OptimisticConcurrency.aspx page from the sglbatasource folder. Drag a SqlDataSource
control from the Toolbox onto the Designer, settings its ID property to
ProductsDataSourceWithOptimisticConcurrency. Next, click on the Configure Data Source link from the
control’s smart tag. From the first screen in the wizard, choose to work with the NORTHWINDConnectionString
and click Next.

=

-
Configure Data Source - ProductsDataSourceWithOptimisticConcurrency @@| E]E]

Choose Your Data Connection

Which data connection should your application use to connect to the database?
MOR THWHND C onnectionString 2 Mewve Connection. ..]

[E Connection string

Data Sn:u.rr_'cm.H,SQLEHPRESS;ntMcHEbFMnmen[D&aDmcmrﬁl_NOﬂTHwND.rﬂ'rDF;Irtcgatud
Security=True;User Instance=True

Figure 4: Choose to Work with the NORTHWINDConnectionString

4 of 13

For this example we’ll be adding a GridView that enables users to edit the Products table. Therefore, from the
“Configure the Select Statement” screen, choose the products table from the drop-down list and select the
ProductID, ProductName, UnitPrice, and Discontinued columns, as shown in Figure 5.

=

-
Configure Data Source - ProductsDataSourceWithOptimisticConcurrency [E]@]'E]E|

J Configure the Select Statement

F,
==

How would you like to retrieve data from your database?

() SpecFy a custom 30U skatement or stored procedure
() Specfy columns fram a table or view

Namme:

Products

Columns:

i [] LnitPrice (] Return anly unique rows
[+] ProductiD [] UriiksEnStock l WHERE. . '|
Praductiarne [] UriiksOROrder
[] SupplierID [[] RearderLevel [ORDER BY. .. l
[] CategorylD | Discontirued
("] QuantityPerUnit [Advanced.. |

'SELEI:T statement:
| SELECT [ProductID], [Productiame], [UnitPrice], [Discontirsed] FROM [Products]

[f.EreviDus J[Mext > I

Figure 5: From the Products Table, Return the ProductID, ProductName, UnitPrice, and Discontinued
Columns

After picking the columns, click the Advanced button to bring up the Advanced SQL Generation Options dialog
box. Check the “Generate INSERT, UPDATE, and DELETE statements” and “Use optimistic concurrency” checkboxes
and click OK (refer back to Figure 1 for a screenshot). Complete the wizard by clicking Next, then Finish.

After completing the Configure Data Source wizard, take a moment to examine the resulting DeleteCommand and
UpdateCommand properties and the DeleteParameters and UpdateParameters collections. The easiest way to do

this is to click on the Source tab in the lower left corner to see the page’s declarative syntax. There you will find an
UpdateCommand value of:

UPDATE [Products] SET
[ProductName] = @ProductName,
[UnitPrice] = @UnitPrice,
[Discontinued] = @Discontinued

WHERE
[ProductID] = Qoriginal ProductID AND
[ProductName] = @original ProductName AND
[UnitPrice] = Qoriginal UnitPrice AND
[Discontinued] = Qoriginal Discontinued

With seven parameters in the UpdateParameters collection:

<asp:SglDataSource ID="ProductsDataSourceWithOptimisticConcurrency"

50f13

runat="server" ...>
<DeleteParameters>

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="ProductName" Type="String" />
<asp:Parameter Name="UnitPrice" Type="Decimal" />
<asp:Parameter Name="Discontinued" Type="Boolean" />
<asp:Parameter Name="original ProductID" Type="Int32" />
<asp:Parameter Name="original ProductName" Type="String" />
<asp:Parameter Name="original UnitPrice" Type="Decimal" />
<asp:Parameter Name="original Discontinued" Type="Boolean" />

</UpdateParameters>

</asp:SglDataSource>

Similarly, the DeleteCommand property and DeleteParameters collection should look like the following:

DELETE FROM [Products]
WHERE
[ProductID] = Qoriginal ProductID AND
[ProductName] = @original ProductName AND
[UnitPrice] = Qoriginal UnitPrice AND
[Discontinued] = Qoriginal Discontinued
<asp:SglDataSource ID="ProductsDataSourceWithOptimisticConcurrency"
runat="server" ...>
<DeleteParameters>
<asp:Parameter Name="original ProductID" Type="Int32" />
<asp:Parameter Name="original ProductName" Type="String" />
<asp:Parameter Name="original UnitPrice" Type="Decimal" />
<asp:Parameter Name="original Discontinued" Type="Boolean" />
</DeleteParameters>
<UpdateParameters>

</UpdateParameters>

</asp:SglDataSource>

In addition to augmenting the WHERE clauses of the UpdateCommand and DeleteCommand properties (and adding the
additional parameters to the respective parameter collections), selecting the “Use optimistic concurrency” option
adjusts two other properties:

e Changes the ConflictDetection property from OverwriteChanges (the default) to Compareallvalues
e Changes the 01dvValuesParameterFormatString property from “{0}” (the default) to “original {0}”.

When the data Web control invokes the SqlDataSource’s Update () or Delete () method, it passes in the original
values. If the SqlDataSource’s ConflictDetection property is set to CompareallValues, these original values are
added to the command. The 01dvaluesParameterFormatString property provides the naming pattern used for
these original value parameters. The Configure Data Source wizard uses “original {0} and names each original
parameter in the UpdateCommand and DeleteCommand properties and UpdateParameters and DeleteParameters
collections accordingly.

Note: Since we’re not using the SqlDataSource control’s inserting capabilities, feel free to remove the
InsertCommand property and its InsertParameters collection.

Correctly Handling nuLL Values

6 of 13

Unfortunately, the augmented UPDATE and DELETE statements autogenerated by the Configure Data Source wizard
when using optimistic concurrency do not work with records that contain NULL values. To see why, consider our
SqlDataSource’s UpdateCommand:

UPDATE [Products] SET
[ProductName] = @ProductName,
[UnitPrice] = @UnitPrice,
[Discontinued] = @Discontinued

WHERE

[ProductID] = Qoriginal ProductID AND

[ProductName] = @original ProductName AND

[UnitPrice] = Qoriginal UnitPrice AND

[Discontinued] = Qoriginal Discontinued
The UnitPrice column in the Products table can have NULL values. If a particular record has a NULL value for
UnitPrice, the WHERE clause portion “[UnitPrice] = @original UnitPrice” will always evaluate to False
because NULL = NULL always returns False. Therefore, records that contain NULL values cannot be edited or
deleted, as the UPDATE and DELETE statements’ WHERE clauses won’t return any rows to update or delete.

Note: This bug was first reported to Microsoft in June of 2004 in SqlDataSource Generates Incorrect SQL
Statements and is reportedly scheduled to be fixed in the next version of ASP.NET.

To fix this, we have to manually update the WHERE clauses in both the UpdateCommand and DeleteCommand
properties for all columns that can have NULL values. In general, change [columnName] =
@original_ ColumnName tO:

([ColumnName] IS NULL AND @original ColumnName IS NULL)
OR
([ColumnName] = Qoriginal ColumnName)

This modification can be made directly through the declarative markup, via the UpdateQuery or DeleteQuery
options from the Properties window, or through the UPDATE and DELETE tabs in the “Specify a custom SQL
statement or stored procedure” option in the Configure Data Source wizard. Again, this modification must be made
for every column in the UpdateCommand and DeleteCommand’s WHERE clause that can contain NULL values.

Applying this to our example results in the following modified UpdateCommand and DeleteCommand values:

UPDATE [Products] SET
[ProductName] = @ProductName,
[UnitPrice] = QUnitPrice,
[Discontinued] = @Discontinued
WHERE
[ProductID] = Qoriginal ProductID AND
[ProductName] = @original ProductName AND

(([UnitPrice] IS NULL AND @original UnitPrice IS NULL)
OR ([UnitPrice] = Qoriginal UnitPrice)) AND
[Discontinued] = Qoriginal Discontinued

DELETE FROM [Products]

WHERE
[ProductID] = Qoriginal ProductID AND
[ProductName] = @original ProductName AND
(([UnitPrice] IS NULL AND @original UnitPrice IS NULL)
OR ([UnitPrice] = @original UnitPrice)) AND

7of 13

[Discontinued] = Qoriginal Discontinued

Step 2: Adding a GridView with Edit and Delete Options

With the SqlDataSource configured to support optimistic concurrency, all that remains is to add a data Web control
to the page that utilizes this concurrency control. For this tutorial, let’s add a GridView that provides both edit and
delete functionality. To accomplish this, drag a GridView from the Toolbox onto the Designer and set its ID to
Products. From the GridView’s smart tag, bind it to the ProductsDataSourceWithOptimisticConcurrency
SqlDataSource control added in Step 1. Finally, check the “Enable Editing” and “Enable Deleting” options from
the smart tag.

- —
3 ASPNET Data_Tutorial %0 _C5 - Microwolt Visus) Studio |'17|E| r.__|rﬂ|ﬁ|
Bl Edt Yew Webgte Eubl [ebag Fovot Lageol ook b Conadly Heln A

R LR i RS koG A

B I U

v T = =X

] Macabiolder A~
Vemes

Sutsthution

i Livakos T
il hmchficod bt Combent - Conienth (Custom)
i chackiood st veidshor

bl Using Optimistic Concurrency

A

e
]] oDt aSaurE - Froduct s sSeur e WOt e ConamanTy]
T Dotales -
Detakiviens
Foat iy

Ropmeber Fra v (s

j sometasoure it Delaty 2 s 0.2 T B
i AccesslsbiSopce Edit Deleta 3 shc 03 T 3 :
LR objenDobsSouce it [intete 4 e 0.4 A
. mlatafours

i SteMapDatatounoe

J Reportiswer
- Validstion

k Porte

= ReguradReidvaboator
*% Rangetiakishas
g T ———— Ee TEmploce -
o Comparptsidsior

“ Cishomitabdstor || by || caspecontentRoantant Ly | o | SagparidvisaRardviee]

-I-'..'l: .-:l:-\.- et] P stk
Fera(s) Sarenad

Figure 6: Bind the GridView to the SqlDataSource and Enable Editing and Deleting

After adding the GridView, configure its appearance by removing the ProductID BoundField, changing the
ProductName BoundField’s HeaderText property to “Product”, and updating the Unitprice BoundField so that
its HeaderText property is simply “Price”. Ideally, we’d enhance the editing interface to include a
RequiredFieldValidator for the ProductName value and a CompareValidator for the unitPrice value (to ensure
it’s a properly formatted numeric value). Refer to the Customizing the Data Modification Interface tutorial for a
more in-depth look at customizing the GridView’s editing interface.

Note: The GridView’s view state must be enabled since the original values passed from the GridView to the
SqlDataSource are stored in view state.

After making these modifications to the GridView, the GridView and SqlDataSource declarative markup should
look similar to the following:

<asp:SglDataSource ID="ProductsDataSourceWithOptimisticConcurrency"
runat="server" ConflictDetection="CompareAllValues"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
DeleteCommand=
"DELETE FROM [Products]

8o0f13

WHERE [ProductID] = @original ProductID

AND [ProductName] = @original ProductName

AND (([UnitPrice] IS NULL AND @original UnitPrice IS NULL)
OR ([UnitPrice] = Qoriginal UnitPrice))

AND [Discontinued] = @original Discontinued"

OldValuesParameterFormatString=
"original {0}"
SelectCommand=
"SELECT [ProductID], [ProductName], [UnitPrice], [Discontinued]
FROM [Products]"
UpdateCommand=
"UPDATE [Products
SET [ProductName

]

] @ProductName, [UnitPrice] = QUnitPrice,
[Discontinued]

]

]

@Discontinued
@original ProductID
@original ProductName

WHERE [ProductID
AND [ProductName

AND (([UnitPrice] IS NULL AND @original UnitPrice IS NULL)
OR ([UnitPrice] = Qoriginal UnitPrice))
AND [Discontinued] = @original Discontinued">

<DeleteParameters>
<asp:Parameter Name="original ProductID" Type="Int32" />
<asp:Parameter Name="original ProductName" Type="String" />
<asp:Parameter Name="original UnitPrice" Type="Decimal" />
<asp:Parameter Name="original Discontinued" Type="Boolean" />

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="ProductName" Type="String" />
<asp:Parameter Name="UnitPrice" Type="Decimal" />
<asp:Parameter Name="Discontinued" Type="Boolean" />
<asp:Parameter Name="original ProductID" Type="Int32" />
<asp:Parameter Name="original ProductName" Type="String" />
<asp:Parameter Name="original UnitPrice" Type="Decimal" />
<asp:Parameter Name="original Discontinued" Type="Boolean" />

</UpdateParameters>

</asp:SglDataSource>

<asp:GridView ID="Products" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ProductsDataSourceWithOptimisticConcurrency">
<Columns>
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" HeaderText="Price"
SortExpression="UnitPrice" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued" />
</Columns>
</asp:Gridview>

To see the optimistic concurrency control in action, open two browser windows and load the
OptimisticConcurrency.aspx page in both. Click on the Edit buttons for the first product in both browsers. In
one browser, change the product name and click Update. The browser will postback and the GridView will return
to its pre-editing mode, showing the new product name for the record just edited.

In the second browser window, change the price (but leave the product name as its original value) and click
Update. On postback, the grid returns to its pre-editing mode, but the change to the price is not recorded. The
second browser shows the same value as the first one — the new product name with the old price. The changes
made in the second browser window were lost. Moreover, the changes were lost rather quietly, as there was no
exception or message indicating that a concurrency violation just occurred.

9 of 13

SAM JISUN

B:00 AM: Sam decided o edil Chai B:03 AM: Jisun decided to adit Chai
L | Produd | Price DiscostinuedBU | Predudt | Brice __Discontiwed]

19,5500 1 Cha 1R.8500

Eill Delele Chang 13 DO B Dsi=ts Chen 150000

=iz eed Syrup 101 DR Cdf Deets Ansesd Syrup 1. 0000

e Chef ANDON'S CARIN oy zon S ety Chef Anor'E CHN o foosy

B:04 AM: Jisun changes the name 1o “Chal Tea® and

clicks Update
Produd | Price Discontineed
Lk Dsl=ts Chai T2a 159 5500
Eit Dsjete Chang 19,0000
E P b P sl T T

B:05 AM: Sam changes the Price o $20.85
[| Predua | Pk [Déscontinued|

Ef Dbt Chang PR e i)
P L —— 30 0G0
ot rbse | Chaf Snteets Cajum = i)

B:06 AM: Sam clicks Updata, Since this resulls in a concwrmancy violation, Sam’s changes aren’t applied. The Grid is
returned 1o its pre-aditing mode showing Jisun's data. However, Sam was not notified that her changes were lost

Product Discontinued
Edit Delete Chal Tea 19,9500
Edit Delete Chang 19,0000
Edit Delete Anisesd Syrup 10,0000
E Al Mualatbn mhaf Ankamies ™ adiom A ssamiems DE £ TN

Figure 7: The Changes in the Second Browser Window Were Silently Lost

The reason why the second browser’s changes were not committed was because the UPDATE statement’s WHERE
clause filtered out all records and therefore did not affect any rows. Let’s look at the UPDATE statement again:

UPDATE [Products] SET
[ProductName] = @ProductName,
[UnitPrice] = @UnitPrice,
[Discontinued] = @Discontinued

WHERE
[ProductID] = Qoriginal ProductID AND
[ProductName] = @original ProductName AND
(([UnitPrice] IS NULL AND @original UnitPrice IS NULL) OR
([UnitPrice] = @original UnitPrice)) AND
[Discontinued] = Qoriginal Discontinued

When the second browser window updates the record, the original product name specified in the WHERE clause
doesn’t match up with the existing product name (since it was changed by the first browser). Therefore, the
statement [ProductName] = Qoriginal ProductName returns False, and the UPDATE does not affect any records.

Note: Delete works in the same manner. With two browser windows open, start by editing a given product with
one, and then saving its changes. After saving the changes in the one browser, click the Delete button for the same
product in the other. Since the original values don’t match up in the DELETE statement’s WHERE clause, the delete
silently fails.

From the end user’s perspective in the second browser window, after clicking the Update button the grid returns to
the pre-editing mode, but their changes were lost. However, there’s no visual feedback that their changes didn’t

10 of 13

stick. Ideally, if a user’s changes are lost to a concurrency violation, we’d notify them and, perhaps, keep the grid
in edit mode. Let’s look at how to accomplish this.

Step 3: Determining When a Concurrency Violation Has Occurred

Since a concurrency violation rejects the changes one has made, it would be nice to alert the user when a
concurrency violation has occurred. To alert the user, let’s add a Label Web control to the top of the page named
ConcurrencyViolationMessage whose Text property displays the following message: “You have attempted to
update or delete a record that was simultaneously updated by another user. Please review the other user's changes
and then redo your update or delete.” Set the Label control’s CssClass property to “Warning”, which is a CSS
class defined in styles.css that displays text in a red, italic, bold, and large font. Finally, set the Label’s visible
and EnableViewState properties to False. This will hide the Label except for only those postbacks where we
explicitly set its Visible property to True.

FIE e

TF ASPHET Data_lwiorial S0 C5 - Microsoft Wisssl Studio

B B Wew Wetghe Bl [ebwg Fomet Lawod Tock Wiekes Conenty Heb o AdSno
L RSEIER ™ - R R | MLRE ~E
B U .
T - - X i - x
¢ = Standard L & Concwrencefinlstinn™essage Sosbar Sk LT ek v
= Pl s AT
' VE 3 premsmns | &
.lnl Tt F ; {E ConcartencyViokition |
) Buthany Content - Corfentl (Cugom) oy _— -
] LBt i e AcseeishadCortrolDs
] et Using Optimistic Dacicotr i
B, ek IConcurrency iy it
o Dnoplosnd 6t | ::rﬁ: Mot
¥ Faix |
adanipe, You have attempted to T War
: date or del'ete a record St Tree
e a wiag smuitapeously
L ated by another user. BT
O ease review the other Formcrier O
ser's changes and then oot
e tio your update or S
L '}
i< Bullted it elete. Teut ou have attempted to |
it | SnibataSounce - Peodutsl staSmcewh s Conorr Ency ol
"'“' Litersl Product|Price Discontinusd =
Cabervlar i Visibie
= ke !:5_:—'* '-'%""’1‘ i . 4 || Incscabes whette the conteol i visbie and rendersd,
% Flalipkaad ¥
4 Wesrd || ey 3 | D CONEEEROONDANE L2 o0 | e abesl i BTRNQE CONOS . L] P opeeities g o il
] Sutrut | g Errw st [k Peing Crecins 5 i et |
Rmachy

Figure 8: Add a Label Control to the Page to Display the Warning

When performing an update or delete, the GridView’s RowUpdated and RowDeleted event handlers fire after its
data source control has performed the requested update or delete. We can determine how many rows were affected
by the operation from these event handlers. If zero rows were affected, we want to display the
ConcurrencyViolationMessage Label.

Create an event handler for both the RowUpdated and RowDeleted events and add the following code:

Protected Sub Products RowUpdated (sender As Object, e As GridViewUpdatedEventArgs)

Handles Products.RowUpdated

If e.AffectedRows = 0 Then
ConcurrencyViolationMessage.Visible =

e.KeepInEditMode = True

True

' Rebind the data to the GridView to show the latest changes
Products.DataBind()
End If
End Sub

110f13

Protected Sub Products RowDeleted (sender As Object, e As GridViewDeletedEventArgs)
Handles Products.RowDeleted
If e.AffectedRows = 0 Then
ConcurrencyViolationMessage.Visible = True
End If
End Sub

In both event handlers we check the e.AffectedrRows property and, if it equals 0, set the
ConcurrencyViolationMessage Label’s Visible property to True. In the RowUpdated event handler, we also
instruct the GridView to stay in edit mode by setting the KeepInEditMode property to true. In doing so, we need to
rebind the data to the grid so that the other user’s data is loaded into the editing interface. This is accomplished by
calling the GridView’s DataBind () method.

As Figure 9 shows, with these two event handlers, a very noticeable message is displayed whenever a concurrency
violation occurs.

F

A Untitled Pape - Microsofl Internet Explorer
B EW Wew Favoekes Tools o Help
3 Back ~ i & ¥ | Y Smanch Favorkes 5 L [L W

E‘fI't-:p'!'Jhl;d'ndt'Z.-‘HJP.i\Fﬂ'.’lJJeta_ll.t-:frd_w_t:l‘iﬁ:[l::atmwcr.l":‘ptmsh:mm'.em * fd =

-

Wﬂrklng W|th Data Tutﬂrla |$ Home * Using the SqiDataSource Contrel > Using

Optimistic Concurrency

Hame Using Optimistic Concurrency
Pt Yor have atte ted to update or
ele

Simpls Display tE‘ a I“'EC‘OF"

Demans simultaneously upJat cf by another
i Js'en P ease review the other user's

es and then redo your update or
efe.

Settng Fararmeter
Walles

e —— Product | DHscontinued

Ipdate Canced|Chai T 19, 9500

Eilber bl,r Orop-Down e ». o3 :

List Edit Delete Chang 19,0000

EdIt Delete Anizesd Syrup 10,0000

Master-Detalls-

Detalls Chef anton's Cajun
Edit Delats rstahig 26.6200

Waster/Detall Acoss sy e
Twi Pages Edit Dielate -'.'.-ul.l':' ANEY's GUMBO 5y oeny

Figure 9: A Message is Displayed in the Face of a Concurrency Violation

Summary

When creating a web application where multiple, concurrent users may be editing the same data, it is important to
consider concurrency control options. By default, the ASP.NET data Web controls and data source controls do not
employ any concurrency control. As we saw in this tutorial, implementing optimistic concurrency control with the
SqlDataSource is relatively quick and easy. The SqlDataSource handles most of the legwork for your — adding
augmented WHERE clauses to the autogenerated UPDATE and DELETE statements — but there are a few subtleties in
handling NULL value columns, as discussed in the “Correctly Handling NULL Values” section.

This tutorial concludes our examination of the SqlDataSource. Our remaining tutorials will return to working with
data using the ObjectDataSource and tiered architecture.

Happy Programming!

12 0of 13

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

13 of 13

