This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Inserting,
Updating, and Deleting Data with the SqlDataSource

Introduction

As discussed in An Overview of Inserting, Updating, and Deleting, the GridView control provides built-in
updating and deleting capabilities, while the DetailsView and FormView controls include inserting support along
with editing and deleting functionality. These data modification capabilities can be plugged directly into a data
source control without a line of code needing to be written. An Overview of Inserting, Updating, and Deleting
examined using the ObjectDataSource to facilitate inserting, updating, and deleting with the GridView,
DetailsView, and FormView controls. Alternatively, the SqlDataSource can be used in place of the
ObjectDataSource.

Recall that to support inserting, updating, and deleting, with the ObjectDataSource we needed to specify the object
layer methods to invoke to perform the insert, update, or delete action. With the SqlDataSource, we need to provide
INSERT, UPDATE, and DELETE SQL statements (or stored procedures) to execute. As we’ll see in this tutorial, these
statements can be created manually or can be automatically generated by the SqlDataSource’s Configure Data
Source wizard.

Note: Since we’ve already discussed the inserting, editing, and deleting capabilities of the GridView, DetailsView,
and FormView controls, this tutorial will focus on configuring the SqlDataSource control to support these
operations. If you need to brush up on implementing these features within the GridView, DetailsView, and
FormView, return to the Editing, Inserting, and Deleting Data tutorials, starting with An Overview of Inserting,
Updating, and Deleting.

Step 1: Specifying INSERT, UPDATE, and DELETE Statements

As we’ve seen in the past two tutorials, to retrieve data from a SqlDataSource control we need to set two
properties:

1. ConnectionsString, which specifies what database to send the query to, and
2. SelectCommand, which specifies the ad-hoc SQL statement or stored procedure name to execute to return the
results.

For selectCommand values with parameters, the parameter values are specified via the SqlDataSource’s
SelectParameters collection and can include hard-coded values, common parameter source values (querystring
fields, session variables, Web control values, and so on), or can be programmatically assigned. When the
SqlDataSource control’s select () method is invoked — either programmatically or automatically from a data Web
control — a connection to the database is established, the parameter values are assigned to the query, and the
command is shuttled off to the database. The results are then returned as either a DataSet or DataReader, depending
on the value of the control’s DataSourceMode property.

Along with selecting data, the SqlDataSource control can be used to insert, update, and delete data by supplying
INSERT, UPDATE, and DELETE SQL statements in much the same way. Simply assign the InsertCommand,
UpdateCommand, and DeleteCommand properties the INSERT, UPDATE, and DELETE SQL statements to execute. If
the statements have parameters (as they most always will), include them in the InsertParameters,
UpdateParameters, and DeleteParameters collections.

1 of 12

Once an InsertCommand, UpdateCommand, Oor DeleteCommand value has been specified, the “Enable Inserting”,
“Enable Editing”, or “Enable Deleting” option in the corresponding data Web control’s smart tag will become
available. To illustrate this, let’s take an example from the Querying.aspx page we created in the Querying Data
with the SqlDataSource Control tutorial and augment it to include delete capabilities.

Start by opening the InsertUpdateDelete.aspx and Querying.aspx pages from the sqlDataSource folder.
From the Designer on the Querying.aspx page, select the SqlDataSource and GridView from the first example
(the ProductsbDataSource and Gridviewl controls). After selecting the two controls, go to the Edit menu and
choose Copy (or just hit Ctrl+C). Next, go to the Designer of InsertUpdateDelete.aspx and paste in the
controls. After you have moved the two controls over to InsertUpdateDelete.aspx, test out the page in a
browser. You should see the values of the ProductID, ProductName, and UnitPrice columns for all of the records
in the Products database table.

=
2 Untitled Page - Microsoft Internet Explorer

File Edit Yew Favostes Tools Hel
Qoeck - O - @ [@ G| Poeach Frraores 8 (3 5 W] - €™ g

Addrass G_'l httpefflocalhost: 3TI9MASPNET _Data_Tutorial_49_CS(5qDataSour cefinsertUndateDelets. s

Working with Data Tutorials Home > Using the SqiDatasource

Contral = Inserting. Updating, and

Home

Inserting, Updating, and
Simple Display DEIEti“g Data

Declarative Product Name

Paraitieters Chal Tea £19.95
Chang $1%9.00
Aniseed Syrup $10.00
Chef Anton's Cajun Seasoning $26.62
Chef anton's Gumbo Mix $21.35
Grandma's Boysenberry Spread $30.2%
Uncle Bob's Organic Dried Pears $30.00
Morthwoods Cranberry Sauce $36.00
Mizhi Kobe Miku $97.00
lkura $£31.00
Queso Cabrales $21.00
Queso Manchego La Pastora $38.00
konbu $E,00
Tofi $23.25
Genen Shouyu $15.50
Fanlaa $17.45
Alica Mutton $39.00

e

% Local intranst

Basic Reporting

Setting Parameter
Walues

Filtering Reports

Fliter by Drop=Cawn
List

Master-Cetails-
Detalts

Master/Datal Across
Two Pages

Cetalls of Selectad
Fowr

L7 e o I R TR R S I Y

= G
=

i— =
I

Customized
Farmatting

Foarmmat Colors

i = e s
13 = i e

Figure 1: All of the Products are Listed, Ordered by ProductID

Adding the SqlDataSource’s DeleteCommand and DeleteParameters
Properties

At this point we have a SqlDataSource that simply returns all of the records from the products table and a
GridView that renders this data. Our goal is to extend this example to allow for the user to delete products via the

GridView. To accomplish this we need to specify values for the SqlDataSource control’s DeleteCommand and
DeleteParameters properties and then configure the GridView to support deleting.

20f12

The DeleteCommand and DeleteParameters properties can be specified in a number of ways:

Through the declarative syntax

From the Properties window in the Designer

From the “Specify a custom SQL statement or stored procedure” screen in the Configure Data Source wizard
Via the Advanced button in the “Specify columns from a table of view” screen in the Configure Data Source
wizard, which will actually automatically generate the DELETE SQL statement and parameter collection used
in the DeleteCommand and DeleteParameters properties

We’ll examine how to automatically have the DELETE statement created in Step 2. For now, let’s use the Properties
window in the Designer, although the Configure Data Source wizard or declarative syntax option would work just
as well.

From the Designer in InsertUpdateDelete.aspx, click on the ProductsDatasource SqlDataSource and then
bring up the Properties window (from the View menu, choose Properties window, or simply hit F4). Select the
DeleteQuery property, which will bring up a set of ellipses.

ProductsDataSource System,Web, ULwWebContrals, 5 =

El| #
(Expressions)
(10 ProductsDataSource
CacheDur ation Infinite
CacheExpirationPalicy: Absolute
CachekeyDependency
CancelSelectOnMullParam True
ConflickDetection CrverwriteChanges
Connectionatring EIE Data Source=."S0QLEXPRES
DatasourceMode Dataset
FeCnmmand Tyvne Text
(Query)
EnableYigwst ke True
FilterExpression
FilterParameters (Collection)
InsertCommandType Texk
InsertQuety (Queryl

QldvaluesParameterFaorm: {0}
Providertarne

SelectiCommandType Text
SeleckQuety (Query
SortParameterMame
Sqh_acheDependency
IUpdateCommandType Textk
IpdateQuery (Query

DeleteQuery

Delete Query

|_":§50|thil:|... FiProperties |58 Server ... |E Class View

Figure 2: Select the DeleteQuery Property from the Properties Window

3of12

Note: The SqlDataSource doesn’t have a DeleteQuery property. Rather, DeleteQuery is a combination of the
DeleteCommand and DeleteParameters properties and is only listed in the Properties window when viewing the
window through the Designer. If you are looking at the Properties window in the Source view, you’ll find the
DeleteCommand property instead.

Click the ellipses in the DeleteQuery property to bring up the Command and Parameter Editor dialog box (see
Figure 3). From this dialog box you can specify the DELETE SQL statement and specify the parameters. Enter the
following query into the DELETE command textbox (either manually or using the Query Builder, if you prefer):

DELETE FROM Products
WHERE ProductID = @ProductID

Next, click the Refresh Parameters button to add the @productID parameter to the list of parameters below.

Command and Parameter Editor E] 1

DELETE command:

{OELETE FROM Products
WHERE ProductID = @ProductiD

=

ﬁ Refresh Parameters n [Cusry Builder, .,

Parameters: Parameter source:

Mame Yalue &
£ ProductID Dief auiltahue:

-

Show advanced properties

Add Parameter

] [Cancel

Figure 3: Select the DeleteQuery Property from the Properties Window

Do not provide a value for this parameter (leave its Parameter source at “None”’). Once we add deleting support to
the GridView, the GridView will automatically supply this parameter value, using the value of its Datakeys
collection for the row whose Delete button was clicked.

Note: The parameter name used in the DELETE query must be the same as the name of the DataKeyNames value in
the GridView, DetailsView, or FormView. That is, the parameter in the DELETE statement is purposefully named
@ProductID (instead of, say, @ID), because the primary key column name in the Products table (and therefore the
DataKeyNames value in the GridView) is ProductID.

If the parameter name and DataKeyNames value doesn’t match, the GridView cannot automatically assign the
parameter the value from the batakeys collection.

4 of 12

After entering the delete-related information into the Command and Parameter Editor dialog box click OK and go
to the Source view to examine the resulting declarative markup:

<asp:SglDataSource ID="ProductsDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
SelectCommand=
"SELECT [ProductID], [ProductName], [UnitPrice] FROM [Products]"
DeleteCommand="DELETE FROM Products WHERE ProductID = @ProductID">
<DeleteParameters>
<asp:Parameter Name="ProductID" />
</DeleteParameters>
</asp:SglDataSource>

Note the addition of the DeleteCommand property as well as the <DeleteParameters> section and the Parameter
object named productID.

Configuring the GridView for Deleting

With the DeleteCommand property added, the GridView’s smart tag now contains the “Enable Deleting” option. Go
ahead and check this checkbox. As discussed in An Overview of Inserting, Updating, and Deleting, this causes the
GridView to add a CommandField with its ShowbDeleteButton property set to True. As Figure 4 shows, when the
page is visited through a browser a Delete button is included. Test this page out by deleting some products.

= = n ._-‘
2 Untitled Page - Microsoft Internet Explorer r; |@| Elrﬁl&"
Ble Edit View Fgvontes Tools Help -
J- search Favorkes 4 v da - € n B E

Acddress EI hitpe fflocalhost: 3TI9/ASPNET _Data_Tutorial_49_C5)5qiDataSour cefinsertUipdateDislets. aspx bt o

Working with Data Tutorials = Heme> Usina the sqinatasource

Contral > Inserting, Updating, and

Inserting, Updating, and
Deleting Data

Basic Reporting

Simple Display

Dedarative [ProductIn) Product Name
el Delete 1 Chal Tea $13.95
Setting Parametear Delete 2 Chang $19.00
Walues Delete 3 Anizeed Syrup £10.00
Filtering Reports Delete 4 Chef Anton's Cajun Seasoning $26.62
Delete 5 Chef anton's Gumbo Mix $21.35
Grandma's Boysenbert
Delete & haiah ¥ ! $30.25
Uncle Bob's Organic Dred

Fliter by Drop-Cown
List

Mazter-Detailz-
Ciztails Pears
Master/Detal Across Delete B Meorthwoods Cranberry Sauce $36.00
Two Pages Delete 9 Mishi Kobe Niku $37.00
Delete 10 Ikura £31.00
Details of Selectzd Delate 11 Queso Cabrales $21.00
Delete 12 Queso Manchego La Pastora $38.00
Delete 13 Kanbu $c.00

Dielete 14 Tofu $23.25
[N g Maelate 15 T=efan Shoivie %15 5M

% Local intranet

Delete 7

$30.00

Figure 4: Each GridView Row Now Includes a Delete Button

50of12

Upon clicking a Delete button, a postback occurs, the GridView assigns the ProductID parameter the value of the
DataKeys collection value for the row whose Delete button was clicked, and invokes the SqlDataSource’s Delete
() method. The SqlDataSource control then connects to the database and executes the DELETE statement. The
GridView then rebinds to the SqlDataSource, getting back and displaying the current set of products (which no
longer includes the just-deleted record).

Note: Since the GridView uses its DataKeys collection to populate the SqlDataSource parameters, it’s vital that the
GridView’s DataKeyNames property be set to the column(s) that constitute the primary key and that the
SqlDataSource’s SelectCommand returns these columns. Moreover, it’s important that the parameter name in the
SqlDataSource’s DeleteCommand is set to @ProductID. If the DataKeyNames property is not set or the parameter is
not named eProductsID, clicking the Delete button will cause a postback, but won’t actually delete any record.

Figure 5 depicts this interaction graphically. Refer back to the Examining the Events Associated with Inserting,
Updating, and Deleting tutorial for a more detailed discussion on the chain of events associated with inserting,
updating, and deleting from a data Web control.

II
GridView 3qlDataSource

Database

(Rowlipdating Event j

DelataParameatars sat

Delete()

i, S S

Delafing Evant

DELETE FROM Products
WHERE ProductlD = product/D

I
I
I
I
|
I
I
|
|
!
|
|
|
I
I
»
I

I
I
|
I
|
-t
I

Delated Event

-

I
|
I
I
(Rowlpdated Emr:lrj :
I
I

Figure 5: Clicking the Delete Button in the GridView Invokes the SqlDataSource’s Delete () Method

Step 2: Automatically Generating the INSERT, UPDATE, and DELETE
Statements

As Step 1 examined, INSERT, UPDATE, and DELETE SQL statements can be specified through the Properties window
or the control’s declarative syntax. However, this approach requires that we manually write out the SQL statements
by hand, which can be monotonous and error-prone. Fortunately, the Configure Data Source wizard provides an
option to have the INSERT, UPDATE, and DELETE statements automatically generated when using the “Specify

60f 12

columns from a table of view” screen.

Let’s explore this automatic generation option. Add a DetailsView to the Designer in InsertUpdateDelete.aspx
and set its ID property to ManageProducts. Next, from the DetailsView’s smart tag, choose to create a new data
source and create a SqlDataSource named ManageProductsDataSource,

=

-
Data Source Configuration Wizard @| E!E|

Choose a Data Source Type

==

Where will the application get data from?
[2 o .
[i ll | 1 1
—@ '-_13?,-' ;5} L

Access Database Olject Sike Map ¥ML File
Database

;r.l:'_nnmct.r.n any: S0L database il_ppu:;ted by ﬁD-C.ﬁ..MEL such as Microsoft SOL Séhur, Drac.le,.l:.lr OLEDS,

Specify an [0 for the data souwrce:
;Mal‘la;EP‘TDdL[tSDEItBSGUI'CE

Figure 6: Create a New SqlDataSource Named ManageProductsDataSource

From the Configure Data Source wizard, opt to use the NORTHWINDConnectionString connection string and click
Next. From the “Configure the Select Statement” screen, leave the “Specify columns from a table or view” radio
button selected and pick the products table from the drop-down list. Select the ProductID, ProductName,
UnitPrice, and Discontinued columns from the checkbox list.

7 of 12

-
Configure Data Source - ManageProductsDataSource

J Configure the Select Statement

=

How would you like to retrieve data from your database?

(") Specfy a custom SQL statement or stored procedure
(+) Specfy columns from a table or view

Nane:

Products

Columns:

]» [#] UnitPrice [] meturn only unique roves
ProductlD [] UnitsInStock I NAETRE. . |
Producthianme [] UnitsOnCrder —
[] SupplierID [] Rearderlevel ORDER BY.,, |'
[] CategorylD | Discontirsd
[] QuantityPerUnit Advanced... |

SELECT sl:atemfmt_:]
SELECT [ProductID], [ProduckMame], [UnitPrice], [Discontinued] FROM [Products]

[*:Erfwiuus Ji Mext =]

Figure 7: Using the Products Table, Return the ProductID, ProductName, UnitPrice, and Discontinued
Columns

To automatically generate INSERT, UPDATE, and DELETE statements based on the selected table and columns, click
the Advanced button and check the “Generate INSERT, UPDATE, and DELETE statements” checkbox.

Advanced 5Q1L Generation Options |E”E|

additional INSERT, UPDATE, and DELETE skatements can be generated ko
update the daka source,

(enerate INGERT. TIPDATE, and DELETE statementsé]

Generates INSERT, UPDATE, and DELETE statements based on wour
SELECT statement, You must have all primary ke fields selected For this
option ko be enabled,

|:| Use optimistic concurrency

Maodifies UPDATE and DELETE statements ko detect whether the
database has changed since the record was loaded into the Dataset,
This helps prevent concurrency conflicks,

8] 4][Zancel]

Figure 8: Check the “Generate INSERT, UPDATE, and DELETE statements” Checkbox

The “Generate INSERT, UPDATE, and DELETE statements” checkbox will only be checkable if the table selected has
a primary key and the primary key column (or columns) are included in the list of returned columns. The “Use
optimistic concurrency” checkbox, which becomes selectable once the “Generate INSERT, UPDATE, and DELETE
statements” checkbox has been checked, will augment the WHERE clauses in the resulting UPDATE and DELETE

8of12

statements to provide optimistic concurrency control. For now, leave this checkbox unchecked; we’ll examine
optimistic concurrency with the SqlDataSource control in the next tutorial.

After checking the “Generate INSERT, UPDATE, and DELETE statements” checkbox, click OK to return to the
“Configure Select Statement” screen, then click Next, and then Finish, to complete the Configure Data Source
wizard. Upon completing the wizard, Visual Studio will add BoundFields to the DetailsView for the ProductIb,
ProductName, and UnitPrice columns and a CheckBoxField for the Discontinued column. From the
DetailsView’s smart tag, check the “Enable Paging” option so that the user visiting this page can step through the
products. Also clear out the DetailsView’s width and Height properties.

9% 66

Notice that the smart tag has the “Enable Inserting”, “Enable Editing”, and “Enable Deleting” options available.
This is because the SqlDataSource contains values for its InsertCommand, UpdateCommand, and DeleteCommand,
as the following declarative syntax shows:

<asp:DetailsView ID="ManageProducts" runat="server" AllowPaging="True"
AutoGenerateRows="False" DataKeyNames="ProductID"
DataSourceID="ManageProductsDataSource" EnableViewState="False">
<Fields>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False" ReadOnly="True" SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="UnitPrice" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued" />
</Fields>
</asp:DetailsView>
<asp:SglDataSource ID="ManageProductsDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"

DeleteCommand=
"DELETE FROM [Products] WHERE [ProductID] = @ProductID"
InsertCommand=
"INSERT INTO [Products] ([ProductName], [UnitPrice], [Discontinued])
VALUES (@ProductName, @UnitPrice, @Discontinued)"
SelectCommand=

"SELECT [ProductID], [ProductName], [UnitPrice], [Discontinued]
FROM [Products]"

UpdateCommand=
"UPDATE [Products] SET [ProductName] = @ProductName,
[UnitPrice] = @UnitPrice, [Discontinued] = @Discontinued
WHERE [ProductID] = @ProductID">

<DeleteParameters>
<asp:Parameter Name="ProductID" Type="Int32" />
</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="ProductName" Type="String" />
<asp:Parameter Name="UnitPrice" Type="Decimal" />
<asp:Parameter Name="Discontinued" Type="Boolean" />
<asp:Parameter Name="ProductID" Type="Int32" />
</UpdateParameters>
<InsertParameters>
<asp:Parameter Name="ProductName" Type="String" />
<asp:Parameter Name="UnitPrice" Type="Decimal" />
<asp:Parameter Name="Discontinued" Type="Boolean" />
</InsertParameters>
</asp:SglDataSource>

Note how the SqlDataSource control has had values automatically set for its InsertCommand, UpdateCommand, and

90of 12

DeleteCommand properties. The set of columns referenced in the InsertCommand and UpdateCommand properties
are based on those in the SELECT statement. That is, rather than having every Products column in the
InsertCommand and UpdateCommand, there are only those columns specified in the selectCommand (less
productID, which is omitted because it’s an IDENTITY column, whose value cannot be changed when edited and
which is automatically assigned when inserting). Moreover, for each parameter in the InsertCommand,
UpdateCommand, and DeleteCommand properties there are corresponding parameters in the InsertParameters,
UpdateParameters, and DeleteParameters collections.

To turn on the DetailsView’s data modification features, check the “Enable Inserting”, “Enable Editing”, and
“Enable Deleting” options in its smart tag. This adds a CommandField with its ShowInsertButton,
ShowEditButton, and ShowDeleteButton properties set to True.

Visit the page in a browser and note the Edit, Delete, and New buttons included in the DetailsView. Clicking the
Edit button turns the DetailsView into edit mode, which displays each BoundField whose Readonly property is set
to False (the default) as a TextBox, and the CheckBoxField as a checkbox.

= Zal
2 Untitled Page - Microsoft Internet Explorer El@| E”E]E]

Eile Edit \iews Favorites Tools Help
) Back - \ @) 2 P Search Favorites &) v ia W] -

Adaress &q'l htbp:/flocabhost: 371 9/ASPNET _Data_Tutorial_49%_C5/SqiDataSource/InsertUpdatebe | Go

Lsing Custom

Buttons In the ProductID M
Datalist and

Repeater's SRtles

Discontinued il
Update Cancel

& Local intranet

Figure 9: The DetailsView’s Default Editing Interface

Similarly, you can delete the currently selected product or add a new product to the system. Since the
InsertCommand statement only works with the ProductName, UnitPrice, and Discontinued columns, the other
columns have either NULL or their default value assigned by the database upon insert. Just like with the
ObjectDataSource, if the InsertCommand is missing any database table columns that don’t allow NULLs and don’t
have a default value, a SQL error will occur when attempting to execute the INSERT statement.

Note: The DetailsView’s inserting and editing interfaces lack any sort of customization or validation. To add
validation controls or to customize the interfaces, you need to convert the BoundFields to TemplateFields. Refer to
the Adding Validation Controls to the Editing and Inserting Interfaces and Customizing the Data Modification
Interface tutorials for more information.

Also, keep in mind that for updating and deleting, the DetailsView uses the current product’s DataKey value,
which is only present if the DatakeyNames property is configured. If editing or deleting appears to have no effect,
ensure that the DatakeyNames property is set.

10 of 12

Limitations of Automatically Generating SQL Statements

Since the “Generate INSERT, UPDATE, and DELETE statements” option is only available when picking columns from
a table, for more complex queries you will have to write your own INSERT, UPDATE, and DELETE statements like we
did in Step 1. Commonly, SQL SELECT statements use JOINS to bring back data from one or more lookup tables for
display purposes (such as bringing back the categories table’s CategoryName field when displaying product
information). At the same time, we might want to allow the user to edit, update, or insert data into the “core” table
(Products, in this case).

While the INSERT, UPDATE, and DELETE statements can be entered manually, consider the following time-saving
tip. Initially setup the SqlDataSource so that it pulls back data just from the Products table. Use the Configure
Data Source wizard’s “Specify columns from a table or view” screen so that you can automatically generate the
INSERT, UPDATE, and DELETE statements. Then, after completing the wizard, choose to configure the SelectQuery
from the Properties window (or, alternatively, go back to the Configure Data Source wizard, but use the “Specify a
custom SQL statement or stored procedure” option). Then update the SELECT statement to include the JOIN syntax.
This technique offers the time-saving benefits of the automatically generated SQL statements and allows for a
more customized SELECT statement.

Another limitation of automatically generating the INSERT, UPDATE, and DELETE statements is that the columns in
the INSERT and UPDATE statements are based on the columns returned by the SELECT statement. We may need to
update or insert more or fewer fields, however. For example, in the example from Step 2, maybe we want to have
the unitprice BoundField be read-only. In that case, it shouldn’t appear in the UpdateCommand. Or we may want
to set the value of a table field that does not appear in the GridView. For example, when adding a new record we
may want the QuantityPerUnit value set to “TODO”.

If such customizations are required, you need to make them manually, either through the Properties window, the
“Specify a custom SQL statement or stored procedure” option in the wizard, or via the declarative syntax.

Note: When adding parameters that do not have corresponding fields in the data Web control, keep in mind that
these parameters values will need to be assigned values in some manner. These values can be: hard-coded directly
in the InsertCommand or UpdateCommand; can come from some pre-defined source (the querystring, session state,
Web controls on the page, and so on); or can be assigned programmatically, as we saw in the preceding tutorial.

Summary

In order for the data Web controls to utilize their built-in inserting, editing, and deleting capabilities, the data
source control they are bound to must offer such functionality. For the SqlDataSource, this means that INSERT,
UPDATE, and DELETE SQL statements must be assigned to the InsertCommand, UpdateCommand, and
DeleteCommand properties. These properties, and the corresponding parameters collections, can be added manually
or generated automatically through the Configure Data Source wizard. In this tutorial we examined both
techniques.

We examined using optimistic concurrency with the ObjectDataSource in the Implementing Optimistic
Concurrency tutorial. The SqlDataSource control also provides optimistic concurrency support. As noted in Step 2,
when automatically generating the INSERT, UPDATE, and DELETE statements, the wizard offers a “Use optimistic
concurrency’ option. As we’ll see in the next tutorial, using optimistic concurrency with the SqlDataSource
modifies the WHERE clauses in the UPDATE and DELETE statements to ensure that the values for the other columns
haven’t changed since the data was last displayed on the page.

Happy Programming!

110f12

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

12 of 12

