This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Adding
Additional DataTable Columns

Introduction

When adding a TableAdapter to a Typed DataSet, the corresponding DataTable’s schema is determined by the
TableAdapter’s main query. For example, if the main query returns data fields 4, B, and C, the DataTable will have
three corresponding columns named 4, B, and C. In addition to its main query, a TableAdapter can include
additional queries that return, perhaps, a subset of the data based on some parameter. For instance, in addition to
the ProductsTableAdapter’s main query, which returns information about all products, it also contains methods
like GetProductsByCategoryID (categoryID) and GetProductByProductID (productIb), which return specific
product information based on a supplied parameter.

The model of having the DataTable’s schema reflect the TableAdapter’s main query works well if all of the
TableAdapter’s methods return the same or fewer data fields than those specified in the main query. If a
TableAdapter method needs to return additional data fields, then we should expand the DataTable’s schema
accordingly. In the Master/Detail Using a Bulleted List of Master Records with a Details Datal ist tutorial we
added a method to the CategoriesTableAdapter that returned the CategoryID, CategoryName, and
Description data fields defined in the main query plus NumberofProducts, an additional data field that reported
the number of products associated with each category. We manually added a new column to the
CategoriesDataTable in order to capture the NumberOfProducts data field value from this new method.

As discussed in the Uploading Files tutorial, great care must be taken with TableAdapters that use ad-hoc SQL
statements and have methods whose data fields do not precisely match the main query. If the TableAdapter
Configuration wizard is re-run, it will update all of the TableAdapter’s methods so that their data field list matches
the main query. Consequently, any methods with customized column lists will revert to the main query’s column
list and not return the expected data. This issue does not arise when using stored procedures.

In this tutorial we will look at how to extend a DataTable’s schema to include additional columns. Due to the
brittleness of the TableAdapter when using ad-hoc SQL statements, in this tutorial we will use stored procedures.
Refer to the Creating New Stored Procedures for the Typed DataSet’s TableAdapters and Using Existing Stored
Procedures for the Typed DataSet’s TableAdapters tutorials for more information on configuring a TableAdapter to
use stored procedures.

Step 1: Adding a PriceQuartile Column to the ProductsDataTable

In the Creating New Stored Procedures for the Typed DataSet’s TableAdapters tutorial we created a Typed
DataSet named NorthwindwithSprocs. This DataSet currently contains two DataTables: ProductsDataTable and
EmployeesDataTable. The ProductsTableAdapter has the following three methods:

e GetProducts - the main query, which returns all records from the Products table
e GetProductsByCategoryID (categoryID) - returns all products with the specified categorylID.
e GetProductByProductID (productID) - returns the particular product with the specified productID.

The main query and the two additional methods all return the same set of data fields, namely all of the columns

from the Products table. There are no correlated subqueries or JOINs pulling related data from the categories or
Suppliers tables. Therefore, the ProductsDataTable has a corresponding column for each field in the Products

1 of 16

table.

For this tutorial, let’s add a method to the ProductsTableAdapter named GetProductsWithPriceQuartile that
returns all of the products. In addition to the standard product data fields, GetProductsWithPriceQuartile will
also include a PriceQuartile data field that indicates under which quartile the product’s price falls. For example,
those products whose prices are in the most expensive 25% will have a PriceQuartile value of 1, while those
whose prices fall in the bottom 25% will have a value of 4. Before we worry about creating the stored procedure to
return this information, however, we first need to update the ProductsDataTable to include a column to hold the

PriceQuartile results when the GetProductsWithPriceQuartile method is used.

Open the NorthwindwithSprocs DataSet and right-click on the ProductsDataTable. Choose Add from the

context-menu and then pick Column.

%5 ASPNET_Data_Tutorfal_70_CS - Microsoft Visual Studio =
Fle Edt Vew Webste Buld Debug Data Tock Window Commundy Hep Addes

" RECERAT T N A R R ¥ [# 15th
%" App_Code/DAL/..ithSprocs.nsd* = 3 | Solution Explorer
'i_ ‘ Products P : =) ﬂ % PH .
- 8 | e C:\,...\ASPNET_Data_Tutorial_70_CS",
' ' ProductiD .) : _r 3 AdvancedDAL
Producthlame Configure... £+ Belstion... | [app Code
SupphkeriD ¥ cx 7 Key.. B 3L
CategoryID r =l - B L
QuankkyPeriink | = Copy ’E_ﬂ ® | CustomProviders
UritPrice | = (B DAL
UnitsInStock —— B - [TransactionSuppart
UnitsOrrder = | Morthwind.xsd

_.‘i' App_Themes

] BascReporting

] BaktchData

1 BinaryData

4 Brochures

| Caching

2 CustomButtons

e A CrestomButbnnsCiakal st areabar

5_3 AT { _3_ Prewiew Data...
, \'__ : PrOECES | Z__.l L

Z0 Fill, GetProducts |]
= FilbyCategorylD ug Properties F{@Cate...
2l FillByProductID, Get ProductByProduct I0 (@Product 10)

Wi Code . -

e e

_'E, Error List |] Outpes % Find Results § |7] Command Window
Ready

! o Proces tae | B Sarar ==
% > crgsolutio... {8 Properties | S Server .., 3

-
x

-1

RecrderLevel Renams + ; rency. xsd
Ciscontinued Autpein N2 MorthwindwithSprocs. ssd
[- i : § App_baka

Figure 1: Add a New Column to the ProductsDataTable

This will add a new column to the DataTable named “Column1” of type System.

property to “PriceQuartile” and the DataType property to System. Int32.

20f 16

string. We need to update this
column’s name to “PriceQuartile” and its type to System. Int32 since it will be used to hold a number between 1
and 4. Select the newly-added column in the ProductsbataTable and, from the Properties window, set the Name

*0 ASPNET_Data_Tutorfal_70_CS - Microsoft ¥isual Studio

BE B

File Edit ‘iew ‘Webste Buid Debug Data Tools Window Communky Help Addins
@-cl-Hd s - Lk O rsth =
},"' ﬂpp_[udejbm-jthﬁpmﬂa.xsd*“ Pl Froperties v B
E K Products & F.‘nctquurtlll: Column 4
" ' ProductiD £ pA)
Productiame AllowDENul True
Supplier 1T Aukolncrement False
CategorylD AutolncrementSeed 0
CuantityPerUini AutolncrementStep 1
UnitPrice Caption PriceCiuartile
UritsInStack {Dexmpe System.Int3z |
UnitsSnCrder elimetode UnspecihecLocal
Reorderlevel Deef aultalus <DENull >
Discontinued Exprassion
PriceCiuartie Palendgth -1
-~ Ml alue oW Exception)
= FR,Selfr s0 ReadOnky False
] FllByCategorylD, GetProductsByvCategaryiD (@Cate. . P
2 FillByProductID, GetProduct ByProduckID {@Produsct1D) Unicue Falss
Mame
Indicates the name used ko look up this column in the
Columng collection of a DataTable,
F) > crlsolutio,.. | Properties S Server .. S Class View
g Error List | (5] Output |55 Find Results 1) 5] Command Window
Ready

Figure 2: Set the New Column’s Name and DataType Properties

As Figure 2 shows, there are additional properties that can be set, such as whether the values in the column must be
unique, if the column is an auto-increment column, whether or not database NULL values are allowed, and so on.
Leave these values set to their defaults.

Step 2: Creating the GetProductsWithPriceQuartile Method

Now that the ProductsbataTable has been updated to include the PriceQuartile column, we are ready to create
the GetProductsWithPriceQuartile method. Start by right-clicking on the TableAdapter and choosing Add
Query from the context-menu. This brings up the TableAdapter Query Configuration wizard, which first prompts
us as to whether we want to use ad-hoc SQL statements or a new or existing stored procedure. Since we don’t yet
have a stored procedure that returns the price quartile data, let’s allow the TableAdapter to create this stored
procedure for us. Select the “Create new stored procedure” option and click Next.

3of16

TableAdapter Configuration Wizard

Choose a Command Type
The TableAdapter uses S0L statements or stored procedures.,

How should the TableAdapter access the database?
() Use SOL statements

Speciy a S0L skatement, IF you provide a single-table SELECT statement, the wizard can oenerate INSERT,
UPDATE, and DELETE statements For you,

@i_g_.rul:e new stored procedures |

Speciy a 301 statement and the wizard will create & new stored procedure, IF you provide a single-table
SELECT stakement, the wizard can generate INSERT, UPDATE, and DELETE stored procedures For wou,

) Use existing stored procedures

Choose an existing stored procedure for each command (SELECT, INSERT, IWPDATE, and DELETE),

| e e e

Figure 3: Instruct the TableAdapter Wizard to Create the Stored Procedure For Us

In the subsequent screen, shown in Figure 4, the wizard asks us what type of query to add. Since the

GetProductsWithPriceQuartile method will return all columns and records from the products table, select the
“SELECT which returns rows” option and click Next.

4 of 16

TableAdapter Query Configuration Wizard

Choose a Query Type B s
Choose the bype of query to be generated oy {

What e of SOL guery would you like bo use?

ELUFNS ONE OF Many rowWs oF Colmns.

{_) SELECT which returns a single value
Returns a single value (for example, Sum, Count, or any other aggregate function;.

) UPDATE
Changes existing data in a table.

() DELETE

Removes rows From a table.
O INSERT

Adds a new row bo a table.

[< Previous ” Blext =] Finiz

Figure 4: Our Query will be a sELECT Statement that Returns Multiple Rows

Next we are prompted for the SELECT query. Enter the following query into the wizard:

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued,

NTILE (4) OVER (ORDER BY UnitPrice DESC) as PriceQuartile

FROM Products

The above query uses SQL Server 2005°s new NTILE function to divide the results into four groups where the
groups are determined by the Unitprice values sorted in descending order.

Unfortunately, the Query Builder does not know how to parse the ovER keyword and will display an error when
parsing the above query. Therefore, enter the above query directly in the textbox in the wizard without using the
Query Builder.

Note: For more information on NTILE and SQL Server 2005’s other ranking functions, see Returning
Ranked Results with Microsoft SQL Server 2005 and the Ranking Functions section from the SQL Server
2005 Books Online.

After entering the SELECT query and clicking Next, the wizard asks us to provide a name for the stored procedure it
will create. Name the new stored procedure Products_SelectWithPriceQuartile and click Next.

5of16

TableAdapter Query Configuration Wizard

Create the Stored Procedure e,
Specify how you would ke the stored procedure created. e

What do you want to name the new stored procedure?
Products_SelectWithPriceQuartile

You can preview the SOL soript used ko generake the stored procedure and optionally copy it For wour own
procedure,

[Presaaw SOL Script... I

[::Eravimls JI Hext = ||_ Finish I[Cancel J

Figure 5: Name the Stored Procedure Products_SelectWithPriceQuartile

Lastly, we are prompted to name the TableAdapter methods. Leave both the “Fill a DataTable” and “Return a
DataTable” checkboxes checked and name the methods FillwithPriceQuartile and
GetProductsWithPriceQuartile.

60f 16

TableAdapter Query Configuration Wizard

Choose Methods to Generate B |

The Tableadapter methods bad and save data between your application and the (S 1
database. r

Yhich methods do you want to add ko the TableAdapter?
Fill a DataTahle

Creakes a method that takes a DataTable or DataSet as a parameter and execustes the SOL stakement or
SELECT stored procedure entered an the previous page.

Method name: FiIIWathF‘r.s'.:aQuart.l.la

Return a DataTable

Creates a method that returns a new DataTable Filled wikh the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetProductsWithPriceQuartile|

[<= Previous ” et = H Finish ” Cance

Figure 6: Name the TableAdapter’s Methods and Click Finish

With the SELECT query specified and the stored procedure and TableAdapter methods named, click Finish to
complete the wizard. At this point you may get a warning or two from the wizard saying that “The ovEr SQL
construct or statement is not supported.” These warnings can be ignored.

After completing the wizard, the TableAdapter should include the FillwithPriceQuartile and
GetProductsWithPriceQuartile methods and the database should include a stored procedure named
Products_SelectWithPriceQuartile. Take a moment to verify that the TableAdapter does indeed contain this
new method and that the stored procedure has been correctly added to the database. When checking the database, if
you do not see the stored procedure try right-clicking on the Stored Procedures folder and choosing Refresh.

7 of 16

File Edit Mew ‘Website Buld Debug Data Tools
Window Community Help Addins
P RS RAT ™ - NN R R S R
yfg' " dbo.Products, . MORTHWHMD MDF) T K JEH
= | P g
= -1.2‘31-:};3:}3} £
S ¥ ProductID .?.-.
Productiame ?%
SupplierID [| m
CategoryID Lﬁ
QuankityPerlnit o
UnitPrice =
UnitsInStack, =
UnitsOnCrder m: -
ReorderLevel Lbl:l‘
Discontinued z
Priceciuartile i
8 ProductsTableAdapter [#] %Si
53] Fill, GetProducts ﬁ
=l FillewCateqoryID, GetProductsByCategoryID (@Cate, . Jﬂ
‘.; FillBProductID, GetProductByProductID (@ProductID) g
[ﬂ FiltwithPriceuartile, GetProductswithPriceQuartile O] i
5
< | 3=
I_",a Error List | [Z] IC:luI:puI:\g%I Find Results 1 | p] Command Window
Ready

Figure 7: Verify that a New Method Has Been Added to the TableAdapter

8o0f 16

2% ASPHET Data_Totorial_T0_C5 - Microsoft Viseal Siudio
Ele Edt Yow Progt Quld Debop Date Tooh Wik Qommandy Help fddes

- i SHd s PO s =
| - J i i 3
» dbo.Produsct 5. MO THWSD MDY Sarver Baglorer K P
- ALTER PROCEDURE dho.Producte SelectVithPriceduartile ra| i |
AT .
= § Dusks Conreachiones Ca i IR}
SET HOCODMT OM: 5 i
"ELE"'TTP d IlF;, Producch 5 li=cIb, T i B a4 'f’_:ﬂhfn:i:-?\-[:i
G roductIlF;, ProduccHese, SupplieriD, CategoryID, B CF s -
GuapcicyPerUnic, UnicPeice, UnicalmScock, B O Takles i
Unitslnlrder, Reordeclevel, Discontimwesd, = & e I
NTILE{4) OVER [ORDER BEY UnitPrice DESC) as PriceQuarcils 5 O Stored Procedanes]

o] Asphiet_SqiCachePolingTorediro
o] Aesphiet_SciCachelperpRiagetere:
Aaphist _SoiCachel agifiee TableStc
1] Asphiet_SiCachelrfiogoteTable: | L
] Aphet_SoiCachel sl e hangals

FROH Products

M |

o] Cusblrdersinders

=] Ermphorynn Safas by Coumtry
] Empleyaes_Dslabe

] Emgltrpoes_lmert

| Emplyyoes_Seed
La] Empborees Lipsiste

o] GetProductsByCstegory

o Getfroduct:Faged

] GetfroductifagedindSorted

sl

] Products_([elste

) Py [ngaet

o] Producs_Sslect

o) Products_SelectiyCabegoey[D
et okt

st Friceuaarls |

FoR o ORBERREREESE R BRERER R R R R

Figure 8: Ensure that the Database Contains the Products_SelectWithPriceQuartile Stored Procedure

Note: One of the benefits of using stored procedures instead of ad-hoc SQL statements is that re-running the
TableAdapter Configuration wizard will not modify the stored procedures’ column lists. Verify this by right-
clicking on the TableAdapter, choosing the Configure option from the context-menu to start the wizard, and
then clicking Finish to complete it. Next, go to the database and view the
Products_SelectWithPriceQuartile stored procedure. Note that its column list has not been modified.
Had we been using ad-hoc SQL statements, re-running the TableAdapter Configuration wizard would have
reverted this query’s column list to match the main query column list, thereby removing the NTILE
statement from the query used by the GetProductswWithPriceQuartile method.

When the Data Access Layer’s GetProductsWithPriceQuartile method is invoked, the TableAdapter executes
the Products_SelectWithPriceQuartile stored procedure and adds a row to the ProductsDataTable for each
returned record. The data fields returned by the stored procedure are mapped to the ProductsbataTable’s
columns. Since there is a PriceQuartile data field returned from the stored procedure, its value is assigned to the
ProductsDataTable’s PriceQuartile column.

For those TableAdapter methods whose queries do not return a PriceQuartile data field, the PriceQuartile
column’s value is the value specified by its Defaultvalue property. As Figure 2 shows, this value is set to DBNull,
the default. If you would prefer a different default value, simply set the Defaultvalue property accordingly. Just
make sure that the Defaultvalue value is valid given the column’s DataType (i.e., System.Int32 for the
PriceQuartile column).

At this point we have performed the necessary steps for adding an additional column to a DataTable. To verify that

this additional column works as expected, let’s create an ASP.NET page that displays each product’s name, price,
and price quartile. Before we do that, though, we first need to update the Business Logic Layer to include a method

90f 16

that calls down to the DAL’s GetProductsWithPriceQuartile method. We will update the BLL next, in Step 3,
and then create the ASP.NET page in Step 4.

Step 3: Augmenting the Business Logic Layer

Before we use the new GetProductsWithPriceQuartile method from the Presentation Layer, we should first add
a corresponding method to the BLL. Open the productsBLLWithSprocs class file and add the following code:

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, false)]
public NorthwindWithSprocs.ProductsDataTable GetProductsWithPriceQuartile()

{
return Adapter.GetProductsWithPriceQuartile();

}

Like the other data retrieval methods in ProductsBLLWithSprocs, the GetProductsWithPriceQuartile method
simply calls the DAL’s corresponding GetProductsWithPriceQuartile method and returns its results.

Step 4: Displaying the Price Quartile Information in an ASP.NET Web
Page

With the BLL addition complete we’re ready to create an ASP.NET page that shows the price quartile for each
product. Open the AddingColumns.aspx page in the AdvancedDAL folder and drag a GridView from the Toolbox
onto the Designer, setting its ID property to Products. From the GridView’s smart tag, bind it to a new
ObjectDataSource named ProductsDataSource. Configure the ObjectDataSource to use the
ProductsBLLWithSprocs class’s GetProductsWithPriceQuartile method. Since this will be a read-only grid,
set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”.

10 of 16

Configure Data Source - ProductsDataSource E[E| EJE]

iJ Choose a Business Object
e |___,=/"

Select a business object that can be used ko refriewe or update data (for example, an object defined in the Bin
or App_Code directory for this application).

Chonse your business abjack:
ProductsBLLWithSprocs v Show only data components

MorthavindWithSprocsTableddapters EmployeesTableAdapter ~
MorthewindWwithSprocsTableAdapters . ProductsTableAdapter i
ProducksELL

PraducksBLL\WikhSoracs
ProducksCL
ProducksOptimisticConcurrencyBLL
SkaticCacha

| SuppliersBLL M

g

Figure 9: Configure the ObjectDataSource to Use the ProductsBLLWithSprocs Class

110f 16

Configure Data Source - ProductsDataSource @@ @i@

J Define Data Methods
=
| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daka bo &ssociate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 cakegoryld), returns a DataSet,

Choose a methaod:

!GetF‘rudutts'u'-.ﬁ.thP-'icaQuartileﬂ, returns ProducksDataTat » i

GetProduckEyProduckID{IngSZ2 productiD), returns ProducksDataTable
GetProducks), returns ProductsDataTable
GetProductsByCaten returns ProductsDataTable
GetProducks\WikthPriceQuartie), rn.=.ths ProducksDataTable

o> () et]

Figure 10: Retrieve Product Information from the GetProductsWithPriceQuartile Method

After completing the Configure Data Source wizard, Visual Studio will automatically add a BoundField or
CheckBoxField to the GridView for each of the data fields returned by the method. One of these data fields is
PriceQuartile, which is the column we added to the ProductsDataTable in Step 1.

Edit the GridView’s fields, removing all but the ProductName, UnitPrice, and PriceQuartile BoundFields.
Configure the unitprice BoundField to format its value as a currency and have the UnitPrice and
PriceQuartile BoundFields right- and center-aligned, respectively. Finally, update the remaining BoundFields’
HeaderText properties to “Product”, “Price”, and “Price Quartile”, respectively. Also, check the “Enable Sorting
checkbox from the GridView’s smart tag.

b2

After these modifications, the GridView and ObjectDataSource’s declarative markup should look like the
following:

<asp:GridView ID="Products" runat="server" AllowSorting="True"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourcelID="ProductsDataSource">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False"
SortExpression="UnitPrice">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>

12 of 16

<asp:BoundField DataField="PriceQuartile" HeaderText="Price Quartile"
SortExpression="PriceQuartile">
<ItemStyle HorizontalAlign="Center" />
</asp:BoundField>
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldValuesParameterFormatString="original {O0}"
SelectMethod="GetProductsWithPriceQuartile"
TypeName="ProductsBLLWithSprocs">
</asp:0bjectDataSource>

Figure 11 shows this page when visited through a browser. Note that, initially, the products are ordered by their
price in descending order with each product assigned an appropriate PriceQuartile value. Of course this data can
be sorted by other criteria with the “Price Quartile” column value still reflecting the product’s ranking with respect
to price (see Figure 12).

13 0f 16

2 Untitled Page - Microsoft Internet Explorer GENN=ES

Ble Edt Vew Favortes Took Help
Qbxk » O - 0 @ & Psewch FrFovokes & (3~ 5] - € » i
Agdress | &1 hittp:flocshost ITSSIASHNET Data_Tuborial_70_CS/AdvancedDALfaddngCohumrs, asps v [6o
i i i Home > Advanced DAL Scenarios
Working with Data Tutorials ~ Home> Advanced oaL sce
__ DataTable
T Adding Additional DataTable
Siriple Disgiley Columns
Declarative o Price
Parameters Product Price | Quartile
'Se'l:rjng_ Parameter Thiringer Rostbratwurst $123.79 1
Walues Mishi Kobe hiku $£97.00 1
Filtering Reports Sir Rodney’s Marmalade $81.00 i
RS IR carnarvon Tigers $62.50 1
Fllter by Drop-Down Raclette Courdavault $55.00 1
List Manjimup Cried Apples $53.00 1
Master-Detalls- Tarte au sucre $49.20 1
Detalls Rossle Sauerkraut $45.60 1
Master/Detall Across]pﬂh Coffes $45-GC| 1
Two Pages Schoggl Schokolade $43.90 1
: T Allce Mutton $39.00 1
Eg:f“? of Selected Queso Manchego La Pastora $38.00 1
Gnocchl di nonna Alice $38.00 1
Z Gudbrandsdalsost $36.00 1
Lung Morthwoods Cranberry Sauce $£36.00 1
Format Colars: Mozzarella di Giovanni $34.80 1
& Camembert Fierrot $34.00 1
m Content |
Sy e wimmers gute Semmelknodel $33.25 1
et Perth Pasties $32.80 1
gg:ﬂms:ﬂuﬂt ina Mascarpone Fabiol $32.00 1
— Gumbdr Gummibdrchen $31.23 1
Custom Contentina Ikura $31.00 1
Formiew Grandma's Boysenberry Spread $30.25 1
summary Data in Uncle Bob's Organic Dried Pears $30.00 2
Frunbar : Sirnn d'érahle £28 &N 2 -
£ d Leesl intranat

Figure 11: The Products are Ordered by their Prices

14 of 16

2 Untitled Page - Microsoft Internet Explorer

Ble Edt ‘Wew Favorbes Jook Help

: Qbxck - 3 - H @ 0| search Favoribes 4 - i - E W B
| Addeess |2 hitprfloc ghost: 3758] ASPMNET _Data_Tutorisl_70_C5jadvancedDalfaddngColumns, aspi b Ga

Scenarios > Adding
....PataColumns to a DataTable

Working with Data Tutorials Home > Advanced DAL

Horme

s Renorig Adding Additional

S DataTable Columns
Declarative ; Price
Setting Parameter Acme Bagels $4.95 +
Walues Acrme BEQ Sauce $3.50 4
Filtering Peporks e B $0.95 “
= Acme Coffes $24.95 2
F!Iter by Drop-Down Acme Cookies 414,95]
List Acme Hot Sauce $0.95 4
Maz=ter-Detals- Acme Lamb $9.95 3
Datails Aecme Mayo $5.96 N
Master/Detall Across Somic: Miess $1.95 4
Two Pages Acre Mustard $1.95 4
: Acme Tea $19.95 2
Eg;alfg of Selected i $15.00 3
Acme Toast $2.95 4
Customized Alice Mutton $39.00 1
Formatting Aniseed Syrup $10.00 3
Format Colors Boston Crab Meat $18.40 z
L Bt COrtertin A Camernbert Fierrot 434.00 1
Grid\View Carnaryon Tlgers $62.50 1
. Chal Tea %19.95 2
Custom Contentin a chang $19.25 >
Detailsview »

P e T T R L T AAam S -

‘:j Local intranet

Figure 12: The Products are Ordered by their Names

Note: With a few lines of code we could augment the GridView so that it colored the product rows based on
their PriceQuartile value. We might color those products in the first quartile a light green, those in the
second quartile a light yellow, and so forth. I encourage you to take a moment to add this functionality. If
you need a refresher on formatting a GridView, consult the Custom Formatting Based Upon Data tutorial.

An Alternative Approach - Creating Another TableAdapter

As we saw in this tutorial, when adding a method to a TableAdapter that returns data fields other than those spelled
out by the main query, we can add corresponding columns to the DataTable. Such an approach, however, works
well only if there are a small number of methods in the TableAdapter that return different data fields and if those
alternate data fields do not vary too much from the main query.

Rather than adding columns to the DataTable, you can instead add another TableAdapter to the DataSet that
contains the methods from the first TableAdapter that return different data fields. For this tutorial, rather than add

150f 16

the PriceQuartile column to the ProductsbDataTable (where it is only used by the
GetProductsWithPriceQuartile method), we could have added an additional TableAdapter to the DataSet
named ProductsWithPriceQuartileTableAdapter that used the Products SelectWithPriceQuartile stored
procedure as its main query. ASP.NET pages that needed to get product information with the price quartile would
use the ProductsWithPriceQuartileTableAdapter, while those that did not could continue to use the
ProductsTableAdapter.

By adding a new TableAdapter, the DataTables remain untarnished and their columns precisely mirror the data
fields returned by their TableAdapter’s methods. However, additional TableAdapters can introduce repetitive tasks
and functionality. For example, if those ASP.NET pages that displayed the PriceQuartile column also needed to
provide insert, update, and delete support, the ProductswWithPriceQuartileTableadapter would need to have its
InsertCommand, UpdateCommand, and DeleteCommand properties properly configured. While these properties
would mirror the ProductsTableAdapter’s, this configuration introduces an extra step. Moreover, there are now
two ways to update, delete, or add a product to the database - through the ProductsTableAdapter and
ProductsWithPriceQuartileTableAdapter classes.

The download for this tutorial includes a ProductsWithPriceQuartileTableAdapter class in the
NorthwindWithSprocs DataSet that illustrates this alternative approach.

Summary

In most scenarios, all of the methods in a TableAdapter will return the same set of data fields, but there are times
when a particular method or two may need to return an additional field. For example, in the Master/Detail Using a
Bulleted List of Master Records with a Details DataList tutorial we added a method to the
CategoriesTableAdapter that, in addition to the main query’s data fields, returned a NumberOfProducts field
that reported the number of products associated with each category. In this tutorial we looked at adding a method in
the ProductsTableadapter that returned a PriceQuartile field in addition to the main query’s data fields. To
capture additional data fields returned by the TableAdapter’s methods we need to add corresponding columns to
the DataTable.

If you plan on manually adding columns to the DataTable, it is recommended that the TableAdapter use stored
procedures. If the TableAdapter uses ad-hoc SQL statements, any time the TableAdapter Configuration wizard is
run all of the methods’ data field lists revert to the data fields returned by the main query. This problem does not
extend to stored procedures, which is why they are recommended and were used in this tutorial.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Randy Schmidt,
Jacky Goor, Bernadette Leigh, and Hilton Giesenow. Interested in reviewing my upcoming MSDN articles? If so,
drop me a line at mitchell@4GuysFromRolla.com.

16 of 16

