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This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data in
ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Displaying
Data With the ObjectDataSource

Introduction

With our application architecture and website page layout complete, we're ready to start exploring how to
accomplish a variety of common data- and reporting-related tasks. In the previous tutorials we've seen how to
programmatically bind data from the DAL and BLL to a data Web control in an ASP.NET page. This syntax —
assigning the data Web control's batasource property to the data to display and then calling the control's
DataBind () method — was the pattern used in ASP.NET 1.x applications, and can continue to be used in your
2.0 applications. However, ASP.NET 2.0's new data source controls offer a declarative way to work with

data. Using these controls you can bind data retrieved from the BLL created in the previous tutorial without
having to write a line of code!

ASP.NET 2.0 ships with five built-in data source controls — SqlDataSource, AccessDataSource,
ObjectDataSource, XmlDataSource, and SiteMapDataSource — although you can build your own custom data

source controls, if needed. Since we have developed an architecture for our tutorial application, we'll be using
the ObjectDataSource against our BLL classes.
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Figure 1: ASP.NET 2.0 Includes Five Built-In Data Source Controls

The ObjectDataSource serves as a proxy for working with some other object. To configure the
ObjectDataSource we specify this underlying object and how its methods map to the ObjectDataSource's
Select, Insert, Update, and Delete methods. Once this underlying object has been specified and its
methods mapped to the ObjectDataSource's, we can then bind the ObjectDataSource to a data Web control.
ASP.NET ships with many data Web controls, including the GridView, DetailsView, RadioButtonList, and
DropDownList, among others. During the page lifecycle, the data Web control may need to access the data it's
bound to, which it will accomplish by invoking its ObjectDataSource's se1ect method; if the data Web control
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supports inserting, updating, or deleting, calls may be made to its ObjectDataSource's Insert, Update, Or
Delete methods. These calls are then routed by the ObjectDataSource to the appropriate underlying object's
methods as the following diagram illustrates.
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Figure 2: The ObjectDataSource Serves as a Proxy

While the ObjectDataSource can be used to invoke methods for inserting, updating, or deleting data, let's just
focus on returning data; future tutorials will explore using the ObjectDataSource and data Web controls that
modify data.

Step 1: Adding and Configuring the
ObjectDataSource Control

Start by opening the simpleDisplay.aspx page in the BasicReporting folder, switch to Design view, and
then drag an ObjectDataSource control from the Toolbox onto the page's design surface. The
ObjectDataSource appears as a gray box on the design surface because it does not produce any markup; it
simply accesses data by invoking a method from a specified object. The data returned by an ObjectDataSource
can be displayed by a data Web control, such as the GridView, DetailsView, FormView, and so on.

Note: Alternatively, you may first add the data Web control to the page and then, from its smart tag, choose
the <New data source> option from the drop-down list.

To specify the ObjectDataSource's underlying object and how that object's methods map to the
ObjectDataSource's, click on the Configure Data Source link from the ObjectDataSource's smart tag.
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Figure 3: Click the Configure Data Source Link from the Smart Tag

This brings up the Configure Data Source wizard. First, we must specify the object the ObjectDataSource is to
work with. If the "Show only data components" checkbox is checked, the drop-down list on this screen lists
only those objects that have been decorated with the pataobject attribute. Currently our list includes the
TableAdapters in the Typed DataSet and the BLL classes we created in the previous tutorial. If you forgot to
add the pataobiject attribute to the Business Logic Layer classes you won't see them in this list. In that case,
uncheck the "Show only data components" checkbox to view all objects, which should include the BLL classes
(along with the other classes in the Typed DataSet — the DataTables, DataRows, and so on).

From this first screen choose the productsBLL class from the drop-down list and click Next.
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Figure 4: Specify the Object to Use with the ObjectDataSource Control

The next screen in the wizard prompts you to select what method the ObjectDataSource should invoke. The
drop-down lists those methods that return data in the object selected from the previous screen. Here we see
GetProductsByProductID, GetProducts, GetProductsByCategoryID, and GetProductsBySupplierID.
Select the GetProducts method from the drop-down list and click Finish (if you added the
DataObjectMethodAttribute to the ProductBLL's methods as shown in the previous tutorial, this option
will be selected by default).
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Figure 5: Choose the Method for Returning Data from the SELECT Tab

Configure the ObjectDataSource Manually

The ObjectDataSource's Configure Data Source wizard offers a quick way to specify the object it uses and to
associate what methods of the object are invoked. You can, however, configure the ObjectDataSource
through its properties, either through the Properties window or directly in the declarative markup. Simply set
the TypeName property to the type of the underlying object to be used, and the selectMethod to the method
to invoke when retrieving data.

<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
SelectMethod="GetProducts"
TypeName="ProductsBLL">

</asp:0ObjectDataSource>

Even if you prefer the Configure Data Source wizard there may be times when you need to manually configure
the ObjectDataSource, as the wizard only lists developer-created classes. If you want to bind the
ObjectDataSource to a class in the .NET Framework — such as the Membership class, to access user account
information, or the Directory class to work with file system information — you'll need to manually set the
ObjectDataSource's properties.

Step 2: Adding a Data Web Control and Binding it
to the ObjectDataSource

Once the ObjectDataSource has been added to the page and configured, we're ready to add data Web controls
to the page to display the data returned by the ObjectDataSource's select method. Any data Web control can
be bound to an ObjectDataSource; let's look at displaying the ObjectDataSource's data in a GridView,
DetailsView, and FormView.



Binding a GridView to the ObjectDataSource

Add a GridView control from the Toolbox to SimpleDisplay.aspx's design surface. From the GridView's
smart tag, choose the ObjectDataSource control we added in Step 1. This will automatically create a
BoundField in the GridView for each property returned by the data from the ObjectDataSource's select
method (namely, the properties defined by the Products DataTable).
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Figure 6: A GridView Has Been Added to the Page and Bound to the ObjectDataSource

You can then customize, rearrange, or remove the GridView's BoundFields by clicking the Edit Columns
option from the smart tag.
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Figure 7: Manage the GridView's BoundFields Through the Edit Columns Dialog Box

Take a moment to modify the GridView's BoundFields, removing the ProductID, SupplierID, CategoryID,
QuantityPerUnit, UnitsInStock, UnitsOnOrder, and ReorderLevel BoundFields. Simply select the
BoundField from the list in the bottom left and click the delete button (the red X) to remove them. Next,
Rearrange the BoundFields so that the categoryName and supplierName BoundFields precede the
UnitPrice BoundField by selecting these BoundFields and clicking the up arrow. Set the HeaderText
properties of the remaining BoundFields to products, Category, Supplier, and Price, respectively. Next,
have the price BoundField formatted as a currency by setting the BoundField's Htm1Encode property to False
and its DataFormatString property to {0:c}. Finally, horizontally align the price to the right and the
Discontinued checkbox in the center via the TtemStyle/HorizontalAlign property.

<asp:GridView ID="GridViewl" runat="server"

AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<Columns>

<asp:BoundField DataField="ProductName"
HeaderText="Product" SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName"
HeaderText="Category" ReadOnly="True"
SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName"
HeaderText="Supplier" ReadOnly="True"
SortExpression="SupplierName" />
<asp:BoundField DataField="UnitPrice"
DataFormatString="{0:c}" HeaderText="Price"
HtmlEncode="False" SortExpression="UnitPrice">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued">
<ItemStyle HorizontalAlign="Center" />
</asp:CheckBoxField>
</Columns>
</asp:GridView>
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Figure 8: The GridView's BoundFields Have Been Customized

Using Themes for a Consistent Look

These tutorials strive to remove any control-level style settings, instead using cascading style sheets defined in
an external file whenever pOSSible. The Styles.css file contains DataWebControlStyle, HeaderStyle,
RowStyle, and AlternatingRowStyle CSS classes that should be used to dictate the appearance of the data
Web controls used in these tutorials. To accomplish this, we could set the GridView's cssClass property to
DataWebControlStyle, and its HeaderStyle, RowStyle, and AlternatingRowStyle properties’ CssClass
properties accordingly.

If we set these cssclass properties at the Web control we'd need to remember to explicitly set these property
values for each and every data Web control added to our tutorials. A more manageable approach is to define
the default CSS-related properties for the GridView, DetailsView, and FormView controls using a Theme. A
Theme is a collection of control-level property settings, images, and CSS classes that can be applied to pages
across a site to enforce a common look and feel.

Our Theme won't include any images or CSS files (we'll leave the stylesheet styles.css as-is, defined in the
root folder of the web application), but will include two Skins. A Skin is a file that defines the default
properties for a Web control. Specifically, we'll have a Skin file for the GridView and DetailsView controls,
indicating the default cssc1ass-related properties.

Start by adding a new Skin File to your project named Gridview.skin by right-clicking on the project name
in the Solution Explorer and choosing Add New Item.
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Figure 9: Add a Skin File Named Gridview.skin

Skin files need to be placed in a Theme, which are located in the App_Themes folder. Since we don't yet have
such a folder, Visual Studio will kindly offer to create one for us when adding our first Skin. Click Yes to
create the App_Theme folder and place the new Gridview.skin file there.
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Figure 10: Let Visual Studio Create the App_Theme Folder

This will create a new Theme in the App Themes folder named GridView with the Skin file Gridview.skin.
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Figure 11: The GridView Theme has Been Added to the App_Theme Folder

Rename the GridView Theme to DataWebControls (right-click on the GridView folder in the App Theme
folder and choose Rename). Next, enter the following markup into the Gridview.skin file:

<asp:GridView runat="server" CssClass="DataWebControlStyle">
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
<RowStyle CssClass="RowStyle" />
<HeaderStyle CssClass="HeaderStyle" />

</asp:GridView>

This defines the default properties for the cssc1ass-related properties for any GridView in any page that uses
the DataWebControls Theme. Let's add another Skin for the DetailsView, a data Web control that we'll be
using shortly. Add a new Skin to the DataWebControls Theme named Detailsview.skin and add the
following markup:

<asp:DetailsView runat="server" CssClass="DataWebControlStyle">
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
<RowStyle CssClass="RowStyle" />
<FieldHeaderStyle CssClass="HeaderStyle" />
</asp:DetailsView>

With our Theme defined, the last step is to apply the Theme to our ASP.NET page. A Theme can be applied
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on a page-by-page basis or for all pages in a website. Let's use this theme for all pages in the website. To
accomplish this, add the following markup to Wweb.config's <system.web> section:

<pages styleSheetTheme="DataWebControls" />

That's all there is to it! The styleSheetTheme setting indicates that the properties specified in the Theme
should not override the properties specified at the control level. To specify that Theme settings should trump
control settings, use the theme attribute in place of stylesheetTheme; unfortunately, Theme settings do not
appear in the Visual Studio Design view. Refer to ASP.NET Themes and Skins Overview and Server-Side
Styles Using Themes for more information on Themes and Skins; see How To: Apply ASP.NET Themes for

more on configuring a page to use a theme.
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Figure 12: The GridView Displays the Product's Name, Category, Supplier, Price, and Discontinued
Information

Displaying One Record at a Time in the
DetailsView

The GridView displays one row for each record returned by the data source control to which it's bound. There
are times, however, when we may want to display a sole record or just one record at a time. The DetailsView
control offers this functionality, rendering as an HTML <table> with two columns and one row for each
column or property bound to the control. You can think of the DetailsView as a GridView with a single record
rotated 90 degrees.

Start by adding a DetailsView control above the GridView in simpleDisplay.aspx. Next, bind it to the same
ObjectDataSource control as the GridView. Like with the GridView, a BoundField will be added to the
DetailsView for each property in the object returned by the ObjectDataSource's select method. The only
difference is that the DetailsView's BoundFields are laid out horizontally rather than vertically.
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Figure 13: Add a DetailsView to the Page and Bind it to the ObjectDataSource

Like the GridView, the DetailsView's BoundFields can be tweaked to provide a more customized display of
the data returned by the ObjectDataSource. Figure 14 shows the DetailsView after its BoundFields and
CssClass properties have been configured to make its appearance similar to the GridView example.
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Note that the DetailsView only displays the first record returned by its data source. To allow the user to step
through all of the records, one at a time, we must enable paging for the DetailsView. To do so, return to
Visual Studio and check the Enable Paging checkbox in the DetailsView's smart tag.
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Figure 15 Enable Paging in the DetailsView Control
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Figure 16: With Paging Enabled, the DetailsView Allows the User to View Any of the Products

We'll talk more about paging in future tutorials.
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A More Flexible Layout for Showing One Record
at a Time

The DetailsView is pretty rigid in how it displays each record returned from the ObjectDataSource. We may
want a more flexible view of the data. For example, rather than showing the product's name, category,
supplier, price, and discontinued information each on a separate row, we may want to show the product name
and price in an <h4> heading, with the category and supplier information appearing below the name and price
in a smaller font size. And we may not care to show the property names (Product, Category, and so on) next
to the values.

The FormView control provides this level of customization. Rather than using fields (like the GridView and
DetailsView do), the FormView uses templates, which allow for a mix of Web controls, static HTML, and
databinding syntax. If you are familiar with the Repeater control from ASP.NET 1.x, you can think of the
FormView as the Repeater for showing a single record.

Add a FormView control to the simpleDisplay.aspx page's design surface. Initially the FormView displays
as a gray block, informing us that we need to provide, at minimum, the control's TtemTemplate.
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Figure 17: The FormView Must Include an ItemTemplate

You can bind the FormView directly to a data source control through the FormView's smart tag, which will
create a default TtemTemplate automatically (along with an EditItemTemplate and InsertItemTemplate,
if the ObjectDatatSource control's TnsertMethod and UpdateMethod properties are set). However, for this
example let's bind the data to the FormView and specify its TtemTemplate manually. Start by setting the
FormView's DataSourceID property to the 1D of the ObjectDataSource control, objectbatasSourcel. Next,
create the TtemTemplate so that it displays the product's name and price in an <h4> element and the category
and shipper names beneath that in a smaller font size.

<asp:FormView ID="FormViewl" runat="server"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<ItemTemplate>
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<h4><%# Eval ("ProductName") %>
(<%# Eval ("UnitPrice", "{0O:c}") %>)</h4>
Category: <%# Eval ("CategoryName") $%>;
Supplier: <%# Eval("SupplierName") %>
</ItemTemplate>
</asp:FormView>
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Figure 18: The First Product (Chai) is Displayed in a Custom Format

The <2# Eval (propertyName) $> is the databinding syntax. The Eval method returns the value of the
specified property for the current object being bound to the FormView control. Check out Alex Homer's
article Simplified and Extended Data Binding Syntax in ASP.NET 2.0 for more information on the ins and
outs of databinding.

Like the DetailsView, the FormView only shows the first record returned from the ObjectDataSource. You
can enable paging in the FormView to allow visitors to step through the products one at a time.

Summary

Accessing and displaying data from a Business Logic Layer can be accomplished without writing a line of code
thanks to ASP.NET 2.0's ObjectDataSource control. The ObjectDataSource invokes a specified method of a
class and returns the results. These results can be displayed in a data Web control that's bound to the
ObjectDataSource. In this tutorial we looked at binding the GridView, DetailsView, and FormView controls
to the ObjectDataSource.

So far we've only seen how to use the ObjectDataSource to invoke a parameter-less method, but what if we
want to invoke a method that expects input parameters, such as the productBLL class's
GetProductsByCategoryID (categoryID)? In order to call a method that expects one or more parameters
we must configure the ObjectDataSource to specify the values for these parameters. We'll see how to
accomplish this in our next tutorial.

Happy Programming!

Further Reading
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For more information on the topics discussed in this tutorial, refer to the following resources:

Create Your Own Data Source Controls

GridView Examples for ASP.NET 2.0

Simplified and Extended Data Binding Syntax in ASP.NET 2.0
Themes in ASP.NET 2.0

Server-Side Styles Using Themes

How To: Apply ASP.NET Themes Programmatically
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Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Hilton
Giesenow. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.




