1 of 14

This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data in
ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Displaying
Data With the ObjectDataSource

Introduction

With our application architecture and website page layout complete, we're ready to start exploring how to
accomplish a variety of common data- and reporting-related tasks. In the previous tutorials we've seen how to
programmatically bind data from the DAL and BLL to a data Web control in an ASP.NET page. This syntax —
assigning the data Web control's batasource property to the data to display and then calling the control's
DataBind () method — was the pattern used in ASP.NET 1.x applications, and can continue to be used in your
2.0 applications. However, ASP.NET 2.0's new data source controls offer a declarative way to work with

data. Using these controls you can bind data retrieved from the BLL created in the previous tutorial without
having to write a line of code!

ASP.NET 2.0 ships with five built-in data source controls — SqlDataSource, AccessDataSource,
ObjectDataSource, XmlDataSource, and SiteMapDataSource — although you can build your own custom data

source controls, if needed. Since we have developed an architecture for our tutorial application, we'll be using
the ObjectDataSource against our BLL classes.

Toolbox

= Data b
k Pointer

- Gridview

| Datalist

_J Detailsiew

wOqoa] e

=_J Farmview

=2 Repeater
r_] SqlDakaSource
..g AccessDatasource
L,g CObjectDataSource

Lh zmibatasource

:h SiteMapDataSource
5l Reportviewer

Figure 1: ASP.NET 2.0 Includes Five Built-In Data Source Controls

The ObjectDataSource serves as a proxy for working with some other object. To configure the
ObjectDataSource we specify this underlying object and how its methods map to the ObjectDataSource's
Select, Insert, Update, and Delete methods. Once this underlying object has been specified and its
methods mapped to the ObjectDataSource's, we can then bind the ObjectDataSource to a data Web control.
ASP.NET ships with many data Web controls, including the GridView, DetailsView, RadioButtonList, and
DropDownList, among others. During the page lifecycle, the data Web control may need to access the data it's
bound to, which it will accomplish by invoking its ObjectDataSource's se1ect method; if the data Web control

2 of 14

supports inserting, updating, or deleting, calls may be made to its ObjectDataSource's Insert, Update, Or
Delete methods. These calls are then routed by the ObjectDataSource to the appropriate underlying object's
methods as the following diagram illustrates.

(Data Web Control) [Data Web Control j

T Selact T Insert T Updata T Delata alect T Insert T Update T Dalete

(ObjectDataSource) | (ObjectDataSource

)
R Pl

T GatProducts HIT AddProduct GeatProducts T AddProduct

ProductsBLL) (ProductsBLL

The UbjeciDataSource's Select, Insert,
Update, and Delete maeihods are associated
with some object’s methods. In this case, the

ObjectDalaSource's Select and Inserl

mathods are associated with tha

ProductsBLL class's GetProducts and

AddProduct methods, respactively,

Whan the data Web conirol bound to tha
ObjectDataSouwrce invokes one of the
ObjectDataSource’s methods (in this case
Salect), the call is routed to the underlying
class's associated method, and the resulls
relurned back Lo the dals Web control

Figure 2: The ObjectDataSource Serves as a Proxy

While the ObjectDataSource can be used to invoke methods for inserting, updating, or deleting data, let's just
focus on returning data; future tutorials will explore using the ObjectDataSource and data Web controls that
modify data.

Step 1: Adding and Configuring the
ObjectDataSource Control

Start by opening the simpleDisplay.aspx page in the BasicReporting folder, switch to Design view, and
then drag an ObjectDataSource control from the Toolbox onto the page's design surface. The
ObjectDataSource appears as a gray box on the design surface because it does not produce any markup; it
simply accesses data by invoking a method from a specified object. The data returned by an ObjectDataSource
can be displayed by a data Web control, such as the GridView, DetailsView, FormView, and so on.

Note: Alternatively, you may first add the data Web control to the page and then, from its smart tag, choose
the <New data source> option from the drop-down list.

To specify the ObjectDataSource's underlying object and how that object's methods map to the
ObjectDataSource's, click on the Configure Data Source link from the ObjectDataSource's smart tag.

3of 14

%% Code - Microseft Visual Studic
File Edt View Webgte Buld Debug Fgmat Layout Took Window Commundy Help fddins
@ -5l @ & A b % cheos :
- - g -2
» BasiF eporbing. . splay aspe.cs ' BasicReportinge.. eDisplay. sspa

Content - Confentl (iCustom)

d) phijectiatasounce Tasks
DhjectDataSoures - ChistDskaSoreel

(e Deta coirce.

Figure 3: Click the Configure Data Source Link from the Smart Tag

This brings up the Configure Data Source wizard. First, we must specify the object the ObjectDataSource is to
work with. If the "Show only data components" checkbox is checked, the drop-down list on this screen lists
only those objects that have been decorated with the pataobject attribute. Currently our list includes the
TableAdapters in the Typed DataSet and the BLL classes we created in the previous tutorial. If you forgot to
add the pataobiject attribute to the Business Logic Layer classes you won't see them in this list. In that case,
uncheck the "Show only data components" checkbox to view all objects, which should include the BLL classes
(along with the other classes in the Typed DataSet — the DataTables, DataRows, and so on).

From this first screen choose the productsBLL class from the drop-down list and click Next.

r

Configure Datla Source - ObjeciDataSource

J Choose a Business Object

e

Sebact a business abject that can be wssd ta retrieve or update data (For exampls, & object defined in the Bin
aor App_Code directary for this spplication).

Chioose your business object:
ProsductsELL w | [#] Show only data components

CabegorieshlL
EmplayessBLL
MerthasindT ableddapters, CategariesTableddapter

MorthasindT ableddspters EmployessTableddspter
MorthwindT ableddspters ProductsT sblesdapter
nlorthuindT sbleddapters. SuppliersT sbleddapt

SupphersBLL

Figure 4: Specify the Object to Use with the ObjectDataSource Control

The next screen in the wizard prompts you to select what method the ObjectDataSource should invoke. The
drop-down lists those methods that return data in the object selected from the previous screen. Here we see
GetProductsByProductID, GetProducts, GetProductsByCategoryID, and GetProductsBySupplierID.
Select the GetProducts method from the drop-down list and click Finish (if you added the
DataObjectMethodAttribute to the ProductBLL's methods as shown in the previous tutorial, this option
will be selected by default).

4 of 14

r

Configure Dala Source - ObjeciDataSourcel

Define Data Methods

SELECT | UPDATE | INSERT | DELETE

Choose a mathod of the business obiect that rebums daka bo assocate with the SELECT operation, The
method can reburn a DataSet, DataReader, or strongly-typed collection

Exampla: GetProducts{Int32 cabagoryld), returns a DataSet.

Choose & method:

GetPraducts), returns ProductsDataTsble w
GatProductByProdud [0 Tk 32 produckTD), reburns ProductsDataTable
GetProduct=l), returns ProducksDataTsble
GetProductsByCategary[D{Int 32 categorylD), returns ProductsDataTable
GetProdudtsBy SupplierIDf Int 32 supplierIy, returns ProducksDiakaTable

Figure 5: Choose the Method for Returning Data from the SELECT Tab

Configure the ObjectDataSource Manually

The ObjectDataSource's Configure Data Source wizard offers a quick way to specify the object it uses and to
associate what methods of the object are invoked. You can, however, configure the ObjectDataSource
through its properties, either through the Properties window or directly in the declarative markup. Simply set
the TypeName property to the type of the underlying object to be used, and the selectMethod to the method
to invoke when retrieving data.

<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
SelectMethod="GetProducts"
TypeName="ProductsBLL">

</asp:0ObjectDataSource>

Even if you prefer the Configure Data Source wizard there may be times when you need to manually configure
the ObjectDataSource, as the wizard only lists developer-created classes. If you want to bind the
ObjectDataSource to a class in the .NET Framework — such as the Membership class, to access user account
information, or the Directory class to work with file system information — you'll need to manually set the
ObjectDataSource's properties.

Step 2: Adding a Data Web Control and Binding it
to the ObjectDataSource

Once the ObjectDataSource has been added to the page and configured, we're ready to add data Web controls
to the page to display the data returned by the ObjectDataSource's select method. Any data Web control can
be bound to an ObjectDataSource; let's look at displaying the ObjectDataSource's data in a GridView,
DetailsView, and FormView.

Binding a GridView to the ObjectDataSource

Add a GridView control from the Toolbox to SimpleDisplay.aspx's design surface. From the GridView's
smart tag, choose the ObjectDataSource control we added in Step 1. This will automatically create a
BoundField in the GridView for each property returned by the data from the ObjectDataSource's select
method (namely, the properties defined by the Products DataTable).

% Cadu
Bl [t Vs Webghs (id Qeb) Fpvel Lagoud Took Windew Coneandy Hep ddre
B-d-ad ka9~ P R spe

LR B O . W =

S — -

P p el Winad Shadia

o 5 []

1y
Content - Contentl (Custom)

‘UkgectDaksfource - CtetDsistourcel

Gridview Example

|
it LA P e

Prosifuct 10 Praduct Name Sappliard D Catagany 1D Qiasamity
Lu} s o a b o x]
1 L 1 1 ab 0.1 1
it 2 : sk 0.z i
<] sl 3 3 ab 0.3 3
4 0o 4 + b 0.4 4

4 Soamoe Fronienkl > cp> || sgihimal x|

B

Bty

Figure 6: A GridView Has Been Added to the Page and Bound to the ObjectDataSource

You can then customize, rearrange, or remove the GridView's BoundFields by clicking the Edit Columns
option from the smart tag.

r

Fields

BoundField properties:

=14
FEA VA

eaeive v i)
| _Z]{All Fields)
= £ BoundField

50f 14

] FroductiD

=] ProductName
=1 Supplieric

Z] CategorylD

] QuantkyPerlinit

b

Selected Fields:
Eilroductin
=] Producthlame
=1 supplierIo
Ei| CategorylD
=] CuuantibyPer Uit

= —

£
[(] awte-generate Fields

Refresh Schema

E Accessibility
AccessibleHeader Te

E Appearance
Fooker Texk
Header Imagel_i|
Headers Text

E Behavior
ApplyFormatinEdith False
ConwestEmpby String True
HEmIEnCode True
InsertYisible False

ProductID

HeaderText
The text within the header of this Feld,

Cofwerk this field inka & TemplateFiald

QF][Cancel]

6 of 14

Figure 7: Manage the GridView's BoundFields Through the Edit Columns Dialog Box

Take a moment to modify the GridView's BoundFields, removing the ProductID, SupplierID, CategoryID,
QuantityPerUnit, UnitsInStock, UnitsOnOrder, and ReorderLevel BoundFields. Simply select the
BoundField from the list in the bottom left and click the delete button (the red X) to remove them. Next,
Rearrange the BoundFields so that the categoryName and supplierName BoundFields precede the
UnitPrice BoundField by selecting these BoundFields and clicking the up arrow. Set the HeaderText
properties of the remaining BoundFields to products, Category, Supplier, and Price, respectively. Next,
have the price BoundField formatted as a currency by setting the BoundField's Htm1Encode property to False
and its DataFormatString property to {0:c}. Finally, horizontally align the price to the right and the
Discontinued checkbox in the center via the TtemStyle/HorizontalAlign property.

<asp:GridView ID="GridViewl" runat="server"

AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<Columns>

<asp:BoundField DataField="ProductName"
HeaderText="Product" SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName"
HeaderText="Category" ReadOnly="True"
SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName"
HeaderText="Supplier" ReadOnly="True"
SortExpression="SupplierName" />
<asp:BoundField DataField="UnitPrice"
DataFormatString="{0:c}" HeaderText="Price"
HtmlEncode="False" SortExpression="UnitPrice">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued">
<ItemStyle HorizontalAlign="Center" />
</asp:CheckBoxField>
</Columns>
</asp:GridView>

[

™% Code - Microsofl ¥isual Studio
Be (R Yew Webste Puld Debug Fomat Lawwouwt Jook Wndow Communky el Sddns

- i@ & b el (8 datmmbcona ap
B [u =
| = =55
't Date o | i
b Poirte '-
| et
1 Datalist ’Eﬂ
| Dtaisiiem Content - Contentl (Custom)
Formihirs L
B hmmu-t‘hﬁmﬂa:ﬂ.m;
Ll SoltwtaSerce
jp it e Gridview Example
£ ObjectDatasourcs
[st asours Product Category Supplier Price Discontinwed
- leMapDatamoucel
L, SteMapDatsSorce abec abi abc £0.00
il Raportiiever abe abi abi $0.10 ;
- ";u'"" ab abe abe $0.20 _',-‘ 1
: FL:EH:I:I‘HH... abc abc abc £0.30 =
=, Bangeialdster abc abc abc 040
4% RegularExpressio. ..
™ Compareyshdstor b
o Customabdator : ¥
U] sbdskions " chocy > | <sspocomkenk# rontentl > .'\-_J;ﬂd:
i Errow Lt | =] Cutput S Fi :

Rty

_

7 of 14

Figure 8: The GridView's BoundFields Have Been Customized

Using Themes for a Consistent Look

These tutorials strive to remove any control-level style settings, instead using cascading style sheets defined in
an external file whenever pOSSible. The Styles.css file contains DataWebControlStyle, HeaderStyle,
RowStyle, and AlternatingRowStyle CSS classes that should be used to dictate the appearance of the data
Web controls used in these tutorials. To accomplish this, we could set the GridView's cssClass property to
DataWebControlStyle, and its HeaderStyle, RowStyle, and AlternatingRowStyle properties’ CssClass
properties accordingly.

If we set these cssclass properties at the Web control we'd need to remember to explicitly set these property
values for each and every data Web control added to our tutorials. A more manageable approach is to define
the default CSS-related properties for the GridView, DetailsView, and FormView controls using a Theme. A
Theme is a collection of control-level property settings, images, and CSS classes that can be applied to pages
across a site to enforce a common look and feel.

Our Theme won't include any images or CSS files (we'll leave the stylesheet styles.css as-is, defined in the
root folder of the web application), but will include two Skins. A Skin is a file that defines the default
properties for a Web control. Specifically, we'll have a Skin file for the GridView and DetailsView controls,
indicating the default cssc1ass-related properties.

Start by adding a new Skin File to your project named Gridview.skin by right-clicking on the project name
in the Solution Explorer and choosing Add New Item.

Add New Item - C:\Wy Projects\Writings\Wicrosoft\MSOMN Articles\WWSDN Online Artic lesilataTutord

Tomplates: A=
et Foam Masker Pags Wty |y HIML Page Web Service Tuzz Tyl St iginhal i
Conkre Hpphcati.,
Y 2] == bi:| %
] j o] _] = | s iy -
el WML Rl WML Schasas Texk Fia Rasource Pl S0L Databass [ataSat GEnEric
Corfiguratt. .. Handier
A & 5 E1 F 2 i ¥
| & B & B 8 &
Site Hap Sobis Web YBScript File Fepoet Moript Fle Mobile Wb Mobide Web YSLT File
Farm Lser Conbrdl Configuesti..,

& o A

Browser Fle Cless [iagram
A e e Lo dehing an ASPURET Ehaime

i Gridiew, 6N

Figure 9: Add a Skin File Named Gridview.skin

Skin files need to be placed in a Theme, which are located in the App_Themes folder. Since we don't yet have
such a folder, Visual Studio will kindly offer to create one for us when adding our first Skin. Click Yes to
create the App_Theme folder and place the new Gridview.skin file there.

8 of 14

=
Micresoft Yisual Studie

"‘ Yous are ptbempling tn add & theme Fis to an AP, KET applcstion, Fcruﬂlenefletl:-bemalftﬂ-n#-nmrm it showuld bee placed nsde
s Y theApp Thermes foidss. ‘Woukd yod B to place the theres Fls in the Aop_Theies' Folder T

tos e [careal

Figure 10: Let Visual Studio Create the App_Theme Folder

This will create a new Theme in the App Themes folder named GridView with the Skin file Gridview.skin.

Solution Explorer

2 = H e
P C...\Code’,

#- Lz App_Code

- [3 App_Data

- | App_Themes

= i=tidyiew
L5F Gridview . skin
[=- | BasicReporting
=] (| DeclarativeParams, aspx
[+ | Default.aspx
=] HPngrammaticParams.aspx
& 2] SimpleDisplay. aspx
- [CustomFaormnatting
[#- [Filtering
[#- [UserControls
[+ | Default.aspx
[+ j Site.master
A Styles.css
S Web. Config
|| web.sitemap

alSalu... [Eiprop,.. | Sery, ., |[BRCas. .
= =)

Figure 11: The GridView Theme has Been Added to the App_Theme Folder

Rename the GridView Theme to DataWebControls (right-click on the GridView folder in the App Theme
folder and choose Rename). Next, enter the following markup into the Gridview.skin file:

<asp:GridView runat="server" CssClass="DataWebControlStyle">
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
<RowStyle CssClass="RowStyle" />
<HeaderStyle CssClass="HeaderStyle" />

</asp:GridView>

This defines the default properties for the cssc1ass-related properties for any GridView in any page that uses
the DataWebControls Theme. Let's add another Skin for the DetailsView, a data Web control that we'll be
using shortly. Add a new Skin to the DataWebControls Theme named Detailsview.skin and add the
following markup:

<asp:DetailsView runat="server" CssClass="DataWebControlStyle">
<AlternatingRowStyle CssClass="AlternatingRowStyle" />
<RowStyle CssClass="RowStyle" />
<FieldHeaderStyle CssClass="HeaderStyle" />
</asp:DetailsView>

With our Theme defined, the last step is to apply the Theme to our ASP.NET page. A Theme can be applied

9 of 14

on a page-by-page basis or for all pages in a website. Let's use this theme for all pages in the website. To
accomplish this, add the following markup to Wweb.config's <system.web> section:

<pages styleSheetTheme="DataWebControls" />

That's all there is to it! The styleSheetTheme setting indicates that the properties specified in the Theme
should not override the properties specified at the control level. To specify that Theme settings should trump
control settings, use the theme attribute in place of stylesheetTheme; unfortunately, Theme settings do not
appear in the Visual Studio Design view. Refer to ASP.NET Themes and Skins Overview and Server-Side
Styles Using Themes for more information on Themes and Skins; see How To: Apply ASP.NET Themes for

more on configuring a page to use a theme.

A uintiled Page - Microsst] inlermel Laplarer

Bl [N Ses Fpoka [odh Heb

Seaech Fomarte; + i fl - & i _-:*
o o e | A e B e T Sy - |] o=
Working with Data Tutorials Woma > Basis Fagartng > Simple Dispiy

GridWiew Example

Simiple Displsy Fappller Price Dscontimeed
Cha Bewaragss Exal Luikds $18.00
Chang Baverages Exans Lagukds F19.00
Sathreg Faramster Areseed Syrup Condiments Exobe Liquids §10.00
Vakies Chif Bntar's Cajun - i . Baw Orleans Cayin ==
. LEFEOATE] STCHENTER. oo 220
FiEery] Fepsart i A " - -
A f_l'u!'.f-n_r-_.-' 5 Candirants bew Eloane Caps $71.35
Fiter by Drep-Dxen [CARTED. B LI T
Grandme' = . arandma Kelly's :
Bayssrbernry Spraad COGTHITES L atissd $2%.00
Unch Bobls Qrganic oo Grandma Eely's $20.00
Cariar] Pearg e Cad]
i T T = Grandma Eely's
= Cardh £ 0. 00
Cravbery Seue O Bamastagd '
M Kobe Hiku MeabPoullry Tokyd Traders F57.00
Tkura Seafood Tokyo Traders 321.00
i Ok Dary COnEralivg Ja Qussis P
d < Labrales Fracucts Las Cabras $21.00
Custon Contet m e Qusgi: Marnego La Dary CONEErativg 00 Quegng $38.00
Gohview Pastors Froducts Lam Caboss’ z
Flictewn FRntankin & Foonbu Eeafood PayuITi’s 5,00 -

i iy e e

Figure 12: The GridView Displays the Product's Name, Category, Supplier, Price, and Discontinued
Information

Displaying One Record at a Time in the
DetailsView

The GridView displays one row for each record returned by the data source control to which it's bound. There
are times, however, when we may want to display a sole record or just one record at a time. The DetailsView
control offers this functionality, rendering as an HTML <table> with two columns and one row for each
column or property bound to the control. You can think of the DetailsView as a GridView with a single record
rotated 90 degrees.

Start by adding a DetailsView control above the GridView in simpleDisplay.aspx. Next, bind it to the same
ObjectDataSource control as the GridView. Like with the GridView, a BoundField will be added to the
DetailsView for each property in the object returned by the ObjectDataSource's select method. The only
difference is that the DetailsView's BoundFields are laid out horizontally rather than vertically.

*e Code - Micresoft Visual Studie
Bl Edt Yew Webgte Buld Debug Formet Lawout Took Window Comvundty Help
- d-GHd §an b (dete

bjectivat aSource - CbjcDaasource]

DetailsView Examle

ProductlD

Product™Name

T T — UnitPrice
[objectDataSource UnitsIns
.:' driDisbaSource

L, SReMapDataSource

| Reportiewer |
i FEpor Discontinued

CategoryMame [Elas

Suppliertame

ridView Fxamnle

hody= | asperontentfionient] > | <px

Figure 13: Add a DetailsView to the Page and Bind it to the ObjectDataSource

Like the GridView, the DetailsView's BoundFields can be tweaked to provide a more customized display of
the data returned by the ObjectDataSource. Figure 14 shows the DetailsView after its BoundFields and
CssClass properties have been configured to make its appearance similar to the GridView example.

3 Untitled Page - Microsoft Internet Explorer
File Edt Wew Paovonkes Tooks Hel
M @ & A oseanch < Favodtes 7] & DS

Addrass |81 hetp: focalast: 1409 Code/BaskRepartingdSmpleDisplay, asp v mdce

-

Working with Data Tutorials fome > Basic Reporting >

Simple Display

Harre

DetailsView Examle

Fepc

Sirnple Cisplay Product

Dedarative : 3 8 =
Parameters E: Exotic Liquids
$18.00

Setting Parameter Discontinued

&4 Local inkranet

Figure 14: The DetailsView Shows a Single Record

10 of 14

Note that the DetailsView only displays the first record returned by its data source. To allow the user to step
through all of the records, one at a time, we must enable paging for the DetailsView. To do so, return to
Visual Studio and check the Enable Paging checkbox in the DetailsView's smart tag.

r

*= Code - Microsofi Yiual Studio
Bl Bt Yww ebgte Guld [ebeg Formet Lepod Jook Windom Community Help pddes
L RS L= I bl [celete =
Hesdew 3 £ = Verdana '-.u.:mfi_i]z u ,;1.,/:':- ==
% BasicReportiog.eDisphip.aspe” -

1L

rﬁrﬂm - Comtentl {Custom)

hmm = Ot A e

DetailsView Examle
¥ petailsView Tasks

Sist Fremisk,

abc
Chooss Dats Souroe | ChijscilataSoune] o

o [Enable irmsreg
GridView EX [que piang

[7] Enabls Diedeting

FroductCategory -
abt abt b
Ela abe abe F0.10 v
) ¥
[5 e | I Scumen Soddy || capecontenterontanel > |[haz]
) Error Lt T Cutpust i-.u | Hmslts
Rusdy
-

Figure 15 Enable Paging in the DetailsView Control

F

= Untitled Page - Microsaft Internet Explarer
Fil= Edt Vew Fpvorkes Took Haelp
() Back = i Y Search Favorkes &5

Address i!_" hkhp .l';‘v:-:el'::ust _J4u‘§.!coda|‘3asltn?wt_fwﬁm:iwq:ia?-.a;p.n bt Go

Fy

Wﬂrklng W|th Data Tutnnals Home > Basic Reporting >

Simple Display

Home
DetailsView Examle
Baslc Reporting
Sirnphe ﬁlspll'f LJncIe Bob's Organic Cried Pears
Cate Froduce
Dedarative 2 JOTY SS—— .
Parameters ipplie Grandma Kelly's Homestes

Serting Pararmeter
\alues

L234567H3 10 .

Filgen ng Feports

Figure 16: With Paging Enabled, the DetailsView Allows the User to View Any of the Products

We'll talk more about paging in future tutorials.

11 of 14

12 of 14

A More Flexible Layout for Showing One Record
at a Time

The DetailsView is pretty rigid in how it displays each record returned from the ObjectDataSource. We may
want a more flexible view of the data. For example, rather than showing the product's name, category,
supplier, price, and discontinued information each on a separate row, we may want to show the product name
and price in an <h4> heading, with the category and supplier information appearing below the name and price
in a smaller font size. And we may not care to show the property names (Product, Category, and so on) next
to the values.

The FormView control provides this level of customization. Rather than using fields (like the GridView and
DetailsView do), the FormView uses templates, which allow for a mix of Web controls, static HTML, and
databinding syntax. If you are familiar with the Repeater control from ASP.NET 1.x, you can think of the
FormView as the Repeater for showing a single record.

Add a FormView control to the simpleDisplay.aspx page's design surface. Initially the FormView displays
as a gray block, informing us that we need to provide, at minimum, the control's TtemTemplate.

% Code - Micresoft Visual Studio
e [dt Wew Webste Puid Qebug Format Layowt Dok Window {ommurky Help &ddns

- RS R - | 1 Wi G
Hesdng 3 = = Werdsna - 13Fpt - B S U ..-_\F l:-f'_ E - = 1= -
B | BasicReportiog..eDisplay asps* - ¥

£

Conbent - Contentl {(Custom)

peciBalaSource - OhisaDisaSoums]

FormView Example

L
Ly Formiiew - Formiew]
erMapDatabource - SkeMsplstaSorosl

Raghi-click: oF dhooss the Edt Templabes Eask to adit Cennplabe conbent.
The ItamT emplate & racured

NataileWiawr Fyamla

|G Desgn | = Sowes chody™ || <aspocontenkrontentl > [<hax|

i Erva List | 7] Cutput 'S4

b

Figure 17: The FormView Must Include an ItemTemplate

You can bind the FormView directly to a data source control through the FormView's smart tag, which will
create a default TtemTemplate automatically (along with an EditItemTemplate and InsertItemTemplate,
if the ObjectDatatSource control's TnsertMethod and UpdateMethod properties are set). However, for this
example let's bind the data to the FormView and specify its TtemTemplate manually. Start by setting the
FormView's DataSourceID property to the 1D of the ObjectDataSource control, objectbatasSourcel. Next,
create the TtemTemplate so that it displays the product's name and price in an <h4> element and the category
and shipper names beneath that in a smaller font size.

<asp:FormView ID="FormViewl" runat="server"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<ItemTemplate>

13 of 14

<h4><%# Eval ("ProductName") %>
(<%# Eval ("UnitPrice", "{0O:c}") %>)</h4>
Category: <%# Eval ("CategoryName") $%>;
Supplier: <%# Eval("SupplierName") %>
</ItemTemplate>
</asp:FormView>

A Untitled Page - Microsoft Internet Explorar r:_||E|§|
Ela Edt Yew Favorites Tools Heb wi
Q) Back -~ x (2 Y A Seanch Favorites

5 | 8] httpy/flocathast: 1409/ Code /BasceportingSmpleDisplay asp

Working with Data Tutorials ~ pome>gssic
Display
Horme
Basic Reporting] FormView EXHI‘I‘IP'E
Simple Display

Declarative
Farametars

Chai ($18.00)

Categaory: Beverages; Supplier: Exatic Ligusds

Setting Parameter

% Local intranst

Figure 18: The First Product (Chai) is Displayed in a Custom Format

The <2# Eval (propertyName) $> is the databinding syntax. The Eval method returns the value of the
specified property for the current object being bound to the FormView control. Check out Alex Homer's
article Simplified and Extended Data Binding Syntax in ASP.NET 2.0 for more information on the ins and
outs of databinding.

Like the DetailsView, the FormView only shows the first record returned from the ObjectDataSource. You
can enable paging in the FormView to allow visitors to step through the products one at a time.

Summary

Accessing and displaying data from a Business Logic Layer can be accomplished without writing a line of code
thanks to ASP.NET 2.0's ObjectDataSource control. The ObjectDataSource invokes a specified method of a
class and returns the results. These results can be displayed in a data Web control that's bound to the
ObjectDataSource. In this tutorial we looked at binding the GridView, DetailsView, and FormView controls
to the ObjectDataSource.

So far we've only seen how to use the ObjectDataSource to invoke a parameter-less method, but what if we
want to invoke a method that expects input parameters, such as the productBLL class's
GetProductsByCategoryID (categoryID)? In order to call a method that expects one or more parameters
we must configure the ObjectDataSource to specify the values for these parameters. We'll see how to
accomplish this in our next tutorial.

Happy Programming!

Further Reading

14 of 14

For more information on the topics discussed in this tutorial, refer to the following resources:

Create Your Own Data Source Controls

GridView Examples for ASP.NET 2.0

Simplified and Extended Data Binding Syntax in ASP.NET 2.0
Themes in ASP.NET 2.0

Server-Side Styles Using Themes

How To: Apply ASP.NET Themes Programmatically

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Hilton
Giesenow. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

