
[This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data in

ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/data-access/tutorials.]

Working with Data in ASP.NET 2.0 ::
Adding and Responding to Buttons to a
GridView

Introduction
While many reporting scenarios involve read-only access to the report data, it’s not

uncommon for reports to include the ability to perform actions based upon the data

displayed. Typically this involved adding a Button, LinkButton, or ImageButton Web

control with each record displayed in the report that, when clicked, causes a

postback and invokes some server-side code. Editing and deleting the data on a

record-by-record basis is the most common example. In fact, as we saw starting

with the Overview of Inserting, Updating, and Deleting Data tutorial, editing and

deleting is so common that the GridView, DetailsView, and FormView controls can

support such functionality without the need for writing a single line of code.

In addition to Edit and Delete buttons, the GridView, DetailsView, and FormView

controls can also include Buttons, LinkButtons, or ImageButtons that, when clicked,

perform some custom server-side logic. In this tutorial we’ll look at how to add

custom buttons, both to a template and to the fields of a GridView or DetailsView

control. In particular, we’ll build an interface that has a FormView that allows the

user to page through the suppliers. For a given supplier, the FormView will show

information about the supplier along with a Button Web control that, if clicked, will

mark all of their associated products as discontinued. Additionally, a GridView lists

those products provided by the selected supplier, with each row containing “Increase

Price” and “Discount Price” Buttons that, if clicked, raise or reduce the product’s

UnitPrice by 10% (see Figure 1).

http://www.asp.net/data-access/tutorials/an-overview-of-inserting-updating-and-deleting-data-cs

Figure 1: Both the FormView and GridView Contain Buttons That Perform
Custom Actions

Step 1: Adding the Button Tutorial Web
Pages
Before we look at how to add a custom buttons, let’s first take a moment to create

the ASP.NET pages in our website project that we’ll need for this tutorial. Start by

adding a new folder named CustomButtons. Next, add the following two ASP.NET

pages to that folder, making sure to associate each page with the Site.master

master page:

 Default.aspx

 CustomButtons.aspx

Figure 2: Add the ASP.NET Pages for the Custom Buttons-Related Tutorials

Like in the other folders, Default.aspx in the CustomButtons folder will list the

tutorials in its section. Recall that the SectionLevelTutorialListing.ascx User

Control provides this functionality. Therefore, add this User Control to Default.aspx

by dragging it from the Solution Explorer onto the page’s Design view.

Figure 3: Add the SectionLevelTutorialListing.ascx User Control to
Default.aspx

Lastly, add the pages as entries to the Web.sitemap file. Specifically, add the

following markup after the Paging and Sorting <siteMapNode>:

<siteMapNode title="Adding Custom Buttons"

url="~/CustomButtons/Default.aspx" description="Samples of Reports that

Include Buttons for Performing Server-Side Actions">

 <siteMapNode url="~/CustomButtons/CustomButtons.aspx" title="Using

ButtonFields and Buttons in Templates" description="Examines how to add

custom Buttons, LinkButtons, or ImageButtons as ButtonFields or within

templates." />

</siteMapNode>

After updating Web.sitemap, take a moment to view the tutorials website through a

browser. The menu on the left now includes items for the editing, inserting, and

deleting tutorials.

Figure 4: The Site Map Now Includes the Entry for the Custom Buttons
Tutorial

Step 2: Adding a FormView that Lists the
Suppliers
Let’s get started with this tutorial by adding the FormView that lists the suppliers. As

discussed in the Introduction, this FormView will allow the user to page through the

suppliers, showing the products provided by the supplier in a GridView. Additionally,

this FormView will include a Button that, when clicked, will mark all of the supplier’s

products as discontinued. Before we concern ourselves with adding the custom

button to the FormView, let’s first just create the FormView so that it displays the

supplier information.

Start by opening the CustomButtons.aspx page in the CustomButtons folder. Add a

FormView to the page by dragging it from the Toolbox onto the Designer and set its

ID property to Suppliers. From the FormView’s smart tag, opt to create a new

ObjectDataSource named SuppliersDataSource.

Figure 5: Create a New ObjectDataSource Named SuppliersDataSource

Configure this new ObjectDataSource such that it queries from the SuppliersBLL

class’s GetSuppliers() method (see Figure 6). Since this FormView does not

provide an interface for updating the supplier information, select the (None) option

from the drop-down list in the UPDATE tab.

Figure 6: Configure the Data Source to use the SuppliersBLL Class’s
GetSuppliers() Method

After configuring the ObjectDataSource, Visual Studio will generate an

InsertItemTemplate, EditItemTemplate, and ItemTemplate for the FormView.

Remove the InsertItemTemplate and EditItemTemplate and modify the

ItemTemplate so that it displays just the supplier’s company name and phone

number. Finally, turn on paging support for the FormView by checking the Enable

Paging checkbox from its smart tag (or by setting its AllowPaging property to true).

After these changes your page’s declarative markup should look similar to the

following:

<asp:FormView ID="Suppliers" runat="server" DataKeyNames="SupplierID"

DataSourceID="SuppliersDataSource" EnableViewState="False"

AllowPaging="True">

 <ItemTemplate>

 <h3><asp:Label ID="CompanyName" runat="server" Text='<%#

Bind("CompanyName") %>'></asp:Label></h3>

 Phone:

 <asp:Label ID="PhoneLabel" runat="server" Text='<%#

Bind("Phone") %>'></asp:Label>

 </ItemTemplate>

</asp:FormView>

<asp:ObjectDataSource ID="SuppliersDataSource" runat="server"

OldValuesParameterFormatString="original_{0}"

 SelectMethod="GetSuppliers"

TypeName="SuppliersBLL"></asp:ObjectDataSource>

Figure 7 shows the CustomButtons.aspx page when viewed through a browser.

Figure 7: The FormView Lists the CompanyName and Phone Fields from the
Currently Selected Supplier

Step 3: Adding a GridView that Lists the
Selected Supplier’s Products
Before we add the “Discontinue All Products” Button to the FormView’s template,

let’s first add a GridView beneath the FormView that lists the products provided by

the selected supplier. To accomplish this, add a GridView to the page, set its ID

property to SuppliersProducts, and add a new ObjectDataSource named

SuppliersProductsDataSource.

Figure 8: Create a New ObjectDataSource Named
SuppliersProductsDataSource

Configure this ObjectDataSource to use the ProductsBLL class’s

GetProductsBySupplierID(supplierID) method (see Figure 9). While this GridView

will allow for a product’s price to be adjusted, it won’t be using the built-in editing or

deleting features from the GridView. Therefore, we can set the drop-down list to

(None) for the ObjectDataSource’s UPDATE, INSERT, and DELETE tabs.

Figure 9: Configure the Data Source to use the ProductsBLL Class’s
GetProductsBySupplierID(supplierID) Method

Since the GetProductsBySupplierID(supplierID) method accepts an input

parameter, the ObjectDataSource wizard prompts us for the source of this parameter

value. To pass in the SupplierID value from the FormView, set the Parameter

source drop-down list to Control and the ControlID drop-down list to Suppliers (the

ID of the FormView created in Step 2).

Figure 10: Indicate that the supplierID Parameter Should Come from the
Suppliers FormView Control

After completing the ObjectDataSource wizard, the GridView will contain a

BoundField or CheckBoxField for each of the product’s data fields. Let’s trim this

down to show just the ProductName and UnitPrice BoundFields along with the

Discontinued CheckBoxField; furthermore, let’s format the UnitPrice BoundField

such that its text is formatted as a currency. Your GridView and

SuppliersProductsDataSource ObjectDataSource’s declarative markup should look

similar to the following markup:

<asp:GridView ID="SuppliersProducts" runat="server"

AutoGenerateColumns="False" DataKeyNames="ProductID"

DataSourceID="SuppliersProductsDataSource" EnableViewState="False">

 <Columns>

 <asp:BoundField DataField="ProductName" HeaderText="Product"

SortExpression="ProductName" />

 <asp:BoundField DataField="UnitPrice" HeaderText="Price"

SortExpression="UnitPrice" DataFormatString="{0:C}" HtmlEncode="False"

/>

 <asp:CheckBoxField DataField="Discontinued"

HeaderText="Discontinued" SortExpression="Discontinued" />

 </Columns>

</asp:GridView>

<asp:ObjectDataSource ID="SuppliersProductsDataSource" runat="server"

OldValuesParameterFormatString="original_{0}"

 SelectMethod="GetProductsBySupplierID" TypeName="ProductsBLL">

 <SelectParameters>

 <asp:ControlParameter ControlID="Suppliers" Name="supplierID"

PropertyName="SelectedValue"

 Type="Int32" />

 </SelectParameters>

</asp:ObjectDataSource>

At this point our tutorial displays a master/details report, allowing the user to pick a

supplier from the FormView at the top and to view the products provided by that

supplier through the GridView at the bottom. Figure 11 shows a screen shot of this

page when selecting the Tokyo Traders supplier from the FormView.

Figure 11: The Selected Supplier’s Products are Displayed in the GridView

Step 4: Creating DAL and BLL Methods to
Discontinue All Products for a Supplier
Before we can add a Button to the FormView that, when clicked, discontinues all of

the supplier’s products, we first need to add a method to both the DAL and BLL that

performs this action. In particular, this method will be named

DiscontinueAllProductsForSupplier(supplierID). When the FormView’s Button

is clicked, we’ll invoke this method in the Business Logic Layer, passing in the

selected supplier’s SupplierID; the BLL will then call down to the corresponding

Data Access Layer method, which will issue an UPDATE statement to the database

that discontinues the specified supplier’s products.

As we have done in our previous tutorials, we’ll use a bottom-up approach, starting

with creating the DAL method, then the BLL method, and finally implementing the

functionality in the ASP.NET page. Open the Northwind.xsd Typed DataSet in the

App_Code/DAL folder and add a new method to the ProductsTableAdapter (right-

click on the ProductsTableAdapter and choose Add Query). Doing so will bring up

the TableAdapter Query Configuration wizard, which walks us through the process of

adding the new method. Start by indicating that our DAL method will use an ad-hoc

SQL statement.

Figure 12: Create the DAL Method Using an Ad-Hoc SQL Statement

Next, the wizard prompts us as to what type of query to create. Since the

DiscontinueAllProductsForSupplier(supplierID) method will need to update the

Products database table, setting the Discontinued field to 1 for all products

provided by the specified supplierID, we need to create a query that updates data.

Figure 13: Choose the UPDATE Query Type

The next wizard screen provides the TableAdapter’s existing UPDATE statement,

which updates each of the fields defined in the Products DataTable. Replace this

query text with the following statement:

UPDATE [Products] SET

 Discontinued = 1

WHERE SupplierID = @SupplierID

After entering this query and clicking Next, the last wizard screen asks for the new

method’s name – use DiscontinueAllProductsForSupplier. Complete the wizard

by clicking the Finish button. Upon returning to the DataSet Designer you should see

a new method in the ProductsTableAdapter named

DiscontinueAllProductsForSupplier(@SupplierID).

Figure 14: Name the New DAL Method DiscontinueAllProductsForSupplier

With the DiscontinueAllProductsForSupplier(supplierID) method created in the

Data Access Layer, our next task is to create the

DiscontinueAllProductsForSupplier(supplierID) method in the Business Logic

Layer. To accomplish this, open the ProductsBLL class file and add the following:

public int DiscontinueAllProductsForSupplier(int supplierID)

{

 return Adapter.DiscontinueAllProductsForSupplier(supplierID);

}

This method simply calls down to the

DiscontinueAllProductsForSupplier(supplierID) method in the DAL, passing

along the provided supplierID parameter value. If there were any business rules

that only allowed a supplier’s products to be discontinued under certain

circumstances, those rules should be implemented here, in the BLL.

Note: Unlike the UpdateProduct overloads in the ProductsBLL class, the

DiscontinueAllProductsForSupplier(supplierID) method signature does

not include the DataObjectMethodAttribute attribute

([System.ComponentModel.DataObjectMethodAttribute(System.Component

Model.DataObjectMethodType.Update, bool)]). This precludes the

DiscontinueAllProductsForSupplier(supplierID) method from the

ObjectDataSource’s Configure Data Source wizard’s drop-down list in the

UPDATE tab. I’ve omitted this attribute because we’ll be calling the

DiscontinueAllProductsForSupplier(supplierID) method directly from an

event handler in our ASP.NET page.

Step 5: Adding a “Discontinue All
Products” Button to the FormView
With the DiscontinueAllProductsForSupplier(supplierID) method in the BLL

and DAL complete, the final step for adding the ability to discontinue all products for

the selected supplier is to add a Button Web control to the FormView’s

ItemTemplate. Let’s add such a Button below the supplier’s phone number with the

button text, “Discontinue All Products” and an ID property value of

DiscontinueAllProductsForSupplier. You can add this Button Web control

through the Designer by clicking on the Edit Templates link in the FormView’s smart

tag (see Figure 15), or directly through the declarative syntax.

Figure 15: Add a “Discontinue All Products” Button Web Control to the
FormView’s ItemTemplate

When the Button is clicked by a user visiting the page, a postback ensues and the

FormView’s ItemCommand event fires. To execute custom code in response to this

Button being clicked, we can create an event handler for this event. Understand,

though, that the ItemCommand event fires whenever any Button, LinkButton, or

ImageButton Web control is clicked within the FormView. That means that when the

user moves from one page to another in the FormView, the ItemCommand event fires;

same thing when the user clicks New, Edit, or Delete in a FormView that supports

inserting, updating, or deleting.

Since the ItemCommand fires regardless of what button is clicked, in the event

handler we need a way to determine if the “Discontinue All Products” Button was

clicked or if it was some other button. To accomplish this, we can set the Button Web

control’s CommandName property to some identifying value. When the Button is

clicked, this CommandName value is passed into the ItemCommand event handler,

enabling us to determine whether the “Discontinue All Products” Button was the

button clicked. Set the “Discontinue All Products” Button’s CommandName property to

“DiscontinueProducts”.

Finally, let’s use a client-side confirm dialog box to ensure that the user really wants

to discontinue the selected supplier’s products. As we saw in the Adding Client-Side

Confirmation When Deleting tutorial, this can be accomplished with a bit of

JavaScript. In particular, set the Button Web control’s OnClientClick property to

“return confirm('This will mark _all_ of this supplier\'s products as

discontinued. Are you certain you want to do this?');”

After making these changes, the FormView’s declarative syntax should look like the

following:

<asp:FormView ID="Suppliers" runat="server" DataKeyNames="SupplierID"

DataSourceID="SuppliersDataSource" EnableViewState="False"

AllowPaging="True">

 <ItemTemplate>

 <h3><asp:Label ID="CompanyName" runat="server" Text='<%#

Bind("CompanyName") %>'></asp:Label></h3>

 Phone:

 <asp:Label ID="PhoneLabel" runat="server" Text='<%#

Bind("Phone") %>'></asp:Label>

 <asp:Button ID="DiscontinueAllProductsForSupplier"

runat="server" CommandName="DiscontinueProducts"

 Text="Discontinue All Products" OnClientClick="return

confirm('This will mark _all_ of this supplier\'s products as

discontinued. Are you certain you want to do this?');" />

 </ItemTemplate>

</asp:FormView>

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.formview.itemcommand.aspx
http://www.asp.net/data-access/tutorials/adding-client-side-confirmation-when-deleting-cs
http://www.asp.net/data-access/tutorials/adding-client-side-confirmation-when-deleting-cs

Next, create an event handler for the FormView’s ItemCommand event. In this event

handler we need to first determine whether the “Discontinue All Products” Button

was clicked. If so, we want to create an instance of the ProductsBLL class and

invoke its DiscontinueAllProductsForSupplier(supplierID) method, passing in

the SupplierID of the selected FormView:

protected void Suppliers_ItemCommand(object sender,

FormViewCommandEventArgs e)

{

 if (e.CommandName.CompareTo("DiscontinueProducts") == 0)

 {

 // The "Discontinue All Products" Button was clicked.

 // Invoke the

ProductsBLL.DiscontinueAllProductsForSupplier(supplierID) method

 // First, get the SupplierID selected in the FormView

 int supplierID = (int)Suppliers.SelectedValue;

 // Next, create an instance of the ProductsBLL class

 ProductsBLL productInfo = new ProductsBLL();

 // Finally, invoke the

DiscontinueAllProductsForSupplier(supplierID) method

 productInfo.DiscontinueAllProductsForSupplier(supplierID);

 }

}

Note that the SupplierID of the current selected supplier in the FormView can be

accessed using the FormView’s SelectedValue property. The SelectedValue

property returns the first data key value for the record being displayed in the

FormView. The FormView’s DataKeyNames property, which indicates the data fields

from which the data key values are pulled from, was automatically set to

SupplierID by Visual Studio when binding the ObjectDataSource to the FormView

back in Step 2.

With the ItemCommand event handler created, take a moment to test out the page.

Browse to the Cooperativa de Quesos 'Las Cabras' supplier (it’s the fifth supplier in

the FormView for me). This supplier provides two products, Queso Cabrales and

Queso Manchego La Pastora, both of which are not discontinued.

Imagine that Cooperativa de Quesos 'Las Cabras' has gone out of business and

therefore its products are to be discontinued. Click the “Discontinue All Products”

Button. This will display the client-side confirm dialog box (see Figure 16).

http://msdn2.microsoft.com/en-US/library/system.web.ui.webcontrols.formview.selectedvalue.aspx
http://msdn2.microsoft.com/en-us/system.web.ui.webcontrols.formview.datakeynames.aspx

Figure 16: Cooperativa de Quesos 'Las Cabras' Supplies Two Active Products

If you click OK in the client-side confirm dialog box, the form submission will

proceed, causing a postback in which the FormView’s ItemCommand event will fire.

The event handler we created will then execute, invoking the

DiscontinueAllProductsForSupplier(supplierID) method and discontinuing both

the Queso Cabrales and Queso Manchego La Pastora products.

If you have disabled the GridView’s view state, the GridView is being rebound to the

underlying data store on every postback, and therefore will immediately be updated

to reflect that these two products are now discontinued (see Figure 17). If, however,

you have not disabled view state in the GridView, you will need to manually rebind

the data to the GridView after making this change. To accomplish this, simply make

a call to the GridView’s DataBind() method immediately after invoking the

DiscontinueAllProductsForSupplier(supplierID) method.

Figure 17: After Clicking the “Discontinue All Products” Button, the
Supplier’s Products are Updated Accordingly

Step 6: Creating an UpdateProduct
Overload in the Business Logic Layer for
Adjusting a Product’s Price
Like with the “Discontinue All Products” Button in the FormView, in order to add

buttons for increasing and decreasing the price for a product in the GridView we

need to first add the appropriate Data Access Layer and Business Logic Layer

methods. Since we already have a method that updates a single product row in the

DAL, we can provide such functionality by creating a new overload for the

UpdateProduct method in the BLL.

Our past UpdateProduct overloads have taken in some combination of product fields

as scalar input values and have then updated just those fields for the specified

product. For this overload we’ll vary slightly from this standard and instead pass in

the product’s ProductID and the percentage by which to adjust the UnitPrice (as

opposed to passing in the new, adjusted UnitPrice itself). This approach will

simplify the code we need to write in the ASP.NET page code-behind class, since we

don’t have to bother with determining the current product’s UnitPrice.

The UpdateProduct overload for this tutorial is shown below:

public bool UpdateProduct(decimal unitPriceAdjustmentPercentage, int

productID)

{

 Northwind.ProductsDataTable products =

Adapter.GetProductByProductID(productID);

 if (products.Count == 0)

 // no matching record found, return false

 return false;

 Northwind.ProductsRow product = products[0];

 // Adjust the UnitPrice by the specified percentage (if it's not

NULL)

 if (!product.IsUnitPriceNull())

 product.UnitPrice *= unitPriceAdjustmentPercentage;

 // Update the product record

 int rowsAffected = Adapter.Update(product);

 // Return true if precisely one row was updated, otherwise false

 return rowsAffected == 1;

}

This overload retrieves information about the specified product through the DAL’s

GetProductByProductID(productID) method. It then checks to see whether the

product’s UnitPrice is assigned a database NULL value. If it is, the price is left

unaltered. If, however, there is a non-NULL UnitPrice value, the method updates

the product’s UnitPrice by the specified percent (unitPriceAdjustmentPercent).

Step 7: Adding the Increase and Decrease
Buttons to the GridView
The GridView (and DetailsView) are both made up of a collection of fields. In addition

to BoundFields, CheckBoxFields, and TemplateFields, ASP.NET includes the

ButtonField, which, as its name implies, renders as a column with a Button,

LinkButton, or ImageButton for each row. Similar to the FormView, clicking any

button within the GridView – paging buttons, Edit or Delete buttons, sorting buttons,

and so on – causes a postback and raises the GridView’s RowCommand event.

The ButtonField has a CommandName property that assigns the specified value to each

of its Buttons’ CommandName properties. Like with the FormView, the CommandName

value is used by the RowCommand event handler to determine which button was

clicked.

Let’s add two new ButtonFields to the GridView, one with a button text “Price +10%”

and the other with the text “Price -10%”. To add these ButtonFields, click on the Edit

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.gridview.rowcommand.aspx

Columns link from the GridView’s smart tag, select the ButtonField field type from

the list in the upper left and click the Add button.

Figure 18: Add Two ButtonFields to the GridView

Move the two ButtonFields so that they appear as the first two GridView fields. Next,

set the Text properties of these two ButtonFields to “Price +10%” and “Price -10%”

and the CommandName properties to “IncreasePrice” and “DecreasePrice”, respectively.

By default, a ButtonField renders its column of buttons as LinkButtons. This can be

changed, however, through the ButtonField’s ButtonType property. Let’s have these

two ButtonFields rendered as regular push buttons; therefore, set the ButtonType

property to Button. Figure 19 shows the Fields dialog box after these changes have

been made; following that is the GridView’s declarative markup.

http://msdn2.microsoft.com/en-US/library/system.web.ui.webcontrols.buttonfieldbase.buttontype.aspx

Figure 19: Configure the ButtonFields’ Text, CommandName, and ButtonType
Properties

<asp:GridView ID="SuppliersProducts" runat="server"

AutoGenerateColumns="False" DataKeyNames="ProductID"

DataSourceID="SuppliersProductsDataSource" EnableViewState="False">

 <Columns>

 <asp:ButtonField ButtonType="Button"

CommandName="IncreasePrice" Text="Price +10%" />

 <asp:ButtonField ButtonType="Button"

CommandName="DecreasePrice" Text="Price -10%" />

 <asp:BoundField DataField="ProductName" HeaderText="Product"

SortExpression="ProductName" />

 <asp:BoundField DataField="UnitPrice" HeaderText="Price"

SortExpression="UnitPrice" DataFormatString="{0:C}" HtmlEncode="False"

/>

 <asp:CheckBoxField DataField="Discontinued"

HeaderText="Discontinued" SortExpression="Discontinued" />

 </Columns>

</asp:GridView>

With these ButtonFields created, the final step is to create an event handler for the

GridView’s RowCommand event. This event handler, if fired because either the “Price

+10%” or “Price -10%” buttons were clicked, needs to determine the ProductID for

the row whose button was clicked and then invoke the ProductsBLL class’s

UpdateProduct method, passing in the appropriate UnitPrice percentage

adjustment along with the ProductID. The following code performs these tasks:

protected void SuppliersProducts_RowCommand(object sender,

GridViewCommandEventArgs e)

{

 if (e.CommandName.CompareTo("IncreasePrice") == 0 ||

 e.CommandName.CompareTo("DecreasePrice") == 0)

 {

 // The Increase Price or Decrease Price Button has been clicked

 // Determine the ID of the product whose price was adjusted

 int productID =

(int)SuppliersProducts.DataKeys[Convert.ToInt32(e.CommandArgument)].Val

ue;

 // Determine how much to adjust the price

 decimal percentageAdjust;

 if (e.CommandName.CompareTo("IncreasePrice") == 0)

 percentageAdjust = 1.1M;

 else

 percentageAdjust = 0.9M;

 // Adjust the price

 ProductsBLL productInfo = new ProductsBLL();

 productInfo.UpdateProduct(percentageAdjust, productID);

 }

}

In order to determine the ProductID for the row whose “Price +10%” or “Price -

10%” button was clicked, we need to consult the GridView’s DataKeys collection.

This collection holds the values of the fields specified in the DataKeyNames property

for each GridView row. Since the GridView’s DataKeyNames property was set to

ProductID by Visual Studio when binding the ObjectDataSource to the GridView,

DataKeys[rowIndex].Value provides the ProductID for the specified rowIndex.

The ButtonField automatically passes in the rowIndex of the row whose button was

clicked through the e.CommandArgument parameter. Therefore, to determine the

ProductID for the row whose “Price +10%” or “Price -10%” button was clicked, we

use:

(int)SuppliersProducts.DataKeys[Convert.ToInt32(e.CommandArgument)].Val

ue.

As with the “Discontinue All Products” button, if you have disabled the GridView’s

view state, the GridView is being rebound to the underlying data store on every

postback, and therefore will immediately be updated to reflect a price change that

occurs from clicking either of the buttons. If, however, you have not disabled view

state in the GridView, you will need to manually rebind the data to the GridView after

making this change. To accomplish this, simply make a call to the GridView’s

DataBind() method immediately after invoking the UpdateProduct method.

Figure 20 shows the page when viewing the products provided by Grandma Kelly's

Homestead. Figure 21 shows the results after the “Price +10%” button has been

clicked twice for Grandma's Boysenberry Spread and the “Price -10%” button once

for Northwoods Cranberry Sauce.

Figure 20: The GridView Includes “Price +10%” and “Price -10%” Buttons

Figure 21: The Prices for the First and Third Product Have Been Updated via
the “Price +10%” and “Price -10%” Buttons

Note: The GridView (and DetailsView) can also have Buttons, LinkButtons, or

ImageButtons added to their TemplateFields. As with the BoundField, these

Buttons, when clicked, will induce a postback, raising the GridView’s

RowCommand event. When adding buttons in a TemplateField, however, the

Button’s CommandArgument is not automatically set to the index of the row as

it is when using ButtonFields. If you need to determine the row index of the

button that was clicked within the RowCommand event handler, you’ll need to

manually set the Button’s CommandArgument property in its declarative syntax

within the TemplateField, using code like: <asp:Button runat="server" ...

CommandArgument='<%# ((GridViewRow) Container).RowIndex %>' />.

Summary
The GridView, DetailsView, and FormView controls all can include Buttons,

LinkButtons, or ImageButtons. Such buttons, when clicked, cause a postback and

raise the ItemCommand event in the FormView and DetailsView controls and the

RowCommand event in the GridView. These data Web controls have built-in

functionality to handle common command-related actions, such as deleting or editing

records. However, we can also use buttons that, when clicked, respond with

executing our own custom code.

To accomplish this, we need to create an event handler for the ItemCommand or

RowCommand event. In this event handler we first check the incoming CommandName

value to determine which button was clicked and then take appropriate custom

action. In this tutorial we saw how to use buttons and ButtonFields to discontinue all

products for a specified supplier or to increase or decrease the price of a particular

product by 10%.

Happy Programming!

About the Author
Scott Mitchell, author of six ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer, recently completing

his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at

mitchell@4guysfromrolla.com or via his blog, which can be found at

http://ScottOnWriting.NET.

http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/

