[This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data in

ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/data-access/tutorials.]

Working with Data in ASP.NET 2.0 ::
Adding and Responding to Buttons to a
GridView

Introduction

While many reporting scenarios involve read-only access to the report data, it's not
uncommon for reports to include the ability to perform actions based upon the data
displayed. Typically this involved adding a Button, LinkButton, or ImageButton Web
control with each record displayed in the report that, when clicked, causes a
postback and invokes some server-side code. Editing and deleting the data on a
record-by-record basis is the most common example. In fact, as we saw starting
with the Overview of Inserting, Updating, and Deleting Data tutorial, editing and
deleting is so common that the GridView, DetailsView, and FormView controls can
support such functionality without the need for writing a single line of code.

In addition to Edit and Delete buttons, the GridView, DetailsView, and FormView
controls can also include Buttons, LinkButtons, or ImageButtons that, when clicked,
perform some custom server-side logic. In this tutorial we'll look at how to add
custom buttons, both to a template and to the fields of a GridView or DetailsView
control. In particular, we'll build an interface that has a FormView that allows the
user to page through the suppliers. For a given supplier, the FormView will show
information about the supplier along with a Button Web control that, if clicked, will
mark all of their associated products as discontinued. Additionally, a GridView lists
those products provided by the selected supplier, with each row containing “Increase
Price” and “Discount Price” Buttons that, if clicked, raise or reduce the product’s
UnitPrice by 10% (see Figure 1).

http://www.asp.net/data-access/tutorials/an-overview-of-inserting-updating-and-deleting-data-cs

-} Untitled Page - Microsoft Internet Explorer r‘S_<|

File Edit Wiew Favorites Tools Help H
<) 0 [# 2] n D search o' Favorites £ - & (] - & @ HE
. Address |@ http: fflocalhost: 3062/ CodefCustomButtons{ CustomButtons, aspx V| Go
”~
Working with Data Tutorials Home > Adding Custom Buttons > Using
EButtonFields and Buttons in Templates
Home Using ButtonFields and Buttons in
2asic Reporting Templ ates
Simple Tisplay
Dedlarative Excotic Liquids
Parameters _
: Phone: (171} 555-2222
setting Parameter [Discontinue all Products]
Walues
12245678910,
Filtering Reports
Filter by Drop-Qown | | Product |Price Discontinued|
LISt [Price +10% |[Price -10% | Chai $19.36
Master-Cetails- : v—
s ’ Price +10% ” Price -10%]Chang $12.00
7 7 Aniseed
Master/Detail Across [Price +10%][Price -10% Syrup $10.00
Two Pages [Price +10% ” Price -10%]Acme Tea %19.95
Detalls of Selected ’ Price +10% ” Price -10%]Acme Coffes $24.95
[Price +10% |[Price -10% |Acme Soda $1.45
[Price +10% || Price -10% |Acme Syrup $19.50
b
?E'[Dane ‘:g Local intranet

Figure 1: Both the FormView and GridView Contain Buttons That Perform
Custom Actions

Step 1: Adding the Button Tutorial Web
Pages

Before we look at how to add a custom buttons, let’s first take a moment to create
the ASP.NET pages in our website project that we’ll need for this tutorial. Start by
adding a new folder named CustomButtons. Next, add the following two ASP.NET
pages to that folder, making sure to associate each page with the site.master
master page:

e Default.aspx

e CustomButtons.aspx

Solution Explorer - C:LL0 L

2]|da| 5 o) @

_=| App_tCode

_ | App_Data

4 App_Themes

[BasicReporting

= ¢ CuskomButtons
E CuskomButbons, aspx
.3 Defaulk, asp
[CusktomFaormatting
| EditInsertDelete
|_ Filkering

|__ PagingaAndSorting
| UserControls

.j Default, aspx

j Site, master

A Styles.css

o Web.Config

&4 web, siternap

s e [SEs. |ERO.

e e e R e

Figure 2: Add the ASP.NET Pages for the Custom Buttons-Related Tutorials

Like in the other folders, Default.aspx in the CustomButtons folder will list the
tutorials in its section. Recall that the SectionlevelTutorialListing.ascx User
Control provides this functionality. Therefore, add this User Control to Default.aspx
by dragging it from the Solution Explorer onto the page’s Design view.

@9 Code - Microsoft Visual Studio

FELEX

File Edit ‘“iew ‘website Build Debug Format Layout Tools ‘Window Community Help Addins
@ - EE -2k @ @ on - -
B I O = = i— | =
>$- Toolbax - = X Fspx » X | Solution Explorer +» 0 X
o [standard » =0 EE e
g P T\ \Code'
A Label _ 5] App_Code
abll TextBox 3 App_Data
Button A App_Themes
i |1 BasicReparting
Ut Bl = | CustomButtons
ImageButton =] customButtons, aspx
A Hyperlink Content - Contentl (Custarm) =] Defaule aspx
=3 DropDownlisk | C;IstomForm;atting
o H [EditInsertDelete
=7 ListBox Adding Custom e
CheckBox B utto n Tuto ria Is [Pagingénd3orting
— CheckBoxlist = l_%Mggp:ontrol]
(& RadioButton - ™ 4z SectionLevelTukariallisting,ascx
Nl)] -t ® Databound - Databound |ZE] BeF AT, a=px
— RadioButtonList . # Databound - Databound j Site.masker
Lﬂ Image #® Databound - Databound ;ﬂ Styles.css
Ld ImageMap ® Databound - Databound _; web,Config
j Tabls # Databound - Databound ﬂ web,sitemap
. eMapDataSourcel
:= Bulletedlist
) i “
HiddenField -
B Literal = -
B alendar v <body > <div#wrapper = | |<form#forml = C:]Solu... Prop... [Easery... B Cls...
_';3 Errar List | =] Oukput _ﬂ Find Results 1
Ready

Figure 3: Add the SectionLevelTutoriallisting.ascx User Control to

Default.aspx

Lastly, add the pages as entries to the web.sitemap file. Specifically, add the

following markup after the Paging and Sorting <siteMapNode>:

<siteMapNode title="Adding Custom Buttons"
url="~/CustomButtons/Default.aspx" description="Samples of Reports that
Include Buttons for Performing Server-Side Actions">

<siteMapNode url="~/CustomButtons/CustomButtons.aspx" title="Using
ButtonFields and Buttons in Templates" description="Examines how to add
custom Buttons, LinkButtons, or ImageButtons as ButtonFields or within

templates." />
</siteMapNode>

After updating web.sitemap, take a moment to view the tutorials website through a
browser. The menu on the left now includes items for the editing, inserting, and

deleting tutorials.

X Untitled Page - Eﬁ D@®

File Edit VYiew Favorites

@Back > SR P A

Adding Custom
Buttons

Using ButtonFields
and Buttons in
Templates

|

\3 Local intranet

Figure 4: The Site Map Now Includes the Entry for the Custom Buttons
Tutorial

Step 2: Adding a FormView that Lists the
Suppliers

Let’'s get started with this tutorial by adding the FormView that lists the suppliers. As
discussed in the Introduction, this FormView will allow the user to page through the
suppliers, showing the products provided by the supplier in a GridView. Additionally,
this FormView will include a Button that, when clicked, will mark all of the supplier’'s
products as discontinued. Before we concern ourselves with adding the custom
button to the FormView, let’s first just create the FormView so that it displays the
supplier information.

Start by opening the customButtons.aspx page in the CustomButtons folder. Add a
FormView to the page by dragging it from the Toolbox onto the Designer and set its
ID property to Suppliers. From the FormView’s smart tag, opt to create a new
ObjectDataSource named SuppliersDataSource.

Data Source Configuration Wizard

Choose a Data Source Type

Where will the application get data from?

Arcess Database Chjeck Site Map %ML File
Database

Connect ko a middle-tier business object or DataSet in the Bin or App_Code directory For the application.

Specify an ID for the data source:

SuppliersDataSource

K,] [Cancel

Figure 5: Create a New ObjectDataSource Named SuppliersDataSource

Configure this new ObjectDataSource such that it queries from the SuppliersBLL
class’s Getsuppliers () method (see Figure 6). Since this FormView does not
provide an interface for updating the supplier information, select the (None) option
from the drop-down list in the UPDATE tab.

Confipure Data Source - SuppliersDataSource

Define Data Methods

SELECT |L|F‘DF'.TE INSERT || DELETE

Choose a method of the business object that returns data to associate with the SELECT operation. The
method can return a Dataset, DataReader, or strongly-typed collection,

Example: GetProducts{Int3Z2 categoryId), returns a DataSet,

Choose a method:

Getsuppliers(y, returns SuppliersDataTable W
GetsupplierBysupplierIDINk3Z supplierID, returns SuppliersDakaTable

GetSuppliers(, returns SuppliersDataTable

GetSuppliersByCountry(String country), returns SupplisrsDataT able

Einish] [Cancel

Figure 6: Configure the Data Source to use the suppliersBLL Class’s
GetSuppliers () Method

After configuring the ObjectDataSource, Visual Studio will generate an
InsertItemTemplate, EditItemTemplate, and ItemTemplate for the FormView.
Remove the InsertItemTemplate and EditItemTemplate and modify the
ItemTemplate SO that it displays just the supplier’'s company name and phone
number. Finally, turn on paging support for the FormView by checking the Enable
Paging checkbox from its smart tag (or by setting its A11owPaging property to true).
After these changes your page’s declarative markup should look similar to the
following:

<asp:FormView ID="Suppliers" runat="server" DataKeyNames="SupplierID"
DataSourcelID="SuppliersDataSource" EnableViewState="False"
AllowPaging="True">

<ItemTemplate>

<h3><asp:Label ID="CompanyName" runat="server" Text='<%#
Bind ("CompanyName") %>'></asp:Label></h3>

Phone:

<asp:Label ID="PhoneLabel" runat="server" Text='<%#
Bind ("Phone") %>'></asp:Label>

</ItemTemplate>
</asp:FormView>

<asp:0ObjectDataSource ID="SuppliersDataSource" runat="server"
OldvValuesParameterFormatString="original {O}"

SelectMethod="GetSuppliers"
TypeName="SuppliersBLL"></asp:ObjectDataSource>

Figure 7 shows the CustomButtons.aspx page when viewed through a browser.

) Untitled Page - Microsoft Internet Explorer

. Ele Edi

Tools

Wiew Faworites Help

Q) Back - EilE w0 search <% Favorites 42) i
: Address |@ hittp: filocalhost: 3062/ CodefCustomButtonsCustomButtons, aspx
L
Working with Data Tutorials Home> Adding custom
Buttons > Using
ButtonFields and Buttons
_____________________________________ InTemplates
g Using ButtonFields and
Simple Display Buttons in Templates
Ceclarative
PEEMIZEETS Exotic Liquids
Setting Parameter
Walues Phone: {171} 555-2222
Filtering Reports 12342678310...
Filter by Crop-Down =
;ﬂj Dane “-_J Local intranet

Figure 7: The FormView Lists the CompanyName and Phone Fields from the
Currently Selected Supplier

Step 3: Adding a GridView that Lists the
Selected Supplier’s Products

Before we add the “Discontinue All Products” Button to the FormView’s template,
let’s first add a GridView beneath the FormView that lists the products provided by
the selected supplier. To accomplish this, add a GridView to the page, set its 1D
property to SsuppliersProducts, and add a new ObjectDataSource named
SuppliersProductsDataSource.

Data Source Configuration Wizard

;éj_) Choose a Data Source Type

Where will the application get data from?

E | _J .j}%; _;.lh 4 ﬂ|l>

Arcess Database Chjeck Site Map %ML File
Database

Connect ko a middle-tier business object or DataSet in the Bin or App_Code directory For the application.

Specify an ID for the data source:

SuppliersProductsDataSource

K,] [Cancel

Figure 8: Create a New ObjectDataSource Named
SuppliersProductsDataSource

Configure this ObjectDataSource to use the ProductsBLL class’s
GetProductsBySupplierID (supplierID) method (see Figure 9). While this GridView
will allow for a product’s price to be adjusted, it won't be using the built-in editing or
deleting features from the GridView. Therefore, we can set the drop-down list to
(None) for the ObjectDataSource’s UPDATE, INSERT, and DELETE tabs.

Configure Data Source - SuppliersProductsDataSource

;éj_) Define Data Methods

SELECT |L|F'D.'5.TE INSERT || DELETE

Choose a method of the business object that returns data ko associate with the SELECT operation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Example: GetProducts(Ink32 categoryId], returns a DataSet,

Choose a method:

GetProductsBySupplier ID(INt3Z supplierID), returns Prodi s |

GetProductByProductIDiInt3Z productID), returns ProductsDataT able
GetPraducks(), returns ProducksDataT able
GetProductsByCategoryID(Ink32 cakegoryID), returns ProducksDataT able
‘GetProductsBy SupplierID(Int3Z supplierID, returns ProducksDataTable
GetProductsPaged(Int3Z starkRowIndesx, Ink32 maximumPows), returns ProductsDakaTable
GetProductsPageddndSortediSkring sortExpression, Ink32 starkRowlnde:x, Ink32 maximumPows), reburns Produc

Figure 9: Configure the Data Source to use the ProductsBLL Class’s
GetProductsBySupplierID (supplierID) Method

Since the GetProductsBySupplierID (supplierID) method accepts an input
parameter, the ObjectDataSource wizard prompts us for the source of this parameter
value. To pass in the supplierID value from the FormView, set the Parameter
source drop-down list to Control and the ControlID drop-down list to suppliers (the
ID of the FormView created in Step 2).

Configure Data Source - SuppliersProductsDataSource E] E]E|

Define Parameters
| I
=

The wizard has detected ane or more parameters in your SELECT method, For each parameter in the SELECT
method, choose a source For the parameter's value,

Pararneters: Pararneter source:
Mame Yalue Cankral LT
supplierID Suppliers, SelectedValue ContralD:

Suppliers

Defaultialue;

Show advanced properties

Method signature:

GetProducksBySupplierIDInt3z supplierID), returns ProducksDataTable

Einish] [Cancel

Figure 10: Indicate that the supplierID Parameter Should Come from the
Suppliers FormView Control

After completing the ObjectDataSource wizard, the GridView will contain a
BoundField or CheckBoxField for each of the product’s data fields. Let’s trim this
down to show just the ProductName and UnitPrice BoundFields along with the
Discontinued CheckBoxField; furthermore, let's format the unitpPrice BoundField
such that its text is formatted as a currency. Your GridView and
SuppliersProductsDataSource ObjectDataSource’s declarative markup should look
similar to the following markup:

<asp:GridView ID="SuppliersProducts" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="SuppliersProductsDataSource" EnableViewState="False">

<Columns>

<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />

<asp:BoundField DataField="UnitPrice" HeaderText="Price"
SortExpression="UnitPrice" DataFormatString="{0:C}" HtmlEncode="False"
/>

<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />

</Columns>
</asp:GridvView>

<asp:0ObjectDataSource ID="SuppliersProductsDataSource" runat="server"
OldValuesParameterFormatString="original {0}"

SelectMethod="GetProductsBySupplierID" TypeName="ProductsBLL">
<SelectParameters>

<asp:ControlParameter ControlID="Suppliers" Name="supplierID"
PropertyName="SelectedValue"

Type="Int32" />
</SelectParameters>

</asp:0ObjectDataSource>

At this point our tutorial displays a master/details report, allowing the user to pick a
supplier from the FormView at the top and to view the products provided by that
supplier through the GridView at the bottom. Figure 11 shows a screen shot of this
page when selecting the Tokyo Traders supplier from the FormView.

2 Untitled Page - Microsoft Internet Explorer §|

File Edit Wiew Favorites Tools Help E

{}Back L - | |ﬂ Iﬂ A ,'-:'Search 7 Favorites 454 * g@ W T Eﬁl .

V|G|:|

. Address |@ hittpsfflocalbost: 3062 Code/CustomButtons/CuskomButtons, aspo

Home > Adding
Custom Buttons >
Using ButtonFields
and Buttons in
Home Templates

Working with Data Tutorials

Basic Reporting) i
Simple Display Using ButtonFields
TR and Buttons in

Farameters Tem plates

Setfing Farameter
alles

Tokyo Traders

Filtering Reports
Phone: {03) 3555-5011

Filter by Drop-Cown

List 122345678010,

Master-Details-
Details |__Product | Price [Discontinued

Mishi Kobe MNiku $97.00
Ilura +21.00
Longlife Tofu $10.00

Master/Detail Across
Two Pages

Cetails of Selected
F.oy W

?EI ‘-3 Local inkranet

Figure 11: The Selected Supplier's Products are Displayed in the GridView

Step 4: Creating DAL and BLL Methods to
Discontinue All Products for a Supplier

Before we can add a Button to the FormView that, when clicked, discontinues all of
the supplier’s products, we first need to add a method to both the DAL and BLL that
performs this action. In particular, this method will be named
DiscontinueAllProductsForSupplier (supplierID). When the FormView’s Button
is clicked, we’ll invoke this method in the Business Logic Layer, passing in the
selected supplier’'s supplieriD; the BLL will then call down to the corresponding
Data Access Layer method, which will issue an UPDATE statement to the database
that discontinues the specified supplier’'s products.

As we have done in our previous tutorials, we’ll use a bottom-up approach, starting
with creating the DAL method, then the BLL method, and finally implementing the
functionality in the ASP.NET page. Open the Northwind.xsd Typed DataSet in the
App_ Code/DAL folder and add a new method to the ProductsTableAdapter (right-

click on the ProductsTableAdapter and choose Add Query). Doing so will bring up
the TableAdapter Query Configuration wizard, which walks us through the process of
adding the new method. Start by indicating that our DAL method will use an ad-hoc
SQL statement.

TableAdapter Query Configuration Wizard

Choose a Command Type =

Tablefdapter query uses SOL stakements or a stored procedure,

How should the TableAdapter query access the database?
) ilse SOL statements |
Specify a SELECT skatement ta load data.

i) Create new stored procedure
Specify a SELECT statement, and the wizard will generate a new stared procedure ko select records,

) Use existing stored procedure

Choose an existing stored procedure.

Figure 12: Create the DAL Method Using an Ad-Hoc SQL Statement

Next, the wizard prompts us as to what type of query to create. Since the
DiscontinueAllProductsForSupplier (supplierID) method will heed to update the
Products database table, setting the Discontinued field to 1 for all products
provided by the specified supplieriD, we need to create a query that updates data.

TableAdapter Query Configuration Wizard

Choose a Query Type a
Choose the bype of query ko be generated i

What type of SQL query would you like to use?
() SELECT which returns rows
Feturns one or many raws ar colurmns,

") SELECT which returns a single value
Returns a single walue (For example, Sum, Count, or any other aggreqgate Function),

CHanges isting data in a table,
) DELETE

Rernoves rows From a table,
() INSERT

fdds a new row ko a table,

[< Previous H Mext =

Figure 13: Choose the UPDATE Query Type

The next wizard screen provides the TableAdapter’s existing UPDATE statement,
which updates each of the fields defined in the products DataTable. Replace this
query text with the following statement:

UPDATE [Products] SET
Discontinued =1

WHERE SupplierID = @SupplierID

After entering this query and clicking Next, the last wizard screen asks for the new
method’s name - use DiscontinueAllProductsForSupplier. Complete the wizard
by clicking the Finish button. Upon returning to the DataSet Designer you should see
a new method in the ProductsTableAdapter hamed
DiscontinueAllProductsForSupplier (@SupplierID).

TableAdapter Querny Configuration Wizard

Choose Function Name B |
Choose the name of the Function ko be generated . ,— i’
what would vou like ko name the new function?
DiscontinueAlProducksForSupplier
< Previous] [et =] [Einish] [Cancel

Figure 14: Name the New DAL Method DiscontinueAllProductsForSupplier

With the DiscontinueAllProductsForSupplier (supplierID) method created in the
Data Access Layer, our next task is to create the
DiscontinueAllProductsForSupplier (supplierID) method in the Business Logic
Layer. To accomplish this, open the ProductsBLL class file and add the following:

public int DiscontinueAllProductsForSupplier (int supplierID)

{
return Adapter.DiscontinueAllProductsForSupplier (supplierID) ;

This method simply calls down to the

DiscontinueAllProductsForSupplier (supplierID) method in the DAL, passing
along the provided supplierID parameter value. If there were any business rules
that only allowed a supplier’s products to be discontinued under certain
circumstances, those rules should be implemented here, in the BLL.

Note: Unlike the UpdateProduct overloads in the ProductsBLL class, the
DiscontinueAllProductsForSupplier (supplierID) method signature does
not include the DataObjectMethodAttribute attribute
([System.ComponentModel .DataObjectMethodAttribute (System.Component
Model .DataObjectMethodType.Update, bool)]). This precludes the
DiscontinueAllProductsForSupplier (supplierID) method from the

ObjectDataSource’s Configure Data Source wizard’s drop-down list in the
UPDATE tab. I've omitted this attribute because we’ll be calling the
DiscontinueAllProductsForSupplier (supplierID) method directly from an
event handler in our ASP.NET page.

Step 5: Adding a "Discontinue All
Products” Button to the FormView

With the DiscontinueAllProductsForSupplier (supplieriD) method in the BLL
and DAL complete, the final step for adding the ability to discontinue all products for
the selected supplier is to add a Button Web control to the FormView’s
ItemTemplate. Let’s add such a Button below the supplier’s phone number with the
button text, “Discontinue All Products” and an 1D property value of
DiscontinueAllProductsForSupplier. You can add this Button Web control
through the Designer by clicking on the Edit Templates link in the FormView’s smart
tag (see Figure 15), or directly through the declarative syntax.

@9 Code - Microsoft Visual Studio @ E|[E|rz|

File Edit ‘“iew ‘Website Build Debug Format Layout Tools Window Commuonity Help Addins

- -5 H @ &G @ 22 b (G @ on o

B I U \ = = i— |
¥ Toolbox lL.cs CustomButton...Buttons.aspx* | h - X
= | = standard -~ -
% k Fainter
A Label 3
[sbi] TextBiox Content - Contentl (Custom) CL‘

(l Butkon] |
LinkEuttan
ImageButtan

Using ButtonFields and Buttons
in Templates

saljedolg g sl S50 %E daindag aesiag E_l_;. Jaan|deg uonnios E;,

A HyperLink,
=% DropDownlist n EI FormYiew Tasks

B | istEoy Suppliers - IkemTemplate Template Editing Mods
CheckBox TtemTemplate [R Tk Temiplate
8= CheckBoxList End Template Editing
(*) RadioButton TCOmpanVName]
- = RadioButtonList .

]

I - -

':.ﬂ T o ['ﬁ Discontinue &ll Products]
"H LT EMapDataSourcel i}
1 Table ObjectDataSource - SuppliersDataSource

:= BulletedList

HiddenField

B Literal

7 calendar b
= . .

gy Error List |[Z] Cutput _ﬂ Find Fesults 1

<body > || <asp:content#contentl > || <p= || <asp:formview# suppliers=

Ready

Figure 15: Add a “"Discontinue All Products” Button Web Control to the
FormView’s ItemTemplate

When the Button is clicked by a user visiting the page, a postback ensues and the
FormView’s ItemCommand event fires. To execute custom code in response to this
Button being clicked, we can create an event handler for this event. Understand,
though, that the ItemCommand event fires whenever any Button, LinkButton, or
ImageButton Web control is clicked within the FormView. That means that when the
user moves from one page to another in the FormView, the ItemCommand event fires;
same thing when the user clicks New, Edit, or Delete in a FormView that supports
inserting, updating, or deleting.

Since the ItemCommand fires regardless of what button is clicked, in the event
handler we need a way to determine if the “"Discontinue All Products” Button was
clicked or if it was some other button. To accomplish this, we can set the Button Web
control’s CommandName property to some identifying value. When the Button is
clicked, this CommandName value is passed into the ItemCommand event handler,
enabling us to determine whether the “Discontinue All Products” Button was the
button clicked. Set the “"Discontinue All Products” Button’s CommandName property to
“DiscontinueProducts”.

Finally, let’s use a client-side confirm dialog box to ensure that the user really wants
to discontinue the selected supplier’s products. As we saw in the Adding Client-Side
Confirmation When Deleting tutorial, this can be accomplished with a bit of
JavaScript. In particular, set the Button Web control’s OnClientClick property to
“return confirm('This will mark all of this supplier\'s products as

”

discontinued. Are you certain you want to do this?');

After making these changes, the FormView’s declarative syntax should look like the
following:

<asp:FormView ID="Suppliers" runat="server" DataKeyNames="SupplierID"
DataSourcelID="SuppliersDataSource" EnableViewState="False"
AllowPaging="True">

<ItemTemplate>

<h3><asp:Label ID="CompanyName" runat="server" Text='<%#
Bind ("CompanyName") %>'></asp:Label></h3>

Phone:

<asp:Label ID="PhoneLabel" runat="server" Text='<%#
Bind("Phone") %>'></asp:Label>

<asp:Button ID="DiscontinueAllProductsForSupplier"
runat="server" CommandName="DiscontinueProducts"

Text="Discontinue All Products" OnClientClick="return
confirm('This will mark _all of this supplier\'s products as
discontinued. Are you certain you want to do this?');" />

</ItemTemplate>
</asp:FormView>

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.formview.itemcommand.aspx
http://www.asp.net/data-access/tutorials/adding-client-side-confirmation-when-deleting-cs
http://www.asp.net/data-access/tutorials/adding-client-side-confirmation-when-deleting-cs

Next, create an event handler for the FormView’s ItemCommand event. In this event
handler we need to first determine whether the “"Discontinue All Products” Button
was clicked. If so, we want to create an instance of the productsBLL class and
invoke its DiscontinueAllProductsForSupplier (supplierID) method, passing in
the supplieriD of the selected FormView:

protected void Suppliers_ItemCommand (object sender,
FormViewCommandEventArgs e)

{

if (e.CommandName.CompareTo ("DiscontinueProducts") == 0)

{
// The "Discontinue All Products" Button was clicked.

// Invoke the
ProductsBLL.DiscontinueAllProductsForSupplier (supplierID) method

// First, get the SupplierID selected in the FormView
int supplierID = (int)Suppliers.SelectedValue;

// Next, create an instance of the ProductsBLL class

ProductsBLL productInfo = new ProductsBLL() ;

// Finally, invoke the
DiscontinueAllProductsForSupplier (supplierID) method

productInfo.DiscontinueAllProductsForSupplier (supplierID) ;

Note that the supplierID of the current selected supplier in the FormView can be
accessed using the FormView’s Selectedvalue property. The Selectedvalue
property returns the first data key value for the record being displayed in the
FormView. The FormView’'s DataKeyNames property, which indicates the data fields
from which the data key values are pulled from, was automatically set to
SupplierID by Visual Studio when binding the ObjectDataSource to the FormView
back in Step 2.

With the 1temCommand event handler created, take a moment to test out the page.
Browse to the Cooperativa de Quesos 'Las Cabras' supplier (it’s the fifth supplier in
the FormView for me). This supplier provides two products, Queso Cabrales and
Queso Manchego La Pastora, both of which are not discontinued.

Imagine that Cooperativa de Quesos 'Las Cabras' has gone out of business and
therefore its products are to be discontinued. Click the “Discontinue All Products”
Button. This will display the client-side confirm dialog box (see Figure 16).

http://msdn2.microsoft.com/en-US/library/system.web.ui.webcontrols.formview.selectedvalue.aspx
http://msdn2.microsoft.com/en-us/system.web.ui.webcontrols.formview.datakeynames.aspx

<3 Untitled Page - Microsoft Internet Explorer, §|

: File Edit Wiew Favorites Tools Help E
QeBack -~) - [[@ S search ¢ Favorites 42 - s | - e @ OHE
. Address |@ http: fflocalhost: 3062/ Code/CustomButtons/CustomButtons, aspe: V| = Go
) . s
e Cooperativa de Quesos 'Las Cabras'
Parameters
Setting Parameter Phone: (98) 598 76 54
walles [Discontinue &ll Products]
Filtering Reports 12345678310,
Filter by Drop-Down
List | _Product | Price [Discontinued
Master-Details- Queso Cabrales $21.00
Cetails Queso Manchego La Pastora $38.00
\:.':/ This will mark _all_ of this supplier's products as discontinued. Are wou certain wou want to do this?
Cu izt . '
Formattin | o4 | [Cancel
Format Calors
w
&] & Local intranet

Figure 16: Cooperativa de Quesos 'Las Cabras' Supplies Two Active Products

If you click OK in the client-side confirm dialog box, the form submission will
proceed, causing a postback in which the FormView’s ItemCommand event will fire.
The event handler we created will then execute, invoking the
DiscontinueAllProductsForSupplier (supplierID) method and discontinuing both
the Queso Cabrales and Queso Manchego La Pastora products.

If you have disabled the GridView’s view state, the GridView is being rebound to the
underlying data store on every postback, and therefore will immediately be updated
to reflect that these two products are now discontinued (see Figure 17). If, however,
you have not disabled view state in the GridView, you will heed to manually rebind
the data to the GridView after making this change. To accomplish this, simply make
a call to the GridView's DataBind () method immediately after invoking the
DiscontinueAllProductsForSupplier (supplierID) method.

4 Untitled Page - Microsoft Internet Explorer E] EHE|E|

File Edit Miew Favorites Tools Help

ooooo

i Back -~) ElE o D search ' Favorites 42 v~ da (W] - R i e

! Address |@ http:) localhost: 3062/ Code/ CustomButtons, CustomButtons, aspx V| 4 Go

Parameters Cooperativa de Quesos 'Las 2

Setting Parameter Cabras’
Valles

——— . phone: (98 508 7R 54
lItering Reports - =
J nef [Discontinue All Products |]

Filter by Drop-Down
List

ngé:ﬁsr—ljetails— Price |Discontinued
Queso Cabrales $21.00
Master/Detail Across Queso Manchego La

Two Pages e —— $35.00

:E:l ‘ﬂ Local inkranet

Figure 17: After Clicking the “Discontinue All Products” Button, the
Supplier’s Products are Updated Accordingly

Step 6: Creating an UpdateProduct
Overload in the Business Logic Layer for
Adjusting a Product’s Price

Like with the “Discontinue All Products” Button in the FormView, in order to add
buttons for increasing and decreasing the price for a product in the GridView we
need to first add the appropriate Data Access Layer and Business Logic Layer
methods. Since we already have a method that updates a single product row in the
DAL, we can provide such functionality by creating a new overload for the
UpdateProduct method in the BLL.

Our past UpdateProduct overloads have taken in some combination of product fields
as scalar input values and have then updated just those fields for the specified
product. For this overload we’ll vary slightly from this standard and instead pass in
the product’s Product1ID and the percentage by which to adjust the Unitprice (as
opposed to passing in the new, adjusted UnitPrice itself). This approach will
simplify the code we need to write in the ASP.NET page code-behind class, since we
don’t have to bother with determining the current product’s UnitPrice.

The UpdateProduct overload for this tutorial is shown below:

public bool UpdateProduct(decimal unitPriceAdjustmentPercentage, int
productID)
{

Northwind.ProductsDataTable products =
Adapter.GetProductByProductID (productID) ;

if (products.Count == 0)
// no matching record found, return false

return false;
Northwind. ProductsRow product = products[0];

// Adjust the UnitPrice by the specified percentage (if it's not
NULL)

if ('product.IsUnitPriceNull())

product.UnitPrice *= unitPriceAdjustmentPercentage;

// Update the product record
int rowsAffected = Adapter.Update (product) ;

// Return true if precisely one row was updated, otherwise false

return rowsAffected == 1;

This overload retrieves information about the specified product through the DAL's
GetProductByProductID (productID) method. It then checks to see whether the
product’s UnitPrice is assigned a database NULL value. If it is, the price is left
unaltered. If, however, there is a non-NULL UnitPrice value, the method updates
the product’s unitpPrice by the specified percent (unitPriceAdjustmentPercent).

Step 7: Adding the Increase and Decrease
Buttons to the GridView

The GridView (and DetailsView) are both made up of a collection of fields. In addition
to BoundFields, CheckBoxFields, and TemplateFields, ASP.NET includes the
ButtonField, which, as its hame implies, renders as a column with a Button,
LinkButton, or ImageButton for each row. Similar to the FormView, clicking any
button within the GridView - paging buttons, Edit or Delete buttons, sorting buttons,
and so on - causes a postback and raises the GridView’s RowCommand event.

The ButtonField has a commandName property that assigns the specified value to each
of its Buttons’ CommandName properties. Like with the FormView, the CommandName
value is used by the RowCommand event handler to determine which button was
clicked.

Let’'s add two new ButtonFields to the GridView, one with a button text “Price +10%"
and the other with the text “Price -10%". To add these ButtonFields, click on the Edit

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.gridview.rowcommand.aspx

Columns link from the GridView's smart tag, select the ButtonField field type from
the list in the upper left and click the Add button.

Fields
Avvailable Fields: ButtonField properties:
= CheckBoxField ” : ;}

Discankinued

AZ] HyperLinkField B Accessibility -~

AccessibleHeaderTe

ButtonField

B Appearance

o —ormmangriend ButtonType Link

,E?J TemplateField w FookerText

HeaderImagelr
[] HeaderText
Selected fields: ImageLil
E Praduct E] Text Button
=] Price B Behavior
¥ CausesValidation False "

L Disconkinued

fButton |

HeaderText

The text within the header of this Field,

[] Auta-generate fields Converk this Field inko a TemplateField

Refresh Sch
efresh Schema a's] [Zancel

Figure 18: Add Two ButtonFields to the GridView

Move the two ButtonFields so that they appear as the first two GridView fields. Next,
set the Text properties of these two ButtonFields to “Price +10%"” and “Price -10%"
and the commandName properties to “IncreasePrice” and “DecreasePrice”, respectively.
By default, a ButtonField renders its column of buttons as LinkButtons. This can be
changed, however, through the ButtonField’'s ButtonType property. Let’s have these
two ButtonFields rendered as regular push buttons; therefore, set the ButtonType
property to Button. Figure 19 shows the Fields dialog box after these changes have
been made; following that is the GridView’s declarative markup.

http://msdn2.microsoft.com/en-US/library/system.web.ui.webcontrols.buttonfieldbase.buttontype.aspx

Fields

Available Fields:
_=] (Al Fields) ”~
=-{£] BoundField
=] ProductID
=] ProducthMame
=] supplierID
=| CategorvID
EI QuankityPernik '

Selected figlds:
Ll Price +10% i
£ | Price -10%

.ﬂr
= | Product .
i=| Price

Discontinued

[] Auta-generate fields

Refresh Schema

ButtonField propetties:

H=z| A

@I &

arccessibleHeaderTe ~
E Appearance

FookerTexk
HeaderImagell
HeaderText

Imagelrl
Text Price +10% |
B Behavior
Causestalidation False
f Commandiame IncreasePrice] "

ButtonType

The bype of the button ko be rendered in the
field. The walues are Link, Button, and Image,

Zonverk this field inko a TemplateField

QI] [Cancel

Figure 19: Configure the ButtonFields’ Text, CommandName, and ButtonType

Properties

<asp:GridView ID="SuppliersProducts" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourcelID="SuppliersProductsDataSource" EnableViewState="False">

<Columns>

<asp:ButtonField ButtonType="Button"
CommandName="IncreasePrice" Text="Price +10%" />

<asp:ButtonField ButtonType="Button"
CommandName="DecreasePrice" Text="Price -10%" />

<asp:BoundField DataField="ProductName" HeaderText="Product"

SortExpression="ProductName" />

<asp:BoundField DataField="UnitPrice" HeaderText="Price"
SortExpression="UnitPrice" DataFormatString="{0:C}" HtmlEncode="False"

/>

<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />

</Columns>
</asp:GridvView>

With these ButtonFields created, the final step is to create an event handler for the
GridView’s RowCommand event. This event handler, if fired because either the “Price

+10%" or “Price -10%" buttons were clicked, needs to determine the Product1D for
the row whose button was clicked and then invoke the ProductsBLL class’s
UpdateProduct method, passing in the appropriate UnitPrice percentage
adjustment along with the productID. The following code performs these tasks:

protected void SuppliersProducts RowCommand(object sender,
GridViewCommandEventArgs e)

{

if (e.CommandName.CompareTo ("IncreasePrice") == 0 ||

e .CommandName .CompareTo ("DecreasePrice") == 0)

// The Increase Price or Decrease Price Button has been clicked

// Determine the ID of the product whose price was adjusted

int productID =

(int) SuppliersProducts.DataKeys[Convert.ToInt32 (e.CommandArgument)] .Val

ue;

// Determine how much to adjust the price

decimal percentageAdjust;

if (e.CommandName.CompareTo ("IncreasePrice") == 0)
percentageAdjust = 1.1M;

else

percentageAdjust = 0.9M;

// Adjust the price
ProductsBLL productInfo = new ProductsBLL() ;
productInfo.UpdateProduct (percentageAdjust, productID) ;

In order to determine the product1D for the row whose “Price +10%" or “Price -
10%" button was clicked, we need to consult the GridView’s DataKeys collection.
This collection holds the values of the fields specified in the DataKeyNames property
for each GridView row. Since the GridView’s DataKeyNames property was set to
ProductID by Visual Studio when binding the ObjectDataSource to the GridView,
DataKeys [rowIndex] .Value provides the productiD for the specified rowIndex.

The ButtonField automatically passes in the rowIndex of the row whose button was
clicked through the e.Commandargument parameter. Therefore, to determine the
ProductID for the row whose “Price +10%" or “Price -10%"” button was clicked, we

use:

(int) SuppliersProducts.DataKeys|[Convert.ToInt32 (e.CommandArgument)] .Val
ue.

As with the “Discontinue All Products” button, if you have disabled the GridView’s
view state, the GridView is being rebound to the underlying data store on every
postback, and therefore will immediately be updated to reflect a price change that
occurs from clicking either of the buttons. If, however, you have not disabled view
state in the GridView, you will need to manually rebind the data to the GridView after
making this change. To accomplish this, simply make a call to the GridView’s
DataBind () method immediately after invoking the UpdateProduct method.

Figure 20 shows the page when viewing the products provided by Grandma Kelly's
Homestead. Figure 21 shows the results after the “Price +10%"” button has been
clicked twice for Grandma's Boysenberry Spread and the “Price -10%" button once
for Northwoods Cranberry Sauce.

A Untitled Page - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help

@Back ~) [¥ [(» search o Favorites £ - i [#] - 4l s
| Address @ http:fflocalhost: 3062 CodefCustomButtons/CustomButtans . aspx v a0
imple Display ~
T
Dedarative Grandma Kelly's Homestead

Farameters

: Phone: (213) 555-5735
setting Parameter [Discontinue &ll Products]
Walles

1232456785910 ...

| | Product __|Pprice Discontinued|

Filtering Rep
Filter by Drop-Down

List]
[Price +10%][Price -10% Grandma's $25.00
Master-Details- Boysenberry Spread
Details i 10% Price —10% Uncle Bob's Qrganic
o —— ’ rice + ” rice]Dried Poars $20.00
aster/Detail Across
Two Pages [Price +10% || Price -10%]ggLir;woods Cranberty ¢46.00
Details of Selected b
@j Dane ‘-g Local intranet

Figure 20: The GridView Includes “"Price +10% " and “Price -10% " Buttons

23 Untitled Page - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help
Back -) & o search 7 Favorites €9 LY ﬂ - e i .E

¢ Address @ http:fflocalhost: 3062) CadeCustomButtans)CustomButtans aspx v . Go
PTG STy =

Grandma Kelly's Homestead

Declarative
Farameters

Phone: (313) 555-5735

Sreiilig [PRIrEmieEsr [Discontinue all Products |
Walles

12345678910,

Filtering Reports

Flicsf by Dtep-Liotin E
List]
Grandma's

Pr|ce +10% Price -10% $320.25
Master-Details- Boysenberry Spread ($30.25)
Details Price +10% Price -10%]Un.cle Dol Brganic $20.00
R —— Dried Pears

aster/Detail Across
7 7 Morthwoods Cranberry,

P +10% p -10% .
Two Pages [rice l] rice lsauce $36.00
Details of Selected v

&] Done & Local intranet

Figure 21: The Prices for the First and Third Product Have Been Updated via
the “"Price +10%"” and “Price -10%" Buttons

Note: The GridView (and DetailsView) can also have Buttons, LinkButtons, or
ImageButtons added to their TemplateFields. As with the BoundField, these
Buttons, when clicked, will induce a postback, raising the GridView’s
RowCommand event. When adding buttons in a TemplateField, however, the
Button’s Commandargument is not automatically set to the index of the row as
it is when using ButtonFields. If you need to determine the row index of the
button that was clicked within the RowCommand event handler, you'll need to
manually set the Button’s CommandArgument property in its declarative syntax
within the TemplateField, using code like: <asp:Button runat="server"
CommandArgument="'<%# ((GridViewRow) Container).RowIndex %>' />.

Summary

The GridView, DetailsView, and FormView controls all can include Buttons,
LinkButtons, or ImageButtons. Such buttons, when clicked, cause a postback and
raise the ItemCommand event in the FormView and DetailsView controls and the
RowCommand event in the GridView. These data Web controls have built-in
functionality to handle common command-related actions, such as deleting or editing
records. However, we can also use buttons that, when clicked, respond with
executing our own custom code.

To accomplish this, we need to create an event handler for the ItemCommand or
RowCommand event. In this event handler we first check the incoming commandName
value to determine which button was clicked and then take appropriate custom
action. In this tutorial we saw how to use buttons and ButtonFields to discontinue all

products for a specified supplier or to increase or decrease the price of a particular
product by 10%.

Happy Programming!

Scott Mitchell, author of six ASP/ASP.NET books and founder of
4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.
Scott works as an independent consultant, trainer, and writer, recently completing
his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at
http://ScottOnWriting.NET.

http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/

