This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Using
TemplateFields in the DetailsView Control

Introduction

The TemplateField offers a higher degree of flexibility in rendering data than the BoundField, CheckBoxField,
HyperLinkField, and other data field controls. In the previous tutorial we looked at using the TemplateField in a
GridView to:

¢ Display multiple data field values in one column. Specifically, both the FirstName and LastName fields
were combined into one GridView column.

¢ Use an alternate Web control to express a data field value. We saw how to show the HiredDate value
using a Calendar control.

¢ Show status information based on the underlying data. While the Employees table does not contain a
column that returns the number of days an employee has been on the job, we were able to display such
information in the GridView example in the previous tutorial with the use of a TemplateField and
formatting method.

The same TemplateFields capabilities available with the GridView are also available with the DetailsView
control. In this tutorial we'll display one product at a time using a DetailsView that contains two
TemplateFields. The first TemplateField will combine the UnitPrice, UnitsInStock, and Unitsonorder data
fields into one DetailsView row. The second TemplateField will display the value of the pDiscontinued field,
but will use a formatting method to display "YES" if Discontinued is True, and "NO" otherwise.

=
B Untitied Pags - Microssft Internet Cupharer

ERe Edt ‘iew Favortes Tock  Help
SEm Favortas - i [

& hitp: | flecabost: 4223 odes CustomFormathing ot i T emplaber mid. asps

Working with Data Tutorials ~ Hams > custemized Formaring »

Custom Content in a DetallsView

Custom Formatting with a
TemplateField

10 boxes x 20 bags
; B = 0c
A e (In Stock / On Order: 3% / 0)

Filter by Drop-Down -

List

Figure 1: Two TemplateFields are Used to Customize the Display

Let's get started!

1 of 10



Step 1: Binding the Data to the DetailsView

As discussed in the previous tutorial, when working with TemplateFields it's often easiest to start by creating
the DetailsView control that contains just BoundFields and then add new TemplateFields or convert the existing
BoundFields to TemplateFields as needed. Therefore, start this tutorial by adding a DetailsView to the page
through the Designer and binding it to an ObjectDataSource that returns the list of products. These steps will
create a DetailsView with BoundFields for each of the product's non-Boolean value fields and a CheckBoxField
for the one Boolean value field (Discontinued).

Open the DetailsviewTemplateField.aspx page and drag a DetailsView from the Toolbox onto the
Designer. From the DetailsView's smart tag choose to add a new ObjectDataSource control that invokes the
ProductsBLL class's GetProducts () method.

"

Configure Data Source - ObjeciDataSource

SELECT | UPDATE | INSERT | DELETE

Thoose & method of the business object that reburns daka bo associate with the SELECT operation. The
imethod can return & DataSat, Datafeader, or strongly-typed collection.

Examphe: GetProducts{Int32 categoryld), rebums a DataSet.

Chooss & mathod:
GetProductsl), returns ProductsDataTable W
et ProducByProduct B0 Ink 32 productlD), reburnis ProductsDataTsbls

{petProductsByCabegory [D{Int 32 categorylD], reburns ProductsDataTable
GetProductsBySupplier ID{INt 312 supplier 1D, returns ProductsDistalable

Figure 2: Add a New ObjectDataSource Control that Invokes the GetProducts () Method

For this report remove the ProductID, SupplierID, CategoryID, and ReorderLevel BoundFields. Next,
reorder the BoundFields so that the categoryName and supplierName BoundFields appear immediately after
the ProductName BoundField. Feel free to adjust the HeaderText properties and formatting properties for the
BoundFields as you see fit. Like with the GridView, these BoundField-level edits can be performed through the
Fields dialog box (accessible by clicking on the Edit Fields link in the DetailsView's smart tag) or through the
declarative syntax. Lastly, clear out the DetailsView's Height and width property values in order to allow the
DetailsView control to expand based on the data displayed and check the Enable Paging checkbox in the smart
tag.

After making these changes, your DetailsView control's declarative markup should look similar to the
following:

<asp:DetailsView ID="DetailsViewl" runat="server" AutoGenerateRows="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel" AllowPaging="True"
EnableViewState="False">
<Fields>

20f10



<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />
<asp:BoundField DataField="QuantityPerUnit"
HeaderText="Qty/Unit" SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" HeaderText="Price"
SortExpression="UnitPrice" />
<asp:BoundField DataField="UnitsInStock"
HeaderText="Units In Stock" SortExpression="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder"
HeaderText="Units On Order" SortExpression="UnitsOnOrder" />
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />
</Fields>
</asp:DetailsView>

Take a moment to view the page through a browser. At this point you should see a single product listed (Chai)
with rows showing the product's name, category, supplier, price, units in stock, units on order, and its
discontinued status.

& Untitled Page - Microzafl Interne! Cxplorer

File Edt Wew Favortes Jook Help
OQud = O - [H @) € Hsewh Trravokes @ [2- 5 W -
Acihreas |48 ] et focalhost 427 3 Cods O ustoe ormatting Dt sl T smplstersld, s

Working with Data Tutorials  Home>

Customized

FEormating =
Custom Contant in
a DetallsView

Custom Formatting
with a TemplateField

Product Chal

Category Beverages
Exobic Liquids
10 boxes x 20 bags
18.0000

Miscontinued

123435678310 ..,

Figure 3: The Product's Details Are Shown Using a Series of BoundFields

Step 2: Combining the Price, Units In Stock, and
Units On Order Into One Row

The DetailsView has a row for the UnitPrice, UnitsInStock, and Unitsonorder fields. We can combine

30f 10



these data fields into a single row with a TemplateField either by adding a new TemplateField or by converting
one of the existing UnitPrice, UnitsInStock, and Unitsonorder BoundFields into a TemplateField. While I
personally prefer converting existing BoundFields, let's practice by adding a new TemplateField.

Start by clicking on the Edit Fields link in the DetailsView's smart tag to bring up the Fields dialog box. Next,
add a new TemplateField and set its HeaderText property to "Price and Inventory" and move the new
TemplateField so that it is positioned above the unitprice BoundField.

__&yai_@hlg:_ﬁ&ids:_ = = TemplabeField properties:
| = (5] CheckBoxField fE=ils]
Discartinued e
2] HyperlinkField B Accessibility
j ImageField AccessibleHsader Te

] ButtorField B Appearance

) Foober Texk
[ {.Z] TemplateFicid Heades Imagel k|
' — ! Header Text Price and Inventory |
avior

Selected Fields: ConvertEmpky String True

Insertiisible True
ShowHeader True
SortExpression

21 supplier
H (L I

! Price and Inventory
il Price e HeaderText

=] Units In Stock The Eesct within the haadar of this fisld,
... - r - 4 F:

4
[ Awito-generate Fields

Refresh Schema

Figure 4: Add a New TemplateField to the DetailsView Control

Since this new TemplateField will contain the values currently displayed in the unitPrice, UnitsInStock, and
Unitsonorder BoundFields, let's remove them.

The last task for this step is to define the TtemTemplate markup for the Price and Inventory TemplateField,
which can be accomplished either through the DetailsView's template editing interface in the Designer or by
hand through the control's declarative syntax. As with the GridView, the DetailsView's template editing
interface can be accessed by clicking on the Edit Templates link in the smart tag. From here you can select the
template to edit from the drop-down list and then add any Web controls from the Toolbox.

For this tutorial, start by adding a Label control to the Price and Inventory TemplateField's TtemTemplate.

Next, click on the Edit DataBindings link from the Label Web control's smart tag and bind the Text property to
the unitprice field.

4 0f 10



r

Labell DataBindings

Select the property bo bind b, You can then bind & by sslecting a field. Akermatively, vou can bind it
using a custom code expression.

Bindable properties: Einding for Text

E4F Enabled | (3 Eeid binding:
A Text
(4 visitle

Bound to:

Formak:

= [[] Twwo-way databinding
[ 1Show all propertees

Figure 5: Bind the Label's Text Property to the unitPrice Data Field

Formatting the Price as a Currency

With this addition, the Label Web control Price and Inventory TemplateField will now display just the price for
the selected product. Figure 6 shows a screen shot of our progress thus far when viewed through a browser.

3 Untitled Page - Microselt Internet Explarer
Fie Ed  View Fguorites Tooks Heb
OBack = i F 0 - Search Favorkes - b o ]

cmos 48] bt/ flocalhnst 4223 CodeCustom ormestting Coet alsview TemplsteField, asp v B

Working with Data Tutorials  Heme> custemizes

Formatting > Custom
Content in a
DetallsView

Custom Formatting
with a TemplateField

Exotic Liquids
10 boxes x 20 bags

Discontinued

12345678310..

Figure 6: The Price and Inventory TemplateField Shows the Price

Note that the product's price is not formatted as a currency. With a BoundField, formatting is possible by setting
the Htm1Encode property to False and the DataFormatString property to {0: formatSpecifier}. Fora
TemplateField, however, any formatting instructions must be specified in the databinding syntax or through the
use of a formatting method defined somewhere within the application's code (such as in the ASP.NET page's

50f 10



code-behind class).

To specify the formatting for the databinding syntax used in the Label Web control, return to the DataBindings
dialog box by clicking on the Edit DataBindings link from the Label's smart tag. You can type the formatting
instructions directly in the Format drop-down list or select one of the defined format strings. Like with the
BoundField's bataFormatstring property, the formatting is specified using {0: formatSpecifier}.

For the unitprice field use the currency formatting specified either by selecting the appropriate drop-down list
value or by typing in {0:c} by hand.

Labell DataBindings

Select the proparty bo bind b, You can then bind & by sslecting a field. Akermatively, vou can bind it
using a custom code expression.

Bindable properties: EBinding for Text
[T Enabled (%) Fiekd binding:

A Text

P yisitle Bound to: UnitFrica

Formak:

Sample:

[5how all propertes
) Custom binding:

Figure 7: Format the Price as a Currency

Declaratively, the formatting specification is indicated as a second parameter into the Bind or Eval methods.
The settings just made through the Designer result in the following databinding expression in the declarative
markup:

<asp:Label ID="Labell" runat="server" Text='<%# Eval ("UnitPrice"™, "{0:C}") %>'/>

Adding the Remaining Data Fields to the
TemplateField

At this point we've displayed and formatted the unitPrice data field in the Price and Inventory TemplateField,
but still need to display the unitsInstock and unitsonorder fields. Let's display these on a line below the
price and in parentheses. From the template editing interface in the Designer, such markup can be added by
positioning your cursor within the template and simply typing in the text to be displayed. Alternatively, this
markup can be entered directly in the declarative syntax.

Add the static markup, Label Web controls, and databinding syntax so that the Price and Inventory
TemplateField displays the price and inventory information like so:

UnitPrice

6 0of 10



(In Stock / On Order: UnitsinStock | UnitsOnOrder)

After performing this task your DetailsView's declarative markup should look similar to the following:

<asp:DetailsView ID="DetailsViewl" runat="server" AutoGenerateRows="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel" AllowPaging="True"
EnableViewState="False">
<Fields>
<asp:BoundField DataField="ProductName"
HeaderText="Product" SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName"
HeaderText="Supplier" ReadOnly="True"
SortExpression="SupplierName" />
<asp:BoundField DataField="QuantityPerUnit"
HeaderText="Qty/Unit" SortExpression="QuantityPerUnit" />
<asp:TemplateField HeaderText="Price and Inventory">
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text='<%# Eval ("UnitPrice", "{0:C}") %>'></asp:Label>
<br />
<strong>
(In Stock / On Order: </strong>
<asp:Label ID="Label2" runat="server"
Text='<%# Eval ("UnitsInStock") %>'></asp:Label>
<strong>/</strong>
<asp:Label ID="Label3" runat="server"
Text='<%# Eval ("UnitsOnOrder") %>'>
</asp:Label><strong>)</strong>
</ItemTemplate>
</asp:TemplateField>
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued" SortExpression="Discontinued" />
</Fields>
</asp:DetailsView>

With these changes we've consolidated the price and inventory information into a single DetailsView row.

-
D Untitked Page - Microssft Internet Deplorar

Ele Cor Yew Fiotes  Tock el

Qiak - i (@ | Semdh Favarbes 47 - o W]

&) hitp:flocabost: 4225 adedCustomFormattng Dt akcViswTemglateraid spr ~ e

-

Working with Data Tutorials s > customized Farmasing >

Custam Content in a DetalsView

Custom Formatting with a
TemplateField

E oDic Liguids
10 boxes x 20 bags
v B
M(In Stock / On Order: 29 / 0)

Price and Inventc

Discontinued

Figure 8: The Price and Inventory Information is Displayed in a Single Row

7 of 10



Step 3: Customizing the Discontinued Field
Information

The Products table's Discontinued column is a bit value that indicates whether the product has been
discontinued. When binding a DetailsView (or GridView) to a data source control, the Boolean value fields,
like piscontinued, are implemented as CheckBoxFields whereas non-Boolean value fields, like product1p,
ProductName, and so on, are implemented as BoundFields. The CheckBoxField renders as a disabled checkbox
that is checked if the data field's value is True and unchecked otherwise.

Rather than display the CheckBoxField we may want to instead display text indicating whether or not the
product is discontinued. To accomplish this we could remove the CheckBoxField from the DetailsView and
then add a BoundField whose pataField property was set to Discontinued. Take a moment to do this. After
this change the DetailsView shows the text "True" for discontinued products and "False" for products that are
still active.

3 Untitied Pape - Microssfi Internet Explorgr

Fi= Ede Fgeorkes Jook  Help

Hlew

3 Back = CRE % Saareh Faeorbes £ ~la - g i_:_-‘fﬂ

8] it focalhost: 472 o POushom ot ting ! et alses | emplat e e

Working with Data Tutorials Home > Custemized Formatting >

Custom Content in a DetailsView

Custom Formatting with a
TemplateField

= F;I-I-l ExOoTic Ligquikis

[yt Linit 24 - 12 oz bottles

$15.00

({In Stock / On Order; 17 / 40)
False

Fiter by Drap-Down
List

Figure 9: The Strings True and False Are Used to Display the Discontinued State

Imagine that we didn't want the strings "True" or "False" to be used, but "YES" and "NO", instead. Such
customization can be performed with the aid of a TemplateField and a formatting method. A formatting method
can take in any number of input parameters, but must return the HTML (as a string) to inject into the template.

Add a formatting method to the DetailsviewTemplateField.aspx page's code-behind class named
DisplayDiscontinuedAsYESorNO that accepts a Northwind.ProductsRow object as an input parameter and
returns a string. As discussed in the previous tutorial, this method must be marked as Protected or Public in
order to be accessible from the template.

Protected Function DisplayDiscontinuedAsYESorNO (discontinued As Boolean) As String
If discontinued Then
Return "YES"
Else
Return "NO"
End If
End Function

8of 10



This method checks the input parameter (discontinued) and returns "YES" if it is True, "NO" otherwise.

Note: In the formatting method examined in the previous tutorial recall that we were passing in a data field that
might contain nULLs and therefore needed to check if the employee's HiredDate property value had a database
NULL value before accessing the EmployeesRow's HiredDate property. Such a check is not needed here since
the Discontinued column can never have database NuLL values assigned. Moreover, this is why the method
can accept a Boolean input parameter rather than having to accept a ProductsRow instance or a parameter of
type Object.

With this formatting method complete, all that remains is to call it from the TemplateField's TtemTemplate. To
create the TemplateField either remove the piscontinued BoundField and add a new TemplateField or convert
the Discontinued BoundField into a TemplateField. Then, from the declarative markup view, edit the
TemplateField so that it contains just an ItemTemplate that invokes the DisplaybiscontinuedAsYESorNO
method, passing in the value of the current ProductRrow instance's Discontinued property. This can be
accessed via the Eval method. Specifically, the TemplateField's markup should look like:

<asp:TemplateField HeaderText="Discontinued" SortExpression="Discontinued">

<ItemTemplate>
<%# DisplayDiscontinuedAsYESorNO ( (bool)
Eval ("Discontinued")) %>
</ItemTemplate>

</asp:TemplateField>

This will cause the DisplayDiscontinuedasYESorNO method to be invoked when rendering the DetailsView,
passing in the ProductRow instance's Discontinued value. Since the Eval method returns a value of type
Object, but the DisplayDiscontinuedAsYESorNO method expects an input parameter of type Boolean, we
cast the Eval methods return value to Boolean. The DisplayDiscontinuedAsYESorNO method will then return
"YES" or "NO" depending on the value it receives. The returned value is what is displayed in this DetailsView
row (see Figure 10).

=
B Untitied Pags - Microssft Internet Cupharer

Ele Edt ew Fgoss Took  Help

u & SEm Favortas - ¥ -

=

Working with Data Tutorials  Hems > custemized Formamiing >

Custom Content in a DetallsView

Custom Formatting with a
TemplateField

T ]
Bevarages
Exobic Liquids
10 boxes x 20 bags
el i (31 4] }LHC-I
LR AG, LRNIE Y (In Stock / On Ordert 35 / 0)

Filter by Drop-Dawn
List

Figure 10: YES or NO Values are Now Shown in the Discontinued Row

Summary

90of 10



The TemplateField in the DetailsView control allows for a higher degree of flexibility in displaying data than is
available with the other field controls and are ideal for situations where:

e Multiple data fields need to be displayed in one GridView column
e The data is best expressed using a Web control rather than plain text
o The output depends on the underlying data, such as displaying metadata or in reformatting the data

While TemplateFields allow for a greater degree of flexibility in the rendering of the DetailsView's underlying
data, the DetailsView output still feels a bit boxy as each field is rendered as a row in an HTML <table>.

The FormView control offers a greater degree of flexibility in configuring the rendered output. The FormView
does not contain fields but rather just a series of templates (ItemTemplate, EditItemTemplate,
HeaderTemplate, and so on). We'll see how to use the FormView to achieve even more control of the rendered
layout in our next tutorial.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Dan Jagers.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

10 of 10



