This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at
http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Adding
Validation Controls to the DataList’s Editing
Interface

Introduction

In the DataList editing tutorials thus far, the DataLists’ editing interfaces have not included any proactive
user input validation even though invalid user input — such as a missing product name or negative price —
results in an exception. In the preceding tutorial we examined how to add exception handling code to the
DataList’s UpdateCommand event handler in order to catch and gracefully display information about any
exceptions that were raised. Ideally, however, the editing interface would include validation controls to
prevent a user from entering such invalid data in the first place.

In this tutorial we’ll see how easy it is to add validation controls to the Datalist’s EditItemTemplate in
order to provide a more foolproof editing user interface. Specifically, this tutorial takes the example created
in the preceding tutorial and augments the editing interface to include appropriate validation.

Step 1: Replicating the Example from Handling
BLL- and DAL-Level Exceptions

In the Handling BLL- and DAL-Level Exceptions tutorial we created a page that listed the names and prices
of the products in a two-column, editable DataList. Our goal for this tutorial is to augment the DataList’s
editing interface to include validation controls. In particular, our validation logic will:

e Require that the product’s name be provided

o Ensure that the value entered for the price is a valid currency format

o Ensure that the value entered for the price is greater than or equal to zero, since a negative UnitPrice
value is illegal

Before we can look at augmenting the previous example to include validation, we first need to replicate the
example from the ErrorHandling.aspx page in the EditDeleteDatalList folder to the page for this
tutorial, uIvalidation.aspx. To achieve this we need to copy over both the ErrorHandling.aspx page’s
declarative markup and its source code. First copy over the declarative markup by performing the following
steps:

1. Open the ErrorHandling.aspx page in Visual Studio
Go to the page’s declarative markup (click on the Source button at the bottom of the page)

3. Copy the text within the <asp:Content> and </asp:Content> tags (lines 3 through 32), as shown in
Figure 1.

1 0of9

%% Code - Microsoft Yiswal Stodio

Ble £t ew Webgte Buld Debug Took Wndom Communty Hep Addns

B A S0 e b A waneg il
o i £ = ! | 3HTML 1.0 Transtional { 5.“:_:_

a0 tdatreleteDot.sitending.aspr | EdtOelebeiata, sbdation. aspo - - K

I Cherk Objects & Evente w0 | roo Evers) v

g .

=% Fage Language="CH#" Mascerfagefile="-/Sice.mascer” huccEvenc¥irewp="true” {odefile="EccorHan—
E wasprContent IDe=Contenti” ContentPlacsHslder [D="AainConcent™ RunatsTiarver™s

Gracefully Handlaing DAL

odpccHase® runac="ssever® Tenps! A Ewvali{"PFroductMName™h &x'>

Ui

Skl T el 50 i sy s g | sogs
—

: * runats"seryer” Texcs'<i# Eval("OnitPrice®, "(0:C1")
x4 supat=*seever® CommndMame="Update® Text="Tpdace
] ver” Comeandiame="Cancel® Text=*Cangel™ />
6
g
] ource® runat=“secver®
T | i ewemr—unp R T
i - X
[Design | Sowce | 4| aspCorkentaCententl s |
i Evron List | (3] Cuapu |3 Find Reputs |
Rsady Lm 32 o9 a3 NG

Figure 1: Copy the Text Within the <asp:Content> Control

4. Openthe uTvalidation.aspx page
5. Go to the page’s declarative markup
6. Paste the text within the <asp:Ccontent> control.

To copy over the source code, open the ErrorHandling.aspx.vb page and copy just the text within the
EditDeleteDatalist ErrorHandling class. Copy the three event handlers (Products EditCommand,
Products_ CancelCommand, and Products_UpdateCommand) along with the DisplayExceptionDetails
method, but do not copy the class declaration or using statements. Paste the copied text within the

EditDeleteDatalist UIValidation classin UIvalidation.aspx.vb.

After moving over the content and code from ErrorHandling.aspx to UIValidation.aspx, take a moment
to test out the pages in a browser. You should see the same output and experience the same functionality in

each of these two pages (see Figure 2).

20f9

I Untitled Page - Microsaft Internet Explarer
: Fle Edt Yiew Faworkes Tock Heb

ek £ - B @ F O seweh SeRwodes £ (3- M W - 6w IR

Harme

Adding Validation Controls to the
Datalist's Editing Interface

Basic Reportng

Simple Display
Diedarative T P, e Singaporean Hokkien Fried Mee
Farameters: Price: [§19.59 .
= = : Price: $14.00
&thing Parametar -
Values Update | [Cancel | o
Filtering Feports Chang Ipoh Coffes
Filter by Drop=Chawn : _
List Price: $19.00 DrEe: $45.040
{Edit] Edit |
Master-Details-
Detsls
Aniseed Syrup Gula Malacca
Master/Detall Across
Two Pages Price: $10.00 Price: $10.45
B e edil (edal e _ .
] Dere g Localirkranst

Figure 2: The uIvalidation.aspx Page Mimics the Functionality in ErrorHandling.aspx

Step 2: Adding the Validation Controls to the
DataList’s EditltemTemplate

When constructing data entry forms, it is important that users enter any required fields and that all their
provided inputs are legal, properly-formatted values. To help ensure that a user’s inputs are valid, ASP.NET
provides five built-in validation controls that are designed to validate the value of a single input Web
control:

e RequiredFieldValidator — ensures that a value has been provided

e CompareValidator — validates a value against another Web control value or a constant value, or
ensures that the value’s format is legal for a specified data type

¢ RangeValidator — ensures that a value is within a range of values

o RegularExpressionValidator — validates a value against a regular expression

¢ CustomValidator — validates a value against a custom, user-defined method

For more information on these five controls refer back to the Adding Validation Controls to the Editing and
Inserting Interfaces tutorial or check out the Validation Controls section of the ASP.NET Quickstart
Tutorials.

For our tutorial we’ll need to use a RequiredFieldValidator to ensure that a value for the product name has
been supplied and a CompareValidator to ensure that the entered price has a value greater than or equal to 0
and is presented in a valid currency format.

Note: While ASP.NET 1.x had these same five validation controls, ASP.NET 2.0 has added a number of
improvements, the main two being client-side script support for browsers in addition to Internet Explorer
and the ability to partition validation controls on a page into validation groups. For more information on the
new validation control features in 2.0, refer to Dissecting the Validation Controls in ASP.NET 2.0.

Let’s start by adding the necessary validation controls to the DataList’s EditItemTemplate. This task can

30f9

be performed through the Designer by clicking on the Edit Templates link from the DataList’s smart tag, or
through the declarative syntax. Let’s step through the process using the Edit Templates option from the
Design view. After choosing to edit the DataList’s EditItemTemplate, add a RequiredFieldValidator by
dragging it from the Toolbox into the template editing interface, placing it after the ProductName TextBox.

%% Code - Microsoft Yisual Studio E"EI E|E|E|
Fie Edt ‘iew ‘Webste Buld Debueg Format Layout Tools Window Community Helb addins
@ - - G {6*:_41 " | B2 | warning T
B L DA 2 .= =8
5 o ~% (5
= | i, xmiDakaSource A ¥ i
2 | i, SteMapDatasource Content - Contantl (Custom) z
g h g
23 S dding Validation i
Pointsr ontrols to the Lﬁ
SRR e Datalist's Editing E
- RangeV skdstor g
TP RegularErprassiois Interface g
=L Comparevalidator)) =
=, Customvalidator TEX ceptionDetails I LL?
& WalidationSummary 2
* Mavigation [Froducts - Iem Tempiaes Ly
I Pointer EditltemTemplate I" !
4g Logn | . o *f:i
“_I LOOK ey | 'ﬂequrredFleldVahdatnr | %
&3 PasowordRecovery Bre: [=
| Lognstatus =
By Logtiane

5 =
ObjectDataSource - ProductsDataSource

+ WebParts 5
+ HTML =
ki Ganeial || 4] =p> | <asp:datalist#products> | <aspirequiredfieldvalidat. |
i Errar List | 5] Gutpat (5 Fied Results 1
Build succeeded

Figure 3: Add a RequiredFieldValidator to the EditItemTemplate After the ProductName TextBox

All validation controls work by validating the input of a single ASP.NET Web control. Therefore, we need
to indicate that the RequiredFieldValidator we just added should validate against the ProductName
TextBox; this is done by setting the validation control’s controlTovalidate property to the 1D of the
appropriate Web control (ProductName, in this instance). Next, set the ExrrorMessage property to “You
must provide the product’s name” and the Text property to “*”. The Text property value, if provided, is the
text that is displayed by the validation control if the validation fails. The ErrorMessage property value,
which is required, is used by the ValidationSummary control; if the Text property value is omitted, the
ErrorMessage property value is displayed by the validation control on invalid input.

After setting these three properties of the RequiredFieldValidator, your screen should look similar to Figure
4.

4 0f 9

%% Code - Microsaft Visual Siudio

Fle Edt View ‘Webghe Buld Debug Fomat Layour Tooks Window Cofmunly Help Addies
oGl b0 O | S0 1)
B LU A R s
]
o o x [x| e cax
g IR - ~ - - # | Profucts.TtemTemplat es BditThem Terplati =
& |, SteMapbatatource Adding Validation = 7] [E] #
= ..II' A =S p =i
L bt ontrols to the Borderstrie Noeset A
VYalidation gy ap s Vi
lifﬂ'ﬁ = Datalist's Ed‘ltlllg ContrelTovahdate ProductMame |
S Reculac ikl Toetlors
g Interface it s
=& ReguaExpradsio. .. u x Ersblahant oot Trus
SRR i ExceptionDetails] Erabled e
%, Cutomveldabor i Enable Theming Irue
- - T I\,n
‘—_"! Valdy Erpeues Erraeies rags Fou must provide tin]
e Edeltemtanplate B Ford
= Login ForeColor B red
I Poinber duct mame; ¥ Fasich
g Login Indishvshe
] | Logriview - [SetFocusOnEmror False
i = T
] Logrstatus . [Fapdate | Fzancel {ﬁmn_[_lj
Wy Loginames 3 e 3
3&' Crasbellordfizsrd ibjectDataSource - Productsistatooroes
(I
) ChangePassword w | | Programenatic name of the control
+ WebParls »
4 HTHL
i Eaind & [1] p | aspodstalst #pcoducts | <asp:requiredhisldvalidat. = b | ki | Eercpe... M Serve... [dass
:d. Error List [3] Oubput i Fnd Resudts 1
Bud succended

Figure 4: Set the RequiredFieldValidator’s controlTovalidate, ErrorMessage, and Text Properties

With the RequiredFieldValidator added to the EditItemTemplate, all that remains is to add the necessary
validation for the product’s price TextBox. Since the unitprice is optional when editing a record, we don’t
need to add a RequiredFieldValidator. We do, however, need to add a CompareValidator to ensure that the
UnitPrice, if supplied, is properly formatted as a currency and is greater than or equal to 0.

Add the CompareValidator into the EditTtemTemplate and set its ControlTovalidate property to
UnitPrice, itSs ErrorMessage property to “The price must be greater than or equal to zero and cannot
include the currency symbol”, and its Text property to “*”. To indicate that the unitprice value must be
greater than or equal to 0, set the CompareValidator’s operator property to GreaterThanEqual, its

ValueToCompare property to “0”, and its Type property to Currency.

After adding these two validation controls, the DataList’s EditItemTemplate’s declarative syntax should

look similar to the following:

<EditItemTemplate>
Product name:
<asp:TextBox ID="ProductName" runat="server"
Text='<%# Eval ("ProductName") %>'></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
ControlToValidate="ProductName"
ErrorMessage="You must provide the product's name"
runat="server">*</asp:RequiredFieldvValidator>

Price:
<asp:TextBox ID="UnitPrice" runat="server"
Text='<%# Eval ("UnitPrice", "{0:C}") %>'></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl"
ControlToValidate="UnitPrice"
ErrorMessage="The price must be greater than or equal to zero
and cannot include the currency symbol"

Operator="GreaterThanEqual" Type="Currency" ValueToCompare="0"

runat="server">*</asp:CompareValidator>

50f9

<asp:Button ID="UpdateProduct" runat="server" CommandName="Update"
Text="Update" />
<asp:Button ID="CancelUpdate" runat="server" CommandName="Cancel"
Text="Cancel" />
</EditItemTemplate>

After making these changes, open the page in a browser. If you attempt to omit the name or enter an invalid
price value when editing a product, an asterisk appears next to the textbox. As Figure 5 shows, a price value
that includes the currency symbol — such as $19.95 — is considered invalid. The CompareValidator’s
currency Type allows for digit separators (such as commas or periods, depending on the culture settings)
and a leading plus or minus sign, but does not permit a currency symbol. This behavior may perplex users as
the editing interface currently renders the unitprice using the currency format.

3 Untitled Page - Microsaft Internet Explorer %]

Fle Edt Vew Favorks: Took Help

Qbak » &) - W @) & Pcewch rrworss £ -5 W B @ @ HE

ickesss | 4] it fficealhost -4 BE3Code Edi DeleteDistalist LY skdlstion. sspr s
i i i Home > Editing and Deleting with the

Working with Data Tutorials Hom > Edking and Delating i the |

Herre

Adding Validation Controls to the
Datalist's Editing Interface

[Pt i & ngupornan Hokkien Fried Mee
]

Basic Reporting
simple Display

Declarative
Parameters

Prica; (419,95

rice: $14.00

Setting Parameter (Ea)
Valies
Filtering Reports Chang Ipoh Coffes
Filter by Drop-Down
List Prica: $19.00 Price: $45.00
. ' (el [edwl : : =
] Dore Wil Local intranet

Figure 5: An Asterisk Appears Next to the Textboxes with Invalid Input

While the validation works as-is, the user has to manually remove the currency symbol when editing a
record, which is not acceptable. Moreover, if there are invalid inputs in the editing interface neither the
Update nor Cancel buttons, when clicked, will invoke a postback. Ideally, the Cancel button would return
the DataList to its pre-editing state regardless of the validity of the user’s inputs. Also, we need to ensure
that the page’s data is valid before updating the product information in the DataList’s UpdateCommand event
handler, as the validation controls’ client-side logic can be bypassed by users whose browsers either don’t
support JavaScript or have its support disabled.

Removing the Currency Symbol from the
EditItemTemplate’s UnitPrice TextBox

When using the CompareValidator’s currency Type, the input being validated must not include any
currency symbols. The presence of such symbols causes the CompareValidator to mark the input as invalid.
However, our editing interface currently includes a currency symbol in the unitprice TextBox, meaning
the user must explicitly remove the currency symbol before saving their changes. To remedy this we have
three options:

1. Configure the EditItemTemplate so that the unitPrice TextBox value is not formatted as a
currency.

2. Allow the user to enter a currency symbol by removing the CompareValidator and replacing it with a
RegularExpressionValidator that checks for a properly formatted currency value. The challenge here

6 of 9

is that the regular expression to validate a currency value is not as straightforward as the
CompareValidator and would require writing code if we wanted to incorporate culture settings.

3. Remove the validation control altogether and rely on custom server-side validation logic in the
GridView’s RowUpdating event handler.

Let’s go with option 1 for this tutorial. Currently the unitpPrice is formatted as a currency value due to the
databinding expression for the TextBox in the EditItemTemplate: <%# Eval ("UnitPrice", "{0:c}") %
>. Change the Eval statement to Eval ("UnitPrice"”, "{0:n2}"), which formats the result as a number
with two digits of precision. This can be done directly through the declarative syntax or by clicking on the
Edit DataBindings link from the unitPrice TextBox in the DataList’s EditItemTemplate.

With this change, the formatted price in the editing interface includes commas as the group separator and a
period as the decimal separator, but leaves off the currency symbol.

Note: When removing the currency format from the editable interface, I find it helpful to put the currency
symbol as text outside the TextBox. This serves as a hint to the user that they do not need to provide the
currency symbol.

Fixing the Cancel Button

By default, the validation Web controls emit JavaScript to perform validation on the client-side. When a
Button, LinkButton, or ImageButton is clicked, the validation controls on the page are checked on the client-
side before the postback occurs. If there is any invalid data, the postback is cancelled. For certain Buttons,
though, the validity of the data might be immaterial; in such a case, having the postback cancelled due to
invalid data is a nuisance.

The Cancel button is such an example. Imagine that a user enters invalid data, such as omitting the product’s
name, and then decides she doesn’t want to save the product after all and hits the Cancel button. Currently,
the Cancel button triggers the validation controls on the page, which report that the product name is missing
and prevent the postback. Our user has to type some text into the ProductName TextBox just to cancel out of
the editing process.

Fortunately, the Button, LinkButton, and ImageButton have a causesvalidation property that can indicate
whether or not clicking the Button should initiate the validation logic (defaults to True). Set the Cancel
Button’s causesvalidation property to False.

Ensuring the Inputs are Valid in the
UpdateCommand Event Handler

Due to the client-side script emitted by the validation controls, if a user enters invalid input the validation
controls cancel any postbacks initiated by Button, LinkButton, or ImageButton controls whose
CausesValidation properties are True (the default). However, if a user is visiting with an antiquated
browser or one whose JavaScript support has been disabled, the client-side validation checks will not
execute.

All of the ASP.NET validation controls repeat their validation logic immediately upon postback and report
the overall validity of the page’s inputs via the page . Isvalid property. However, the page flow is not
interrupted or stopped in any way based on the value of page.Isvalid. As developers, it is our
responsibility to ensure that the page . Isvalid property has a value of True before proceeding with code
that assumes valid input data.

If a user has JavaScript disabled, visits our page, edits a product, enters a price value of “Too expensive”,
and clicks the Update button, the client-side validation will be bypassed and a postback will ensue. On

7 of 9

postback, the ASP.NET page’s uUpdateCommand event handler executes and an exception is raised when
attempting to parse “Too expensive” to a Decimal. Since we have exception handling, such an exception
will be handled gracefully, but we could prevent the invalid data from slipping through in the first place by
only proceeding with the UpdateCommand event handler if Page.Isvalid has a value of True.

Add the following code to the start of the Updatecommand event handler, immediately before the Try block:

if (!Page.IsValid)
return;

With this addition, the product will attempt to be updated only if the submitted data is valid. Most users
won’t be able to postback invalid data due to the validation controls’ client-side scripts, but users whose
browsers don’t support JavaScript or that have JavaScript support disabled, can bypass the client-side
checks and submit invalid data.

Note: The astute reader will recall that when updating data with the GridView, we didn’t need to explicitly
check the page.Isvalid property in our page’s code-behind class. This is because the GridView consults
the Page.Isvalid property for us and only proceeds with the update only if it returns a value of True.

Step 3: Summarizing Data Entry Problems

In addition to the five validation controls, ASP.NET includes the ValidationSummary control, which
displays the ErrorMessages of those validation controls that detected invalid data. This summary data can
be displayed as text on the web page or through a modal, client-side messagebox. Let’s enhance this tutorial
to include a client-side messagebox summarizing any validation problems.

To accomplish this, drag a ValidationSummary control from the Toolbox onto the Designer. The location of
the ValidationSummary control doesn’t really matter, since we’re going to configure it to only display the
summary as a messagebox. After adding the control, set its showSummary property to False and its
showMessageBox property to True. With this addition, any validation errors are summarized in a client-side

messagebox (see Figure 6).

X Untitled Page - Microsaft Internet Explorer |
| Fle Edt Yiew Faveckes Tecds Hep y::
| (poack = £) - W]

Address #l Fikp:f o ala & Ga

t - e missk provide the pecsduct’s name -~
Wﬂ'rklng . - Thes prices st be greater than or squal bo 2eeo and cannot includs the currency symbad | with the
Validation
HOrme 1 1 th'E

Datalist's Editing Interface

Basic Reporting

Simple Display

Disclarativa S . Singaporean Hokkien Fried Mee
Parameers Price: 4-50.00
= Price; $14.00

Zelling Parameter [ar)

Valies

Filtering Reports Chang Ipoh Coffee

Filter by Drop-Cown

Lisk Price: $19.00 Prica; $45.00

£ i L oesl intranet

Figure 6: The Validation Errors are Summarized in a Client-Side Messagebox

Summary

8 of 9

In this tutorial we saw how to reduce the likelihood of exceptions by using validation controls to proactively
ensure that our users’ inputs are valid before attempting to use them in the updating workflow. ASP.NET
provides five validation Web controls that are designed to inspect a particular Web control’s input and
report back on the input’s validity. In this tutorial we used two of those five controls — the
RequiredFieldValidator and the CompareValidator — to ensure that the product’s name was supplied and
that the price had a currency format with a value greater than or equal to zero.

Adding validation controls to the DataList’s editing interface is as simple as dragging them onto the
EditItemTemplate from the Toolbox and setting a handful of properties. By default, the validation controls
automatically emit client-side validation script; they also provide server-side validation on postback, storing
the cumulative result in the Page . Isvalid property. To bypass the client-side validation when a Button,
LinkButton, or ImageButton is clicked, set the button’s causesvalidation property to rFalse. Also, before
performing any tasks with the data submitted on postback, ensure that the Page.Isvalid property returns

True.

All of the DataL ist editing tutorials we’ve examined so far have had very simple editing interfaces — a
TextBox for the product’s name and another for the price. The editing interface, however, can contain a mix
of different Web controls, such as DropDownlLists, Calendars, RadioButtons, CheckBoxes, and so on. In our
next tutorial we’ll look at building an interface that uses a variety of Web controls.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Dennis
Patterson, Ken Pespisa, and Liz Shulok. Interested in reviewing my upcoming articles? If so, drop me a line
at mitchell@4guysfromrolla.com.

9 0of 9

