This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Master/Detail
Filtering Across Two Pages

Introduction

In the preceding tutorial we saw how to display master/detail reports in a single web page using DropDownLists
to display the “master” records and a DataList to display the “details.” Another common pattern used for
master/detail reports is to have the master records on one web page and the details on another. In the earlier
Master/Detail Filtering Across Two Pages tutorial, we examined this pattern using a GridView to display all of
the suppliers in the system. This GridView included a HyperLinkField, which rendered as a link to a second
page, passing along the supplier1D in the querystring. The second page used a GridView to list those products
provided by the selected supplier.

Such two-page master/detail reports can be accomplished using DataList and Repeater controls as well. The
only difference is that neither the DataList nor the Repeater provides support for the HyperLinkField control.
Instead, we must add a HyperLink Web control or an anchor HTML element (<a>) within the control’s
ItemTemplate. The HyperLink’s NavigateUrl property or the anchor’s href attribute can then be customized
using declarative or programmatic approaches.

In this tutorial we’ll explore an example that lists the categories in a bulleted list on one page using a Repeater
control. Each list item will include the category’s name and description, with the category name displayed as a
link to a second page. Clicking on this link will whisk the user to the second page, where a DataList will show
those products that belong to the selected category.

Step 1: Displaying the Categories in a Bulleted List

The first step in creating any master/detail report is to start by displaying the “master” records. Therefore, our
first task is to display the categories in the “master” page. Open the CategoryListMaster.aspx page in the
DatalListRepeaterFiltering folder, add a Repeater control, and, from the smart tag, opt to add a new
ObjectDataSource. Configure the new ObjectDataSource so that it accesses its data from the categoriesBLL
class’s GetCategories method (see Figure 1).

1 of 12

Configure Data Source - ObjectDataSource1

Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperatian. The
method can return a DataSet, DataReader, or strongly-tywped collection,

Exarnple; GetProducts(Int32 cakegoryld), returns a DataSet,

Chonse a method:

|
g GetCategories(), retums CategoriesDataTable W
GebCateqoies!t, refumns CategoriesDiataTable

_G&ttaegmy&ytategmym{lnwz categoryID), returns CategoriesDataT able ;
| GetCakegaries(), returns CategonesDataTable |

s> |] et]

Figure 1: Configure the ObjectDataSource to Use the categoriesBLL Class’s GetCategories Method

Next, define the Repeater’s templates such that it displays each category name and description as an item in a
bulleted list. Let’s not yet worry about having each category link to the details page. The following shows the
declarative markup for the Repeater and ObjectDataSource:

<asp:Repeater ID="Repeaterl" runat="server" DataSourcelID="ObjectDataSourcel"
EnableViewState="False">
<HeaderTemplate>

</HeaderTemplate>

<ItemTemplate>
<%# Eval ("CategoryName") %> - <%$# Eval ("Description") $%></1i>
</ItemTemplate>

<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

With this markup complete, take a moment to view our progress through a browser. As Figure 2 shows, the
Repeater renders as a bulleted list showing each category’s name and description.

20f 12

2 Untitled Page - Microsoft Internet Explorer [:'E' [_E| _Er|ﬁ!|_§|
Fie EdR View Faworites Tooks Help 1

¢ Y - [B R O sewch Frfmotes £ - 5] - & g
Address (@] bt fiocahost 3290/ Code/Dtal istRiepester Fitering) C stegoryListMaster, aspy bt Gn

the Datalist and Repeater >

Master/Detall Across Two Pages

Working w|th Data Tutorials Home > MasterDetall Reports with

Horme

Two-Page Master/Detail

Basic Reporting

Simple Display REpﬂlt

Dedarative « Beverages - Saoft drinks, coffees, teas, beers, and ales

Parameters « Condiments - Swaet and savory sauces, relishes,

Setting Farameter spreads, and seasonings

\alues « Confections - Desserts, candies, and sweet breads
Flltering Reports . “"""_“ Products - Cheesas

* Grains/Cereals - Breads, crackers, pasta, and ceres
EEE;‘-I' by Drop-Down « Meat/Poultry - Prepared meats
i & Produce - Dned fruit and baan curd

Master-Detals- » Seafood - Seaweed and fish

Details

Master/Detail Across =

P L A

] Done % Local intranet

Figure 2: Each Category is Displayed as a Bulleted List Item

Step 2: Turning the Category Name into a Link to
the Details Page

To allow a user to display the “details” information for a given category, we need to add a link to each bulleted
list item that, when clicked, will take the user to the second page (ProductsForCategoryDetails.aspx). This
second page will then display the products for the selected category using a Datalist. In order to determine the
category whose link was clicked, we need to pass the clicked category’s categoryID to the second page
through some mechanism. The simplest, most straightforward way to transfer scalar data from one page to
another is through the querystring, which is the option we’ll use in this tutorial. In particular, the
ProductsForCategoryDetails.aspx page will expect the selected category1p value to be passed through a
querystring field named categoryID. For example, to view the products for the Beverages category, which has
a CategoryID of 1, a user would visit ProductsForCategoryDetails.aspx?CategoryID=1.

To create a hyperlink for each bulleted list item in the Repeater we need to either add a HyperLink Web control
or an HTML anchor element (<a>) to the TtemTemplate. In scenarios where the hyperlink is displayed the
same for each row, either approach will suffice. For Repeaters, I prefer using the anchor element. To use the
anchor element, update the Repeater’s ItemTemplate to:

<1li>
<a href='ProductsForCategoryDetails.aspx?CategoryID=<%# Eval ("CategoryID") %$>'>
<%$# Eval ("CategoryName") %>
 - <%# Eval ("Description") %>
</1li>

Note that the categoryID can be injected directly within the anchor element’s href attribute; however, to do so

3of12

be certain to delimit the href attribute’s value with apostrophes (and note quotation marks) since the Eval
method within the href attribute delimits its string ("categoryID") with quotation marks. Alternatively, a
HyperLink Web control can be used instead:

<1li>
<asp:HyperLink runat="server" Text='<%# Eval ("CategoryName") $%>'
NavigateUrl='<%$# "ProductsForCategoryDetails.aspx?CategoryID=" &
Eval ("CategoryID") %>'>
</asp:HyperLink>
- <%# Eval ("Description") %>
</1li>

Note how the static portion of the URL — ProductsForCategoryDetails.aspx?CategoryID — is appended
to the result of Eval ("categoryID") directly within the databinding syntax using string concatenation.

One benefit of using the HyperLink control is that it can be programmatically accessed from the Repeater’s
ItemDataBound event handler, if needed. For example, you might want to display the category name as text
rather than as a link for categories with no associated products. Such a check could be programmatically
performed in the TtembataBound event handler; for categories with no associated products, the HyperLink’s
NavigateUrl property could be set to a blank string, thereby resulting in that particular category name
rendering as plain text (rather than as a link). Refer back to the Formatting the Datal.ist and Repeater Based
Upon Data tutorial for more information on formatting the DataList and Repeater’s contents based on
programmatic logic through the 1tembataBound event handler.

If you are following along, feel free to use either the anchor element or HyperLink control approach in your
page. Regardless of the approach, when viewing the page through a browser each category name should be
rendered as a link to ProductsForCategoryDetails.aspx, passing in the applicable categoryID value (see
Figure 3).

23 Untitled Page - Microseft Internet Explorer E|f§| l"-_"fllﬁ'li‘i
Ble Edt Yew Foeorites Took Help g
¥ Q- H @ = Fserh Fovorkes &0 | 3= ML (W] - ah il

Agdress @) ittp:locahiost: 3790/ Code /Dt sListR epe sterFitering] CstegoryListMaster. apx o= B

Ll

the DataList and Repeater >
_...MasterDetail Across Two Pages

wDrklng w|th Data Tutﬂnala Home > Master/Detail Reports with

Hioe =
S Reportng Two-Page Master/Detail
Simple Display Repuﬂ
Dieclarative « Boverages - Soft drinks, coffees, teas, beers, and ales
Parameters s Condiments - Sweet and savory sauces, relishes,
Setting Farameter spreads, and seasonings
Walues s Confections - Desserts, candies, and sweet breads
Filtering Reports * Daind Products - Cheeses
+ Grains/Cereals - Breads, crackers, pasta, and cersal
Ellm by Drop-Down s pMest/Poultry - Prepared meats
B s Produce - Dried fruit and bean curd
Masber-Cetaiis- + Seafood - Seaweed and fish
Detalls g

Figure 3: The Category Names Now Link to ProductsForCategoryDetails.aspx

4 of 12

Step 3: Listing the Products that Belong to the
Selected Category

With the categoryListMaster.aspx page complete, we’re ready to turn our attention to implementing the
“details” page, ProductsForCategoryDetails.aspx. Open this page, drag a DataList from the Toolbox onto
the Designer, and set its 1D property to ProductsInCategory. Next, from the Datalist’s smart tag choose to
add a new ObjectDataSource to the page, naming it ProductsInCategoryDataSource. Configure it such that it
calls the ProductsBLL class’s GetProductsByCategoryID (categoryID) method; set the drop-down lists in
the INSERT, UPDATE, and DELETE tabs to (None).

Configure Data Source - ObjectDataSource1 @@ @f')__(]

Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Chonse a method:

!GetF‘mduttszCal'egwIDl‘,InEE‘rZ cakegoryID), returns Pro s I

GetProduckEyProduckID{Ing3Z2 productiD), returns ProducksDataTable
GetProducks), returns ProductsDataTable

GetProductsByC ataqoryID{Int32 categaryiD), raturns ProductsDataTabls
GetProducksBySupplierID{Int 32 suppliesIDd, returns ProducksDakaTable
GetProductsPaged(Int32 startRowindesx, Ink32 maximumRows), returns ProducksDataTable
GetProductsPagedandSorbed(String sortExpression, Int32 startRowlndesx, Int32 maximumPows), reburns P'n:lidl.rr

[cpmos 1 iees I o

Figure 4: Configure the ObjectDataSource to Use the ProductsBLL Class’s GetProductsByCategoryID
(categoryID) Method

Since the GetProductsByCategoryID (categoryID) method accepts an input parameter (category1D), the

Choose Data Source wizard offers us an opportunity to specify the parameter’s source. Set the parameter source
to QueryString using the QueryStringField categoryIb.

50f12

Configure Data Source - ObjectDataSource1

Define Parameters

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, choose a source for the parameter's value,

Parameters: Parameter source:
Blame Yalue ey Shring) w
cateqoryIlD Request.QueryStrino(*Cate... QusryStringReld:
iCataqorle |

Deef aulkty sle:

Shove advanced properkies

Method signature:
GekProducksByCategoryID(Int 32 categoryID], returns ProducksDataTable

o>] (et]

Figure 5: Use the Querystring Field categoryID as the Parameter’s Source

As we’ve seen in previous tutorials, after completing the Choose Data Source wizard, Visual Studio
automatically creates an ItemTemplate for the DataList that lists each data field name and value. Replace this
template with one that lists only the product’s name, supplier, and price. Also, set the DataList’s
RepeatColumns property to 2. After these changes, your DataList and ObjectDataSource’s declarative markup
should look similar to the following:

<asp:DatalList ID="ProductsInCategory" runat="server" DataKeyField="ProductID"
RepeatColumns="2" DataSourceID="ProductsInCategoryDataSource"
EnableViewState="False">
<ItemTemplate>
<h5><%# Eval ("ProductName") $%></h5>
<p>
Supplied by <%# Eval ("SupplierName") $%$>

<%# Eval ("UnitPrice", "{0:C}") %>
</p>
</ItemTemplate>
</asp:DatalList>

<asp:0bjectDataSource ID="ProductsInCategoryDataSource"
OldvaluesParameterFormatString="original {0}" runat="server"
SelectMethod="GetProductsByCategoryID" TypeName="ProductsBLL">
<SelectParameters>

<asp:QueryStringParameter Name="categoryID" QueryStringField="CategoryID"
Type="Int32" />

</SelectParameters>

</asp:0bjectDataSource>

To view this page in action, start from the categoryListMaster.aspx page; next, click on a link in the
categories bulleted list. Doing so will take you to ProductsForCategoryDetails.aspx, passing along the

60f 12

categoryID through the querystring. The ProductsInCategorybDataSource ObjectDataSource in
ProductsForCategoryDetails.aspx Will then get just those products for the specified category and display
them in the Datal ist, which renders two products per row. Figure 6 shows a screenshot of
ProductsForCategoryDetails.aspx wWhen viewing the Beverages.

BX]

A Untitled Page - Micrasaft Internet Explorer

| Bl Edk Wew Favoites Took Hep

i Qk- O -B @G

#~ Search

Favoribes

¥

D i B

AQOrNES éﬂIw:p:,lfum:MfMMMxﬁmmﬁmwwm.m?cMm-L

i=]

'v.i.',u

Filtzring Reports

Filter by Drop-Down
LisE

Master-Details-
Details.

Master/Detal foross
Two Pages

Detals of Selected
Row

Customized

Working with Data Tutorials

Products Belonging to the Selected

Suppliad by Exatic Liguids
F19.00

Guarana Fantastica

Suppliad by Pavlovs, Led
$i%.00

Rhanbréu Klosterbier

Basic Reporting c ategnry
Simple Cisplay
Dedarative Chai Laughing Lumberjack Lager
Parameters
Supplad by Exatic Liguidz Supplind by Begloot Brawenas
Settng Paramater F1oa $14.00
alues Ghang Outback Lager

Supplied by Refrezcss Amasicanas LTDA Supplind by Plurser Labasgmitselgrofimirkes AG

§4.50
Sasquatch Ale

Suppliad by Bigfast Braveriss
§14.00

Steeleye Stout

Supplied by Bigfact Braveariss

$7.75

Lakkalikoor
Supplind by Kurkld Oy
f1a0n

Acme Tea

Swiplied by Exctic Liguids

-~

Sy Local intranct

Figure 6: The Beverages are Displayed, Two per Row

Step 4: Displaying Category Information on
ProductsForCategoryDetails.aspx

When a user clicks on a category in CategoryListMaster.aspx, they are taken to
ProductsForCategoryDetails.aspx and shown the products that belong to the selected category. However,
in ProductsForCategoryDetails.aspx there are no visual cues as to what category was selected. A user that
meant to click Beverages, but accidentally clicked Condiments, has no way of realizing their mistake once they
reach ProductsForCategoryDetails.aspx. To alleviate this potential problem, we can display information
about the selected category — its name and description — at the top of the
ProductsForCategoryDetails.aspx page.

To accomplish this, add a FormView above the Repeater control in ProductsForCategoryDetails.aspx.

Next, add a new ObjectDataSource to the page from the FormView’s smart tag named categorybDataSource
and configure it to use the categoriesBLL class’s GetCategoryByCategoryID (categoryID) method.

7 of 12

Configure Data Source - ObjectDataSource?

j Define Data Methods

| SELECT | UPDATE || INSERT | DELETE |

Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperatian, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 cakegoryld), returns a DataSet,

Chaoose a method:
' GetCategoryByCategoryID{Int32 categoryID), returns C: |

GebCategories), retums CategoriesDataTable

| GetCakegoryByCatenoryID(Int32 cateqoryID), returns CategoriesDataTable :

(oo [see> JI o

Figure 7: Access Information about the Category through the categoriesBLL Class’s
GetCategoryByCategoryID (categoryID) Method

As with the ProductsInCategorybataSource ObjectDataSource added in Step 3, the categorybataSource’s
Configure Data Source wizard prompts us for a source for the GetCategoryByCategoryID (categoryID)
method’s input parameter. Use the exact same settings as before, setting the parameter source to QueryString
and the QueryStringField value to category1D (refer back to Figure 5).

After completing the wizard, Visual Studio automatically creates an TtemTemplate, EditItemTemplate, and
InsertItemTemplate for the FormView. Since we’re providing a read-only interface, feel free to remove the
EditItemTemplate and InsertItemTemplate. Also, feel free to customize the FormView’s ItemTemplate.
After removing the superfluous templates and customizing the ItemTemplate, your FormView and
ObjectDataSource’s declarative markup should look similar to the following:

<asp:FormView ID="FormViewl" runat="server" DataKeyNames="CategoryID"
DataSourceID="CategoryDataSource" EnableViewState="False" Width="100%">
<ItemTemplate>
<h3>
<asp:Label ID="CategoryNameLabel" runat="server"
Text='<%# Bind("CategoryName") %>' />
</h3>
<p>
<asp:Label ID="DescriptionLabel" runat="server"
Text='<%# Bind("Description") %>' />
</p>
</ItemTemplate>
</asp:FormView>

<asp:0bjectDataSource ID="CategoryDataSource" runat="server"

OldvValuesParameterFormatString="original {O0}"
SelectMethod="GetCategoryByCategoryID" TypeName="CategoriesBLL">

8of12

<SelectParameters>
<asp:QueryStringParameter Name="categoryID" Type="Int32"
QueryStringField="CategoryID" />
</SelectParameters>
</asp:0bjectDataSource>

Figure 8 shows a screen shot when viewing this page through a browser.

Note: In addition to the FormView, I’ve also added a HyperLink control above the FormView that will take the
user back to the list of categories (CategoryListMaster.aspx). Feel free to place this link elsewhere or to omit
it altogether.

X Untitled Page - Micrasaft Internet Explorer

Bls Edt Vew Favorkes Tools Help |
Otk - O [@t Psewch ot @ -5 @M- OB E
: dgess) http: [flocathost - 32790/C ode Dt alistR epsakerF ik ering Product sFonC akegoryDetals aspe P CategoryiD=2 ~ | By o

Y

Working with Data Tutorials

Products Belonging to the Selected

Categnr\f
Simple Cisplay
Crclarative <= Beturn to List of Categories..,
Parameters
‘Zetting Parameter
Values Condiments

Filtering Reports

Fifter by Crop-Cown
List

Sweet and savory sauces, relishes, spreads, and seasonbngs

Master-Datails-
Cietails Anisead Syrup Gula Malacca

mEEﬂ_rmﬁm Across Sugplied by Exctic Liquids Supplied by Leka Trading
Two Pages $10.00 §19.45

Details of Salected Chef Anton's Cajun Seasoning Sirop d'érabla

Supplied by Hew Oeleans Cajun Delighns Suppleed by Fordes S Erables
fR662 §28.50
. Chef Anton's Gumbio Mix Louisiana Fiery Hot Pepper Sauce
Format Colors
- = Sugplied by Haw Ovlesns Cajun Delighes Supplied by Mew Orleans ©ajum Dalights
4 CHekAr Canfanr in a t91 A% 31 % o
£ Done & Local rrranet

Figure 8: Category Information is Now Displayed at the Top of the Page

Step 5: Displaying a Message if No Products Belong
to the Selected Category

The categoryListMaster.aspx page lists all categories in the system, regardless of whether there are any
associated products. If a user clicks on a category with no associated products, the Datalist in
ProductsForCategoryDetails.aspx Will not be rendered, as its data source will not have any items. As we’ve
seen in past tutorials, the GridView provides an EmptyDataText property that can be used to specify a text
message to display if there are no records in its data source. Unfortunately, neither the DataList nor Repeater
has such a property.

90of 12

In order to display a message informing the user that there are no matching products for the selected category,
we need to add a Label control to the page whose Text property is assigned the message to display in the event
that there are no matching products. We then need to programmatically set its visible property based on
whether or not the DataList contains any items.

To accomplish this, start by adding a Label beneath the DataList. Set its 1D property to NoProductsMessage
and its Text property to “There are no products for the selected category...” Next, we need to programmatically
set this Label’s visible property based on whether or not any data was bound to the ProductsIncategory
DataList. This assignment must be made after the data has been bound to the DataList. For the GridView,
DetailsView, and FormView, we could create an event handler for the control’s DataBound event, which fires
after databinding has completed. However, neither the DataList nor the Repeater has a bataBound event
available.

For this particular example we can assign the Label’s visible property in the Page Load event handler, since
the data will have been assigned to the DataList prior to the page’s Load event. However, this approach would
not work in the general case, as the data from the ObjectDataSource might be bound to the DataList later in the
page’s lifecycle. For example, if the displayed data is based upon the value in another control, such as it is when
displaying a master/detail report using a DropDownList to hold the “master” records, the data may not rebound
to the data Web control until the prerender stage in the page’s life cycle.

One solution which will work for all cases is to assign the visible property to False in the DataList’s
ItemDataBound (Or ItemCreated) event handler when binding an item type of Item or AlternatingItem. In
such a case we know that there is at least one data item in the data source and therefore can hide the
NoProductsMessage Label. In addition to this event handler, we also need an event handler for the DataList’s
DataBinding event, where we initialize the Label’s visible property to True. Since the bataBinding event
fires before the 1tembataBound events, the Label’s visible property will initially be set to True; if there are
any data items, however, it will be set to False. The following code implements this logic:

protected void ProductsInCategory DataBinding(object sender, EventArgs e)
{

// Show the Label

NoProductsMessage.Visible = true;
}

protected void ProductsInCategory ItemDataBound(object sender, DatalListItemEventArgs e)
{
// If we have a data item, hide the Label
if (e.Item.ItemType == ListItemType.Item ||
e.Item.ItemType == ListItemType.AlternatingItem)
NoProductsMessage.Visible = false;

All of the categories in the Northwind database are associated with one or more products. To test this feature,
I’ve manually adjusted the Northwind database for this tutorial, reassigning all products associated with the
Produce category (CategoryID = 7) to the Seafood category (CategoryID = 8). This can be accomplished from
the Server Explorer by choosing New Query and using the following upDATE statement:

UPDATE Products SET
CategoryID = 8
WHERE CategoryID = 7

After updating the database accordingly, return to the CategoryListMaster.aspx page and click on the

Produce link. Since there are no longer any products belonging to the Produce category, you should see the
“There are no products for the selected category...” message, as shown in Figure 9.

10 of 12

2} Untitled Page - Microsoft Internet Explorer

. Ele Edt Miew Favorites Tooks Help
Bak ~ £3 - [@) #o O seadh Favortes £ | (3~ 2p W] ~ [& b [0 ER
© hddress | hibpeflocalhost: 3290/ C odefDat alistRepeaterFiltering|ProductsForCategoryDetals. aspriCateqorylDm? |+ ﬂﬁﬁ

Products Belonging to the
Selected Category

& pardng
Simple Display

Declaratiye
Parameters

Setting Parameter
Walues

<< Paturn bo List of Categories. ..

Produce

Filtering Reports

Orad fruit and bean curd
Filter by Drop-Down
List

Master-Details-
Details [Thera are no products for the selected :ategarv...]

L R e A L]

&] Done 84 Local intranet

Figure 9: A Message is Displayed if there are No Products Belonging to the Selected Category

Summary

While master/detail reports can display both the master and detail records on a single page, in many websites
they are separated out across two web pages. In this tutorial we looked at how to implement such a master/detail
report by having the categories listed in a bulleted list using a Repeater in the “master” web page and the
associated products listed in the “details” page. Each list item in the master web page contained a link to the
details page that passed along the row’s categoryID value.

In the details page retrieving those products for the specified supplier was accomplished through the
ProductsBLL class’s GetProductsByCategoryID (categoryID) method. The category 1D parameter value
was specified declaratively using the categoryID querystring value as the parameter source. We also looked at
how to display category details in the details page using a FormView and how to display a message if there
were no products belonging to the selected category.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

110f12

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Zack Jones
and Liz Shulok. Interested in reviewing my upcoming articles? If so, drop me a line at
mitchell@4guysfromrolla.com.

12 of 12

