This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Paging Report
Data in a DataList or Repeater Control

Introduction

Paging and sorting are two very common features when displaying data in an online application. For example,
when searching for ASP.NET books at an online bookstore, there may be hundreds of such books, but the report
listing the search results lists only ten matches per page. Moreover, the results can be sorted by title, price, page
count, author name, and so on. As we discussed in the Paging and Sorting Report Data tutorial, the GridView,
DetailsView, and FormView controls all provide built-in paging support that can be enabled at the tick of a
checkbox. The GridView also includes sorting support.

Unfortunately, neither the DataList nor Repeater offer automatic paging or sorting support. In this tutorial we’ll
examine how to add paging support to the DataList or Repeater. We must manually create the paging interface,
display the appropriate page of records, and remember the page being visited across postbacks. While this does
take more time and code than with the GridView, DetailsView, or FormView, the DataList and Repeater allow for
much more flexible paging and data display interfaces.

Note: This tutorial focuses exclusively on paging. In the next tutorial we’ll turn our attention to adding sorting
capabilities.

Step 1: Adding the Paging and Sorting Tutorial Web
Pages

Before we start this tutorial, let’s first take a moment to add the ASP.NET pages we’ll need for this tutorial and the
next one. Start by creating a new folder in the project named PagingSortingDatalListRepeater. Next, add the
following five ASP.NET pages to this folder, having all of them configured to use the master page site.master:

Default.aspx

Paging.aspx

Sorting.aspx
SortingWithDefaultPaging.aspx

SortingWithCustomPaging.aspx

1 of 16

2R

: _? -.-.,En \
H- L App_Code
E_rl- |3 App_Drata
& =& App_Themes
E- [CH BasicReporting
E- CJ CustomButtons
H- [CustemFormatting
EI- [DatalistRepeaterBasics
EI- [DratalistRepeaterFitering
H- [EditDelstebatalist
H- [EditinsertDelete
#- [Filkering
H- [PagingandSorting
EI- [£5 PagingSaortingDatalistRepeater
' - [Z] Default. aspe
- [E] Paging. aspx
- [E] Sorting. aspe
EI |Z] SortingWwithCuskomPaging. asp
- |Z] SortingWithDefaultPaging, aspx
& [UserConkrols
= ,Z] Default, aspx
&[] site.master
o Aj styles.css
- |Ep Web.Corfig
~] web.sitemap

|l Saluti. . fﬁ.Pr.np... ;55&"-.-' Q%Class

Figure 1: Create a PagingSortingDataListRepeater Folder and Add the Tutorial ASP.NET Pages

Next, open the Default.aspx page and drag the sectionLevelTutoriallListing.ascx User Control from the
UserControls folder onto the Design surface. This User Control, which we created in the Master Pages and Site
Navigation tutorial, enumerates the site map and displays those tutorials in the current section in a bulleted list.

20f 16

¥ Code - Microsofl ¥isual Studio

Bz Edt Yew ‘Webgte Buld Debwg Fomst Leyost Jook Window Community Help Addns
- TRt Bl T - JDE TR W0 T R S b o . pF
B L U LA = b—_|

Working with Data Tutorials

Pmmau-uﬂmu¢MMm}
Paging and Sorting
with the Datalist
and Repeater

3 Dxtabound
Eeababound -
Catgboung
Cataband
Ceataboung

- & & & @

- Databound

Cratabound

- Batabound
- Darkabound
» Bratabownd

£

i e R s

@ = Sorting.

E - T2 sortingwRhCuston P . s

F- 0 Sortingiwithlef slPagng, spx

Sy

P cmn st

)

| G Dwsign | = Souroe

| [T p——|
i chody> cdiviwrappers | | <famdforml >

Sgsokati.. “HProc.

M cera.

g Clarss...

o Ervor Ut |) output 23] Find ossadts
Faxdy

Figure 2: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

In order to have the bulleted list display the paging and sorting tutorials we’ll be creating, we need to add them to
the site map. Open the Web. sitemap file and add the following markup after the “Editing and Deleting with the
DataList” site map node markup:

<siteMapNode
url="~/PagingSortingDatalistRepeater/Default.aspx"
title="Paging and Sorting with the DatalList and Repeater"
description="Paging and Sorting the Data in the Datalist and Repeater Controls">
<siteMapNode
url="~/PagingSortingDatalistRepeater/Paging.aspx"
title="Paging"
description="Learn how to page through the data shown
in the Datalist and Repeater controls." />
<siteMapNode
url="~/PagingSortingDatalistRepeater/Sorting.aspx"
title="Sorting"
description="Sort the data displayed in a Datalist or
Repeater control." />
<siteMapNode
url="~/PagingSortingDatalListRepeater/SortingWithDefaultPaging.aspx"
title="Sorting with Default Paging"
description="Create a Datalist or Repeater control that is paged using
default paging and can be sorted."™ />
<siteMapNode
url="~/PagingSortingDatalistRepeater/SortingWithCustomPaging.aspx"
title="Sorting with Custom Paging"
description="Learn how to sort the data displayed in a Datalist or
Repeater control that uses custom paging." />
</siteMapNode>

3of16

28 Home - Microsoft IEHE] [rl[ﬁlﬁ—d

File Edit Wiew Favorices I

. Address '@ htkp: fflocalhost: 2294 1"t"| . (=0

o

Paging

Sarting

Sorting with Default
Faging

Sorting with Custom
Paging

\.j Local inkranet

Figure 3: Update the Site Map to Include the New ASP.NET Pages

A Review of Paging

In previous tutorials we saw how to page through the data in the GridView, DetailsView, and FormView controls.
These three controls offer a simple form of paging called default paging that can be implemented by simply
checking the “Enable Paging” option in the control’s smart tag. With default paging, each time a page of data is
requested — either on the first page visit or when the user navigates to a different page of data — the GridView,
DetailsView, or FormView control re-requests all of the data from the ObjectDataSource. It then snips out the
particular set of records to display given the requested page index and the number of records to display per page.
We discussed default paging in detail in the Paging and Sorting Report Data tutorial.

Since default paging re-requests all records for each page, it is not practical when paging through sufficiently large
amounts of data. For example, imagine paging through 50,000 records with a page size of 10. Each time the user
moves to a new page, all 50,000 records must be retrieved from the database, even though only ten of them are
displayed.

Custom paging solves the performance concerns of default paging by grabbing only the precise subset of records to
display on the requested page. When implementing custom paging, we must write the SQL query that will
efficiently return just the correct set of records. We saw how to create such a query using SQL Server 2005’s new
ROW_NUMBER () keyword back in the Efficiently Paging Through Large Amounts of Data tutorial.

To implement default paging in the DataList or Repeater controls, we can use the PagedDataSource class as a
wrapper around the ProductsDataTable whose contents are being paged. The PagedbDatasource class has a
DataSource property that can be assigned to any enumerable object and PageSize and CurrentPagelIndex
properties that indicate how many records to show per page and the current page index. Once these properties have
been set, the PagedDataSource can be used as the data source of any data Web control. The PagedDataSource,
when enumerated, will only return the appropriate subset of records of its inner batasource based on the
PageSize and CurrentPageIndex properties. Figure 4 depicts the functionality of the PagedDatasource class.

4 of 16

A data Web control is bound to the
PagedDataSource and enumerates
through the PagedDataSource’s data...

Fi B
PagedDataSource
PageSize = 10
CurrentPagelndex =0 ProductsDataTable
L

The PagedDataSource returns only the
inner DataSource’s records that
correspond to the specified Page Size
and CurrentPagelndex (in this case, the
ProductDataTable’s first 10 records)...

Figure 4: The pagedDatasource Wraps an Enumerable Object with a Pageable Interface

The PagedDataSource object can be created and configured directly from the Business Logic Layer and bound to
a DataList or Repeater through an ObjectDataSource, or can be created and configured directly in the ASP.NET
page’s code-behind class. If the latter approach is used, we must forgo using the ObjectDataSource and instead
bind the paged data to the DataList or Repeater programmatically.

The pagedDataSource object also has properties to support custom paging. However, we can bypass using a
PagedDataSource for custom paging because we already have BLL methods in the ProductsBLL class designed
for custom paging that return the precise records to display.

In this tutorial we’ll look at implementing default paging in a DataList by adding a new method to the
ProductsBLL class that returns an appropriately configured Pagedbatasource object. In the next tutorial, we’ll see
how to use custom paging.

Step 2: Adding a Default Paging Method in the
Business Logic Layer

The ProductsBLL class currently has a method for returning all product information — GetProducts () —and one
for returning a particular subset of products at a starting index — GetProductsPaged (startRowIndex,
maximumRows) . With default paging, the GridView, DetailsView, and FormView controls all use the GetProducts
() method to retrieve all products, but then use a PagedDataSource internally to display only the correct subset of
records. To replicate this functionality with the DataList and Repeater controls, we can create a new method in the
BLL that mimics this behavior.

Add a method to the ProductsBLL class named GetProductsAsbPagedDataSource that takes in two integer input

5of16

parameters:

e pageIndex — the index of the page to display, indexed at zero, and
e pagesize — the number of records to display per page.

GetProductsAsPagedDataSource starts by retrieving all of the records from Getproducts (). It then creates a
pagedDataSource object, setting its CurrentPageIndex and PageSize properties to the values of the passed-in
pageIndex and pageSize parameters. The method concludes by returning this configured PagedbataSource:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, False)>
Public Function GetProductsAsPagedDataSource (ByVal pageIndex As Integer,
ByVal pageSize As Integer) As PagedDataSource
' Get ALL of the products
Dim products As Northwind.ProductsDataTable = GetProducts ()

Limit the results through a PagedDataSource
Dim pagedData As New PagedDataSource ()
pagedData.DataSource = products.Rows
pagedData.AllowPaging = True
pagedData.CurrentPageIndex = pagelndex
pagedData.PageSize = pageSize

Return pagedData
End Function

Step 3: Displaying Product Information in a DataList
Using Default Paging

With the GetProductsAsPagedDataSource method added to the ProductsBLL class, we can now create a
DataList or Repeater that provides default paging. Start by opening the Paging.aspx page in the
PagingSortingDataListRepeater folder and drag a Datalist from the Toolbox onto the Designer, setting the
DataList’s 1D property to ProductsDefaultPaging. From the DataList’s smart tag, create a new
ObjectDataSource named ProductsDefaultPagingDataSource and configure it so that it retrieves data using the
GetProductsAsPagedDataSource method.

60f 16

Configure Data Source - ProductsDefaultPagingDataSource E|@| Eab__(]

E Define Data Methods

| SELECT |UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that rekburns data ko associate with Ehe SELECT aperation. The
method can return a DataSet, DataReader, or strongly-twped colleckion,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Choose a method:

GetProducksAsPagedDataSource(Ink 32 pagelndex, Int32

GetProductEyProduckID{IngS 2 produckID), returns ProductsDataTahle
GaetProductse), returns ProductsDataTable

GetProductsasPagadDataSourca(Int32 pagalndss, Int32 pagesizel, retums PagedDataSource

GetProducksByC ategoryID{INE32 cakegorvID), rebwns ProducksDataTsble

GaetProductsBySupplierIDiInt 32 supplier1D), returns ProducksDakaTable

GetProductsPaged{Int32 startRowindex, Int32 maximumRows), returns ProductsDataTable
GetProductsPagedAndSorbed(Stri ression, Ink32 startRowlndey, INk32 maximumPiows), retums Producl

[< Previous jl_gaxt =] Finist _

Figure 5: Create an ObjectDataSource and Configure it to Use the GetProductsAsPagedDataSource ()
Method

Set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”.

Configure Data Source - ProductsDefaultPagingDataSource E|@ E]FZ|

Define Data Methods

| SELECT | UPDATE | INSERT | DELETE

Chanse & method of the business objeck ko associate wikh the DELETE operation, The methad shauld
accept a parameter for each primary key for the data object or a single parameter which is the data
object ko delete,

Examples: DeleteProduct(Product p), or DeleteProduct{Int32 productID)

Chonse a method:
% (Mone) W |

Deletefroduct{Int32 productID), returns Boolean

T T

7 of 16

Figure 6: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE tabs to “(None)”

Since the GetProductsAsPagedDataSource method expects two input parameters, the wizard prompts us for the
source of these parameter values.

The page index and page size values must be remembered across postbacks. They can be stored in view state,
persisted to the querystring, stored in session variables, or remembered using some other technique. For this
tutorial we’ll use the querystring, which has the advantage of allowing a particular page of data to be bookmarked.

In particular, use the querystring fields “pagelndex” and “pageSize” for the pageIndex and pageSize parameters,
respectively (see Figure 7). Take a moment to set the default values for these parameters, as the querystring values
won’t be present when a user first visits this page. For pageIndex, set the default value to 0 (which will show the
first page of data) and pagesize’s default value to 4.

Configure Data Source - ProductsDefaultPagingDataSource @@ [ZJ
j Define Parameters
""" =’

The wizard has detected one or more parameters in your SELECT method, For each parameter in the SELECT
rethod, choose a source for the parameter's value,

Parameters: Parameter source:
hlame Walle :hery'f-tﬁ'u w
panelndex Fequest, QueryString“pagelnds: 2 ’
panesize Requesk, Querystringl pagesize” gJ:ar_-y_Strquﬁeld_"_"_"_
|pagﬂndm< |
Dusfsuilb alie:
| . o |
Show advanced properties
Method signature:

. GetProducksfsPagedDataSource(Int32 pagelndex, Int32 pageSize), retums PagedDataSource

o> | (] [cammt]

Figure 7: Use the QueryString as the Source for the pageIndex and pageSize Parameters

After configuring the ObjectDataSource, Visual Studio automatically creates an ItemTemplate for the DataList.
Customize the ItemTemplate so that only the product’s name, category, and supplier are shown. Also set the
DataList’s RepeatColumns property to 2, its Width to “100%”, and its ITtemStyle’s width to “50%"”. These width
settings will provide equal spacing for the two columns.

After making these changes, the DataList and ObjectDataSource’s markup should look similar to the following:

<asp:DatalList ID="ProductsDefaultPaging" runat="server" Width="100%"
DataKeyField="ProductID" DataSourceID="ProductsDefaultPagingDataSource"
RepeatColumns="2" EnableViewState="False">
<ItemTemplate>
<h4><asp:Label ID="ProductNamelLabel" runat="server"
Text='<%# Eval ("ProductName") $%$>'></asp:Label></h4>
Category:

8o0f 16

<asp:Label ID="CategoryNameLabel" runat="server"
Text='<%# Eval ("CategoryName") $%>'></asp:Label>

Supplier:
<asp:Label ID="SupplierNameLabel" runat="server"
Text='<%# Eval ("SupplierName") $%>'></asp:Label>

</ItemTemplate>
<ItemStyle Width="50%" />
</asp:DataList>

<asp:0ObjectDataSource ID="ProductsDefaultPagingDataSource" runat="server"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"
SelectMethod="GetProductsAsPagedDataSource">
<SelectParameters>
<asp:QueryStringParameter DefaultValue="0" Name="pageIndex"
QueryStringField="pageIndex" Type="Int32" />
<asp:QueryStringParameter DefaultValue="4" Name="pageSize"
QueryStringField="pageSize" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

Note: Since we are not performing any update or delete functionality in this tutorial, you may disable the
DataList’s view state to reduce the rendered page size.

When initially visiting this page through a browser, neither the pageIndex nor pageSize querystring parameters
are provided. Hence, the default values of 0 and 4 are used. As Figure 8 shows, this results in a DataList that
displays the first four products.

D Untitled Page - Microsofy Internet Explorer ~~— Je|B L8 El

| Bl Edt Vew Fgvoites Took Help -
¥ D - W@ Psead rFookes & | e i W - & W H

| Aiichess | 8] bt flocalost 2284 |Code /P agingSortingliat alistiepeater faging. aspec v| B} oo

:peater > Paging

Wﬂrking with Data Tutorials Home > Pading and Sortng with the Datalst

Paging Data in a Datalist

Default Paging

Chai Tea Aniseed Syrup
Category: Beverages Category: Condiments
Supplier: Exobc Liguids Supplier: Exotic Liguids
Filtering Reparts
Filter by Drop-Down ch ‘s Caj
2 : ef Anton's Cajun

List Chang ; u

: Seasoning

Master-Details- .

Detalls A OnY; SarELgE Category: Condiments

— Supplier: Exobe Liguids ; :
Master/Detall Acoss Supplier: New Orleans Cajun Delights

Two Pages

Detaliz of Selected
Row

Fa e s Pl o

] Done 8 Ll intranet

Figure 8: The First Four Products are Listed

90f 16

Without a paging interface, there’s currently no straightforward means for a user to navigate to the second page of
data. We’ll create a paging interface in step 4. For now, though, paging can only be accomplished by directly
specifying the paging criteria in the querystring. For example, to view the second page, change the URL in the
browser’s Address bar from Paging.aspx to Paging.aspx?pageIndex=2 and hit Enter. This causes the second
page of data to be displayed (see Figure 9).

T Untitled Page - Microzofl Internet Explorer ['5_(]
Bl Edt Wew Favorites Toos Help i

Qexk - &) - [F [@ 0| P Seerh TrFavorkes & Si- o] v | G . 0 HE

AfarEss E.ﬂI‘ﬂp:.lﬂnl:,al'-oﬁt:ﬂgimmwrwudmkmdﬂﬂm.aw?mlrdu-.’.? w ﬂﬁu

Wo rking with Data Tutorials Heme > Paging and Serting with the DataList

and Repeater > Paging

Home

Paging Data in a Datalist

Basic R epor Eir a

SeTE iy Default Paging

Dedarative o y ueso Cabrales

EBarametars Mishi Kobe MNiku Q

i Cate : Dairy P

Setung Parameter Catagory: Meat/Poultry i r?ﬂum .

Values ki Tl T e Supplier: Cooperativa de Quesos 'Las
Filtering Reparts £

Filter by Drop=Down

List

Queso Manchego La

Master-Crstails- Tkura Pastora

Detaliz

‘Master/Detal Acass Category: Seafood Category: Dairy Products

Two Pages Supplier: Tokyo Traders Supplier: Cooperativa de Quesos 'Las

Details of Selected Eahets

Row

Fasan sk Mals o i

i % Local indranst

Figure 9: The Second Page of Data is Displayed

Step 4: Creating the Paging Interface

There are a variety of different paging interfaces that can be implemented. The GridView, DetailsView, and
FormView controls provide four different interfaces to choose among:

¢ Next, Previous — users can move one page at a time, to either the next or previous one.

e Next, Previous, First, Last — in addition to Next and Previous buttons, this interface includes First and Last
buttons for moving to the very first or very last page.

e Numeric — lists the page numbers in the paging interface, allowing a user to quickly jump to a particular
page.

e Numeric, First, Last — in addition to the numeric page numbers, includes buttons for moving to the very
first or very last page.

For the DataList and Repeater, we are responsible for deciding upon a paging interface and implementing it. This
involves creating the needed Web controls in the page and displaying the requested page when a particular paging
interface button is clicked. Additionally, certain paging interface controls may need to be disabled. For example,
when viewing the first page of data using the Next, Previous, First, Last interface, both the First and Previous
buttons would be disabled.

10 of 16

For this tutorial, let’s use the Next, Previous, First, Last interface. Add four Button Web controls to the page and
set their IDs to FirstPage, PrevPage, NextPage, and LastPage. Set the Text properties to “<< First”, “< Prev”,
“Next >, and “Last >>".

<asp:Button runat="server" ID="FirstPage" Text="<< First" />
<asp:Button runat="server" ID="PrevPage" Text="< Prev" />
<asp:Button runat="server" ID="NextPage" Text="Next >" />
<asp:Button runat="server" ID="LastPage" Text="Last >>" />

Next, create a Click event handler for each of these Buttons. In a moment we’ll add the code necessary to display
the requested page.

Remembering the Total Number of Records Being
Paged Through

Regardless of the paging interface selected, we need to compute and remember the total number of records being
paged through. The total row count (in conjunction with the page size) determines how many total pages of data

are being paged through, which determines what paging interface controls are added or are enabled. In the Next,

Previous, First, Last interface that we are building, the page count is used in two ways:

e To determine whether we are viewing the last page, in which case the Next and Last buttons are disabled.
e If'the user clicks the Last button we need to whisk them to the last page, whose index is one less than the
page count.

The page count is calculated as the ceiling of the total row count divided by the page size. For example, if we are
paging through 79 records with four records per page, then the page count is 20 (the ceiling of 79 / 4). If we are
using the Numeric paging interface, this information informs us as to how many numeric page buttons to display; if
our paging interface includes Next or Last buttons, the page count is used to determine when to disable the Next or
Last buttons.

If the paging interface includes a Last button, it is imperative that the total number of records being paged through
be remembered across postbacks so that when the Last button is clicked we can determine the last page index. To
facilitate this, create a TotalRowCount property in the ASP.NET page’s code-behind class that persists its value to
view state:

Private Property TotalRowCount () As Integer

Get
Dim o As Object = ViewState ("TotalRowCount")
If (o Is Nothing) Then
Return -1
Else
Return Convert.ToInt32 (o)
End If
End Get
set (Value as Integer)
ViewState ("TotalRowCount") = wvalue
End Set

End Property

In addition to TotalRowCount, take a minute to create read-only page-level properties for easily accessing the page
index, page size, and page count:

Private ReadOnly Property PagelIndex () As Integer
Get
If (Not String.IsNullOrEmpty (Request.QueryString("pageIndex"))) Then

110f 16

Return Convert.ToInt32 (Request.QueryString ("pagelIndex"))
Else
Return O
End If
End Get
End Property

Private ReadOnly Property PageSize () As Integer

Get
If (Not String.IsNullOrEmpty (Request.QueryString("pageSize"))) Then
Return Convert.ToInt32 (Request.QueryString ("pageSize"))
Else
Return 4
End If
End Get

End Property

Private ReadOnly Property PageCount () As Integer

Get
If TotalRowCount <= 0 OrElse PageSize <= 0 Then
Return 1
Else
Return ((TotalRowCount + PageSize) - 1) / PageSize
End If
End Get

End Property

Determining the Total Number of Records Being
Paged Through

The PagedDataSource object returned from the ObjectDataSource’s select () method has within it all of the

product records, even though only a subset of them are displayed in the DataList. The PagedDataSource’s Count
property returns only the number of items that will be displayed in the DataList; the batasourceCount property

returns the total number of items within the PagedbataSource. Therefore, we need to assign the ASP.NET page’s

TotalRowCount property the value of the PagedDataSource’s DataSourceCount property.

To accomplish this, create an event handler for the ObjectDataSource’s selected event. In the selected event
handler we have access to the return value of the ObjectDataSource’s Select () method — in this case, the
PagedDataSource.

Protected Sub ProductsDefaultPagingDataSource Selected(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.ObjectDataSourceStatusEventArgs)
Handles ProductsDefaultPagingDataSource.Selected
' Reference the PagedDataSource bound to the Datalist
Dim pagedData As PagedDataSource = CType (e.ReturnValue, PagedDataSource)

Remember the total number of records being paged through across postbacks
TotalRowCount = pagedData.DataSourceCount
End Sub

Displaying the Requested Page of Data

When the user clicks one of the buttons in the paging interface, we need to display the requested page of data.
Since the paging parameters are specified via the querystring, to show the requested page of data use
Response.Redirect (url) to have the user’s browser re-request the Paging.aspx page with the appropriate

paging parameters. For example, to display the second page of data, we would redirect the user to Paging.aspx?

pagelndex=1.

12 of 16

To facilitate this, create a RedirectUser (sendUserToPageIndex) method that redirects the user to Paging.aspx?
pagelIndex=sendUserToPageIndex. Then, call this method from the four Button c1ick event handlers. In the
FirstPage Click event handler, call RedirectUser (0), to send them to the first page; in the PrevPage Click
event handler, use PageIndex - 1 as the page index; and so on.

Protected Sub FirstPage Click(ByVal sender As Object, ByVal e As EventArgs)
Handles FirstPage.Click
' Send the user to the first page
RedirectUser (0)

End Sub

Protected Sub PrevPage Click(ByVal sender As Object, ByVal e As EventArgs)
Handles PrevPage.Click
' Send the user to the previous page
RedirectUser (PageIndex - 1)

End Sub

Protected Sub NextPage Click(ByVal sender As Object, ByVal e As EventArgs)
Handles NextPage.Click
' Send the user to the next page
RedirectUser (PageIndex + 1)

End Sub

Protected Sub LastPage Click(ByVal sender As Object, ByVal e As EventArgs)
Handles LastPage.Click
' Send the user to the last page
RedirectUser (PageCount - 1)

End Sub

Private Sub RedirectUser (ByVal sendUserToPageIndex As Integer)
' Send the user to the requested page
Response.Redirect (String.Format ("Paging.aspx?pagelndex={0}&pageSize={1}",
sendUserToPageIndex, PageSize))
End Sub

With the c1ick event handlers complete, the Datalist’s records can be paged through by clicking the buttons. Take
a moment to try it out!

Disabling Paging Interface Controls

Currently, all four buttons are enabled regardless of the page being viewed. However, we want to disable the First
and Previous buttons when showing the first page of data, and the Next and Last buttons when showing the last
page. The pagedDataSource object returned by the ObjectDataSource’s select () method has properties —
IsFirstPage and IsLastPage — that we can examine to determine if we are viewing the first or last page of data.

Add the following to the ObjectDataSource’s Selected event handler:

' Configure the paging interface based on the data in the PagedDataSource
FirstPage.Enabled = Not pagedData.IsFirstPage

PrevPage.Enabled = Not pagedData.IsFirstPage

NextPage.Enabled Not pagedData.IsLastPage

LastPage.Enabled Not pagedData.IsLastPage

With this addition, the First and Previous buttons will be disabled when viewing the first page, while the Next and
Last buttons will be disabled when viewing the last page.

Let’s complete the paging interface by informing the user what page they’re currently viewing and how many total

pages exist. Add a Label Web control to the page and set its ID property to CurrentPageNumber. Set its Text
property in the ObjectDataSource’s Selected event handler such that it includes the current page being viewed

13 0f 16

(PageIndex + 1) and the total number of pages (PageCount).

' Display the current page being viewed...
CurrentPageNumber.Text = String.Format ("You are viewing page {0} of {1}...", _

PageIndex + 1, PageCount)

Figure 10 shows Paging.aspx when first visited. Since the querystring is empty, the DataList defaults to showing
the first four products; the First and Previous buttons are disabled. Clicking Next displays the next four records (see
Figure 11); the First and Previous buttons are now enabled.

X Untitled Page - Microsaft Internet Explorer
 Bie Eot Yew Fgorter oo Heb

Dok~ &3 - B @ #h Poewh fravertes @3- #M-5 G0
: Audvess | B8] hbtp flcaibost 2294 Code PagngSortingDatal st epeater Fagng. acs v Bl
Working with Data Tutorials ~ ten’ e inessmonmmeszss

Paging Data in a Datalist

Home

Bacic Rapork ils
Simple Display
Dedlarative Chai Tea Aniseed Syrup
EGWHQFﬂmbte{' Category: Beverages Catagory: Condiments
Walues Supgplier: Exotic Linuids cupplisr: EioteLialids

Default Paging

Filter by Drop-Down

Chef Anton's Cajun

Lt T Chang Seasoning

Masker- 5

DM;ES :unpuli:::E:::rlj':z:ds Category: Condiments

Mﬁ?mim E Suppher; Mew Orleans Cajun Dalights
i

Drmals afﬁ-af«msd

You arg viewing page 1 of 20...

% Local inkranat

Figure 10: The First Page of Data is Displayed

14 of 16

X Uintitled Page - Microsoft Internat Explorer
| Pl [t Mew Pgvarter Tecl: Heb

i Qbwk D @ | Poech firawes 8 (3-8 M- © hog B

: Address |88] hitp [flocathost: 254 Code [PagngSortingDatal istlepeater [Paging_aspa Ppageindex= 1 Epagesae=4 - r,.}

Working with Data Tutorials Heme > Paging and Sorting with the Datalist

con. MDA RODRIAT> PG e riemcineneemcamsnsnias

Home Paging Data in a Datalist
Bagic Reporting
Simple Display

Declarative ' . "
Pararmsters Chef Anton's Gumbo Mix gg;lres Bok’s Oraanic Eired

Default Paging

Setting Parameter

WElues Category; Condiments

: Caktegory: Producs
Supplier: New Orleans Cajun Delights ey, Mraad

Supplier: Grandma Kelly's Homastead

Filkerimg Feg

Fliter by Drop=-Down

List

Grandma's Bovsenberry Morthwoods Cranberry
Master-Details- Spread Sauce
Details
Master/Datal Acrass Catagory: Condimants Categary; Condiments
TWo P&gés Supplier: Grandma Kelly's Homestead Supplier: Grandma Kelly's Homestead
Detalls of Selected

Row

Customized
Fermmatting

Format Colors

| <2 First || <Prav || Next> || Lastzx

You are wiswing page 2 of 20...

@bﬂ-"ﬂ - - B - .’itwdrhnt

Figure 11: The Second Page of Data is Displayed

Note: The paging interface can be further enhanced by allowing the user to specify how many pages to view per
page. For example, a DropDownList could be added listing page size options like 5, 10, 25, 50, and All. Upon
selecting a page size, the user would need to be redirected back to Paging.aspx?
pageIndex=0&pageSize=selectedPageSize. | leave implementing this enhancement as an exercise for the
reader.

Using Custom Paging

The DataList pages through its data using the inefficient default paging technique. When paging through
sufficiently large amounts of data, it is imperative that custom paging be used. Although the implementation details
differ slightly, the concepts behind implementing custom paging in a DataList are the same as with default paging.
With custom paging, use the ProductBLL class’s Get ProductsPaged method (instead of
GetProductsAsPagedDataSource). As discussed in the Efficiently Paging Through Large Amounts of Data
tutorial, GetProductsPaged must be passed the start row index and maximum number of rows to return. These
parameters can be maintained through the querystring just like the pageIndex and pageSize parameters used in
default paging.

Since there’s no PagedDataSource with custom paging, alternative techniques must be used to determine the total
number of records being paged through and whether we’re displaying the first or last page of data. The
TotalNumberOfProducts () method in the ProductsBLL class returns the total number of products being paged
through. To determine if the first page of data is being viewed, examine the start row index — if it is zero, then the
first page is being viewed. The last page is being viewed if the start row index plus the maximum rows to return is
greater than or equal to the total number of records being paged through.

150f 16

We’ll explore implementing custom paging in greater detail in the next tutorial.

Summary

While neither the DataList nor Repeater offers the out of the box paging support found in the GridView,
DetailsView, and FormView controls, such functionality can be added with minimal effort. The easiest way to
implement default paging is to wrap the entire set of products within a Pagedbatasource and then bind the
PagedDataSource to the DataList or Repeater. In this tutorial we added the GetProductsAsPagedDataSource
method to the ProductsBLL class to return the PagedDatasSource. The ProductsBLL class already contains the
methods needed for custom paging — GetProductspPaged and TotalNumberOfProducts.

Along with retrieving either the precise set of records to display for custom paging or all records in a
PagedDataSource for default paging, we also need to manually add the paging interface. For this tutorial we
created a Next, Previous, First, Last interface with four Button Web controls. Also, a Label control displaying the
current page number and total number of pages was added.

In the next tutorial we’ll see how to add sorting support to the DataList and Repeater. We’ll also see how to create
a DataList that can be both paged and sorted (with examples using default and custom paging).

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Liz Shulok, Ken
Pespisa, and Bernadette Leigh. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4guysfromrolla.com.

16 of 16

