This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Sorting Data in
a DataList or Repeater Control

Introduction

In the previous tutorial we examined how to add paging support to a DataList. We created a new method in the
ProductsBLL class (GetProductsAsPagedDataSource) that returned a PagedDataSource object. When bound to
a DataList or Repeater, the DataList or Repeater would display just the requested page of data. This technique is
similar to what is used internally by the GridView, DetailsView, and FormView controls to provide their built-in
default paging functionality.

In addition to offering paging support, the GridView also includes out of the box sorting support. Neither the
DataList nor Repeater provides built-in sorting functionality; however, sorting features can be added with a bit of
code. In this tutorial we’ll examine how to include sorting support in the DataList and Repeater, as well as how to
construct a DataList or Repeater whose data can be paged and sorted.

A Review of Sorting

As we saw in the Paging and Sorting Report Data tutorial, the GridView control provides out of the box sorting
support. Each GridView field can have an associated SortExpression, which indicates the data field by which to
sort the data. When the GridView’s AllowSorting property is set to true, each GridView field that has a
SortExpression property value has its header rendered as a LinkButton. When a user clicks a particular GridView
field’s header, a postback occurs and the data is sorted according to the clicked field’s SortExpression.

The GridView control has a sortExpression property as well, which stores the SortExpression of the GridView
field the data is sorted by. Additionally, a SortDirection property indicates whether the data is to be sorted in
ascending or descending order (if a user clicks a particular GridView field’s header link twice in succession, the
sort order is toggled).

When the GridView is bound to its data source control, it hands off its SortExpression and SortDirection
properties to the data source control. The data source control retrieves the data and then sorts it according to the
supplied sortExpression and SortDirection properties. After sorting the data, the data source control returns it
to the GridView.
To replicate this functionality with the DataList or Repeater controls, we must:

o Create a sorting interface

¢ Remember the data field to sort by and whether to sort in ascending or descending order

¢ Instruct the ObjectDataSource to sort the data by a particular data field

We’ll tackle these three tasks in steps 3 and 4. Following that, we’ll examine how to include both paging and
sorting support in a DataList or Repeater.

Step 2: Displaying the Products in a Repeater

1 of 26

Before we worry about implementing any of the sorting-related functionality, let’s start by listing the products in a
Repeater control. Start by opening the Sorting.aspx page in the PagingSortingDataListRepeater folder. Add
a Repeater control to the web page, setting its ID property to SortableProducts. From the Repeater’s smart tag,
create a new ObjectDataSource named ProductsbataSource and configure it to retrieve data from the
ProductsBLL class’s GetProducts () method. Select the “(None)” option from the drop-down lists in the INSERT,
UPDATE, and DELETE tabs.

Configure Data Source - ProductsDefaultPagingDataSource E”@ Ejrz|

Define Data Methods

| SELECT | UPDATE | INSERT | DELETE

Chanse a method of the business objeck ko associate with the DELETE operaticn. The methad shavdd
accept a parameter for each primary key for the data object or a single parameter which is the data
object ko delete,

Examples: DeleteProduct(Product p), or DeleteProduct{Int32 productID)

Chonse a method:
E (Mone) ¥ |

Deletefroduct{Int32 productID), returns Boolean

T T

Figure 1: Create an ObjectDataSource and Configure it to Use the GetProductsAsPagedDataSource ()
Method

2 of 26

Configure Data Source - ProductsDefaultPagingDataSource

j Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that rekburns data ko associate with Ehe SELECT aperation. The
method can return a DataSet, DataReader, or strongly-twped colleckion,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Choose a method:

GetProducksAsPagedDataSource(Ink 32 pagelndex, Int32

GetProductEyProduckID{IngS 2 produckID), returns ProductsDataTahle
GaetProductse), returns ProductsDataTable

: agesize), returns PagedDataSource
GetProducksByC ategoryID{INE32 cakegorvID), rebwns ProducksDataTsble
GaetProductsBySupplierIDiInt 32 supplier1D), returns ProducksDakaTable
GetProductsPaged{Int32 startRowindex, Int32 maximumRows), returns ProductsDataTable

GetProductsPagedAndSorbed(Stri ression, Ink32 startRowlndey, INk32 maximumPiows), retums Producl

[< Previous jL__E_da.tt:*] Finist

Figure 2: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE tabs to “(None)”

Unlike with the DataList, Visual Studio does not automatically create an ItemTemplate for the Repeater control
after binding it to a data source. Furthermore, we must add this ItemTemplate declaratively, as the Repeater
control’s smart tag lacks the “Edit Templates” option found in the DataList’s. Let’s use the same ItemTemplate
from the previous tutorial, which displayed the product’s name, supplier, and category.

After adding the TtemTemplate, the Repeater and ObjectDataSource’s declarative markup should look similar to
the following:

<asp:Repeater ID="SortableProducts" DataSourceID="ProductsDataSource"
EnableViewState="False" runat="server">
<ItemTemplate>
<h4><asp:Label ID="ProductNamelLabel" runat="server"
Text='<%# Eval ("ProductName") $%$>'></asp:Label></h4>
Category:
<asp:Label ID="CategoryNameLabel" runat="server"
Text='<%# Eval ("CategoryName") %>'></asp:Label>

Supplier:
<asp:Label ID="SupplierNameLabel" runat="server"
Text='<%# Eval ("SupplierName") %>'></asp:Label>

</ItemTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"

SelectMethod="GetProducts">
</asp:0bjectDataSource>

Figure 3 shows this page when viewed through a browser.

3 0f 26

i File Edk

Wiew Favorites

e
7 - e e

Home

Easi |_ F;'f [y r'i:|-|;;|
Simple Display
Dedarative
Parameters

Setting Parametar
\alues

Filtering Reports

Filter by Drop-Down
List

Master-Cetails-
Detalls

Master/Detall Across
Two Pages

Details of Selected
P

Customized
Formatting

Format Colars

T e A e . M o ™ o+

A Untitled Page - Microsofl Internet Explorar
Tools

#- Search

Agdrass @ lt@p:.lfj'htdhml‘:j9E?Kudﬁpmijuﬁarti@dﬂl_iﬂﬂwtcdn_r_mrtirq.-:sptx_

Working with Data Tutorials

B £ B

“Favorbes 9 | o0+ Sa @] v | E 5 5

v-f‘.,u

Home > Paging and Sorting with
ataList and Repeater >

Sorting Data in a Repeater
Control

Chai Tea

Category: Beverages
Supplier: Exotic Liguids
Chang

Category: Beverages
Supplier: Exotic Liquids
Aniseed Syrup
Category: Condiments

Supplier: Exotic Liguids

Chef Anton's Cajun Seasoning

W

e e T L e I el e Lt T o

la

& Local intranet F1

Figure 3: Each Product’s Name, Supplier, and Category is Displayed

Step 3: Instructing the ObjectDataSource to Sort the

Data

To sort the data displayed in the Repeater, we need to inform the ObjectDataSource of the sort expression by which
the data should be sorted. Before the ObjectDataSource retrieves its data, it first fires its Selecting event, which
provides an opportunity for us to specify a sort expression. The selecting event handler is passed an object of
type ObjectDataSourceSelectingEventArgs, which has a property named Arguments of type

DataSourceSelectArguments. The DataSourceSelectArguments class is designed to pass data-related requests

from a consumer of data to the data source control, and includes a SortExpression property.

To pass sorting information from the ASP.NET page to the ObjectDataSource, create an event handler for the
Selecting event and use the following code:

Protected Sub ProductsDataSource Selecting(ByVal sender As Object,
ByVal e As ObjectDataSourceSelectingEventArgs)
Handles ProductsDataSource.Selecting

e.Arguments.SortExpression

End Sub

sortExpression

The sortExpression value should be assigned the name of the data field to sort the data by (such as

4 of 26

“ProductName”). There is no sort direction-related property, so if you want to sort the data in descending order,
append the string “DESC” to the sortExpression value (such as “ProductName DESC”).

Go ahead and try some different hard-coded values for sortExpression and test the results in a browser. As Figure 4
shows, when using “ProductName DESC” as the sortExpression, the products are sorted by their name in reverse
alphabetical order.

2 Untitled Page - Microsofl Internet Explorer

© Eile Edt Yiew Favorites Tooks Help

»- Search Fawvorkes £ -

T B W

Working with Data Tutorials tome> baging and Sorting with

th talist an e >

Harme

Basic Reporting

Sorting Data in a Repeater

Srople DSy Control

Dedarative Zaanse koeken

Farameters

Setting Parameter Category: Confections

Values Supplier: Zaanse Snoepfabriek

Filtering Reports

Filter by Crop-Cown

Wimmers gute Semmelknidel

st
- - Category: Grains/Cereals
Master-Detalls- Supplier: Plutzer LebensmittelgroBmarkte AG
Detalls
Master/Detail Across ;
Two Pages Valkoinen suklaa
Details of Selected

Category: Confections

RoW Supplier: Karkki Oy

Customized
Formatting

Format Colors Unde Bob's Organic Dried Pears

o L e e . By i - B e e [S

&1 Dene %5 Local intranet

Figure 4: The Products are Sorted by their Name in Reverse Alphabetical Order

Step 4: Creating the Sorting Interface and
Remembering the Sort Expression and Direction

Turning on sorting support in the GridView converts each sortable field’s header text into a LinkButton that, when
clicked, sorts the data accordingly. Such a sorting interface makes sense for the GridView, where its data is neatly
laid out in columns. For the DataList and Repeater controls, however, a different sorting interface is needed. A
common sorting interface for a list of data (as opposed to a grid of data), is a drop-down list that provides the fields
by which the data can be sorted. Let’s implement such an interface for this tutorial.

Add a DropDownList Web control above the sortableProducts Repeater and set its ID property to SortBy. From

the Properties window, click the ellipses in the Items property to bring up the Listltem Collection Editor. Add
ListItems to sort the data by the ProductName, CategoryName, and SupplierName fields. Also add a ListItemto

50f26

sort the products by their name in reverse alphabetical order.

The ListItem Text properties can be set to any value (such as “Name”), but the Value properties must be set to
the name of the data field (such as “ProductName”). To sort the results in descending order, append the string
“DESC?” to the data field name, like “ProductName DESC”.

Listltem Collection Editor @ @

Members: MName properties:
1 | Mame (Reverse Order) =
2 | Cateqgory B Misc
5 | Supplier Enabled True

Selected False

Text Name

Walue ProductMame
[add][Remove

[o] 4] [Cancel]

Figure 5: Add a ListItem for Each of the Sortable Data Fields

Finally, add a Button Web control to the right of the DropDownList. Set its ID to RefreshRepeater and its Text
property to “Refresh”.

After creating the ListItems and adding the Refresh button, the DropDownList and Button’s declarative syntax
should look similar to the following:

<asp:DropDownList ID="SortBy" runat="server">
<asp:ListItem Value="ProductName">Name</asp:ListItem>
<asp:ListItem Value="ProductName DESC">Name (Reverse Order)
</asp:ListItem>
<asp:ListItem Value="CategoryName">Category</asp:ListItem>
<asp:ListItem Value="SupplierName">Supplier</asp:ListItem>
</asp:DropDownList>

<asp:Button runat="server" ID="RefreshRepeater" Text="Refresh" />

With the sorting DropDownList complete, we next need to update the ObjectDataSource’s Selecting event
handler so that it uses the selected SortBy ListItem’s Value property as opposed to a hard-coded sort expression.

Protected Sub ProductsDataSource Selecting _
(ByVal sender As Object, ByVal e As ObjectDataSourceSelectingEventArgs)
Handles ProductsDataSource.Selecting
' Have the ObjectDataSource sort the results by the
' selected sort expression
e.Arguments.SortExpression = SortBy.SelectedValue
End Sub

6 of 26

At this point when first visiting the page the products will initially be sorted by the ProductName data field, as it’s
the sortBy ListItem selected by default (see Figure 6). Selecting a different sorting option — such as “Category” —
and clicking Refresh will cause a postback and re-sort the data by the category name, as Figure 7 shows.

3 Untitled Page - Microsoft Internet Explorer
© File Edt Mew Favorites Took Help

- x

! O o M B | search FrFavorites £ | (3~ A5

ckiress | &) btpiflocalhost:1557/CodePagingSortingDatalistRspeater/Sortng. sspic

the DatalList and Repeater >
... Borting

Working with Data Tutorials ~ Heme > Paging and sorting it

Sorting Data in a Repeater

1ng

Simple Display Control

Dedarative Th | [Refresh
Sl [Scur't the results by: | Name 1]]
Setting Parameter Acme Coffee

Values

' Category: Beverages
= Supplier: Exotic Liquids

Filter b‘# Drop-Down

List

Master-Detalls- Acme Soda

Detalh I — Category: Beverages
Master/Detall Across RUpRIAT: Bvatic Liguice
Two Pages

Acme Tea

Category: Beverages
Supplier: Exotic Liquids

Custom Content in a

Acme Water
Gridvisw

L e P G L = U P P P

{&] peee € Local ntranat

Figure 6: The Products are Initially Sorted by their Name

7 of 26

A Untitled Pape - Microsoft Internet Fxplorer EJ[El E@E

. Fle Edt Wew Favortes Took Help
 Qack » O - b4 @ 8 P sewch FrFavortes €8 | (3- L (9] - € » B B

s) Wiofocabet 1957 CodefPagnSotogbataatepestr st 5o v @

the Datalist and Repeater >
SRR L L R e

Working with Data Tutorials Heme> Paging and serting with

Higerre

Sorting Data in a Repeater

Basic Reporting

Simple Display Control
Dedarative , Bl Coctecr
e [Su:urt the results by: | Category @]
Setting Parameter Chai Tea
Walues
e Category: Beverages
FRUSEIND Seports (bu—ppmm:]ds
Filter by Crop-Down
List
Master-Detalls- Chang
Details
_ _ Category: Beverages
Master/Detall Across I e LIguids
Two Pages
£ : z R
E;-f:lh l Shissied Guarana Fantastica

Customized
Formattirg

1Categ0rv: Beveragesl
: mericanas LTDA
Farrnat Colors

Custom Content in a Sasquatch Ale
Gridview

L e P G L = LT P P P

& Dane S Loeal intranst

Figure 7: The Products are Now Sorted by Category

Note: Clicking the Refresh button causes the data to automatically be re-sorted because the Repeater’s view state
has been disabled, thereby causing the Repeater to rebind to its data source on every postback. If you’ve left the
Repeater’s view state enabled, changing the sorting drop-down list won’t have any affect on the sort order. To
remedy this, create an event handler for the Refresh Button’s c1ick event and rebind the Repeater to its data
source (by calling the Repeater’s DataBind () method).

Remembering the Sort Expression and Direction

When creating a sortable DataList or Repeater on a page where non-sort related postbacks may occur, it’s
imperative that the sort expression and direction be remembered across postbacks. For example, imagine that we
updated the Repeater in this tutorial to include a Delete button with each product. When the user clicks the Delete
button we’d run some code to delete the selected product and then rebind the data to the Repeater. If the sort details
are not persisted across postback, the data displayed on screen will revert to the original sort order.

For this tutorial, the DropDownList implicitly saves the sort expression and direction in its view state for us. If we
were using a different sorting interface — one with, say, LinkButtons that provided the various sorting options —
we’d need to take care to remember the sort order across postbacks. This could be accomplished by storing the
sorting parameters in the page’s view state, by including the sort parameter in the querystring, or through some

8 0f 26

other state persistence technique.

Future examples in this tutorial explore how to persist the sorting details in the page’s view state.

Step 5: Adding Sorting Support to a DataList that
Uses Default Paging

In the preceding tutorial we examined how to implement default paging with a DataList. Let’s extend this previous
example to include the ability to sort the paged data. Start by opening the SortingWithDefaultPaging.aspx and
Paging.aspx pages in the PagingSortingDatalistRepeater folder. From the Paging.aspx page, click on the
Source button to view the page’s declarative markup. Copy the selected text (see Figure 8) and paste it into the
declarative markup of sortingWithDefaultPaging.aspx between the <asp:Content> tags.

2 Code - Micresedr Visual Studia

e Edt Wew Webghe Buld Pebag Toobr Windos Coswvardty Helin Addiee
BB AR N0 ey B g
o iEER .S T oL Transtiona x ol o
b Pagngiortng. oPagng mex | PagngSorting.—er Paging. aspo » % 5
5 (Bent Gbjects & Events o || b Event) - ;
: 1| #&H Fage Longuage="Gf" AoabecPageFile="-fSice.mmoker” AuvtoEventVireug="true” Codel ile="FPaging.nsps, oo™ .':' 5
3 o8 v IBwApneentl® Contentl laceBolder IDe B InCoRTEREY RURETS *Darver 2
ging Data in Iat-al 35 =3
1 efaulc Pagl i’
'y
rETagrvee ™ Widehs®100% " DataFeyField="ProduseIb™ Re ¥
H LES Ihe"froduselavelabel™ punac="spzver™® Toxrefcil Bval {PFrodwseHame®) k>0 g
5 T . T]
" runat="server” Tewt='=4# Eval ["Categoryhiome™) & ad
g
14 wp il 2 11ecHas e i pinat="gwcwer” Texts'<wl Puval [(TSuppliechmma™) wxs 3
15 b
16]
18 &
. e
T3 uerskaPagedbarafourse”
£ e leched ™
L] 0" Heme=~page Index™ QuerFScringl isld="page Index™
i} Hame="pageSize yrringfie ld="pagesice”
14
5 -
L *
G Desn @ Source. +| [emepeCantent e Contera1
_‘::'_m_.l e f= i-‘n:\-:—'-:i 1
Reachy Ll ool |5 ch 13 =]

Figure 8: Replicate the Declarative Markup in the <asp:Content> Tags from Paging.aspx to
SortingWithDefaultPaging.aspx

After copying the declarative markup, copy the methods and properties in the Paging.aspx page’s code-behind
class to the code-behind class for SortingWithDefaultPaging.aspx. Next, take a moment to view the

SortingWithDefaultPaging.aspx page in a browser. It should exhibit the same functionality and appearance as
Paging.aspx.

Enhancing ProductsBLL to Include a Default Paging

9 of 26

and Sorting Method

In the previous tutorial we created a GetProductsAsPagedDataSource (pagelndex, pageSize) method in the
ProductsBLL class that returned a PagedDataSource object. This PagedDataSource object was populated with all
of the products (via the BLL’s GetProducts () method), but when bound to the DataList only those records
corresponding to the specified pagelndex and pageSize input parameters were displayed.

Earlier in this tutorial we added sorting support by specifying the sort expression from the ObjectDataSource’s
Selecting event handler. This works well when the ObjectDataSource is returned an object that can be sorted, like
the ProductsDataTable returned by the GetProducts () method. However, the PagedDataSource object returned
by the GetProductsAsPagedDataSource method does not support sorting of its inner data source. Instead, we
need to sort the results returned from the GetpProducts () method before we put it in the PagedbDataSource.

To accomplish this, create a new method in the ProductsBLL class, GetProductsSortedAsPagedDataSource
(sortExpression, pageIndex, pageSize).To sortthe ProductsDataTable returned by the GetProducts ()
method, specify the sort property of its default bataTableview:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, False)>

Public Function GetProductsSortedAsPagedDataSource
(sortExpression As String, pagelIndex As Integer, pageSize As Integer)
As PagedDataSource

' Get ALL of the products
Dim products As Northwind.ProductsDataTable = GetProducts ()

'Sort the products
products.DefaultView.Sort = sortExpression

' Limit the results through a PagedDataSource
Dim pagedData As New PagedDataSource ()
pagedData.DataSource = products.DefaultView
pagedData.AllowPaging = True
pagedData.CurrentPageIndex = pagelndex
pagedData.PageSize = pageSize

Return pagedData
End Function

The GetProductsSortedAsPagedbDataSource method differs only slightly from the
GetProductsAsPagedDataSource method created in the previous tutorial. In particular,
GetProductsSortedAsPagedDataSource accepts an additional input parameter — sortExpression — and assigns
this value to the Sort property of the ProductDataTable’s Defaultview. A few lines of code later, the
PagedDataSource object’s DataSource is assigned the ProductDataTable’s DefaultView.

Calling the GetProductsSortedAsPagedDataSource
Method and Specitying the Value for the
SortExpression Input Parameter

With the GetProductsSortedAsPagedDataSource method complete, the next step is to provide the value for this
parameter. The ObjectDataSource in SortingWithDefaultPaging.aspx is currently configured to call the
GetProductsAsPagedDataSource method and passes in the two input parameters through its two
QueryStringParameters,Wdﬂcharesp&ﬁﬁedintheSelectParametersCoﬂecﬁon.ThﬁseUNO

10 of 26

QueryStringParameters indicate that the source for the GetProductsAsPagedDataSource method’s pagelndex
and pageSize parameters come from the querystring fields pageIndex and pagesize.

Update the ObjectDataSource’s selectMethod property so that it invokes the new
GetProductsSortedAsPagedDataSource method. Then, add a new QueryStringParameter so that the
sortExpression input parameter is accessed from the querystring field sortExpression. Set the
QueryStringParameter’s Defaultvalue to “ProductName”.

After these changes, the ObjectDataSource’s declarative markup should look like:

<asp:0bjectDataSource ID="ProductsDefaultPagingDataSource"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"
SelectMethod="GetProductsSortedAsPagedDataSource"
OnSelected="ProductsDefaultPagingDataSource Selected" runat="server">
<SelectParameters>
<asp:QueryStringParameter DefaultValue="ProductName"
Name="sortExpression”" QueryStringField="sortExpression"
Type="String" />
<asp:QueryStringParameter DefaultValue="0" Name="pageIndex"
QueryStringField="pageIndex" Type="Int32" />
<asp:QueryStringParameter DefaultValue="4" Name="pageSize"
QueryStringField="pageSize" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

At this point, the sortingWithDefaultPaging.aspx page will sort its results alphabetically by the product name
(see Figure 9). This is because, by default, a value of “ProductName” is passed in as the
GetProductsSortedAsPagedDataSource method’s sortExpression parameter.

2 Untitled Page - Microsofl Internet Explorer

| He E few Fgvortes Tock Hel

! O D - EH B 6h O seah drFoates 8 | - da W - B [W]
s | @) it locathost: 1957 Coda PaghgSortingDatalstR apestarSortr gD aukPagig. a5 sl >

Wgrking with Data Tutorials Heme> paging and Serting with the DataList

and Repeater > Sorting with Default Paging

X

-

Sorting and Paging Data in a

Datalist
Default Paging
Frman - Acme Coffee Acme Tea
Setbng Parameter
Walues
Category: Beverages Category: Beverages
Filtering Reports Supplier: Exotic Liquids Suppher: Exotic Liguids
Filter by Drop-Down
List
Master-Detals- Acme Soda Acme Water
Details
Category: Beverages Category: Beverages
Hﬁt&ﬁm&w ALTOss Supplier: Exotic Liquids Suppher: Exokic Liquids
Two Pages
Details of Selected
oW

[Next> | [Last=> |

You are viewing page 1 of 20.,

&) Deee % Locel inkranst

11 0of 26

Figure 9: By Default, the Results are Sorted by ProductName

If you manually add a sortExpression querystring field — such as sortingWithDefaultPaging.aspx?
sortExpression=CategoryName — the results will be sorted by the specified sortExpression. However, this
sortExpression parameter is not included in the querystring when moving to a different page of data. In fact,
clicking on the Next or Last page buttons takes us back to Paging.aspx! Furthermore, there’s currently no sorting
interface. The only way a user can change the sort order of the paged data is by manipulating the querystring
directly.

Creating the Sorting Interface

We first need to update the RedirectUser method to send the user to SortingWithDefaultPaging.aspx (instead
of Paging.aspx) and to include the sortExpression value in the querystring. We should also add a read-only,
page-level named sortExpression property. This property, similar to the PageIndex and PageSize properties
created in the previous tutorial, returns the value of the sortExpression querystring field if it exists, and the
default value (“ProductName”) otherwise.

Currently the RedirectUser method accepts only a single input parameter — the index of the page to display.
However, there may be times when we want to redirect the user to a particular page of data using a sort expression
other than what’s specified in the querystring. In a moment we’ll create the sorting interface for this page, which
will include a series of Button Web controls for sorting the data by a specified column. When one of those Buttons
is clicked, we want to redirect the user passing in the appropriate sort expression value. To provide this
functionality, create two versions of the RedirectUser method. The first one should accept just the page index to
display, while the second one accepts the page index and sort expression.

Private ReadOnly Property SortExpression() As String

Get
If Not String.IsNullOrEmpty (Request.QueryString ("sortExpression")) Then
Return Request.QueryString("sortExpression")
Else
Return "ProductName"
End If
End Get

End Property

Private Sub RedirectUser (ByVal sendUserToPageIndex As Integer)

' Use the SortExpression property to get the sort expression
from the querystring

RedirectUser (sendUserToPagelndex, SortExpression)
End Sub

A}

Private Sub RedirectUser (ByVal sendUserToPageIndex As Integer,
ByVal sendUserSortingBy As String)
' Send the user to the requested page with the
requested sort expression
Response.Redirect (String.Format ("SortingWithDefaultPaging.aspx?" & _
"pageIndex={0}&pageSize={1l}&sortExpression={2}",
sendUserToPageIndex, PageSize, sendUserSortingBy))

A}

End Sub

In the first example in this tutorial, we created a sorting interface using a DropDownList. For this example, let’s
use three Button Web controls positioned above the DataList — one for sorting by ProductName, one for
CategoryName, and one for SupplierName. Add the three Button Web controls, setting their 1D and Text
properties appropriately:

<p style="text-align:center;">
<asp:Button runat="server" id="SortByProductName"

12 of 26

Text="Sort by Product Name" />
<asp:Button runat="server" id="SortByCategoryName"
Text="Sort by Category" />
<asp:Button runat="server" id="SortBySupplierName"
Text="Sort by Supplier" />
</p>

Next, create a Click event handler for each. The event handlers should call the RedirectUser method, returning
the user to the first page using the appropriate sort expression.

Protected Sub SortByProductName Click(sender As Object, e As EventArgs)
Handles SortByProductName.Click
'Sort by ProductName
RedirectUser (0, "ProductName")

End Sub

Protected Sub SortByCategoryName Click(sender As Object, e As EventArgs)
Handles SortByCategoryName.Click
'Sort by CategoryName
RedirectUser (0, "CategoryName")

End Sub

Protected Sub SortBySupplierName Click(sender As Object, e As EventArgs)
Handles SortBySupplierName.Click
'Sort by SupplierName
RedirectUser (0, "SupplierName")

End Sub

When first visiting the page, the data is sorted by the product name alphabetically (refer back to Figure 9). Click
the Next button to advance to the second page of data and then click the “Sort by Category” button. This returns us
to the first page of data, sorted by category name (see Figure 10). Likewise, clicking the “Sort by Supplier” button
sorts the data by supplier starting from the first page of data. The sort choice is remembered as the data is paged
through. Figure 11 shows the page after sorting by category and then advancing to the thirteenth page of data.

3 Uniitled Page - Microsoft Internet Cxplorer
Ble Bt Yew Foortes Joob Help
Gk = @ - (1 3 00 0 search o Poverkes £ | (2 L 9] - € 5
Byidress |) hetpfiocabost L 95T ode P agingorbngl st slistF ppeater Sortirgithief sukFagng sepr pageindesiipage onethsortfxprescons atsgortiam % feg 5o

-

Bt AL S i ——

Sorting and Paging Data in a DatalList

Default Paging
{ Sart by Product Name] i- Sort by Cabégory i[Sort by Suppliés |
Chai Tea Guarana Fantastica
. e Supphér: Exotic Liquids Suppbir; Rerésoos Amencings LTDA
ker by Drop-Down
List
Master-Datails- Chang Sasquatch Ale
Dietalls
Moster/Detall Aaross | Caiaory: Beversoes)
Twa Fages Supplier: Exobc Liguids Supphir: Bigloat Brawesies
Datalls of Salectad
[(Mesx>] [Last o>
You are viewing page 1 of 20...
Custom Content in & 4

Ii}l:-me ay PRy

13 of 26

Figure 10: The Products are Sorted by Category

3 Untfiled Page - Microseft Internet Explorer] e
Boe Edt Yow Fpores Tock Hep £
Gk - O - [W @) R Poead drreeies 8 (3 T W - (o W

ﬂ': et st 1 1905 P o Pagensr o binglist Al st spsster [SortinagwithOel sult Pagng. sepo i page Indeas | Sipesge Soesiaorti pressnsCategorphia ¥ E GO

Working with Data Tutorials o0 fuasiiirigny m osonanseser

-

Sorting and Paging Data in a DatalList

Sils Default Paging
Declarative
Fararmeters

Setting Parameater Mozzarella di Giowvanni Tunnbréd
Walues

[Sart by Praduct Name]{l- Saort by Cab#gary “[Sort by Supphés |
)

Fitering Faports {Category: Dairy Products | {Category: Grains/Cereals |
= WA Supplier: Farmage Fartin £.r.. Supphér: PR Endckebrad AR
Filker by Drop-Ciown
Lisk
r;ammtﬂs Gustaf's Knackebrdd Singaporean Hokkien Fried Mee
B
Master/Detall Across { Category: Grans/Cargals l q‘,cm: Grains/Cereals)
Two Pages Supplier: P Knackebrod AR Suppher: Laka Trading

Dietas of Selected

[LexFirst J[< Pray | [Hest> || Last o> |

['|"I:|IJ are viewing page 13 of ?\O]

4 one 8 Locallngranst

Figure 11: The Sort Expression is Remembered When Paging Through the Data

Step 6: Custom Paging Through Records in a
Repeater

The DataList example examined in step 5 pages through its data using the inefficient default paging technique.
When paging through sufficiently large amounts of data, it is imperative that custom paging be used. Back in the
Efficiently Paging Through Large Amounts of Data and Sorting Custom Paged Data tutorials, we examined the
differences between default and custom paging and created methods in the BLL for utilizing custom paging and
sorting custom paged data. In particular, in these two previous tutorials we added the following three methods to
the ProductsBLL class:

e GetProductsPaged (startRowIndex, maximumRows) — returns a particular subset of records starting at

startRowlndex and not exceeding maximumRows.
e GetProductsPagedAndSorted (sortExpression, startRowIndex, maximumRows) — returns a particular

subset of records sorted by the specified sortExpression input parameter.
e TotalNumberOfProducts () — provides the total number of records in the Products database table.

These methods can be used to efficiently page and sort through data using a DataList or Repeater control. To
illustrate this, let’s start by creating a Repeater control with custom paging support; we’ll then add sorting
capabilities.

Open the sortingWithCustomPaging.aspx page in the PagingSortingDataListRepeater folder and add a
Repeater to the page, setting its ID property to Products. From the Repeater’s smart tag, create a new

14 of 26

ObjectDataSource named ProductsDataSource. Configure it to select its data from the ProductsBLL class’s
GetProductsPaged method.

Configure Data Source - ProductsDataSource

Define Data Methods

| SELECT |UPDATE | INSERT | DELETE |

Choose a method of the business objeck that returns data ko associake with the SELECT operation. The
method can return a DataSet, DataReader, or strongly-kyvped collection,

Exarmpla; GetProducts(Ink3Z2 catesoryid), returns a Dataseat,

Choose a method:

GetProducksPaged{Int32 startRowlndesx, Int32 masimumf % |

GetProductByProductID{Int32 productiD), returns ProductsDataTable
GaetProducts(), returns ProductsDataTable
GetProductsAsPagedDataSource(Int32 pagalnde:, Int32 pagesize), returns PagedDataSource
GetProducksByCategoryID(INt32 categaryID), returns ProductsDataTable
GetF'rﬂdu:tsB upplierID(Ink 52 supplierID), returns ProducksCakaTable
{Int32 startRowlndes, Int32 maximumBows), returns ProducksDataTable

Gethduu:tsPagedAndSurted{Strlng sortExpression, InES2 startRowInde:x, INk32 maximurmPows), rebums Producl
GetProducksSorkedAsPagedDataSource]Shring sortExpression, Ink32 pagelndex, Ink32 pageSize), returns Paged(

Cepoms) (o> J [oo EI

Figure 12: Configure the ObjectDataSource to Use the ProductsBLL Class’s GetProductsPaged Method

Set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)” and then click the Next button.
The Configure Data Source wizard now prompts for the sources of the Get ProductsPaged method’s
startRowlIndex and maximumRows input parameters. In actuality, these input parameters are ignored. Instead, the
startRowIndex and maximumRows values will be passed in through the Arguments property in the
ObjectDataSource’s selecting event handler, just like how we specified the sortExpression in this tutorial’s first
demo. Therefore, leave the parameter source drop-down lists in the wizard set at “None”.

15 of 26

Configure Data Source - ProductsDataSource

13 Define Parameters

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, choose & source for the parameter's value,

Parameters: Parameter source:

Hlame Walue : | Mone W
startRowlndes: i

A LR Cies

Method signature:
i GetProducksPaged(Int32 startRowInde:, Int32 maximumPiowes), retums ProducksDataTable

o> | o] [conm

Figure 13: Leave the Parameter Sources Set to “None”

Note: Do not set the ObjectDataSource’s EnablePaging property to true. This will cause the ObjectDataSource to
automatically include its own startRowlIndex and maximumRows parameters to the SelectMethod’s existing
parameter list. The EnablePaging property is useful when binding custom paged data to a GridView, DetailsView,
or FormView control because these controls expect certain behavior from the ObjectDataSource that’s only
available when EnablePaging property is true. Since we have to manually add the paging support for the
DataList and Repeater, leave this property set to false (the default), as we’ll bake in the needed functionality
directly within our ASP.NET page.

Finally, define the Repeater’s ItemTemplate so that the product’s name, category, and supplier are shown. After
these changes, the Repeater and ObjectDataSource’s declarative syntax should look similar to the following:

<asp:Repeater ID="Products" runat="server" DataSourcelD="ProductsDataSource"
EnableViewState="False">
<ItemTemplate>
<h4><asp:Label ID="ProductNamelLabel" runat="server"
Text='<%# Eval ("ProductName") $%$>'></asp:Label></h4>
Category:
<asp:Label ID="CategoryNameLabel" runat="server"
Text='<%# Eval ("CategoryName") $%>'></asp:Label>

Supplier:
<asp:Label ID="SupplierNameLabel" runat="server"
Text='<%# Eval ("SupplierName") $%>'></asp:Label>

</ItemTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"

OldvaluesParameterFormatString="original {0}"
SelectMethod="GetProductsPaged" TypeName="ProductsBLL">

16 of 26

<SelectParameters>
<asp:Parameter Name="startRowIndex" Type="Int32" />
<asp:Parameter Name="maximumRows" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

Take a moment to visit the page through a browser and note that no records are returned. This is because we’ve yet
to specify the startRowiIndex and maximumRows parameter values; therefore, values of 0 are being passed in for
both. To specify these values, create an event handler for the ObjectDataSource’s selecting event and set these
parameters’ values programmatically to hard-coded values of 0 and 5, respectively:

Protected Sub ProductsDataSource Selecting(sender As Object,
e As ObjectDataSourceSelectingEventArgs)
Handles ProductsDataSource.Selecting

e.InputParameters ("startRowIndex") = 0
e.InputParameters ("maximumRows") = 5
End Sub

With this change, the page, when viewed through a browser, shows the first five products.

17 of 26

2} Untitled Page - Microsoft Internet Explorer
. Fle Edt Wiew Favorkes Took Help

Dok - €3 - W @) | Lsewdh drFavoites @ - da W - G 80
| Akdress | €] bitps flocalihist: 1957 Code PaggScrtingDat slistRepeater/SortingWikhCustomP aging. aspc v Byoo

Working with Data Tutorials Home > Paging and sorting

with the Datalist and Repeater

Horme

Sorting and Paging Data in
a Repeater

Easic Beporting
Simple Display

Declarative
Parameters

Setting Parameter Acme Coffee
Values

Custom Paging

Category: Beverages
Supplier: Exotic Liquids

Filtering Reports
Filter by Drop-Down
List
Master-Details-
Detalls

Category: Beverages

Master/Detail Across Supplier: Exotic Liquids
Two Pages

.B o T X .
Rg;mhs._;)fsﬂe@fm Acme Tea

Acme Soda

Category: Beverages
Supplier: Exotic Liquids

Forrmat Colors

Custom Contentin a Acme Water
Gridiigw

Custom Contentin a Category: Beverages
Detailsview Supplier: Exotic Liquids

Custom Content in &
Formiiew :

! Srimm ATy F!;:ﬁj:n in b4
#&] Dane &4 Local intranet

Figure 14: The First Five Records are Displayed

Note: The products listed in Figure 14 happen to be sorted by product name because the GetProductsPaged stored
procedure that performs the efficient custom paging query orders the results by ProductName.

In order to allow the user to step through the pages, we need to keep track of the start row index and maximum
rows and remember these values across postbacks. In the default paging example we used querystring fields to
persist these values; for this demo, let’s persist this information in the page’s view state. Create the following two
properties:

Private Property StartRowIndex() As Integer
Get
Dim o As Object = ViewState ("StartRowIndex")
If o Is Nothing Then
Return O
Else
Return CType (o, Integer)

18 of 26

End If

End Get
Set (ByVal value As Integer)

ViewState ("StartRowIndex") = value
End Set

End Property

Private Property MaximumRows () As Integer
Get
Dim o As Object = ViewState ("MaximumRows")
If o Is Nothing Then
Return 5
Else
Return CType (o, Integer)
End If
End Get
Set (ByVal value As Integer)
ViewState ("MaximumRows") = value
End Set
End Property

Next, update the code in the Selecting event handler so that it uses the StartRowIndex and MaximumRows
properties instead of the hard-coded values of 0 and 5:

e.InputParameters ("startRowIndex") 0

e.InputParameters ("maximumRows") 5
At this point our page still shows just the first five records. However, with these properties in place, we’re ready to
create our paging interface.

Adding the Paging Interface

Let’s use the same First, Previous, Next, Last paging interface used in the default paging example, including the
Label Web control that displays what page of data is being viewed and how many total pages exist. Add the four
Button Web controls and Label below the Repeater.

<p style="text-align:center;">
<asp:Button runat="server" ID="FirstPage" Text="<< First" />
<asp:Button runat="server" ID="PrevPage" Text="< Prev" />
<asp:Button runat="server" ID="NextPage" Text="Next >" />
<asp:Button runat="server" ID="LastPage" Text="Last >>" />
</p>
<p style="text-align:center;">
<asp:Label runat="server" ID="CurrentPageNumber"></asp:Label>
</p>

Next, create C1ick event handlers for the four Buttons. When one of these Buttons is clicked, we need to update
the startRowIndex and rebind the data to the Repeater. The code for the First, Previous, and Next buttons is
simple enough, but for the Last button how do we determine the start row index for the last page of data? To
compute this index — as well as being able to determine whether the Next and Last buttons should be enabled — we
need to know how many records in total are being paged through. We can determine this by calling the
ProductsBLL class’s TotalNumberOfProducts () method. Let’s create a read-only, page-level property named
TotalRowCount that returns the results of the TotalNumberOfProducts () method:

Private ReadOnly Property TotalRowCount () As Integer
Get
'Return the value from the TotalNumberOfProducts () method
Dim productsAPI As New ProductsBLL()
Return productsAPI.TotalNumberOfProducts ()

19 of 26

End Get
End Property

With this property we can now determine the last page’s start row index. Specifically, it’s the integer result of the
TotalRowCount minus 1 divided by MaximumRows, multiplied by MaximumRows. We can now write the Click event
handlers for the four paging interface buttons:

Protected Sub FirstPage Click(sender As Object, e As EventArgs)
Handles FirstPage.Click
'Return to StartRowIndex of 0 and rebind data
StartRowIndex = 0
Products.DataBind ()

End Sub

Protected Sub PrevPage Click(sender As Object, e As EventArgs)
Handles PrevPage.Click
'Subtract MaximumRows from StartRowIndex and rebind data
StartRowIndex —-= MaximumRows
Products.DataBind ()

End Sub

Protected Sub NextPage Click(sender As Object, e As EventArgs)
Handles NextPage.Click
'Add MaximumRows to StartRowIndex and rebind data
StartRowIndex += MaximumRows
Products.DataBind ()

End Sub

Protected Sub LastPage Click(sender As Object, e As EventArgs)
Handles LastPage.Click
'Set StartRowIndex = to last page's starting row index and rebind data
StartRowIndex = ((TotalRowCount - 1) \ MaximumRows) * MaximumRows
Products.DataBind ()

End Sub

Finally, we need to disable the First and Previous buttons in the paging interface when viewing the first page of
data and the Next and Last buttons when viewing the last page. To accomplish this, add the following code to the
ObjectDataSource’s Selecting event handler:

' Disable the paging interface buttons, 1if needed
FirstPage.Enabled = StartRowIndex <> 0
PrevPage.Enabled = StartRowIndex <> 0

Dim LastPageStartRowIndex As Integer =

((TotalRowCount - 1) \ MaximumRows) * MaximumRows
NextPage.Enabled = (StartRowIndex < LastPageStartRowIndex)
LastPage.Enabled = (StartRowIndex < LastPageStartRowIndex)

After adding these c1ick event handlers and the code to enable or disable the paging interface elements based on
the current start row index, test the page in a browser. As Figure 15 illustrates, when first visiting the page the First
and Previous buttons will are disabled. Clicking Next shows the second page of data, while clicking Last displays
the final page (see Figures 16 and 17). When viewing the last page of data both the Next and Last buttons are
disabled.

20 of 26

A Untitled Pape - Microsall Internet Explorer r*_‘”‘EI |:-_||'F..||Y|
| Bl Edt View Favodtes ook Help gt
e T D - MR R Poewch frravorss @ B-0 B E @ MK ER

| ficckess | 8] hitpof flocalbrost=1 957/ Code PagngSor gDt slistepe ster Sorbing Wit CustosP sging aspe v £ o

Sorting and Paging Data in a
Repeater

Custom Paging

Acme Coffee

Category: Beverages
Supplier; Exotic Liguids

Acme Soda

Cateqory: Beverages
Supplier: Exotic Liguids

Acme Tea

Category: Beverages
Supplier: Exotic Liguids

Acme Water

Category: Beverages
Supplier: Exotic Liguids

Alice Mutton

Category: Meat/Poultry
Supplier: Paviova, Ltd.

[hest >) [Last >>]

i Local intranet

Figure 15: The Previous and Last Buttons are Disabled When Viewing the First Page of Products

21 of 26

A Untitled Page - Microsaft Internet Fxplorer

| Fle [t Wiew Favedtes ook Help

; bk =) - [d @ # | S oeach drFavorkes S 3- A W - €& » BB

* fchess |) hetp:flocahost:1957CodsPagngSertingDatal istfuspester SortingWithCustoePaging, asp « Bl

Working with Data TUtonials s serng i cusen Faans

Sorting and Paging Data in a
Repeater

Custom Paging

Aniseed Syrup

Category: Condiments
Supplier; Exotic Liquids

Boston Crab Meat

Category: Seafood
Suppliar: MNew England Seafood Cannery

Camembert Pierrot

Category: Dairy Products
Supplier: Gai paturage

Carnarvon Tigers

Category: Seafood
Supplier: Pavliova, Ltd.

Chai Tea

Cateqory: Beverages
Supplier: Exotic Liquids

Editing, Inserting, and
=

[Cc<First | [<Prav] [Nest > | [Last >> |

-

% | ocal intranet

Figure 16: The Second Page of Products are Dispalyed

22 of 26

B Untitled Pape - Micrasaft Internet Explorer E|r§| EIEIEI
| B Rt Yew Favoctes Jeok Help gl

Qoxk = & - @ @ ¢85 Pseawch drrovores & 55 @ - & M B 0B

Acckess |] bt flocahst=1957)CodeiPagingSortingDist st isHtepe sher SortrgWithCustomPaging, asp ¥ By

-

Working with Data Tutorials oseesia® orng i cusom ang

Horme

Sorting and Paging Data in a
Repeater

Baszic Reporting
Simple Display
Declarative Custom Paging
Parameters

Setting Paramster
Walles

Uncle Bob's Organic Dried Pears

Category: Produce
Supplier: Grandma Kelly's Homestead

Filtering Peports
Filter by Drop-Diown
List

Master-Datalls-
Detalls Cateqory: Confections

Master/Detal .ﬁé:m_s_s Supplier: Karklki Oy
Two Fages

Details of Selected

Valkoinen suklaa

Wwimmers gute Semmelknddel

Category: Grains/Cereals
Farr At Supplier: Plutzer LebensmittelgroBmarkte AG
Farmat Colors

Custom Content in a

Spdaies Category: Confections
Custom Content in & Supplier: Zaanse Snoepfabriak
Dretails'iew

Custorm Content in &

Custom C (C=re) (2Pmy)

Zaanse koeken

Figure 17: Clicking Last Displays the Final Page of Data

Step 7: Including Sorting Support with the Custom
Paged Repeater

Now that custom paging has been implemented, we’re ready to include sorting support. The ProductsBLL class’s
GetProductsPagedAndSorted method has the same startRowlndex and maximumRows input parameters as
GetProductsPaged, but permits an additional sortExpression input parameter. To use the
GetProductsPagedAndSorted method from SortingWithCustomPaging.aspx, we need to perform the fOHOWing
steps:

1. Change the ObjectDataSource’s selectMethod property from GetProductsPaged to
GetProductsPagedAndSorted.

2. Add a sortExpression parameter object to the ObjectDataSource’s SelectParameters collection.

Create a private, page-level sortExpression property that persists its value across postbacks through the

page’s view state.

4. Update the ObjectDataSource’s selecting event handler to assign the ObjectDataSource’s sortExpression
parameter the value of the page-level sortExpression property.

(98]

23 of 26

5. Create the sorting interface.

Start by updating the ObjectDataSource’s SelectMethod property and adding a sortExpression Parameter. Make
sure that the sortExpression Parameter’s Type property is set to String. After completing these first two tasks,
the ObjectDataSource’s declarative markup should look like the following:

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"
SelectMethod="GetProductsPagedAndSorted"
OnSelecting="ProductsDataSource Selecting">
<SelectParameters>
<asp:Parameter Name="sortExpression" Type="String" />
<asp:Parameter Name="startRowIndex" Type="Int32" />
<asp:Parameter Name="maximumRows" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

Next, we need a page-level SortExpression property whose value is serialized to view state. If no sort expression
value has been set, use “ProductName” as the default:

Private Property SortExpression() As String
Get
Dim o As Object = ViewState ("SortExpression")
If o Is Nothing Then
Return "ProductName"
Else
Return o.ToString ()
End If
End Get
Set (ByVal value As String)
ViewState ("SortExpression") = value
End Set
End Property

Before the ObjectDataSource invokes the Get ProductsPagedAndsorted method we need to set the sortExpression
parameter to the value of the SortExpression property. In the selecting event handler, add the following line
of code:

e.InputParameters ("sortExpression") = SortExpression

All that remains is to implement the sorting interface. As we did in the last example, let’s have the sorting interface
implemented using three Button Web controls that allow the user to sort the results by product name, category, or
supplier.

<asp:Button runat="server" id="SortByProductName"
Text="Sort by Product Name" />

<asp:Button runat="server" id="SortByCategoryName"
Text="Sort by Category" />

<asp:Button runat="server" id="SortBySupplierName"
Text="Sort by Supplier" />

Create Click event handlers for these three Button controls. In the event handler, reset the StartRowIndex to 0, set
the sortExpression to the appropriate value, and rebind the data to the Repeater:

Protected Sub SortByProductName Click(sender As Object, e As EventArgs)
Handles SortByProductName.Click

StartRowIndex 0
SortExpression = "ProductName"
Products.DataBind ()

End Sub

24 of 26

Protected Sub SortByCategoryName Click(sender As Object, e As EventArgs)
Handles SortByCategoryName.Click
StartRowIndex = 0
SortExpression = "CategoryName"
Products.DataBind ()
End Sub

Protected Sub SortBySupplierName Click(sender As Object, e As EventArgs)
Handles SortBySupplierName.Click
StartRowIndex = 0
SortExpression = "CompanyName"
Products.DataBind ()
End Sub

That’s all there is to it! While there were a number of steps to get custom paging and sorting implemented, the
steps were very similar to those needed for default paging. Figure 18 shows the products when viewing the last
page of data when sorted by category.

W Untitled Page - Microsoll Internet Explorer

Bk - 0 = 3 i /- Saardh Favores 8 (0= 0 ,ﬁ. ,b'_‘__ ‘}'ﬂa
A ‘.F..Emﬂ’-."ﬂ"!m:lﬁﬂiuﬁmmgmuﬂnmhﬁwmmlmt P E'ﬁl
Working with Data Tutorials Home > Paging and Sorting with the DataList and

R{pl-ﬁi[» inrﬂni wh‘h L"ustorn P:glng

Sorting and Paging Data in a Repeater

Custom Paging

1
[Sort by Product Name]ﬁ Soit by Category || Sort by Supplier |
|

Rogede sild
I:Cate?c-g_'. Seafood
upplier: Lynghysid

Speqgesild

Category: Seafood
=T, Ly T

Escargots de Bourgogne

Category: Seafood
; oLV E SN

Ritid Kaviar

(Category: Seafood |
Supplier: swensk sjoloda AB

) () v (o

% Local intranet

Figure 18: The Last Page of Data, Sorted by Category, is Displayed

Note: In previous examples, when sorting by the supplier “SupplierName” was used as the sort expression.
However, for the custom paging implementation, we need to use “CompanyName”. This is because the stored
procedure responsible for implementing custom paging — GetProductspPagedAndSorted — passes the sort
expression into the Row NUMBER () keyword, The Row NUMBER () keyword requires the actual column name rather

25 of 26

than an alias. Therefore, we must use CompanyName (the name of the column in the suppliers table) rather than
the alias used in the SELECT query (SupplierName) for the sort expression.

Summary

Neither the DataList nor Repeater offer built-in sorting support, but with a bit of code and a custom sorting
interface, such functionality can be added. When implementing sorting, but not paging, the sort expression can be
specified through the Datasourceselectarguments object passed into the ObjectDataSource’s Select method.
This DataSourceSelectArguments object’s SortExpression property can be assigned in the ObjectDataSource’s
Selecting event handler.

To add sorting capabilities to a DataList or Repeater that already provides paging support, the easiest approach is to
customize the Business Logic Layer to include a method that accepts a sort expression. This information can then
be passed in through a parameter in the ObjectDataSource’s SelectParameters.

This tutorial completes our examination of paging and sorting with the DataList and Repeater controls. Our next
and final tutorial will examine how to add Button Web controls to the DataList and Repeater’s templates in order to

provide some custom, user-initiated functionality on a per-item basis.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was David Suru.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4guysfromrolla.com.

26 of 26

