This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Sorting
Custom Paged Data

Introduction

Compared to default paging, custom paging can improve the performance of paging through data by several orders
of magnitude, making custom paging the de facto paging implementation choice when paging through large
amounts of data. Implementing custom paging is more involved than implementing default paging, however,
especially when adding sorting to the mix. In this tutorial we’ll extend the example from the preceding one to
include support for sorting and custom paging.

Note: Since this tutorial builds upon the preceding one, before beginning take a moment to copy the declarative
syntax within the <asp:Content> element from the preceding tutorial’s web page (EfficientPaging.aspx) and
paste it between the <asp:Content> element in the SortParameter.aspx page. Refer back to Step 1 of the
Adding Validation Controls to the Editing and Inserting Interfaces tutorial for a more detailed discussion on
replicating the functionality of one ASP.NET page to another.

Step 1: Reexamining the Custom Paging Technique

For custom paging to work properly, we must implement some technique that can efficiently grab a particular
subset of records given the Start Row Index and Maximum Rows parameters. There are a handful of techniques
that can be used to achieve this aim. In the preceding tutorial we looked at accomplishing this using Microsoft
SQL Server 2005°s new ROW_NUMBER () ranking function. In short, the Row NUMBER () ranking function assigns a
row number to each row returned by a query that is ranked by a specified sort order. The appropriate subset of
records is then obtained by returning a particular section of the numbered results. The following query illustrates
how to use this technique to return those products numbered 11 through 20 when ranking the results ordered
alphabetically by the ProductName:

SELECT ProductID, ProductName,

FROM
(SELECT ProductID, ProductName, ..., ROW NUMBER() OVER
(ORDER BY ProductName) AS RowRank
FROM Products) AS ProductsWithRowNumbers

WHERE RowRank > 10 AND RowRank <= 20

This technique works well for paging using a specific sort order (ProductName sorted alphabetically, in this case),
but the query needs to be modified to show the results sorted by a different sort expression. Ideally, the above
query could be rewritten to use a parameter in the OVER clause, like so:

SELECT ProductID, ProductName,

FROM
(SELECT ProductID, ProductName, ..., ROW NUMBER() OVER
(ORDER BY (@sortExpression) AS RowRank
FROM Products) AS ProductsWithRowNumbers

WHERE RowRank > 10 AND RowRank <= 20

Unfortunately, parameterized ORDER BY clauses are not allowed. Instead, we must create a stored procedure that
accepts a @sortExpression input parameter, but uses one of the following workarounds:

1 of 12



e Write hard-coded queries for each of the sort expressions that may be used; then, use 1F/ELSE T-SQL
statements to determine which query to execute.

o Use a CASE statement to provide dynamic ORDER BY expressions based on the @sortExpression input
parameter; see the “Used to Dynamically Sort Query Results” section in The Power of SQL casE Statements
for more information.

e Craft the appropriate query as a string in the stored procedure and then use the sp_executesqgl system stored
procedure to execute the dynamic query.

Each of these workarounds has some drawbacks. The first option is not as maintainable as the other two as it
requires that you create a query for each possible sort expression. Therefore, if later you decide to add new,
sortable fields to the GridView you will also need to go back and update the stored procedure. The second
approach has some subtleties that introduce performance concerns when sorting by non-string database columns
and also suffers from the same maintainability issues as the first. And the third choice, which uses dynamic SQL,
introduces the risk for a SQL injection attack if an attacker is able to execute the stored procedure passing in the
input parameter values of their choosing.

While none of these approaches is perfect, I think the third option is the best of the three. With its use of dynamic
SQL, it offers a level of flexibility the other two do not. Furthermore, a SQL injection attack can only be exploited
if an attacker is able to execute the stored procedure passing in the input parameters of his choice. Since the DAL
uses parameterized queries, ADO.NET will protect those parameters that are sent to the database through the
architecture, meaning that the SQL injection attack vulnerability only exists if the attacker can directly execute the
stored procedure.

To implement this functionality, create a new stored procedure in the Northwind database named
GetProductsPagedAndsorted. This stored procedure should accept three input parameters: @sortExpression, an
input parameter of type nvarchar (100) that specifies how the results should be sorted and is injected directly after
the “ORDER BY” text in the OVER clause; and @startRowIndex and @maximumRows, the same two integer input
parameters from the GetProductspaged stored procedure examined in the preceding tutorial. Create the
GetProductsPagedAndSorted stored procedure using the following script:

CREATE PROCEDURE dbo.GetProductsPagedAndSorted
(

@sortExpression nvarchar (100),

@startRowIndex int,

@maximumRows int

)

AS

-- Make sure a (@sortExpression is specified
IF LEN (@sortExpression) = 0
SET @sortExpression = 'ProductID'

-- Issue query
DECLARE @sqgl nvarchar (4000)
SET @sgl = 'SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderlLevel, Discontinued,
CategoryName, SupplierName
FROM (SELECT ProductID, ProductName, p.SupplierID, p.CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued,
c.CategoryName, s.CompanyName AS SupplierName,
ROW _NUMBER () OVER (ORDER BY ' + @sortExpression + ') AS RowRank
FROM Products AS p
INNER JOIN Categories AS c ON
c.CategoryID = p.CategoryID
INNER JOIN Suppliers AS s ON
s.SupplierID = p.SupplierID) AS ProductsWithRowNumbers
WHERE RowRank > ' + CONVERT (nvarchar (10), @startRowlIndex) +
' AND RowRank <= (' + CONVERT (nvarchar(10), @startRowIndex) + ' + '

20f12



+ CONVERT (nvarchar (10), @maximumRows) + ')'

-- Execute the SQL query
EXEC sp executesqgl @sql

The stored procedure starts by ensuring that a value for the @sortExpression parameter has been specified. If it is
missing, the results are ranked by product1D. Next, the dynamic SQL query is constructed. Note that the dynamic
SQL query here differs slightly from our previous queries used to retrieve all rows from the Products table. In prior
examples, we obtained each product’s associated category’s and supplier’s names using a subquery. This decision
was made back in the Creating a Data Access Layer tutorial and was done in lieu of using JoINs because the
TableAdapter cannot automatically create the associated insert, update, and delete methods for such queries. The
GetProductsPagedAndSorted stored procedure, however, must use JOINs for the results to be ordered by the
category or supplier names.

This dynamic query is built up by concatenating the static query portions and the €sortExpression,
@startRowIndex, and @maximumRows parameters. Since @startRowIndex and @maximumRows are integer
parameters, they must be converted into nvarchars in order to be correctly concatenated. Once this dynamic SQL
query has been constructed, it is executed via sp_executesql.

Take a moment to test this stored procedure with different values for the €sortExpression, @startRowIndex, and
@maximumRows parameters. From the Server Explorer, right-click on the stored procedure name and choose
Execute. This will bring up the Run Stored Procedure dialog box into which you can enter the input parameters
(see Figure 1). To sort the results by the category name, use “CategoryName” for the ¢sortExpression parameter
value; to sort by the supplier’s company name, use “CompanyName”. After providing the parameters’ values, click
OK. The results are displayed in the Output window. Figure 2 shows the results when returning products ranked 11
through 20 when ordering by the Unitprice in descending order.

Run Stored Procedure

The stored procedure «<[dbo].[GetProductsPagedAndSorted] = requires the Following

parameters:
Tvpe Direction Mame Yalue
nvarchar In @sortExpression nitPrice DESIC
ink In mskartRowIndesx 10
ink In @rnaximurmBPows 10 b |

(0] 4 ] [ Cancel

Figure 1: Try Different Values for the Stored Procedure’s Three Input Parameters

3of12



*Y Code - Micrasoll Visual Studka
Be (& Wew Poject Bukd Qebug Dgta  Jooks  YWndow Commurky  Help  fddins

- - S 44 ol = O L B [ pages EL
4 i B = o b e ] g
B b G tProdia NOATHWMNDFDF) doo Products, . NORTHSSND.HDE ) T O | SEre Explorers - o
ALTER PRCCETURE dbo. FetProduct=PagedindSorced :‘ & "Ji‘ '-_.
¢ P
SR o2 = [ Data Correchiors o
BaortExpression nearcher (100, = [ HORTHANDMOF
Estartfowind=x 1int, b [ Duskabass Disgrame
By imumPawa int - I Tables
Lo T 5 ¥ w M

Show output from;  Database Output g |t h | 3R
Juu-:ng [dba], |'|:..:-_:lru'm-=-=::;pu:.-'\.é::"-'a] '{' a:u“:lrp'n'-'--tm - BnitPrice I'.III:EE_, B::‘Arl:ﬂnn:l.n:ﬂu.l = 10, &-;:;Q&.éum = 10 A

Froduce I Producstfaze SupplierIl Categoryid (uanticyvFeclnie PnicFzace tr
27 Schoggl Schokolads 1l 3 100 - 100 g plecas 43,7 L4
[ Nerthugode Cranberry Ssacs b | z 1z 1T oz Jare 40 &
17 Alice Marcon 7 (3 20 - 1 kg wins ] i
1z fusze Hanchego La Pastors £ ! 1o - 500 g plegs. 2] B
5 Groochi di neans Alics I8 & E4 = IF0 g pEgE k) zl
(3] Cudbrandadaliosn 15 a 10 Ry plag. 36 e
7z Nozzarslla di Giowanni 14 4 4 I00 g pRgs 4.8 1%
B0 CamumheIT Pilerrot e 4 15 - 3] g rounds 34 1z
&4 Winmers gifa Sasmelknodel 12 Lt 20 bage z 4 piwces 33.2E 1
53 Parth FPasciss z4 & 48 pileces T8 o
Fo rows affecued. LN .

(L0 rowim) retarned)
BRETURE_VALDE = O
Finished rusming |dbo|. [FatPeedivet i PagedindSect ad)] . @
|
* *
| g e it :ﬂh { Rests || 5] Cutpust|

Ry Ln19 <ol 1 thi A

Figure 2: The Stored Procedure’s Results are Shown in the Output Window

Note: When ranking the results by the specified ORDER&bys; BY column in the OVER clause, SQL Server must sort
the results. This is a quick operation if there is a clustered index over the column(s) the results are being ordered by
or if there is a covering index, but can be more costly otherwise. To improve performance for sufficiently large
queries, consider adding a non-clustered index for the column by which the results are ordered by. Refer to

Ranking Functions and Performance in SQL Server 2005 for more details.

Step 2: Augmenting the Data Access and Business
Logic Layers

With the GetProductspPagedAndsorted stored procedure created, our next step is to provide a means to execute
that stored procedure through our application architecture. This entails adding an appropriate method to both the
DAL and BLL. Let’s start by adding a method to the DAL. Open the Northwind.xsd Typed DataSet, right-click
on the ProductsTableAdapter, and choose the Add Query option from the context menu. As we did in the
preceding tutorial, we want to configure this new DAL method to use an existing stored procedure -
GetProductsPagedAndSorted, in this case. Start by indicating that you want the new TableAdapter method to use
an existing stored procedure.

4 of 12



lableAdapter Query Configuration Wizard

[]B][2]X)
Choose a Command Type = : Z .
TableAdapter query uses SOL statements or a stored procedure, iy =
How should the TableAdapter query access the database?
() Use SOL statements

Specy a SELECT statement to load data.

) Create new stored procedure

Specify a SELECT statement, and the wizard will generate a new stored procedure bo select records.
(%){Use existing stored procedure
Choose an exdsting stored procedure,

Figure 3: Choose to Use an Existing Stored Procedure

down list in the next screen.

To specify the stored procedure to use, select the GetProductsbagedandsorted stored procedure from the drop-

lableAdapter Query Configuration Wizard

Choose an existing stored procedure

FER]X
Choose which stored procedure the DataSource Function is supposed to call,

(= |
:Fganeter: g

Results:
Pararneter Mames Result Columns
i@zortExpression
i@starkRowlnde:x
@maximumBows

<previous || Mest> ||

Finish

50of12

I[ Cancel ]




Figure 4: Use the GetProductsPagedAndSorted Stored Procedure

This stored procedure returns a set of records as its results so, in the next screen, indicate that it returns tabular
data.

TableAdapter Query Configuration Wizard E”E| E”E|

Choose the shape of data returned by the stored procedure i s
Choose if the stored procedure retums rows, a single value, or nothing. |i = —-1

what should the typed method For this stored procedure return?

() A single value - A typed function will be generated which retums a single value from the stored procedure.

(3 Mo value - & typed method will be generated to execute a stored procedure which doesn't return data,

<previoss || HMest> || Fnsh || cancel |

Figure 5: Indicate that the Stored Procedure Returns Tabular Data

Finally, create DAL methods that use both the Fill a DataTable and Return a DataTable patterns, naming the
methods FillPagedAndSorted and GetProductsPagedAndSorted, respectively.

60f 12



TableAdapter Query Configuration Wizard

Choose Methods to Generate b

The Tableadapter methods koad and save data between your application and the ' —
datsbase,

YWhich methods do you want to add to the TableAdapter?
Fill a DataTable

Creates a method that takes a DataTable or Dataset as a parameter and execukes the SOL stakement or
SELECT stored procedure enkerad an the previous pans.

Method name:  FilPagedAndSorted
Return a DataTahle

Creates a method that returns a new DataTable Filled with the results of the SOL statement or SELECT skored
procedure entered on the previous page.

Method name: GetPrndmtsPagedﬁndSarted

< Previous “ Mt > _]I Finish || Cancel ]

Figure 6: Choose the Methods’ Names

Now that we’ve extended the DAL, we’re ready to turn to the BLL. Open the ProductsBLL class file and add a
new method, GetProductsPagedandSorted. This method needs to accept three input parameters —
sortExpression, startRowIndex, and maximumRows — and should simply call down into the DAL’s
GetProductsPagedAndSorted method, like so:

<System.ComponentModel.DataObjectMethodAttribute ( _
System.ComponentModel .DataObjectMethodType.Select, False)>

Public Function GetProductsPagedAndSorted(ByVal sortExpression As String,
ByVal startRowIndex As Integer, ByVal maximumRows As Integer)
As Northwind.ProductsDataTable

Return Adapter.GetProductsPagedAndSorted (sortExpression, startRowIndex, maximumRows)
End Function

Step 3: Configuring the ObjectDataSource to Pass in
the SortExpression Parameter

Having augmented the DAL and BLL to include methods that utilize the GetProductsPagedAndsorted stored
procedure, all that remains is to configure the ObjectDataSource in the SortParameter.aspx page to use the new
BLL method and to pass in the sortExpression parameter based on the column that the user has requested to sort
the results by.

Start by changing the ObjectDataSource’s SelectMethod from GetProductsPaged to
GetProductsPagedAndSorted. This can be done through the Configure Data Source wizard, from the Properties
window, or directly through the declarative syntax. Next, we need to provide a value for the ObjectDataSource’s
SortParameterName property. If this property is set, the ObjectDataSource attempts to pass in the GridView’s

7 of 12



SortExpression property to the SelectMethod. In particular, the ObjectDataSource looks for an input parameter
whose name is equal to the value of the SortParameterName property. Since the BLL’s
GetProductsPagedAndSorted method has the sort expression input parameter named sortExpression, set the
ObjectDataSource’s SortExpression property to “sortExpression”.

After making these two changes, the ObjectDataSource’s declarative syntax should look similar to the following:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}" TypeName="ProductsBLL"
SelectMethod="GetProductsPagedAndSorted" EnablePaging="True"
SelectCountMethod="TotalNumberOfProducts" SortParameterName="sortExpression">
</asp:0bjectDataSource>

Note: As with the preceding tutorial, ensure that the ObjectDataSource does not include the sortExpression,
startRowIndex, or maximumRows input parameters in its SelectParameters collection.

To enable sorting in the GridView, simply check the Enable Sorting checkbox in the GridView’s smart tag, which
sets the GridView’s AllowSorting property to true and causing the header text for each column to be rendered as
a LinkButton. When the end user clicks on one of the header LinkButtons, a postback ensues and the following
steps transpire:

1. The GridView updates its SortExpression property to the value of the SortExpression of the field whose
header link was clicked

2. The ObjectDataSource invokes the BLL’s GetProductspPagedandSorted method, passing in the GridView’s

SortExpression property as the value for the method’s sortExpression input parameter (along with the

appropriate startRowIndex and maximumRows input parameter values)

The BLL invokes the DAL’s GetProductsPagedAndSorted method

4. The DAL executes the GetProductsPagedAndSorted stored procedure, passing in the @sortExpression
parameter (along with the @startRowIndex and @maximumRows input parameter values)

5. The stored procedure returns the appropriate subset of data to the BLL, which returns it to the
ObjectDataSource; this data is then bound to the GridView, rendered into HTML, and sent down to the end
user

(98]

Figure 7 shows the first page of results when sorted by the UnitPrice in ascending order.

8of12



3 Uintitled Page - Microseft Intermed Explorer

Bl Bt Vw Favorbes  Took  Help
Qe - O W 3 O searh Faworbes 3 C0s o0 W - & h b
l.‘_,"lhup:.'_-‘m_dm Hmrcn_-urpwc_s?p.wﬁmau.m ! G
Fe
Wnrking w“h Data Tutnria|$ Home * Paging and Sorting = Serting Data at the BLL or
DAL
Efficiently Paging and Sorting Through
Large Amounts of Data
Product Category supplier Oty Linit
Acrne Soda Beverages Exatic Liguids $1.45
Dary
Geltost Prochachs Morske Melerier Sot.g 4250
Suarana = . ; e ey 12 = 355 mi
Fantéstica Beverages Refrescos Americanas LTDA i 450
Eaonbu Seafood Mayumi's 2 kg box $6.00
y e \ 16 - 2 kg
Flko Mix Graing/Cersals G'day, Mate T &7.00
Taurtigre Meat/Foultry = Ma Malson 16 ples $7.495
Rhignbsau Flutzer 24 = 05|
Klostartier Gkt LebensmittelgroBmadrk te aG bottes ]
Tunnbriid Grains/Cereals FE kndckebrid A8 ;Eg's B9 o0
Teatime
Chocolate Confectons  Spedalty Biscuits, Lbd. ig t;ﬂf:i % ga.20
Biscuits pAeee s
Zaanze koeken Confections  Zaange Snoepfabriek ;Ex;: % - %9550
i i : 1234522
Chstam Content inoa | i
&l S Lol inkranst

Figure 7: The Results are Sorted by the UnitPrice

While the current implementation can correctly sort the results by product name, category name, quantity per unit,
and unit price, attempting to order the results by the supplier name results in a runtime exception (see Figure 8).

File Edit Miew Favaorites  Tools  Help +
] . : — " o = 3>
: OBk - © ERE! : J- Search =7 Favorites €2 ([ A &FJ -
¢ Address |@ http: fflocalhost 4401 CodefPagingAndSortingSorkParameter, aspx V| G0

~

Server Error in '/Code' Application.

Description: An unhandled exception occurred during the execution of the current web
request. Please review the stack trace far mare information about the errar and where it
originated in the code.

Exception Details: System Data SgiClient . SqlException: Invalid column name
"SupplietMame'. w

|
Invalid column name 'SupplierName’.
|

I@ Cone ‘:ﬂ Local inkranet

Figure 8: Attempting to Sort the Results by the Supplier Results in the Following Runtime Exception

90of 12



This exception occurs because the SortExpression of the GridView’s SupplierName BoundField is set to
SupplierName. However, the supplier’s name in the suppliers table is actually called CompanyName — we have
been aliased this column name as SupplierName. However, the OVER clause used by the Row NUMBER () function
cannot use the alias and must use the actual column name. Therefore, change the SupplierName BoundField’s
SortExpression from “SupplierName” to “CompanyName” (see Figure 9). As Figure 10 shows, after this change
the results can be sorted by the supplier.

=13
File Edit Mjew Favorites  Tools  Help —HH

xr

Qek - & - [¢ [ : D Search <7 Favorites €20 (0 1L |ﬂi -
: Address @ htkp: flocalhost: 4401 (Cade/PagingandSorting)SortParameter . aspex bl G0
A
Server Error in '/Code' Application.
H r T I
Invalid column name 'SupplierName’.
Description: &An unhandled exception occurred during the execution of the current web
request. Please reviewy the stack trace for more information about the error and where it
originated in the code.
Exception Details: System Data SoiClient. SqlException: Invalid column name
"SupplierMame', o
5 | ! *
I@I Caone ‘ﬂ Local inkranet

Figure 9: Change the SupplierName BoundField’s SortExpression to “CompanyName”

10 of 12



3 Lntitled Pape - Microsofl Imternet Fxplorer F;FE |'-n_||.ﬁ"?|

Bl Edt  Vew Favorkes  Took . Help
Qock = O @@t Poowch Srraoms @ (3- 5 ] - RN
Ardiiress I_"lhtl::.:Jﬂncal'.n‘st:11Dl§cmmag'qﬂnﬁmrq'iummv.am L -} (=)
Working with Data Tutorials  Hens > psaing sna sarmng > sortng oats sttne sL
or DAL
Efficiently Paging and Sorting Through
SaHlE Repor¥ng Large Amounts of Data
Simple Display
Daclarative Product Cateqory Supplier Qv SUnit |
Parameters r : BLix pyeL 12-75d S
Cote de Blaye Beverages eocléziastigues hokies 263,50
Sething Parameter AL Joyeus 75O oC per
ik res Chartreuse verte Beverages sotlésiastiques Rakts £18.00
Filtering Peports Sazquabch Ale  Beverages Bigfoot Breweries Eitl-.lf L $14.00
Filter by Crog-Down < 24 =12 0z
List Steeleye Stout  Beverages Bigfoot Breweries Baris $18.00
Mastar-Datade- Laughirg 24-12 0z
Datails Lumberjack Beverages Bigfoot Breweries boktl $14.00
- Lager e
Mazter/Detall Across Cair
? ¥ Cooperativa de
Two Pages Queso Cabrales Froducts  Quesos ‘Las Cabras' 1 kg pkg. $21.00
th&:_,?f mm Dueso Manchago Dalry Cooperativa de 10 - 500 g $38.00
Raw - La Pastora Products  Quesos 'Las Cabras' pkgs,
Escargots de
A BoLrgogne sesfond  Escangots Mouvesus 24 pleces  $13.2%
Tk g s 10 boxes
- 5 Exotic Lic 1 19,595
Format Colors Chai Beverages Exotic Liquids 20 bags $19.95
CuStom Contentina Chang Beverages Exotic Liquids ﬁ;'{n:f 9% g19.00
Gridulew
S 12345 .22
Custom Cantentin a a
P demilal A
&l % Local intranet

Figure 10: The Results Can Now Be Sorted by Supplier

Summary

The custom paging implementation we examined in the preceding tutorial required that the order by which the
results were to be sorted be specified at design time. In short, this meant that the custom paging implementation we
implemented could not, at the same time, provide sorting capabilities. In this tutorial we overcame this limitation
by extending the stored procedure from the first to include a ¢sortExpression input parameter by which the
results could be sorted.

After creating this stored procedure and creating new methods in the DAL and BLL, we were able to implement a
GridView that offered both sorting and custom paging by configuring the ObjectDataSource to pass in the
GridView’s current SortExpression property to the BLL SelectMethod.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting.NET.

110f12



Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Carlos Santos.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

12 of 12



