This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Batch Inserting

Introduction

In the Batch Updating tutorial we looked at customizing the GridView control to present an interface where
multiple records were editable. The user visiting the page could make a series of changes and then, with a single
button click, perform a batch update. For situations where users commonly update many records in one go, such an
interface can save countless clicks and keyboard-to-mouse context switches when compared to the default per-row
editing features that were first explored back in the An Overview of Inserting, Updating, and Deleting Data
tutorial.

This concept can also be applied when adding records. Imagine that here at Northwind Traders we commonly
receive shipments from suppliers that contain a number of products for a particular category. As an example, we
might receive a shipment of six different tea and coffee products from Tokyo Traders. If a user enters the six
products one at a time through a DetailsView control, they will have to choose many of the same values over and
over again: they will need to choose the same category (Beverages), the same supplier (Tokyo Traders), the same
discontinued value (False), and the same units on order value (0). This repetitive data entry is not only time
consuming, but is prone to errors.

With a little work we can create a batch inserting interface that enables the user to choose the supplier and category
once, enter a series of product names and unit prices, and then click a button to add the new products to the
database (see Figure 1). As each product is added, its ProductName and UnitPrice data fields are assigned the
values entered in the TextBoxes, while its CategoryID and supplierID values are assigned the values from the
DropDownlLists at the top fo the form. The Discontinued and UnitsOnOrder values are set to the hard-coded
values of False and 0, respectively.

3 Untitled Page - Micresslt ntarnes Explarss G R IERE

Bl gdt Wew Fgvorkes Took b

Qe - 5 3 & Sewch Favurkes 4 - M- & LB
e] e o ahost-ZELONSSPHET_Dwta_Tuborial_66_C5[Batohata Eatchinsst sap: w o
Working with Data Tutorials Heme > Werking with Batzhed Data > Bateh Inserting

Horme

Batch Inserting

BasIC Reportng
Simple Display Add Products From Shipment
Croclarative
Pacameters suppler: —
Sethng Faramater Produck: Tokyo Tes Price: ¢ 1 55
Viles
Product: Bast Coffes Price: g 093
Product: Too Lne Tea Price) £ 4.95
Fiter e - m :
L.'r‘:f i Product: Even Better Coffes Price; §1.25
Master-Datals- Product: Price: &
[etais | Add Products from Shipment] | canced |
Masper/Detal Acrdss =
&1 Sl Local intranat

Figure 1: The Batch Inserting Interface

1 of 20

In this tutorial we will create a page that implements the batch inserting interface shown in Figure 1. As with the
previous two tutorials, we will wrap the insertions within the scope of a transaction to ensure atomicity. Let’s get
started!

Step 1: Creating the Display Interface

This tutorial will consist of a single page that is divided into two regions: a display region and an inserting region.
The display interface, which we’ll create in this step, shows the products in a GridView and includes a button titled
“Process Product Shipment”. When this button is clicked, the display interface is replaced with the inserting
interface, which is shown in Figure 1. The display interface returns after the “Add Products from Shipment” or
“Cancel” buttons are clicked. We’ll create the inserting interface in Step 2.

When creating a page that has two interfaces, only one of which is visible at a time, each interface typically is
placed within a Panel Web control, which serves as a container for other controls. Therefore, our page will have
two Panel controls — one for each interface.

Start by opening the BatchInsert.aspx page in the BatchData folder and drag a Panel from the Toolbox onto the
Designer (see Figure 2). Set the Panel’s 1D property to DisplayInterface. When adding the Panel to the
Designer, its Height and width properties are set to S0px and 125px, respectively. Clear out these property values
from the Properties window.

5 ASPMET _Data_Tutorial 66 _C5 . Microsolt Visual Studio
Ebe: Edb Pew webgte Buld [ebug Fpmat Layowt Jook Window Communty Hep Addns

C B E N N RN B0} (% biog BigsTablsAdapter L
BRI 1 L : =
2 - = o
o ke o x| - x | gt Sux
g il 1mage ‘3 7 # | panell Systen. Wb, UL WebControk. Fane =
= L Trsgabian I |« ".-"l.i.l",-
0 Table v sl Ll

= \ f {Ex) Y
i L 1".J|.1;- Displurmrfm]

HiddwnFald O .
T - Aocessey
B Lteral Content - Cortetd (Custom) Bicicickor 3
T 2
e = Backimagely
e Batch Inserting el
. = Bawcker Tle Pk Sek
- : 7 Burckrickh
.. Cosillass
= | Dref aultButbon
LMo Direction PaokSet
i e
= . 5 Enaible Trerming Trum
EnablaVeedtiate Trim
iew
= B Fork
3 Substiution FnsC ok O z
Lol
5 DefsultBuotiton
g i | The defau butren For the parel
CheckBard istvaldator
¥
- Data F———— - ;
B Forker w ||| by | caspicorkentdcontent] > | <px || caspepanei#dieplninterfa. > | clSehy, . (P5RProp... Mg Sary... | Cas
L Erver List | (5] oukput |55 Find Results |
Py

Figure 2: Drag a Panel from the Toolbox onto the Designer

Next, drag a Button and GridView control into the Panel. Set the Button’s ID property to ProcessShipment and its
Text property to “Process Product Shipment”. Set the GridView’s 1D property to ProductsGrid and, from its
smart tag, bind it to a new ObjectDataSource named Productsbatasource. Configure the ObjectDataSource to
pull its data from the ProductsBLL class’s GetProducts method. Since this GridView is used only to display data,
set the drop-down lists in the UPDATE, INSERT, and DELETE tabs to “(None)”. Click Finish to complete the

2 of 20

Configure Data Source wizard.

Configure Data Source - ProductsDataSource E”E| E]@

JJ Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

Choose & method of the business object that returns data bo associate with the SELECT operation. The
method can return a DataSet, DataReader, or strongly-byped colleckion,

Exarmple; GetProducts(Int32 cakegaryld), returns a DataSet,

Choose a method:

GetProducks(), returns ProductsDataTable W |
GetProductByProduckID{Int 32 productiD', returns ProductsDataTable

GetProducks)), returns ProducteDakaTable

GetProductsAsPagedDataSource(Int32 pagelndey, Int32 pageSize], returns PagedDataSource
GetProducksByCategoryID{Int32 categaryID), returns ProducksDataTable

GetProductsEySupplisriDiInt32 supplierID), returns ProducksDataTable

GetProductsPaged{Int32 startRowlndesx, Ink32 maximumRows), returns ProductsDataTable
GetProducksPagedandSortediString sortExpression, Int32 startRowlnds:, Int32 maximurmPows), retumns Product
GetProducksSorkedAsPagedDataSourceShring sortExpression, Int32 pagelndex, Ink32 pageSize), returns Paged!

o>] (et]

Figure 3: Display the Data Returned from the ProductsBLL Class’s GetProducts Method

3 0f 20

Configure Data Source - ProductsDataSource @@ @@

Define Data Methods
1 "_l
==
| SELECT | UPDATE | ISERT | DELETE |

Chaose & methad of the business objeck to assaciste wikh the UPDATE operation. The method shauld
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

Examples: UpdateProduct{Product p), or UpdateProduck(Int32 productiD, Skring name, Double price)

Choose a method:
| (Mane) |

UipdateProduct{String producthlame, Mullable <Decimal> unitPrice, Int32 produckID), returns Boolean
LipdateProduct{String productiarne, Mullable <Decimal> unitPrice, Nullable<Int1& = unitsInStock, Int32 productiD
UpdateProdudt{String productiame, Mullable <Int32 = categoryID, Mullable<Int32 > supplierlD, Bookzan discontin
UpdateProduct(String productiame, Mullable <Int32 = supplierlD, Mullable <Int32 = cateqoryID, String quantityPer
UpdateProduct{String producthlame, String guantityFPerUnit, Int32 productiD), returns Boclean

[Enish | [cancel |

Figure 4: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE Tabs to “(None)”

After completing the ObjectDataSource wizard, Visual Studio will add BoundFields and a CheckBoxField for the
product data fields. Remove all but the ProductName, CategoryName, SupplierName, UnitPrice, and
Discontinued fields. Feel free to make any aesthetic customizations. I decided to format the UnitPrice field as a
currency value, reordered the fields, and renamed several of the fields’ HeaderText values. Also configure the
GridView to include paging and sorting support by checking the “Enable Paging” and “Enable Sorting”
checkboxes in the GridView’s smart tag.

After adding the Panel, Button, GridView, and ObjectDataSource controls and customizing the GridView’s fields,
your page’s declarative markup should look similar to the following:

<asp:Panel ID="DisplayInterface" runat="server">
<p>
<asp:Button ID="ProcessShipment" runat="server"
Text="Process Product Shipment" />
</p>
<asp:GridView ID="ProductsGrid" runat="server" AllowPaging="True"
AllowSorting="True" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ProductsDataSource">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />

4 of 20

<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False"
SortExpression="UnitPrice">
<ItemStyle HorizontalAlign="Right" />
</asp:BoundField>

<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"

SortExpression="Discontinued">
<ItemStyle HorizontalAlign="Center" />
</asp:CheckBoxField>
</Columns>
</asp:Gridview>
<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldValuesParameterFormatString="original {O0}"
SelectMethod="GetProducts" TypeName="ProductsBLL">
</asp:0bjectDataSource>
</asp:Panel>

Note that the markup for the Button and GridView appear within the opening and closing <asp:Panel> tags. Since
these controls are within the DisplayInterface Panel, we can hide them by simply setting the Panel’s visible
property to False. Step 3 looks at programmatically changing the Panel’s visible property in response to a button

click to show one interface while hiding the other.

Take a moment to view our progress through a browser. As Figure 5 shows, you should see a “Process Product

Shipment” button above a GridView that lists the products ten at a time.

T Uintithed Page - Micresaft Intornet Fxplorer
Ble Edt Wew Fogvotes ook Help

[+ 1 SRR W F 6 et drFeonss £ (- B (- € " i H
&Y hitp:flocabost ZELOMMEPMET Duta Tuborial 65 _C/Ratchbistaatchinsentsepo ol =
Working with Data Tutorials Home > Werking with Batched Data > Batch Inserting

Batch Inserting

[Process Product Shipment |
Product Category Price Discontinued
Cha Tea Beverages Exotic Liquids $19.95
Chang Beverages Exobic Liguids $19.25
Antseed Syrup Condmenks Exotic Liquids $10.00
ghef Anton's Capun Condiments g:r Orleans Caln o0 o
N o G v
@ oS GumiDo Mew eans Cajun
List vk Condments Delights $21.35
Master-Datalls- Grandma's Boysenbarry Grandma Kely's
DC=tails Spread Condimants Hoftias basd F30.25
Master/Detal dorass Uricle Bob's Organic Grandma Kelly's :
T%aFaﬁEs Drried Pears Produce Haomestead 00
Nerthwoods Cranberry Grandma Kelly's
m’tﬂ*ﬁ Df s“uﬂ'ﬂ Saue Condments Homestead 5‘35-‘:"3
RoW Mishi Kobe Miku Mest/Polliry Tokyo Traders $F7.00
lkura Seafood Tokyo Traders $31.00

Figure 5: The GridView Lists the Products and Offers Sorting and Paging Capabilities

50f20

Step 2: Creating the Inserting Interface

With the display interface complete, we’re ready to create the inserting interface. For this tutorial, let’s create an
inserting interface that prompts for a single supplier and category value and then allows the user to enter up to five
product names and unit price values. With this interface, the user can add one to five new products that all share the
same category and supplier, but have unique product names and prices.

Start by dragging a Panel from the Toolbox onto the Designer, placing it beneath the existing DisplayInterface
Panel. Set the 1D property of this newly added Panel to InsertingInterface and set its Visible property to
False. We’ll add code that sets the InsertingInterface Panel’s Visible property to True in Step 3. Also clear
out the Panel’s Height and width property values.

Next, we need to create the inserting interface that was shown back in Figure 1. This interface can be created
through a variety of HTML techniques, but we will use a fairly straightforward one: a four-column, seven-row
table.

Note: When entering markup for HTML <table> elements, I prefer to use the Source view. While Visual
Studio does have tools for adding <table> elements through the Designer, the Designer seems all too willing
to inject unasked for style settings into the markup. Once I have created the <table> markup, I usually
return to the Designer to add the Web controls and set their properties. When creating tables with pre-
determined columns and rows I prefer using static HTML rather than the Table Web control because any
Web controls placed within a Table Web control can only be accessed using the FindControl
("control1D") pattern. I do, however, use Table Web controls for dynamically-sized tables (ones whose
rows or columns are based on some database or user-specified criteria), since the Table Web control can be
constructed programmatically.

Enter the following markup within the <asp:Panel> tags of the InsertingInterface Panel:

<table class="DataWebControlStyle" cellspacing="0">

<tr class="BatchInsertHeaderRow">
<td class="BatchInsertLabel">Supplier:</td>
<td></td>
<td class="BatchInsertLabel">Category:</td>
<td></td>

</tr>

<tr class="BatchInsertRow">
<td class="BatchInsertLabel">Product:</td>
<td></td>
<td class="BatchInsertLabel">Price:</td>
<td></td>

</tr>

<tr class="BatchInsertAlternatingRow">
<td class="BatchInsertLabel">Product:</td>
<td></td>
<td class="BatchInsertLabel">Price:</td>
<td></td>

</tr>

<tr class="BatchInsertRow">
<td class="BatchInsertLabel">Product:</td>
<td></td>
<td class="BatchInsertLabel">Price:</td>
<td></td>

</tr>

<tr class="BatchInsertAlternatingRow">

6 of 20

<td class="BatchInsertLabel">Product:</td>
<td></td>
<td class="BatchInsertLabel">Price:</td>
<td></td>

</tr>

<tr class="BatchInsertRow">
<td class="BatchInsertLabel">Product:</td>
<td></td>
<td class="BatchInsertLabel">Price:</td>
<td></td>

</tr>

<tr class="BatchlInsertFooterRow">
<td colspan="4">
</td>

</tr>

</table>

This <table> markup does not include any Web controls yet, we’ll add those momentarily. Note that each <tr>
element contains a particular CSS class setting: BatchInsertHeaderRow for the “header” row where the supplier
and category DropDownLists will go; BatchInsertFooterRow for the “footer” row where the “Add Products from
Shipment” and “Cancel” Buttons will go; and alternating BatchInsertRow and BatchInsertAlternatingRow
values for the rows that will contain the product and unit price TextBox controls. I’ve created corresponding CSS
classes in the styles.css file to give the inserting interface an appearance similar to the GridView and
DetailsView controls we’ve used throughout these tutorials. These CSS classes are shown below.

/*** Styles for ~/BatchData/BatchlInsert.aspx tutorial **x/
.BatchInsertLabel

{
font-weight: bold;
text-align: right;

.BatchInsertHeaderRow td

{
color: White;
background-color: #900;
padding: 1llpx;

.BatchInsertFooterRow td
{

text-align: center;
padding-top: 5px;

.BatchInsertRow
{
}

.BatchInsertAlternatingRow
{

background-color: #fcc;

With this markup entered, return to the Design view. This <table> should show as a four-column, seven-row table
in the Designer, as Figure 6 illustrates.

7 of 20

#2 ASPHET _Data_Tutorial 66 _C5S - Microsoft Yisval Studio

Ble Edt Wew Webgte Pubd Debug Fomat Loyot Jook Window Commondty Hep dddns
e T el o e - B [# blop BlogsTablsadapter g
B LA L = 1=
x F A
> = v % |ShbenBgber = 0 X
st s (o sk abc 000 N
8 [%_Porker abc sbc abc £0.80 P O3, _\ASPET_Duata_Tut 4
A Lo abc abc abic £0.90 B L5 App Code
sl TerchBom f) App Dt
3 12) § & App_Trwmnes
|£, Budton
] = o) BeoxReporting
I:;uihu.m ‘BtjectDataSource - ProcuctsDatasouce oy R
(@) Imageiution - £ |5 atchDelete, e
A HypesLink R s R ® |TZ Batchingart aspe
= Supplier: Category i _. plaith
3 ListBon Product: Price: : —'fg':'“‘*"-ﬂ“'
[2] Checke Product: Price: | J;WW"‘:“““'W
1= checkBaslist Product: Price: i O Brochures
@ Radubutton Product; Price; i [Caching
achmRtonL it Product: Price: [CushomButtons
i £) CustomButtonsDatalist
i Image f - [CustomFormatting
i Imagablap L i () DatalstRepesteBasics
] Table || ¥ o Daslatepesteite
p— B Gl Ecit Defstelratal i il
SR A | »
gl | (250>] < o otk | o sl > ... 57, M5 R
_,‘:,Fr::\rln' 5] Cukput _;JFl'.':F.f-:-:‘-'il
Faady

Figure 6: The Inserting Interface is Composed of a Four-Column, Seven-Row Table

We’re now ready to add the Web controls to the inserting interface. Drag two DropDownLists from the Toolbox
into the appropriate cells in the table — one for the supplier and one for the category.

Set the supplier DropDownList’s ID property to Suppliers and bind it to a new ObjectDataSource named
SuppliersDataSource. Configure the new ObjectDataSource to retrieve its data from the SuppliersBLL class’s
GetSuppliers method and set the UPDATE tab’s drop-down list to “(None)”. Click Finish to complete the
wizard.

8 0f 20

Configure Data Source - SuppliersDataSource E”E E]@

Define Data Methods

=%
| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 cakegoryld), returns a DataSet,

Choose a method:

GetSuppliers(), returns SuppliersDataTable W |

GetSupplierBySupplier I InkS2 supolierD), reburns SuppliersDataTable
liersi), returns SuppliessbakaTable

GetSuppliersByCountry(String country), returns SuppliersDataTable

o> () (ot]

Figure 7: Configure the ObjectDataSource to Use the suppliersBLL Class’s GetSuppliers Method

Have the suppliers DropDownList display the CompanyName data field and use the supplierID data field as its
ListItems’ values.

9 of 20

Data Source Configuration Wizard [E| ﬁg@

Choose a Data Source

Select a data source:
suppliersDiataSource ~l
Select a data field bo display in the DropDownlist:

\Companyhlame bl

&

Refresh Schema

| ok || cancel |

Figure 8: Display the CompanyName Data Field and Use SupplierID as the Value

Name the second DropDownList Categories and bind it to a new ObjectDataSource named
CategoriesDataSource. Configure the CategoriesDataSource ObjectDataSource to use the CategoriesBLL
class’s GetCategories method; set the drop-down lists in the UPDATE and DELETE tabs to “(None)” and click

Finish to complete the wizard. Finally, have the DropDownList display the CategoryName data field and use the
CategoryID as the value.

After these two DropDownLists have been added and bound to appropriately configured ObjectDataSources, your
screen should look similar to Figure 9.

10 of 20

#% ASPHET. Data, Tulorial_86_CS - Microsoft Yiual Studio =1 e=
B Edt W ebite (ol [elag Fomst Lapowt Todh Window Coomuondy Help Gdkdins

L R e o W Bl bhoo Bl TableRdigter &
= Werdana = pt =LB O T4 - == 5
= Babchilata Batchlnsest. asps™ - - - W &
. ab atsc BDC S0.70 2
abc aksc albc £0.80
abe akt sk §0.590

'bhremmsnu-:e = ProductsDustaSource

Supphier: ObjectDataSource - SuppbesDatasor e Cateqoryi ObjectiataSmerce - CotegonesiutaSor e

Product: Price:

Produck: Price: ()
Product: Price:
Product: Price:
Product: Price:
I "
¥
| & Senrce chady> || samcoontent#contertl > | |<amipencifreartngnter > |
&] ntpt (SR F

Figure 9: The “Header” Row Now Contains the Ssuppliers and Categories DropDownLists

We now need to create the TextBoxes to collect the name and price for each new product. Drag a TextBox control
from the Toolbox onto the Designer for each of the five product name and price rows. Set the 1D properties of the
TextBoxes to ProductNamel, UnitPricel, ProductName2, UnitPrice2, ProductName3, UnitPrice3, and so on.

Add a CompareValidator after each of the unit price TextBoxes, setting the ControlTovalidate property to the
appropriate ID. Also set the Operator property to GreaterThanEqual, ValueToCompare to “0”, and Type to
currency. These settings instruct the CompareValidator to ensure that the price, if entered, is a valid currency
value that is greater than or equal to zero. Set the Text property to “*”, and ErrorMessage to “The price must be
greater than or equal to zero. Also, please omit any currency symbols.”

Note: The inserting interface does not include any RequiredFieldValidator controls, even though the
ProductName field in the Products database table does not allow NULL values. This is because we want to
let the user enter up to five products. For example, if the user were to provide the product name and unit
price for the first three rows, leaving the last two rows blank, we’d just add three new products to the system.
Since ProductName is required, however, we will need to programmatically check to ensure that if a unit
price is entered that a corresponding product name value is provided. We’ll tackle this check in Step 4.

When validating the user’s input, the CompareValidator reports invalid data if the value contains a currency
symbol. Add a “$” in front of each of the unit price TextBoxes to serve as a visual cue that instructs the user to
omit the currency symbol when entering the price.

Lastly, add a ValidationSummary control within the InsertingInterface Panel, settings its ShowMessageBox
property to True and its ShowSummary property to False. With these settings, if the user enters an invalid unit price
value, an asterisk will appear next to the offending TextBox controls and the ValidationSummary will display a
client-side messagebox that shows the error message we specified earlier.

At this point, your screen should look similar to Figure 10.

11 0f20

5 ASPHET _Data_Tuterial g# C5 - Microssdt Veual Studis

Be i Yew Webgte Buld [Debug Fowet Leyow Jook Windew Comewrly el Addes
ERSF RS - N WO P b op Ttk

= B0 uALL =8 .
Bk chidat a/ Tchlnsert aspu » X Propaciet - B X
A ValdshonSurenaryl Seden e v

y

e ok 0,80
abxc sbc 090 = [i1}] #
iz fLIem—— A
fien} e P p———
Db bl afimanon - Prochetiias ot e ancersi ey
BackCoke Ll
BorderColer []
s <] el =l

Puordies ity
Copllarks
Dedary®ienda Bediin

Cabegory: Ol aSmmoe - 5 sy

EnableChord e Tngs

Product:|" Priceis" L Erustied Tre
ErusbdaTramarg Trise
i Hgd u
Product: Pricei § Enbleiiemiaty Troe
Product: Pricerg’ u B rot
. . rorecokr [Red
Product: Price: g ¥ P
Products Price:s" ¥ g
Showdenwgsts Tror
L ShonGummyy False
. B Sl
Tablraiex (]
oy [TERTR
3 Parer gt LY Mgy TR
o - Saeplaplian, 1] ribde T b
o 0 [y
v Frog et rame of the tontral
- ¥
Ay —— T abwsdly e | apoiiibentianiet] b || CairianaliTaetronier | covabdalioriusiany fra_ » =1} pr... Ty
Ak 1 -
Rady

Figure 10: The Inserting Interface Now Includes TextBoxes for the Products’ Names and Prices

Next we need to add the “Add Products from Shipment” and “Cancel” buttons to the “footer” row. Drag two
Button controls from the Toolbox into the footer of the inserting interface, setting the Buttons’ ID properties to
AddProducts and CancelButton and Text properties to “Add Products from Shipment” and “Cancel”,
respectively. In addition, set the CancelButton control’s Causesvalidation property to false.

Finally, we need to add a Label Web control that will display status messages for the two interfaces. For example,
when a user successfully adds a new shipment of products, we want to return to the display interface and display a
confirmation message. If, however, the user provides a price for a new product but leaves off the product name, we
need to display a warning message since the productName field is required. Since we need this message to display
for both interfaces, place it at the top of the page outside of the Panels.

Drag a Label Web control from the Toolbox to the top of the page in the Designer. Set the ID property to
StatusLabel, clear out the Text property, and set the Visible and EnableViewState properties to False. As we
have seen in previous tutorials, setting the Enableviewstate property to False allows us to programmatically
change the Label’s property values and have them automatically revert back to their defaults on the subsequent
postback. This simplifies the code for showing a status message in response to some user action that disappears on
the subsequent postback. Finally, set the StatusLabel control’s CssClass property to “Warning”, which is the
name of a CSS class defined in styles.css that displays text in a large, italic, bold, red font.

Figure 11 shows the Visual Studio Designer after the Label has been added and configured.

12 of 20

ASPHET Data Tutorial &6& C5 - Micresoft Yisual Studie

B ES Yew eebgle Quld [ebop Fpmet Laged Jook Window Qomemuety Bl fddns
@ - - e A b A 8 bog PogTabinddacher &
B S U £
o T |« natchDota batchinsert. asp = ¢ | (e M
o = Standard ™ | StatusLabel System web. LD.webCo =
Poanber | 1 = .JI F -
: S e
wd Fecion bt } el
(3] Buston "Eu'ltﬂlt - Contont] (Custom) T
_| LirkBudbor T e o AssoishadConi
(3] 1msgebuston Batch Inserting EachCok |
& Hyperink A I |
S8 CregOrmrtrt [StatuslLabell] ok Woiie
a B e ‘el
vo LetBas
- i [Cssiass Warning |
] chedeo [7___ Process Product Shomant | e e
Chackionl ket EnabisTheming _ Trus
& Padelutton vroduct Category Supplier Price [Discontinued
Fadolstond it abc abc abr 40,00 ot
S FureC ok |
- Bk abe Ak $9,10 ot
S Insgerip
= Ttk abet abc sk F0.20 SkiniDr U
n =y a
1= B b abe A 0,320 e
HddenField abc abc B 0,40 w | Thes beck b e shioswn Por Hhe Label,
B Lesral ¥
T Calerclr o | [ttty campocontorticontent > || ap || cngclbal a3 | sl |Ppra,., (B ser,,. | Fjca
B ¢ 750 outpt| S Find Results
By

Figure 11: Place the statusLabel Control Above the Two Panel Controls

Step 3: Switching Between the Display and Inserting Interfaces

At this point we have completed the markup for our display and inserting interfaces, but we’re still left with two
tasks:

e Switching between the display and inserting interfaces
e Adding the products in the shipment to the database

Currently, the display interface is visible but the inserting interface is hidden. This is because the
DisplayInterface Panel’s Visible property is set to True (the default value), while the InsertingInterface
Panel’s visible property is set to False. To switch between the two interfaces we simply need to toggle each
control’s Visible property value.

We want to move from the display interface to the inserting interface when the “Process Product Shipment” button
is clicked. Therefore, create an event handler for this Button’s c1ick event that contains the following code:

Protected Sub ProcessShipment Click(sender As Object, e As EventArgs)
Handles ProcessShipment.Click
DisplayInterface.Visible = False
InsertingInterface.Visible = True

End Sub

This code simply hides the DisplayInterface Panel and shows the InsertingInterface Panel.

Next, create event handlers for the “Add Products from Shipment” and “Cancel” Button controls in the inserting
interface. When either of these Buttons is clicked, we need to revert back to the display interface. Create Click
event handlers for both Button controls so that they call ReturnToDisplayInterface, a method we will add
momentarily. In addition to hiding the InsertingInterface Panel and showing the DisplayInterface Panel, the

13 of 20

ReturnToDisplayInterface method needs to return the Web controls to their pre-editing state. This involves
setting the DropDownLists’ selectedIndex properties to 0 and clearing out the Text properties of the TextBox
controls.

Note: Consider what might happen if we didn’t return the controls to their pre-editing state before returning
to the display interface. A user might click the “Process Product Shipment” button, enter the products from
the shipment, and then click “Add Products from Shipment”. This would add the products and return the user
to the display interface. At this point the user might want to add another shipment. Upon clicking the
“Process Product Shipment” button they would return to the inserting interface but the DropDownList
selections and TextBox values would still be populated with their previous values.

Protected Sub AddProducts Click(sender As Object, e As EventArgs)
Handles AddProducts.Click
' TODO: Save the products
' Revert to the display interface
ReturnToDisplayInterface ()

End Sub

Protected Sub CancelButton Click(sender As Object, e As EventArgs)
Handles CancelButton.Click
' Revert to the display interface
ReturnToDisplayInterface ()

End Sub

Const firstControlID As Integer =1
Const lastControlID As Integer = 5

Private Sub ReturnToDisplayInterface ()
' Reset the control values in the inserting interface
Suppliers.SelectedIndex = 0

Categories.SelectedIndex = 0

For i As Integer = firstControlID To lastControlID
CType (InsertingInterface.FindControl
("ProductName" + i.ToString()), TextBox).Text = String.Empty
CType (InsertingInterface.FindControl
("UnitPrice" + i.ToString()), TextBox).Text = String.Empty

Next

DisplayInterface.Visible = True

InsertingInterface.Visible = False
End Sub

Both c1lick event handlers simply call the ReturnToDisplayInterface method, although we’ll return to the “Add
Products from Shipment” Click event handler in Step 4 and add code to save the products.
ReturnToDisplayInterface starts by returning the Suppliers and Categories DropDownLists to their first
options. The two constants firstControlID and lastControlID mark the starting and ending control index
values used in naming the product name and unit price TextBoxes in the inserting interface and are used in the
bounds of the For loop that sets the Text properties of the TextBox controls back to an empty string. Finally, the
Panels’ visible properties are reset so that the inserting interface is hidden and the display interface shown.

Take a moment to test out this page in a browser. When first visiting the page you should see the display interface
as was shown in Figure 5. Click the “Process Product Shipment” button. The page will postback and you should
now see the inserting interface as shown in Figure 12. Clicking either the “Add Products from Shipment” or

14 of 20

“Cancel” buttons returns you to the display interface.

Note: While viewing the inserting interface, take a moment to test out the CompareValidators on the unit
price TextBoxes. You should see a client-side messagebox warning when clicking the “Add Products from
Shipment” button with invalid currency values or prices with a value less than zero.

3 Unifthed Pape - Microssii Intermet Fxplarer r4T||E| r:"E[F..ﬂ

s Gt Wew Ppvorber Took el

3 bk, - u [Samrch Favorkey 48 - da v & = 0 .;g
8] hetpuihocathost 281 0ASPYET_Diaba_Tutoral_66_CSBatchDataiTatohingst e e]
wurking With Data Tutori&l-ﬁ Home = Working with Batched Data = Batch Inserting

Batch Inserting
Add Products From Shipment

Deaclarative
FACAMALSTE Supplier: Exofic Liguids Cateqgory:

Satting Parameter Product: Price: 4
Maluss

- Product: Price: 4
i g Produst: Price: 4
i::r Ry'brop-Dosn Product: Price: ¢
Haitaraatate Product: Price: ¢
D=tais [add Praducts fram Shipment | | Cancel
Master/Datad Aoross &
Floem . % Lol iniranet

Figure 12: The Inserting Interface is Displayed After Clicking the “Process Product Shipment” Button

Step 4: Adding the Products

All that remains for this tutorial is to save the products to the database in the “Add Products from Shipment”
Button’s Click event handler. This can be accomplished by creating a ProductsbataTable and adding a
ProductsRow instance for each of the product names supplied. Once these ProductsRows have been added we will
make a call to the ProductsBLL class’s UpdateWithTransaction method passing in the ProductsDataTable.
Recall that the UpdatewithTransaction method, which was created back in the Wrapping Database
Modifications within a Transaction tutorial, passes the ProductsDataTable to the ProductsTableAdapter’s
UpdateWithTransaction method. From there, an ADO.NET transaction is started and the TableAdatper issues an
INSERT statement to the database for each added ProductsRow in the DataTable. Assuming all products are added
without error, the transaction is committed, otherwise it is rolled back.

The code for the “Add Products from Shipment” Button’s c1ick event handler also needs to perform a bit of error
checking. Since there are no RequiredFieldValidators used in the inserting interface, a user could enter a price for a
product while omitting its name. Since the product’s name is required, if such a condition unfolds we need to alert
the user and not proceed with the inserts. The complete c1ick event handler code follows:

Protected Sub AddProducts Click(sender As Object, e As EventArgs)
Handles AddProducts.Click
' Make sure that the UnitPrice CompareValidators report valid data...
If Not Page.IsValid Then Exit Sub

' Add new ProductsRows to a ProductsDataTable...

Dim products As New Northwind.ProductsDataTable ()
For i As Integer = firstControlID To lastControlID

15 of 20

16 of 20

' Read in the values for the product name and unit price

Dim productName As String = CType (Insertinglnterface.FindControl
("ProductName" + 1.ToString()), TextBox).Text.Trim()

Dim unitPrice As String = CType (InsertingInterface.FindControl
("UnitPrice" + i.ToString()), TextBox) .Text.Trim()

' Ensure that if unitPrice has a value, so does productName

If unitPrice.Length > 0 AndAlso productName.Length = 0 Then
' Display a warning and exit this event handler
StatusLabel.Text = "If you provide a unit price you must also

include the name of the product.”

StatusLabel.Visible = True
Exit Sub

End If

' Only add the product if a product name value is provided
If productName.Length > 0 Then
' Add a new ProductsRow to the ProductsDataTable
Dim newProduct As Northwind.ProductsRow = products.NewProductsRow ()

' Assign the values from the web page
newProduct.ProductName = productName
newProduct.SupplierID = Convert.ToInt32 (Suppliers.SelectedValue)
newProduct.CategoryID = Convert.ToInt32 (Categories.SelectedValue)
If unitPrice.Length > 0 Then

newProduct.UnitPrice = Convert.ToDecimal (unitPrice)

End If

' Add any "default" wvalues
newProduct.Discontinued = False
newProduct.UnitsOnOrder = 0

products.AddProductsRow (newProduct)
End If

Next

If we reach here, see if there were any products added

If products.Count > 0 Then

' Add the new products to the database using a transaction
Dim productsAPI As New ProductsBLL ()
productsAPI.UpdateWithTransaction (products)

' Rebind the data to the grid so that the producst just added are displayed
ProductsGrid.DataBind ()

' Display a confirmation (don't use the Warning CSS class, though)
StatusLabel.CssClass = String.Empty
StatusLabel.Text = String.Format (

"{0} products from supplier {1} have been " & _

"added and filed under category {2}.",

products.Count, Suppliers.SelectedItem.Text, Categories.SelectedItem.Text)

StatusLabel.Visible = True

' Revert to the display interface
ReturnToDisplayInterface ()

Else

' No products supplied!

StatusLabel.Text =
"No products were added. Please enter the " &
"product names and unit prices in the textboxes."
StatusLabel.Visible = True
End If
End Sub

The event handler starts by ensuring that the page. Isvalid property returns a value of True. If it returns False,
then that means one or more of the CompareValidators are reporting invalid data; in such a case we do not want to
attempt to insert the entered products or we’ll end up with an exception when attempting to assign the user-entered
unit price value to the ProductsRow’s UnitPrice property.

Next, a new ProductsDataTable instance is created (products). A For loop is used to iterate through the product
name and unit price TextBoxes and the Text properties are read into the local variables productName and
unitPrice. If the user has entered a value for the unit price but not for the corresponding product name, the
StatusLabel displays the message “If you provide a unit price you must also include the name of the product” and
the event handler is exited.

If a product name has been provided, a new ProductsRow instance is created using the ProductsbDataTable’s
NewProductsRow method. This new ProductsRow instance’s ProductName property is set to the current product
name TextBox while the supplierID and CategoryID properties are assigned to the Selectedvalue properties of
the DropDownLists in the inserting interface’s header. If the user entered a value for the product’s price, it is
assigned to the ProductsRow instance’s UnitPrice property; otherwise, the property is left unassigned, which will
result in a NULL value for UnitPrice in the database. Finally, the Discontinued and UnitsOnOrder properties are
assigned to the hard-coded values False and 0, respectively.

After the properties have been assigned to the ProductsRow instance it is added to the ProductsDataTable.

At the completion of the For loop, we check whether any products have been added. The user may, after all, have
clicked the “Add Products from Shipment” before entering any product names or prices. If there is at least one
product in the ProductsbataTable, the ProductsBLL class’s UpdateWithTransaction method is called. Next,
the data is rebound to the ProductsGrid GridView so that the newly added products will appear in the display
interface. The statusLabel is updated to display a confirmation message and the ReturnToDisplayInterface is
invoked, hiding the inserting interface and showing the display interface.

If no products were entered, the inserting interface remains displayed but the message “No products were added.
Please enter the product names and unit prices in the textboxes” is displayed.

Figure s 13, 14, and 15 show the inserting and display interfaces in action. In Figure 13, the user has entered a unit
price value without a corresponding product name. Figure 14 shows the display interface after three new products
have been added successfully, while Figure 15 shows two of the newly added products in the GridView (the third
one is on the previous page).

17 of 20

T Uritled Papn - Microzall Infeenet Explarar

B Bt Wew Fgvorbes ook e

Qo - 3 - 5 F e e Favorker 2 iT o B - L
Agdre _G‘IHID.I’M’W SELOTASPHET Dats_Tubor 64 CSEatthiatafBelchlrest, o b ﬂtﬂl

Batch Inserting

Working with Data Tutorials Home > Warking with §atched Data > Bateh Inserting

IL you provide a unit price you must also include
the name of the product.

)

Add Products From Shipment

Product: | Tasty Carrots Price: g 4,95
Prodisct Yummey Onans Price: & 1.53
[product: Price: ¢ 3.50 |
Product: Price: ¢
Product: Price: g
[add Products from Shigment] [cancel |
S (7T

W Untitled Page - Microsaft Infernet Explorer
Gl £t Yew Fgeortes Lok Heb

Qs » & [H F@ @ Poeech HrFooie 8| (00 o - G w0 ER
Sz @] hittpc) oo 2HLOASPRET_Data_Tutorisl 66 _CSiatchiatafatchinsert, aso o .'-’ﬂ

Batch Inserting

[3 products from suppber Mayumi's have been added and fied under category Vegges]

[Process Product Shipment |

Prociuct Category Supplier Price DHscontinued
Chai Tea Beverages Exotic Liquids §19.95
Chang Beverages Exomc Liquids §12.25
Aniseed Syrup Condiments Exobic Liquids §10.00
Ao Condiments oW Orleans Cajn oo 2
% Local infranet

Workin g Wlth Data Tutarials Home > Working with Batched Data > Batch Inserting

Figure 14: Three New Veggies Have Been Added for the Supplier Mayumi’s

18 of 20

‘2 Untitled Page - Microsefl Internet Explorer Flrﬁ] r:‘lrﬁ]ﬁ{"

Fle Edt View Favorkes Tools Help
pBack =) 3 o U seach i Favoriles £ sl T L B € » 5B

Address |) hittpe flocalhost: 28 L0JASPNET_Data_Tutorisl_f6_CS/BabchiData/Batchinsert spo v| B 5o

-

Working with Data Tutorials Home > Working with Batched Data

> Batch Inserting

Batch Inserting

[Process Product Shipment]

Simple Display

Dedlarative Product |Category|Supplier/Price |Discontinued!|
Parameters Yummy Onions Veggies Mayumi's $1.95

Setting Parameter Delicious Lettuce Veggies Mayumi's $3.50
Values £<...678310

Filtering Reports

-.él - — = Hlmdwm

Figure 15: The New Products Can Be Found in the Last Page of the GridView

Note: The batch inserting logic used in this tutorial wraps the inserts within the scope of transaction. To
verify this, purposefully introduce a database-level error. For example, rather than assigning the new
ProductsRow instance’s CategoryID property to the selected value in the Categories DropDownList,
assign it to a value like i * 5. Here i is the loop indexer and has values ranging from 1 to 5. Therefore,
when adding two or more products in batch insert the first product will have a valid categoryID value (5),
but subsequent products will have categoryID values that do not match up to CategoryID values in the
Categories table. The net effect is that while the first INSERT will succeed, subsequent ones will fail with a
foreign key constraint violation. Since the batch insert is atomic, the first INSERT will be rolled back,
returning the database to its state before the batch insert process began.

Summary

Over this and the previous two tutorials we have created interfaces that allow for updating, deleting, and inserting
batches of data, all of which used the transaction support we added to the Data Access Layer in the Wrapping
Database Modifications within a Transaction tutorial. For certain scenarios, such batch processing user interfaces
greatly improve end user efficiency by cutting down on the number of clicks, postbacks, and keyboard-to-mouse
context switches, while also maintaining the integrity of the underlying data.

This tutorial completes our look at working with batched data. The next set of tutorials explores a variety of
advanced Data Access Layer scenarios, including using stored procedures in the TableAdapter’s methods,
configuring connection- and command-level settings in the DAL, encrypting connection strings, and more!

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest

19 of 20

book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Hilton Giesenow
and Seren Jacob Lauritsen. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

20 of 20

