This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Wrapping
Database Modifications within a Transaction

Introduction

As we saw starting with the An Overview of Inserting, Updating, and Deleting Data tutorial, the GridView
provides built-in support for row-level editing and deleting. With a few clicks of the mouse it is possible to create a
rich data modification interface without writing a line of code, so long as you are content with editing and deleting
on a per-row basis. However, in certain scenarios this is insufficient and we need to provide users with the ability
to edit or delete a batch of records.

For example, most web-based email clients use a grid to list each message where each row includes a checkbox
along with the email’s information (subject, sender, and so forth). This interface permits the user to delete multiple
messages by checking them and then clicking a “Delete Selected Messages” button. A batch editing interface is
ideal in situations where users commonly edit many different records. Rather than forcing the user to click Edit,
make their change, and then click Update for each record that needs to be modified, a batch editing interface
renders each row with its editing interface. The user can quickly modify the set of rows that need to be changed
and then save these changes by clicking an “Update All” button. In this set of tutorials we’ll examine how to create
interfaces for inserting, editing, and deleting batches of data.

When performing batch operations it’s important to determine whether it should be possible for some of the
operations in the batch to succeed while others fail. Consider a batch deleting interface - what should happen if the
first selected record is deleted successfully, but the second one fails, say, because of a foreign key constraint
violation? Should the first record’s delete be rolled back or is it acceptable for the first record to remain deleted?

If you want the batch operation to be treated as an atomic operation, one where either all of the steps succeed or all
of the steps fail, then the Data Access Layer needs to be augmented to include support for database transactions.
Database transactions guarantee atomicity for the set of INSERT, UPDATE, and DELETE statements executed under
the umbrella of the transaction and are a feature supported by most all modern database systems.

In this tutorial we’ll look at how to extend the DAL to use database transactions. Subsequent tutorials will examine
implementing web pages for batch inserting, updating, and deleting interfaces. Let’s get started!

Note: When modifying data in a batch transaction, atomicity is not always needed. In some scenarios, it may
be acceptable to have some data modifications succeed and others in the same batch fail, such as when
deleting a set of emails from a web-based email client. If there’s a database error midway through the
deletion process, it’s probably acceptable that those records processed without error remain deleted. In such
cases, the DAL does not need to be modified to support database transactions. There are other batch
operation scenarios, however, where atomicity is vital. When a customer moves her funds from one bank
account to another, two operations must be performed: the funds must be deducted from the first account and
then added to the second. While the bank may not mind having the first step succeed but the second step fail,
its customers would understandably be upset. I encourage you to work through this tutorial and implement
the enhancements to the DAL to support database transactions even if you do not plan on using them in the
batch inserting, updating, and deleting interfaces we’ll be building in the following three tutorials.

An Overview of Transactions

1 of 19

Most databases include support for transactions, which enable multiple database commands to be grouped into a
single logical unit of work. The database commands that comprise a transaction are guaranteed to be atomic,
meaning that either all commands will fail or all will succeed.

In general, transactions are implemented through SQL statements using the following pattern:

1. Indicate the start of a transaction.

2. Execute the SQL statements that comprise the transaction.

3. If'there is an error in one of the statements from Step 2, rollback the transaction.

4. 1If all of the statements from Step 2 complete without error, commit the transaction.

The SQL statements used to create, commit, and roll back the transaction can be entered manually when writing
SQL scripts or creating stored procedures, or through programmatic means using either ADO.NET or the classes in
the System.Transactions namespace. In this tutorial we will only examine managing transactions using
ADO.NET. In a future tutorial we will look at how to use stored procedures in the Data Access Layer, at which
time we’ll explore the SQL statements for creating, rolling back, and committing transactions. In the meantime,

consult Managing Transactions in SQL Server Stored Procedures for more information.

Note: The TransactionScope class in the System.Transactions namespace enables developers to
programmatically wrap a series of statements within the scope of a transaction and includes support for
complex transactions that involve multiple sources, such as two different databases or even heterogeneous
types of data stores, such as a Microsoft SQL Server database, an Oracle database, and a Web service. I’ve
decided to use ADO.NET transactions for this tutorial instead of the TransactionScope class because
ADO.NET is more specific for database transactions and, in many cases, is far less resource intensive. In
addition, under certain scenarios the TransactionScope class uses the Microsoft Distributed Transaction
Coordinator (MSDTC). The configuration, implementation, and performance issues surrounding MSDTC
makes it a rather specialized and advanced topic and beyond the scope of these tutorials.

When working with the SqlClient provider in ADO.NET, transactions are initiated through a call to the
SglConnection class’s BeginTransaction method, which returns a SglTransaction object. The data
modification statements that makeup the transaction are placed within a try. . .catch block. If an error occurs in a
statement in the try block, execution transfers to the catch block where the transaction can be rolled back via the
SqlTransaction object’s Rollback method. If all of the statements complete successfully, a call to the
SqlTransaction object’s Commit method at the end of the try block commits the transaction. The following code

snippet illustrates this pattern. See Maintaining Database Consistency with Transactions for additional syntax and
examples of using transactions with ADO.NET.

// Create the SglTransaction object

SglTransaction myTransaction = SglConnectionObject.BeginTransaction();

try

{
/*
* ... Perform the database transaction’s data modification statements...
*/

// If we reach here, no errors, so commit the transaction
myTransaction.Commit () ;

}

catch

{
// If we reach here, there was an error, so rollback the transaction
myTransaction.Rollback() ;

20f 19

throw;

}

By default, the TableAdapters in a Typed DataSet do not use transactions. To provide support for transactions we
need to augment the TableAdapter classes to include additional methods that use the above pattern to perform a
series of data modification statements within the scope of a transaction. In Step 2 we’ll see how to use partial
classes to add these methods.

Step 1: Creating the Working with Batched Data Web Pages

Before we start exploring how to augment the DAL to support database transactions, let’s first take a moment to
create the ASP.NET web pages that we will need for this tutorial and the three that follow. Start by adding a new
folder named Batchbata and then add the following ASP.NET pages, associating each page with the site.master
master page.

Default.aspx
Transactions.aspx
BatchUpdate.aspx
BatchDelete.aspx

BatchInsert.aspx

30f 19

Solution Explorer

B HREE Be

;”P C:h. W ASPNET_Data_Tutorial_63_CS%,
#- Lz App_Code

- [App_Data

& = App_Themes

[+ | BasicRepaorting

(= |5 BatchData

¥ ,j BatchDelete, aspy
EEIEstchinsert, aspe
,:] Batchidpdate, asp
,j Default, aspix

j Transactions, aspe

| BinaryData

1 Brochures

[Caching

I CustamButtons

1 CustomButtonsDatalistRepeater
I CuskomFormatking

| DatalistRepeakerBasics

[DakalistRepeaterFilkering

1 EditDeleteDatalist

[EditInsertDelete

1 EnhancedGridiisw

[Filtering

[PagingAndSarting

| PagingSortingDatalistRepeater
[SiteMapProvider

1 SqlDatasource

(= [& UserControls

- B SectionLevelTutoriallisting. ascy:
,j Defaulk, aspx

4] Global.asax

__] Site.master

Aj Sbyles.css

= Web.Corfig

| web.sitemnap

G5

o7 [O g oy o o o 8 g 2 O O O
s [T R T

1 EE:

[+

[+

.;fgﬁl:nlul:... FeProp... |SMSery... B Class...

Figure 1: Add the ASP.NET Pages for the SqlDataSource-Related Tutorials

As with the other folders, Default.aspx will use the SectionLevelTutorialListing.ascx User Control to list
the tutorials within its section. Therefore, add this User Control to Default.aspx by dragging it from the Solution
Explorer onto the page’s Design view.

4 of 19

2 ASPMET Data Tutorial 63 _C5 - Microsaft Yisual Studia

E CB&

Ele Edt Wew Webgte Buld [ebug Fomst Lepout Teels Window Communly Help Addis
@ - - G W 8 LA s
H o LA B
i BT Pt e -
A - =% w 3 || Solukion Exploer -0 ox
=1 - . T o
?ﬁrﬂL_ 4| Fda 510 B
& ol | = [BatchDiats
A Label + JB-et\cH'.l:He.m,ar
sl TaxlBox + j:Elnt-:hhscrt.d:-po-c
[t} Buthon - L R
:.| E +
(] Lrigutton Content - Contentl (CLstm) i .
Iﬂl Irnrgeﬂ.ttnn = = &l BinaryData
A Hypeink Working with & Srochures
=5 Droplownlist # [Caching
¥ it Batched Data % 3 CustomButtons
. e £ 0 CustomBubtonsDatal iR speater
it - Ditsheynd - O sabeurd # L CustomFormatting
- CheckBoist * Dstabound - Dstabaund # _d DtalistRepesterBasics
(%) PadoButton # Databound « Databaund e —-' DeteunPematngttErm
L ' patslioind - Oatsbaund # [EdDeleteDatalist
* Datsbound « Oatabaund + - EditlreertDalete
il Image + 3 Enhancedridvien
s ImagaMap + i Fitering
3 Table + [Pagnghrdsarting
= + 4 PsgngfortingDstsl sHsneater
e i + | SivefapProader
* HidderFieid t .l SqDataSguros
B Leral =
™ calsndar a 1'__ & Sectorlevel Tuborallisting . ascx | o
4 Adrotator - ——r s < ¥
'l:_.I FileLipload w ||| wbody> | cdhegwrappers I-rfunr.ﬂmn-l.:- —qfﬂf‘-‘t . Epen, [B sar, 7':; s
_,,'Jlll':l List _'_] Cnkpuk i rd Besuks 1
Rmady

Figure 2: Add the SectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add these four pages as entries to the web. sitemap file. Specifically, add the following markup after the
“Customizing the Site Map” <siteMapNode>:

<siteMapNode title="Working with Batched Data"
url="~/BatchData/Default.aspx"
description="Learn how to perform batch operations as opposed to
per-row operations.">

<siteMapNode title="Adding Support for Transactions"
url="~/BatchData/Transactions.aspx"
description="See how to extend the Data Access Layer to support
database transactions." />
<siteMapNode title="Batch Updating"
url="~/BatchData/BatchUpdate.aspx"
description="Build a batch updating interface,
Gridview is editable." />
<siteMapNode title="Batch Deleting"
url="~/BatchData/BatchDelete.aspx"
description="Explore how to create an interface for batch deleting
by adding a CheckBox to each GridvView row." />
<siteMapNode title="Batch Inserting"
url="~/BatchData/BatchInsert.aspx"
description="Examine the steps needed to create a batch inserting
interface, where multiple records can be created at the
click of a button.™ />

where each row in a

50f 19

</siteMapNode>

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the left
now includes items for the working with batched data tutorials.

23 Untitled Page - E@ E|@@

File Edit Miew Favaorites “H

o

¢ D X [@ G

! Address @ http:fflocalhost:3 % | a0

(ing with Batched

Ldding Support for
Transactions

Batch Updating

Batch Deleting

Batch Inserting

‘ﬂ Local inkranet

Figure 3: The Site Map Now Includes Entries for the Working with Batched Data Tutorials

Step 2: Updating the Data Access Layer to Support Database
Transactions

As we discussed back in the first tutorial, Creating a Data Access Layer, the Typed DataSet in our DAL is
composed of DataTables and TableAdapters. The DataTables hold data while the TableAdapters provide the
functionality to read data from the database into the DataTables, to update the database with changes made to the
DataTables, and so forth. Recall that the TableAdapters provide two patterns for updating data, which I referred to
as Batch Update and DB-Direct. With the Batch Update pattern, the TableAdapter is passed a DataSet, DataTable,
or collection of DataRows. This data is enumerated and for each inserted, modified, or deleted row, the
InsertCommand, UpdateCommand, or DeleteCommand is executed. With the DB-Direct pattern, the TableAdapter is
instead passed the values of the columns necessary for inserting, updating, or deleting a single record. The DB
Direct pattern method then uses those passed-in values to execute the appropriate InsertCommand,
UpdateCommand, Or DeleteCommand statement.

Regardless of the update pattern used, the TableAdapters’ auto-generated methods do not use transactions. By
default each insert, update, or delete performed by the TableAdapter is treated as a single discrete operation. For
instance, imagine that the DB-Direct pattern is used by some code in the BLL to insert ten records into the
database. This code would call the TableAdapter’s Insert method ten times. If the first five inserts succeed, but
the sixth one resulted in an exception, the first five inserted records would remain in the database. Similarly, if the
Batch Update pattern is used to perform inserts, updates, and deletes to the inserted, modified, and deleted rows in
a DataTable, if the first several modifications succeeded but a later one encountered an error, those earlier
modifications that completed would remain in the database.

6 of 19

In certain scenarios we want to ensure atomicity across a series of modifications. To accomplish this we must
manually extend the TableAdapter by adding new methods that execute the InsertCommand, UpdateCommand, and
DeleteCommands under the umbrella of a transaction. In Creating a Data Access Layer we looked at using partial
classes to extend the functionality of the DataTables within the Typed DataSet. This technique can also be used
with TableAdapters.

The Typed DataSet Northwind.xsd is located in the 2pp Code folder’s DAL subfolder. Create a subfolder in the
DAL folder named TransactionSupport and add a new class file named
ProductsTableAdapter.TransactionSupport.cs (see Figure 4). This file will hold the partial implementation
of the ProductsTableAdapter that includes methods for performing data modifications using a transaction.

w3 Bl
B Ol

- [CustomProviders

= TransactionSuppork
Eﬁj ProductsTableadapter, Transactionsupport,cs
- [RE|
[+ Iﬂ Martbsind OptimisticConcurrency, xsd
4 App_Data
& App_Themes
| BasicR.eparting
| = BatchData
j BatchDelete, aspx
j BatchInsert, aspx
f}]BatchUpdate.aspx
:EIDEFauk.aspx
[+ E}]Transacﬁuns.aspx
| BinaryData
[Brochures
[Caching
|- [T CustomButtons :
L‘ﬂﬁulutiun Excplorer _fﬁF‘rnperties -f'-ngerver Explorer L/'-_ﬁclass Wiz

[+
[+

[|

=

B o e e e

W

Figure 4: Add a Folder Named TransactionSupport and a Class File Named
ProductsTableAdapter.TransactionSupport.cs

Enter the following code into the ProductsTableAdapter.TransactionSupport.cs file:

using System;

using System.Data;

using System.Data.SglClient;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

7 of 19

namespace NorthwindTableAdapters

{
public partial class ProductsTableAdapter

{
private SglTransaction _transaction;
private SglTransaction Transaction

{
get

return this. transaction;

this. transaction = value;

public void BeginTransaction ()
{
// Open the connection, if needed
if (this.Connection.State != ConnectionState.Open)
this.Connection.Open();

// Create the transaction and assign it to the Transaction property
this.Transaction = this.Connection.BeginTransaction();

// Attach the transaction to the Adapters
foreach (SglCommand command in this.CommandCollection)

{

command.Transaction = this.Transaction;
}
this.Adapter.InsertCommand.Transaction = this.Transaction;
this.Adapter.UpdateCommand.Transaction = this.Transaction;

this.Adapter.DeleteCommand.Transaction this.Transaction;

public void CommitTransaction ()

{
// Commit the transaction
this.Transaction.Commit () ;

// Close the connection
this.Connection.Close () ;

public void RollbackTransaction ()

{
// Rollback the transaction
this.Transaction.Rollback();

// Close the connection
this.Connection.Close () ;

8 0f 19

The partial keyword in the class declaration here indicates to the compiler that the members added within are to
be added to the ProductsTableAdapter class in the NorthwindTableAdapters namespace. Note the using
System.Data.SqglClient statement at the top of the file. Since the TableAdapter was configured to use the
SqlClient provider, internally it uses a SqlDataAdapter object to issue its commands to the database.
Consequently, we need to use the SqlTransaction class to begin the transaction and then to commit it or roll it
back. If you are using a data store other than Microsoft SQL Server, you’ll need to use the appropriate provider.

These methods provide the building blocks needed to start, rollback, and commit a transaction. They are marked
public, enabling them to be used from within the ProductsTableAdapter, from another class in the DAL, or
from another layer in the architecture, such as the BLL. BeginTransaction opens the TableAdapter’s internal
SqlConnection (if needed), begins the transaction and assigns it to the Transaction property, and attaches the
transaction to the internal SqlDataAdapter’s SqlCommand objects. CommitTransaction and
RollbackTransaction call the Transaction object’s Commit and Rollback methods, respectively, before closing
the internal Connection object.

With these methods complete, we’re ready to add methods to ProductsbataTable or the BLL that perform a
series of commands under the umbrella of a transaction. The following method uses the Batch Update pattern to
update a ProductsDataTable instance using a transaction. It starts a transaction by calling the BeginTransaction
method and then uses a try. . .catch block to issue the data modification statements. If the call to the Adapter
object’s Update method results in an exception, execution will transfer to the catch block where the transaction
will be rolled back and the exception re-thrown. Recall that the Update method implements the Batch Update
pattern by enumerating the rows of the supplied productsbataTable and performing the necessary
InsertCommand, UpdateCommand, and DeleteCommands. If any one of these commands results in an error, the
transaction is rolled back, undoing the previous modifications made during the transaction’s lifetime. Should the
Update statement complete without error, the transaction is committed in its entirety.

public int UpdateWithTransaction (Northwind.ProductsDataTable dataTable)
{

this.BeginTransaction() ;

try
{
// Perform the update on the DataTable
int returnValue = this.Adapter.Update(dataTable);
// If we reach here, no errors, so commit the transaction
this.CommitTransaction () ;
return returnValue;
}
catch

{
// If we reach here, there was an error, so rollback the transaction
this.RollbackTransaction () ;

throw;

Add the UpdatewithTransaction method to the ProductsTableAdapter class through the partial class in

90of 19

ProductsTableAdapter.TransactionSupport.cs. Alternatively, this method could be added to the Business
Logic Layer’s ProductsBLL class with a few minor syntactical changes. Namely, the keyword “this” in
this.BeginTransaction (), this.CommitTransaction (), and this.RollbackTransaction () would need to
be replaced with “adapter” (recall that Adapter is the name of a property in ProductsBLL of type
ProductsTableAdapter).

The UpdatewithTransaction method uses the Batch Update pattern, but a series of DB-Direct calls can also be
used within the scope of a transaction, as the following method shows. The DeleteProductsWithTransaction
method accepts as input a List<T> of type int, which are the ProductIDs to delete. The method initiates the
transaction via a call to BeginTransaction and then, in the try block, iterates through the supplied list calling the
DB-Direct pattern Delete method for each ProductID value. If any of the calls to Delete fails, control is
transferred to the catch block where the transaction is rolled back and the exception re-thrown. If all calls to
Delete succeed, then transaction is committed. Add this method to the ProductsBLL class.

public void DeleteProductsWithTransaction
(System.Collections.Generic.List<int> productIDs)

{
// Start the transaction
Adapter.BeginTransaction () ;

try
{
// Delete each product specified in the list

foreach (int productID in productIDs)

{
Adapter.Delete (productlID) ;

}

// Commit the transaction
Adapter.CommitTransaction () ;

}

catch

{
// There was an error - rollback the transaction
Adapter.RollbackTransaction () ;

throw;

Applying Transactions Across Multiple TableAdapters

The transaction-related code examined in this tutorial allows for multiple statements against the
ProductsTableAdapter to be treated as an atomic operation. But what if multiple modifications to different
database tables need to be performed atomically? For instance, when deleting a category, we might first want to
reassign its current products to some other category. These two steps — reassigning the products and deleting the
category — should be executed as an atomic operation. But the ProductsTableadapter includes only methods for
modifying the Products table and the CategoriesTableAdapter includes only methods for modifying the
Categories table. So how can a transaction encompass both TableAdapters?

One option is to add a method to the CategoriesTableAdapter named DeleteCategoryAndReassignProducts
(categoryIDtoDelete, reassignToCategoryID) and have that method call a stored procedure that both
reassigns the products and deletes the category within the scope of a transaction defined within the stored
procedure. We’ll look at how to begin, commit, and rollback transactions in stored procedures in a future tutorial.

10 of 19

Another option is to create a helper class in the DAL that contains the DeleteCategoryAndReassignProducts
(categoryIDtoDelete, reassignToCategoryID) method. This method would create an instance of the
CategoriesTableAdapter and the ProductsTableAdapter and then set these two TableAdapters’ Connection
properties to the same SqlConnection instance. At that point, either one of the two TableAdapters would initiate
the transaction with a call to BeginTransaction. The TableAdapters’ methods for reassigning the products and
deleting the category would be invoked in a try. . .catch block with the transaction committed or rolled back as
needed.

Step 4: Adding the UpdateWithTransaction Method to the Business Logic
Layer

In Step 3 we added an UpdateWithTransaction method to the ProductsTableAdapter in the DAL. We should
add a corresponding method to the BLL. While the Presentation Layer could call directly down to the DAL to
invoke the UpdateWithTransaction method, these tutorials have strived to define a layered architecture that
insulates the DAL from the Presentation Layer. Therefore, it behooves us to continue this approach.

Open the ProductsBLL class file and add a method named UpdatewithTransaction that simply calls down to the
corresponding DAL method. There should now be two new methods in ProductsBLL: UpdateWithTransaction,
which you just added, and DeleteProductsWithTransaction, which was added in Step 3.

public int UpdateWithTransaction (Northwind.ProductsDataTable products)
{
return Adapter.UpdateWithTransaction (products);

public void DeleteProductsWithTransaction
(System.Collections.Generic.List<int> productIDs)

{
// Start the transaction
Adapter.BeginTransaction () ;

try
{
// Delete each product specified in the list
foreach (int productID in productIDs)
Adapter.Delete (productlID) ;

// Commit the transaction
Adapter.CommitTransaction () ;

}

catch

{
// There was an error - rollback the transaction
Adapter.RollbackTransaction () ;

throw;

Note: These methods do not include the DataobjectMethodAttribute attribute assigned to most other
methods in the ProductsBLL class because we’ll be invoking these methods directly from the ASP.NET
pages’ code-behind classes. Recall that bataObjectMethodattribute is used to flag what methods should
appear in the ObjectDataSource’s Configure Data Source wizard and under what tab (SELECT, UPDATE,

110f 19

INSERT, or DELETE). Since the GridView lacks any built-in support for batch editing or deleting, we’ll
have to invoke these methods programmatically rather than use the code-free declarative approach.

Step 5: Atomically Updating Database Data from the Presentation
Layer

To illustrate the effect that the transaction has when updating a batch of records, let’s create a user interface that
lists all products in a GridView and includes a Button Web control that, when clicked, reassigns the products’
CategoryID values. In particular, the category reassignment will progress so that the first several products are
assigned a valid categoryID value while others are purposefully assigned a non-existent CategoryID value. If we
attempt to update the database with a product whose categoryID does not match an existing category’s
CategoryID, a foreign key constraint violation will occur and an exception will be raised. What we’ll see in this
example is that when using a transaction the exception raised from the foreign key constraint violation will cause
the previous valid categoryID changes to be rolled back. When not using a transaction, however, the
modifications to the initial categories will remain.

Start by opening the Transactions.aspx page in the BatchData folder and drag a GridView from the Toolbox
onto the Designer. Set its ID to Products and, from its smart tag, bind it to a new ObjectDataSource named
ProductsDataSource. Configure the ObjectDataSource to pull its data from the ProductsBLL class’s
GetProducts method. This will be a read-only GridView, so set the drop-down lists in the UPDATE, INSERT,
and DELETE tabs to “(None)” and click Finish.

Configure Data Source - ProductsDataSource

J Define Data Methods

D=

SELECT | UPDATE | INSERT | DELETE

Chaoes & maethod of the business object that raturns daks bo sssociate with the SELECT aperation. The
mekhod can return a DataSet, DataReader, or strongly-typed collection,

Example; GetProducts{Int32 categoryld), returms a Dataset,

Chonse & method:
| GetProducts(), returns ProductsDataTable w

GetProductByProduck D Ing3Z productiD, returns ProducksDataTable

GetProducks(), returns ProductsDabaTable

GetProductsAsP agedDataSource(Int 32 pagelndex, Int32 pageSize], returns PagedDataSource

GetProductsEyC ategoryID{INE32 categoryiD), returns ProductsDataTable

GetProductsBySupplierIDiInt32 supplierlD), returns ProductsDakaTable

GetProductsPaged{Int32 startRowindex, Ink32 maximumRows), returns ProductsDataTable
GetProductsPagedandSortediSkring sortExpression, Int32 startRowlnds:, Int32 maximurmPows), retums Product
GetProducksSorkedAsPagedDat aSource!String sortExpression, Int32 pagelndex, Ink32 pageSize), returns Paged!

o> | (o] (et]

Figure 5: Figure 5: Configure the ObjectDataSource to Use the ProductsBLL Class’s GetProducts
Method

12 of 19

Configure Data Source - ProductsDataSource

Define Data Methods
— Ii'_._.l_',-"'
SELECT | UPDATE | INSERT | DELETE |

Chooss & mathad of the business object to associate with the UPDATE operation, The method sheuld

al:cap;aa parameter for each property of the data object, or a single parameter which is the data object
ko update.

Examplas: UpdateProduch{Product p), or UpdateProduck(Int32 productiD, String name, Double price)

Choose 5 method:
(one) w ?

UipdateProduct{String productiame, Mullable <Decimal> unikPrice, Int32 productID), returrns Boolean
LipdateProduct{String productiarme, Mullable <Decimal> unitPrice, Nullable <Intl6 > unitsInStock, Int32 productID
LipdateProduct{ String productiame, Mullable <Ink32 = categoryID, Mullable<Int32 = supplierlD, Bookean discontin
UpdateProduct(String productianme, Mullable <Int32 = supplierlD, Mullable <Int32 = cateqoryID, String quantityPer
UpdateProduct{String productiame, String quantityPerinit, Int32 productID), returns Boolean

o> | (o) oot]

Figure 6: Set the Drop-Down Lists in the UPDATE, INSERT, and DELETE Tabs to “(None)”

After completing the Configure Data Source wizard, Visual Studio will create BoundFields and a CheckBoxField
for the product data fields. Remove all of these fields except for ProductID, ProductName, CategoryID, and
CategoryName and rename the ProductName and CategoryName BoundFields’ HeaderText properties to
“Product” and “Category”, respectively. From the smart tag, check the “Enable Paging” option. After making these
modifications, the GridView and ObjectDataSource’s declarative markup should look like the following:

<asp:GridView ID="Products" runat="server" AllowPaging="True"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourcelID="ProductsDataSource">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False" ReadOnly="True"
SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
SortExpression="CategoryID" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
SortExpression="CategoryName" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetProducts" TypeName="ProductsBLL">

13 of 19

</asp:0bjectDataSource>

Next, add three Button Web controls above the GridView. Set the first Button’s Text property to “Refresh Grid”,
the second’s to “Modify Categories (WITH TRANSACTION)”, and the third one’s to “Modify Categories
(WITHOUT TRANSACTION)”.

<p>
<asp:Button ID="RefreshGrid" runat="server" Text="Refresh Grid" />
</p>
<p>
<asp:Button ID="ModifyCategoriesWithTransaction" runat="server"
Text="Modify Categories (WITH TRANSACTION)" />
</p>
<p>
<asp:Button ID="ModifyCategoriesWithoutTransaction" runat="server"
Text="Modify Categories (WITHOUT TRANSACTION)" />
</p>

At this point the Design view in Visual Studio should look similar to the screen shot shown in Figure 7.

®5 ASPMET _Data_Tutorial 63 CS - Microsalit Visual Studie

File Edt ew ‘Webste PBuld Debug Format Layout Jook Window Communty Help Addins
@-H-BHS 4B : b [odstedstabie i
B_r QLA Bz s Ly
= = S T P IRIETEr 1. T 3 [s = e
o Fc.c: BatchOata Transactions_aspa * X aril.
= Sramdard el : _ ||
A Labed
w| TextBox = =
[Fab} Buteomn Content - Contert (CLEmmM) s
[2E] LinkButton = %-
(@) Imageutton Transactions
A Hyperlink 2
' ey ——————— /
=F DropDowsnlist ™ Refrash Grd
. r
ol LB [
[#] ehecdios: = Modify Categories (WITH TRANSACTION)] :
ChischkBina sk _-
=) RadcButton [Modify Categonies (WITHOUT TRANSACTION) | g
"~ RadicButtoniist i
[Tmage ProductiniProduct|CategoryID|Category b
Ul Tmageap o abc o abc 5
‘J_ i 1 abc 1 abc -h
= Buletedlist 5 b b
i ap 2 abc
B i heral 3 abc 3 abc
T Coaerds 5 abc 4 abc
| adRckater 5 abec 5 abc
%1 Flstipload 6 abc 6 abc
+"_: Wizard ¥ abs ? abc
E‘E') =3 abc 8 abe
W Ml ==
[Ranel g abc a9 abe
) PlaceHolder 12
¥ i3]
_'T-I W OhjectDataSmerce - FroductsDataSource
Ti| Substinution -
&F Localze ¥
& CheckBocvalidstor || <bog> || <aspicontent #contentl > | <p>|| <aspibuttondrefresherid >
_,,'}l.-n:l L=t _:| ARt -i Find Re=iits 1
Ready

14 of 19

Figure 7: The Page Contains a GridView and Three Button Web Controls

Create event handlers for each of the three Button’s c1ick events and use the following code:

protected void RefreshGrid Click(object sender, EventArgs e)
{
Products.DataBind() ;

protected void ModifyCategoriesWithTransaction Click(object sender, EventArgs e)
{

// Get the set of products

ProductsBLL productsAPI = new ProductsBLL() ;

Northwind.ProductsDataTable products = productsAPI.GetProducts();

// Update each product's CategoryID
foreach (Northwind.ProductsRow product in products)

{
product.CategoryID = product.ProductlID;

// Update the data using a transaction
productsAPI.UpdateWithTransaction (products) ;

// Refresh the Grid
Products.DataBind () ;

protected void ModifyCategoriesWithoutTransaction Click(object sender, EventArgs e)
{

// Get the set of products

ProductsBLL productsAPI = new ProductsBLL() ;

Northwind.ProductsDataTable products = productsAPI.GetProducts();

// Update each product's CategoryID
foreach (Northwind.ProductsRow product in products)

{
product.CategoryID = product.ProductlID;

// Update the data WITHOUT using a transaction
NorthwindTableAdapters.ProductsTableAdapter productsAdapter =

new NorthwindTableAdapters.ProductsTableAdapter();
productsAdapter.Update (products) ;

// Refresh the Grid
Products.DataBind () ;

The refresh Button’s c1ick event handler simply rebinds the data to the GridView by calling the Products
GridView’s DataBind method.

The second event handler reassigns the products’ CategoryIDs and uses the new transaction method from the BLL
to perform the database updates under the umbrella of a transaction. Note that each product’s CategoryID is

15 of 19

arbitrarily set to the same value as its ProductID. This will work fine for the first few products, since those
products have productID values that happen to map to valid CategoryIDs. But once the ProductIDs start getting
too large, this coincidental overlap of ProductIDs and CategoryIDs no longer applies.

The third c1ick event handler updates the products’ CategoryIDs in the same manner, but sends the update to the
database using the ProductsTableAdapter’s default Update method. This Update method does not wrap the
series of commands within a transaction, so those changes are made prior to the first encountered foreign key
constraint violation error will persist.

To demonstrate this behavior, visit this page through a browser. Initially you should see the first page of data as
shown in Figure 8. Next, click the “Modify Categories (WITH TRANSACTION)” button. This will cause a
postback and attempt to update all of the products’ categoryID values, but will result in a foreign key constraint
violation (see Figure 9).

2 Untitled Page - Micresoft Intermet Explorer I‘-TII'E ElE‘ﬁ'
File Edk Wew Fgvontes Jools Help L

3 Back ~ [= = ¥ | 2 search Favorites £ i- W E L

sddrese (] bttp:{flocalhast: TI2MASPRET Diata_Tuborel 63 C5/BatchData) Transactians. aspo el = I=

-

Working with Data Tutorials ~ Heme> werking win sstched oara» Adaing

Support for Transactions

Horme Transactions

Basic Repar tirng

; Refrash Grid

Simple Display SLLEALA

Dreclarative L Modiy Catagones (WITH TRANSACTION)]
Parameters

Sething Parameter [Modify Categores (WITHOUT TRANSACTION) 1

Walues

ProductID)| Product CategorylD| Category

Filtering Reports

1 Chai Tea 1 Bevérages
E::’" by Drop=Down 2 Chang 1 Beverages
B 3 Anigsesd Syrup 2 Condiments
Master-Detalz- 4 Chef anton's Cajun Seasoning 2 Condiments
Datsils =t Chef Anton's Gumbo Mix 2 Condiments
Master/Cietali Scross & Granﬂd;ﬂa 5 Baysenberry 3 o T e
Twe Pages Spre . .
- Uncke Bob's Organlc Drie =
Detads of Seiected 7 Pears ? Prodlice
REW: 8 Morthwoods Cranberry Sauce 2 Condiments
] Mishi Kobe Miku & Meat/Foultry
10 Tkura g Seafood
123835, .. 2>
)] Core e Te——

Figure 8: The Products are Displayed in a Pageable GridView

16 of 19

File Edt ‘Wew PFavortes ook Help

GB&d&"’ g =] :’i :. o+ Search Favorbes £5 . b ""i' f “'#Jj"ﬁ

s @1 hbtpalflocahost:d TOZIASEWET _Daa_Tutoril_3_C5/BatchDistal Transactions. sso v B

Server Error in '/ASPNET_Data_Tutorial_63_CS' Application.

The UFPDATE statement conflicted with the FOREIGN KEY constraint
"FK_FProducts_Categories”, The conflict occurred in database
"C470518B300BA7D5293F22970D872885 LINE
ARTICLES\DATATUTORIALS\VOLUME 3\CSHARP\63

\ASPNET_DATA TUTORIAL 63 CS5\APP_ DATA\NORTHWND.MDF", table
"dbo.Categories”, column ‘CategoryID'.

The statement has been terminated.

DescHption: An umpndieg axceston pcoered duing the sxecution of 1he curent wek regues], Peese (e-ies the slack Trace for mors nformalion sk he
Srogr wwd whaes B orighated in The Goda

Euception Detalls: Sysiem Data SeChent SoEwception: The UPDATE stabsment conficied with the FOREIGH KEY constraim “Fi_Procucts_ Ceisgoriss™ The
Tl GlCiETEd i dilatiass "CET051 SER00RA TTEFGFIIGTI0ET 235 LIKE ARTICLESDATATUTORIAL SYWIILLIME FCSHARMET
VASPHET_DATA_TUTORAL B3 _CEWPR DATAMCRTHARD MOF®, bable "o Calagories”, colamn ‘Cabaponyilr
Tre= =tabement bavs been {erminsted R
L ¥
& Done % Local intranet

Figure 9: Reassigning the Categories Results in a Foreign Key Constraint Violation

Now hit your browser’s Back button and then click the “Refresh Grid” button. Upon refreshing the data you should
see the exact same output as shown in Figure 8. That is, even though some of the products’ CategoryIDs were
changed to legal values and updated in the database, they were rolled back when the foreign key constraint
violation occurred.

Now try clicking the “Modify Categories (WITHOUT TRANSACTION)” button. This will result in the same
foreign key constraint violation error (see Figure 9), but this time those products whose CategoryID values were
changed to a legal value will not be rolled back. Hit your browser’s Back button and then the “Refresh Grid”
button. As Figure 10 shows, the categoryIDs of the first eight products have been reassigned. For example, in
Figure 8, Chang had a categoryID of 1, but in Figure 10 it’s been reassigned to 2.

17 of 19

A Untitled Page - Microsoft Imternet Explorer I"x||ﬁ| ‘-_||EE|
Eie Edk Wew Fgeoites Took Hel i

) Back = O = [&@ #fe /- Soarch Favortes £ it e T & £ :"'.;?
Addrmes EH':D"'.“IH"&:FL:|.7|:e.||=|:-J'}‘ET_[\da_TLtDﬂd_fJ_ESI'BE*m-&JTIMS-H.':l:l'l!. AdpE b ﬂ =
Worki ng with Data Tutorials Home > Working with Batched Data > Adding
Support for Trans actions
Transactions
tasio r] _n'_.l:.l'__.| T_||'|.:'| . -
Refresh Grid
Simgle Drisplay _ Bafeshiond |
Decarative [Madify Categaries (WITH TRANSACTION) 1
Farameters
Setting Parameter [Modify Categories (WITHOUT TRANSACTION)]
Walles
Eiltering Beports Product CategoryID| Category
Al 1 Chal Tea 1 Beverages
m:r by Drop-Down 5 Chang 2 condiments
=] Aniseed Syrup 3 Confectons
Master-Datalls- Cchef Anton's Cajun
i 4 a P
Detalls Seasoning BRI
Mastar/Patl A =1 Chel Anton's Gumbo Mix 5 GErains/Cersals
Two Pages £ g;‘:gﬁ;"a e A G Meat/Poultry
Details: of Selected je ‘e O
% - I.Jn-:,t Bob's Drgsnic Dried 5 ProdLics
g Pears
Custamized L&} MNorthwoods Crenberry Sauce 8 Seafood
Farmatting 9 Hishi Kobe Miku & Meat/Faultry
oAb Colors 10 lkura B Seafood
L2385 05D
Custom Content meg: .
&) Dore % Local intranet

Figure 10: Some Products’ categoryID Values were Updated While Others Were Not

Summary

By default, the TableAdapter’s methods do not wrap the executed database statements within the scope of a
transaction, but with a little work we can add methods that will create, commit, and rollback a transaction. In this
tutorial we created three such methods in the ProductsTableAdapter class: BeginTransaction,
CommitTransaction, and RollbackTransaction. We saw how to use these methods along with a try...catch
block to make a series of data modification statements atomic. In particular, we created the
UpdateWithTransaction method in the ProductsTableAdapter, which uses the Batch Update pattern to perform
the necessary modifications to the rows of a supplied ProductsbDataTable. We also added the
DeleteProductsWithTransaction method to the ProductsBLL class in the BLL, which accepts a List of
ProductID values as its input and calls the DB-Direct pattern method pelete for each ProductID. Both methods
start by creating a transaction and then executing the data modification statements within a try. . .catch block. If
an exception occurs, the transaction is rolled back, otherwise it is committed.

Step 5 illustrated the effect of transactional batch updates versus batch updates that neglected to use a transaction.
In the next three tutorials we will build upon the foundation laid in this tutorial and create user interfaces for

performing batch updates, deletes, and inserts.

Happy Programming!

18 of 19

Further Reading
For more information on the topics discussed in this tutorial, refer to the following resources:

Maintaining Database Consistency with Transactions
Managing Transactions in SQL Server Stored Procedures
Transactions Made Easy: System.Transactions
TransactionScope and DataAdapters

Using Oracle Database Transactions in .NET

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Dave Gardner,
Hilton Giesenow, and Teresa Murphy. Interested in reviewing my upcoming MSDN articles? If so, drop me a line
at mitchell@4GuysFromRolla.com.

19 of 19

