This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Updating and
Deleting Existing Binary Data

Introduction

Over the past three tutorials we’ve added quite a bit of functionality for working with binary data. We started by
adding a BrochurePath column to the Categories table and updated the architecture accordingly. We also added
Data Access Layer and Business Logic Layer methods to work with the Categories table’s existing Picture
column, which holds the binary content’s of an image file. We have built web pages to present the binary data in a
GridView — a download link for the brochure, with the category’s picture shown in an element — and have
added a DetailsView to allow users to add a new category and upload its brochure and picture data.

All that remains to be implemented is the ability to edit and delete existing categories, which we’ll accomplish in
this tutorial using the GridView’s built-in editing and deleting features. When editing a category, the user will be
able to optionally upload a new picture or have the category continue to use the existing one. For the brochure, they
can either choose to use the existing brochure, to upload a new brochure, or to indicate that the category no longer
has a brochure associated with it. Let’s get started!

Step 1: Updating the Data Access Layer

The DAL has auto-generated Insert, Update, and Delete methods, but these methods were generated based on
the CategoriesTableAdapter’s main query, which does not include the Picture column. Therefore, the Insert
and Update methods do not include parameters for specifying the binary data for the category’s picture. Like we
did in the preceding tutorial, we need to create a new TableAdapter method for updating the categories table
when specifying binary data.

Open the Typed DataSet and, from the Designer, right-click on the CategoriesTableAdapter’s header and
choose Add Query from the context menu to launche the TableAdapter Query Configuration Wizard. This wizard
starts by asking us how the TableAdapter query should access the database. Choose “Use SQL statements” and
click Next. The next step prompts for the type of query to be generated. Since we’re creating a query to add a new
record to the Categories table, choose “UPDATE” and click Next.

1 of 24

TableAdapter Query Configuration Wizard f‘__’”@ |@ —

|

Choose a Query Type A
Choose the bype of query to be generated ,‘E =it

e

What type of SQL guery would you like to use?
() SELECT which returns rows
Feturns ane o many rows o columns.

{) SELECT which returns a single value
' le, Sum, Courk, or any other aogregate furction),

Removes rows From a table,
() INSERT
Adds a new row bo a table.

[< Previoes ” Blext = Finiz! _

Figure 1: Select the “UPDATE” Option

We now need to specify the UPDATE SQL statement. The wizard automatically suggests an UPDATE statement
corresponding to the TableAdapter’s main query (one that updates the CategoryName, Description, and
BrochurePath values). Change the statement so that the Picture column is included along with a @Picture

parameter, like so:

UPDATE [Categories] SET
[CategoryName] = @CategoryName,
[Description] = @Description,
[BrochurePath] = @BrochurePath ,
[Picture] = @Picture

WHERE (([CategoryID] = @Original CategoryID))

The final screen of the wizard asks us to name the new TableAdapter method. Enter UpdatewithPicture and click
Finish.

2 0f 24

TableAdapter Query Configuration Wizard

Choose Function Name A s
Choose the name of the furction to be generated | . _i

wihat woild you e bo name the new function?
|UpdatewithPicture]

L {Emwum.J[Blext = Ji Firiish I[Cancel

Figure 2: Name the New TableAdapter Method UpdateWithPicture

Step 2: Adding the Business Logic Layer Methods

In addition to updating the DAL, we need to update the BLL to include methods for updating and deleting a
category. These are the methods that will be invoked from the Presentation Layer.

For deleting a category, we can use the CategoriesTableAdapter’s auto-generated Delete method. Add the
following method to the categoriesBLL class:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Delete, True)>

Public Function DeleteCategory(ByVal categoryID As Integer) As Boolean
Dim rowsAffected As Integer = Adapter.Delete(categoryID)

' Return true if precisely one row was deleted, otherwise false
Return rowsAffected =1
End Function

For this tutorial, let’s create two methods for updating a category - one that expects the binary picture data and
invokes the UpdatewithPicture method we just added to the CategoriesTableAdapter and another that accepts
juﬁiheCategoryName,Description,andBrochurePathvahwsandlmesCategoriesTableAdapterCkmS%
auto-generated Update statement. The rationale behind using two methods is that in some circumstances, a user
might want to update the category’s picture along with its other fields, in which case the user will have to upload
the new picture. The uploaded picture’s binary data can then be used in the UPDATE statement. In other cases, the

3 of 24

user might only be interested in updating, say, the name and description. But if the UPDATE statement expects the
binary data for the Picture column as well, then we’d need to provide that information as well. This would require
an extra trip to the database to bring back the picture data for the record being edited. Therefore, we want two
UuPDATE methods. The Business Logic Layer will determine which one to use based on whether picture data is
provided when updating the category.

To facilitate this, add two methods to the categoriesBLL class, both named UpdateCategory. The first one
should accept three Strings, a Byte array, and an Integer as its input parameters; the second, just three strings
and an Integer. The String input parameters are for the category’s name, description, and brochure file path, the
Byte array is for the binary contents of the category’s picture, and the Integer identifies the CategoryID of the
record to update. Notice that the first overload invokes the second if the passed-in Byte array is Nothing:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Update, False)>

Public Function UpdateCategory(categoryName As String, description As String,
brochurePath As String, picture() As Byte, categoryID As Integer) As Boolean

' If no picture is specified, use other overload
If picture Is Nothing Then

Return UpdateCategory(categoryName, description, brochurePath, categoryID)
End If

' Update picture, as well
Dim rowsAffected As Integer = Adapter.UpdateWithPicture _
(categoryName, description, brochurePath, picture, categorylD)

' Return true if precisely one row was updated, otherwise false
Return rowsAffected =1
End Function

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Update, True)>

Public Function UpdateCategory(categoryName As String, description As String,
brochurePath As String, categoryID As Integer) As Boolean

Dim rowsAffected As Integer = Adapter.Update
(categoryName, description, brochurePath, categoryID)

' Return true if precisely one row was updated, otherwise false

Return rowsAffected =1
End Function

Step 3: Copying Over the Insert and View Functionality

In the preceding tutorial we created a page named UploadInDetailsView.aspx that listed all categories in a
GridView and provided a DetailsView to add new categories to the system. In this tutorial we will extend the
GridView to include editing and deleting support. Rather than continuing to work from
UploadInDetailsView.aspx, let’s instead place this tutorial’s changes in the UpdatingAndDeleting.aspx page
from the same folder, ~/BinaryData. Copy and paste the declarative markup and code from
UploadInDetailsView.aspx t0 UpdatingAndDeleting.aspx.

Start by opening the UploadInDetailsView.aspx page. Copy all of the declarative syntax within the

<asp:Content> element, as shown in Figure 3. Next, open UpdatingAndDeleting.aspx and paste this markup
within its <asp:Content> element. Similarly, copy the code from the UploadInDetailsview.aspx page’s code-

4 of 24

behind class to UpdatingAndDeleting.aspx.

= ASPHET Data_Tutorlsl 5T C5 - Microzoft Viswal Siudia
e ER Yow Webgte Bl Debug Took Wiede Qomondy Hele fckies

R T T Y R N s
o i | T memetEplrerso - & -
% EmaryData UpletailsView.aspe | BnarDotallp,. dlektng. asx - x| | Bokiton Explorer -0 %
5 | Client Objects & Events we || (g Everts) | had ﬂlﬁl D B
& Language="CA" HastecPageFile="-/Sice,master” AutobventBir—) i T\ ASPET_Daba_Tutorial_57_ =

t IP="CgReentl® ComtentPlassioldecIDe"MainContent™ Runs 1) #op_Code

L
Hel
e
-

o CustomiFormastiing

n Gt il st it e iyt
- Dt st et Filtiring
o EcDdnt ool alik

2 EdInsertDelete

5 Enhancedidiien

8 Fitering

T EFEFAEEEEEER WS

(A Design | 5 Sowsce | |4 ssspeCocbentfConbent] > | b ||egsche.. SRProp. . | Mg Sery. . | Cl
{0 et g Erven ik 53] P Rresits 1|
Rsady =1 cel 1 chi me

Figure 3: Copy the Declarative Markup from UploadInDetailsView.aspx

After copying over the declarative markup and code, visit UpdatingAndDeleting.aspx. You should see the same
output and have the same user experience as with UploadInDetailsView.aspx page from the previous tutorial.

Step 4: Adding Deleting Support to the ObjectDataSource and
GridView

As we discussed back in the An Overview of Inserting, Updating, and Deleting Data tutorial, the GridView
provides built-in deleting capabilities and these capabilities can be enabled at the tick of a checkbox if the grid’s
underlying data source supports deleting. Currently the ObjectDataSource the GridView is bound to
(CategoriesDataSource) does not support deleting.

To remedy this, click on the Configure Data Source option from the ObjectDataSource’s smart tag to launch the
wizard. The first screen shows that the ObjectDataSource is configured to work with the CategoriesBLL class. Hit
Next. Currently, only the ObjectDataSource’s InsertMethod and SelectMethod properties are specified.
However, the wizard auto-populated the drop-down lists in the UPDATE and DELETE tabs with the
UpdateCategory and DeleteCategory methods, respectively. This is because in the CategoriesBLL class we
marked these methods using the DataobjectMethodattribute as the default methods for updating and deleting.

For now, set the UPDATE tab’s drop-down list to “(None)”, but leave the DELETE tab’s drop-down list set to
DeleteCategory. We’ll return to this wizard in Step 6 to add updating support.

50f24

Configure Data Source - CateporiesDataSource [EI@ E;@

iﬁ Define Data Methods
- L_'..-a"'

Chaoee & mathad of the business objeck to associate wikh the DELETE operation, The methad shoukd
accept a parameter For each primary key for the data object or a sngle parameter which is the data
ohjiect fo delete

Examplas: DeleteProduck(Product p), or DeleteProduct{Int32 praduckID)

Chaonse a method:
EDEfeta:ategw{IftSZ cabeqoryID), returns Boolean |

DelsteCateqorylInk32 cateqoryID), returns Boolean
| DeleteC stegory(Ink32 categaryID), returrs Boolean '

IH!!HEI!' FlExk [Finish J[Cancel]

Figure 4: Configure the ObjectDataSource to Use the DeleteCategory Method

Note: Upon completing the wizard, Visual Studio may ask if you want to “Refresh Fields and Keys,” which
will regenerate the data Web controls fields. Choose No, because choosing Yes will overwrite any field
customizations you may have made.

The ObjectDataSource will now include a value for its DeleteMethod property as well as a DeleteParameter,
Recall that when using the wizard to specify the methods, Visual Studio sets the ObjectDataSource’s
OldvaluesParameterFormatString property to original {0}, which causes problems with the update and
delete method invocations. Therefore, either clear out this property altogether or reset it to the default, {0}. If you
need to refresh your memory on this ObjectDataSource property, see the An Overview of Inserting, Updating, and

Deleting Data tutorial.

After completing the wizard and fixing the 01dValuesParameterFormatString, the ObjectDataSource’s
declarative markup should look similar like the following:

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldValuesParameterFormatString="{0}" SelectMethod="GetCategories"
TypeName="CategoriesBLL" InsertMethod="InsertWithPicture"
DeleteMethod="DeleteCategory">
<InsertParameters>
<asp:Parameter Name="categoryName" Type="String" />
<asp:Parameter Name="description" Type="String" />
<asp:Parameter Name="brochurePath" Type="String" />
<asp:Parameter Name="picture" Type="Object" />
</InsertParameters>

6 of 24

<DeleteParameters>
<asp:Parameter Name="categoryID" Type="Int32" />

</DeleteParameters>

</asp:0bjectDataSource>

After configuring the ObjectDataSource, add deleting capabilities to the GridView by checking the “Enable
Deleting” checkbox from the GridView’s smart tag. This will add a CommandField to the GridView whose
ShowDeleteButton property is set to True.

"2 ASPHET Data_Twterlal 5T _C5 - Micresalt Viswal S1udio

Flo [t Yew ‘Webgte fuld [ebug Formet Loyt Fook Window Comewndty Help Addes

Mo W N DD E e S,) it %

T I =B I U AL E =L

®DinaryDate,Up.eleting.aspi® L -x 5l

~ = = 1l

- . iz Add a Category with a Picture and :
(s ategory L-L
Diescription 7
Brochire x
Ficture ;‘

& Gridview Tasks

F\.l.l'-lﬁ r;a-Ell 5

Chooes Dats Source: | Caleporeslabatmris L

Albsr Databound Databauns

abc Databound Databaunc
Configure Dats Source.
abc Databound Databoung .
ol rersh Soheegy
abe Databound Databounc . - -
abe Databound Databouns s pew coimn
I o
Db jectDataSoundce - CategorssDabaSours] iEruablla B
] Erabie Serting
[Ervabie Setectin
ot Tempiates
1% X
——— 7 e
| 3 Deson | B Source o| [<beddy> || canpooonbenticonbent! > | cpo | canpigridvaedcatagori > |

i .'__i.-'---:'_l_-i..h 1

Figure 5: Enable Support for Deleting in the GridView

Take a moment to test out the delete functionality. There is a foreign key between the Products table’s
CategoryID and the Categories table’s CategoryID, so you will get a foreign key constraint violation exception
if you attempt to delete any of the first eight categories. To test this functionality out, add a new category,
providing both a brochure and picture. My test category, shown in Figure 6, includes a test brochure file named
Test.pdf and a test picture. Figure 7 shows the GridView after the test category has been added.

7 of 24

2 Untitled Page - Microsoft Intermet Explorer

© Elle Edit Wew Favortes Took Help

Qo - O - [{ @ G Psewch rwores @ - v 6w BB

| hgdress #'ﬂH:tp:rﬂncal'nst:EE%,I'RSPﬁET_Data_TLHJJ’iaLE?_CSIB&HwData_ILh:dj:ingmgﬁeﬁng.aspx " = =

Working with Data Tutorials Heme> Working with Binary

Data > Updating and Deleting

Add a Category with a
Picture and Brochure

Home

Basic Reporting
Simple Display
Declarative
Parameters

Setting Parameter
Walues

Filtering Reports
Filter by Drop-Cown

TR

Category [QERME |

BBt gletalelyl| 2 tect for delete.,
GYYSINCM - \Documents and Set] | Browse.. |

C WMy Prn:uec:tﬁ‘-.ertlng*

Insert Cancel

] Done % Local intranet

Figure 6: Add a Test Category with a Brochure and Image

3 Untitled Page - Microsoft Internel Explorer

Ble Edt Wew Fpeorbes Joos Help

Qeck - O - W @ 8 FPoeach Trfovates £ 3. 5 W] - & s KL ER
Ak ll“;lw:p mum EIJASPHET Dasta_Tutonsl_57_C5/BneryOuatafUndatinghodDelsting. o

Cbete Seafood Seaweed and fish Brochure
Anailable

I
Delete veogies Summy vegetables! E?:u:nure
A ailable
Deleis T le for del bl TEST
est Dalabe A test alabe,..
Flaines IMAGE
-
%4 Local inbranet

Figure 7: After Inserting the Test Category, it is Displayed in the GridView

In Visual Studio, refresh the Solution Explorer. You should now see a new file in the ~/Brochures folder,
Test.pdf (see Figure 8).

Next, click the Delete link in the Test Category row, causing the page to postback and the CategoriesBLL class’s

8 of 24

DeleteCategory method to fire. This will invoke the DAL’s Delete method, causing the appropriate DELETE
statement to be sent to the database. The data is then rebound to the GridView and the markup is sent back to the
client with the Test Category no longer present.

While the delete workflow successfully removed the Test Category record from the Categories table, it did not
remove its brochure file from the web server’s file system. Refresh the Solution Explorer and you will see that
Test.pdf is still sitting in the ~/Brochures folder.

Jj.ﬁﬁ
_‘P C: W ASPNET _Data_Tutorial _57_ A
|- LZ] App_Code '
| [App_Data

= App_Themes

1 | BasicReporting

,____,r BinaryDaka

J Default, aspx

J DisplayCategoryPicture. aspix

ﬂ DisplayOrDownloadbata, aspx
ﬂ Filelpload. aspx

ﬂ IpdatingAndDeleting. asp:x

j ploadInDetailsView, aspx

= | Brochures

"'E Beverages.pdf

X Condiments. pdf

X Confections. pdf

=L Dairy.pdf

=% Grains.pdf

"-' oo Meats, |:u:|F

&l

&

=

ikl

&l

53 B o B o o S R 5

=- CustDmButtDnsDataL|stRepeater

= i Py T I
5 L4
;_"_i]Sn:-Iu... FeiProp... |4 Sery... |BgClas...

Figure 8: The Test.pdf File Was Not Deleted from the Web Server’s File System

Step 5: Removing the Deleted Category’s Brochure File

One of the downsides of storing binary data external to the database is that extra steps must be taken to clean up
these files when the associated database record is deleted. The GridView and ObjectDataSource provide events that
fire both before and after the delete command has been performed. We actually need to create event handlers for
both the pre- and post-action events. Before the Categories record is deleted we need to determine its PDF file’s
path, but we don’t want to delete the PDF before the category is deleted in case there is some exception and the
category is not deleted.

The GridView’s RowDeleting event fires before the ObjectDataSource’s delete command has been invoked, while
its RowDeleted event fires after. Create event handlers for these two events using the following code:

' A page variable to "remember" the deleted category's BrochurePath wvalue

9 of 24

Private deletedCategorysPdfPath As String = Nothing

Protected Sub Categories RowDeleting(sender As Object, e As GridViewDeleteEventArgs)
Handles Categories.RowDeleting
' Determine the PDF path for the category being deleted...

Dim categoryID As Integer = Convert.ToInt32(e.Keys("CategoryID"))

Dim categoryAPI As New CategoriesBLL()

Dim categoriesData As Northwind.CategoriesDataTable =
categoryAPI.GetCategoryByCategoryID (categoryID)

Dim category As Northwind.CategoriesRow = categoriesData (0)

If category.IsBrochurePathNull () Then
deletedCategorysPdfPath = Nothing
Else
deletedCategorysPdfPath = category.BrochurePath
End If
End Sub

Protected Sub Categories RowDeleted(sender As Object, e As GridViewDeletedEventArgs)
Handles Categories.RowDeleted

Delete the brochure file if there were no problems deleting the record
If e.Exception Is Nothing Then
DeleteRememberedBrochurePath ()
End If
End Sub

In the RowDeleting event handler, the CategoryID of the row being deleted is grabbed from the GridView’s
DataKeys collection, which can be accessed in this event handler through the e . Keys collection. Next, the
CategoriesBLL class’s GetCategoryByCategoryID (categoryID) is invoked to return information about the
record being deleted. If the returned CategoriesDataRow object has a non-NULL BrochurePath value then it is

stored in the page variable deletedCategorysPdfPath so that the file can be deleted in the RowDeleted event
handler.

Note: Rather than retrieving the BrochurePath details for the Categories record being deleted in the
RowDeleting event handler, we could have alternatively added the BrochurePath to the GridView’s
DataKeyNames property and accessed the record’s value through the e .Keys collection. Doing so would
slightly increase the GridView’s view state size, but would reduce the amount of code needed and save a trip
to the database.

After the ObjectDataSource’s underlying delete command has been invoked, the GridView’s RowDeleted event
handler fires. If there were no exceptions in deleting the data and there is a value for deletedCategorysPdfPath,
then the PDF is deleted from the file system. Note that this extra code is not needed to clean up the category’s
binary data associated with its picture. That’s because the picture data is stored directly in the database, so deleting
the categories row also deletes that category’s picture data.

After adding the two event handlers, run this test case again. When deleting the category, its associated PDF is also
deleted.

Updating an existing record’s associated binary data provides some interesting challenges. The remainder of this
tutorial delves into adding update capabilities to the brochure and picture. Step 6 explores techniques for updating
the brochure information while Step 7 looks at updating the picture.

10 of 24

Step 6: Updating a Category’s Brochure

As discussed in the An Overview of Inserting, Updating, and Deleting Data tutorial, the GridView offers built-in
row-level editing support that can be implemented by the tick of a checkbox if its underlying data source is
appropriately configured. Currently, the cCategoriesDatasource ObjectDataSource is not yet configured to
include updating support, so let’s add that in.

Click the Configure Data Source link from the ObjectDataSource’s wizard and proceed to the second step. Because
of the DataObjectMethodattribute used in CategoriesBLL, the UPDATE drop-down list should automatically
be populated with the Updatecategory overload that accepts four input parameters (for all columns but Picture).
Change this so that it uses the overload with five parameters.

Configure Data Source - CategoriesDataSource E”E——J @[’)__C]

: %j Define Data Methods

i

| SELECT | UPDATE | INSERT | DELETE |
Chaose & methad of the business obieck to associate with the UPDATE aperation, The method should
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

Examples: UpdateProduct(Product p), or UpdateProduck(Int32 productiD, String name, Double price)

Chaonse a method:
!LlpdateCategDryI{String cateqoryMame, String description, '

LipdateC stenqory(Skring cateqoryMame, String description, Skring brochurePath, Byvte[] plcture, Int32 cakemgoryiD
LipdateCategory(String categoryMame, String description, String brachurePath, Int32 categarylDy), returns Bools

InkS2 categoryID), returns Eoolean |
|

o> |) ot

Figure 9: Configure the ObjectDataSource to Use the UpdateCategory Method that Includes a Parameter
for Picture

The ObjectDataSource will now include a value for its UpdateMethod property as well as corresponding
UpdateParameters. As noted in Step 4, Visual Studio sets the ObjectDataSource’s
OldvaluesParameterFormatString property to original {0} when using the Configure Data Source wizard.
This will cause problems with the update and delete method invocations. Therefore, either clear out this property
altogether or reset it to the default, {0}.

After completing the wizard and fixing the 01dValuesParameterFormatString, the ObjectDataSource’s
declarative markup should look like the following:

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"

11 of 24

OldValuesParameterFormatString="{0}" SelectMethod="GetCategories"

TypeName="CategoriesBLL" InsertMethod="InsertWithPicture"
DeleteMethod="DeleteCategory" UpdateMethod="UpdateCategory">
<InsertParameters>
<asp:Parameter Name="categoryName" Type="String" />
<asp:Parameter Name="description" Type="String" />
<asp:Parameter Name="brochurePath" Type="String" />
<asp:Parameter Name="picture" Type="Object" />
</InsertParameters>
<DeleteParameters>
<asp:Parameter Name="categoryID" Type="Int32" />
</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="categoryName" Type="String" />
<asp:Parameter Name="description" Type="String" />
<asp:Parameter Name="brochurePath" Type="String" />
<asp:Parameter Name="picture" Type="Object" />
<asp:Parameter Name="categoryID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

To turn on the GridView’s built-in editing features, check the “Enable Editing” option from the GridView’s smart
tag. This will set the CommandField’s showEditButton property to True, resulting in the addition of an Edit

button (and Update and Cancel buttons for the row being edited).

3 ASPNET Dt Tutorial 57_C5 - Microsoft Visual Studio =l =

Be G Mew Wibgte BuMd Debug Famet Legnd Dok MWindow Qeomenky Hep gddns
L AR - N R el b 8 wedateondut s

Faragragh « = Verdana 8% - B LoD S
Categores: Q.. NORTHWAD MDF] ' BinaryData Up_eletimg.aspr™ - W

Brochure

L ategory
rescription
Brochure

Picture

| Gridvies Tatks
[Bade Fomt.,

Datatround Databound
Chitsorpr Doy Simrt: | CabegqorasDataSource

Big abe 3o Databound Databoun
Configurs Data Sourte, .
ehe abe e Dietabound Databound
Radregh Sherss
g abc abe Dtalbound Databoune |-
igta abe ahe Diatalpound Databiound i pew Colsn.,
]
Db peciDstaSource - Categonelistasorce [Erable Paging
[7] Erwsitde Sorties
<] Eresble Edeng
== [ie] Erapbie Dnbetivny
] | |
chody> | Camproonbenticontent] > (| 0 .
IS0 oot | g Erv Lt 5] Fin Resuts 1 | Edt Tempistas

Ready

dd a Category with a Picture and F

N | sanasdeig 7 ity Lopmos

Figure 10: Configure the GridView to Support Editing

Visit the page through a browser and click one of the row’s Edit buttons. The CategoryName and Description

12 of 24

BoundFields are rendered as textboxes. The Brochurepath TemplateField lacks an EditItemTemplate, SO it
continues to show its ItemTemplate — a link to the brochure. The picture ImageField renders as a TextBox
whose Text property is assigned the value of the ImageField’s DataImageUrlField value, in this case
CategoryID.

T Unthtied Fage - Micresafi Infernel Feploner
Cie ESt ew Fgeorter Jook el
Q) back = 3 o F fw | S Search Favtrkes 49 - i = G @5

Agiress | Y bt o alhonl -2 T ASENET Data_Tubcrial 57 8 neristafupdatingircisleting o * ﬂ =]

Wnrking w|th Data Tuto“alg Duq;uf > Warking with Binary Data > Updating and Deleting Existing Binary
ata

Add a Category with a Picture and Brochure

Category
[ll"E-l:I:iI'Jtl l:-lI'J

Cateqory Description Brochore!
e

Brochnes

Updats Cancel Bewarages Saft drinks, coffens, te

Sweet and Savory

Edif Defets Condiments Sk, relshes, UL

spresds, and Brocrers
SEASOOINGS
e, ST
EdiF Figlaks faltat MR Desgerts, candies, e j#\‘ﬁ" b

] Lol et

Figure 11: The GridView Lacks an Editing Interface for BrochurePath

Customizing the Brochureprath’s Editing Interface
We need to create an editing interface for the Brochurepath TemplateField, one that allows the user to either:

e Leave the category’s brochure as-is,

e Update the category’s brochure by uploading a new brochure, or

¢ Remove the category’s brochure altogether (in the case that the category no longer has an associated
brochure).

We also need to update the Picture ImageField’s editing interface, but we’ll get to this in Step 7.

From the GridView’s smart tag, click on the “Edit Templates” link and select the Brochurerath TemplateField’s
EditItemTemplate from the drop-down list. Add a RadioButtonList Web control to this template, setting its ID
property to BrochureOptions and its AutoPostBack property to True. From the Properties window, click on the
ellipses in the Items property, which will bring up the ListItem Collection Editor. Add the following three
options with values 1, 2 and 3, respectively:

o Use current brochure
¢ Remove current brochure
¢ Upload new brochure

13 of 24

Set the first ListItem’s Selected property to True.

Listitem Collection Editor @ |E| [g|

Members; Upload new brochure properties:

0 | Use current brochure
1 | Remove current brochure
e Upload new brochure

Enabled True
Selected False _
Texk Upload new hruchurc_

- E

[add] [Remove

[Ok] [Zancel

Figure 12: Add Three ListItems to the RadioButtonList

Beneath the RadioButtonList, add a FileUpload control named BrochureUpload. Set its Visible property to
False.

14 of 24

¥ ASPHET Data_Tutorial _57_C5 - Microsoft Visual Studic
Eie Edt Yiew ‘Webdbe [uld Debug Fomat Layoot Took Window Commonity Help fdding

'."_.I'_.'."dd A da Gh 9. A=k) [updsteproduct =
} - LB It LA LIRS = LS
se | Toobox: -l XM BunaryDiskajipd.. Jetig, aspo s T % Properties -0 oK
r k)
T L | _ _ # | Categories.Columm3brochure Edititem =
i e -':’t' i.iJi i
3 _“.lrﬁ'll.l.:-':u'l e
. B e
| (16 hn-l:h.u:ﬂpth:mr:]
| (=T
|
| L]
- UploadWarninal
: [E
Cabegories - Column 1] - Brochure
| EciIteenT emnplate ik
1
@ Use currant brochure
O Remove current brochured Gasclas
[t sMesmbar
O Upload new brochure DatatourcelD
b | Bogwrs=..) DataTacctFakd
5 Dk aTeskFormatStn
DbjectDakaSnourcs - CategerieDatsSmnmce DiafiatfabusFiekd 2
DakaSourcelD
L iew w || The comkrol 10 of an i0ataSource that vl be
i Substtution . usad &5 the data source,
G Lecaize || 2p>] <aspioridimicategories > | [<amn radcbutbonka feoe._ > v | k... | Serop... B Serv... | B Cos
Ak - " " Lo -
(3 Cokput || o Erron Lisk il Pind Rlesults |

Ready

Figure 13: Add a RadioButtonList and FileUpload Control to the EditItemTemplate

This RadioButtonList provides the three options for the user. The idea is that the FileUpload control will be
displayed only if the last option, “Upload new brochure”, is selected. To accomplish this, create an event handler
for the RadioButtonList’s SelectedIndexChanged event and add the following code:

Protected Sub BrochureOptions SelectedIndexChanged _
(sender As Object, e As EventArgs)

' Get a reference to the RadioButtonList and its Parent
Dim BrochureOptions As RadioButtonList =

CType (sender, RadioButtonList)
Dim parent As Control = BrochureOptions.Parent

' Now use FindControl ("controlID") to get a reference of the
' FileUpload control
Dim BrochureUpload As FileUpload = _

CType (parent.FindControl ("BrochureUpload"), FileUpload)

' Only show BrochureUpload if SelectedValue = "3"
BrochureUpload.Visible = (BrochureOptions.SelectedValue = "3")
End Sub

Since the RadioButtonList and FileUpload controls are within a template, we have to write a bit of code to
programmatically access these controls. The SelectedIndexChanged event handler is passed a reference of the
RadioButtonList in the sender input parameter. To get the FileUpload control, we need to get the
RadioButtonList’s parent control and use the FindControl ("control1p") method from there. Once we have a
reference to both the RadioButtonList and FileUpload controls, the FileUpload control’s visible property is set to

15 of 24

True only if the RadioButtonList’s selectedvalue equals “3”, which is the value for the “Upload new brochure”
ListItem.

With this code in place, take a moment to test out the editing interface. Click on the Edit button for a row. Initially,
the “Use current brochure” option should be selected. Changing the selected index causes a postback. If the third
option is selected, the FileUpload control is displayed, otherwise it is hidden. Figure 14 shows the editing interface
when the Edit button is first clicked; Figure 15 shows the interface after the “Upload new brochure” option is

selected.

Description Brochure |
@ lise current
brodhure
CrRemove

Jpdate Cance Beverages Soft dnnks, coffees, te
: - 2 - current brodhure

Cpload new
brodhure

[sl E

Figure 14: Initially, the “Use current brochure” Option is Selected

Cateqgory | Description | Brochure
CrUse current brochure

O Remove current brochure

Update Cancel|Baverages Soft dninks, coffess, tey
=k Upload new brochurs

|_Browse

T L

Figure 15: Choosing the “Upload new brochure” Option Displays the FileUpload Control

Saving the Brochure File and Updating the BrochurePath Column

When the GridView’s Update button is clicked, its RowUpdating event fires. The ObjectDataSource’s update
command is invoked and then the GridView’s RowUpdated event fires. Like with the deleting workflow, we need
to create event handlers for both of these events. In the RowUpdating event handler, we need to determine what
action to take based on the selectedvalue of the Brochureoptions RadioButtonList:

o Ifthe Selectedvalue is “1”, we want to keep using the same BrochurePath setting. Therefore, we need to
set the ObjectDataSource’s brochurePath parameter to the existing BrochurePath value of the record being
updated. The ObjectDataSource’s brochurePath parameter can be set using e .Newvalues

["brochurePath"] = value.

e Ifthe selectedvalue is “2”, then we want to set the record’s BrochurePath value to NULL. This can be
accomplished by setting the ObjectDataSource’s brochurePath parameter to Nothing, which results in a
database NULL being used in the UPDATE statement. If there is an existing brochure file that is being removed,
we need to delete the existing file. However, we only want to do this if the update completes without raising
an exception.

o Ifthe Selectedvalue is “3”, then we want to ensure that the user has uploaded a PDF file and then save it to
the file system and update the record’s Brochurepath column value. Moreover, if there is an existing
brochure file that is being replaced, we need to delete the previous file. However, we only want to do this if
the update completes without raising an exception.

16 of 24

The steps needed to be completed when the RadioButtonList’s Selectedvalue is “3” are virtually identical to
those used by the DetailsView’s ItemInserting event handler. This event handler is executed when a new
category record is added from the DetailsView control we added in the previous tutorial. Therefore, it behooves us
to refactor this functionality out into separate methods. Specifically, I moved out the common functionality into
two methods:

e ProcessBrochureUpload (FileUpload, out bool) —accepts as input a FileUpload control instance and an
output Boolean value that specifies whether the delete or edit operation should proceed or if it should be
cancelled due to some validation error. This method returns the path to the saved file or null if no file was
saved.

e DeleteRememberedBrochurePath — deletes the file specified by the path in the page variable
deletedCategorysPdfPath if deletedCategorysPdfPath is not null,

The code for these two methods follows. Note the similarity between ProcessBrochureUpload and the
DetailsView’s ItemInserting event handler from the previous tutorial. In this tutorial I have updated the
DetailsView’s event handlers to use these new methods. Download the code associated with this tutorial to see the
modifications to the DetailsView’s event handlers.

Private Function ProcessBrochureUpload _
(BrochureUpload As FileUpload, CancelOperation As Boolean) As String

CancelOperation = False ' by default, do not cancel operation

If BrochureUpload.HasFile Then
' Make sure that a PDF has been uploaded
If String.Compare (System.IO.Path.GetExtension (BrochureUpload.FileName),
".pdf", True) <> 0 Then

UploadWarning.Text =
"Only PDF documents may be used for a category's brochure."
UploadWarning.Visible = True

CancelOperation = True
Return Nothing
End If
Const BrochureDirectory As String = "~/Brochures/"

Dim brochurePath As String = BrochureDirectory + BrochureUpload.FileName
Dim fileNameWithoutExtension As String = _
System.IO.Path.GetFileNameWithoutExtension (BrochureUpload.FileName)

Dim iteration As Integer =1

While System.IO.File.Exists (Server.MapPath (brochurePath))
brochurePath = String.Concat (BrochureDirectory,
fileNameWithoutExtension, "-", iteration, ".pdf")
iteration += 1
End While

' Save the file to disk and set the value of the brochurePath parameter
BrochureUpload.SaveAs (Server.MapPath (brochurePath))
Return brochurePath
Else
' No file uploaded
Return Nothing
End If

17 of 24

End Function

Private Sub DeleteRememberedBrochurePath ()
' Is there a file to delete?
If deletedCategorysPdfPath IsNot Nothing Then
System.IO.File.Delete (Server.MapPath (deletedCategorysPdfPath))
End If
End Sub

The GridView’s RowUpdating and RowUpdated event handlers use the ProcessBrochureUpload and
DeleteRememberedBrochurePath methods, as the following code shows:

Protected Sub Categories RowUpdating
(sender As Object, e As GridViewUpdateEventArgs)
Handles Categories.RowUpdating

' Reference the RadioButtonList
Dim BrochureOptions As RadioButtonList =
CType (Categories.Rows (e.RowIndex) .FindControl ("BrochureOptions"),
RadioButtonList)

' Get BrochurePath information about the record being updated
Dim categoryID As Integer = Convert.ToInt32(e.Keys("CategoryID"))

Dim categoryAPI As New CategoriesBLL()

Dim categoriesData As Northwind.CategoriesDataTable =
categoryAPI.GetCategoryByCategoryID (categoryID)

Dim category As Northwind.CategoriesRow = categoriesData (0)

If BrochureOptions.SelectedValue = "1" Then
' Use current value for BrochurePath
If category.IsBrochurePathNull () Then

e.NewValues ("brochurePath") = Nothing
Else
e.NewValues ("brochurePath") = category.BrochurePath
End If
ElseIf BrochureOptions.SelectedValue = "2" Then
' Remove the current brochure (set it to NULL in the database)
e.NewValues ("brochurePath") = Nothing
ElseIf BrochureOptions.SelectedValue = "3" Then

' Reference the BrochurePath FileUpload control
Dim BrochureUpload As FileUpload = _
CType (categories.Rows (e.RowIndex) .FindControl ("BrochureUpload"),
FileUpload)

' Process the BrochureUpload
Dim cancelOperation As Boolean = False
e.NewValues ("brochurePath") = _
ProcessBrochureUpload (BrochureUpload, cancelOperation)

e.Cancel = cancelOperation
Else
' Unknown value!
Throw New ApplicationException(
String.Format ("Invalid BrochureOptions value, {0}",
BrochureOptions.SelectedValue))

18 of 24

End If

If BrochureOptions.SelectedValue = "2" OrElse
BrochureOptions.SelectedValue = "3" Then

' "Remember" that we need to delete the old PDF file

If (category.IsBrochurePathNull()) Then
deletedCategorysPdfPath = Nothing
Else
deletedCategorysPdfPath = category.BrochurePath
End If
End If

End Sub

Protected Sub Categories RowUpdated
(sender As Object, e As GridViewUpdatedEventArgs)
Handles Categories.RowUpdated

' If there were no problems and we updated the PDF file,
' then delete the existing one
If e.Exception Is Nothing Then
DeleteRememberedBrochurePath ()
End If
End Sub

Note how the RowUpdating event handler uses a series of conditional statements to perform the appropriate action
based on the BrochureOptions RadioButtonList’s Selectedvalue property value.

With this code in place, you can edit a category and have it use its current brochure, use no brochure, or upload a
new one. Go ahead and try it out. Set breakpoints in the RowUpdating and RowUpdated event handlers to get a
sense of the workflow.

Step 7: Uploading a New Picture

The picture ImageField’s editing interface renders as a textbox populated with the value from its
DataImageUrlField property. During the editing workflow, the GridView passes a parameter to the
ObjectDataSource with the parameter’s name the value of the ImageField’s DataImageUrlField property and the
parameter’s value the value entered into the textbox in the editing interface. This behavior is suitable when the
image is saved as a file on the file system and the DataImageUrlField contains the full URL of the image. With
such circumstances, the editing interface displays the image’s URL in the textbox, which the user can change and
have saved back to the database. Granted, this default interface doesn’t allow the user to upload a new image, but it
does let them change the URL of the image from the current value to another. For this tutorial, however, the
ImageField’s default editing interface does not suffice because the Picture binary data is being stored directly in
the database and the DataImageUrlField property holds just the categoryID.

To better understand what happens in our tutorial when a user edits a row with an ImageField, consider the
following example: a user edits a row with CategoryID 10, causing the Picture ImageField to render as a textbox
with the value “10”. Imagine that the user changes the value in this textbox to “50” and clicks the Update button. A
postback occurs and the GridView initially creates a parameter named CategoryID with the value “50”. However,
before the GridView sends this parameter (and the CategoryName and Description parameters), it adds in the
values from the DataKeys collection. Therefore, it overwrites the CategoryID parameter with the current row’s
underlying CategoryID value, 10. In short, the ImageField’s editing interface has no affect on the editing
workflow for this tutorial because names of the ImageField’s DataImageUrlField property and the grid’s
DataKey value are one in the same.

19 of 24

While the ImageField makes it easy to display an image based on database data, we don’t want to provide a textbox
in the editing interface. Rather, we want to offer a FileUpload control that the end user can use to change the
category’s picture. Unlike the Brochurepath value, for these tutorials we’ve decided to require that each category
must have a picture. Therefore, we don’t need to let the user indicate that there is no associated picture — the user
may either upload a new picture or leave the current picture as-is.

To customize the ImageField’s editing interface, we need to convert it into a TemplateField. From the GridView’s
smart tag, click on the “Edit Columns” link, select the ImageField, and click the “Convert this field into a
TemplateField” link.

Fields 2

Available Fields: ImageField properties:
_'5 (Al Fields) -~
=] BoundField il ——
] CategoryID El Accessibility ”~
Z] cateqoryName __| fccessibleHeaderTe
[Z] Description [& Appearance
(5] MumberofProducts . AlternateText
E Picture | FookerTexk
; = — HeaderImagelr
Header Text
Selected fields: B Behavior _
[E.'?lCu:ummandField] CnnverFFmptyStrln; True
| & category Insertvisible True
: @ MullDisplay Text

[
HeaderText

The text within the header of this field,

[] Auto-generate fields [Cu:unvert this field into 2 TemnlateFieId]

Refresh Schema [O] [Cancel]

Figure 16: Convert the ImageField Into a TemplateField

Converting the ImageField into a TemplateField in this manner generates a TemplateField with two templates. As
the following declarative syntax shows, the ItemTemplate contains an Image Web control whose ImageUrl
property is assigned using databinding syntax based on the ImageField’s DataImageUrlField and
DatalmageUrlFormatString properties. The EditItemTemplate contains a TextBox whose Text property is
bound to the value specified by the DataImageUrlField property.

<asp:TemplateField>
<EditItemTemplate>
<asp:TextBox ID="TextBoxl" runat="server"
Text="<%# Eval ("CategoryID") %>'></asp:TextBox>
</EditItemTemplate>
<ItemTemplate>
<asp:Image ID="Imagel" runat="server"
ImageUrl='<%# Eval ("CategoryID",
"DisplayCategoryPicture.aspx?CategoryID={0}") %>' />

20 of 24

</ItemTemplate>
</asp:TemplateField>

We need to update the EditItemTemplate to use a FileUpload control. From the GridView’s smart tag click on the
“Edit Templates” link and then select the picture TemplateField’s EditItemTemplate from the drop-down list.
In the template you should see a TextBox — remove this. Next, drag a FileUpload control from the Toolbox into the
template, setting its ID to PictureUpload. Also add the text “To change the category’s picture, specify a new
picture. To keep the category’s picture the same, leave the field empty” to the template, as well.

#% ASPNET_Data_Tutorial_57_CS5 - Microsaft Visual Studio ==
[R ECEE O F R TCE R W B L ko) updateproduct "z
Al - = =.B T U |A S B B :'_.a
| Tookax w8 X |5 BinaryDaka/Up_eleting.asps® | ~ X | Froperies -0 ox
41 12) ImageButton R e——— :
2 A Brochure | [Bowee. || | Categories.Colmmd EditTemTemplat -
] wE Dropovnlist (Beoris...) .;1EH;iLimm;_______m
a3 Lt lnsertCanesl % &
Chactoox UploadWarninal e
B2 ChedkBosdist
: BackZoke]
(& Radifiutton BorderCokor [
1= RawdcEagtonlist Border Shyls HotSet
EdiItemTamplats B ik
To change the category's picture, Cosiiass
specify a new picture. To kesp m‘:) :’“'
; EnabiaTharing]
the category’s pictura tha same, EnobleVionstats True
imave the feld empd Bl Fort
ForsCokr —
i Hight “
Dottt = e e R]
e 41k}

wp | | Prosgearrevatic nawme of the conteol,
»
||| <asmiridvievcategories > | <span |[<aspifleuloadépictueup. =| [+ | sk Herop... (B sery.. Ejdas...

[N |
3] Cwtpk _';jl:rncv Lk af'r\d Reidlts |

Ready

Figure 17: Add a FileUpload Control to the EditItemTemplate

After customizing the editing interface, view your progress in a browser. When viewing a row in read-only mode,
the category’s image is shown as it was before, but clicking on the Edit button renders the picture column as text
with a FileUpload control.

21 of 24

Category | Description Brochure

@ Usze
current
brodhure |To change the category's

picture, specify a new picturg.

Lipdate Cancel Baveragas Soft drinks, coffees, te il Takanp the catanaryls
A 9] A8 current nicture the same, leave the
brochure | fisld ampry,
O Upload [(Baowse..
i)
brochurs

Sweet and savory

: sauces, relishes Wiew
¥] (]
Edit Dalete Condiments spreads, and Brochire
SE350NINgs

Figure 18: The Editing Interface Includes a FileUpload Control

Recall that the ObjectDataSource is configured to call the CategoriesBLL class’s UpdateCategory method that
accepts as input the binary data for the picture as a Byte array. If this array is Nothing, however, the alternate
UpdateCategory overload is called, which issues the UPDATE SQL statement that does not modify the Picture
column, thereby leaving the category’s current picture intact. Therefore, in the GridView’s RowUpdating event
handler we need to programmatically reference the PictureUpload FileUpload control and determine if a file was
uploaded. If one was not uploaded, then we do not want to specify a value for the picture parameter. On the other
hand, if a file was uploaded in the PictureUpload FileUpload control, we want to ensure that it is a JPG file. If it
is, then we can send its binary contents to the ObjectDataSource through the picture parameter.

Like with the code used in Step 6, much of the code needed here already exists in the DetailsView’s
ItemInserting event handler. Therefore, I’ve refactored the common functionality into a new method,
validPictureUpload, and updated the ItemInserting event handler to use this method.

Add the following code to the start of the GridView’s RowUpdating event handler. It’s important that this code
come before the code that saves the brochure file since we don’t want to save the brochure to the web server’s file
system if an invalid picture file is uploaded.

' Reference the PictureUpload FileUpload
Dim PictureUpload As FileUpload = _
CType (categories.Rows (e.RowIndex) .FindControl ("PictureUpload"),
FileUpload)
If PictureUpload.HasFile Then
' Make sure the picture upload is valid
If ValidPictureUpload (PictureUpload) Then

e.NewValues ("picture") = PictureUpload.FileBytes
Else
' Invalid file upload, cancel update and exit event handler
e.Cancel = True
Exit Sub
End If

End If

The validPictureUpload (FileUpload) method takes in a FileUpload control as its sole input parameter and

22 of 24

checks the uploaded file’s extension to ensure that the uploaded file is a JPG; it is only called if a picture file is
uploaded. If no file is uploaded, then the picture parameter is not set, and therefore uses its default value of
Nothing. If a picture was uploaded and validPictureUpload returns True, the picture parameter is assigned the
binary data of the uploaded image; if the method returns False, the update workflow is cancelled and the event

handler exited.

The validPictureUpload (FileUpload) method code, which was refactored from the DetailsView’s
ItemInserting event handler, follows:

Private Function ValidPictureUpload(ByVal PictureUpload As FileUpload) As Boolean
' Make sure that a JPG has been uploaded
If String.Compare (System.IO.Path.GetExtension (PictureUpload.FileName),
".jpg", True) <> 0 AndAlso _
String.Compare (System.IO.Path.GetExtension (PictureUpload.FileName),
".jpeg", True) <> 0 Then

UploadWarning.Text =
"Only JPG documents may be used for a category's picture."

UploadWarning.Visible = True
Return False

Else
Return True

End If

End Function

Step 8: Replacing the Original Categories’ Pictures with JPGs

Recall that the original eight categories’ pictures are bitmap files wrapped in an OLE header. Now that we have
added the capability to edit an existing record’s picture, take a moment to replace these bitmaps with JPGs. If you
want to continue to use the current category pictures, you can convert them to JPGs by performing the following

steps:

1. Save the bitmap images to your hard drive. Visit the UpdatingAndDeleting.aspx page in your browser and
for each of the first eight categories, right-click on the image and choose to save the picture.

2. Open the image in your image editor of choice. You can use Microsoft Paint, for example.

3. Save the bitmap as a JPG image.

4. Update the category’s picture through the editing interface, using the JPG file.

After editing a category and uploading the JPG image, the image will not render in the browser because the
DisplayCategoryPicture.aspx page is stripping the first 78 bytes from the pictures of the first eight categories.
Fix this by removing the code that performs the OLE header stripping. After doing this, the
DisplayCategoryPicture.aspx Page Load event handler should have just the following code:

Protected Sub Page Load(sender As Object, e As EventArgs) Handles Me.Load
Dim categoryID As Integer = _
Convert.ToInt32 (Request.QueryString ("CategoryID"))

' Get information about the specified category

Dim categoryAPI As New CategoriesBLL()

Dim categories As Northwind.CategoriesDataTable =
categoryAPI.GetCategoryWithBinaryDataByCategoryID (categoryID)

Dim category As Northwind.CategoriesRow = categories (0)

' For new categories, images are JPGs...

23 of 24

' Output HTTP headers providing information about the binary data
Response.ContentType = "image/jpeg"

' Output the binary data
Response.BinaryWrite (category.Picture)
End Sub

Note: The UpdatingAndDeleting.aspx page’s inserting and editing interfaces could use a bit more work.
The categoryName and Description BoundFields in the DetailsView and GridView should be converted
into TemplateFields. Since CategoryName does not allow NULL values, a RequiredFieldValidator should be
added. And the Description TextBox should probably be converted into a multi-line TextBox. I leave these
finishing touches as an exercise for you.

Summary

This tutorial completes our look at working with binary data. In this tutorial and the previous three, we saw how
binary data can be stored on the file system or directly within the database. A user provides binary data to the
system by selecting a file from their hard drive and uploading it to the web server, where it can be stored on the file
system or inserted into the database. ASP.NET 2.0 includes a FileUpload control that makes providing such an
interface as easy as drag and drop. However, as noted in the Uploading Files tutorial, the FileUpload control is only
well-suited for relatively small file uploads, ideally not exceeding a megabyte. We also explored how to associate
uploaded data with the underlying data model, as well as how to edit and delete the binary data from existing
records.

Our next set of tutorials explores various caching techniques. Caching provides a means to improve an
application’s overall performance by taking the results from expensive operations and storing them in a location
that can be more quickly accessed.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Teresa Murphy.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

24 of 24

