
Documentation FeatureStore 0.3.5 documentation

Databricks Feature Store

Python API

Databricks FeatureStoreClient

Bases: object

Client for interacting with the Databricks Feature Store.

Create and return a feature table with the given name and primary keys.

The returned feature table has the given name and primary keys. Uses the provided
schema or the inferred schema of the provided features_df . If features_df is
provided, this data will be saved in a Delta table. Supported data types for features are:
IntegerType , LongType , FloatType , DoubleType , StringType , BooleanType ,
DateType , TimestampType , ShortType , ArrayType , MapType , and BinaryType ,
and DecimalType .

class databricks.feature_store.client.FeatureStoreClient(feature_store_uri:
Optional[str] = None, model_registry_uri: Optional[str] = None)

create_feature_table(name: str, keys: Union[str, List[str]], features_df:
pyspark.sql.dataframe.DataFrame = None, schema: pyspark.sql.types.StructType = None,
partition_columns: Union[str, List[str]] = None, description: str = None, timestamp_keys:
Union[str, List[str]] = None, **kwargs) →
databricks.feature_store.entities.feature_table.FeatureTable

Databricks Feature Store 0.3

https://docs.python.org/3/library/functions.html#object

Parameters: name – A feature table name of the form
<database_name>.<table_name> , for example dev.user_features .

keys – The primary keys. If multiple columns are required, specify a list of
column names, for example ['customer_id', 'region'] .

features_df – Data to insert into this feature table. The schema of
features_df will be used as the feature table schema.

schema – Feature table schema. Either schema or features_df must be

provided.
partition_columns –
Columns used to partition the feature table. If a list is provided, column
ordering in the list will be used for partitioning.

Note

When choosing partition columns for your feature table, use columns
that do not have a high cardinality. An ideal strategy would be such
that you expect data in each partition to be at least 1 GB. The most
commonly used partition column is a date .

Additional info: Choosing the right partition columns for Delta tables

description – Description of the feature table.
timestamp_keys –
The keys used for point-in-time lookups on the feature table.

Note

Experimental: This argument may change or be removed in a future
release without warning.

Other Parameters:

path (Optional[str]) – Path in a supported filesystem. Defaults to the

database location.

Get a feature table’s metadata.

Parameters: name – A feature table name of the form <database_name>.<table_name> ,
for example dev.user_features .

get_feature_table(name: str) →
databricks.feature_store.entities.feature_table.FeatureTable

https://bit.ly/3ueXsjv

Read the contents of a feature table.

Parameters: name – A feature table name of the form
<database_name>.<table_name> , for example dev.user_features .

as_of_delta_timestamp – If provided, reads the feature table as of this
time. Only date or timestamp strings are accepted. For example,
"2019-01-01" and "2019-01-01T00:00:00.000Z" .

Returns: The feature table contents, or None if the feature table does not exist.

Writes to a feature table.

If the input DataFrame is streaming, will create a write stream.

Parameters: name – A feature table name of the form
<database_name>.<table_name> , for example dev.user_features .

Raises an exception if this feature table does not exist.
df – Spark DataFrame with feature data. Raises an exception if the schema

does not match that of the feature table.
mode –
Two supported write modes:

"overwrite" updates the whole table.

"merge" will upsert the rows in df into the feature table. If df

contains columns not present in the feature table, these columns will
be added as new features.

checkpoint_location – Sets the Structured Streaming
checkpointLocation option. By setting a checkpoint_location ,

Spark Structured Streaming will store progress information and
intermediate state, enabling recovery a�er failures. This parameter is only
supported when the argument df is a streaming DataFrame .

trigger – If df.isStreaming , trigger defines the timing of stream data

processing, the dictionary will be unpacked and passed to
DataStreamWriter.trigger as arguments. For example,

trigger={'once': True} will result in a call to

DataStreamWriter.trigger(once=True) .

read_table(name: str, as_of_delta_timestamp: str = None) →
pyspark.sql.dataframe.DataFrame

write_table(name: str, df: pyspark.sql.dataframe.DataFrame, mode: str,
checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5
seconds'}) → Optional[pyspark.sql.streaming.StreamingQuery]

https://docs.python.org/3/library/constants.html#None
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger

Returns: If df.isStreaming , returns a PySpark StreamingQuery . None otherwise.

Publish a feature table to an online store.

Parameters: name – Name of the feature table.
online_store – Specification of the online store.
filter_condition – A SQL expression using feature table columns that filters
feature rows prior to publishing to the online store. For example,
"dt > '2020-09-10'" . This is analogous to running df.filter or a

WHERE condition in SQL on a feature table prior to publishing.

mode –
Specifies the behavior when data already exists in this feature table in the
online store. If "overwrite" mode is used, existing data is replaced by
the new data. If "merge" mode is used, the new data will be merged in,
under these conditions:

If a key exists in the online table but not the o�line table, the row in the
online table is unmodified.
If a key exists in the o�line table but not the online table, the o�line
table row is inserted into the online table.
If a key exists in both the o�line and the online tables, the online table
row will be updated.

streaming – If True , streams data to the online store.

checkpoint_location – Sets the Structured Streaming
checkpointLocation option. By setting a checkpoint_location ,

Spark Structured Streaming will store progress information and
intermediate state, enabling recovery a�er failures. This parameter is only
supported when streaming=True .

trigger – If streaming=True , trigger defines the timing of stream data

processing. The dictionary will be unpacked and passed to
DataStreamWriter.trigger as arguments. For example,

trigger={'once': True} will result in a call to

DataStreamWriter.trigger(once=True) .

Returns: If streaming=True , returns a PySpark StreamingQuery , None otherwise.

publish_table(name: str, online_store:
databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec,
filter_condition: str = None, mode: str = 'merge', streaming: bool = False, checkpoint_location:
Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5 minutes'}) →
Optional[pyspark.sql.streaming.StreamingQuery]

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None

Create a TrainingSet .

Parameters: df – The DataFrame used to join features into.

feature_lookups – List of features to join into the DataFrame .

label – Names of column(s) in DataFrame that contain training set labels.

To create a training set without a label field, i.e. for unsupervised training
set, specify label = None.
exclude_columns – Names of the columns to drop from the TrainingSet

DataFrame .

Returns: A TrainingSet object.

Log an MLflow model packaged with feature lookup information.

Note

The DataFrame returned by TrainingSet.load_df() must be used to train the
model. If it has been modified (for example data normalization, add a column, and
similar), these modifications will not be applied at inference time, leading to
training-serving skew.

create_training_set(df: pyspark.sql.dataframe.DataFrame, feature_lookups:
List[databricks.feature_store.entities.feature_lookup.FeatureLookup], label: Union[str, List[str],
None], exclude_columns: List[str] = []) → databricks.feature_store.training_set.TrainingSet

log_model(model: Any, artifact_path: str, *, flavor: module, training_set:
databricks.feature_store.training_set.TrainingSet, registered_model_name: str = None,
await_registration_for: int = 300, **kwargs)

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters: model – Model to be saved. This model must be capable of being saved by
flavor.save_model . See the MLflow Model API.

artifact_path – Run-relative artifact path.
flavor – MLflow module to use to log the model. flavor should have type

ModuleType . The module must have a method save_model , and must

support the python_function flavor. For example, mlflow.sklearn ,

mlflow.xgboost , and similar.

training_set – The TrainingSet used to train this model.

registered_model_name –

Note

Experimental: This argument may change or be removed in a future
release without warning.

If given, create a model version under registered_model_name , also
creating a registered model if one with the given name does not exist.

await_registration_for – Number of seconds to wait for the model version
to finish being created and is in READY status. By default, the function

waits for five minutes. Specify 0 or None to skip waiting.

Returns: None

Evaluate the model on the provided DataFrame .

Additional features required for model evaluation will be automatically retrieved from
Feature Store .

The model must have been logged with FeatureStoreClient.log_model() , which
packages the model with feature metadata. Unless present in df , these features will be
looked up from Feature Store and joined with df prior to scoring the model.

If a feature is included in df , the provided feature values will be used rather than those
stored in Feature Store .

For example, if a model is trained on two features account_creation_date and
num_lifetime_purchases , as in:

score_batch(model_uri: str, df: pyspark.sql.dataframe.DataFrame, result_type: str = 'double')
→ pyspark.sql.dataframe.DataFrame

https://bit.ly/3yzl1r0
https://docs.python.org/3/library/types.html#types.ModuleType
https://mlflow.org/docs/latest/python_api/mlflow.sklearn.html#module-mlflow.sklearn
https://mlflow.org/docs/latest/python_api/mlflow.xgboost.html#module-mlflow.xgboost
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

feature_lookups = [
 FeatureLookup(
 table_name = 'trust_and_safety.customer_features',
 feature_name = 'account_creation_date',
 lookup_key = 'customer_id',
),
 FeatureLookup(
 table_name = 'trust_and_safety.customer_features',
 feature_name = 'num_lifetime_purchases',
 lookup_key = 'customer_id'
),
]

with mlflow.start_run():
 training_set = fs.create_training_set(
 df,
 feature_lookups = feature_lookups,
 label = 'is_banned',
 exclude_columns = ['customer_id']
)
 ...
 fs.log_model(
 model,
 "model",
 flavor=mlflow.sklearn,
 training_set=training_set,
 registered_model_name="example_model"
)

Then at inference time, the caller of FeatureStoreClient.score_batch() must
pass a DataFrame that includes customer_id , the lookup_key specified in the
FeatureLookups of the training_set . If the DataFrame contains a column
account_creation_date , the values of this column will be used in lieu of those in
Feature Store . As in:

batch_df has columns ['customer_id', 'account_creation_date']
predictions = fs.score_batch(
 'models:/example_model/1',
 batch_df
)

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters: model_uri –
The location, in URI format, of the MLflow model logged using
FeatureStoreClient.log_model() . One of:

runs:/<mlflow_run_id>/run-relative/path/to/model

models:/<model_name>/<model_version>

models:/<model_name>/<stage>

For more information about URI schemes, see Referencing Artifacts.

df –
The DataFrame to score the model on. Feature Store features will be
joined with df prior to scoring the model. df must:

1. Contain columns for lookup keys required to join feature data from
Feature Store, as specified in the feature_spec.yaml artifact.
2. Contain columns for all source keys required to score the model, as
specified in the feature_spec.yaml artifact.

3. Not contain a column prediction , which is reserved for the
model’s predictions. df may contain additional columns.

result_type – The return type of the model. See
mlflow.pyfunc.spark_udf() result_type.

Returns: A DataFrame containing:

1. All columns of df .

2. All feature values retrieved from Feature Store.

3. A column prediction containing the output of the model.

Decorators

Note

Experimental: This decorator may change or be removed in a future release without
warning.

The @feature_table decorator specifies that a function is used to generate feature data.
Functions decorated with @feature_table must return a single DataFrame , which will
be written to Feature Store. For example:

databricks.feature_store.decorators.feature_table()

https://bit.ly/3wnrseE
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.spark_udf
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

from databricks.feature_store import feature_table

@feature_table
def compute_customer_features(data):
 '''Feature computation function that takes raw
 data and returns a DataFrame of features.'''
 return (data.groupBy('cid')
 .agg(count('*').alias('num_purchases'))
)

A function that is decorated with the @feature_table decorator will gain these function
attributes:

Note

Experimental: This function may change or be removed in a future release without
warning.

Calls the decorated function using the provided input , then writes the output
DataFrame to the feature table specified by feature_table_name .

Example:

compute_customer_features.compute_and_write(
 input={
 'data': data,
 },
 feature_table_name='recommender_system.customer_features',
 mode='merge'
)

Parameters: input – If input is not a dictionary, it is passed to the decorated function

as the first positional argument. If input is a dictionary, the contents are

unpacked and passed to the decorated function as keyword arguments.
feature_table_name – A feature table name of the form
<database_name>.<table_name> , for example dev.user_features .

Raises exception if this feature table does not exist.
mode – Two supported write modes: "overwrite" updates the whole

table, while "merge" will upsert the rows in df into the feature table.

databricks.feature_store.decorators.compute_and_write(input: Dict[str, Any],
feature_table_name: str, mode: str = 'merge') → pyspark.sql.dataframe.DataFrame

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Returns: DataFrame (df) containing feature values.

Note

Experimental: This function may change or be removed in a future release without
warning.

Calls the decorated function using the provided input, then streams the output
DataFrame to the feature table specified by feature_table_name .

Example:

compute_customer_features.compute_and_write_streaming(
 input={
 'data': data,
 },
 feature_table_name='recommender_system.customer_features',
)

Parameters: input – If input is not a dictionary, it is passed to the decorated function

as the first positional argument. If input is a dictionary, the contents are

unpacked and passed to the decorated function as keyword arguments.
feature_table_name – A feature table name of the form
<database_name>.<table_name> , for example dev.user_features .

checkpoint_location – Sets the Structured Streaming
checkpointLocation option. By setting a checkpoint_location ,

Spark Structured Streaming will store progress information and
intermediate state, enabling recovery a�er failures. This parameter is only
supported when the argument df is a streaming DataFrame .

trigger – trigger defines the timing of stream data processing, the

dictionary will be unpacked and passed to DataStreamWriter.trigger

as arguments. For example, trigger={'once': True} will result in a

call to DataStreamWriter.trigger(once=True) .

Returns: A PySpark StreamingQuery .

databricks.feature_store.decorators.compute_and_write_streaming(input:
Dict[str, Any], feature_table_name: str, checkpoint_location: Optional[str] = None, trigger:
Dict[str, Any] = {'processingTime': '5 minutes'}) → pyspark.sql.streaming.StreamingQuery

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery

Feature Lookup

Bases:
databricks.feature_store.entities._feature_store_object._FeatureStoreObject

Value class used to specify a feature to use in a TrainingSet .

Parameters: table_name – Feature table name.
lookup_key – Key to use when joining this feature table with the DataFrame

passed to FeatureStoreClient.create_training_set() . The

lookup_key must be the columns in the DataFrame passed to

FeatureStoreClient.create_training_set() . The type of

lookup_key columns in that DataFrame must match the type of the primary

key of the feature table referenced in this FeatureLookup .

feature_names – A single feature name, a list of feature names, or None to
lookup all features (excluding primary keys) in the feature table at the time
that the training set is created. If your model requires primary keys as features,
you can declare them as independent FeatureLookups.
rename_outputs – If provided, renames features in the TrainingSet

returned by of FeatureStoreClient.create_training_set .

timestamp_lookup_key –
Key to use when performing point-in-time lookup on this feature table with the
DataFrame passed to FeatureStoreClient.create_training_set() .
The timestamp_lookup_key must be the columns in the DataFrame passed
to FeatureStoreClient.create_training_set() . The type of
timestamp_lookup_key columns in that DataFrame must match the type of
the timestamp key of the feature table referenced in this FeatureLookup .

Note

Experimental: This argument may change or be removed in a future
release without warning.

feature_name – Feature name. Deprecated as of 0.3.4 [Databricks Runtime for
ML 9.1]. Use feature_names .

output_name – If provided, rename this feature in the output of
FeatureStoreClient.create_training_set . Deprecated as of 0.3.4

[Databricks Runtime for ML 9.1]. Use rename_outputs .

class
databricks.feature_store.entities.feature_lookup.FeatureLookup(table_name:
str, lookup_key: Union[str, List[str]], *, feature_names: Union[str, List[str], None] = None,
rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union[str, List[str], None] =
None, **kwargs)

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Initialize a FeatureLookup object.

The table name to use in this FeatureLookup.

The lookup key(s) to use in this FeatureLookup.

The feature name to use in this FeatureLookup. Deprecated as of 0.3.4 [Databricks
Runtime for ML 9.1]. Use feature_names .

The output name to use in this FeatureLookup. Deprecated as of 0.3.4 [Databricks
Runtime for ML 9.1]. Use feature_names .

Training Set

Bases: object

Class that defines TrainingSet objects.

Note

The TrainingSet constructor should not be called directly. Instead, call
FeatureStoreClient.create_training_set .

Load a DataFrame .

Return a DataFrame for training.

__init__(table_name: str, lookup_key: Union[str, List[str]], *, feature_names: Union[str,
List[str], None] = None, rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key:
Union[str, List[str], None] = None, **kwargs)

table_name

lookup_key

feature_name

output_name

class databricks.feature_store.training_set.TrainingSet(feature_spec:
databricks.feature_store.entities.feature_spec.FeatureSpec, df: pyspark.sql.dataframe.DataFrame,
labels: List[str], feature_table_metadata_map: Dict[str,
databricks.feature_store.entities.feature_table.FeatureTable], feature_table_data_map: Dict[str,
pyspark.sql.dataframe.DataFrame])

load_df() → pyspark.sql.dataframe.DataFrame

https://docs.python.org/3/library/functions.html#object
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

The returned DataFrame has columns specified in the feature_spec and labels
parameters provided in FeatureStoreClient.create_training_set .

Returns: A DataFrame for training

Feature Table
Classes

Value class describing one feature table.

This will typically not be instantiated directly, instead the
FeatureStoreClient.create_feature_table will create FeatureTable objects.

Online Store Spec

Bases:
databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Class that defines and creates AmazonRdsMySqlSpec objects.

This OnlineStoreSpec implementation is intended for publishing features to Amazon
RDS MySQL and Aurora (MySQL-compatible edition).

See OnlineStoreSpec documentation for more usage information, including parameter
descriptions.

class databricks.feature_store.entities.feature_table.FeatureTable(name,
table_id, description, primary_keys, partition_columns, features, creation_timestamp=None,
online_stores=[], notebook_producers=[], job_producers=[], table_data_sources=[],
path_data_sources=[], timestamp_keys=[])

class
databricks.feature_store.online_store_spec.AmazonRdsMySqlSpec(hostname:
str, port: str, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None,
read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
http://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store.
password – Password to access the online store.
database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Define the database user for connection.

Define the cloud propert for the data store.

Define the data store type property.

Bases:
databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Define the AzureMySqlSpec class.

This OnlineStoreSpec implementation is intended for publishing features to Azure
Database for MySQL.

See OnlineStoreSpec documentation for more usage information, including parameter
descriptions.

database_user

cloud

store_type

class databricks.feature_store.online_store_spec.AzureMySqlSpec(hostname:
str, port: str, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None,
read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store.
password – Password to access the online store.
database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Define the database user for connection.

Define the cloud the fature store runs.

Define the data store type.

Bases:
databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This OnlineStoreSpec implementation is intended for publishing features to Azure SQL
Database (SQL Server).

The spec supports SQL Server 2019 and newer.

See OnlineStoreSpec documentation for more usage information, including parameter
descriptions.

database_user

cloud

store_type

class
databricks.feature_store.online_store_spec.AzureSqlServerSpec(hostname:
str, port: str, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None,
read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store.
password – Password to access the online store.
database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Define the cloud the fature store runs.

Define the data store type.

Bases: abc.ABC

Parent class for all types of OnlineStoreSpec objects.

Abstract base class for classes that specify the online store to publish to.

If database_name and table_name are not provided,
FeatureStoreClient.publish_table will use the o�line store’s database and table
names.

To use a di�erent database and table name in the online store, provide values for both
database_name and table_name arguments.

The JDBC driver can be customized with the optional driver_name argument. Otherwise,
a default is used.

Strings in the primary key should not exceed 100 characters.

The online database should already exist.

Note

It is strongly suggested (but not required), to provide read-only database credentials via
the read_secret_prefix in order to grant the least amount of database access
privileges to the served model. When providing a read_secret_prefix , the secrets

cloud

store_type

class databricks.feature_store.online_store_spec.OnlineStoreSpec(_type,
hostname: str, port: str, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None,
read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

https://docs.python.org/3/library/abc.html#abc.ABC

must exist in the scope name using the expected format, otherwise publish_table
will return an error.

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has write access to the online store, or None if using

write_secret_prefix .

password – Password to access the online store, or None if using

write_secret_prefix .

database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix –
The secret scope name and secret key name prefix where read-only online
store credentials are stored. These credentials will be used during online
feature serving to connect to the online store from the served model. The
format of this parameter should be ${scope-name}/${prefix} , which is
the name of the secret scope, followed by a / , followed by the secret key
name prefix. The scope passed in must contain the following keys and
corresponding values:

${prefix}-user where ${prefix} is the value passed into this

function. For example if this function is called with
datascience/staging , the datascience secret scope should contain

the secret named staging-user , which points to a secret value with the

database username for the online store.
${prefix}-password where ${prefix} is the value passed into this

function. For example if this function is called with
datascience/staging , the datascience secret scope should contain

the secret named staging-password , which points to a secret value with

the database password for the online store.
write_secret_prefix –
The secret scope name and secret key name prefix where read-write online
store credentials are stored. These credentials will be used to connect to the
online store to publish features. If user and password are passed, this field
must be None , or an exception will be raised. The format of this parameter
should be ${scope-name}/${prefix} , which is the name of the secret
scope, followed by a / , followed by the secret key name prefix. The scope
passed in must contain the following keys and corresponding values:

${prefix}-user where ${prefix} is the value passed into this

function. For example if this function is called with
datascience/staging , the datascience secret scope should contain

the secret named staging-user , which points to a secret value with the

database username for the online store.

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

${prefix}-password where ${prefix} is the value passed into this

function. For example if this function is called with
datascience/staging , the datascience secret scope should contain

the secret named staging-password , which points to a secret value with

the database password for the online store.

Type of the online store.

Hostname to access the online store.

Port number to access the online store.

Database name.

Table name.

Username that has access to the online store.

Property will be empty if write_scret_prefix argument was used.

Password to access the online store.

Property will be empty if write_scret_prefix argument was used.

Name of the custom JDBC driver to access the online store.

Prefix for read access to online store.

type

hostname

port

database_name

table_name

user

password

driver

read_secret_prefix

Name of the secret scope and prefix that contains the username and password to access
the online store with read-only credentials.

See the read_secret_prefix parameter description for details.

Secret prefix that contains online store login info.

Name of the secret scope and prefix that contains the username and password to access
the online store with read/write credentials. See the write_secret_prefix
parameter description for details.

Username that connects to the database.

Cloud provider where this online store is located.

Store type.

write_secret_prefix

database_user

cloud

store_type

