This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Using
Parameterized Queries with the SqlDataSource

Introduction

In the previous tutorial we saw how to use the SqlDataSource control to retrieve data directly from a database.
Using the Configure Data Source wizard, we could choose the database and then either: pick the columns to return
from a table or view; enter a custom SQL statement; or use a stored procedure. Whether selecting columns from a
table or view or entering a custom SQL statement, the SqlDataSource control’s SelectCommand property is
assigned the resulting ad-hoc SQL SELECT statement and it is this SELECT statement that is executed when the
SqlDataSource’s select () method is invoked (either programmatically or automatically from a data Web control).

The SQL seLECT statements used in the previous tutorial’s demos lacked WHERE clauses. In a SELECT statement, the
WHERE clause can be used to limit the results returned. For example, to display the names of products costing more
than $50.00, we could use the following query:

SELECT ProductName
FROM Products
WHERE UnitPrice > 50.00

Typically, the values used in a WHERE clause are determine by some external source, such as a querystring value, a
session variable, or user input from a Web control on the page. Ideally, such inputs are specified through the use of
parameters. With Microsoft SQL Server, parameters are denoted using @parameterName, as in:

SELECT ProductName
FROM Products
WHERE UnitPrice > (@Price

The SqlDataSource supports parameterized queries, both for SELECT statements and INSERT, UPDATE, and DELETE
statements. Moreover, the parameter values can be automatically pulled from a variety of sources — the querystring,
session state, controls on the page, and so on — or can be assigned programmatically. In this tutorial, we’ll see how
to define parameterized queries as well as how to specify the parameter values both declaratively and
programmatically.

Note: In the previous tutorial we compared the ObjectDataSource — which has been our tool of choice over the first
46 tutorials — with the SqlDataSource, noting their conceptual similarities. These similarities also extend to
parameters. The ObjectDataSource’s parameters mapped to the input parameters for the methods in the Business
Logic Layer. With the SqlDataSource, the parameters are defined directly within the SQL query. Both controls
have collections of parameters for their Select (), Insert (), Update (), and Delete () methods, and both can
have these parameter values populated from pre-defined sources (querystring values, session variables, and so on)
or assigned programmatically.

Creating a Parameterized Query

The SqlDataSource control’s Configure Data Source wizard offers three avenues for defining the command to
execute to retrieve database records:

e By picking the columns from an existing table or view,

1of 17

e By entering a custom SQL statement, or
¢ By choosing a stored procedure

When picking columns from an existing table or view, the parameters for the wHERE clause must be specified
through the Add wHERE Clause dialog box. When creating a custom SQL statement, however, you can enter the
parameters directly into the WHERE clause (using @parameterName to denote each parameter). A stored procedure
consists of one or more SQL statements, and these statements can be parameterized. The parameters used in the
SQL statements, however, must be passed in as input parameters to the stored procedure.

Since creating a parameterized query depends on how the SqlDataSource’s SelectCommand is specified, let’s take
a look at all three approaches. To get started, open the ParameterizedQueries.aspx page in the sglbataSource
folder, drag a SqlDataSource control from the Toolbox onto the Designer, and set its ID to
Products25BucksAndUnderDataSource. Next, click the “Configure Data Source” link from the control’s smart
tag. Select the database to use (NORTHWINDConnectionString) and click Next.

Step 1: Adding a weERE Clause When Picking the Columns from a Table
or View

When selecting the data to return from the database with the SqlDataSource control, the Configure Data Source
wizard allows us to simply pick the columns to return from an existing table or view (see Figure 1). Doing so
automatically builds up a SQL SELECT statement, which is what is sent to the database when the SqlDataSource’s
select () method is invoked. As we did in the previous tutorial, select the Products table from the drop-down list
and check the ProductID, ProductName, and UnitPrice columns.

[

.Ennfigure Data Source - SglDataSource E]@ @@1

Configure the Select Statement

d
=

How would you like to retrieve data from your database?

#

) Specfy a custom SOL statement or stored procedure
(%) Spedfy columns from a table or view

Name:

Products

Columns:

s G niprce Retun only e rows
[#] ProductID [] UnitsInStock. [\WHERE. .]
Producthame [] unitsOnCrder

[] SupplieriD [] Reorderlevel [ORDER BY.., I
[7] CategorylD [Discontirmed
(] QuankityPerlnit | Advanced.. |

SELECT statement:
SELECT [ProductID], [ProductMame], [UnitPrice] FROM [Products]

[{Erevicuus]i Mext >]

Figure 1: Pick the Columns to Return from a Table or View

To include a WHERE clause in the SELECT statement, click the WHERE button, which brings up the Add wHERE Clause

20f 17

dialog box (see Figure 2). To add a parameter to limit the results returned by the SELECT query, first choose the
column to filter the data by. Next, choose the operator to use for filtering (=, <, <=, >, and so on). Finally, choose
the source of the parameter’s value, such as from the querystring or session state. After configuring the parameter,
click the Add button to include it in the SELECT query.

For this example, let’s only return those results where the unitprice value is less than or equal to $25.00.
Therefore, pick UnitPrice from the Column drop-down list and <= from the Operator drop-down list. When using
a hard-coded parameter value (such as $25.00) or if the parameter value is to be specified programmatically, select
None from the Source drop-down list. Next, enter the hard-coded parameter value in the Value textbox —“25.00” —
and complete the process by clicking the Add button.

Add WHERE Clause E] @ﬂ

Add one or more conditions to the WHERE clause For the statement. For each condition you can specify
either a literal value or a parameterized value, Parameterized values get their values at runtime based on
their properties,

n

Calurm: Parameter properties

e
Cperataor: 25,00

L=
Source!
Mone .
SOL Expression:

[UnitPrice] <= @UritPrice2

WHERE clause:

50 Exresn

[UritPrice] <= @UnitPrice

O] [Cancel

Figure 2: Limit the Results Returned from the Add wieERE Clause Dialog Box

After adding the parameter, click OK to return to the Configure Data Source wizard. The SELECT statement at the
bottom of the wizard should now include a WHERE clause with a parameter named @UnitPrice:

SELECT [ProductID], [ProductName], [UnitPrice]
FROM [Products]
WHERE ([UnitPrice] <= @QUnitPrice)

Note: If you specify multiple conditions in the wHERE clause from the Add waHERE Clause dialog box, the wizard
joins them with the AND operator. If you need to include an OR in the WHERE clause (such as WHERE UnitPrice <=
@UnitPrice OR Discontinued = 1)then you have to build the SELECT statement through the custom SQL
statement screen.

Complete configuring the SqlDataSource (click Next, then Finish) and then inspect the SqlDataSource’s

declarative markup. The markup now includes a <selectParameters> collection, which spells out the sources for
the parameters in the SelectCommand.

3of17

<asp:SglDataSource ID="Products25BucksAndUnderDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
SelectCommand=
"SELECT [ProductID], [ProductName], [UnitPrice]
FROM [Products] WHERE ([UnitPrice] <= @UnitPrice)">
<SelectParameters>
<asp:Parameter DefaultValue="25.00" Name="UnitPrice" Type="Decimal" />
</SelectParameters>
</asp:SglDataSource>

When the SqlDataSource’s select () method is invoked, the UnitPrice parameter value (25.00) is applied to the
@UnitPrice parameter in the SelectCommand before being sent to the database. The net result is that only those
products less than or equal to $25.00 are returned from the Products table. To confirm this, add a GridView to the
page, bind it to this data source, and then view the page through a browser. You should only see those products
listed that are less than or equal to $25.00, as Figure 3 confirms.

r
3 Untitled Page - Microsoll Internet Explorer

File Edi View Favoribes Tools Heb
® & | S search 7 Favortes € - M- [W

fcddress | @] http:filocahost: 3982/aSPNET_Data_Tutorisl_48_CSiSqDetaScurce/ParameterizedQuenies, sspx b G

Working with Data Tutorials

Using Parameterized Queries

Products $25.00 and Under

Dedarabive Product
Parameters Chai Tea $19.95
Sething Parameter Chang $15.00
Values Aniseed Syrup $10,00
| Chef Anton's Sumbo Mix $21.35
Queso Cabrales $21.00
Filter by Drop=Down ey $6.00

i Tofu $23.25
Master-Details- Genen Shouyu $15.50
Details Favlova $17.45
Master/Detail Aoross Teatime Chocolate Biscuits $9.20

Two Fages Sir Rodney's Scones 410,00
Gustaf's Kndckebrad $21.00
Tunnbrod $9.00

Guarana Fantastica 44,50

MulNUCa MuB-Mougat-Creme $14,00
frrasanzals Talina 2 +17 5N
% Local inkranet

Filtaring Reports

Details of Selacted

Figure 3: Only Those Products Less Than or Equal to $25.00 are Displayed

Step 2: Adding Parameters to a Custom SQL Statement

When adding a custom SQL statement you can enter the wHERE clause explicitly or specify a value in the Filter cell
of the Query Builder. To demonstrate this, let’s display just those products in a GridView whose prices are less
than a certain threshold. Start by adding a TextBox to the pParameterizedQueries.aspx page to collect this
threshold value from the user. Set the TextBox’s 1D property to Maxprice. Add a Button Web control and set its
Text property to “Display Matching Products”.

4 of 17

Next, drag a GridView onto the page and from its smart tag choose to create a new SqlDataSource named
ProductsFilteredByPriceDataSource. From the Configure Data Source wizard, proceed to the “Specify a
custom SQL statement or stored procedure screen” (see Figure 4) and enter the following query:

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice <= @MaximumPrice OR @MaximumPrice = -1.0

After entering the query (either manually or through the Query Builder), click Next.

-
Configure Data Source - ProductsFilteredByPriceDataSource

.J' Define Custom Statements or Stored Procedures

i
=

(hick a tab to create & SOL statement For that operation.

| SELECT | UPDATE | INSERT | DELETE

(%) 500 statement:

SELECT ProduckMame, UnitPrice
FROM Products
WHERE UnitPrice <= @MaximumPrice

() Stored procadure:

[< Previous Ji Mext > I

Figure 4: Return Only Those Products Less Than or Equal to a Parameter Value

Since the query includes parameters, the next screen in the wizard prompts us for the source of the parameters
values. Choose “Control” from the Parameter source drop-down list and MaxPrice (the TextBox control’s ID
value) from the ControlID drop-down list. You can also enter an optional default value to use in the case where the
user has not entered any text into the MaxPrice TextBox. For the time being, do not enter a default value.

50f17

-
Configure Data Source - ProductsFilteredByPriceDataSource

Define Parameters

=

The wizard has detected one or more parameters in your SELECT statement, For each parameter in the SELECT
statement, choose & source For the paramster’s value,

Parameters: Parameter source:

I Hlame Wale ;

| MaximumPrice MaxPrice. Text ControllD:

Dof sk adoie

Show advanced properkies

SELECT stakement:

| SELECT ProductMame, LinitPrice
| FROM Products

[-:Ere:vlnus ji Mext =]

Figure 5: The MaxPrice TextBox’s Text Property is Used as the Parameter Source

Complete the Configure Data Source wizard by clicking Next, then Finish. The declarative markup for the
GridView, TextBox, Button, and SqlDataSource follows:

Maximum price:
$<asp:TextBox ID="MaxPrice" runat="server" Columns="5" />

<asp:Button ID="DisplayProductsLessThanButton" runat="server"
Text="Display Matching Products" />

<asp:GridView ID="GridView2" runat="server" AutoGenerateColumns="False"
DataSourceID="ProductsFilteredByPriceDataSource" EnableViewState="False">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" HeaderText="Price"
HtmlEncode="False" DataFormatString="{0:c}"
SortExpression="UnitPrice" />
</Columns>
</asp:Gridview>

<asp:SglDataSource ID="ProductsFilteredByPriceDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
SelectCommand=
"SELECT ProductName, UnitPrice

FROM Products
WHERE UnitPrice <= @MaximumPrice">
<SelectParameters>
<asp:ControlParameter ControlID="MaxPrice" Name="MaximumPrice"
PropertyName="Text" />
</SelectParameters>

60f17

</asp:SglDataSource>

Note that the parameter within the SqlDataSource’s <SelectParameters> section is a ControlParameter, which
includes additional properties like ControlID and PropertyName. When the SqlDataSource’s select () method is
invoked, the ControlParameter grabs the value from the specified Web control property and assigns it to the
corresponding parameter in the SelectCommand. In this example, the MaxPrice’s Text property is used as the
@MaxPrice parameter value.

Take a minute to view this page through a browser. When first visiting the page — or whenever the MaxPrice
TextBox lacks a value — no records are displayed in the GridView.

r bl
2 Untitled Page - Microsoft Internet Explorer ri__r|@| EJ@E|

File Edit Wew Favoribes Took Help

Qbad = £J ¢ W [3) #8 Fooesch rravorites & 3 in 4] -

: fddress f-"l hitp:Nocakosk: 3582 JASPMNET _Data_Tukoeial_48_C5[5gikataSourceP arameterzeduenas, aspx
[& E

List Products that Cost Less Than...

Using ButtonFlelds Mamumvpoce: o |
and Buttons in [Display Matching Products
Templates

% | ocal intranet

Figure 6: No Records are Displayed When the MaxPrice TextBox is Empty

The reason no products are shown is because, by default, an empty string for a parameter value is converted into a
database NULL value. Since the comparison of [UnitPrice] <= NULL always evaluates as False, no results are
returned.

Enter a value into the textbox, like 5.00, and click the “Display Matching Products” button. On postback, the
SqlDataSource informs the GridView that one of its parameter sources has changed. Consequently, the GridView
rebinds to the SqlDataSource, displaying those products less than or equal to $5.00.

=
2} Untitled Page - Microsoft Internet Explorer
: File Edit- Yew Favorkes T Help

! {pBack *)) 2] fe O seadh Favortes &5 - i -

| Address] hitp: flocalhost: 3982[ASPHET _Data_Tutorial_48_C5/SgDataSource/ParameterizedJueries. aspx ~ G0

List Products that Cost Less Than...

Maximum price: §5.00

Using ButtonFields [Display Matching Products

and Buttons in
Guarand Fantdstica $4.50
Gejtost $2.50
Acme WWater $1.99

Basic Examples Acme Soda $1.45

Errrmatting
2] Done % Local intranet

7o0f 17

Figure 7: Products Less Than or Equal to $5.00 are Displayed

Initially Displaying All Products

Rather than displaying no products when the page is first loaded, we may want to display a// products. One way to
list all products whenever the MaxPrice TextBox is empty is to set the parameter’s default value to some insanely
high value, like 1000000, since it’s unlikely that Northwind Traders will ever have inventory whose unit price
exceeds $1,000,000. However, this approach is shortsighted and might not work in other situations.

In previous tutorials - Declarative Parameters and Master/Detail Filtering With a DropDownList — we were faced
with a similar problem. Our solution there was to put this logic in the Business Logic Layer. Specifically, the BLL
examined the incoming value and, if it was NULL or some reserved value, the call was routed to the DAL method
that returned all records. If the incoming value was a normal filtering value, a call was made to the DAL method
that executed a SQL statement that used a parameterized WHERE clause with the supplied value.

Unfortunately, we bypass the architecture when using the SqlDataSource. Instead, we need to customize the SQL
statement to intelligently grab all records if the @MaximumPrice parameter is NULL or some reserved value. For this
exercise, let’s have it so that if the €MaximumPrice parameter is equal to -1.0, then all of the records are to be
returned (-1 .0 works as a reserved value since no product can have a negative UnitPrice value). To accomplish
this we can use the following SQL statement:

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice <= @MaximumPrice OR @MaximumPrice = -1.0

This WHERE clause returns a// records if the @MaximumpPrice parameter equals -1. 0. If the parameter value is not -
1.0, only those products whose UnitPrice is less than or equal to the @MaximumPrice parameter value are
returned. By setting the default value of the @MaximumPrice parameter to -1.0, on the first page load (or whenever
the MaxPrice TextBox is empty), @MaximumPrice will have a value of -1.0 and all products will be displayed.

8of17

=

-
W Untitled Page - Microsoft Internet Explorer ﬂ(—l

File Edt ‘iew Favorites Tools Help
O bk » V(2] de | O search o Favorkes £8 - iy - &8

Bilckess é‘] hittps [localhest: 3962 ASPHNET_Dats_Tutorial_48_CS[SqDetaSource [Parameterizedueties, sspx b Go

~

Customizing the
sorting Liser
Interface

List Products that Cost Less Than...

Maximum price: $

:Eujwl*;:;” [Display Matching Products

Using ButtonFisids Product
and Buttons In chal T=a

$19.95
| [=rpiakes Chang $19.00

Displaying Data with Aniseed Syrup F10,00
the Datalist and Chef Anton's Cajun Seasoning $26.62
Chef anton's Gumbo Mix $21.35
Basic Examples Grandma's Boysenberry Spread §30.25
Uncle Bob's Organic Dried Pears 30,00
Morthwoods Cranberry Salice £36.00
Adjusting thie Mishil Kaobe Miku 97,00
Datallst's Layout s $31.00
Mesting 4 Fepeater Queso Cabrales $21.00
within & Datalist Gueso Mandhego La Pastora £38.00
: 1 Konbu EE.00

Tofu £23 25
Genen Shouyu $15.50

% Local ntranet

Formatting

M

Figure 8: Now All Products are Displayed When the MaxpPrice TextBox is Empty

There are a couple of caveats to note with this approach. First, realize that the parameter’s data type is inferred by
it’s usage in the SQL query. If you change the WHERE clause from “@MaximumPrice = -1.0” to “€MaximumPrice
= -17, the runtime treats the parameter as an integer. If you then attempt to assign the Maxprice TextBox to a
decimal value (like “5.00”), an error will occur because it cannot convert “5.00” to an integer. To remedy this,
either make sure that you use “@MaximumPrice = -1.0” in the WHERE clause or, better yet, set the
ControlParameter object’s Type property to “Decimal”.

Secondly, by adding the “OrR @MaximumPrice = -1.0” to the WHERE clause, the query engine cannot use an index
on UnitPrice (assuming one exists), thereby resulting in a table scan. This can impact performance if there are a
sufficiently large number of records in the Products table. A better approach would be to move this logic to a
stored procedure where an IF statement would either perform a SELECT query from the Products table without a
WHERE clause when all records need to be returned or one whose WHERE clause contains just the UnitPrice criteria,
so that an index can be used.

Step 3: Creating and Using Parameterized Stored Procedures

Stored procedures can include a set of input parameters that can then be used in the SQL statement(s) defined
within the stored procedure. When configuring the SqlDataSource to use a stored procedure that accepts input
parameters, these parameter values can be specified using the same techniques as with ad-hoc SQL statements.

To illustrate using stored procedures in the SqlDataSource, let’s create a new stored procedure in the Northwind
database named GetProductsByCategory, which accepts a parameter named ¢CategoryID and returns all of the
columns of the products whose CategoryID column matches @CategoryID. To create a stored procedure, go to the
Server Explorer and drill down into the NORTHWND . MDF database. (If you don’t see the Server Explorer, bring it up

90of 17

by going to the View menu and selecting the Server Explorer option.)

From the NORTHWND . MDF database, right-click on the Stored Procedures folder, choose “Add New Stored
Procedure”, and enter the following syntax:

CREATE PROCEDURE dbo.GetProductsByCategory
(
@CategoryID int

)
AS

SELECT *
FROM Products
WHERE CategoryID = @CategoryID

Click the Save icon (or Ctrl+S) to save the stored procedure. You can test the stored procedure by right-clicking it
from the Stored Procedures folder and choosing Execute. This will prompt you for the stored procedure’s
parameters (€CategoryID, in this instance), after which the results will be displayed in the Output window.

=

B2 ASPMET Data_Tulorial 48 _C5 - Microsoll Visual Siudia
El= Edt Mew Progect Pudd Dwebog Dots. Joos Window Community felp Addns
@ - e - | i3 k] It

e, Get Produ. ORTHWNDMDF) | SoDataSourcs., eduiries. s
ALTER PROCEDIRE dbo.fecProduccaByiacegory
I [Ceaba Corrctions
=} &% HORTHAHD, MEF
3 Database Disgrams
[Tabdes
+

ECaTegoeyIl 1nC

il Vi
_l Stored Procedures
] CushOrdeiHis

+ L] CushOrdersDetsl

+ o] CustOedersOrders

- " Erorl-ioe bias = o
+

+

[BELECT *

FROH FProducts
BHERE CategorylIl = 3En'r.eq':h|:91.l:1

ick sErri_ sl mgory
Fredata e

Oushra i
Shows output from: Databece CubmE - ¥ = | 3
Pming [dbol. [GecProductsByCanegory] (RCacegeryIl = L |,

FroductID Froductlams SuppliezIl Categocyll QuactityPaclnit DnatFeica
1 Cha: Tas 1 1 I8 boxms = 20 bages A0, 5E
2 Chang 1 &4 - LE oz boetlax i3
4 fuarand Fancéstica 10 12 - 36%5 ml cans 4. E
Aasgquatch Alw 16 &4 = ki o bottlins
Beauleys Seouk 16 2d = LE oz boetlas i

Figure 9: The GetProductsByCategory Stored Procedure when Executed with a @CategoryID of 1

Let’s use this stored procedure to display all products in the Beverages category in a GridView. Add a new
GridView to the page and bind it to a new SqlDataSource named BeverageProductsDataSource. Continue to the
“Specify a custom SQL statement or stored procedure” screen, select the “Stored procedure” radio button, and pick
the GetProductsByCategory stored procedure from the drop-down list.

10 of 17

-
Configure Data Source - BeverageProductsDataSource

Define Custom Statements or Stored Procedures

hick a kah fo create a SOL skatement For that operation.

SELECT UFDATE | INSERT | DELETE |

() 504 statement:

(%) Stored procedurs:
GetProductsByCate

Figure 10: Select the GetProductsByCategory Stored Procedure from the Drop-Down List
Since the stored procedure accepts an input parameter (@CategoryID), clicking Next prompts us to specify the

source for this parameter’s value. The Beverages CategoryIDis 1, so leave the Parameter source drop-down list at
“None” and enter 1 into the DefaultValue textbox.

11o0f 17

-
Configure Data Source - BeverageProductsDataSource
,J Define Parameters

£ :il.— o

The wizard has detected one or more parametars in your SELECT statement, For each parameter in the SELECT
statement, choose a source For the paramster’s value.

Parameters: Parameter source:

| Name Wale | MNong

éfaadt‘u‘a{ue:

CategorylD 1

Show advanced properties

SELECT statement:
| GetProductsByCateoory

[{Erevinus “ Mexk = I

Figure 11: Use a Hard-Coded Value of 1 to Return the Products in the Beverages Category

As the following declarative markup shows, when using a stored procedure, the SqlDataSource’s SelectCommand
property is set to the name of the stored procedure and the SelectCommandType property is set to
StoredProcedure, indicating that the SelectCommand is the name of a stored procedure rather than an ad-hoc
SQL statement.

<asp:SglDataSource ID="BeverageProductsDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
SelectCommand="GetProductsByCategory" SelectCommandType="StoredProcedure">
<SelectParameters>
<asp:Parameter DefaultValue="1" Name="CategoryID" Type="Int32" />
</SelectParameters>
</asp:SglDataSource>

Test out the page in a browser. Only those products that belong to the Beverages category are displayed, although
all of the product fields are displayed since the GetProductsByCategory stored procedure returns all of the
columns from the Products table. We could, of course, limit or customize the fields displayed in the GridView
from the GridView’s Edit Columns dialog box.

12 of 17

3 tiniitind Page - Microssit Intesnet Fxplarnr RIB B
Be B Wew Fpvobes Teok Helo 1
A @ S seah e £ T € w0

A mittpc acahhort TREGTASFRIT Dists_Tubarsl 40 TSty SorsParsrst sroecyUsnis s s L ﬂw

Products in the Beverages Category

1 Chal Tea 1 1) r‘ Dowes 220 g 0e00 39 0
g5
. = 24 - 12 0z i
2 Chang 1 1 B 13.0000 17 40 e
z4 Ao 10 1 17 - 355 mi cans 4.5000 20 o o
Fantéshcs
g 4 24 -17 oz .
34 Saequatch Ale 16 1 bty L4.0000 111 1} 15
0 o EtoriE1d 1 212 4 180300 20 o
F5 oD SLoul1h bt L J
) f:'r'L;“"“" 18 1 750 £c per botte 180000 69 0 g
a3 Ipoh Coffes 20 1 16 -S00 g ons 450000 17 10 Fa
Laughing G
&7 Lumberack 16 1 E;m_l_‘ R 14,0000 52 i]
Lager 4
24 . 355
70 Duthack Lager 7 1 oM iseans 1B 10 30
. Rhiebrao » R 5 -
ki Ve i L 1 24 - 0.5 | bottles #.7800 125 i e
-] Lakkaikioin 23 1 SO0 i 130000 57 Q 24
B Aomea Tea 1 i 3tns perbox 199500 15 a0 g
g7 S Cofes 1 1 Sans par box 24.9500 45 Q 15
0 Aoma Water 1 i 195050
& A Sooa AE
¥l o S0da 1 "I_| 1 .4500
€ 3
] Done W) Local intranet

Figure 12: All of the Beverages are Displayed

Step 4: Programmatically Invoking a SqlDataSource’s select ()
Statement

The examples we’ve seen in the previous tutorial and this tutorial so far have bound SqlDataSource controls
directly to a GridView. The SqlDataSource control’s data, however, can be programmatically accessed and
enumerated in code. This can be particularly useful when you need to query data to inspect it, but don’t need to
display it. Rather than having to write all of the boilerplate ADO.NET code to connect to the database, specify the
command, and retrieve the results, you can let the SqlDataSource handle this monotonous code.

To illustrate working with the SqlDataSource’s data programmatically, imagine that your boss has approached you
with a request to create a web page that displays the name of a randomly selected category and its associated
products. That is, when a user visits this page, we want to randomly choose a category from the categories table,
display the category name, and then list the products belonging to that category.

To accomplish this we need two SqlDataSource controls — one to grab a random category from the Categories
table and another to get the category’s products. We’ll build the SqlDataSource that retrieves a random category
record in this step; Step 5 looks at crafting the SqlDataSource that retrieves the category’s products.

Start by adding a SqlDataSource to ParameterizedQueries.aspx and set its ID to RandomCategoryDataSource.
Configure it so that it uses the following SQL query:

SELECT TOP 1 CategoryID, CategoryName
FROM Categories
ORDER BY NEWID ()

“ORDER BY NEWID ()’ returns the records sorted in random order (see Using NEWID () to Randomly Sort Records).
“SELECT TOP 1” returns the first record from the result set. Put together, this query returns the CategoryID and

13 0f 17

CategoryName column values from a single, randomly selected category.

To display the category’s CategoryName value, add a Label Web control to the page, set its ID property to
CategoryNameLabel, and clear out its Text property. To programmatically retrieve the data from a SqlDataSource
control, we need to invoke its select () method. The select () method expects a single input parameter of type
DataSourceSelectArguments, which specifies how the data should be messaged before being returned. This can
include instructions on sorting and filtering the data, and is used by the data Web controls when sorting or paging
through the data from a SqlDataSource control. For our example, though, we don’t need the data to be modified
before being returned, and therefore will pass in the DataSourceSelectArguments.Empty object.

The Select () method returns an object that implements IEnumerable. The precise type returned depends on the
value of the SqlDataSource control’s DataSourceMode property. As discussed in the previous tutorial, this property
can be set to a value of either DataSet or DataReader. If set to DataSet, the Select () method returns a
DataView object; if set to DataReader, it returns an object that implements IDataReader. Since the
RandomCategoryDataSource SqlDataSource has its DataSourceMode property set to Dataset (the default), we
will be working with a DataView object.

The following code illustrates how to retrieve the records from the RandomCategorybataSource SqlDataSource as
a DataView as well as how to read the categoryName column value from the first DataView row:

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

' Get the data from the SglDataSource as a DataView
Dim randomCategoryView As DataView = CType _
(RandomCategoryDataSource.Select (DataSourceSelectArguments.Empty), DataView)

If randomCategoryView.Count > 0 Then
' Assign the CategoryName value to the Label
CategoryNameLabel.Text = String.Format (_
"Here are Products in the {0} Category...",

randomCategoryView (0) ("CategoryName") .ToString())
End If
End Sub

randomCategoryView (0) returns the first DataRowview in the DataView. randomCategoryView (0)
("CategoryName") returns the value of the CategoryName column in this first row. Note that the DataView is
loosely-typed. To reference a particular column value we need to pass in the name of the column as a string
(“CategoryName”, in this case). Figure 13 shows the message displayed in the CategoryNameLabel when viewing
the page. Of course, the actual category name displayed is randomly selected by the RandomCategoryDataSource
SqlDataSource on each visit to the page (including postbacks).

2 Untitled Page - Microseft Internet Fxplarer
Edk View Favarkes Took Help
3 ¥ | O Search Pavorites &2 - da -

fAdiress (@] http:focalbost: 362/ A5PNET_Data_Tutarial_48_C5iSqiDstsSourceiPeramsterizedCiusriss, sspo

Your Randomly Selected Category...

(—Here are Products in the Seafood Category]

%4 Local intranet

Figure 13: The Randomly Selected Category’s Name is Displayed

14 of 17

Note: If the SqlDataSource control’s DataSourceMode property had been set to DataReader, the return value from
the select () method would have needed to be cast to IDataReader. To read the CategoryName column value
from the first row, we’d use code like:

If randomCategoryReader.Read () Then
Dim categoryName as String = randomCategoryReader ("CategoryName') .ToString()

End If

With the SqlDataSource randomly selecting a category, we’re ready to add the GridView that lists the category’s
products.

Note: Rather than using a Label Web control to display the category’s name, we could have added a FormView or
DetailsView to the page, binding it to the SqlDataSource. Using the Label, however, allowed us to explore how to
programmatically invoke the SqlDataSource’s select () statement and work with its resulting data in code.

Step 5: Assigning Parameter Values Programmatically

All of the examples we’ve seen so far in this tutorial have used either a hard-coded parameter value or one taken
from one of the pre-defined parameter sources (a querystring value, a Web control on the page, and so on).
However, the SqlDataSource control’s parameters can also be set programmatically. To complete our current
example, we need a SqlDataSource that returns all of the products belonging to a specified category. This
SqlDataSource will have a CategoryID parameter whose value needs to be set based on the CategoryID column
value returned by the RandomCategoryDataSource SqlDataSource in the Page Load event handler.

Start by adding a GridView to the page and bind it to a new SqlDataSource named
ProductsByCategoryDataSource. Much like we did in Step 3, configure the SqlDataSource so that it invokes the
GetProductsByCategory stored procedure. Leave the Parameter source drop-down list set to “None”, but do not
enter a default value, as we will set this default value programmatically.

150f 17

Configure Data Source - ProducisByCategoryDataSource

Aj Define Parameters

=
The wizard has detected one or more parameters in your SELECT statement, For each parameter in the SELECT
statement, choosse a source for the parameter's value,

Parameters: Parameter source:

‘Nmﬁ Wale Monge

Defaultvalue:

SELECT stakement:
| GetProductsByCatenory

[{Erewinm “ Mext = I

Figure 14: Do Not Specify a Parameter Source or Default Value

After completing the SqlDataSource wizard, the resulting declarative markup should look similar to the following:

<asp:SglDataSource ID="ProductsByCategoryDataSource" runat="server"
ConnectionString="<%$ ConnectionStrings:NORTHWNDConnectionString %>"
SelectCommand="GetProductsByCategory" SelectCommandType="StoredProcedure">
<SelectParameters>
<asp:Parameter Name="CategoryID" Type="Int32" />
</SelectParameters>
</asp:SglDataSource>

We can assign the Defaultvalue of the CategoryID parameter programmatically in the Page Load event handler:

' Assign the ProductsByCategoryDataSource's

CategoryID parameter's DefaultValue property

ProductsByCategoryDataSource.SelectParameters ("CategoryID") .DefaultValue =
randomCategoryView (0) ("CategoryID") .ToString ()

With this addition, the page includes a GridView that shows the products associated with the randomly selected
category.

16 of 17

3 Untitled Pags - Micouvel] Istenmt Enplarer [id]

Ble Bl pes Fgpearksr Jool el

Search 7 Paarts £ v a0 @]+ & D8
&] hitpe o sk (PRATLASPRET Dusta_ Tuborisl 3 5 Solis n5ocere P sresha i e s s S w] 6
Your Randomly Selected Category... =
{--..:- are Products i the Oaisy Brodicts Category]
ProductTD| Productdame [SuppllerTlE Cabegory TDHQuantity P erUint UnitPrice Ainits TnStock UnitsOnorder Reorderleve | Disconbinused
11 Queza Cabrales € o L Eg phg 21.0000 22 3 B
< ncheg

12 Hute Meuse ¢ 4 10- 500 g pkos. 380000 86 a 0

L Pasters Ll
31 Gorgonzola Tetno 14 4 12 - 100 g pkgs 1Z.5000 0 70 20

Mascapones = =

7 4 Pl - 3 -

3z Fabil 14 4= 200 g pkgs. 320000 3 an 75
EE] Qaitost 15 4 EQD g 250 113 o

Facktts £ EE W ke ¥
59 EALPHA Fi: | 4 5 kg pkg 550000 7 i o

Camembert = = 1S - 300 g 3
] Plarrt = 4 s 34,0000 19 a [t}
] Gudbrandsdalzost 15 4 10 kg pka. IE.0000 26 a I5
Floermyaost 15 4 10 - SO0 g pkgs. 215000 24 a
5 Mozzarslla o oL %
Fr Sl e 14 4 24 - 200 g phgs, S4B000 14 o] 1]

i ¥
& Dona e Lol intrarmt:

Figure 15: Do Not Specify a Parameter Source or Default Value

Summary

The SqlDataSource enables page developers to define parameterized queries whose parameter values can be hard-
coded, pulled from pre-defined parameter sources, or assigned programmatically. In this tutorial we saw how to
craft a parameterized query from the Configure Data Source wizard for both ad-hoc SQL queries and stored
procedures. We also looked at using hard-coded parameter sources, a Web control as a parameter source, and
programmatically specifying the parameter value.

Like with the ObjectDataSource, the SqlDataSource also provides capabilities to modify its underlying data. In the
next tutorial we’ll look at how to define INSERT, UPDATE, and DELETE statements with the SqlDataSource. Once
these statements have been added, we can utilize the built-in inserting, editing, and deleting features inherent to the
GridView, DetailsView, and FormView controls.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Scott Clyde,
Randell Schmidt, and Ken Pespisa. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

17 of 17

