This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Debugging
Stored Procedures

Introduction

Visual Studio provides a rich debugging experience. With a few keystrokes or clicks of the mouse, it’s possible to
use breakpoints to stop execution of a program and examine its state and control flow. Along with debugging
application code, Visual Studio offers support for debugging stored procedures from within SQL Server. Just like
breakpoints can be set within the code of an ASP.NET code-behind class or Business Logic Layer class, so too can
they be placed within stored procedures.

In this tutorial we will look at stepping into stored procedures from the Server Explorer within Visual Studio as
well as how to set breakpoints that are hit when the stored procedure is called from the running ASP.NET
application.

Note: Unfortunately, stored procedures can only be stepped into and debugged through the Professional and
Team Systems versions of Visual Studio. If you are using Visual Web Developer or the standard version of
Visual Studio, you are welcome to read along as we walk through the steps necessary to debug stored
procedures, but you will not be able to replicate these steps on your machine.

SQL Server Debugging Concepts

Microsoft SQL Server 2005 was designed to provide integration with the Common Language Runtime (CLR),
which is the runtime used by all .NET assemblies. Consequently, SQL Server 2005 supports managed database
objects. That is, you can create database objects like stored procedures and User-Defined Functions (UDFs) as
methods in a Visual Basic class. This enables these stored procedures and UDFs to utilize functionality in the .NET
Framework and from your own custom classes. Of course, SQL Server 2005 also provides support for T-SQL
database objects.

SQL Server 2005 offers debugging support for both T-SQL and managed database objects. However, these objects
can only be debugged through Visual Studio 2005 Professional and Team Systems editions. In this tutorial we will
examine debugging T-SQL database objects. The subsequent tutorial looks at debugging managed database
objects.

The Overview of T-SQL and CLR Debugging in SQL Server 2005 blog entry from the SQL Server 2005 CLR
Integration team highlights the three ways to debug SQL Server 2005 objects from Visual Studio:

¢ Direct Database Debugging (DDD) - from Server Explorer we can step into any T-SQL database object,
such as stored procedures and UDFs. We will examine DDD in Step 1.

e Application Debugging - we can set breakpoints within a database object and then run our ASP.NET
application. When the database object is executed, the breakpoint will be hit and control turned over to the
debugger. Note that with application debugging we cannot step into a database object from application code.
We must explicitly set breakpoints in those stored procedures or UDFs where we want the debugger to stop.
Application debugging is examined starting in Step 2.

e Debugging from a SQL Server Project - Visual Studio Professional and Team Systems editions include a
SQL Server Project type that is commonly used to create managed database objects. We will examine using
SQL Server Projects and debugging their contents in the next tutorial.
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Visual Studio can debug stored procedures on local and remote SQL Server instances. A local SQL Server instance
is one that is installed on the same machine as Visual Studio. If the SQL Server database you are using is not
located on your development machine, then it is considered a remote instance. For these tutorials we have been
using local SQL Server instances. Debugging stored procedures on a remote SQL server instance requires more
configuration steps than when debugging stored procedures on a local instance.

If you are using a local SQL Server instance, you can start with Step 1 and work through this tutorial to the end. If
you are using a remote SQL Server instance, however, you will first need to ensure that when debugging you are
logged to your development machine with a Windows user account that has a SQL Server login on the remote
instance. Moveover, both this database login and the database login used to connect to the database from the
running ASP.NET application must be members of the sysadmin role. See the “Debugging T-SQL Database
Objects on Remote Instances” section at the end of this tutorial for more information on configuring Visual Studio
and SQL Server to debug a remote instance.

Finally, understand that debugging support for T-SQL database objects is not as feature rich as debugging support
for .NET applications. For example, breakpoint conditions and filters are not supported, only a subset of the
debugging windows are available, you cannot use Edit and Continue, the Immediate window is rendered useless,
and so forth. See Limitations on Debugger Commands and Features for more information.

Step 1: Directly Stepping Into a Stored Procedure

Visual Studio makes it easy to directly debug a database object. Let’s look at how to use the Direct Database
Debugging (DDD) feature to step into the Products_SelectByCategoryID stored procedure in the Northwind
database. As its name implies, Products_SelectByCategoryID returns product information for a particular
category; it was created in the Using Existing Stored Procedures for the Typed DataSet’s TableAdapters tutorial.
Start by going to the Server Explorer and expand the Northwind database node. Next, drill down into the Stored
Procedures folder, right-click on the Products SelectByCategoryID stored procedure, and choose the “Step Into
Stored Procedure” option from the context menu. This will start the debugger.

Since the Products_SelectByCategoryID stored procedure expects a @CategoryID input parameter, we are asked
to provide this value. Enter 1, which will return information about the beverages.

Run Stored Procedure

The stored procedure <[dbo].[Products_SelectByCategoryID] = requires the Following

parameters:
Type Direction MName Yalue
ink In @i_ategoryID v |

[ (8] 4 l [ Cancel
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Figure 1: Use the Value 1 for the ecategoryID Parameter

After supplying the value for the @CategoryID parameter, the stored procedure is executed. Rather than running to
completion, though, the debugger halts execution on the first statement. Note the yellow arrow in the margin,
indicating the current location in the stored procedure. You can view and edit parameter values through the Watch
window or by hovering over the parameter name in the stored procedure.
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Figure 2: The Debugger has Halted on the First Statement of the Stored Procedure

To step through the stored procedure one statement at a time, click the Step Over button in the Toolbar or hit the
F10 key. The Products_SelectByCategoryID stored procedure contains a single SELECT statement, so hitting
F10 will step over the single statement and complete the execution of the stored procedure. After the stored
procedure has completed, its output will appear in the Output window and the debugger will terminate.

Note: T-SQL debugging occurs at the statement level; you cannot step into a SELECT statement.

Step 2: Configuring the Website for Application Debugging

While debugging a stored procedure directly from the Server Explorer is handy, in many scenarios we are more
interested in debugging the stored procedure when it is called from our ASP.NET application. We can add
breakpoints to a stored procedure from within Visual Studio and then start debugging the ASP.NET application.
When a stored procedure with breakpoints is invoked from the application, execution will halt at the breakpoint
and we can view and change the stored procedure’s parameter values and step through its statements, just like we
did in Step 1.

Before we can start debugging stored procedures called from the application, we need to instruct the ASP.NET web
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application to integrate with the SQL Server debugger. Start by right-clicking on the website name in the Solution
Explorer (ASPNET_Data_Tutorial 74 vB). Choose the Property Pages option from the context menu, select the
Start Options item on the left, and check the SQL Server checkbox in the Debuggers section (see Figure 3).
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Figure 3: Check the SQL Server Checkbox in the Application’s Property Pages

Additionally, we need to update the database connection string used by the application so that connection pooling
is disabled. When a connection to a database is closed, the corresponding sqlConnection object is placed in a pool
of available connections. When establishing a connection to a database, an available connection object can be
retrieved from this pool rather than having to create and establish a new connection. This pooling of connection
objects is a performance enhancement and is enabled by default. However, when debugging we want to turn off
connection pooling because the debugging infrastructure is not correctly reestablished when working with a
connection that was taken from the pool.

To disabled connection pooling, update the NORTHWNDConnectionString in Web.config so that it includes the
setting “Pooling=false”.

<connectionStrings>
<add name="NORTHWNDConnectionString" connectionString=
"Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True;Pooling=false"
providerName="System.Data.SqglClient" />
</connectionStrings>

Note: Once you have finished debugging SQL Server through the ASP.NET application be sure to reinstate
connection pooling by removing the Pooling setting from the connection string (or by setting it to
“Pooling=true”).

At this point the ASP.NET application has been configured to allow Visual Studio to debug SQL Server database

objects when invoked through the web application. All that remains now is to add a breakpoint to a stored
procedure and start debugging!
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Step 3: Adding a Breakpoint and Debugging

Open the Products_selectByCategoryID stored procedure and set a breakpoint at the start of the SELECT
statement by clicking in the margin at the appropriate place or by placing your cursor at the start of the SELECT
statement and hitting F9. As Figure 4 illustrates, the breakpoint appears as a red circle in the margin.

25 ASPHET_Data_Tuterial _14_C5 - Microsoft Visual Studie
B (& Yev Promct fud Debug Dgfa ook Wede Joowwndy e Addes

L i 44 : b (# buffer 208
k g e 3 *:: & .
R Sinrrmdicn o) - >
ALTER FROCEDURE oo, Producta SelectBylategoryll =20 iy,
g : AcacegoeylD 1nc % mn-c::'ctﬁ“awdﬂ-ﬁmted ~
1 -_[welate

- "I D!s-_l'rw.-c!

' -ﬂ IFSSL-[‘L':T ProdueceIl, ProdustMams, Supplieclld, CategocyiD,

QuancityPerlnit, UnitPrice, UnitsinScock; UsicsOnircder,
Reocdéclevel, Discontinued

r T
| hm-,_s.m;mmfm@ sirtin
=] Products_Lipdats

TROM Feoduccs § L] Sabers by Year

WHERE CategoryID = BCategoryllf 3 (L] SelesByCabegory
il L] Supphers Delsts
% 1 Sawenkars Tnosst
3 ¥

¢ ¥ | Gdschbn... [Sroostes | Mg Serv .. S5t vew
|2 Error Lt (3] Outout 34 Frof et 1| 2 Come
Ready

Figure 4: Set a Breakpoint in the Products_SelectByCategoryID Stored Procedure

In order for a SQL database object to be debugged through a client application, it is imperative that the database be
configured to support application debugging. When you first set a breakpoint, this setting should automatically be
switched on, but it is prudent to double-check. Right-click on the NORTHWND . MDF node in the Server Explorer. The
context menu should include a checked menu item named “Application Debugging”.
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Figure 5: Ensure that the Application Debugging Option is Enabled

With the breakpoint set and the Application Debugging option enabled, we are ready to debug the stored procedure
when called from the ASP.NET application. Start the debugger by going to the Debug menu and choosing Start
Debugging, by hitting F5, or by clicking the green play icon in the Toolbar. This will start the debugger and launch
the website.

The Products_SelectByCategoryID stored procedure was created in the Using Existing Stored Procedures for
the Typed DataSet’s TableAdapters tutorial. Its corresponding web page
(~/AdvancedDAL/ExistingSprocs.aspx) contains a GridView that displays the results returned by this stored
procedure. Visit this page through the browser. Upon reaching the page, the breakpoint in the
Products_SelectByCategoryID stored procedure will be hit and control returned to Visual Studio. Just like in
Step 1, you can step through the stored procedure’s statements and view and modify the parameter values.
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Figure 6: The ExistingSprocs.aspx Page Initially Displays the Beverages
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Figure 7: The Stored Procedure’s Breakpoint has been Reached

As the Watch window in Figure 7 shows, the value of the @categoryID parameter is 1. This is because the
ExistingSprocs.aspx page initially displays products in the beverages category, which has a categoryID value
of 1. Choose a different category from the drop-down list. Doing so causes a postback and re-executes the
Products_SelectByCategoryID stored procedure. The breakpoint is hit again, but this time the @CategoryID
parameter’s value reflects the selected drop-down list item’s CategoryID.
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Figure 8: Choose a Different Category from the Drop-Down List
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Figure 9: The @categoryID Parameter Reflects the Category Selected from the Web Page
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Note: If the breakpoint in the Products SelectByCategoryID stored procedure is not hit when visiting the
ExistingSprocs.aspx page, make sure that the SQL Server checkbox has been checked in the Debuggers
section of the ASP.NET application’s Properties Page, that connection pooling has been disabled, and that
the database’s Application Debugging option is enabled. If you’re still having problems, restart Visual
Studio and try again.

Debugging T-SQL Database Objects on Remote Instances

Debugging database objects through Visual Studio is fairly straightforward when the SQL Server database instance
is on the same machine as Visual Studio. However, if SQL Server and Visual Studio reside on different machines
then some careful configuration is required to get everything working properly. There are two core tasks we are
faced with:

e Ensure that the login used to connect to the database via ADO.NET belongs to the sysadmin role.
e Ensure that the Windows user account used by Visual Studio on the development machine is a valid SQL
Server login account that belongs to the sysadmin role.

The first step is relatively straightforward. First, identify the user account used to connect to the database from the
ASP.NET application and then, from SQL Server Management Studio, add that login account to the sysadmin
role.

The second task requires that the Windows user account you use to debug the application be a valid login on the
remote database. However, chances are the Windows account you logged on to your workstation with is not a valid
login on SQL Server. Rather than adding your particular login account to SQL Server, a better choice would be to
designate some Windows user account as the SQL Server debugging account. Then, to debug the database objects
of a remote SQL Server instance, you would run Visual Studio using that Windows login account’s credentials.

An example should help clarify things. Imagine that there is a Windows account named sQLDebug within the
Windows domain. This account would need to be added to the remote SQL Server instance as a valid login and as
a member of the sysadmin role. Then, to debug the remote SQL Server instance from Visual Studio, we would
need to run Visual Studio as the soLDebug user. This could be done by logging out of our workstation, logging
back in as sQLDebug, and then launching Visual Studio, but a simpler approach would be to login to our
workstation using our own credentials and then use runas.exe to launch Visual Studio as the SQLDebug user.
runas.exe allows a particular application to be executed under the guise of a different user account. To launch
Visual Studio as sQLDebug, you could enter the following statement at the command line:

runas.exe /user:SQLDebug "$PROGRAMFILES%\Microsoft Visual Studio 8\Common7\IDE\devenv.exe

For a more detailed explanation on this process, see William R. Vaughn’s Hitchhiker’s Guide to Visual Studio and

SQOL Server, Seventh Edition as well as How To: Set SQL Server Permissions for Debugging.

Note: If your development machine is running Windows XP Service Pack 2 you will need to configure the

Internet Connection Firewall to allow remote debugging. The How To: Enable SQL Server 2005 Debugging
article notes that this involves two steps: “(a) On the Visual Studio host machine, you must add Devenv.exe

to the Exceptions list and open the TCP 135 port; and (b) On the remote (SQL) machine, you must open the
TCP 135 port and add sqlservr.exe to the Exceptions list. If your domain policy requires network
communication to be done through IPSec, you must open the UDP 4500 and UDP 500 ports.”

Summary

In addition to providing debugging support for .NET application code, Visual Studio also provides a variety of
debugging options for SQL Server 2005. In this tutorial we looked at two of those options: Direct Database
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Debugging and application debugging. To directly debug a T-SQL database object, locate the object through the
Server Explorer then right-click on it and choose “Step Into ...”. This starts the debugger and halts on the first
statement in the database object, at which point you can step through the object’s statements and view and modify
parameter values. In Step 1 we used this approach to step into the Products_SelectByCategoryID stored
procedure.

Application debugging allows breakpoints to be set directly within the database objects. When a database object
with breakpoints is invoked from a client application (such as an ASP.NET web application), the program halts as
the debugger takes over. Application debugging is useful because it more clearly shows what application action
causes a particular database object to be invoked. However, it requires a bit more configuration and setup than
Direct Database Debugging.

Database objects can also be debugged through SQL Server Projects. We will look at using SQL Server Projects
and how to use them to create and debug managed database objects in the next tutorial.

Happy Programming!
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