This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Updating the
TableAdapter to Use JOINs

Introduction

With relational databases the data we are interested in working with is often spread across multiple tables. For
example, when displaying product information we likely want to list each product’s corresponding category and
supplier’s names. The Products table has CategoryID and SupplierID values, but the actual category and
supplier names are in the Categories and Suppliers tables, respectively.

To retrieve information from another, related table, we can either use correlated subqueries or Jo1ns. A correlated
subquery is a nested SELECT query that references columns in the outer query. For example, in the Creating a Data
Access Layer tutorial we used two correlated subqueries in the ProductsTableAdapter’s main query to return the
category and supplier names for each product. A JoIN is a SQL construct that merges related rows from two
different tables. We used a JoIN in the Querying Data with the SqlDataSource Control tutorial to display category
information alongside each product.

The reason we have abstained from using JoINs with the TableAdapters is because of limitations in the
TableAdapter’s wizard to auto-generate corresponding INSERT, UPDATE, and DELETE statements. More specifically,
if the TableAdapter’s main query contains any JOINs, the TableAdapter cannot auto-create the ad-hoc SQL
statements or stored procedures for its InsertCommand, UpdateCommand, and DeleteCommand properties.

In this tutorial we will briefly compare and contrast correlated subqueries and JoINs before exploring how to create
a TableAdapter that includes JOINS in its main query.

Comparing and Contrasting Correlated Subqueries and JoIns

Recall that the ProductsTableAdapter created in the first tutorial in the Northwind DataSet uses correlated
subqueries to bring back each product’s corresponding category and supplier name. The ProductsTableAdapter’s
main query is shown below.

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued,
(SELECT CategoryName FROM Categories WHERE Categories.CategoryID =
Products.CategoryID) as CategoryName,
(SELECT CompanyName FROM Suppliers WHERE Suppliers.SupplierID =
Products.SupplierID) as SupplierName
FROM Products

ThetWK)COHEkHedsubqueﬁeS-“(SELECT CategoryName FROM Categories WHERE Categories.CategoryID
= Products.CategoryID)” and “ (SELECT CompanyName FROM Suppliers WHERE Suppliers.SupplierID =
Products.SupplierID)” - are SELECT queries that return a single value per product as an additional column in the
outer SELECT statement’s column list.

Alternatively, a JOIN can be used to return each product’s supplier and category name. The following query returns
the same output as the above one, but uses JOINs in place of subqueries:

1 of 18

SELECT ProductID, ProductName, Products.SupplierID, Products.CategorylD,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued,

Categories.CategoryName,
Suppliers.CompanyName as SupplierName
FROM Products
LEFT JOIN Categories ON
Categories.CategoryID = Products.CategoryID
LEFT JOIN Suppliers ON
Suppliers.SupplierID = Products.SupplierID

A J01IN merges the records from one table with records from another table based on some criteria. In the above
query, for example, the “LEFT JOIN Categories ON Categories.CategoryID = Products.CategoryID”
instructs SQL Server to merge each product record with the category record whose CategoryID value matches the
product’s CategoryID value. The merged result allows us to work with the corresponding category fields for each
product (such as categoryName).

Note: Jo1INs are commonly used when querying data from relational databases. If you are new to the JOIN
syntax or need to brush up a bit on its usage, I’d recommend the SQL Join tutorial at W3 Schools. Also
worth reading are the 501N Fundamentals and Subquery Fundamentals sections of the SQL Books Online.

Since Jo1ns and correlated subqueries can both be used to retrieve related data from other tables, many developers
are left scratching their heads and wondering which approach to use. All of the SQL gurus I’ve talked to have said
roughly the same thing, that it doesn’t really matter performance-wise as SQL Server will produce roughly
identical execution plans. Their advice, then, is to use the technique that you and your team are most comfortable
with. It merits noting that after imparting this advice these experts immediately express their preference of JOINs
over correlated subqueries.

When building a Data Access Layer using Typed DataSets, the tools work better when using subqueries. In
particular, the TableAdapter’s wizard will not auto-generate corresponding INSERT, UPDATE, and DELETE
statements if the main query contains any JOINs, but will auto-generate these statements when correlated
subqueries are used.

To explore this shortcoming, create a temporary Typed DataSet in the ~/2pp_Code/DAL folder. During the
TableAdapter Configuration wizard, choose to use ad-hoc SQL statements and enter the following SELECT query
(see Figure 1):

SELECT ProductID, ProductName, Products.SupplierID, Products.CategorylD,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued,

Categories.CategoryName,
Suppliers.CompanyName as SupplierName
FROM Products
LEFT JOIN Categories ON
Categories.CategoryID = Products.CategoryID
LEFT JOIN Suppliers ON
Suppliers.SupplierID = Products.SupplierID

20f18

TableAdapter Configuration Wizard

Enter a SOL Statement A &
The TableAdapter uses the data retumed by this statement to fill s DataTable, (B {

Type wour 5L statement or use the Query Builder ko construck it. What data should be loaded into the table?
What data should be loaded into the table?

SELECT ProductID, ProductMams, Products, SupplierID, Products, CategorylD,
QuantityPerUnit, UnitFrice, UnitsInStack, UnitsOnOrder,
Reorderlevel, Discontinued,
c.icategoryName,
s.CompanyiMame as Supplisrlame
FROM Producks
LEFT JOIN Categornes Oh
Categmvies. CategoryiD = Products.CategoryID
LEFT JOIN Suppliers O
Suppliers, SupplierID = Products, SupplierID

(Eaeiore]

[*:Er&vicuus J[Mext =]1 Finish I[Cancel J

Figure 1: Enter a Main Query that Contains JOINs

By default, the TableAdapter will automatically create INSERT, UPDATE, and DELETE statements based on the main
query. If you click the Advanced button you can see that this feature is enabled. Despite this setting, the
TableAdapter will not be able to create the INSERT, UPDATE, and DELETE statements because the main query

contains a JOIN.

Advanced Options

additional Insert, Update, and Delete statements can be generated to update the data

salrce,
iGenerate Insert, Update and Delete statements:

Generates Insert, Update, and Delete statements based on vour Select statement,

|:| Use optimistic concurrency

Modifies Update and Delete statements to detect whether the database has changed
since the record was loaded into the dataset, This helps prevent concurrency conflicks,

[] Refresh the data table

Adds a Select skatement after Insert and Update staktements ko rekrieve identity calurmn
walues, default values, and other values calculated by the database.

K l [Zancel

Figure 2: Enter a Main Query that Contains JOINs

30f18

Click Finish to complete the wizard. At this point your DataSet’s Designer will include a single TableAdapter with
a DataTable with columns for each of the fields returned in the SELECT query’s column list. This includes the
CategoryName and SupplierName, as Figure 3 shows.

#2 ASPNET Data_Tutorial_69_(%|[B] (2][B[X]

File Edit Miew MWebsite Buld Debug Data
Tools window Community Help Addins
PR R A" B AP W
X&__ 'App_EudEIDALIDataﬁetl.Hsd*! v)(_ﬂ
= i
] =]
= o =
B B DataTablel 2] g
ety
% ProductID g‘
ProductMame g
SupplierID s
CategoryID Ij?
QuankikyPerlnik %
IInitPrice g
UnitsInSkock i
UnitsOndrder L'*'I
ReorderLevel w
Discontinued i
CateqgoryMame A
Supplierflame E
i ﬁ]
S Fill,GetData () he
o
(o]
L]
5
|\ Error List | =] utput |5 Find Results 1B Comm: 2
Ready

Figure 3: The DataTable Includes a Column for Each Field Returned in the Column List

While the DataTable has the appropriate columns, the TableAdapter lacks values for its InsertCommand,
UpdateCommand, and DeleteCommand properties. To confirm this, click on the TableAdapter in the Designer and
then go to the Properties window. There you will see that the InsertCommand, UpdateCommand, and
DeleteCommand properties are set to “(None)”.

4 0of 18

#3 ASPNET_Data_Tutorial_69_CS - Microsoft Visual Studio al=1=ES

Fl= Edit Wew ‘Webste PBuld Debug Data Took Window Community Help Addins
@ GG @ kL@ - : b =
¢ App_Code/DAL/DataSet1.xsd* | Properties > = X g
g DataTablel Tableadapter Tsbleadapter ol (13
£ : rataTa il 3 " :: = j
. m
¥ ProductiD Baselass System, ComponentModel. Con
Praducthlame B Connection NORTHWNDConnectionStr | -
SupplierlD —— bly L_i.r
CategoryID _ DeleteCommand {Mone) o
QuanitikyPerLnik GenerateDBDirectMetho: False 2
s o
LIS {InsertCommand {Hone)) 5
LInft'sInStuck Modifies Aukolayout, AnsiClass, Class,|
UnitsOnCnder [ataTable1 TableAdapter L&'
fal
Reordertevel @ 15 ctCommand) 3
Disconkinued UpdateCarmmand (Mone) &
Categoryhame m
Supplierblarme _
| '8 DataTableiTableAdapter (%]
|y
% Fill, GetData () “':fl
Mame B
The name of the TableAdapter class
,:'-:ﬁ Error List |] Cutput % Find Results 1 | 3] Command Window
Ready

Figure 4: The InsertCommand, UpdateCommand, and DeleteCommand Properties are Set to “(None)”

To work around this shortcoming, we can manually provide the SQL statements and parameters for the
InsertCommand, UpdateCommand, and DeleteCommand properties via the Properties window. Alternatively, we
could start by configuring the TableAdapter’s main query to not include any Jo1ns. This will allow the INSERT,
UPDATE, and DELETE statements to be auto-generated for us. After completing the wizard, we could then manually
update the TableAdapter’s SelectCommand from the Properties window so that it includes the JOIN syntax.

While this approach works, it is very brittle when using ad-hoc SQL queries because any time the TableAdapter’s
main query is re-configured through the wizard, the auto-generated INSERT, UPDATE, and DELETE statements are
recreated. That means all of the customizations we later made would be lost if we right-clicked on the
TableAdapter, chose Configure from the context menu, and completed the wizard again.

The brittleness of the TableAdapter’s auto-generated INSERT, UPDATE, and DELETE statements is, fortunately,
limited to ad-hoc SQL statements. If your TableAdapter uses stored procedures, you can customize the
SelectCommand, InsertCommand, UpdateCommand, Or DeleteCommand stored procedures and re-run the

TableAdapter Configuration wizard without having to fear that the stored procedures will be modified.
Over the next several steps we will create a TableAdapter that, initially, uses a main query that omits any JOINs so
that the corresponding insert, update, and delete stored procedures will be auto-generated. We will then update the

SelectCommand so that uses a JOIN that returns additional columns from related tables. Finally, we’ll create a
corresponding Business Logic Layer class and demonstrate using the TableAdapter in an ASP.NET web page.

Step 1: Creating the TableAdapter Using a Simplified Main Query

50of 18

For this tutorial we will add a TableAdapter and strongly-typed DataTable for the Employees table in the
NorthwindWithSprocs DataSet. The Employees table contains a ReportsTo field that specified the EmployeeID
of the employee’s manager. For example, employee Anne Dodsworth has a ReportTo value of 5, which is the
EmployeeID of Steven Buchanan. Consequently, Anne reports to Steven, her manager. Along with reporting each
employee’s ReportsTo value, we might also want to retrieve the name of their manager. This can be accomplished
using a JOIN. But using a JOIN when initially creating the TableAdapter precludes the wizard from automatically
generating the corresponding insert, update, and delete capabilities. Therefore, we will start by creating a
TableAdapter whose main query does not contain any JoINs. Then, in Step 2, we will update the main query stored
procedure to retrieve the manager’s name via a JOIN.

Start by opening the NorthwindwWithSprocs DataSet in the ~/App_Code/DAL folder. Right-click on the Designer,
select the Add option from the context menu, and pick the TableAdapter menu item. This will launch the
TableAdapter Configuration wizard. As Figure 5 depicts, have the wizard create new stored procedures and click
Next. For a refresher on creating new stored procedures from the TableAdapter’s wizard, consult the Creating New
Stored Procedures for the Typed DataSet’s TableAdapters tutorial.

TableAdapter Configuration Wizard

Choose a Command Type =
The TableAdapter uses S0L statements or stored procedures.,

How should the TableAdapter access the database?
C' Use SOL statements

Speciy a S0L skatement, IF you provide a single-table SELECT statement, the wizard can oenerate INSERT,
UPDATE, and DELETE statements For you,

{(*)Create new stored procedures |

Specify a 5L statement and the wizard will create a new stored procedure, IF you provide a single-table
SELECT stakement, the wizard can generate INSERT, UPDATE, and DELETE stored procedures For wou,

) Use existing stored procedures
Choose an existing stored procedure for each command (SELECT, INSERT, IWPDATE, and DELETE),

[‘:Ere.viul.ﬁ Jl Bext =] Finizr

Figure 5: Select the “Create new stored procedures” Option

Use the following sELECT statement for the TableAdapter’s main query:

SELECT EmployeelID, LastName, FirstName, Title, HireDate, ReportsTo, Country
FROM Employees

Since this query does not include any Jo1ns, the TableAdapter wizard will automatically create stored procedures
with corresponding INSERT, UPDATE, and DELETE statements, as well as a stored procedure for executing the main

query.

60f 18

The following step allows us to name the TableAdapter’s stored procedures. Use the names Employees Select,
Employees Insert, Employees Update, and Employees Delete, as shown in Figure 6.

TableAdapter Configuration Wizard r‘__’J@ @@

Create the Stored Procedures s |

———

Specify how you would fike the stored procedures created, A =i 1

What do you want bo name the new stored procedures?
et
Emplovess_Select |

Lipdake:
IEmﬁ;qugrees__Lbc_Ia'l'e |

Delete: .
|Employvess_Delete |

You can preview the S0L script used ko generate stored procedures and optionally copey it For your awn
procedures,

| Preview SQL Seript...

[< Previous “_ﬂext:b]I Einish ” Cancel

Figure 6: Name the TableAdapter’s Stored Procedures

The final step prompts us to name the TableAdapter’s methods. Use Fill and GetEmployees as the method names.
Also be sure to leave the “Create methods to send updates directly to the database (GenerateDBDirectMethods)”
checkbox checked.

7 of 18

TableAdapter Configuration Wizard

Choose Methods to Generate B i
The Tableadapter methods bad and save data between your application and the | = :i
datahase, y

¥hich methods do you want to add to the TableAdapter?
Fill a DataTahle

Creakes a method that takes a DataTable or DataSet as a parameker and execustes the SOL stakement or
SELECT stored procedure enterad an the previous pane.

Method nanme: Fill

Return a DataTable

Creates a method that returns a new DataTable Filled with the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetEmployees

Create methods to send ypdates directly to the database (GenerateDBDirectMethods)

Creates Insert, Update, and Delate methods that can be called to send individual row changes directly to the
database.

[< Previous Iuext:b H Einish ” Cancel

Figure 7: Name the TableAdapter’s Methods Fill and GetEmployees

After completing the wizard, take a moment to examine the stored procedures in the database. You should see four
new ones: Employees Select, Employees Insert, Employees Update, and Employees Delete. Next, inspect
the EmployeesDataTable and EmployeesTableAdapter just created. The DataTable contains a column for each
field returned by the main query. Click on the TableAdapter and then go to the Properties window. There you will
see that the InsertCommand, UpdateCommand, and DeleteCommand properties are correctly configured to call the
corresponding stored procedures.

8of 18

% ASPNET Data Tutorial 69_CS « Microsoft Visual Studia = 30 4
Bio £ Gew Webgte Dud [ebay Dgte Tock Wedow Commonty Mo e

-l GHd 4D b om S
3 Apn_Code DAL/ withSprocsad® o Ergloyes. B HATD, MO s » e
Ermplayres TableAdapter Tabisddapier -

o= LENEES wr -jﬂ
ProductiD =l
Product M Baselags S, Comngaanatn Mkl (Coiipace
Spider 0 B Canfebon SOR THWSIH oninee LionSt rieg]
ornachonblodfer Aazemibly
Categoryil
QuanttyPerling Dhbeba ommand (D-ieteCammand)
LrtFrios CommandTeat dbo Emgdoyess_Delete
UrsbadnShack CorrmandTyon Storedifrocedurs
LindtsraCr der Pacsmader {Collection)
ReorderLevel (Gene st elHw actMethods Trus
Dézconitinased Fg] | insertCommand {InsertCommand}
e CrwrwngnaT el b Ermgleyees_Inmert
":;-s'-' A L LRI i = Comrmandlype StorediProcedure
Sl Al GetProdudts () |__porameters {Collection)
] FilEyCategoryID, GetProductsByCabegoryll: (Cate.. P Bk L3y, rceiass, Chss, Pul
T FilProduct 1D, GotPr odudt ByPraduct [0 (@i D)

Paraeratins (Collectian]

UpdakeCorvanaesd
SO0 conmnand bo wpdate dets i s databace

oo E... |~ Properties Ty Server £y

Merni s} Seved

Figure 8: The TableAdapter Includes Insert, Update, and Delete Capabilities

With the insert, update, and delete stored procedures automatically created and the InsertCommand,
UpdateCommand, and DeleteCommand properties correctly configured, we are ready to customize the
SelectCommand’s stored procedure to return additional information about each employee’s manager. Specifically,
we need to update the Employees_Select stored procedure to use a JOIN and return the manager’s FirstName and
LastName values. After the stored procedure has been updated, we will need to update the DataTable so that it
includes these additional columns. We’ll tackle these two tasks in Steps 2 and 3.

Step 2: Customizing the Stored Procedure to Include a JoIn

Start by going to the Server Explorer, drilling down into the Northwind database’s Stored Procedures folder, and
opening the Employees_select stored procedure. If you do not see this stored procedure, right-click on the Stored
Procedures folder and choose Refresh. Update the stored procedure so that it uses a LEFT JOIN to return the
manager’s first and last name:

SELECT Employees.EmployeelID, Employees.LastName,
Employees.FirstName, Employees.Title,
Employees.HireDate, Employees.ReportsTo,
Employees.Country,

Manager.FirstName as ManagerFirstName,
Manager.LastName as ManagerLastName

FROM Employees

LEFT JOIN Employees AS Manager ON
Employees.ReportsTo = Manager.EmployeelD

After updating the SELECT statement, save the changes by going to the File menu and choosing “Save
Employees Select”. Alternatively, you can click the Save icon in the toolbar or hit Ctrl+S. After saving your

90of 18

changes, right-click on the Employees_Select stored procedure in the Server Explorer and choose Execute. This
will run the stored procedure and show its results in the Output window (see Figure 9).

3 KSPHET Dta_Twtprial 6% 05 - Microsedl Visuad Studio

Pie Bt Yew Propd Buid (obug Ogs Toch Wedew Comewnky Beb dddos
- i el | F - M &
C LAne] -
W o Eplaye R THANDMDE] 800 Codsfll |, ihipraes wdf® - ¥ Bl v B
s ETER PROCERERE o S a . = F
1:...| PROCEBURE dbe. Begliovess Belect =i LE] ¥, |
3 i
HET MOCOTHT M & 4 _""-" e
4 Ve
ERR— P —— —. z = [l ShoedProcsdaes
ILECT Employess,DnployesID, Employpssp,bascHams, o " Aiphiet S sl el ek
Imp loyesa,FirstHame, Imployess.Title, & 0 Asphet ScRCachslmy Bt e esiT bl
Employess HireDates, Ceployess.BapactaTeo, " :" dsphiot_ S prheli gt T gbis Shoredy
Prp logeea . Ceunk ey, B Asphiet St sched infecgster Tabin S one
Banage: . Firstlane as SanagesFicachiase, & o hephist_SaCachelipdssChungeid o
Eanages.Lasthias s BanageclestHame B Catespries_Delehs
o] Crstie deriist
FEOH Employees #] CestOmdersDetal
LEFT J0IN Esployess A5 Marsger OH | § L Cesbdedersrders
Imployees . ReporssTo = Ranager.Employesll] i) Eempkrpes Sl by Cortry
e e T T1 Emphryeed_ Dbt
| Erplapeen_lrust
]| ke as et
" " Enpicyesd_Updale
Cadrng -
Sreawy cakgnd brom: Dababans Cosad - K |
-
DnployesTd LartFiss FirreMama Tikls Eiraluts BaportaTe Cowmbry RsnagpesFir:Ba
1 Bl LR i FEA [rs
2 - ALEs TR ~38f"
3 Laver lamg Jaimr 1 Papl e pair &t LUe z ML A wir
4 Faacach Harparas Saler DEprEIsRTATIVE maa Axcdwaw
3 JTE NTIFE.N frewvan Enl#r Hanapsr oK Ardzsw
& Foryans Bichaal Eales Bapressstative 5 a] Fraven
T Eing Babert ¥ Fiaven
Cal lahas [T i Aol wir
Bpddwnith Rieia E L Etaitein
Be powi SfEsctad
¥ rowisl revunced
BRITIOM_WALUE =
Finishsd running [(@s]. | Isploysas Sslsct| i
4 ¥
G 4] Cutp J Firsd Besats 157
Loy

Figure 9: The Stored Procedures Results are Displayed in the QOutput Window

Step 3: Updating the DataTable’s Columns

At this point, the Employees_select stored procedure returns ManagerFirstName and ManagerLastName values,
but the EmployeesDataTable is missing these columns. These missing columns can be added to the DataTable in
one of two ways:

e Manually - right-click on the DataTable in the DataSet Designer and, from the Add menu, choose Column.
You can then name the column and set its properties accordingly.

e Automatically - the TableAdapter Configuration wizard will update the DataTable’s columns to reflect the
fields returned by the SelectCommand stored procedure. When using ad-hoc SQL statements, the wizard will
also remove the InsertCommand, UpdateCommand, and DeleteCommand properties since the SelectCommand
now contains a JOIN. But when using stored procedures, these command properties remain intact.

We have explored manually adding DataTable columns in previous tutorials, including Master/Detail Using a
Bulleted List of Master Records with a Details DatalList and Uploading Files, and we will look at this process again
in more detail in our next tutorial. For this tutorial, however, let’s use the automatic approach via the TableAdapter
Configuration wizard.

Start by right-clicking on the EmployeesTableAdapter and selecting Configure from the context menu. This
brings up the TableAdapter Configuration wizard, which lists the stored procedures used for selecting, inserting,
updating, and deleting, along with their return values and parameters (if any). Figure 10 shows this wizard. Here

10 of 18

we can see that the Employees Select stored procedure now returns the ManagerFirstName and
ManagerLastName fields.

TableAdapter Configuration Wizard

Bind Commands to Existing Stored Procedures }_ﬁ
Chonse the stored procedures to call and specify any reguired parameters, I_ —'ﬁy
Sebect the stored procedure for each operation, If the procedure requires parameters, specify which column
in the data raw contans the parameter value,
Set Select procedure parameters:
1 Diats Colurnn
v|®
- ErmplayeelD
e . Lasthlame
|Em|:u|n:q.rees_lnsm " . Eir<Hhlame
|Ipdate: Title
|I'E-mpllgvees_Upr:'|'.1!e _v HireDate
Delete: FeportsTa
IE lovees_Delete || L
IHEYBEE.)] ManagerFirsthlamme
ManagerLasthlarne
[= Previous I l et =] | Einish I [Cancel]

Figure 10: The Wizard Shows the Updated Column List for the Employees_Select Stored Procedure

Complete the wizard by clicking Finish. Upon returning to the DataSet Designer, the EmployeesDataTable
includes two additional columns: ManagerFirstName and ManagerLastName,

110f 18

2 ASPNET _Data_Tutorial_69_CS - Microsoft Visual Studio r'IT|@ r.._]rﬁ!ﬁa

File Edt Wiew ‘Webghe Build Debug Data Tools Window Community Help fGddins

- -Gl s Y- . koL z

55| App_Code/DAL/..ithSprocs.xsd® | - X |[5

2 o

“ |7 Productio .

Producthame B Employees &) 2

Supplier1D ! EmployesID z

CateqgorylD Lastiame ¥

QuankityPerUnit Firsthiame =

[=]

UnitPrice Titke &

UnitsIntock HireDabe "

Units0onOrder ReportsTo h &

Reorderlevel County |o~

Discontinued ManagerFirstMame 3

EE Frsl Managerl asthame

= Fil,GetProducts () Fi;ﬂ”f'ft:ﬂr5:ff_ i i 2

= 3 b

A FillBwCategorylD,GetProductsByCakegoryID (@Cate. .. =2 Fill, GetEmplovess () : :

T FilByProductID, GetProductByProductD (@ProdudtID) ..!,1

i

|5

;-lj Errce Lisk | (5] Output aﬂm_‘ Results 1] Comenand Window f
Ready

Figure 11: The EmployeesDataTable Contains Two New Columns

To illustrate that the updated Employees_Select stored procedure is in effect and that the insert, update, and delete
capabilities of the TableAdapter are still functional, let’s create a web page that allows users to view and delete
employees. Before we create such a page, however, we need to first create a new class in the Business Logic Layer
for working with employees from the NorthwindwithSprocs DataSet. In Step 4, we will create an
EmployeesBLLWithSprocs class. In Step 5, we will use this class from an ASP.NET page.

Step 4: Implementing the Business Logic Layer

Create a new class file in the ~/App Code/BLL folder named EmployeesBLLWithSprocs.cs. This class mimics the
semantics of the existing EmployeesBLL class, only this new one provides fewer methods and uses the
NorthwindWithSprocs DataSet (instead of the Northwind DataSet). Add the following code to the
EmployeesBLLWithSprocs class.

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using NorthwindWithSprocsTableAdapters;

[System.ComponentModel.DataObject]

12 of 18

public class EmployeesBLLWithSprocs
{
private EmployeesTableAdapter employeesAdapter = null;
protected EmployeesTableAdapter Adapter
{
get
{
if (_employeesAdapter == null)
_employeesAdapter = new EmployeesTableAdapter () ;

return employeesAdapter;

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, true)]
public NorthwindWithSprocs.EmployeesDataTable GetEmployees ()

{
return Adapter.GetEmployees|();

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Delete, true)]
public bool DeleteEmployee (int employeelD)
{
int rowsAffected = Adapter.Delete(employeelD);

// Return true if precisely one row was deleted, otherwise false
return rowsAffected == 1;

The EmployeesBLLWithSprocs class’s Adapter property returns an instance of the NorthwindwithSprocs
DataSet’s EmployeesTableAdapter. This is used by the class’s GetEmployees and DeleteEmployee methods.
The GetEmployees method calls the EmployeesTableAdapter’s corresponding GetEmployees method, which
invokes the Employees Select stored procedure and populates its results in an EmployeeDataTable. The
DeleteEmployee method similarly calls the EmployeesTableAdapter’s Delete method, which invokes the
Employees Delete stored procedure.

Step 5: Working with the Data in the Presentation Layer

With the EmployeesBLLWithSprocs class complete, we’re ready to work with employee data through an
ASP.NET page. Open the JOINs.aspx page in the AdvancedDAL folder and drag a GridView from the Toolbox
onto the Designer, setting its ID property to Employees. Next, from the GridView’s smart tag, bind the grid to a
new ObjectDataSource control named EmployeesDataSource.

Configure the ObjectDataSource to use the EmployeesBLLWithSprocs class and, from the SELECT and DELETE

tabs, ensure that the GetEmployees and DeleteEmployee methods are selected from the drop-down lists. Click
Finish to complete the ObjectDataSource’s configuration.

13 of 18

Configure Data Source - EmployeesDataSource

J Choose a Business Object

Select a business object that can be wsed ko retrieve or update data (for example, an object defined in the Bin
or App_Code direckary For this application),

Choosa your business object:

| EmployeesBLLWIthSprocs
EmploveesBLLYWithSoracs
Mor thwindOptimisticConcurrency TableAdapters, ProducksOptimisticConcurrency T ableddapter
Morthaind T ableAdapters. Cateqories Tableddapter

Mot thwindT able Adapters. EmployeesTableddapter

Morthaind T ableAdaphers ProducksT ableAdapher

MorthwindT able Adapters. SuppliersT ableddapter
MorthwindwithSprocsTableadapters EmployeeasT sblefdapter
MorthwindiwithSprocsTableAdapters . ProductsTableAdapter b

w Show only data components

Figure 12: Configure the ObjectDataSource to Use the EmployeesBLLWithSprocs Class

14 of 18

Configure Data Source - EmployeesDataSource E]@ E]@

.I Define Data Methods

=

SELECT | UPDATE | INSERT | DELETE |
Chaces & methad of the business objeck to assaciste with the DELETE operation, The methad should
accept a parameter for each primary key for the data object or a sngle parameter which is the data
object ko delete,

Examplas: DeleteProduck(Product p), or DeleteProduct{Int32 praduckID)

Chanse a methaod:
| DeleteEmployes(Int32 emploveslD), returns Boolean W

DelsteEmployves(Ink32 emploveslD), returns Boolean,
| DelateEmplovesiInt 32 amplovealD), retums Boolean

lext [Enish | [cancel |

Figure 13: Have the ObjectDataSource Use the GetEmployees and DeleteEmployee Methods

Visual Studio will add a BoundField to the GridView for each of the EmployeesDataTable’s columns. Remove all
of these BoundFields except for Title, LastName, FirstName, ManagerFirstName, and ManagerLastName and
rename the HeaderText properties for the last four BoundFields to “Last Name”, “First Name”, “Manager’s First
Name”, and “Manager’s Last Name”, respectively.

To allow users to delete employees from this page we need to do two things. First, instruct the GridView to provide
deleting capabilities by checking the “Enable Deleting” option from its smart tag. Second, change the
ObjectDataSource’s 0ldvaluesParameterFormatString property from the value set by the ObjectDataSource
wizard (original_{0}) to its default value ({0}). After making these changes, your GridView and
ObjectDataSource’s declarative markup should look similar to the following:

<asp:GridView ID="Employees" runat="server" AutoGenerateColumns="False"
DataKeyNames="EmployeeID" DataSourcelID="EmployeesDataSource">
<Columns>
<asp:CommandField ShowDeleteButton="True" />
<asp:BoundField DataField="Title"
HeaderText="Title"
SortExpression="Title" />
<asp:BoundField DataField="LastName"
HeaderText="Last Name"
SortExpression="LastName" />
<asp:BoundField DataField="FirstName"
HeaderText="First Name"
SortExpression="FirstName" />
<asp:BoundField DataField="ManagerFirstName"

15 of 18

HeaderText="Manager's First Name"
SortExpression="ManagerFirstName" />
<asp:BoundField DataField="ManagerLastName"
HeaderText="Manager's Last Name"
SortExpression="ManagerLastName" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="EmployeesDataSource" runat="server"
DeleteMethod="DeleteEmployee" OldValuesParameterFormatString="{0}"
SelectMethod="GetEmployees" TypeName="EmployeesBLLWithSprocs">
<DeleteParameters>
<asp:Parameter Name="employeeID" Type="Int32" />
</DeleteParameters>
</asp:0bjectDataSource>

Test out the page by visiting it through a browser. As Figure 14 shows, the page will list each employee and his or
her manager’s name (assuming they have one).

W Untitled Pape - Micresolt Intermel Fxplorer r-_irE F._.|'E|E1
Fle Edt Wew Fgeobes ook Helo e

O @& G Psowch Fromm @ 30 5 - 6 & B
Acoress] bt (e alhont ATEHASPRET Data_Tutorial £9_ ColebiaroedDul)0 angx bl ﬂ el
Workin Wi‘th Data T utﬂria IE Home > Advansed DAL Scenarie: > Returning Data Wiing JOIHS

Using JOINs in the SelectCommand

Last First Mhain Firs Manadger's Last
wame [anme ame Tame
[elete Sales Representative Davoba ancy Andrew Fudler
Delee Wice Pregident, Sales Fuller Andréw
Sietting Parameser Delete Sales Representative Leverling Janet Andrew Fuller
apes [ielets Sales Representative Peacock Margaret andrew Fuller
Dglets Sales Manager Buchandan Steven Argdirew Filer
[elete Sales Representative Swyama Michael Steven Buicharan
Fiiter by Drop-Dowrn [elars Sales Representative King Ruabert Steven Bucharan
o Delats _::naﬂf_zn:':é?_ Calsham Laurs Ardrew Fudler
[elete Sales Representative Dodsworth Anne Steven Buchanan
....... i e e A e b
&l N Local iniranet

Figure 14: The JOIN in the Employees_Select Stored Procedure Returns the Manager’s Name

Clicking the Delete button starts the deleting workflow, which culminates in the execution of the

Employees Delete stored procedure. However, the attempted DELETE statement in the stored procedure fails
because of a foreign key constraint violation (see Figure 15). Specifically, each employee has one or more records
in the orders table, causing the delete to fail.

16 of 18

3 The DELETE statement conflicted with the REFERENCE constraint "FK_Drders_Employees™. The confti [© |[5] [5]
Bie Edt Vew Favortes Took Heb g
Qeak = @ - [@ 0| Foearch drFwvoites 8 (3~ 5 [- @ = K Eh

o5 48] bebpeflocahost: 4TZ2IATPHET Duata_Tubcrial_69_CSidwarcadtnt | IOINs, aspx |

Server Error in 'J/ASPNET_Data_Tutorial_69_CS' Application.

The DELETE statement conflicted with the REFERENCE constraint
"FK_Orders_Employees”. The conflict occurred in database
"YCICA27SDOFSACO3BAS9957193C437FA LINFE
ARTICLES\DATATUTORIALS\VOLUME 3\CSHARF\&9

\ASPNET DATA TUTORIAL 69 CS\APP DATA\NORTHWND. MDF", table
"dbo.Orders”, column EmployeelD’

The statement has been terminated.

Description: An unkanded sxception occurmsd during the ececulion of Bhe cunmsnt wal regquesl. Plssse révisy e siack irace for mon
indormation abxmd the error and wheve § oiginabed in ths cods,

Exception Details: System Data SqiCkent SqExcepton The DELETE statement confiched wid 1hs REFERENCE constraint
“Fii_Orclers_Employess”. The confiict occurmed in databace “4C3CA 2TS00FBACISIASISTI G304 37FA_LINE ARTICLESOMTATUTORIALSIVOLUNE 3
WCEHARPEIWEPNET DATA TUTORLAL B3_CSUAPP_DATAMORTHND MOF", able "o Orders”, colemn ‘EmployesiD’
The statement has beer termnaten
¢
] Dane % Local intranat:

|l

Figure 15: Deleting an Employee That has Corresponding Orders Results in a Foreign Key Constraint
Violation

To allow an employee to be deleted you could:

e Update the foreign key constraint to cascade deletes,

e Manually delete the records from the orders table for the employee(s) you want to delete, or

o Update the Employees_Delete stored procedure to first delete the related records from the orders table
before deleting the Employees record. We discussed this technique in the Using Existing Stored Procedures
for the Typed DataSet’s TableAdapters tutorial.

I leave this as an exercise for the reader.

Summary

When working with relational databases, it is common for queries to pull their data from multiple, related tables.
Correlated subqueries and JoINs provide two different techniques for accessing data from related tables in a query.
In previous tutorials we most commonly made use of correlated subqueries because the TableAdapter cannot auto-
generate INSERT, UPDATE, and DELETE statements for queries involving JoINs. While these values can be provided
manually, when using ad-hoc SQL statements any customizations will be overwritten when the TableAdapter
Configuration wizard is completed.

Fortunately, TableAdapters created using stored procedures do not suffer from the same brittleness as those created
using ad-hoc SQL statements. Therefore, it is feasible to create a TableAdapter whose main query uses a JOIN
when using stored procedures. In this tutorial we saw how to create such a TableAdapter. We started by using a
JOIN-less SELECT query for the TableAdapter’s main query so that the corresponding insert, update, and delete
stored procedures would be auto-created. With the TableAdapter’s initial configuration complete, we augmented
the selectCommand stored procedure to use a JOIN and re-ran the TableAdapter Configuration wizard to update the

17 of 18

EmployeesDataTable’s columns.

Re-running the TableAdapter Configuration wizard automatically updated the EmployeesDataTable columns to
reflect the data fields returned by the Employees Select stored procedure. Alternatively, we could have added
these columns manually to the DataTable. We will explore manually adding columns to the DataTable in the next
tutorial.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Hilton
Geisenow, David Suru, and Teresa Murphy. Interested in reviewing my upcoming MSDN articles? If so, drop me a
line at mitchell@4GuysFromRolla.com.

18 of 18

