This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Formatting the
DataList and Repeater Based Upon Data

Introduction

As we saw in the preceding tutorial, the DataList offers a number of style-related properties that affect its
appearance. In particular, we saw how to assign default CSS classes to the Datalist’s HeaderStyle, ItemStyle,
AlternatingItemStyle, and SelectedItemStyle properties. In addition to these four properties, the DataList
includes a number of other style-related properties, such as Font, ForeColor, BackColor, and BorderWidth, to
name a few. The Repeater control does not contain any style-related properties. Any such style settings must be
made directly within the markup in the Repeater’s templates.

Often, though, how data should be formatted depends on the data itself. For example, when listing products we
might want to display the product information in a light gray font color if it is discontinued, or we may want to
highlight the UnitsInstock value if it is zero. As we saw in previous tutorials, the GridView, DetailsView, and
FormView offer two distinct ways to format their appearance based on their data:

e The pDataBound event — create an event handler for the appropriate DataBound event, which fires after the
data has been bound to each item (for the GridView it was the RowDataBound event; for the DataList and
Repeater it is the ItembDataBound event). In that event handler, the data just bound can be examined and
formatting decisions made. We examined this technique in the Custom Formatting Based Upon Data tutorial.

e Formatting Functions in Templates — when using TemplateFields in the DetailsView or GridView
controls, or a template in the FormView control, we can add a formatting function to the ASP.NET page’s
code-behind class, the Business Logic Layer, or any other class library that is accessible from the web
application. This formatting function can accept an arbitrary number of input parameters, but must return the
HTML to render in the template. Formatting functions were first examined in the Using TemplateFields in
the GridView Control tutorial.

Both of these formatting techniques are available with the DataList and Repeater controls. In this tutorial we’ll step
through examples using both techniques for both controls.

Using the ItemDataBound Event Handler

When data is bound to a DataList, either from a data source control or through programmatically assigning data to
the control’s DataSource property and calling its DataBind () method, the DataList’s DataBinding event fires,
the data source enumerated, and each data record is bound to the DataList. For each record in the data source, the
DatalList creates a DataListItem object that is then bound to the current record. During this process, the DataList
raises two events:

e ItemCreated — fires after the DatalListItem has been created
e ItemDataBound — fires after the current record has been bound to the DataListItem

The following steps outline the data binding process for the DataList control.

1. The Datalist’s DataBinding event fires
2. The data is bound to the DataList

1 of 10

For each record in the data source...

Create a DataListItem object

Fire the ItemCreated event

Bind the record to the DatalListTtem

Fire the ItembDataBound event

Add the pataListItem to the Items collection

o a0 os

When binding data to the Repeater control, it progresses through the exact same sequence of steps. The only
difference is that instead of DataListItem instances being created, the Repeater uses RepeaterItems.

Note: The astute reader may have noticed a slight anomaly between the sequence of steps that transpire when the
DataList and Repeater are bound to data versus when the GridView is bound to data. At the tail end of the data
binding process, the GridView raises the DataBound event; however, neither the DataList nor Repeater control
have such an event. This is because the DataList and Repeater controls were created back in the ASP.NET 1.x
timeframe, before the pre- and post-level event handler pattern had become common.

Like with the GridView, one option for formatting based on the data is to create an event handler for the
ItemDataBound event. This event handler would inspect the data that had just been bound to the DataListItem or
RepeaterItem and affect the formatting of the control as needed.

For the DataList control, formatting changes for the entire item can be implemented using the DataListItem’s
style-related properties, which include the standard Font, ForeColor, BackColor, CssClass, and so on. To affect
the formatting of particular Web controls within the DataList’s template, we need to programmatically access and
modify the style of those Web controls. We saw how to accomplish this back in the Custom Formatting Based
Upon Data tutorial. Like the Repeater control, the RepeaterItem class has no style-related properties; therefore,
all style-related changes made to a RepeaterItem inthe ItemDataBound event handler must be done by
programmatically accessing and updating Web controls within the template.

Since the ItembataBound formatting technique for the DataList and Repeater are virtually identical, our example
will focus on using the DataList.

Step 1: Displaying Product Information in the
DatalList

Before we worry about the formatting, let’s first create a page that uses a DataList to display product information.
In the previous tutorial we created a Datalist whose ItemTemplate displayed each product’s name, category,
supplier, quantity per unit, and price. Let’s repeat this functionality here in this tutorial. To accomplish this, you
can either recreate the DataList and its ObjectDataSource from scratch, or you can copy over those controls from
the page created in the previous tutorial (Basics.aspx) and paste them into the page for this tutorial
(Formatting.aspx).

Once you have replicated the DataList and ObjectDataSource functionality from Basics.aspx into
Formatting.aspx, take a moment to change the DataList’s 1D property from DataList1 to a more descriptive
ItemDataBoundFormattingExample. Next, view the Datalist in a browser. As Figure 1 shows, the only
formatting difference between each product is that the background color alternates.

20of 10

X Untitled Page - Micrasoft Internet Explorer Ei_"_|@| E"E:rz|
© Ble Gt Mew Favorites Tooks Help gl
J S M @ Pseach Frrmvedes £ S3-5% @0 B 8 H

A E: hittpfbocalhost: 4550/ C odefDut.al st R apesterEadcs Format ting. aspo v BEYGa

iy

Wﬂrking with Data Tutorials Home > Displaying Data with the Datalist and

Repeater > Formatting

Custom Formatting

Simple Display

Declarative i
P Product Information

Setting Parameter Chai
Salues

Formatting Using the rtembatasound Event Handler

Flltering Feports Category: Bevarages Supplier: Exotic Liquids
Filter by Drop-Down Qty /Uit 10 bowes < 20 bags Price; $19.36
LisE:

Macter-Dietails- Chang
Detalls

Category: Beverages Supplier: Exolic Liquids
Master/Detad ACr05s
Two Pages Qty/Unit: 24 - 12 oz bottdes Price: $15.00

Details of Selected

Aniseed Syrup

Category: Condiments Supplier: Exotic Liguids
Oty funit: 12 - 550 ml bottles Price: £10.00

Custom Contentin a
Gricuiew

Custom Contentin a Category: Condiments Supplier: New Orleans Cajun Delights
i _De_m"slllﬂe* ik findls A0 & A imes sl 408 &0 —- — ¥

£ & Local ritranet

Chef Anton's Cajun Seasoning

Figure 1: The Products are Listed in the DataList Control

For this tutorial, let’s format the DataList such that any products with a price less than $20.00 will have both its
name and unit price highlighted yellow.

Step 2: Programmatically Determining the Value of
the Data in the ItemDataBound Event Handler

Since only those products with a price under $20.00 will have the custom formatting applied, we must be able to
determine each product’s price. When binding data to a DataList, the DataList enumerates the records in its data
source and, for each record, creates a DataListItem instance, binding the data source record to the DataListItem.
After the particular record’s data has been bound to the current bataListItem object, the DataList’s
ItemDataBound event is fired. We can create an event handler for this event to inspect the data values for the
current DataListItem and, based upon those values, make any formatting changes necessary.

Create an ItemDataBound event for the Datalist and add the following code:

protected void ItemDataBoundFormattingExample ItemDataBound
(object sender, DatalistItemEventArgs e)
{
if (e.Item.ItemType == ListItemType.Item ||
e.Item.ItemType == ListItemType.AlternatingItem)
{

30f 10

// Programmatically reference the ProductsRow instance bound
// to this DatalListItem
Northwind.ProductsRow product =
(Northwind.ProductsRow) ((System.Data.DataRowView)e.Item.Dataltem) .Row;

// See if the UnitPrice is not NULL and less than $20.00
if (!product.IsUnitPriceNull() && product.UnitPrice < 20)

{
// TODO: Highlight the product's name and price
}

While the concept and semantics behind the Datalist’s ItemDataBound event handler are the same as those used
by the GridView’s RowDataBound event handler in the Custom Formatting Based Upon Data tutorial, the syntax
differs slightly. When the ItemDataBound event fires, the DataListItem just bound to data is passed into
corresponding event handler via e. Item (instead of e.Row, as with the GridView’s RowDataBound event handler).
The DataList’s ItemDataBound event handler fires for each row added to the DataList, including header rows,
footer rows, and separator rows. However, the product information is only bound to the data rows. Therefore, when
using the ItembataBound event to inspect the data bound to the DataList, we need to first ensure that we’re
working with a data item. This can be accomplished by checking the DataListItem’s ItemType property, which
can have one of the following eight values:

AlternatingItem
EditItem

Footer

Header

Item

Pager
SelectedItem
Separator

Both Itemand AlternatingItem DataListItems makeup the DataList’s data items. Assuming we’re working
with an Item or AlternatingItem, we access the actual ProductsRow instance that was bound to the current
DataListItem. The DataListItem’s Dataltem property contains a reference to the DataRowview object, whose
Row property provides a reference to the actual ProductsRow object.

Next, we check the ProductsRow instance’s UnitPrice property. Since the Products table’s unitprice field
allows NULL values, before attempting to access the UnitPrice property we should first check to see if it has a
NULL value using the IsUnitPriceNull () method. If the UnitpPrice value is not NULL, we then check to see if it’s
less than $20.00. If it is indeed under $20.00, we then need to apply the custom formatting.

Step 3: Highlighting the Product’s Name and Price

Once we know that a product’s price is less than $20.00, all that remains is to highlight its name and price. To
accomplish this, we must first programmatically reference the Label controls in the ItemTemplate that display the
product’s name and price. Next, we need to have them display a yellow background. This formatting information
can be applied by directly modifying the Labels’ BackColor properties (LabelID.BackColor = Color.Yellow);
ideally, though, all display-related matters should be expressed through cascading stylesheets. In fact, we already
have a stylesheet that provides the desired formatting defined in Styles.css - AffordablePriceEmphasis, which
was created and discussed in the Custom Formatting Based Upon Data tutorial.

To apply the formatting, simply set the two Label Web controls’ cssClass properties to
AffordablePriceEmphasis, as shown in the following code:

4 of 10

// Highlight the product name and unit price Labels

// First, get a reference to the two Label Web controls

Label ProductNameLabel = (Label)e.Item.FindControl ("ProductNameLabel");
Label UnitPricelabel = (Label)e.Item.FindControl ("UnitPricelLabel");

// Next, set their CssClass properties

if (ProductNamelLabel != null)

ProductNameLabel.CssClass = "AffordablePriceEmphasis";
if (UnitPricelabel != null)

UnitPricelabel.CssClass = "AffordablePriceEmphasis";

With the ItembataBound event handler completed, revisit the Formatting.aspx page in a browser. As Figure 2
illustrates, those products with a price under $20.00 have both their name and price highlighted.

N Untitled Page - Microsaft Intermet Explorer
Fs (R Wiew Fayvorkes Took: Help

= D - E @l | P seach wiFavertes | (- B 09 - [& FL
Address | hitpfiocahost- 4560 Code Bkl istfapeaterBiasicsTormatting asp s G-J-_“
Working with Data Tutorials = Heme> pispiaying Data with the Dataist ang

Home

Custom Formatting

Basic Feportin |

Simple Display Formatting Using the rtempat apound Event

Handler
Declarative
Pararetars -
: Product Information
Sething Parameter
Filtering Reports
Filter by Drop=Down Category: Beverages Supplier: Exofic Liquids
List Qty/Unitz 10 bowss = 20 bags Price: $18.36

Master-Detalls-

Datails Chang

mﬁ%ﬁ fEAYE Category: Baverages Supplier: Exotic Liquids
Batalle of Sslected QtySunit: 24 - 12 oz bottles Price: $13.00

Fow

Aniseed Syrup

CUs b s
Form _=|T_T_|I'|-;:!

Category: Condiments Supplier: Exobc Liguids

Format Colorns QtyfUnitz 12 - 550 mi bottles Price: $10.00

CUsham Contéent in a

SridView Chef Anton's Cajun Seasoning

Cuztom Content in a

Dretailsiiew Category: Condiments Supplier: New Oreans Cajun Delights

Custom Content In a Qty/fUnitz 48 - 6 02 jars Price: $26.62 -
5 L TP, . S

Figure 2: Those Products Less than $20.00 are Highlighted

Note: Since the DataList is rendered as an HTML <table>, its DataListItem instances have style-related
properties that can be set to apply a specific style to the entire item. For example, if we wanted to highlight the
entire item yellow when its price was less than $20.00, we could have replaced the code that referenced the Labels
and set their CssClass properties with the following line of code: e.Item.CssClass =
"AffordablePriceEmphasis"(Seefﬁgure3)

The RepeaterItems that make up the Repeater control, however, don’t offer such style-level properties. Therefore,
applying custom formatting to the Repeater requires the application of style properties to the Web controls within

50of 10

the Repeater’s templates, just like we did in Figure 2.

X Untitled Page - Microsofl Internel Explorer
Ble Edi Wew Favortes Tock Heb

B[M| O seach HrFavedes £ (B i] - & L R
Agdress i.ﬂHtp:ﬁﬁm’.d‘ml:Wﬂ}D&MRm&HB&mFNMW.@x '.d r_'.,u
" Farameters = =
Product Information
Satting Farameter

Walues

Chai
Filtering Reports
Filter by Drop=Down Category: Beverages Supplier: Exotic Liguids
List Qty/fuUnit: 10 boxes ¥ 20 bags Price; §19.36
Master-Dataiis-
Detalls - Chang
Master/Detall Across
Two Pa,.lg}:s Category: Baverages Supplier: Exofic Liquids

Details of 'S_gjgmd QtyfUnit: 24 - 12 oz bottdes Price: $£19.00

Fow

Aniseed Syrup

Customized
Farmatting
Category: Condaments Supplier: Exobic Liqusds

Farmat Colors Gty/unit: 12 - 550 mi bottles Price: $10.00

Custom Content in &
Griduview

Custom Content in a
Detalisview Category: Condiments Supplier: Mew Orleans Cajun Delights
Custom Content in & Gty fUnit: 48 -6 oz jars Price: $26.62

Formiview

Summary Data n Chef Anton's Gumbo Mix
Footer

Chef Anton's Cajun Seasoning

Category: Condsments Supplier: New Orleans Cajun Debghts
Oty /Unit: 38 boxes Price: £21.35

Editing, Inserting, and
Draleting

Basics "
Data Moatcancen Grandma's Boysenberry Spread
Evenis
Category: Condiments Supplier: Grandma Eelly's Homestead
- Ermr H.Em.g " e - =
&) 4 | ncal inbranst

Figure 3: The Entire Product Item is Highlighted for Products Under $20.00

Using Formatting Functions from Within the
Template

In the Using TemplateFields in the GridView Control tutorial we saw how to use a formatting function within a
GridView TemplateField to apply custom formatting based upon the data bound to the GridView’s rows. A
formatting function is a method that can be invoked from a template and returns the HTML to be emitted in its
place. Formatting functions can reside in the ASP.NET page’s code-behind class or can be centralized into class
files in the 2pp_Code folder or in a separate Class Library project. Moving the formatting function out of the
ASP.NET page’s code-behind class is ideal if you plan on using the same formatting function in multiple
ASP.NET pages or in other ASP.NET web applications.

To demonstrate formatting functions, let’s have the product information include the text “[DISCONTINUED]”
next to the product’s name if it’s discontinued. Also, let’s have the price highlighted yellow if it’s less than $20.00
(as we did in the ItemDataBound event handler example); if the price is $20.00 or higher, let’s not display the
actual price, but instead the text, “Please call for a price quote”. Figure 4 shows a screen shot of the products listing

6 0of 10

with these formatting rules applied.

A Untitled Page - Microsaft Internet Explorer
Bk Edk Yew Favoites Took Help

=

= E | Search T Favortes £5 R [s o ' L D

} Agdrnss ajMp:h‘acd'mt:ﬁdd]f&de,’bﬂuﬂmatzrﬂmsffmw.mx

vﬁu

Formatting Using Formatting Functions

Product Information

Chai

Category: Beverages Supplier: Exotic Liguds
QtySuUnit: 10 boxes x 20 bags Prir_e

Chang

Category: Beverages Supplier: Exotic Liguids
QtySfuUnit: 24 - 12 oz bottes Price: £13.00

Aniseed Syrup

Category: Condsments Supplier: Exotic Liguids
Qty/Unit: 12 - 550 ml botties Price: $10.20

Chef Anton's Cajun Seasoning

Category: Condiments Supplier; New Crleans Cajun Delights
Oty/Unit: 42 - 6 02 jars Price: Please call for a price guote

Chef Anton's Gumbo Mis{ [DISCONTINUED] |

Category: Condements Suppller: Mew Orleans Cajun Delights

e

QiwfUnit: 36 boxes

] Done

F'rice{r-i'lease call for a price quute_]

Nl pocal intranst

Figure 4: For Expensive Products, the Price is Replaced with the Text, “Please call for a price quote”.

Step 1: Create the Formatting Functions

For this example we need two formatting functions, one that displays the product name along with the text
“IDISCONTINUED]”, if needed, and another that displays either a highlighted price if it’s less than $20.00, or the
text, “Please call for a price quote” otherwise. Let’s create these functions in the ASP.NET page’s code-behind
class and name them DisplayProductNameAndDiscontinuedStatus and DisplayPrice. Both methods need to
return the HTML to render as a string and both need to be marked Protected (or Public) in order to be invoked
from the ASP.NET page’s declarative syntax portion. The code for these two methods follows:

protected string DisplayProductNameAndDiscontinuedStatus
(string productName, bool discontinued)

{

// Return just the productName if discontinued is false

if (!discontinued)
return productName;
else

// otherwise, return the productName appended with the text " [DISCONTINUED]"
return string.Concat (productName, " [DISCONTINUED]") ;

7 of 10

protected string DisplayPrice (Northwind.ProductsRow product)
{
// 1f price is less than $20.00, return the price, highlighted
if (!product.IsUnitPriceNull() && product.UnitPrice < 20)
return string.Concat ("",
product.UnitPrice.ToString ("C"), "");
else
// Otherwise return the text, "Please call for a price quote"
return "Please call for a price quote";

Note that the DisplayProductNameAndDiscontinuedStatus method accepts the values of the productName and
discontinued data fields as scalar values, whereas the DisplayPrice method accepts a ProductsRow instance
(rather than a unitPrice scalar value). Either approach will work; however, if the formatting function is working
with scalar values that can contain database NULL values (such as UnitPrice; neither ProductName nor
Discontinued allow NULL values), special care must be taken in handling these scalar inputs.

In particular, the input parameter must be of type object since the incoming value might be a DBNull instance
instead of the expected data type. Additionally, a check must be made to determine whether or not the incoming
value is a database NULL value. That is, if we wanted the DisplayPrice method to accept the price as a scalar
value, we’d have to use the following code:

protected string DisplayPrice (object unitPrice)
{
// 1f price is less than $20.00, return the price, highlighted
if (!Convert.IsDBNull (unitPrice) && ((decimal) unitPrice) < 20)
return string.Concat ("",
((decimal) unitPrice) .ToString("C"), "");
else
// Otherwise return the text, "Please call for a price quote"
return "Please call for a price quote";

Note that the unitPrice input parameter is of type object and that the conditional statement has been modified to
ascertain if unitPrice is DBNull or not. Furthermore, since the unitPrice input parameter is passed in as an
Object, it must be cast to a decimal value.

Step 2: Calling the Formatting Function from the
DataList’s ItemTemplate

With the formatting functions added to our ASP.NET page’s code-behind class, all that remains is to invoke these
formatting functions from the DataList’s ItemTemplate. To call a formatting function from a template, place the
function call within the databinding syntax:

o°
Vv

<%# MethodName (inputParameterl, inputParameter2,

In the DataList’s ItemTemplate the ProductNameLabel Label Web control currently displays the product’s name
by assigning its Text property the result of <$# Eval ("ProductName") %>.In order to have it display the name
plus the text “[DISCONTINUED]” (if needed), update the declarative syntax so that it instead assigns the Text
property the value of the DisplayProductNameAndDiscontinuedStatus method. When doing so, we must pass in
the product’s name and discontinued values using the Eval ("columnName") syntax. Eval returns a value of type
Object, but the DisplayProductNameAndDiscontinuedStatus method expects input parameters of type String
and Boolean; therefore, we must cast the values returned by the Eval method to the expected input parameter
types, like so:

8of 10

<h4>
<asp:Label ID="ProductNameLabel" runat="server"
Text='<%# DisplayProductNameAndDiscontinuedStatus ((string) Eval ("ProductName"),
(bool) Eval ("Discontinued")) %>'>
</asp:Label>
</h4>

To display the price, we can simply set the UnitPriceLabel Label’s Text property to the value returned by the
DisplayPrice method, just like we did for displaying the product’s name and “[DISCONTINUED]” text.
However, instead of passing in the UnitPrice as a scalar input parameter, we instead pass in the entire
ProductsRow instance:

<asp:Label ID="UnitPricelabel" runat="server"
Text='<%# DisplayPrice ((Northwind.ProductsRow)
((System.Data.DataRowView) Container.Dataltem) .Row) %>'>
</asp:Label>

With the calls to the formatting functions in place, take a moment to view our progress in a browser. Your screen
should look similar to Figure 5, with the discontinued products including the text “[DISCONTINUED]” and those
products costing more than $20.00 having their price replaced with the text “Please call for a price quote”.

X Untitled Page - Microsoft Internet Explorer
| B Edt Vew Favortes Took Hel

¢ % LRF- Fu A Search T Pavarites £ [G ﬁl'

Adrass ﬁjlﬂtp:]ﬁm&nﬁt:m}{mfﬁﬂmﬂmdzmﬁmw.mx b .ﬁﬂ

E

Formatting Using Formatting Functions
Product Information
Chai

Category: Beverages Supplier: Exotsc Ligueds
QtyfUnit: 10 boxes x 20 bags Price: £19.36

Chang

Category: Beverages Supplier; Exctic Liguids
QtyfUnit 24 - 12 oz botdes Price: $15.00

Aniseed Syrup

Category: Condements Supplier: Exofic Liquids
QtyfUnit: 12 - 550 md botthes Price: $20.00

Chef Anton's Cajun Seasoning

Category: Condiments Supplier: New Orleans Cajun Delights
Qty/Unit: 42 - 6 oz jars Price: Please call for a price guote

Chef Anton's Gumbo Mix [DISCONTINUED]

Category: Condiments Supplier: Mew Orleans Cajun Delights

QtyfUnit: 36 boxes Price: Please call for a price guota

] Bone & Local intranst

Figure 5: For Expensive Products, the Price is Replaced with the Text, “Please call for a price quote”.
Summary

90of 10

Formatting the contents of a DataList or Repeater control based upon the data can be accomplished using two
techniques. The first technique is to create an event handler for the ItembataBound event, which fires as each
record in the data source is bound to a new DataListItem Or RepeaterItem. In the TtemDataBound event handler,
the current item’s data can be examined and then formatting can be applied to the contents of the template or, for
DataListItems, to the entire item itself.

Alternatively, custom formatting can be realized through formatting functions. A formatting function is a method
that can be invoked from the DataList or Repeater’s templates that returns the HTML to emit in its place. Often,
the HTML returned by a formatting function is determined by the values being bound to the current item. These
values can be passed into the formatting function, either as scalar values or by passing in the entire object being
bound to the item (such as the ProductsRow instance).

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Yaakov Ellis,
Randy Schmidt, and Liz Shulok. Interested in reviewing my upcoming articles? If so, drop me a line at
mitchell@4guysfromrolla.com.

10 of 10

