This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Handling
BLL- and DAL-Level Exceptions in an ASP.NET
Page

Introduction

Working with data from an ASP.NET web application using a tiered application architecture involves the
following three general steps:

1. Determine what method of the Business Logic Layer needs to be invoked and what parameter values to
pass it. The parameter values can be hard coded, programmatically-assigned, or inputs entered by the
user.

2. Invoke the method.

. Process the results. When calling a BLL method that returns data, this may involve binding the data to a

data Web control. For BLL methods that modify data, this may include performing some action based on
a return value or gracefully handling any exception that arose in Step 2.

(98]

As we saw in the previous tutorial, both the ObjectDataSource and the data Web controls provide extensibility
points for Steps 1 and 3. The GridView, for example, fires its RowUpdating event prior to assigning its field
values to its ObjectDataSource's UpdateParameters collection; its RowUpdated event is raised after the
ObjectDataSource has completed the operation.

We've already examined the events that fire during Step 1 and have seen how they can be used to customize the
input parameters or cancel the operation. In this tutorial we'll turn our attention to the events that fire after the
operation has completed. With these post-level event handlers we can, among other things, determine if an
exception occurred during the operation and handle it gracefully, displaying a friendly, informative error
message on the screen rather than defaulting to the standard ASP.NET exception page.

To illustrate working with these post-level events, let's create a page that lists the products in an editable
GridView. When updating a product, if an exception is raised our ASP.NET page will display a short message
above the GridView explaining that a problem has occurred. Let's get started!

Step 1: Creating an Editable GridView of Products

In the previous tutorial we created an editable GridView with just two fields, ProductName and UnitPrice.
This required creating an additional overload for the ProductsBLL class's UpdateProduct method, one that
only accepted three input parameters (the product's name, unit price, and ID) as opposed a parameter for each
product field. For this tutorial, let's practice this technique again, creating an editable GridView that displays the
product's name, quantity per unit, unit price, and units in stock, but only allows the name, unit price, and units
in stock to be edited.

To accommodate this scenario we'll need another overload of the UpdateProduct method, one that accepts four
parameters: the product's name, unit price, units in stock, and ID. Add the following method to the
ProductsBLL class:

1 of 13

[System.ComponentModel.DataObjectMethodAttribute (
System.ComponentModel.DataObjectMethodType.Update, false)]
public bool UpdateProduct (string productName, decimal? unitPrice, short? unitsInStock,
int productID)
{
Northwind.ProductsDataTable products = Adapter.GetProductByProductID (productID);
if (products.Count == 0)
// no matching record found, return false
return false;

Northwind.ProductsRow product = products[0];

product.ProductName = productName;

if (unitPrice == null) product.SetUnitPriceNull () ;
else product.UnitPrice = unitPrice.Value;
if (unitsInStock == null) product.SetUnitsInStockNull();

else product.UnitsInStock = unitsInStock.Value;

// Update the product record
int rowsAffected = Adapter.Update (product);

// Return true if precisely one row was updated, otherwise false
return rowsAffected == 1;

With this method complete, we're ready to create the ASP.NET page that allows for editing these four particular
product fields. Open the ErrorHandling.aspx page in the EditInsertDelete folder and add a GridView to
the page through the Designer. Bind the GridView to a new ObjectDataSource, mapping the select () method
to the ProductsBLL class's GetProducts () method and the Update () method to the UpdateProduct overload
just created.

=

Configure Data Source - ObjectDataSource

]

i

SELECT | UPDATE | INSERT | DELETE

Thoose a method of the basiress object to associste with the UPDATE operation. The method should
scempt & parsmster for saech property of the dats object, or & single par ameter whch is the data objact
to updake.

Examples: UpdabeProductiProduct p), or UpdateProduct(Int32 productiD, String name, Double price)

Choose & mathad:
UipdstePraduct] String productMams, Ml shle cDacmsls U »

i OO -j._;l"‘-l.:r'r.r Fedable <Dmomal > uréPrice "kJ.th- It 16 urdtsinStock, Indd2 productlD
Lbjmd*ndutlﬁﬂ-nugmm Nullable <Int 32 > suppler]D, Nullsble <Int32 > cabegorylD, String quasntitP

Figure 1: Use the updateProduct Method Overload That Accepts Four Input Parameters
This will create an ObjectDataSource with an UpdateParameters collection with four parameters and a

GridView with a field for each of the product fields. The ObjectDataSource's declarative markup assigns the
OldvaluesParameterFormatString property the value original {0}, which will cause an exception since

20f13

our BLL class's don't expect an input parameter named original productID to be passed in. Don't forget to
remove this setting altogether from the declarative syntax (or set it to the default value, {0}).

Next, pare down the GridView to include only the ProductName, QuantityPerUnit, UnitPrice, and
UnitsInStock BoundFields. Also feel free to apply any field-level formatting you deem necessary (such as
changing the HeaderText properties).

In the previous tutorial we looked at how to format the unitprice BoundField as a currency both in read-only
mode and edit mode. Let's do the same here. Recall that this required setting the BoundField's
DataFormatString property to {0:c}, its HtmlEncode property to false, and its ApplyFormatInEditMode to
true, as shown in Figure 2.

Fields

&v_aiable Fields:] BoundField properties:

A - i
;I Ll FE"_:IE:I S 4 |
= £l BoundField :
73] ProductlD E Behavior
2] eroducthlame ApplyFormakinEditMode True

=] SupplieriD ConvesEEmply ShringToMu. Trus
=] CategorylD { HemiEncode False |
] cruankkyPerlinit Tnsartwisible TriE
(B B vl A i] i
ReadOnky Falss
Selected Fislds: ShowHeader True

2 Edi, Update, Cancel ?;r;imressmn II.I:I:PH:E
=] Product

E N it El pata
S DiataField UnitPrice
| 1T Urts In Stock { DataFormatString {0:c})
E Styles

Hao sdosToulk

[Awito-generate Fields Conyert this field into & TemplateFisld

Refresh Schema [o

Figure 2: Configure the unitpPrice BoundField to Display as a Currency

Formatting the unitPrice as a currency in the editing interface requires creating an event handler for the
GridView's RowUpdating event that parses the currency-formatted string into a decimal value. Recall that the
RowUpdating event handler from the last tutorial also checked to ensure that the user provided a UnitpPrice
value. However, for this tutorial let's allow the user to omit the price.

protected void GridViewl RowUpdating(object sender, GridViewUpdateEventArgs e)
{

if (e.NewValues["UnitPrice"] != null)
e.NewValues["UnitPrice"] =decimal.Parse (e.NewValues["UnitPrice"].ToString(),
System.Globalization.NumberStyles.Currency);

Our GridView includes a QuantityPerunit BoundField, but this BoundField should be only for display
purposes and should not be editable by the user. To arrange this, simply set the BoundFields' Readon1y property
to true.

30f 13

Fields

BoundField properties:

A
= £l BoundField 24

=] ProductiD & Behavior

] ProductName ApplyFormakInEdity False
=] SupplieriD CanwertEmply Skring True
=] categorylD HtmlEncode True
3] GuanbkyPerln Insertyisible True

Selected Fields: ShiowHeader
1 Ede, Update, Cancel SortExpression QuantityPerUnit

o Visiale True
2 Price ReadOnly

(E] Urits In Stock Whether the field does not permit editing of &=
bound Field,

[Awito-generate Fields

Refresh Schema [corca. |

Figure 3: Make the QuantityPerUnit BoundField Read-Only

Finally, check the Enable Editing checkbox from the GridView's smart tag. After completing these steps the
ErrorHandling.aspx page's Designer should look similar to Figure 4.

*% Codn Wacrouofi Vismal Sipds

[l Pt few webgte i Gebuy Foesst Lapsa Jods Wndew Comeundr Bep fAdens
o el A . bl o ok ‘e
N = -
» EEEE ot oo e pedas o A
§ | -
T T M 1 tari: :
[paeai
. Mantar-ae
7 Ve Contont - Cormecl (Cusmm)
77| mabeubions 2
0 Locaie iGracefully Handling BLL- and DAL-
- =
g Level Exceptions
17T e !
o Catalii ;
- Taradvimes SilF e b 80.00 [+ B
. s Edi b abc g0.10 5| Orisces Dada Soure | CheertDabeSoums| -
Troba e prupcatasenet | |Edgabe abc §0.30 e —
I B— migse s §0 pf ot scrama
s Edgsbe &b $0.%0 o [t Cokues
¥ heerttofaioare n k] B
L WrilelaSosm A AN A A - Dl il for el] Eretie
g [Erbie Sevirg
i (Cmminne)
Validainn
& Perie [Fr—
o B e
" Rangeiakdatn | erdys | canpecormesiPonertl s cpo [copopideseigiaent s |
l':,l : i _i 1
Taady

Figure 4: Remove All But the Needed BoundFields and Check the Enable Editing Checkbox

At this point we have a list of all of the products' ProductName, QuantityPerUnit, UnitPrice, and
UnitsInStock fields; however, only the ProductName, UnitPrice, and UnitsInStock fields can be edited.

4 0f 13

X Linenied Pape - Wecrmal lase i | aplees
B G fes Fpaonied fos pep
S Back - o & Zawh Taemeien F = by - Expn B

B s jRpcdhoul TR ede Elrneri et Bty mps - G

Working with Data Tutorials ~ teme > Esang.inssrmng. ana Geisina > Srror Handimg

Gracefully Handling BLL- and DAL-Level
Exceptions

12 - SE
ml Eeities

Ecks Bnizead Syrup

- Ol anvtar's Cajun 48 - b oz g oy
Edt ot e §22.00 =3
| s bl Aridedts Cagrmiba 3 b > $21.35
Mastar/Detal Sron e e i !
Two Fages -
Edt R e TR $25.00 120

S aartare

Figure 5: Users Can Now Easily Edit Products' Names, Prices, and Units In Stock Fields

Step 2: Gracefully Handling DAL-Level Exceptions

While our editable GridView works wonderfully when users enter legal values for the edited product's name,
price, and units in stock, entering illegal values results in an exception. For example, omitting the ProductName
value causes a NoNullAllowedException to be thrown since the ProductName property in the ProdcutsRow
class has its A110owDBNu11 property set to false; if the database is down, a SqlException will be thrown by the
TableAdapter when attempting to connect to the database. Without taking any action, these exceptions bubble
up from the Data Access Layer to the Business Logic Layer, then to the ASP.NET page, and finally to the
ASP.NET runtime.

Depending on how your web application is configured and whether or not you're visiting the application from
localhost, an unhandled exception can result in either a generic server-error page, a detailed error report, or a
user-friendly web page. See Web Application Error Handling in ASP.NET and the customErrors Element for
more information on how the ASP.NET runtime responds to an uncaught exception.

Figure 6 shows the screen encountered when attempting to update a product without specifying the
ProductName value. This is the default detailed error report displayed when coming through 1ocalhost.

50f13

] Colemn ProdectName’ does mot allow nulls. - Sicrosoft internet Cxploner

e & Wew Fpoites Jools feie

3 ek = o @ Jamch Fyvorted - by v =B S

8] bt fflseabast: 1951 iCoda fE drinserSwisteff rronsending. as »|] o

Server Error in '/Code’ Application.

Column 'Productiame’ does nol allow nulis.

Descriptian An urended sxcepion Sturmed drng P axecuion of Be curten wel rhgues Plesss revew e ek Irece for fore
ricemeton shoul he s wnd whers | anginabed i the oo

Enteption Dotails: Sysiem Daba Mobbd Sl soephion Colim Pridciinme’ doei fl alew Fulls

Source Lrror

The souice code that generated tHis eGnhandled excépticond oan Gnly be shovm dhen oompiled
in debug mode. To enshle chis, pleass follow ome of the below steps, thes request the

URL:

1. Add & "Pebugerrus” direcTive AL Che Cop o The flle That generaced the §ECor.
Exmnple:

ull Page Language=“CH" Debug="trus® >

@] Dars
Figure 6: Omitting the Product's Name Will Display Exception Details

While such exception details are helpful when testing an application, presenting an end user with such a screen
in the face of an exception is less than ideal. An end user likely doesn't know what a NoNul1allowedException
is or why it was caused. A better approach is to present the user with a more user-friendly message explaining
that there were problems attempting to update the product.

If an exception occurs when performing the operation, the post-level events in both the ObjectDataSource and
the data Web control provide a means to detect it and cancel the exception from bubbling up to the ASP.NET
runtime. For our example, let's create an event handler for the GridView's RowUpdated event that determines if
an exception has fired and, if so, displays the exception details in a Label Web control.

Start by adding a Label to the ASP.NET page, setting its 1D property to ExceptionDetails and clearing out its
Text property. In order to draw the user's eye to this message, set its CssClass property to Warning, which is a
CSS class we added to the styles.css file in the previous tutorial. Recall that this CSS class causes the Label's
text to be displayed in a red, italic, bold, extra large font.

6 of 13

*% Code - Microsolt Visual Studio
B Edt Yew Webjgte Guid [ebug Formal Lagoat [ock Window Comewnty Hebp Addrs
L Rt I~ R Y gl 0) delete
B I U = P

v R | - dtimertDele, Honding.asen* acp_Code/BLL Froductsitl o

= Sandard -

g |m—"
Lo 'ﬂ ﬂﬂl

(3] Button Content - Contentl (Custom)
(£ Linkdutton

(@) inagetiaton Eracefullyr Handling BLL-

A gl
+ 7 DropDowriist
¥ Liston
[Chechios
ChedBaslst
+ FadoBifton L . ¥0.00
F it tond st $0.10
R dit abe §0.20
i Inageag $0.30
o] Tabie
I Bulstedlit

nd DAL-Level Exceptions

b ED40

¥
Djec tDl aSowroe - e[l aSouionl

Figure 7: Add a Label Web Control to the Page

Since we want this Label Web control to be visible only immediately after an exception has occurred, set its
Visible property to false in the Page Load event handler:

protected void Page Load(object sender, EventArgs e)

{

ExceptionDetails.Visible = false;

}

With this code, on the first page visit and subsequent postbacks the ExceptionDetails control will have its
Visible property set to false. In the face of a DAL- or BLL-level exception, which we can detect in the
GridView's RowUpdated event handler, we will set the ExceptionDetails control's Visible property to true.
Since Web control event handlers occur after the Page Load event handler in the page lifecycle, the Label will
be shown. However, on the next postback, the Page Load event handler will revert the visible property back
to false, hiding it from view again.

Note: Alternatively, we could remove the necessity for setting the ExceptionDetails control's visible
property in Page_Load by assigning its visible property false in the declarative syntax and disabling its view
state (setting its EnableviewState property to false). We'll use this alternative approach in a future tutorial.

With the Label control added, our next step is to create the event handler for the GridView's RowUpdated event.
Select the GridView in the Designer, go to the Properties window, and click the lightning bolt icon, listing the
GridView's events. There should already be an entry there for the GridView's RowUpdating event, as we
created an event handler for this event earlier in this tutorial. Create an event handler for the RowUpdated event
as well.

7 of 13

] F'r'n:nper'ie::

Grid¥iewl Svystem.web, UL WwebControls, Gridiiew -

CrakaBinding
DrataBound
Disposed

Imik

Load
PageIndexChanged
Pagelndex_hanging
PreRender
R.owCancelingEdit
RowCommand
RowCreated
R.owDataBound
RowDeleted
FowDeleting

F.owEditin
Fowllpdaking Gri I|||'in=_-ll.'.|l1_I?l'.u:nll.'.|IU|:|nr|:|a||:inr|_:|

SelectedIndexChanged
SelectedIndexChanging
Sorked
Sarting
nload

RowlUpdated

Fires after an Update Command is executed on the data
source,

CySolution E.., |#8Properties |88 Server Ex. .. | Class View

Figure 8: Create an Event Handler for the GridView's RowUpdated Event

Note: You can also create the event handler through the drop-down lists at the top of the code-behind class file.
Select the GridView from the drop-down list on the left and the RowUpdated event from the one on the right.

Creating this event handler will add the following code to the ASP.NET page's code-behind class:

protected void GridViewl RowUpdated(object sender, GridViewUpdatedEventArgs e)
{

}

This event handler's second input parameter is an object of type GridViewUpdatedEventArgs, which has three
properties of interest for handling exceptions:

e Exception — a reference to the thrown exception; if no exception has been thrown, this property will
have a value of nu11

e ExceptionHandled —a Boolean value that indicates whether or not the exception was handled in the
RowUpdated event handler; if false (the default), the exception is re-thrown, percolating up to the
ASP.NET runtime

e KeepInEditMode —if set to true the edited GridView row remains in edit mode; if false (the default),

8o0f13

the GridView row reverts back to its read-only mode

Our code, then, should check to see if Exception is not null, meaning that an exception was raised while
performing the operation. If this is the case, we want to:

e Display a user-friendly message in the ExceptionDetails Label
o Indicate that the exception was handled
o Keep the GridView row in edit mode

This following code accomplishes these objectives:

protected void GridViewl RowUpdated(object sender, GridViewUpdatedEventArgs e)
{
if (e.Exception != null)
{
// Display a user-friendly message
ExceptionDetails.Visible = true;
ExceptionDetails.Text = "There was a problem updating the product. ";

if (e.Exception.InnerException != null)

{

Exception inner = e.Exception.InnerException;

if (inner is System.Data.Common.DbException)
ExceptionDetails.Text +=
"Our database is currently experiencing problems." +
"Please try again later.";
else if (inner is NoNullAllowedException)
ExceptionDetails.Text +=
"There are one or more required fields that are missing.";
else if (inner is ArgumentException)

{

string paramName = ((ArgumentException)inner) .ParamName;
ExceptionDetails.Text +=
string.Concat ("The ", paramName, " wvalue is illegal.");

}
else if (inner is ApplicationException)
ExceptionDetails.Text += inner.Message;

}

// Indicate that the exception has been handled
e.ExceptionHandled = true;

// Keep the row in edit mode
e.KeepInEditMode = true;

This event handler begins by checking to see if e .Exception is null. Ifit's not, the ExceptionDetails Label's
Visible property is set to true and its Text property to "There was a problem updating the product." The
details of the actual exception that was thrown reside in the e.Exception object's InnerException property.
This inner exception is examined and, if it is of a particular type, an additional, helpful message is appended to
the ExceptionDetails Label's Text property. Lastly, the ExceptionHandled and KeepInEditMode properties
are both set to true.

Figure 9 shows a screen shot of this page when omitting the name of the product; Figure 10 shows the results
when entering an illegal unitprice value (-50).

9 of 13

A Uintitind Page - Microwalt internel Explores
Ble Eit Wew Fgpetes Tk Hel

Ginsdk = O @ & T seach frrnaies & T & i idf
S] hitp | ocahost 3R e IE St reas Dielebe e e Handing as “ B

Working with Data Tutorials Home » g, Insseiing, snd Deteting » Bror
............... L S . .rutlc. =N

Gracefully Handling BLL- and DAL-Level
Exceptions
There was a problem updating the

raguﬁ‘. There are one or more required
elds that are missing.

I nifis
Product by SNk Iri

10 baxes
& Sdrel ® 20 F10.35 ET
Dags
24 - 12
Edit Cheeng o2 $19.00 17

Edit Aniseed SyTUp m $10,00 13

3 Untitied Fage - Microsald Interned Explores
Be B Mew Faetes Took Help
Ok~ 3 W @ P T eech Paeorins 3 - i - o i[j

8] bty Bt TR e ISR Tremyt Toelebs IEre i Hancling a5 “ Do

Working with Data Tutorials Home » g, Insseiing, snd Deteting > Bror
............... L S . .rutlc. =N

Gracefully Handling BLL- and DAL-Level
Exceptions

There was a problem updating the
product, Thepumtprice Ea?ue 1% jﬂegal.

Product by AUnit

Ipedats Carce] [Chai w20 -E0 39

f=alls Chang 0Z F15.00 17

Edit Brigeed Syrup il F10.00 13

Chefanton's Camun 45 - 6 oz

Figure 10: Negative unitPrice Values are Not Allowed

By setting the e.ExceptionHandled property to true, the RowUpdated event handler has indicated that it has
handled the exception. Therefore, the exception won't propagate up to the ASP.NET runtime.

Note: Figures 9 and 10 show a graceful way to handle exceptions raised due to invalid user input. Ideally,
though, such invalid input will never reach the Business Logic Layer in the first place, as the ASP.NET page
should ensure that the user's inputs are valid before invoking the ProductsBLL class's UpdateProduct method.
In our next tutorial we'll see how to add validation controls to the editing and inserting interfaces to ensure that
the data submitted to the Business Logic Layer conforms to the business rules. The validation controls not only
prevent the invocation of the UpdateProduct method until the user-supplied data is valid, but also provide a
more informative user experience for identifying data entry problems.

10 of 13

Step 3: Gracefully Handling BLL-Level Exceptions

When inserting, updating, or deleting data, the Data Access Layer may throw an exception in the face of a data-
related error. The database may be offline, a required database table column might not have had a value
specified, or a table-level constraint may have been violated. In addition to strictly data-related exceptions, the
Business Logic Layer can use exceptions to indicate when business rules have been violated. In the Creating a
Business Logic Layer tutorial, for example, we added a business rule check to the original updatepProduct
overload. Specifically, if the user was marking a product as discontinued, we required that the product not be
the only one provided by its supplier. If this condition was violated, an ApplicationException was thrown.

For the UpdateProduct overload created in this tutorial, let's add a business rule that prohibits the unitprice
field from being set to a new value that's more than twice the original unitPrice value. To accomplish this,
adjust the UpdateProduct overload so that it performs this check and throws an ApplicationException if the
rule is violated. The updated method follows:

public bool UpdateProduct (string productName, decimal? unitPrice, short? unitsInStock,
int productID)
{
Northwind.ProductsDataTable products = Adapter.GetProductByProductID (productID);
if (products.Count == 0)
// no matching record found, return false
return false;

Northwind.ProductsRow product = products[0];

// Make sure the price has not more than doubled
if (unitPrice != null && !product.IsUnitPriceNull())
if (unitPrice > product.UnitPrice * 2)
throw new ApplicationException (
"When updating a product price," +
" the new price cannot exceed twice the original price.");

product.ProductName = productName;

if (unitPrice == null) product.SetUnitPriceNull () ;
else product.UnitPrice = unitPrice.Value;
if (unitsInStock == null) product.SetUnitsInStockNull();

else product.UnitsInStock = unitsInStock.Value;

// Update the product record
int rowsAffected = Adapter.Update (product);

// Return true if precisely one row was updated, otherwise false
return rowsAffected == 1;

With this change, any price update that is more than twice the existing price will cause an
ApplicationException to be thrown. Just like the exception raised from the DAL, this BLL-raised
ApplicationException can be detected and handled in the GridView's RowUpdated event handler. In fact, the
RowUpdated event handler's code, as written, will correctly detect this exception and display the
ApplicationException's Message property value. Figure 11 shows a screen shot when a user attempts to
update the price of Chai to $50.00, which is more than double its current price of $19.95.

110f13

T Untitled Page - Microsofl Internel Caplorer

P [Wew PFgpaotes [ooh Hel

& ek - (@ | S sewch 7 Puntes 8 - & I ff
rn Y b ot eest - 505 31 ot M Lk er bt oo Har g i ¥ A5
Working with Data Tutorials Hems » Editing, insertng, and Delsting > Errr
H

Gracefully Handling BLL- and DAL-
Level Exceptions

There was a problem updating the
product, W.hgn ugdaﬁng a n?dud's
rice, the mew price cannot exceed

wice the original price.

Setting Farameter
wiauing

Linits
Proeduct |Eaty A Uit in

Fltar &y Drop-Down
List

Hastar-Datala-
Datals

Lpdats Cancel Chal w20 £00.00 as

_I}'I:;tgnm}ltal RS Edit Chang oz $1e00 17
il bottles

Detals of Safect=d 12 - 850

Row Edit Lriseed Syrup i $10.00 13

bottes
o S Y R, Al A =

1]
A pare S Localintranst

Figure 11: The Business Rules Disallow Price Increases That More Than Double a Product's Price

Note: Ideally our business logic rules would be refactored out of the UpdateProduct method overloads and
into a common method. This is left as an exercise for the reader.

Summary

During inserting, updating, and deleting operations, both the data Web control and the ObjectDataSource
involved fire pre- and post-level events that bookend the actual operation. As we saw in this tutorial and the
preceding one, when working with an editable GridView the GridView's RowUpdating event fires, followed by
the ObjectDataSource's Updating event, at which point the update command is made to the ObjectDataSource's
underlying object. After the operation has completed, the ObjectDataSource's updated event fires, followed by
the GridView's RowUpdated event.

We can create event handlers for the pre-level events in order to customize the input parameters or for the post-
level events in order to inspect and respond to the operation's results. Post-level event handlers are most
commonly used to detect whether an exception occurred during the operation. In the face of an exception, these
post-level event handlers can optionally handle the exception on their own. In this tutorial we saw how to
handle such an exception by displaying a friendly error message.

In the next tutorial we'll see how to lessen the likelihood of exceptions arising from data formatting issues (such
as entering a negative UnitPrice). Specifically, we'll look at how to add validation controls to the editing and

inserting interfaces.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,

12 0of 13

recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Liz Shulok.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

13 of 13

