Training
Module
Perform vector search and retrieval in Azure AI Search - Training
Perform vector search and retrieval in Azure AI Search.
This browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
Creates an embedding vector representing the input text.
POST /embeddings?api-version=2024-04-01-preview
Name | In | Required | Type | Description |
---|---|---|---|---|
api-version |
query | True | string | The version of the API in the format "YYYY-MM-DD" or "YYYY-MM-DD-preview". |
Name | Required | Type | Description |
---|---|---|---|
extra-parameters | string | The behavior of the API when extra parameters are indicated in the payload. Using pass-through makes the API to pass the parameter to the underlying model. Use this value when you want to pass parameters that you know the underlying model can support. Using ignore makes the API to drop any unsupported parameter. Use this value when you need to use the same payload across different models, but one of the extra parameters may make a model to error out if not supported. Using error makes the API to reject any extra parameter in the payload. Only parameters specified in this API can be indicated, or a 400 error is returned. |
|
azureml-model-deployment | string | Name of the deployment you want to route the request to. Supported for endpoints that support multiple deployments. |
Name | Required | Type | Description |
---|---|---|---|
input | True | string[] | Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. |
dimensions | integer | The number of dimensions the resulting output embeddings should have. Returns a 422 error if the model doesn't support the value or parameter. | |
encoding_format | EmbeddingEncodingFormat | The format to return the embeddings in. Either base64, float, int8, uint8, binary, or ubinary. Returns a 422 error if the model doesn't support the value or parameter. | |
input_type | EmbeddingInputType | The type of the input. Either text , query , or document . Returns a 422 error if the model doesn't support the value or parameter. |
Name | Type | Description |
---|---|---|
200 OK | CreateEmbeddingResponse | OK |
401 Unauthorized | UnauthorizedError | Access token is missing or invalid Headers x-ms-error-code: string |
404 Not Found | NotFoundError | Modality not supported by the model. Check the documentation of the model to see which routes are available. Headers x-ms-error-code: string |
422 Unprocessable Entity | UnprocessableContentError | The request contains unprocessable content Headers x-ms-error-code: string |
429 Too Many Requests | TooManyRequestsError | You have hit your assigned rate limit and your request need to be paced. Headers x-ms-error-code: string |
Other Status Codes | ContentFilterError | Bad request Headers x-ms-error-code: string |
The token with the Bearer: prefix
, e.g. Bearer abcde12345
Type: apiKey In: header
Azure Active Directory OAuth2 authentication
Type: oauth2 Flow: application Token URL: https://login.microsoftonline.com/common/oauth2/v2.0/token
POST /embeddings?api-version=2024-04-01-preview
{
"input": [
"This is a very good text"
],
"input_type": "text",
"encoding_format": "float",
"dimensions": 1024
}
Status code: 200
{
"data": [
{
"index": 0,
"object": "embedding",
"embedding": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
]
}
],
"object": "list",
"model": "BERT",
"usage": {
"prompt_tokens": 15,
"total_tokens": 15
}
}
Name | Description |
---|---|
ContentFilterError | The API call fails when the prompt triggers a content filter as configured. Modify the prompt and try again. |
CreateEmbeddingRequest | Request for creating embeddings. |
CreateEmbeddingResponse | Response from an embeddings request. |
Detail | Details of the errors. |
Embedding | Represents the embedding object generated. |
EmbeddingEncodingFormat | The format to return the embeddings in. Either base64, float, int8, uint8, binary, or ubinary. Returns a 422 error if the model doesn't support the value or parameter. |
EmbeddingInputType | The type of the input. Either text , query , or document . Returns a 422 error if the model doesn't support the value or parameter. |
EmbeddingObject | The object type, which is always "embedding". |
ListObject | The object type, which is always "list". |
NotFoundError | The route is not valid for the deployed model. |
TooManyRequestsError | You have hit your assigned rate limit and your requests need to be paced. |
UnauthorizedError | Authentication is missing or invalid. |
UnprocessableContentError | The request contains unprocessable content. The error is returned when the payload indicated is valid according to this specification. However, some of the instructions indicated in the payload are not supported by the underlying model. Use the details section to understand the offending parameter. |
Usage | The usage information for the request. |
The API call fails when the prompt triggers a content filter as configured. Modify the prompt and try again.
Name | Type | Description |
---|---|---|
code | string | The error code. |
error | string | The error description. |
message | string | The error message. |
param | string | The parameter that triggered the content filter. |
status | integer | The HTTP status code. |
Request for creating embeddings.
Name | Required | Type | Description |
---|---|---|---|
input | True | string[] | Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. |
dimensions | integer | The number of dimensions the resulting output embeddings should have. Returns a 422 error if the model doesn't support the value or parameter. | |
encoding_format | EmbeddingEncodingFormat | The format to return the embeddings in. Either base64, float, int8, uint8, binary, or ubinary. Returns a 422 error if the model doesn't support the value or parameter. | |
input_type | EmbeddingInputType | The type of the input. Either text , query , or document . Returns a 422 error if the model doesn't support the value or parameter. |
Response from an embeddings request.
Name | Type | Description |
---|---|---|
data | Embedding[] | The list of embeddings generated by the model. |
model | string | The name of the model used to generate the embedding. |
object | ListObject | The object type, which is always "list". |
usage | Usage | The usage information for the request. |
Details for the UnprocessableContentError error.
Name | Type | Description |
---|---|---|
loc | string[] | The parameter causing the issue |
value | string | The value passed to the parameter causing issues. |
Represents the embedding generated.
Name | Type | Description |
---|---|---|
embedding | [] | The embedding vector. The length of vector depends on the model used and the type depends on the encoding_format used. |
index | integer | The index of the embedding in the list of embeddings. |
object | EmbeddingObject | The object type, which is always "embedding". |
The format to return the embeddings in. Either base64, float, int8, uint8, binary, or ubinary. Returns a 422 error if the model doesn't support the value or parameter.
Name | Type | Description |
---|---|---|
base64 | string | |
binary | string | |
float | string | |
int8 | string | |
ubinary | string | |
uint8 | string |
The type of the input. Either text
, query
, or document
. Returns a 422 error if the model doesn't support the value or parameter.
Name | Type | Description |
---|---|---|
document | string | Indicates the input represents a document that is stored in a vector database. |
query | string | Indicates the input represents a search queries to find the most relevant documents in your vector database. |
text | string | Indicates the input is a general text input. |
Name | Type | Description |
---|---|---|
embedding | string |
The object type, which is always "list".
Name | Type | Description |
---|---|---|
list | string |
Name | Type | Description |
---|---|---|
error | string | The error description. |
message | string | The error message. |
status | integer | The HTTP status code. |
Name | Type | Description |
---|---|---|
error | string | The error description. |
message | string | The error message. |
status | integer | The HTTP status code. |
Name | Type | Description |
---|---|---|
error | string | The error description. |
message | string | The error message. |
status | integer | The HTTP status code. |
The request contains unprocessable content. The error is returned when the payload indicated is valid according to this specification. However, some of the instructions indicated in the payload are not supported by the underlying model. Use the details
section to understand the offending parameter.
Name | Type | Description |
---|---|---|
code | string | The error code. |
detail | Detail | |
error | string | The error description. |
message | string | The error message. |
status | integer | The HTTP status code. |
The usage information for the request.
Name | Type | Description |
---|---|---|
prompt_tokens | integer | The number of tokens used by the prompt. |
total_tokens | integer | The total number of tokens used by the request. |
Training
Module
Perform vector search and retrieval in Azure AI Search - Training
Perform vector search and retrieval in Azure AI Search.
Documentation
Azure AI Model Inference Chat Completions - Azure Machine Learning
Reference for Azure AI Model Inference Chat Completions API
Azure AI Model Inference Get Info - Azure Machine Learning
Reference for Azure AI Model Inference Get Info API
How to use Cohere Embed V3 models with Azure Machine Learning studio - Azure Machine Learning
Learn how to use Cohere Embed V3 models with Azure Machine Learning studio.