Quickstart: Use Terraform to create a Linux VM

Applies to: ✔️ Linux VMs

Article tested with the following Terraform and Terraform provider versions:

This article shows you how to create a complete Linux environment and supporting resources with Terraform. Those resources include a virtual network, subnet, public IP address, and more.

Terraform enables the definition, preview, and deployment of cloud infrastructure. Using Terraform, you create configuration files using HCL syntax. The HCL syntax allows you to specify the cloud provider - such as Azure - and the elements that make up your cloud infrastructure. After you create your configuration files, you create an execution plan that allows you to preview your infrastructure changes before they're deployed. Once you verify the changes, you apply the execution plan to deploy the infrastructure.

In this article, you learn how to:

  • Create a virtual network
  • Create a subnet
  • Create a public IP address
  • Create a network security group and SSH inbound rule
  • Create a virtual network interface card
  • Connect the network security group to the network interface
  • Create a storage account for boot diagnostics
  • Create SSH key
  • Create a virtual machine
  • Use SSH to connect to virtual machine

Prerequisites

  • Azure subscription: If you don't have an Azure subscription, create a free account before you begin.

Implement the Terraform code

  1. Create a directory in which to test the sample Terraform code and make it the current directory.

  2. Create a file named providers.tf and insert the following code:

    terraform {
      required_version = ">=0.12"
    
      required_providers {
        azurerm = {
          source  = "hashicorp/azurerm"
          version = "~>2.0"
        }
        random = {
          source  = "hashicorp/random"
          version = "~>3.0"
        }
        tls = {
          source = "hashicorp/tls"
          version = "~>4.0"
        }
      }
    }
    
    provider "azurerm" {
      features {}
    }
    
  3. Create a file named main.tf and insert the following code:

    resource "random_pet" "rg_name" {
      prefix = var.resource_group_name_prefix
    }
    
    resource "azurerm_resource_group" "rg" {
      location = var.resource_group_location
      name     = random_pet.rg_name.id
    }
    
    # Create virtual network
    resource "azurerm_virtual_network" "my_terraform_network" {
      name                = "myVnet"
      address_space       = ["10.0.0.0/16"]
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    }
    
    # Create subnet
    resource "azurerm_subnet" "my_terraform_subnet" {
      name                 = "mySubnet"
      resource_group_name  = azurerm_resource_group.rg.name
      virtual_network_name = azurerm_virtual_network.my_terraform_network.name
      address_prefixes     = ["10.0.1.0/24"]
    }
    
    # Create public IPs
    resource "azurerm_public_ip" "my_terraform_public_ip" {
      name                = "myPublicIP"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
      allocation_method   = "Dynamic"
    }
    
    # Create Network Security Group and rule
    resource "azurerm_network_security_group" "my_terraform_nsg" {
      name                = "myNetworkSecurityGroup"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    
      security_rule {
        name                       = "SSH"
        priority                   = 1001
        direction                  = "Inbound"
        access                     = "Allow"
        protocol                   = "Tcp"
        source_port_range          = "*"
        destination_port_range     = "22"
        source_address_prefix      = "*"
        destination_address_prefix = "*"
      }
    }
    
    # Create network interface
    resource "azurerm_network_interface" "my_terraform_nic" {
      name                = "myNIC"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    
      ip_configuration {
        name                          = "my_nic_configuration"
        subnet_id                     = azurerm_subnet.my_terraform_subnet.id
        private_ip_address_allocation = "Dynamic"
        public_ip_address_id          = azurerm_public_ip.my_terraform_public_ip.id
      }
    }
    
    # Connect the security group to the network interface
    resource "azurerm_network_interface_security_group_association" "example" {
      network_interface_id      = azurerm_network_interface.my_terraform_nic.id
      network_security_group_id = azurerm_network_security_group.my_terraform_nsg.id
    }
    
    # Generate random text for a unique storage account name
    resource "random_id" "random_id" {
      keepers = {
        # Generate a new ID only when a new resource group is defined
        resource_group = azurerm_resource_group.rg.name
      }
    
      byte_length = 8
    }
    
    # Create storage account for boot diagnostics
    resource "azurerm_storage_account" "my_storage_account" {
      name                     = "diag${random_id.random_id.hex}"
      location                 = azurerm_resource_group.rg.location
      resource_group_name      = azurerm_resource_group.rg.name
      account_tier             = "Standard"
      account_replication_type = "LRS"
    }
    
    # Create (and display) an SSH key
    resource "tls_private_key" "example_ssh" {
      algorithm = "RSA"
      rsa_bits  = 4096
    }
    
    # Create virtual machine
    resource "azurerm_linux_virtual_machine" "my_terraform_vm" {
      name                  = "myVM"
      location              = azurerm_resource_group.rg.location
      resource_group_name   = azurerm_resource_group.rg.name
      network_interface_ids = [azurerm_network_interface.my_terraform_nic.id]
      size                  = "Standard_DS1_v2"
    
      os_disk {
        name                 = "myOsDisk"
        caching              = "ReadWrite"
        storage_account_type = "Premium_LRS"
      }
    
      source_image_reference {
        publisher = "Canonical"
        offer     = "UbuntuServer"
        sku       = "18.04-LTS"
        version   = "latest"
      }
    
      computer_name                   = "myvm"
      admin_username                  = "azureuser"
      disable_password_authentication = true
    
      admin_ssh_key {
        username   = "azureuser"
        public_key = tls_private_key.example_ssh.public_key_openssh
      }
    
      boot_diagnostics {
        storage_account_uri = azurerm_storage_account.my_storage_account.primary_blob_endpoint
      }
    }
    
  4. Create a file named variables.tf and insert the following code:

    variable "resource_group_location" {
      default     = "eastus"
      description = "Location of the resource group."
    }
    
    variable "resource_group_name_prefix" {
      default     = "rg"
      description = "Prefix of the resource group name that's combined with a random ID so name is unique in your Azure subscription."
    }
    
  5. Create a file named outputs.tf and insert the following code:

    output "resource_group_name" {
      value = azurerm_resource_group.rg.name
    }
    
    output "public_ip_address" {
      value = azurerm_linux_virtual_machine.my_terraform_vm.public_ip_address
    }
    
    output "tls_private_key" {
      value     = tls_private_key.example_ssh.private_key_pem
      sensitive = true
    }
    

Initialize Terraform

Run terraform init to initialize the Terraform deployment. This command downloads the Azure modules required to manage your Azure resources.

terraform init

Create a Terraform execution plan

Run terraform plan to create an execution plan.

terraform plan -out main.tfplan

Key points:

  • The terraform plan command creates an execution plan, but doesn't execute it. Instead, it determines what actions are necessary to create the configuration specified in your configuration files. This pattern allows you to verify whether the execution plan matches your expectations before making any changes to actual resources.
  • The optional -out parameter allows you to specify an output file for the plan. Using the -out parameter ensures that the plan you reviewed is exactly what is applied.
  • To read more about persisting execution plans and security, see the security warning section.

Apply a Terraform execution plan

Run terraform apply to apply the execution plan to your cloud infrastructure.

terraform apply main.tfplan

Key points:

  • The terraform apply command above assumes you previously ran terraform plan -out main.tfplan.
  • If you specified a different filename for the -out parameter, use that same filename in the call to terraform apply.
  • If you didn't use the -out parameter, call terraform apply without any parameters.

Verify the results

To use SSH to connect to the virtual machine, do the following steps:

  1. Run terraform output to get the SSH private key and save it to a file.

    terraform output -raw tls_private_key > id_rsa
    
  2. Run terraform output to get the virtual machine public IP address.

    terraform output public_ip_address
    
  3. Use SSH to connect to the virtual machine.

    ssh -i id_rsa azureuser@<public_ip_address>
    

    Key points:

    • Depending on the permissions of your environment, you might get an error when trying to ssh into the virtual machine using the id_rsa key file. If you get an error stating that the private key file is unprotected and can't be used, try running the following command: chmod 600 id_rsa, which will restrict read and write access to the owner of the file.

Clean up resources

When you no longer need the resources created via Terraform, do the following steps:

  1. Run terraform plan and specify the destroy flag.

    terraform plan -destroy -out main.destroy.tfplan
    

    Key points:

    • The terraform plan command creates an execution plan, but doesn't execute it. Instead, it determines what actions are necessary to create the configuration specified in your configuration files. This pattern allows you to verify whether the execution plan matches your expectations before making any changes to actual resources.
    • The optional -out parameter allows you to specify an output file for the plan. Using the -out parameter ensures that the plan you reviewed is exactly what is applied.
    • To read more about persisting execution plans and security, see the security warning section.
  2. Run terraform apply to apply the execution plan.

    terraform apply main.destroy.tfplan
    

Troubleshoot Terraform on Azure

Troubleshoot common problems when using Terraform on Azure

Next steps

In this quickstart, you deployed a simple virtual machine using Terraform. To learn more about Azure virtual machines, continue to the tutorial for Linux VMs.