Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
The modulus, private exponent, and public exponent of the 512-bit Terminal Services asymmetric key used for signing Proprietary Certificates with the RSA algorithm are detailed as follows.
64-byte Modulus (n):
-
0x3d, 0x3a, 0x5e, 0xbd, 0x72, 0x43, 0x3e, 0xc9, 0x4d, 0xbb, 0xc1, 0x1e, 0x4a, 0xba, 0x5f, 0xcb, 0x3e, 0x88, 0x20, 0x87, 0xef, 0xf5, 0xc1, 0xe2, 0xd7, 0xb7, 0x6b, 0x9a, 0xf2, 0x52, 0x45, 0x95, 0xce, 0x63, 0x65, 0x6b, 0x58, 0x3a, 0xfe, 0xef, 0x7c, 0xe7, 0xbf, 0xfe, 0x3d, 0xf6, 0x5c, 0x7d, 0x6c, 0x5e, 0x06, 0x09, 0x1a, 0xf5, 0x61, 0xbb, 0x20, 0x93, 0x09, 0x5f, 0x05, 0x6d, 0xea, 0x87
64-byte Private Exponent (d):
-
0x87, 0xa7, 0x19, 0x32, 0xda, 0x11, 0x87, 0x55, 0x58, 0x00, 0x16, 0x16, 0x25, 0x65, 0x68, 0xf8, 0x24, 0x3e, 0xe6, 0xfa, 0xe9, 0x67, 0x49, 0x94, 0xcf, 0x92, 0xcc, 0x33, 0x99, 0xe8, 0x08, 0x60, 0x17, 0x9a, 0x12, 0x9f, 0x24, 0xdd, 0xb1, 0x24, 0x99, 0xc7, 0x3a, 0xb8, 0x0a, 0x7b, 0x0d, 0xdd, 0x35, 0x07, 0x79, 0x17, 0x0b, 0x51, 0x9b, 0xb3, 0xc7, 0x10, 0x01, 0x13, 0xe7, 0x3f, 0xf3, 0x5f
4-byte Public Exponent (e):
-
0x5b, 0x7b, 0x88, 0xc0
The enumerated integers are in little-endian byte order. The public key is the pair (e, n), while the private key is the pair (d, n).