RobustPhaseEstimation operation
Namespace: Microsoft.Quantum.Characterization
Package: Microsoft.Quantum.Standard
Performs the robust non-iterative quantum phase estimation algorithm for a given oracle U
and eigenstate,
and provides a single real-valued estimate of the phase with variance scaling at the Heisenberg limit.
operation RobustPhaseEstimation (bitsPrecision : Int, oracle : Microsoft.Quantum.Oracles.DiscreteOracle, targetState : Qubit[]) : Double
Input
bitsPrecision : Int
This provides an estimate of $\phi$ with standard deviation $\sigma \le 2\pi / 2^\text{bitsPrecision}$ using a number of queries scaling like $\sigma \le 10.7 \pi / \text{# of queries}$.
oracle : DiscreteOracle
An operation implementing $U^m$ for given integer powers $m$.
targetState : Qubit[]
A quantum register that $U$ acts on. If it stores an eigenstate $\ket{\phi}$ of $U$, then $U\ket{\phi} = e^{i\phi} \ket{\phi}$ for $\phi\in(-\pi,\pi]$ an unknown phase.
Output : Double
Remarks
In the limit of a large number of queries, Cramer-Rao lower bounds for the standard deviation of the estimate of $\phi$ satisfy $\sigma \ge 2 \pi / \text{# of queries}$.
References
- Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation Shelby Kimmel, Guang Hao Low, Theodore J. Yoder https://arxiv.org/abs/1502.02677
Feedback
Submit and view feedback for