Events
17 Mar, 21 - 21 Mar, 10
Join the meetup series to build scalable AI solutions based on real-world use cases with fellow developers and experts.
Register nowThis browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
OpenAI released a new version of the OpenAI Python API library. This guide is supplemental to OpenAI's migration guide and will help bring you up to speed on the changes specific to Azure OpenAI.
pip install openai
and pip install openai --upgrade
will install version 1.x
of the OpenAI Python library.version 0.28.1
to version 1.x
is a breaking change, you'll need to test and update your code.DALL-E3
is fully supported with the latest 1.x release. DALL-E2
can be used with 1.x by making the following modifications to your code.embeddings_utils.py
which was used to provide functionality like cosine similarity for semantic text search is no longer part of the OpenAI Python API library.Important
Automatic migration of your code using openai migrate
is not supported with Azure OpenAI.
As this is a new version of the library with breaking changes, you should test your code extensively against the new release before migrating any production applications to rely on version 1.x. You should also review your code and internal processes to make sure that you're following best practices and pinning your production code to only versions that you have fully tested.
To make the migration process easier, we're updating existing code examples in our docs for Python to a tabbed experience:
pip install openai --upgrade
This provides context for what has changed and allows you to test the new library in parallel while continuing to provide support for version 0.28.1
. If you upgrade to 1.x
and realize you need to temporarily revert back to the previous version, you can always pip uninstall openai
and then reinstall targeted to 0.28.1
with pip install openai==0.28.1
.
You need to set the model
variable to the deployment name you chose when you deployed the GPT-3.5-Turbo or GPT-4 models. Entering the model name results in an error unless you chose a deployment name that is identical to the underlying model name.
import os
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01"
)
response = client.chat.completions.create(
model="gpt-35-turbo", # model = "deployment_name"
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
{"role": "user", "content": "Do other Azure AI services support this too?"}
]
)
print(response.choices[0].message.content)
Additional examples can be found in our in-depth Chat Completion article.
import os
from openai import AzureOpenAI
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model.
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10) # model = "deployment_name"
print(response.choices[0].text)
import os
from openai import AzureOpenAI
client = AzureOpenAI(
api_key = os.getenv("AZURE_OPENAI_API_KEY"),
api_version = "2024-02-01",
azure_endpoint =os.getenv("AZURE_OPENAI_ENDPOINT")
)
response = client.embeddings.create(
input = "Your text string goes here",
model= "text-embedding-ada-002" # model = "deployment_name".
)
print(response.model_dump_json(indent=2))
Additional examples including how to handle semantic text search without embeddings_utils.py
can be found in our embeddings tutorial.
OpenAI doesn't support calling asynchronous methods in the module-level client, instead you should instantiate an async client.
import os
import asyncio
from openai import AsyncAzureOpenAI
async def main():
client = AsyncAzureOpenAI(
api_key = os.getenv("AZURE_OPENAI_API_KEY"),
api_version = "2024-02-01",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
response = await client.chat.completions.create(model="gpt-35-turbo", messages=[{"role": "user", "content": "Hello world"}]) # model = model deployment name
print(response.model_dump_json(indent=2))
asyncio.run(main())
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
api_version = "2024-02-01"
endpoint = "https://my-resource.openai.azure.com"
client = AzureOpenAI(
api_version=api_version,
azure_endpoint=endpoint,
azure_ad_token_provider=token_provider,
)
completion = client.chat.completions.create(
model="deployment-name", # model = "deployment_name"
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.model_dump_json(indent=2))
For the full configuration steps that are required to make these code examples work, consult the use your data quickstart.
import os
import openai
import dotenv
dotenv.load_dotenv()
endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
deployment = os.environ.get("AZURE_OPEN_AI_DEPLOYMENT_ID")
client = openai.AzureOpenAI(
base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
api_key=api_key,
api_version="2023-08-01-preview",
)
completion = client.chat.completions.create(
model=deployment, # model = "deployment_name"
messages=[
{
"role": "user",
"content": "How is Azure machine learning different than Azure OpenAI?",
},
],
extra_body={
"dataSources": [
{
"type": "AzureCognitiveSearch",
"parameters": {
"endpoint": os.environ["AZURE_AI_SEARCH_ENDPOINT"],
"key": os.environ["AZURE_AI_SEARCH_API_KEY"],
"indexName": os.environ["AZURE_AI_SEARCH_INDEX"]
}
}
]
}
)
print(completion.model_dump_json(indent=2))
import time
import json
import httpx
import openai
class CustomHTTPTransport(httpx.HTTPTransport):
def handle_request(
self,
request: httpx.Request,
) -> httpx.Response:
if "images/generations" in request.url.path and request.url.params[
"api-version"
] in [
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]:
request.url = request.url.copy_with(path="/openai/images/generations:submit")
response = super().handle_request(request)
operation_location_url = response.headers["operation-location"]
request.url = httpx.URL(operation_location_url)
request.method = "GET"
response = super().handle_request(request)
response.read()
timeout_secs: int = 120
start_time = time.time()
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
timeout = {"error": {"code": "Timeout", "message": "Operation polling timed out."}}
return httpx.Response(
status_code=400,
headers=response.headers,
content=json.dumps(timeout).encode("utf-8"),
request=request,
)
time.sleep(int(response.headers.get("retry-after")) or 10)
response = super().handle_request(request)
response.read()
if response.json()["status"] == "failed":
error_data = response.json()
return httpx.Response(
status_code=400,
headers=response.headers,
content=json.dumps(error_data).encode("utf-8"),
request=request,
)
result = response.json()["result"]
return httpx.Response(
status_code=200,
headers=response.headers,
content=json.dumps(result).encode("utf-8"),
request=request,
)
return super().handle_request(request)
client = openai.AzureOpenAI(
azure_endpoint="<azure_endpoint>",
api_key="<api_key>",
api_version="<api_version>",
http_client=httpx.Client(
transport=CustomHTTPTransport(),
),
)
image = client.images.generate(prompt="a cute baby seal")
print(image.data[0].url)
Note
All a* methods have been removed; the async client must be used instead.
OpenAI Python 0.28.1 | OpenAI Python 1.x |
---|---|
openai.api_base |
openai.base_url |
openai.proxy |
openai.proxies |
openai.InvalidRequestError |
openai.BadRequestError |
openai.Audio.transcribe() |
client.audio.transcriptions.create() |
openai.Audio.translate() |
client.audio.translations.create() |
openai.ChatCompletion.create() |
client.chat.completions.create() |
openai.Completion.create() |
client.completions.create() |
openai.Edit.create() |
client.edits.create() |
openai.Embedding.create() |
client.embeddings.create() |
openai.File.create() |
client.files.create() |
openai.File.list() |
client.files.list() |
openai.File.retrieve() |
client.files.retrieve() |
openai.File.download() |
client.files.retrieve_content() |
openai.FineTune.cancel() |
client.fine_tunes.cancel() |
openai.FineTune.list() |
client.fine_tunes.list() |
openai.FineTune.list_events() |
client.fine_tunes.list_events() |
openai.FineTune.stream_events() |
client.fine_tunes.list_events(stream=True) |
openai.FineTune.retrieve() |
client.fine_tunes.retrieve() |
openai.FineTune.delete() |
client.fine_tunes.delete() |
openai.FineTune.create() |
client.fine_tunes.create() |
openai.FineTuningJob.create() |
client.fine_tuning.jobs.create() |
openai.FineTuningJob.cancel() |
client.fine_tuning.jobs.cancel() |
openai.FineTuningJob.delete() |
client.fine_tuning.jobs.create() |
openai.FineTuningJob.retrieve() |
client.fine_tuning.jobs.retrieve() |
openai.FineTuningJob.list() |
client.fine_tuning.jobs.list() |
openai.FineTuningJob.list_events() |
client.fine_tuning.jobs.list_events() |
openai.Image.create() |
client.images.generate() |
openai.Image.create_variation() |
client.images.create_variation() |
openai.Image.create_edit() |
client.images.edit() |
openai.Model.list() |
client.models.list() |
openai.Model.delete() |
client.models.delete() |
openai.Model.retrieve() |
client.models.retrieve() |
openai.Moderation.create() |
client.moderations.create() |
openai.api_resources |
openai.resources |
openai.api_key_path
openai.app_info
openai.debug
openai.log
openai.OpenAIError
openai.Audio.transcribe_raw()
openai.Audio.translate_raw()
openai.ErrorObject
openai.Customer
openai.api_version
openai.verify_ssl_certs
openai.api_type
openai.enable_telemetry
openai.ca_bundle_path
openai.requestssession
(OpenAI now uses httpx
)openai.aiosession
(OpenAI now uses httpx
)openai.Deployment
(Previously used for Azure OpenAI)openai.Engine
openai.File.find_matching_files()
Events
17 Mar, 21 - 21 Mar, 10
Join the meetup series to build scalable AI solutions based on real-world use cases with fellow developers and experts.
Register nowTraining
Certification
Microsoft Certified: Azure AI Engineer Associate - Certifications
Design and implement an Azure AI solution using Azure AI services, Azure AI Search, and Azure Open AI.