This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Creating New
Stored Procedures for the Typed DataSet’s
TableAdapters

Introduction

The Data Access Layer (DAL) for these tutorials uses Typed DataSets. As discussed in the Creating a Data Access
Layer tutorial, Typed DataSets consist of strongly-typed DataTables and TableAdapters. The DataTables represent
the logical entities in the system while the TableAdapters interface with the underlying database to perform the
data access work. This includes populating the DataTables with data, executing queries that return scalar data, and
inserting, updating, and deleting records from the database.

The SQL commands executed by the TableAdapters can be either ad-hoc SQL statements, such as SELECT
columnList FROM TableName, or stored procedures. The TableAdapters in our architecture use ad-hoc SQL
statements. Many developers and database administrators, however, prefer stored procedures over ad-hoc SQL
statements for security, maintainability, and updateability reasons. Others ardently prefer ad-hoc SQL statements
for their flexibility. In my own work I favor stored procedures over ad-hoc SQL statements, but chose to use ad-
hoc SQL statements to simplify the earlier tutorials.

When defining a TableAdapter or adding new methods, the TableAdapter’s wizard makes it just as easy to create
new stored procedures or use existing stored procedures as it does to use ad-hoc SQL statements. In this tutorial
we’ll examine how to have the TableAdapter’s wizard auto-generate stored procedures. In the next tutorial we will
look at how to configure the TableAdapter’s methods to use existing or manually-created stored procedures.

Note: See Rob Howard’s blog entry Don’t Use Stored Procedures Yet? and Frans Bouma’s blog entry Stored
Procedures are Bad, M’Kay? for a lively debate on the pros and cons of stored procedures and ad-hoc SQL.

Stored Procedure Basics

Functions are a construct common to all programming languages. A function is a collection of statements that are
executed when the function is called. Functions can accept input parameters and may optionally return a value.
Stored procedures are database constructs that share many similarities with functions in programming languages. A
stored procedure is made up of a set of T-SQL statements that are executed when the stored procedure is called. A
stored procedure may accept zero to many input parameters and can return scalar values, output parameters, or,
most commonly, result sets from SELECT queries.

Note: Stored procedures are oftentimes referred to as “sprocs” or “SPs”.

Stored procedures are created using the CREATE PROCEDURE T-SQL statement. For example, the following T-SQL
script creates a stored procedure named GetProductsByCategoryID that takes in a single parameter named
@CategoryID and returns the ProductID, ProductName, UnitPrice, and Discontinued fields of those columns in
the Products table that have a matching CategoryID value:

CREATE PROCEDURE GetProductsByCategoryID

(
@CategoryID int

1 of 34

)
AS

SELECT ProductID, ProductName, UnitPrice, Discontinued
FROM Products
WHERE CategoryID = @CategoryID

Once this stored procedure has been created, it can be called using the following syntax:

EXEC GetProductsByCategory categoryID

Note: In the next tutorial we will examine creating stored procedures through the Visual Studio IDE. For this
tutorial, however, we are going to let the TableAdapter wizard automatically generate the stored procedures
for us.

In addition to simply returning data, stored procedures are often used to perform multiple database commands
within the scope of a single transaction. A stored procedure named DeleteCategory, for example, might take in a
@CategoryID parameter and perform two DELETE statements: first, one to delete the related products and a second
one deleting the specified category. Multiple statements within a stored procedure are not automatically wrapped
within a transaction. Additional T-SQL commands need to be issued to ensure the stored procedure’s multiple
commands are treated as an atomic operation. We’ll see how to wrap a stored procedure’s commands within the
scope of a transaction in the subsequent tutorial.

When using stored procedures within an architecture, the Data Access Layer’s methods invoke a particular stored
procedure rather than issuing an ad-hoc SQL statement. This centralizes the location of the SQL statements
executed (on the database) rather than having it defined within the application’s architecture. This centralization
arguably makes it easier to find, analyze, and tune the queries and provides a much clearer picture as to where and
how the database is being used.

For more information on stored procedure fundamentals, consult the resources in the Further Reading section at the
end of this tutorial.

Step 1: Creating the Advanced Data Access Layer Scenarios Web Pages

Before we start our discussion on creating a DAL using stored procedures, let’s first take a moment to create the
ASP.NET pages in our website project that we will need for this and the next several tutorials. Start by adding a
new folder named AdvancedDAL. Next, add the following ASP.NET pages to that folder, making sure to associate
each page with the site.master master page:

Default.aspx

NewSprocs.aspx
ExistingSprocs.aspx
JOINs.aspx

AddingColumns.aspx
ComputedColumns.aspx
EncryptingConfigSections.aspx

ManagedFunctionsAndSprocs.aspx

2 0f 34

Solution Explorer - S, AASPMET Data,, » @ X

2 F[8] &
*...\ASPNET_Data_Tutorial_67_CS",
| Z AdvancedDal
j AddingCalumns, aspx
j CompukedZalumns, aspix
j Default, aspx
j EncrypringCaonfiggections, asp:x
j Existingaprocs, aspx
j J0IMs, aspx
j ManagedFunctionsAnd3procs, aspx
J MNewspracs, aspx
[+ L] App_Cade
- 7 App_Data
[+ _.J &pp_Themes
| BasicR.eparting
#- [BatchData
+ | BinaryData
[Brochures
[Caching
| CustomButtons
| CustomButtonsDatalistRepeater
| CustomFarmatting
| DatalistRepeaterBasics
|1 DataliskRepeaterFiltering
|1 EditDeleteDatalist
|1 EditInsertDelete
|1 Enhancedaridiiew
| Filtering
[PagingaAndSorting
| PagingZaortingDatalistRepeater
[siteMapProvider
- [5glDatasource
#- [UserControls
+ .j Default, aspsx
' 4_’| Global.asax
[j Site. master
Aj styles.css
5 Web. Config
| web.sitemnap

_ _-_|_-_I

I'_t' B v

c@ﬁuluti... “HPrope... |5 Serve... Qgclass...

Figure 1: Add the ASP.NET Pages for the Advanced Data Access Layer Scenarios Tutorials

Like in the other folders, Default.aspx in the AdvancedDAL folder will list the tutorials in its section. Recall that
the SsectionLevelTutorialListing.ascx User Control provides this functionality. Therefore, add this User
Control to Default.aspx by dragging it from the Solution Explorer onto the page’s Design view.

3 of 34

¥ ASPME 1 _Data_Tutorial &7 _C5 - Microsoft Viswal S1udio

Ble [&% Yew ‘Webjte Quid Qebug Fomat layout Jook Window Gommarky Heb fddes
- E - |i= |= | o =
L s
T - K iﬂm&w!nr » B X
1l Pata TidArial e I AR e -
? E e B | Lata | LItarialz (P C\\ASPRET_Data_Tutorial_B7_CS, »
Lt -
sl TacehBos:
(] Butten T
[E] ImageBution ~ &
A Hyperink Content - Content (Custom) i
¥ DropDownlist
3 Latbox Advanced Data & L hop,code
[checkBax La H - 2 Ao Dt
ChachEsList Access b yer # L fon_Thames
&) Radiobulton Scenarios B [BaskReporiing
i = RadioButtondist ® - [BatchData
i § # [BraryDaka
_ﬂ Imsge o e Latabawnd - s-:::nun: : Gl Brodwrss
1 ® Dateboingd - Cataboun e
E o * Databownd - Catabound : j Cacting ik
= ;M * Databoung :zitl:wn: i 03 CC“_HMWMEWMHMEFM
- & [Databound atabeun B O3 o Formatling
HaddenFiekd W [DatalistRepeaterBasics
| Lberad w0 Distal sifepssberFitarng
e Caendar # [EdeDeleteliatalict
= pdn #- [EdtireeetDelets
= - # [EnhancedGriddews
L) Fislicload = —
¥ Wizerd i# - [Pegrefertsorting
= B H PagragSodtingliatsl sk Repsst o
Mt wl - [SkebapProvider
E e B [SoDataSource
i e
i View *> B TR i
] Substrution o || cdivwrapper > _-ffﬂ_l'ﬁif'l;ﬂl';] bl || skt PRPPrope.., (Mg Serve. [s
i-‘;F-n.-.- List | F] Cuput 'aFn.ﬂFtﬂ--_-!'-' § {] Comsnand Wirdow
Fiaaiy

Figure 2: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add these pages as entries to the Web. sitemap file. Specifically, add the following markup after the
“Working with Batched Data” <siteMapNode>:

<siteMapNode url="~/AdvancedDAL/Default.aspx"
title="Advanced DAL Scenarios"
description="Explore a number of advanced Data Access Layer scenarios.”">

<siteMapNode url="~/AdvancedDAL/NewSprocs.aspx"
title="Creating New Stored Procedures for TableAdapters"
description="Learn how to have the TableAdapter wizard automatically
create and use stored procedures." />
<siteMapNode url="~/AdvancedDAL/ExistingSprocs.aspx"
title="Using Existing Stored Procedures for TableAdapters"
description="See how to plug existing stored procedures into a
TableAdapter." />
<siteMapNode url="~/AdvancedDAL/JOINs.aspx"
title="Returning Data Using JOINs"
description="Learn how to augment your DataTables to work with data
returned from multiple tables via a JOIN query." />
<siteMapNode url="~/AdvancedDAL/AddingColumns.aspx"
title="Adding DataColumns to a DataTable"

4 of 34

description="Master adding new columns to an existing DataTable." />
<siteMapNode url="~/AdvancedDAL/ComputedColumns.aspx"
title="Working with Computed Columns"
description="Explore how to work with computed columns when using
Typed DataSets." />
<siteMapNode url="~/AdvancedDAL/EncryptingConfigSections.aspx"
title="Protected Connection Strings in Web.config"
description="Protect your connection string information in
Web.config using encryption." />
<siteMapNode url="~/AdvancedDAL/ManagedFunctionsAndSprocs.aspx"
title="Creating Managed SQL Functions and Stored Procedures"
description="See how to create SQL functions and stored procedures
using managed code." />
</siteMapNode>

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the left
now includes items for the advanced DAL scenarios tutorials.

24 Untitled Page - {4»

File Edit iew Favarites

. £ | Sack e lﬂ |E.| :
. Address E-E‘] http:fflocalhost: 26 Vi a =0

o

([

Creating New Stored
Frocedures for
TahleAdapters

Lzing Existing
Stored Procedures
for TableAadapters

Adding DataColumns
to a DataTable

Returning Data
Uszing JOINS

Wiorking with
Computed Columns

Frotected
Connection Strings
in Web.config

Creating Managed
S0L Functions and
Stored Proceduras

< | >
‘-ﬂ Local inkranet

%]

50f34

Figure 3: The Site Map Now Includes Entries for the Advanced DAL Scenarios Tutorials

Step 2: Configuring a TableAdapter to Create New Stored Procedures

To demonstrate creating a Data Access Layer that uses stored procedures instead of ad-hoc SQL statements, let’s
create a new Typed DataSet in the ~/App_Code/DAL folder named NorthwindWithSprocs.xsd. Since we have
stepped through this process in detail in previous tutorials, we will proceed quickly through the steps here. If you

get stuck or need further step-by-step instructions in creating and configuring a Typed DataSet, refer back to the
Creating a Data Access Layer tutorial.

Add a new DataSet to the project by right-clicking on the DAL folder, choosing Add New Item, and selecting the
DataSet template as shown in Figure 4.

Add New ltem - C:\My ProjectsAW ritingsWicrosoft\MSDN Articles\MSDM Online Articles\DataTutori... _Hz]
Tesmplates: EHE
__¥isual Studio instafled templates

ci.] =

=]
=5 i
|anl A

Clags Text File Repark Class Disgram

My Templates

Search Onlne
Templates. ..

A file For creating an XML schema with Dataset classes

[dame: [Mofﬂ'mkd\kﬁthﬁprnts.xsd]

| add [concet |

Figure 4: Add a New Typed DataSet to the Project Named NorthwindWithSprocs.xsd

This will create the new Typed DataSet, open its Designer, create a new TableAdapter, and launch the
TableAdapter Configuration Wizard. The TableAdapter Configuration Wizard’s first step asks us to select the

database to work with. The connection string to the Northwind database should be listed in the drop-down list.
Select this and click Next.

From this next screen we can choose how the TableAdapter should access the database. In previous tutorials, we

selected the first option, “Use SQL statements.” For this tutorial, select the second option, “Create new stored
procedures,” and click Next.

6 of 34

TableAdapter Configuration Wizard

Choose a Command Type =
The TableAdapter uses S0L statements or stored procedures., | il

How should the TableAdapter access the database?
() Use SOL statements

Speciy a S0L skatement, IF you provide a single-table SELECT statement, the wizard can oenerate INSERT,
UPDATE, and DELETE statements For you,

@i_g_.rul:e new stored procedures |

Speciy a 301 statement and the wizard will create & new stored procedure, IF you provide a single-table
SELECT stakement, the wizard can generate INSERT, UPDATE, and DELETE stored procedures For wou,

) Use existing stored procedures

Choose an existing stored procedure for each command (SELECT, INSERT, IWPDATE, and DELETE),

[*:Er&vicuus “ Bext =] Finizr _

Figure 5: Instruct the TableAdpater to Create New Stored Procedures

Just like with using ad-hoc SQL statements, in the following step we are asked to provide the SELECT statement for
the TableAdapter’s main query. But instead of using the SELECT statement entered here to perform an ad-hoc query
directly, the TableAdapter’s wizard will create a stored procedure that contains this SELECT query.

Use the following sELECT query for this TableAdapter:

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

7 of 34

TableAdapter Configuration Wizard r“__“]@| @@

Enter a SOL Statement for the SELECT Stored Procedure . |5
The TableAdapter uses the data retumed by this statement to fill s DataTable. ' - i

Type vour SOL statement or use the Query Builder ko construct it. What data should be loaded into the table?
What data should be loaded into the table?

SELECT ProductID, ProductMame, SupplierID, CategorylD,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Praducts|

Advanced Optiens, .. Query Bulder. ..

[‘:Ere.viul.ls J[Blexk = J inist

Figure 6: Enter the SELECT Query

Note: The query above differs slightly from the main query of the ProductsTableAdapter in the
Northwind Typed DataSet. Recall that the ProductsTableAdapter in the Northwind Typed DataSet
includes two correlated subqueries to bring back the category name and company name for each product’s
category and supplier. In the upcoming Updating the TableAdapter to Use JOINs tutorial we will look at
adding this related data to this TableAdapter.

Take a moment to click the “Advanced Options” button. From here we can specify whether the wizard should also
generate insert, update, and delete statements for the TableAdapter, whether to use optimistic concurrency, and
whether the data table should be refreshed after inserts and updates. The “Generate Insert, Update and Delete
statements” option is checked by default. Leave it checked. For this tutorial, leave the “Use optimistic
concurrency’ options unchecked.

When having the stored procedures automatically created by the TableAdapter wizard, it appears that the “Refresh

the data table” option is ignored. Regardless of whether this checkbox is checked, the resulting insert and update
stored procedures retrieve the just-inserted or just-updated record, as we will see in Step 3.

8 of 34

Advanced Options

Additional Insert, Update, and Delete statements can be generated to update the data
source,

iGenerate Insert, Update and Delete statements:

Generates Insert, Update, and Delete statements based on your Select skakement,
|:| Use optimistic concurrency

Maodifies Update and Delete statements ko detect whether the database has changed
since the record was loaded inko the dataset, This helps prevent concurrency conflicks,

[] Refresh the data table

Adds a Select statement after Insert and Update stakements to rekrieve identity calurmn
walues, default values, and other walues calculated by the database,

[Ok H Cancel]

Figure 7: Leave the “Generate Insert, Update and Delete statements” Option Checked

Note: If the “Use optimistic concurrency” option is checked, the wizard will add additional conditions to the
WHERE clause that prevent data from being updated if there were changes in other fields. Refer back to the
Implementing Optimistic Concurrency tutorial for more information on using the TableAdapter’s built-in
optimistic concurrency control feature.

After entering the SELECT query and confirming that the “Generate Insert, Update and Delete statements™ option is
checked, click Next. This next screen, shown in Figure 8, prompts for the names of the stored procedures the
wizard will create for selecting, inserting, updating, and deleting data. Change these stored procedures’ names to
Products Select, Products Insert, Products Update, and Products Delete.

9 of 34

TableAdapter Configuration Wizard r‘__’J@ @@

Create the Stored Procedures ol |

———

Specify how you would fike the stored procedures created, i . i) 1

What do you want bo name the new stored procedures?
St
Products_Select |

Inserk:

Products_Inssrt |
Lipdate:

[Products_Uipdate |

Delete: .
{Products_Delete |

You can preview the S0L script used to generate stored procedures and optionally copy it For your awn
procedures.

| Preview SQL Seript...

[< Previous ”_ﬂex}t:b]I Einish ” Cancel

Figure 8: Rename the Stored Procedures

To see the T-SQL the TableAdapter wizard will use to create the four stored procedures, click the “Preview SQL
Script” button. From the Preview SQL Script dialog box you may save the script to a file or copy it to the
clipboard.

10 of 34

Preview S0L Script

| {F EXISTS (SELECT * FROM sysohjecks WHERE name = 'Products_Select’ AMD user_namefuidi= |

| 'dba') -
DROP PROCEDURE dbo. Producks_Select

GO

| CREATE PROCEDURE dba,Products_Select
a5
SET MOCOUNT Of;
| SELECT ProductID, ProductMame, SupplierID, CategoryID,
QuantikyPernit, UnitPrice, UnitsIngtock, UnitsOnOrder,
ReorderLevel, Discontinued
| FROM Products

| GO
| IF EXISTS (SELECT * FROM sysobjects WHERE name = 'Products_Insert’ AND user_nameiuid) =
['dba'y
DROP PROCEDURE dbo,Products_Insert
| GO
| CREATE PROCEDURE dbo, Products_Insert
K
@ProduckMarme rvarchar(40],
@SupplierID ink,
m_ategoryID ink,
@ouanticyPerlnit marchar(z00,
@UnitPrice money,
@UnitsInstock smallint,
@UnitsonCrder smallint,
@ReorderLevel smallint,
: mDiscontinued bik
[
| &S
SET NOCOUMT OFF;

| INSERT IMTO [Products] ([ProductMame], [SupplierID], [CateqoryID], [SuantityPerlinit],

| [UritPrice], [UnitsInSkack], [UnitsOndrdet], [Rearderlevel], [Discontinued]) YALLES

| (@ProductMarne, @5upplierID, @CategoryID, @QuantityPerUnit, @UnitFrice, @URitsInSkock,
| @UnitsConCrder, @ReorderLevel, @Discontinued);

| SELECT ProduckIly, ProductMame, SupplierID, CategoryID, CuantityPerlnit, UnitPrice,

| UnitsInStock, UnitsOnicrder, ReorderLevel, Discontinued FROM Productks WHERE (ProductID =

| SCOPE_IDEMTITY()

| GO 3

(o] (ol]

Figure 9: Preview the SQL Script Used to Generate the Stored Procedures

After naming the stored procedures, click Next to name the TableAdapter’s corresponding methods. Just like when
using ad-hoc SQL statements, we can create methods that fill an existing DataTable or return a new one. We can
also specify whether the Table Adapter should include the DB-Direct pattern for inserting, updating, and deleting
records. Leave all three checkboxes checked, but rename the Return a DataTable method to GetProducts (as
shown in Figure 10).

11 of 34

TableAdapter Configuration Wizard r‘__*]@ 7 ri]

The TableAdapter methods bad and save data between your application and the

Choose Methods to Generate [
= |
database, | <9

¥hich methods do you want to add to the TableAdapter?
Fill a DataTahle

Creakes a method that takes a DataTable or DataSet as a parameker and execustes the SOL stakement or
SELECT stored procedure enterad an the previous pane.

Method nanme: il

Return a DataTable

Creates a method that returns a new DataTable Filled with the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetProducks

Create methods to send ypdates directly to the database (GenerateDBDirectMethods)

Creates Insert, Update, and Delate methods that can be called to send individual row changes directly ta the
database.

[<= Previous iuex}t:b H Einish ” Cance

Figure 10: Name the Methods Fill and GetProducts

Click Next to see a summary of the steps the wizard will perform. Complete the wizard by clicking the Finish
button. Once the wizard completes, you will be returned to the DataSet’s Designer, which should now include the
ProductsDataTable.

12 of 34

#3 ASPMET Data_Tutorial &7 _CS - Microseft Visual Studio
Fl= Edit Wew ‘Webste Buld Debug Data Took Window Community Help Addins

RSB 2 - B ST R R R e Y SN | z
%' App_Code/DAL/..ithSprocs.xsd | v X |Solution Explorer 1 X
5 2 Fda] @ @@

g J LY.\ ASPNET_Data_Tutorial 67_CSY ﬂ
procucts B - e
! ProductlD B B9} AecirigConmics. s
Frackact * =l ComputedColumns. aspx
Sl @ = Default.aspx
SupplieriD * :. EncryptingConfigSections. aspx
cm@wm : # - Z ExistingSprocs.aspx
QuantityFerUnit # (E] J0INs. asp
UnitPrice ® |2 ManagedFunctionsindSprocs. aspe
UnitsInStock % =] NewSprocs.aspi
UniksonCrder = & App_Code
Recrderlevel - [BLL
Discontinued @ Cd L
ﬂ Produs = ® - [CustomProviders
;: - i _ == = Lo DAL
T Fill, GetProducts + [TransactionSupport

@ |&] Morthwind, xsd
+ | &] MorthwindOptimisticConcurrency. xed
| & Morthwindwithsprocs xsd
H [App_Data
4 L4 App_Themes
@ [BasicReporting
4 |3 BatchData
- _d BinaryData
[Brochures P

@ schution ... [iProperties | %8 Server E... By Class View
_',.':. Error List | [Z] Output a Find Resaks 1
Ready

Figure 11: The DataSet’s Designer Shows the Newly Added ProductsDataTable

Step 3: Examining the Newly Created Stored Procedures

The TableAdapter wizard used in Step 2 automatically created the stored procedures for selecting, inserting,
updating, and deleting data. These stored procedures can be viewed or modified through Visual Studio by going to
the Server Explorer and drilling down into the database’s Stored Procedures folder. As Figure 12 shows, the
Northwind database contains four new stored procedures: Products Delete, Products Insert,
Products_Select, and Products Update.

13 of 34

7

Server Explorer

Y, -

=l '_J_J Diaka Connections &

=S

-|}_|

=

MR THW NI, MOF
_J Dakabase Diagrams

1 Tables

] Miews

4 Stored Procedures

-] AspMet_SqlCachePalingStoredProcedurs

j Bzphlet_SqlCacheQueryReqgisteredTablesStaredProcedure
(2] Asphet_SqlCacheRegisterTableStoredProcedures

(2] Asphet_SqiCacheUrRegisterTableStoredProcedure

j Azphlet_SqlCachelpdateChangeldStaoredProcedure

(2] CustOrderHist

(2] CustordersDetai

(o] CustOrdersCrders

j Emploves Sales by Country

j GetProductsByCateqory

[:2] GetProductsPaged

]
)

]
)

]
)

ra 8 = B
i i

]
i}

]
)

]
)

]
il

]
a}

]
il

]
il

[.Z] Praducts_Delete
[cZ] Products_Insert
[cZ] Products_Select
[.Z] Products_Uipdate
o= [Zales by Tear
[cZ] salesByCateqory
El j Ten Maost Expensive Products

i Functions

1 Swnonyms

_d Types

1 Assemblies P

T O O o O
i ol ol

]
a}

]
a}

T
)

L:i]SDIutiDn Explorer |PAProperties | 58 Server Explorer Egclass Wi

Figure 12: The Four Stored Procedures Created in Step 2 Can Be Found in the Database’s Stored

Procedures Folder

Note: If you do not see the Server Explorer, go to the View menu and choose the Server Explorer option. If
you do not see the product-related stored procedures added from Step 2, try right-clicking on the Stored

Procedures folder and choosing Refresh.

To view or modify a stored procedure, double-click its name in the Server Explorer or, alternatively, right-click on
the stored procedure and choose Open. Figure 13 shows the Products Delete stored procedure, when opened.

14 of 34

T ASPHET Data_Tulorial &7 _C5 - Micreasdt Viswal Studio

Pl o Wew Brojec Bukd [ebug Dgfi Toock Encbe Comewndy e fddee
- w "N A R ¥ biog,_Diogs T sisiagter -
ik e i &
3 dboProducty DR THWSDUDE) w x| Server Explooes
LLTER PROCEDURE oo, Prodicis Delsks = Fhr ti, =
it B A 5 3 Duts Conrmctions -~
Firigieal Preducelb im L MORTHWH T
'_ + A Catabans Chsgame
i Tabies

ol

* A Fewn
=l Rorwd Procesdurss
W N B T T
4 __j BAaphet S stalumytagt medl R o oosde s
i] Aaphel_SPCatheReger T Sns P oiede
+ __; Raphint_ZoCachel réiageter Tabls SoreSroosdue
| Bepdust_SapC ke ipadateTharge bt sProcsdurs
] CuitOndeis
L] CustOrdss st sl
ol |] Cuntivdersdedens
] Empheyms Sales by Conntry
] e oot e iy
4§ L] Geifecductitaged

Rsady n? a7 7]

Figure 13: Stored Procedures Can Be Opened and Modified From Within Visual Studio

The contents of both the Products Delete and Products select stored procedures are quite straightforward.
The Products_Insert and Products_Update stored procedures, on the other hand, warrant a closer inspection as
they both perform a SELECT statement after their INSERT and UPDATE statements. For example, the following SQL
makes up the Products Insert stored procedure:

ALTER PROCEDURE dbo.Products Insert
(
@ProductName nvarchar (40),
@SupplierID int,
@CategoryID int,
@QuantityPerUnit nvarchar (20),
@UnitPrice money,
@UnitsInStock smallint,
@UnitsOnOrder smallint,
@ReorderLevel smallint,
@Discontinued bit
)
AS
SET NOCOUNT OFF;
INSERT INTO [Products] ([ProductName], [SupplierID], [CategoryID], [QuantityPerUnit],
[UnitPrice], [UnitsInStock], [UnitsOnOrder], [ReorderLevel], [Discontinued])
VALUES (@ProductName, @SupplierID, @CategoryID, @QuantityPerUnit, @UnitPrice,
QUnitsInStock, @UnitsOnOrder, (@ReorderlLevel, @Discontinued);

SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit, UnitPrice,
UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued

FROM Products

WHERE (ProductID = SCOPE_ IDENTITY)

The stored procedure accepts as input parameters the Products columns that were returned by the SELECT query

specified in the TableAdapter’s wizard and these values are used in an INSERT statement. Following the INSERT
statement, a SELECT query is used to return the Products column values (including the ProductID) of the newly

15 of 34

added record. This refresh capability is useful when adding a new record using the Batch Update pattern as it
automatically updates the newly added ProductRow instances’ ProductID properties with the auto-incremented
values assigned by the database.

The following code illustrates this feature. It contains a ProductsTableAdapter and ProductsDataTable created
for the NorthwindwithSprocs Typed DataSet. A new product is added to the database by creating a ProductsRow
instance, supplying its values, and calling the TableAdapter’s Update method, passing in the ProductsDataTable.
Internally, the TableAdapter’s Update method enumerates the ProductsRow instances in the passed-in DataTable
(in this example there is only one - the one we just added), and performs the appropriate insert, update, or delete
command. In this case, the Products_Insert stored procedure is executed, which adds a new record to the
Products table and returns the details of the newly-added record. The ProductsRow instance’s ProductID value is
then updated. After the Update method has completed, we can access the newly-added record’s ProductID value
through the ProductsRow’s ProductID property.

' Create the ProductsTableAdapter and ProductsDataTable

Dim productsAPI As New NorthwindWithSprocsTableAdapters.ProductsTableAdapter
Dim products As New NorthwindWithSprocs.ProductsDataTable

' Create a new ProductsRow instance and set its properties

Dim product As NorthwindWithSprocs.ProductsRow = products.NewProductsRow ()
product.ProductName = "New Product"

product.CategoryID = 1 ' Beverages

product.Discontinued = False

' Add the ProductsRow instance to the DataTable
products.AddProductsRow (product)

' Update the DataTable using the Batch Update pattern
productsAPI.Update (products)

' At this point, we can determine the value of the newly-added record's ProductID
Dim newlyAddedProductIDValue as Integer = product.ProductID

The Products_Update stored procedure similarly includes a SELECT statement after its UPDATE statement.

ALTER PROCEDURE dbo.Products Update

(
@ProductName nvarchar (40),
@SupplierID int,
@CategoryID int,
@QuantityPerUnit nvarchar (20),
@UnitPrice money,
@UnitsInStock smallint,
@UnitsOnOrder smallint,
@ReorderLevel smallint,
@Discontinued bit,
@0riginal ProductID int,
@ProductID int

)

AS
SET NOCOUNT OFF;

UPDATE [Products]

SET [ProductName] = @ProductName, [SupplierID] = @SupplierID,
[CategoryID] = @CategoryID, [QuantityPerUnit] = @QuantityPerUnit,
[UnitPrice] = @UnitPrice, [UnitsInStock] = @UnitsInStock,

16 of 34

[UnitsOnOrder] = @UnitsOnOrder, [ReorderlLevel] = @ReorderlLevel,
[Discontinued] = @Discontinued
WHERE (([ProductID] = @Original ProductID));

SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued

FROM Products

WHERE (ProductID = @ProductID)

Note that this stored procedure includes two input parameters for ProductID: @0riginal ProductID and
@productID. This functionality allows for scenarios where the primary key might be changed. For example, in an
employee database, each employee record might use the employee’s social security number as their primary key. In
order to change an existing employee’s social security number, both the new social security number and the
original one must be supplied. For the Products table, such functionality is not needed because the ProductID
column is an IDENTITY column and should never be changed. In fact, the UPDATE statement in the
Products_Update stored procedure doesn’t include the ProductID column in its column list. So, while

@original ProductID is used in the UPDATE statement’s WHERE clause, it is superfluous for the Products table
and could be replaced by the @ProductID parameter. When modifying a stored procedure’s parameters it is
important that the TableAdapter method(s) that use that stored procedure are also updated.

Step 4: Modifying a Stored Procedure’s Parameters and Updating the
TableAdapter

Since the @0riginal ProductID parameter is superfluous, let’s remove it from the Products_Update stored
procedure altogether. Open the Products_Update stored procedure, delete the @0riginal_ ProductID parameter,
and, in the WHERE clause of the UPDATE statement, change the parameter name used from @0riginal ProductID to
@productID. After making these changes, the T-SQL within the stored procedure should look like the following:

ALTER PROCEDURE dbo.Products Update

(
@ProductName nvarchar (40),
@SupplierID int,
@CategoryID int,
@QuantityPerUnit nvarchar (20),
@UnitPrice money,
@UnitsInStock smallint,
@UnitsOnOrder smallint,
@ReorderLevel smallint,
@Discontinued bit,
@ProductID int

)

AS
SET NOCOUNT OFF;

UPDATE [Products] SET [ProductName] = @ProductName, [SupplierID] = @SupplierID,
[CategoryID] = @CategoryID, [QuantityPerUnit] = @QuantityPerUnit,
[UnitPrice] = @QUnitPrice, [UnitsInStock] = Q@UnitsInStock,

[UnitsOnOrder] = @UnitsOnOrder, [ReorderlLevel] = @ReorderlLevel,
[Discontinued] = @Discontinued
WHERE (([ProductID] = @ProductID));

SELECT ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued

FROM Products

WHERE (ProductID = @ProductID)

17 of 34

To save these changes to the database, click the Save icon in the toolbar or hit Ctrl+S. At this point, the
Products_Update stored procedure does not expect an @0riginal ProductID input parameter, but the
TableAdapter is configured to pass such a parameter. You can see the parameters the TableAdapter will send to the
Products_Update stored procedure by selecting the TableAdapter in the DataSet Designer, going to the Properties
window, and clicking the ellipses in the UpdateCommand’s Parameters collection. This brings up the Parameters
Collection Editor dialog box shown in Figure 14.

Parameters Collection Editor

@RETURMN_YALUE properties:
Bl @RETURMN_YALLE 5 . . A
[1 | @Productiame E 2
| 2 | @supplierID E Data o
? @CategoryID AllowDbrull True
| 4 | @QuantityPerUinit Columniare
| 5 | @UnitPrice DbType Int32
| & | @UnitsInStock Direction Return¥alue
| 7 | @UnitsonCrder Precision 10
E @R eorderLevel ProviderType Int
| & | @Discontinued Scale Q0
| 10 | @original_ProductID Size 4
E @ProductD SourceCalumn
SourceColumniul False
Sourceversion Current
Add] [Remove B Misc P
[Ok, l [Cancel]

Figure 14: The Parameters Collection Editor Lists the Parameters Used Passed to the Products_Update
Stored Procedure

You can remove this parameter from here by simply selecting the €0riginal ProductID parameter from the list
of members and clicking the Remove button.

Alternatively, you can refresh the parameters used for all of the methods by right-clicking on the TableAdapter in
the Designer and choosing Configure. This will bring up the TableAdapter Configuration wizard, listing the stored
procedures used for selecting, inserting, updating, and deleting, along with the parameters the stored procedures
expect to receive. If you click on the Update drop-down list you can see the Products_Update stored procedures
expected input parameters, which now no longer includes @0riginal ProductID (see Figure 15). Simply click
Finish to automatically update the parameter collection used by the TableAdapter.

18 of 34

TableAdapter Configuration Wizard

Bind Commands to Existing Stored Procedures _Is
Choose the stored procedures to call and specify any required parameters, b - —-Ji
Select the stored procedure For each operation. IF the procedure requires parameters, specify which colurn
in the data row contans the parameter value,
re par :

S P te o Col
=il : 7 e
{Products_Select " b |2 e
5 — @Productiame Productiame
lnsert - @SupplierID SupplierlD
[F‘radu:ts_Insert ¥ | @CateqoryID CategoryID
|ipdate: @uantityPerlnit QuantityPerUnit
i v | | [@Unitprice UnéPrice

@UniksIngtock IIndsInSkock
Delete: : ;
[prod | 1 @UnitsonCrder UnksCnOrder
[roducs Delete | @ReorderLevel ReorderLevel

@Discontinued Discontnued

@PraductID ProductID

[= Previous 1 | et =] | Einish I [Cancel]

Figure 15: You Can Alternatively Use the TableAdapter’s Configuration Wizard to Refresh Its Methods’
Parameter Collections

Step 5: Adding Additional TableAdapter Methods

As Step 2 illustrated, when creating a new TableAdapter it is easy to have the corresponding stored procedures
automatically generated. The same is true when adding additional methods to a TableAdapter. To illustrate this,
let’s add a GetProductByProductID (product1D) method to the ProductsTableAdapter created in Step 2. This
method will take as input a ProductID value and return details about the specified product.

Start by right-clicking on the TableAdapter and choosing Add Query from the context menu.

19 of 34

#¢ ASPNET Data_Tutorial_67_CS - Microsoft Visual Studio (=023

File Edit Miew Website Buld Debug Data Tools Window Community Help
addins

C RAERA- A" K RN NN R LS SN

| App_Code/DAL/...ithSprocs.xsd* | w X | Solution Explarer - 3 X

|2 AR E B

'?.‘3 L ot | [P C..\ASPNET_Data_Tutorial_67 A

¥ ProductlD = [AdvancedDal 3
Producthlame -] addingColurns. asp
SupplierID [+ |j ComputedColumns., asp
CateqaryID [+ |j Default, aspx
CaankibyPerUnik [+ |E]EncryptingCnnFigSectiDns.as
LIritPrice [+ |j ExistingSprocs. aspx
UnitsInStock e T3] I0INs.aspx
UnitsCnicrder [+ |j ManagedFunctionsAndsproc:
ReorderLevel e 'j Mew3procs. aspx

= | App_Code
H- 3 BLL

fdd Query, ., B OF L

=] Fill, GetProducts () - [CustomProviders

Configure. .. B- B DAL

c‘ﬁ cut |- [TransactionSupport =t

% Z 1 2] Northwind xsd

Sa Copy 1 2] NorthwindOptimisticCone

bl @ Morthwind\WithSprocs. xs

_ App_Data

—# App_Themes

[BasicReparting

[BatchData

[BinaryData

[Brochures

[Caching

[CustomButtons

l@ Properties Py OO = T i Ty Y T IS Oy SR T B | oy (Y Y
< i ’
| g Erraw List | 5] Output |5 Find Results 1 -':35':“'_“ ! FiPro.. |Fser.. [Ca...

Ready

[ogoo | .:;{:

Discontinued

[+

[+

[

)(Delete
Fename
Autasize

._-_1 Preview Data. ..
=

Wiew Code

3 e 4 i

Figure 16: Add a New Query to the TableAdapter

This will start the TableAdapter Query Configuration wizard, which first prompts for how the TableAdapter should
access the database. To have a new stored procedure created, choose the “Create a new stored procedure” option
and click Next.

20 of 34

TableAdapter Configuration Wizard

Choose a Command Type
The TableAdapter uses S0L statements or stored procedures.,

How should the TableAdapter access the database?
() Use SOL statements

Speciy a S0L skatement, IF you provide a single-table SELECT statement, the wizard can oenerate INSERT,
UPDATE, and DELETE statements For you,

@i_g_.rul:e new stored procedures |

Speciy a 301 statement and the wizard will create & new stored procedure, IF you provide a single-table
SELECT stakement, the wizard can generate INSERT, UPDATE, and DELETE stored procedures For wou,

) Use existing stored procedures

Choose an existing stored procedure for each command (SELECT, INSERT, IWPDATE, and DELETE),

| e e e

Figure 17: Choose the “Create a new stored procedure” Option

The next screen asks us to identify the type of query to execute, whether it will return a set of rows or a single
scalar value, or perform an UPDATE, INSERT, or DELETE statement. Since the GetProductByProductID

(product1p) method will return a row, leave the “SELECT which returns row” option selected and hit Next.

21 of 34

TableAdapter Query Configuration Wizard

Choose a Query Type S |
Choose the bype of query to be generated I _i

(5)SELECT which returns rows :
ELUFNS ONE OF Many rowWs oF Colmns.
{_) SELECT which returns a single value

Returns & single value (For example, Sum, Count, or any other aggregate function),

) UPDATE
Changes existing data in a table.

() DELETE

Removes rows From a table,
() INSERT

Adds a new row bo a table.

[< Previous ” Blext =]

Figure 18: Choose the “SELECT which returns row” Option

The next screen displays the TableAdapter’s main query, which just lists the name of the stored procedure
(dbo.Products_select). Replace the stored procedure name with the following SELECT statement, which returns
all of the product fields for a specified product:

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

WHERE ProductID = @ProductID

22 of 34

TableAdapter Query Configuration Wizard

Specify a S0L SELECT statement B e
The SELECT stakement will be used by the query. | |EE=ES| i

Type yvour S0L stakement or use the Query Builder bo construct it. What data should be loaded inbo the Eable?
What data should the table load?

SELECT ProductID, ProductMame, SupplierID, CategorylD,
QuantityPerUnit, UnitFrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

WHERE ProductID = @ProductID

Quisry Builder...

[< Previous ” Hext = H Finish ” Cancel _l

Figure 19: Replace the Stored Procedure Name with a SELECT Query

The subsequent screen asks you to name the stored procedure that will be created. Enter the name
Products SelectByProductID and click Next.

23 of 34

TableAdapter Query Configuration Wizard

Create the Stored Procedure
Specify how you would ke the stored procedure created. =]

What do you want to name the new stored procedure?
Products_SelectByProductID

You can preview the SOL soript used ko generake the stored procedure and optionally copy it For wour own
procedire,

[Presaaw SOL Script... I

[::Eravimls JI Hext = ||_ Finish I[Cancel J

Figure 20: Name the New Stored Procedure Products_SelectByProductID

The final step of the wizard allows us to change the method names generated as well as indicate whether to use the
Fill a DataTable pattern, Return a DataTable pattern, or both. For this method, leave both options checked, but
rename the methods to Fi11ByProductID and GetProductByProductID. Click Next to view a summary of the
steps the wizard will perform and then click Finish to complete the wizard.

24 of 34

TableAdapter Query Configuration Wizard

Choose Methods to Generate |

The Tableadapter methods bad and save data between your application and the I d,
database. r

Yhich methods do you want to add to the TableAdapter?
Fill a DataTahle

Creaktes a method that takes a DataTable or DataSet as a parameter and execustes the SOL stakement or
SELECT stored procedure enterad an the previous page.

Method name: |FillByProductID

Return a DataTable

Creates a method that returns a new DataTable Filled wikh the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetProductByProductID|

[= Previous “__ﬂext:b H Finish ” Cancel]

Figure 21: Rename the TableAdapter’s Methods to Fi11ByProductID and GetProductByProductID

After completing the wizard, the TableAdapter has a new method available, GetProductByProductID
(product1D) that, when invoked, will execute the Products SelectByProductID stored procedure that was just
created. Take a moment to view this new stored procedure from the Server Explorer by drilling into the Stored
Procedures folder and opening Products SelectByProductID (if you do not see it, right-click on the Stored
Procedures folder and choose Refresh).

Note that the selectByProductID stored procedure takes @ProductID as an input parameter and executes the
SELECT statement that we entered in the wizard.

ALTER PROCEDURE dbo.Products SelectByProductID

(
@ProductID int

AS
SET NOCOUNT ON;

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

WHERE ProductID = @ProductID

Step 6: Creating a Business Logic Layer Class

25 of 34

Throughout the tutorial series we have strived to maintain a layered architecture in which the Presentation Layer
made all of its calls to the Business Logic Layer (BLL). In order to adhere to this design decision, we first need to
create a BLL class for the new Typed DataSet before we can access product data from the Presentation Layer.

Create a new class file named ProductsBLLWithSprocs.vb in the ~/App Code/BLL folder and add to it the
following code:

Imports NorthwindWithSprocsTableAdapters

<System.ComponentModel.DataObject ()>
Public Class ProductsBLLWithSprocs
Private productsAdapter As ProductsTableAdapter = Nothing
Protected ReadOnly Property Adapter () As ProductsTableAdapter
Get
If productsAdapter Is Nothing Then
_productsAdapter = New ProductsTableAdapter ()
End If

Return productsAdapter
End Get
End Property

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, True)>

Public Function GetProducts () As NorthwindWithSprocs.ProductsDataTable
Return Adapter.GetProducts ()

End Function

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, False)>

Public Function GetProductByProductID(ByVal productID As Integer)
As NorthwindWithSprocs.ProductsDataTable
Return Adapter.GetProductByProductID (productID)

End Function

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Insert, True)>

Public Function AddProduct
(ByVal productName As String, ByVal supplierID As Nullable (Of Integer), _
ByVal categoryID As Nullable (Of Integer), ByVal quantityPerUnit As String,
ByVal unitPrice As Nullable (Of Decimal),
ByVal unitsInStock As Nullable (Of Short),
ByVal unitsOnOrder As Nullable (Of Short),
ByVal reorderLevel As Nullable (Of Short)
ByVal discontinued As Boolean)

4

As Boolean

' Create a new ProductRow instance
Dim products As New NorthwindWithSprocs.ProductsDataTable ()

Dim product As NorthwindWithSprocs.ProductsRow = products.NewProductsRow ()

product.ProductName = productName
If Not supplierID.HasValue Then

26 of 34

product.SetSupplierIDNull ()
Else
product.SupplierID = supplierID.Value
End If
If Not categoryID.HasValue Then
product.SetCategoryIDNull ()
Else
product.CategoryID = categoryID.Value
End If
If quantityPerUnit Is Nothing Then
product.SetQuantityPerUnitNull ()
Else
product.QuantityPerUnit = quantityPerUnit
End If
If Not unitPrice.HasValue Then
product.SetUnitPriceNull ()
Else
product.UnitPrice = unitPrice.Value
End If
If Not unitsInStock.HasValue Then
product.SetUnitsInStockNull ()
Else
product.UnitsInStock = unitsInStock.Value
End If
If Not unitsOnOrder.HasValue Then
product.SetUnitsOnOrderNull ()
Else
product.UnitsOnOrder = unitsOnOrder.Value
End If
If Not reorderLevel.HasValue Then
product.SetReorderLevelNull ()
Else
product.ReorderlLevel = reorderlLevel.Value
End If
product.Discontinued = discontinued

' Add the new product

products.AddProductsRow (product)

Dim rowsAffected As Integer = Adapter.Update (products)

' Return true if precisely one row was inserted, otherwise false
Return rowsAffected =1

End Function

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Update, True)>

Public Function UpdateProduct
(ByVal productName As String, ByVal supplierID As Nullable (Of Integer),
ByVal categoryID As Nullable (Of Integer), ByVal quantityPerUnit As String,
ByVal unitPrice As Nullable (Of Decimal),
ByVal unitsInStock As Nullable (Of Short),
ByVal unitsOnOrder As Nullable (Of Short),
ByVal reorderLevel As Nullable (Of Short), _
ByVal discontinued As Boolean, ByVal productID As Integer)
As Boolean

27 of 34

Dim products As NorthwindWithSprocs.ProductsDataTable =
Adapter.GetProductByProductID (productlID)

If products.Count = 0 Then
' no matching record found, return false
Return False

End If

Dim product As NorthwindWithSprocs.ProductsRow = products (0)

product.ProductName = productName

If Not supplierID.HasValue Then
product.SetSupplierIDNull ()

Else
product.SupplierID = supplierID.Value

End If

If Not categoryID.HasValue Then
product.SetCategoryIDNull ()

Else
product.CategoryID = categoryID.Value

End If

If quantityPerUnit Is Nothing Then
product.SetQuantityPerUnitNull ()

Else
product.QuantityPerUnit = quantityPerUnit

End If

If Not unitPrice.HasValue Then
product.SetUnitPriceNull ()

Else
product.UnitPrice = unitPrice.Value

End If

If Not unitsInStock.HasValue Then
product.SetUnitsInStockNull ()

Else
product.UnitsInStock = unitsInStock.Value

End If

If Not unitsOnOrder.HasValue Then
product.SetUnitsOnOrderNull ()

Else
product.UnitsOnOrder = unitsOnOrder.Value

End If

If Not reorderLevel.HasValue Then
product.SetReorderLevelNull ()

Else
product.ReorderlLevel = reorderlLevel.Value

End If

product.Discontinued = discontinued

' Update the product record
Dim rowsAffected As Integer = Adapter.Update (product)

' Return true if precisely one row was updated, otherwise false
Return rowsAffected =1
End Function

<System.ComponentModel.DataObjectMethodAttribute

28 of 34

(System.ComponentModel.DataObjectMethodType.Delete, True)>
Public Function DeleteProduct (ByVal productID As Integer) As Boolean
Dim rowsAffected As Integer = Adapter.Delete (productlID)

' Return true if precisely one row was deleted, otherwise false
Return rowsAffected =1
End Function
End Class

This class mimics the ProductsBLL class semantics from earlier tutorials, but uses the ProductsTableAdapter
and ProductsDataTable objects from the NorthwindwithSprocs DataSet. For example, rather than having a
Imports NorthwindTableAdapters statement at the start of the class file as ProductsBLL does, the
ProductsBLLWithSprocs class uses Imports NorthwindWithSprocsTableAdapters.Ijkewdsqthe
ProductsDataTable and ProductsRow objects used in this class are prefixed with the NorthwindWithSprocs
namespace. The ProductsBLLWithSprocs class provides two data access methods, GetProducts and
GetProductByProductID, and methods to add, update, and delete a single product instance.

Step 7: Working with the Northwindwithsprocs DataSet from the
Presentation Layer

At this point we have created a DAL that uses stored procedures to access and modify the underlying database
data. We have also built a rudimentary BLL with methods to retrieve all products or a particular product along with
methods for adding, updating, and deleting products. To round off this tutorial, let’s create an ASP.NET page that
uses the BLL’s ProductsBLLWithSprocs class for displaying, updating, and deleting records.

Open the NewSprocs. aspx page in the AdvancedDAL folder and drag a GridView from the Toolbox onto the
Designer, naming it Products. From the GridView’s smart tag choose to bind it to a new ObjectDataSource named
ProductsDataSource. Configure the ObjectDataSource to use the ProductsBLLWithSprocs class, as shown in
Figure 22.

29 of 34

Configure Data Source - ProducisDataSource

jJ Choose a Business Object
= i.;-g__-’

Select a business object that can be used ko retriewe of update data (for example, an object defined in the Bin
or App_Code directory for this application].

Choose your business abjack:
ProductsBLL WithSprocs w Show only data components

Mor thevindT ableAdapters. SuppliersTableadapter ﬁ
MorthwindWwithSprocsTableAdapters . ProductsTableAdapter B
ProducksELL

ProductsCL

ProducksOptimisticConcurrencyBLL

StaticCacha

SuppliersBLL e

g

Figure 22: Configure the ObjectDataSource to Use the ProductsBLLWithSprocs Class

The drop-down list in the SELECT tab has two options, GetProducts and GetProductByProductID. Since we
want to display all products in the GridView, choose the GetProducts method. The drop-down lists in the
UPDATE, INSERT, and DELETE tabs each only have one method. Ensure that each of these drop-down lists has
its appropriate method selected and then click Finish.

After the ObjectDataSource wizard has completed, Visual Studio will add BoundFields and a CheckBoxField to

the GridView for the product data fields. Turn on the GridView’s built-in editing and deleting features by checking
the “Enable Editing” and “Enable Deleting” options present in the smart tag.

30 of 34

% ASPHET Dada_Tulerlal &7 _C5 - Microsoll Yissal $edio

FEEER

b S A D bowl G bhog_DlogsTablaRdagte =
.4 U =
- | Ay ——" - | cox
| il . A | Prodects Srsten e U SebConto.s =
Hulttie L C I e, _}.:_...lJ i
) Panal {EApeamrd i ~
| Flaoekildes 4 - = Pracucts.
= Voo Content - Content] (Cusiom) =
T Sbgbbution, = d d Al aging Fobse
o e Creating New Stored Procedures M Pk
A recitersdat ol] :iw'wm:::: vl
e Drecibodadier i it P
- Daka 5 b e bl chH ¥ i
limte derienas shelels Faha
el =
o) Dt Lot tmmmirl
n I .14-:: E
orders =]
| Pormie] g o i Bordemeidicdih
EBrgmater OhjrctDatafiomen - Produetlagle Mo Cobnm s Cagiion
L SoutaSorie Mo o Faght il £t erain [P
| Acces{etadare Ry Sk el icing 4
g vt 550508 [Enatin Pageg CalSpanng]
- ol §Cadac i)
Le e ib L R 1 | Erudily Sortig i
e o o
o] Bt Ve o Dt abpentees
7] Fratia Daitrg
- Walsdation — DataSourcells Prashactsiast oS
& Portw | Enabs Selecton Exilenbe 1
v RegurePeiialds E& Terpise B Ediowilyie
=3 TTL N o Pt o e =
Eurgrsabdator
=
Dl afouriell
o begiarbpieienn.. a | The conteod 10 of e Kt aSocron Bhal wil
i Coepa ekl ¥ [T P
v Cashnmi kst = s .
s o | ke Caoshbeel Berbentl e G35 | Saggrdael pradhati s 3 A, Myt T
o8 e Lint | [T g i il Krnd
e} Saved

Figure 23: The Page Contains a GridView with Editing and Deleting Support Enabled

As we’ve discussed in previous tutorials, at the completion of the ObjectDataSource’s wizard, Visual Studio sets
the 01dvaluesParameterFormatString property to “original {0}”. This needs to be reverted to its default value
of “{0}” in order for the data modification features to work properly given the parameters expected by the methods
in our BLL. Therefore, be sure to set the 01dvaluesParameterFormatString property to “{0}” or remove the
property altogether from the declarative syntax.

After completing the Configure Data Source wizard, turning on editing and deleting support in the GridView, and
returning the ObjectDataSource’s 01dvaluesParameterFormatString property to its default value, your page’s
declarative markup should look similar to the following:

<asp:GridView ID="Products" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ProductsDataSource">
<Columns>
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
InsertVisible="False" ReadOnly="True"
SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="SupplierID" HeaderText="SupplierID"
SortExpression="SupplierID" />
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID"
SortExpression="CategoryID" />
<asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit"
SortExpression="QuantityPerUnit" />

31 0of 34

<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="UnitPrice" />
<asp:BoundField DataField="UnitsInStock" HeaderText="UnitsInStock"
SortExpression="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder" HeaderText="UnitsOnOrder"
SortExpression="UnitsOnOrder" />
<asp:BoundField DataField="ReorderLevel" HeaderText="ReorderLevel"
SortExpression="ReorderLevel" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"

DeleteMethod="DeleteProduct" InsertMethod="AddProduct"

SelectMethod="GetProducts" TypeName="ProductsBLLWithSprocs"

UpdateMethod="UpdateProduct">

<DeleteParameters>
<asp:Parameter Name="productID" Type="Int32" />

</DeleteParameters>

<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
<asp:Parameter Name="categoryID" Type="Int32" />
<asp:Parameter Name="quantityPerUnit" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="unitsInStock" Type="Intle" />
<asp:Parameter Name="unitsOnOrder" Type="Intle" />
<asp:Parameter Name="reorderLevel" Type="Intle" />
<asp:Parameter Name="discontinued" Type="Boolean" />
<asp:Parameter Name="productID" Type="Int32" />

</UpdateParameters>

<InsertParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
<asp:Parameter Name="categoryID" Type="Int32" />
<asp:Parameter Name="quantityPerUnit" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="unitsInStock" Type="Intle" />
<asp:Parameter Name="unitsOnOrder" Type="Intle" />
<asp:Parameter Name="reorderLevel" Type="Intle" />
<asp:Parameter Name="discontinued" Type="Boolean" />

</InsertParameters>

</asp:0bjectDataSource>

At this point we could tidy up the GridView by customizing the editing interface to include validation, having the
CategoryID and SupplierID columns render as DropDownLists, and so on. We could also add a client-side
confirmation to the Delete button, and I encourage you to take the time to implement these enhancements. Since
these topics have been covered in previous tutorials, however, we will not cover them again here.

Regardless of whether you enhance the GridView or not, test out the page’s core features in a browser. As
Figure 24 shows, the page lists the products in a GridView that provides per-row editing and deleting capabilities.

32 of 34

3 uhstinied Page - Microwsdr Inlgrost Fxplores

Bl [fen Pgerkss ook ek

Dhed = O & B0

] bt [albvosr S AGRET Diaky Fulirdl &7 S ehvare el (e ias i

Working with Data Tutorials

Search Favortes 4 v] = ["8 R]

unr,.g

Hems > gdvanced DAL Foenarios » Creating Hew Stored Procedures fhor
TableAdapters

Creating New Stored Procedures

_.ﬂ"—. Product D) Pro-ducthanee SupplierTD Cotegory I QuantityPerLinit
Ed;‘ﬂ:'. ipdate Ca 1 =hai Tes 1 1 10 Bl = 20 Bagd 19,9500
Fameters
Edit Distete £ Chang 1 24 = 12 02 bottdes 13,2500
P
Fatting Parameler Edit Debets Arigesd Syrup 1 c 12 - 550 mil BotEles 10, G000
& Chaf Anten's Cagm f 26,6200
Py Edit Delers 4 il 2 z 48 = 6 02 s 26,6200
Fitsr by Drop-Dawn Elil Delare 5 T e 2 36 boxes 21350
e
~ Gramdma’s T o Hone 2 y
Edlit Dredere g Boysenberry Sprasd 3 2 k2 - Boz s 3. 2500
Edit Délste 7 Ui Bt Degark; . 2 -1 I pkar 30,000
£
£l S Ll p et

Figure 24: The Products Can Be Viewed, Edited, and Deleted from the GridView

Summary

The TableAdapters in a Typed DataSet can access data from the database using ad-hoc SQL statements or through
stored procedures. When working with stored procedures, either existing stored procedures can be used or the
TableAdapter wizard can be instructed to create new stored procedures based on a SELECT query. In this tutorial we
explored how to have the stored procedures automatically created for us.

While having the stored procedures auto-generated helps save time, there are certain cases where the stored
procedure created by the wizard doesn’t align with what we would have created on our own. One example is the
Products_Update stored procedure, which expected both @0riginal ProductID and @ProductID input
parameters even though the eoriginal ProductID parameter was superfluous.

In many scenarios, the stored procedures may already have been created, or we may want to build them manually
s0 as to have a finer degree of control over the stored procedure’s commands. In either case, we would want to
instruct the TableAdapter to use existing stored procedures for its methods. We shall see how to accomplish this in
the next tutorial.

Happy Programming!

Further Reading

For more information on the topics discussed in this tutorial, refer to the following resources:

Creating and Maintaining Stored Procedures
Retrieving Scalar Data from a Stored Procedure

SQL Server Stored Procedure Basics
Stored Procedures: An Overview
Writing a Stored Procedure

About the Author

33 of 34

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Hilton Geisenow.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

34 of 34

