This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Caching Data
at Application Startup

Introduction

The two previous tutorials looked at caching data in the Presentation and Caching Layers. In Caching Data with the
ObjectDataSource, we looked at using the ObjectDataSource’s caching features to cache data in the Presentation
Layer. Caching Data in the Architecture examined caching in a new, separate Caching Layer. Both of these
tutorials used reactive loading in working with the data cache. With reactive loading, each time the data is
requested, the system first checks if it’s in the cache. If not, it grabs the data from the originating source, such as
the database, and then stores it in the cache. The main advantage to reactive loading is its ease of implementation.
One of its disadvantages is its uneven performance across requests. Imagine a page that uses the Caching Layer
from the preceding tutorial to display product information. When this page is visited for the first time, or visited for
the first time after the cached data has been evicted due to memory constraints or the specified expiry having been
reached, the data must be retrieved from the database. Therefore, these users’ requests will take longer than users’
requests that can be served by the cache.

Proactive loading provides an alternative cache management strategy that smoothes out the performance across
requests by loading the cached data before it’s needed. Typically, proactive loading uses some process that either
periodically checks or is notified when there has been an update to the underlying data. This process then updates
the cache to keep it fresh. Proactive loading is especially useful if the underlying data comes from a slow database
connection, a Web service, or some other particularly sluggish data source. But this approach to proactive loading
is more difficult to implement, as it requires creating, managing, and deploying a process to check for changes and
update the cache.

Another flavor of proactive loading, and the type we’ll be exploring in this tutorial, is loading data into the cache at
application startup. This approach is especially useful for caching static data, such as the records in database
lookup tables.

Note: For a more in-depth look at the differences between proactive and reactive loading, as well as lists of
pros, cons, and implementation recommendations, refer to the Managing the Contents of a Cache section of

the Caching Architecture Guide for .NET Framework Applications.

Step 1: Determining What Data to Cache at Application Startup

The caching examples using reactive loading that we examined in the previous two tutorials work well with data
that may periodically change and does not take exorbitantly long to generate. But if the cached data never changes,
the expiry used by reactive loading is superfluous. Likewise, if the data being cached takes an exceedingly long
time to generate, then those users whose requests find the cache empty will have to endure a lengthy wait while the
underlying data is retrieved. Consider caching static data and data that takes an exceptionally long time to generate
at application startup.

While databases have many dynamic, frequently-changing values, most also have a fair amount of static data. For
example, virtually all data models have one or more columns that contain a particular value from a fixed set of
choices. A patients database table might have a PrimaryLanguage column, whose set of values could be English,
Spanish, French, Russian, Japanese, and so on. Oftentimes, these types of columns are implemented using lookup
tables. Rather than storing the string “English” or “French” in the Patients table, a second table is created that

1 of 12

has, commonly, two columns - a unique identifier and a string description - with a record for each possible value.
The PrimaryLanguage column in the Patients table stores the corresponding unique identifier in the lookup
table. In Figure 1, patient John Doe’s primary language is English, while Ed Johnson’s is Russian.

Patien
Column Type Comments
PatlentID int [DENTITY, Primary Key
MName nvarchar{50}
PrimaryLanguagelD |int Fareign key
PatientID Name PrimaryLanguagelD |
1 John Dog 1
£ Jane Doe 1
3 Sam Smith 3
4 Sally Smith 1
5 Ed Johnson 4
Languages
Column Type Comments
LanguagelD int IDENTITY, Primary Key
Drescription nvarchar{ 50}
LanguagelID Description
1 English
2 Spanish
3 French
4 Russian

Figure 1: The Languages Table is a Lookup Table Used by the patients Table

The user interface for editing or creating a new patient would include a drop-down list of allowable languages
populated by the records in the Languages table. Without caching, each time this interface is visited the system
must query the Languages table. This is wasteful and unnecessary since lookup table values change very
infrequently, if ever.

We could cache the Languages data using the same reactive loading techniques examined in the previous tutorials.
Reactive loading, however, uses a time-based expiry, which is not needed for static lookup table data. While

caching using reactive loading would be better than no caching at all, the best approach would be to proactively
load the lookup table data into the cache at application startup.

In this tutorial we will look at how to cache lookup table data and other static information.

Step 2: Examining the Different Ways to Cache Data
Information can be programmatically cached in an ASP.NET application using a variety of approaches. We’ve
already seen how to use the data cache in previous tutorials. Alternatively, objects can be programmatically cached

using static members or application state.

When working with a class, typically the class must first be instantiated before its members can be accessed. For
example, in order to invoke a method from one of the classes in our Business Logic Layer, we must first create an

20f12

instance of the class:

ProductsBLL productsAPI = new ProductsBLL() ;
productsAPI.SomeMethod () ;
productsAPI.SomeProperty = "Hello, World!";

Before we can invoke SomeMethod or work with SomeProperty, we must first create an instance of the class using
the new keyword. SomeMethod and SomeProperty are associated with a particular instance. The lifetime of these
members is tied to the lifetime of their associated object. Static members, on the other hand, are variables,
properties, and methods that are shared among al/l instances of the class and, consequently, have a lifetime as long
as the class. Static members are denoted by the keyword static.

In addition to static members, data can be cached using application state. Each ASP.NET application maintains a
name/value collection that’s shared across all users and pages of the application. This collection can be accessed
using the HttpContext class’s Application property, and used from an ASP.NET page’s code-behind class like
so:

Application["key"] = value;
object value = Application["key"];

The data cache provides a much richer API for caching data, providing mechanisms for time- and dependency-
based expiries, cache item priorities, and so forth. With static members and application state, such features must be
manually added by the page developer. When caching data at application startup for the lifetime of the application,
however, the data cache’s advantages are moot. In this tutorial we’ll look at code that uses all three techniques for
caching static data.

Step 3: Caching the suppliers Table Data

The Northwind database tables we’ve implemented to date do not include any traditional lookup tables. The four
DataTables implemented in our DAL all model tables whose values are non-static. Rather than spending the time
to add a new DataTable to the DAL and then a new class and methods to the BLL, for this tutorial let’s just pretend
that the suppliers table’s data is static. Therefore, we could cache this data at application startup.

To start, create a new class named StaticCache.cs in the cL folder.

3of12

Solution Explorer - Ch WASPFRET _Dak.,, » 1 X

2l F[d] & B @
& JC:...\ASPNET_Data_Tutorial_c0_cs', |l
= | App_Code

G- G BLL

=Nl

<3
1] sStaticCache. cs I

[+ [Dal
= | Spp_Data
® | | NORTHWND.MDF
[+ | App_Themes
[+ | BasicR.eporking
[+ | BinaryData
[#- [Brochures
= [Caching
2] AbapplicationSkarkup, aspe
Eﬂ Default, aspyx
j FromThedrchitecture, aspix
j ObjectDataSource, aspi
- 2| SgiCacheDependencies, aspx
[+ [CustomButtons
[#- |1 CustormButtonsDatalistRepeater
[#- [CuskormFaormatking
[+ [DatalistRepeaterBasics
[#- [DatalistRepeaterFikering
[#- 1 EditDeletebatalist
[#- |1 EditInsertDelete
[#- _d Enhancedaridyiew
[# [Filkering
[# [PagingAnd3orting
[+ | PagingSortingDatalistRepeater
- [SqlDataSource
[[UserControls
= H Default, aspo
#- [] Site.master
Al Skyles.css
4 Weh.Canfig
ﬂ Web,sitemap

i 0 O |

L&?gﬁuluti...gﬁﬁmp... Ta sery.. :«%Cl;ass...

Figure 2: Create the staticCache.cs Class in the cL Folder

We need to add a method that loads the data at startup into the appropriate cache store, as well as methods that
return data from this cache.

[System.ComponentModel.DataObject]
public class StaticCache

{

private static Northwind.SuppliersDataTable suppliers = null;

public static void LoadStaticCache ()
{

4 of 12

// Get suppliers - cache using a static member variable
SuppliersBLL suppliersBLL = new SuppliersBLL();
suppliers = suppliersBLL.GetSuppliers();
}
[DataObjectMethodAttribute (DataObjectMethodType.Select, true)]
public static Northwind.SuppliersDataTable GetSuppliers|()
{

return suppliers;

The above code uses a static member variable, suppliers, to hold the results from the SuppliersBLL class’s
GetSuppliers () method, which is called from the LoadstaticCache () method. The LoadStaticCache ()
method is meant to be called during the application’s start. Once this data has been loaded at application startup,
any page that needs to work with supplier data can call the staticCache class’s GetSuppliers () method.
Therefore, the call to the database to get the suppliers only happens once, at application start.

Rather than using a static member variable as the cache store, we could have alternatively used application state or
the data cache. The following code shows the class retooled to use application state:

[System.ComponentModel.DataObject]
public class StaticCache
{
public static void LoadStaticCache ()
{
// Get suppliers - cache using application state
SuppliersBLL suppliersBLL = new SuppliersBLL();
HttpContext.Current.Application["key"] = suppliersBLL.GetSuppliers();

[DataObjectMethodAttribute (DataObjectMethodType.Select, true)]
public static Northwind.SuppliersDataTable GetSuppliers|()
{
return HttpContext.Current.Application["key"] as Northwind.SuppliersDataTable;

In LoadStaticCache (), the supplier information is stored to the application variable key. It’s returned as the
appropriate type (Northwind. SuppliersDataTable) from GetSuppliers (). While application state can be
accessed in the code-behind classes of ASP.NET pages using Application["key"], in the architecture we must
use HttpContext.Current.Application["key"] in order to get the current HttpContext.

Likewise, the data cache can be used as a cache store, as the following code shows:

[System.ComponentModel.DataObject]
public class StaticCache
{
public static void LoadStaticCache ()
{
// Get suppliers - cache using the data cache
SuppliersBLL suppliersBLL = new SuppliersBLL();
HttpRuntime.Cache.Insert (

/* key */ "key",
/* value */ suppliers,
/* dependencies */ null,

50of12

/* absoluteExpiration */ Cache.NoAbsoluteExpiration,

/* slidingExpiration */ Cache.NoSlidingExpiration,

/* priority */ CacheItemPriority.NotRemovable,
/* onRemoveCallback */ null) ;

[DataObjectMethodAttribute (DataObjectMethodType.Select, true)]
public static Northwind.SuppliersDataTable GetSuppliers|()

{
return HttpRuntime.Cache["key"] as Northwind.SuppliersDataTable;

To add an item to the data cache with no time-based expiry, use the
System.Web.Caching.Cache.NoAbsoluteExpiration and
System.Web.Caching.Cache.NoSlidingExpiration values as input parameters. This particular overload of the
data cache’s Insert method was selected so that we could specify the priority of the cache item. The priority is
used to determine what items to scavenge from the cache when available memory runs low. Here we use the
priority NotRemovable, which ensures that this cache item won’t be scavenged.

Note: This tutorial’s download implements the StaticCache class using the static member variable
approach. The code for the application state and data cache techniques is available in the comments in the
class file.

Step 4: Executing Code at Application Startup

To execute code when a web application first starts, we need to create a special file named Global.asax. This file
can contain event handlers for application-, session-, and request-level events, and it is here where we can add code
that will be executed whenever the application starts.

Add the Global.asax file to your web application’s root directory by right-clicking on the website project name in
Visual Studio’s Solution Explorer and choosing Add New Item. From the Add New Item dialog box, select the
Global Application Class item type and then click the Add button.

Note: If you already have a Global.asax file in your project, the Global Application Class item type will
not be listed in the Add New Item dialog box.

60f 12

Templates:
_ ¥isual Studio instafled templates

e e ==
web Formn Magter Page Web Lsar
Cantral
a L LY s |
=2 & &
- e
‘Wb AML Fil ML Schema
Carfigurati. .,
[T] - -
| __[=
She Map Mobile Web VEScript File
Form

[A class for handlng YWeb Applcation events

e
Language: Visual C#

(=]
HTML Page

Add New Item - C:\My Projects\W ritings\Microsoft\MSDN Articles\MSDN Online Articles\DataTuteri... [2 3]

EE]
Fal
: . 3
8 A &
Web Sarvice Clags Sxyle sheet
= T 3
E LN e
Rasource File SQL Database DataSek
i) ik
Ci B B
Jacript File Mobile Web Mobile Web #5LT File
User Control Configurati... v
[Add] [Cancel |

Figure 3: Add the Global.asax File to Your Web Application’s Root Directory

The default Global.asax file template includes five methods within a server-side <script> tag:

Application_Start — executes when the web application first starts
Application_End — runs when the application is shutting down
Application_Error — executes whenever an unhandled exception reaches the application
Session_Start — executes when a new session is created
Session_End — runs when a session is expired or abandoned

The application_start event handler is called only once during an application’s life cycle. The application starts
the first time an ASP.NET resource is requested from the application and continues to run until the application is
restarted, which can happen by modifying the contents of the /Bin folder, modifying Global.asax, modifying the
contents in the 2pp Code folder, or modifying the web.config file, among other causes. Refer to ASP.NET
Application Life Cycle Overview for a more detailed discussion on the application life cycle.

For these tutorials we only need to add code to the application start method, so feel free to remove the others.
In Application Start, simply call the StaticCache class’s LoadStaticCache () method, which will load and

cache the supplier information:

<%@ Application Language="C#" %>

<script runat="server">

void Application Start (object sender,

{

EventArgs e)

StaticCache.LoadStaticCache () ;

}
</script>

That’s all there is to it! At application startup, the LoadStaticCache () method will grab the supplier information

7 of 12

from the BLL, and store it in a static member variable (or whatever cache store you ended up using in the
StaticCache class). To verify this behavior, set a breakpoint in the Application Start method and run your
application. Note that the breakpoint is hit upon the application starting. Subsequent requests, however, do not
cause the Application Start method to execute.

T ASPNET _Data_Tuterial 60_CS [Debupging) - Microsoft Visual Studio
Bla EM Wew ‘webste Bul Debup Jools Wiedow Communly Help Adding

Gl 5 bl @ K 43 F [indconnction i
2 A R T e A W RN B R RN A
App_CodefCLfStatioCeche.cs “Global.asak | Caching/AtApp, . onStamup aspe & - X
B =1 rm
Server Dbjects & Events » | (Mo Events) e TR
<%@ Applicacion Language=“Cir & wE UserControt g
LICCIPT TunAt="aecrver®> * - 4
wold Applicat :I.Dl'l._fitu.l.".'. jobject sender; Eventicgs ej
Il + "
- Ad Styles.oss
| 5 ScatleCache. LoadScaticCache () ¢]
— - i i Wb, Config
say oD, siedm
- £ BEPAPES =i = 2
W < *
< » ol TS | g claz... |"HProp
Wiakch 1 w B W Call Stack - 0 ¥
Hame: Value Type Name Lo

‘} &pp_chobal, ss e dtqdmudl LASP ghobal_asax, fpplic shon_Start{object sender C#

2] Locds | 3T Autes | 57]Watch L Facals.., Cgbresk.. |7 Com I, |5 Oulpuk TR Pend... || Eorce
Ready

Figure 4: Use a Breakpoint to Verify that the Application Start Event Handler is Being Executed

Note: If you do not hit the application Start breakpoint when you first start debugging, it is because your
application has already started. Force the application to restart by modifying your Global.asax or
Web.config files and then try again. You can simply add (or remove) a blank line at the end of one of these
files to quickly restart the application.

Step 5: Displaying the Cached Data

At this point the staticCache class has a version of the supplier data cached at application startup that can be
accessed through its GetSuppliers () method. To work with this data from the Presentation Layer, we can use an
ObjectDataSource or programmatically invoke the staticCache class’s GetSuppliers () method from an
ASP.NET page’s code-behind class. Let’s look at using the ObjectDataSource and GridView controls to display
the cached supplier information.

Start by opening the AtApplicationStartup.aspx page in the Caching folder. Drag a GridView from the
Toolbox onto the designer, setting its ID property to Suppliers. Next, from the GridView’s smart tag choose to
create a new ObjectDataSource named SuppliersCachedbataSource. Configure the ObjectDataSource to use the
StaticCache class’s GetSuppliers () method.

8of12

Configure Data Source - SuppliersDataSource

-H_F/ Choose a Business Object

Select a business object that can be used ko refrieve or update data (for example, an object defined in the Bin
or App_Code directory for this application).

Choose your businass objack:
StaticCache w Show only data components

MorthwindT ableAdapter s EmployessTableadapter -~
MorkhwindT ableAdapters. ProductsT ableAdapter -
Morthewind T ablesdapters. SuppliersTableAdapter

ProducksBLL

ProducksCL

ProducksOptimisticConcurrencyBLL
liersBLL ey

Figure 5: Configure the ObjectDataSource to use the staticCache Class

90of 12

Configure Data Source - SuppliersDataSource E”E] Ei@

Define Data Methods
-

SELECT | UPDATE | IMSERT | DELETE |
I I . :

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 cakegoryld), returns a Dataset,

Chanse a methad:

| GetSuppliers(}, returns SuppliersDataTable v |
izetsunpliers(), returns SuppliersCataTable

[GetSuppliers(), returns SuppliersDataTable

o) o] (ot]

Figure 6: Use the Getsuppliers () Method to Retrieve the Cached Supplier Data

After completing the wizard, Visual Studio will automatically add BoundFields for each of the data fields in
SuppliersDataTable. Your GridView and ObjectDataSource’s declarative markup should look similar to the

following:

<asp:GridView ID="Suppliers" runat="server" AutoGenerateColumns="False"
DataKeyNames="SupplierID" DataSourceID="SuppliersCachedDataSource"
EnableViewState="False">

<Columns>
<asp:BoundField DataField="SupplierID" HeaderText="SupplierID"

InsertVisible="False" ReadOnly="True"

SortExpression="SupplierID" />
<asp:BoundField DataField="CompanyName" HeaderText="CompanyName"

SortExpression="CompanyName" />
<asp:BoundField DataField="Address" HeaderText="Address"

SortExpression="Address" />
<asp:BoundField DataField="City" HeaderText="City"

SortExpression="City" />
<asp:BoundField DataField="Country" HeaderText="Country"

SortExpression="Country" />
<asp:BoundField DataField="Phone" HeaderText="Phone"

SortExpression="Phone" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="SuppliersCachedDataSource" runat="server"

10 of 12

OldValuesParameterFormatString="original {O0}"
SelectMethod="GetSuppliers" TypeName="StaticCache" />

Figure 7 shows the page when viewed through a browser. The output is the same had we pulled the data from the
BLL’s suppliersBLL class, but using the staticCache class returns the supplier data as cached at application
startup. You can set breakpoints in the staticCache class’s GetSuppliers () method to verify this behavior.

H IPntithed Page - Microsalt Internad Exphsrer Felli=
B E Yew Fgeotes Took el i

W] @ vh O semch v Faeoitei - - &S 0 5B
] et hosiborsts | 3OS ASPHET_[usta_Tuborial 60 5\ achinghBt S e stionShar up &5 v Bl
P
Wnrk|ng with Data Tutorials Hame > Caching > Caching Data ar Application Startup
Home Working with Data Cached at Application
Basi Reparting Sta rt“p
Sinple Display
Supplierld] Companyhame | Address | City Country Phone
1 Exotic Liquids 449 Gilbert St London UK -c'.T-‘l_] Bhie
2222
Zatting Parameter Hew Orleans Cajun {100) 555-
2 : E FEH34 Me -
2 Delights G, Box 78534 New Crirans USA e
Filbering Fansrts 3 Grandrma Kly"s = N Ar - s {313) GE&-
kel REl 3 ot 707 Cuxford Rd. Ann Arbor USA £735
Filker by Drop=0own 5=0 Sekima {03) 3555~
4 Tokyo Traders Musashing.shy TR Japan Ene1
5 :l:'];:l:;E:I;: 02 QUESOS wope il Basal 4 Ovieds Spain f‘.ﬂ:l 598 76
2 1-
6 Mavumi's e Osaka Jaoan {0 431 3

¥

b= el iniranat

Figure 7: The Cached Supplier Data is Displayed in a GridView

Summary

Most every data model contains a fair amount of static data, usually implemented in the form of lookup tables.
Since this information is static, there’s no reason to continually access the database each time this information
needs to be displayed. Furthermore, due to its static nature, when caching the data there’s no need for an expiry. In
this tutorial we saw how to take such data and cache it in the data cache, application state, and through a static
member variable. This information is cached at application startup and remains in the cache throughout the
application’s lifetime.

In this tutorial and the past two, we’ve looked at caching data for the duration of the application’s lifetime as well
as using time-based expiries. When caching database data, though, a time-based expiry may be less than ideal.
Rather than periodically flushing the cache, it would be optimal to only evict the cached item when the underlying
database data is modified. This ideal is possible through the use of SQL cache dependencies, which we’ll examine
in our next tutorial.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or

110f12

via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Teresa Murphy
and Zack Jones. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

12 of 12

