This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Adding a
GridView Column of Radio Buttons

Introduction

The GridView control offers a great deal of built-in functionality. It includes a number of different fields for
displaying text, images, hyperlinks, and buttons. It supports templates for further customization. With a few clicks
of the mouse, it’s possible to make a GridView where each row can be selected via a button, or to enable editing or
deleting capabilities. Despite the plethora of provided features, there will often be situations in which additional,
non-supported features will need to be added. In this tutorial and the next two we’ll examine how to enhance the
GridView’s functionality to include additional features.

This tutorial and the next one focus on enhancing the row-selection process. As examined in the Master/Detail

Using a Selectable Master GridView with a Details DetailView, we can add a CommandField to the GridView that
includes a Select button. When clicked, a postback ensues and the GridView’s SelectedIndex property is updated
to the index of the row whose Select button was clicked. In the Master/Detail Using a Selectable Master GridView
with a Details DetailView tutorial, we saw how to use this feature to display details for the selected GridView row.

While the Select button works in many situations, it may not work as well for others. Rather than using a button,
two other user interface elements are commonly used for selection: the radio button and checkbox. We can
augment the GridView so that instead of a Select button, each row contains a radio button or checkbox. In
scenarios where the user can only select one of the GridView records, the radio button might be preferred over the
Select button. In situations where the user can potentially select multiple records — such as in a web-based email
application, where a user might want to select multiple messages to delete — the checkbox offers functionality that
is not available from the Select button or radio button user interfaces.

This tutorial looks at how to add a column of radio buttons to the GridView. The proceeding tutorial explores using
checkboxes.

Step 1: Creating the Enhancing the GridView Web Pages

Before we start enhancing the GridView to include a column of radio buttons, let’s first take a moment to create the
ASP.NET pages in our website project that we’ll need for this tutorial and the next two. Start by adding a new
folder named EnhancedGridview. Next, add the following ASP.NET pages to that folder, making sure to associate
each page with the site.master master page:

Default.aspx
RadioButtonField.aspx
CheckBoxField.aspx

InsertThroughFooter.aspx

1 of 27

Solukion Ex |:||| FEF - I_:'I IH SPMET _Dak... w o x

l_J :jlll éi Eﬁ 5'
. .'-,ASPNET Data Tuturlal _51_C5Y
_+ L=Z] App_Code
- [App_Data
[+ _.d App_Themes

[+ BasicReporking

5] CuskomButtons

& CustomButtonsDatalistRepeater
& ZustomFormatking

[+ DakalistRepeakerBasics

& DatalistRepeatarFikering

[+ EditDeleteDatalist

[+ EditInsertDelste

EnhancedGridview

j CheckBoxFigld, aspx

j Default, asp

j Insert ThroughFooter, aspix
j R adioButtonFigld, aspo

i+ Filkering

= PagingAnd3orting

= PagingaartingDatalistRepeater
[+ SqlDatasource

IserZontrols
Defaulk, aspix
Site.masker
Stvles,css
Web, Config
aaa| WWeb,sitemnap

R i [T Ve Vi WA S WA v WA N N

L:“__gSDIuti...:ﬁF;rnp... &4 Serv... !x__/"'_gc.lass...

Figure 1: Add the ASP.NET Pages for the SqlDataSource-Related Tutorials

Like in the other folders, Default.aspx in the EnhancedGridview folder will list the tutorials in its section. Recall
that the sectionLevelTutorialListing.ascx User Control provides this functionality. Therefore, add this User
Control to Default.aspx by dragging it from the Solution Explorer onto the page’s Design view.

2 of 27

% ASPMET _Data_Tutorial 51_C5 - Microzofl Visual Studia
Fie Edt Wew ‘Webste Buld [ebag Formst Leyoot Jook Wedew Commomty Hep dddee

d--Ddd s - Lo b b el . on Zi
N — ==t = -
B i TR a2
o o x | - x | S -
7 | imt s Al =~ VT Y
g |.5_.H_.__J | Jald LITC P00 ASPRET _Data_Tutorial_51 05
A Label # L1 App_Code
shi TaxbBion B L} App_Datia
[38] Butron £ [l App_Thames
— B 3 BasaRleporting
AR IoN Content - Contentt (Custom) % 3 CustomButhons
() TmageButon - % [CustomButbonsDistal stPepaster
A Hypsitrk Enhancing the # 3 CustrFomattio
— | CropComnlist - - + | DatalistRepesterBasics
:r' rldUIEW o [DatalistRepesterFitenng
5o ListSiox
o [l EdtDeisbaliatalist
|7| ChsclBiox M patabound - Batabound + [l EdtlrsertDelete

& Databoiund - Catabaound
) PadoButton * Databeund - Databound
RadioButtonList ® Databound - Databound
® Databouwnd - Databound
il Tmage ¥ =] radoButtanField asps
s Imagefap & 3 Filbering
= Table + [PagingAndeeting
= ; + _J PagngSortingDatal sthepsster
= A & + [SolDataSource
derFiel = L UseriCepkiok
!3_ Literal + f 4 SectorLevelTutonsl isbng, ssoc
= Calendar + | Dierauk. ason
_’ + || Sibe.master
3 Acklotaler A Stylescss
) Filelipinad & % ek Config
44 Wzard " 5| Web. sitemap
shnch ot #oantent [= e Sor A
2 il » Lty | dgsout.., MRRop., |Bgsery... [Sgcls
___'] Gtk _.'; ror Lk _Ei-u-.n'lrr:' heckms 'ilrn‘. Fessts |
Jtemd s Saved

Figure 2: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add these four pages as entries to the Web. sitemap file. Specifically, add the following markup after the
“Using the SqlDataSource Control” <siteMapNode>:

<siteMapNode
title="Enhancing the Gridview"
url="~/EnhancedGridview/Default.aspx"
description="Augment the user experience of the GridvView control.">
<siteMapNode
url="~/EnhancedGridview/RadioButtonField.aspx"
title="Selection via a Radio Button Column"
description="Explore how to add a column of radio buttons in the GridvView." />
<siteMapNode
url="~/EnhancedGridview/CheckBoxField.aspx"
title="Selection via a Checkbox Column"
description="Select multiple records in the GridView by using a column of
checkboxes." />
<siteMapNode
url="~/EnhancedGridvView/InsertThroughFooter.aspx"
title="Add New Records through the Footer"
description="Learn how to allow users to add new records through the
Gridview's footer." />
</siteMapNode>

30of27

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on the left
now includes items for the editing, inserting, and deleting tutorials.

3 Untitled Page - L{E@ DIEHE

File Edit Miew Favaorites

»

Dok - O~ R @ @

. Address !@ http:fflocalhost:22; | =1 Go

M~

Selection via a Radio
Button Column

Selection via a
Checkbox Column

Add Mew Records
through the Footer

'-'-j Local inkranet

Figure 3: The Site Map Now Includes Entries for the Enhancing the GridView Tutorials

Step 2: Displaying the Suppliers in a GridView

For this tutorial let’s build a GridView that lists the suppliers from the USA, with each GridView row providing a
radio button. After selecting a supplier via the radio button, the user can view the supplier’s products by clicking a
button. While this task may sound trivial, there are a number of subtleties that make it particularly tricky. Before
we delve into these subtleties, let’s first get a GridView listing the suppliers.

Start by opening the RadioButtonField.aspx page in the EnhancedGridview folder by dragging a GridView
from the Toolbox onto the Designer. Set the GridView’s ID to Suppliers and, from its smart tag, choose to create

a new data source. Specifically, create an ObjectDataSource named SuppliersDataSource that pulls its data from
the suppliersBLL object.

4 of 27

Data Source Configuration Wizard @| EEI

J Choose a Data Source Type

‘Where will the application get data from?

&= 0 % & &

Arcess Database Sike Map ¥ML File
Dstabase

| [Connect to & middle-tier business object or DakaSet in the Binor App_Code directory for the q:pHuI:Inn

Specify an [0 Far the data source:
!Sl.np‘iers[)ataﬁnme

| ok || cancel |

Figure 4: Create a New ObjectDataSource Named SuppliersDataSource

50f27

Configure Dala Source - SuppliersDataSource

J Choose a Business Object

Select a business object that can be used ko retrieve or update data (for example, an object defined in the Bin
or App_Code directary For this application),

Choosa your business objact:
SupphersBLL v Show only data components

MorthawindOptimisticConcurrency Tableadapters, ProductsOptimisticConcurrency Tableadapter A
MorthwindT ableAdapters. Categories Tabledidapter i
Morthaind T ableAdapters. EmployessTableddapter

Morthwind T ableAdapters ProductsT ableAdapter

Morthwind T ablefdaphers. SuppliersT ablefdapter

ProducksBLL

Pradmtsﬁtim'ﬁtt':mturmniﬁu
W

Cancel

g

Figure 5: Configure the ObjectDataSource to Use the suppliersBLL Class

Since we only want to list those suppliers in the USA, choose the GetSuppliersByCountry (country) method
from the drop-down list in the SELECT tab.

6 of 27

Configure Data Source - SuppliersDataSource E] @| E E|

J Define Data Methods
el

SELECT | UPDATE | INSERT | DELETE |

Chaces & msthad of the business objeck that rekurns daks to sssociate with the SELECT aperation. The
mekthod can return a DataSet, DataReader, or strongh-typed collection,

Exarnpbe; GatProducts(Int32 categoryld), returns a DataSst,

Chanse 3 method:

5Gﬁ5mpliersﬁytamtw{5tmg country), returns Suppliers] » |

GetSupplierBySupplierIDIntS2 supplierlD), reburns SuppliersDataTable
GetSuppliers(), returns SuppliersDakaTable

[< Previous]Lﬂ_e:k = | f Cancel

Figure 6: Configure the ObjectDataSource to Use the suppliersBLL Class

From the UPDATE tab, select the “(None)” option and click Next.

7 of 27

Configure Dala Source - SuppliersDataSource

xl Define Data Methods
—==

| SELECT | UPDATE |IMSERT | DELETE |
Chaoss & methad of the business objeck to associate with the UPDATE operation. The method should
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.
Examples: UpdateProduck{Product p), or UpdateProduck(Ink32 productiD, String name, Double price)
Chanse 5 method:
| (Mane) w

UpdateSupplierdddress{Int32 supplier]D, String address, String ciby, String counkry), returns Boolean

[< Previous JLH'E)& = I f Cancel

Figure 7: Configure the ObjectDataSource to Use the suppliersBLL Class

Since the GetSuppliersByCountry (country) method accepts a parameter, the Configure Data Source wizard
prompts us for the source of that parameter. To specify a hard coded value (“USA”, in this example), leave the
Parameter source drop-down list set to None and enter the default value in the textbox. Click Finish to complete the
wizard.

8 of 27

Configure Data Source - SuppliersDataSource

J Define Parameters

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, choose & source For the parameter's valuee,

Parameters: Parameter source:
Mame yale ; [Mare w
' Defaultvalue:
jusa |
Show advanced properties

Method signature:
; zebsupphersByCountry(String country), retums SuppliersDataT able |

Coomos]| o> | (oo) (_cont]

Figure 8: Use “USA” as the Default Value for the country Parameter

After completing the wizard, the GridView will include a BoundField for each of the supplier data fields. Remove
all but the CompanyName, City, and Country BoundFields, and rename the CompanyName BoundFields HeaderText

property to “Supplier”. After doing so, the GridView and ObjectDataSource declarative syntax should look similar
to the following.

<asp:GridView ID="Suppliers" runat="server" AutoGenerateColumns="False"
DataKeyNames="SupplierID" DataSourceID="SuppliersDataSource"
EnableViewState="False">
<Columns>

<asp:BoundField DataField="CompanyName" HeaderText="Supplier"
SortExpression="CompanyName" />
<asp:BoundField DataField="City" HeaderText="City"
SortExpression="City" />
<asp:BoundField DataField="Country" HeaderText="Country"
SortExpression="Country" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="SuppliersDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"

SelectMethod="GetSuppliersByCountry" TypeName="SuppliersBLL">
<SelectParameters>

<asp:Parameter DefaultValue="USA" Name="country" Type="String" />
</SelectParameters>

</asp:0bjectDataSource>

9 of 27

For this tutorial, let’s allow the user to view the selected supplier’s products on the same page as the supplier list,
or on a different page. To accommodate this, add two Button Web controls to the page. I’ve set the 1Ds of these
two Buttons to ListProducts and SendToProducts, with the idea that when ListpProducts is clicked a postback
will occur and the selected supplier’s products will be listed on the same page, but when SendToProducts is
clicked, the user will be whisked to a another page that lists the products.

Figure 9 shows the suppliers GridView and the two Button Web controls when viewed through a browser.

3 Untitled Page - Microsoft Internet Explorer
Ebe Edt

Yiew Fawvorbes: Jook Help

) &2 fn SO search Favortes 4 -3 - & ™ i HE

: Addres #_‘?'i:t|:u:Jnntdhnst.2221.l'F|SI-"hET_Data_TLI:I:ﬂaIHSI_CMammGrmmJﬂaﬂnEhtmrﬁaﬂ.aspx B EGG

GridView > Selection via a
‘Radio Button Column

| Working with Data Tutorials Home > Enhancing the

Home

Selection Via a Column of

Easic Reparting

Sirgile Clsiia Radio Buttons
Cedarative : -
B Pick a Supplier
Setting Parameter supplier
Walues ; ; K
Mew Crleans Cajun Delights P sa,
FHterirg s ’ rleans
T — Grandma Kelly's Homestead Ann Arbor USA
E"fr by Drop-Down Bigfoot Breweries Bend Usa
5
Mew England Seafood B USA
Master-Detalls- Cannery
Detalls
Master/Detall Across | Show Products on Page |
Twio Pages. | Show Products on Separate Page =3 |
Detafls of Selected -

% Local intranet

Figure 9: Those Suppliers from the USA Have Their Name, City, and Country Information Listed

Step 3: Adding a Column of Radio Buttons

At this point the suppliers GridView has three BoundFields displaying the company name, city, and country of
each supplier in the USA. It is still lacking a column of radio buttons, however. Unfortunately, the GridView
doesn’t include a built-in RadioButtonField, otherwise we could just add that to the grid and be done. Instead, we
can add a TemplateField and configure its ItemTemplate to render a radio button, resulting in a radio button for
each GridView row.

Initially, we might assume that the desired user interface can be implemented by adding a RadioButton Web
control to the ItemTemplate of a TemplateField. While this will indeed add a single radio button to each row of
the GridView, the radio buttons cannot be grouped and therefore are not mutually exclusive. That is, an end user is
able to select multiple radio buttons simultaneously from the GridView.

10 of 27

Even though using a TemplateField of RadioButton Web controls does not offer the functionality we need, let’s
implement this approach, as it’s worthwhile to examine why the resulting radio buttons are not grouped. Start by
adding a TemplateField to the Suppliers GridView, making it the leftmost field. Next, from the GridView’s smart
tag, click the Edit Templates link and drag a RadioButton Web control from the Toolbox into the TemplateField’s
ItemTemplate (see Figure 10). Set the RadioButton’s 1D property to RowSelector and the GroupName property to
SuppliersGroup.

&2 ASPMET_Data_Tutorial_51_C5 - Microsoft Visual Studio

e Edt Wew ‘webgke Eull Debug Fomat Laoot Took Window Commurdy Hep Addes
-l o0 el & Ga B . b, | [vequestvabdation L™
TR | . E - = iz i
» I .. < x_ Pt -0 x
g * Skl el s f ~ | Supgliers.Colsmmiitem TemplateRowsSel -
= Foinker i { | .
| AL I
abl TextBox : (o RowSelector | &
Beesskiny
[#0]) Button Ao ostEack Falin
IEILiicBuz'm e BlackiTalor 2
) Trraemutt ;
% i Content - Confentl (Custom) BoETsf. ouy D_
% HyparLink BorderStyle PiokSet
-+ ‘ i Borderividch
£ Drosbomnlist Selection Via a Colwmi >&"
*3 ListBox - 5
i Radio Buttons Sl False
CesClass
Checkiicodist . . Enabied Tiue
— Pick a Supplier ErabiaThriing ik
Rmmt___ EnableiierState True
3 Tmage %lmﬂ!s - Cofumin{0] E Fork
& Map ForaColor
s lbem Templats = {Gountiane Supplicrshroug |
T Table T 1 & Height
=) [RowSalector
= Bulisbeckant il
HiddenField Tablndex 0
BT Liberadl ¥ Teot
= . ‘DbjectDataSource - Spplershatasores Tt Ain Right o
= fdfctator — - Grouphanme
i = :
t; Fislplaad L Show Products on Page | | Group that this radi butten belongs ta,
W wowd — .
& A ||| casmigrkhden @rppbers | <aspradchuttonfrovseles. | Esohi. .. [HRrrep, . [Hgsery., [FROa
=] oneput _.'li-'-.-.-: t __E:'v..-,.-..'-. Virig a:--.::-. 3 i
Themi5) Sanved

Figure 10: Add a RadioButton Web Control to the ItemTemplate

After making these additions through the Designer, your GridView’s markup should look similar to the following:

<asp:GridView ID="Suppliers" runat="server" AutoGenerateColumns="False"
DataKeyNames="SupplierID" DataSourceID="SuppliersDataSource"
EnableViewState="False">
<Columns>
<asp:TemplateField>
<ItemTemplate>
<asp:RadioButton ID="RowSelector" runat="server"
GroupName="SuppliersGroup" />
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="CompanyName" HeaderText="Supplier"
SortExpression="CompanyName" />
<asp:BoundField DataField="City" HeaderText="City"
SortExpression="City" />
<asp:BoundField DataField="Country" HeaderText="Country"

11 of 27

SortExpression="Country" />
</Columns>
</asp:Gridview>

The RadioButton’s GroupName property is what is used to group a series of radio buttons. All RadioButton controls
with the same GroupName value are considered grouped; only one radio button can be selected from a group at a
time. The GroupName property specifies the value for the rendered radio button’s name attribute. The browser
examines the radio buttons’ name attributes to determine the radio button groupings.

With the RadioButton Web control added to the ItemTemplate, visit this page through a browser and click on the
radio buttons in the grid’s rows. Notice how the radio buttons are not grouped, making it possible to select all of
the rows, as Figure 11 shows.

X Untitled Page - Microsofl Internet Explorer =]
Ele Edt ‘Wew Fgvorbes Tools Help H

= & % 5 seah Favortes & | (3 Ay (W] - & i Tﬂ

Address 8 | httpefflocalhst: 2221 JASPNET _Daka_Tutorial_S1_CS{ErhancedGridview]RadosuttonField. aspx . . o

-~

Working with Data Tutorials Heme> Enhancing the Griaview >

Selection via a Radio Button
Column

Selection Via a Column of
Radio Buttons

Pick a Supplier

Simple Display

Declaratiye
Farameters

Tetling Parameter
Walues

@Pew Orleans Cajun Celights New Orleans USA
randma Kelly's Homestead &nn Arbor USA
@ pigfoot Brewerles Bend LsA,

Filtering Reports

Filter by Drop-Dowrn

st ew England Seafood Cannery Boston LiSa,

Master-Cetails-

Details [Show Products on Page |

Master/Detal Across [_ Show Products an Separate Page >>]

Twicy Pages w
&) % Local intranet

Figure 11: The GridView’s Radio Buttons are Not Grouped

The reason the radio buttons are not grouped is because their rendered name attributes are different, despite having
the same GroupName property setting. To see these differences, do a View/Source from the browser and examine
the radio button markup:

<input id="ctl00 MainContent Suppliers ctl02 RowSelector"
name="ct100$MainContent$Suppliers$Sctl02$SuppliersGroup"
type="radio" value="RowSelector" />

<input id="ctl00 MainContent Suppliers ctl03 RowSelector"
name="ct100$MainContentS$Suppliers$Sctl03$SuppliersGroup"
type="radio" value="RowSelector" />

<input id="ctl00 MainContent Suppliers ctl04 RowSelector"
name="ct100$MainContentS$Suppliers$Sctl04S$SuppliersGroup"

12 of 27

type="radio" value="RowSelector" />

<input id="ctl00 MainContent Suppliers ctl05 RowSelector"
name="ct100$MainContent$Suppliers$Sctl05$SuppliersGroup"
type="radio" value="RowSelector" />

Notice how both the name and id attributes are not the exact values as specified in the Properties window, but are
prepended with a number of other 1D values. The additional 1D values added to the front of the rendered id and
name attributes are the 1Ds of the radio buttons’ parent controls — the GridviewRows’ 1Ds, the GridView’s 1D, the
Content control’s 1D, and the Web Form’s 1D. These 1Ds are added so that each rendered Web control in the
GridView has a unique id and name values.

Each rendered control needs a different name and id because this is how the browser uniquely identifies each
control on the client-side and how it identifies to the web server what action or change has occurred on postback.
For example, imagine that we wanted to run some server-side code whenever a RadioButton’s checked state was
changed. We could accomplish this by setting the RadioButton’s AutoPostBack property to true and creating an
event handler for the CheckChanged event. However, if the rendered name and id values for all of the radio buttons
were the same, on postback we could not determine what specific RadioButton was clicked.

The short of it is that we cannot create a column of radio buttons in a GridView using the RadioButton Web
control. Instead, we must use rather archaic techniques to ensure that the appropriate markup is injected into each
GridView row.

Note: Like the RadioButton Web control, the radio button HTML control, when added to a template, will
include the unique name attribute, making the radio buttons in the grid ungrouped. If you are not familiar
with HTML controls, feel free to disregard this note, as HTML controls are rarely used, especially in
ASP.NET 2.0. But if you are interested in learning more, see K. Scott Allen’s blog entry Web Controls and
HTML Controls.

Using a Literal Control to Inject Radio Button Markup

In order to correctly group all of the radio buttons within the GridView, we need to manually inject the radio
buttons’ markup into the ItemTemplate. Each radio button needs the same name attribute, but should have a
unique id attribute (in case we want to access a radio button via client-side script). After a user selects a radio
button and posts back the page, the browser will send back the value of the selected radio button’s value attribute.
Therefore, each radio button will need a unique value attribute. Finally, on postback we need to make sure to add
the checked attribute to the one radio button that is selected, otherwise after the user makes a selection and posts
back, the radio buttons will return to their default state (all unselected).

There are two approaches that can be taken in order to inject low-level markup into a template. One is to do a mix
of markup and calls to formatting methods defined in the code-behind class. This technique was first discussed in
the Using TemplateFields in the GridView Control tutorial. In our case it might look something like:

<input type="radio" i1d='<%# GetUniqueRadioButtonID(...) %>'
name="'SuppliersGroup' value='<%# GetRadioButtonValue(...) %>' ... />

Here, GetUniqueRadioButton and GetRadioButtonvalue would be methods defined in the code-behind class
that returned the appropriate id and value attribute values for each radio button. This approach works well for
assigning the id and value attributes, but falls short when needing to specify the checked attribute value because
the databinding syntax is only executed when data is first bound to the GridView. Therefore, if the GridView has
view state enabled, the formatting methods will only fire when the page is first loaded (or when the GridView is
explicitly rebound to the data source), and therefore the function that sets the checked attribute won’t be called on
postback. It’s a rather subtle problem and a bit beyond the scope of this article, so I’ll leave it at this. I do, however,
encourage you to try using the above approach and work it through to the point where you’ll get stuck. While such

13 of 27

an exercise won’t get you any closer to a working version, it will help foster a deeper understanding of the
GridView and the databinding lifecycle.

The other approach to injecting custom, low-level markup in a template — and the approach that we’ll be using for
this tutorial — is to add a Literal control to the template. Then, in the GridView’s RowCreated or RowDataBound

event handler, the Literal control can be programmatically accessed and its Text property set to the markup to
emit.

Start by removing the RadioButton from the TemplateField’s ItemTemplate, replacing it with a Literal control. Set
the Literal control’s 1D to RadioButtonMarkup.

B5 ASPHET_Data_Tutorial_51_C5 - Microsoft Visual Studio

Fie Eck Yew Webgts PBuld Debug Fomat Lasowt Tools Window Communky Help godins
o G- GW@ san . b S [coanstvsbdsion "
.t 1 = .
g £
Bl oot v = x [W - % [Pioperties -0 x
| NM o Contant - Contentl (CLstom) A ||| uppersColumal. temTemplate R adiobs -
Poirter ¢
- = a2, [| | i |
B |4
A el Selection Via a Column ,|-- =)
i TextBos = {Exirassinns)
) hitm Radio Buttons @ Radmattaiaran)|
El e [rebetieniiate Tre
. e £ % ok Translors
(3] Imsgetuston Pick a Supplier i
A Hypariink E Vizhle True
&¥ DropOownlist Sppiiers - Cobamn{id]
Mo ko MamT erglate iy
Lt Literal »
i "RadloButtonMariup |
= Eadofution
BsthoSuttonist L.
2 DbjectDataSeurce - Supobe s aSous
m ImageMap T - =
= Table Show Froducts on Page ()
= Gulskedist 3 Show Froducts on Separate Fage « Frogrammatic name of the control.
HicderFiekd »
o || ionsspobs> | Cpbe et > e o (S [BOn
| i | Eren _'I’: e, ._-'4_. wulls |
Romaddy

Figure 12: Add a Literal Control to the ItemTemplate

Next, create an event handler for the GridView’s RowCreated event. The RowCreated event fires once for every
row added, whether or not the data is being rebound to the GridView. That means that even on a postback when the
data is reloaded from view state, the RowCreated event still fires and this is the reason we are using it instead of
RowDataBound (which fires only when the data is explicitly bound to the data Web control).

In this event handler, we only want to proceed if we’re dealing with a data row. For each data row we want to
programmatically reference the RadioButtonMarkup Literal control and set its Text property to the markup to
emit. As the following code shows, the markup emitted creates a radio button whose name attribute is set to
SuppliersGroup, whose id attribute is set to RowSelectorx, where X is the index of the GridView row, and
whose value attribute is set to the index of the GridView row.

protected void Suppliers RowCreated(object sender, GridViewRowEventArgs e)
{
if (e.Row.RowType == DataControlRowType.DataRow)
{
// Grab a reference to the Literal control
Literal output = (Literal)e.Row.FindControl ("RadioButtonMarkup") ;

14 of 27

// Output the markup except for the "checked" attribute

output.Text = string.Format (
@"<input type=""radio"" name=""SuppliersGroup"" " +
@"id=""RowSelector{0}"" value=""{0}"" />", e.Row.RowIndex):;

When a GridView row is selected and a postback occurs, we are interested in the SupplierID of the selected
supplier. Therefore, one might think that the value of each radio button should be the actual supplier1D (rather
than the index of the GridView row). While this may work in certain circumstances, it would be a security risk to
blindly accept and process a Ssupplier1D. Our GridView, for example, lists only those suppliers in the USA.
However, if the supplierID is passed directly from the radio button, what’s to stop a mischievous user from
manipulating the supplierID value sent back on postback? By using the row index as the value, and then getting
the supplierID on postback from the DataKeys collection, we can ensure that the user is only using one of the
SupplierID values associated with one of the GridView rows.

After adding this event handler code, take a minute to test out the page in a browser. First, note that only one radio
button in the grid can be selected at a time. However, when selecting a radio button and clicking one of the buttons,
a postback occurs and the radio buttons all revert to their initial state (that is, on postback, the selected radio button
is no longer selected). To fix this, we need to augment the RowCreated event handler so that it inspects the selected
radio button index sent from the postback and adds the checked="checked" attribute to the emitted markup of the
row index matches.

When a postback occurs, the browser sends back the name and value of the selected radio button. The value can be
programmatically retrieved using Request.Form["name"]. The Request.Form property provides a
NameValueCollection representing the form variables. The form variables are the names and values of the form
fields in the web page, and are sent back by the web browser whenever a postback ensues. Because the rendered
name attribute of the radio buttons in the GridView is SuppliersGroup, when the web page is posted back the
browser will send SuppliersGroup=valueOfSelectedRadioButton back to the web server (along with the other
form fields). This information can then be accessed from the Request . Form property using: Request.Form
["SuppliersGroup"].

Since we’ll need to determine the selected radio button index not only in the RowCreated event handler, but in the
Click event handlers for the Button Web controls, let’s add a SuppliersselectedIndex property to the code-
behind class that returns -1 if no radio button was selected and the selected index if one of the radio buttons is
selected.

private int SuppliersSelectedIndex
{
get
{
if (string.IsNullOrEmpty (Request.Form["SuppliersGroup"]))
return -1;
else
return Convert.ToInt32 (Request.Form["SuppliersGroup"]);

With this property added, we know to add the checked="checked" markup in the RowCreated event handler when
SuppliersSelectedIndex equals e.Row.RowIndex. Update the event handler to include this logic:

protected void Suppliers RowCreated(object sender, GridViewRowEventArgs e)

{

15 of 27

if (e.Row.RowType == DataControlRowType.DataRow)
{
// Grab a reference to the Literal control
Literal output = (Literal)e.Row.FindControl ("RadioButtonMarkup") ;

// Output the markup except for the "checked" attribute

output.Text = string.Format (
@"<input type=""radio"" name=""SuppliersGroup"" " +
@"id=""RowSelector{0}"" value=""{0}""", e.Row.RowlIndex);

// See 1f we need to add the "checked" attribute
if (SuppliersSelectedIndex == e.Row.RowIndex)
output.Text += @" checked=""checked""";

// Add the closing tag
output.Text += " />";

With this change, the selected radio button remains selected after a postback. Now that we have the ability to
specify what radio button is selected, we could change the behavior so that when the page was first visited, the first
GridView row’s radio button was selected (rather than having no radio buttons selected by default, which is the
current behavior). To have the first radio button selected by default, simply change the if
(SuppliersSelectedIndex == e.Row.RowIndex) statement to the following: if (SuppliersSelectedIndex
== e.Row.RowIndex || (!Page.IsPostBack && e.Row.RowIndex == 0)).

At this point we have added a column of grouped radio buttons to the GridView that allows for a single GridView
row to be selected and remembered across postbacks. Our next steps are to display the products provided by the
selected supplier. In Step 4 we’ll see how to redirect the user to another page, sending along the selected
SupplierID. In Step 5, we’ll see how to display the selected supplier’s products in a GridView on the same page.

Note: Rather than using a TemplateField (the focus of this lengthy Step 3), we could create a custom
DataControlField class that renders the appropriate user interface and functionality. The
DataControlField class is the base class from which the BoundField, CheckBoxField, TemplateField, and
other built-in GridView and DetailsView fields derive. Creating a custom DataControlField class would
mean that the column of radio buttons could be added just using declarative syntax, and would also make
replicating the functionality on other web pages and other web applications significantly easier.

If you’ve ever created custom, compiled controls in ASP.NET, however, you know that doing so requires a
fair amount of legwork and carries with it a host of subtleties and edge cases that must be carefully handled.
Therefore, we will forgo implementing a column of radio buttons as a custom DataControlField class for
now and stick with the TemplateField option. Perhaps we’ll have the chance to explore creating, using, and
deploying custom DataControlField classes in a future tutorial!

Step 4: Displaying the Selected Supplier’s Products in a Separate Page

After the user has selected a GridView row, we need to show the selected supplier’s products. In some
circumstances, we may want to display these products in a separate page, in others we might prefer to do it in the
same page. Let’s first examine how to display the products in a separate page; in Step 5 we’ll look at adding a
GridView to RadioButtonField.aspx to display the selected supplier’s products.

Currently there are two Button Web controls on the page — ListProducts and SendToProducts. When the
SendToProducts Button is clicked, we want to send the user to
~/Filtering/ProductsForSupplierDetails.aspx. This page was created in the Master/Detail Filtering Across

16 of 27

Two Pages tutorial and displays the products for the supplier whose supplieriD is passed through the querystring
field named SupplierID.

To provide this functionality, create an event handler for the SendToProducts Button’s click event. In Step 3 we
added the suppliersSelectedIndex property, which returns the index of the row whose radio button is selected.
The corresponding supplierID can be retrieved from the GridView’s DataKeys collection and the user can then
be sent to ~/Filtering/ProductsForSupplierDetails.aspx?SupplierID=SupplierID Using
Response.Redirect ("url").

protected void SendToProducts Click(object sender, EventArgs e)
{
// Send the user to ~/Filtering/ProductsForSupplierDetails.aspx
int supplierID =
Convert.ToInt32 (Suppliers.DataKeys[SuppliersSelectedIndex] .Value)
Response.Redirect (
"~/Filtering/ProductsForSupplierDetails.aspx?SupplierID="
+ supplieriID);

This code works wonderfully as long as one of the radio buttons is selected from the GridView. If, initially, the
GridView does not have any radio buttons selected, and the user clicks the SendToProducts button,
SuppliersSelectedIndex will be -1, which will cause an exception to be thrown since -1 is out of the index
range of the DataKeys collection. This is not a concern, however, if you decided to update the RowCreated event
handler as discussed in Step 3 so as to have the first radio button in the GridView initially selected.

To accommodate a suppliersselectedIndex value of -1, add a Label Web control to the page above the
GridView. Set its ID property to ChooseSupplierMsg, its CssClass property to Warning, its EnableViewState
and Visible properties to false, and its Text property to “Please choose a supplier from the grid.” The CSS class
warning displays text in a red, italic, bold, large font and is defined in Styles.css. By setting the
EnableViewState and Visible properties to false, the Label is not rendered except for only those postbacks
where the control’s Visible property is programmatically set to true.

17 of 27

B2 ASPHET_Data_Tutorial_51_€5 - Microsolt Visual Studio

fo [k Yew Wetgte Quld Debug Fomet Lawout Tooks Window Communky Help fdding
oG- . b6 requstvabiaton &
T N s
o T A i ¢ - —
| Standand s A ChosseSupplicettog Sy, Web T Weblor -
3 Pirker
IR
abd TextEox {Expr sgions)
&) ! [(] Choosesupplier™isg |
k| Eutton] Arresskey
I I:l" i) Irﬂmm“ g Ry AgsociabedConboll
] ImageEutton - = Bk nlor |
e election Via a Column of e 0
¥ DroeCountee Radio Buttons Barde e Notset
i Borderindh
s : .
] Chedksian Pick a Supplier Enabied Tre
ChedBod kst Erysbin Therm Tne
Radofution = (Erabieviesstae False ||
e Please choose a supplier e
4l Tmage from the grid. Ferettr O
i Imageilsp supplier|Clty Country m
7] Table abe abc abc Tabireis 1
i= Bulletedlist abe abe abe (et Flease choose a suppll
+ HsdeField abc abc abe Tooll
e e sbe abe
| s abe abc abc il
AdRctstor ¢ E Tt
ﬁ ‘BbjectDatasowce - Supplersiatasource a1 | e Dot o it the Ll
'.: Wizard ¥
5-_'1_ vl w | body> | caspicontentdcontentt > || <aspdabel marming#chooce. . = _'c|'. i :‘in-,-.;... ’\! g
=] gt @ Ervew Lt [y Porec né | 5 Finel Rmsd
Romady

Figure 13: Add a Label Web Control Above the GridView

Next, augment the c1lick event handler to display the ChooseSupplierMsg Label if SuppliersSelectedIndex is
less than zero, and redirect the user to ~/Filtering/ProductsForSupplierDetails.aspx?
SupplierID=SupplierID otherwise.

protected void SendToProducts Click(object sender,

{

EventArgs e)

// make sure one of the radio buttons has been selected
if (SuppliersSelectedIndex < 0)
ChooseSupplierMsg.Visible = true;
else
{
// Send the user to ~/Filtering/ProductsForSupplierDetails.aspx
int supplierID =
Convert.ToInt32 (Suppliers.DataKeys[SuppliersSelectedIndex] .Value)
Response.Redirect (
"~/Filtering/ProductsForSupplierDetails.aspx?SupplierID="
+ supplieriID);

Visit the page in a browser and click the SendToProducts button before selecting a supplier from the GridView.
As Figure 14 shows, this displays the chooseSupplierMsg label. Next, select a supplier and click the
SendToProducts button. This will whisk you to a page that lists the products supplied by the selected supplier.

Figure 15 shows the ProductsForSupplierDetails.aspx page when the Bigfoot Breweries supplier was
selected.

18 of 27

3 Untitled Page - Microsoft Internet Explorer =l =13

Fle Edit Yew Foorkes Tools Help
Qe ~ @ - W F &6 Foeach Favorites & 239 G W] - € » i s
Aderess) htpefflocalhost: 2221 JRSPNET _Data_Tutorial S1_CS{EnhancadanidviesyRadiaButtonmeld, asps v B e
-
Home > Enhancing the Gridview »
Wurklng WIth Data TUtDnaIs Slliﬂi'ﬂﬂ -.m. a Radin Em‘ton Cnlumn il
Selection Via a Column of
iz Reporting Radio Buttons
Sirnple Display
Declarative Pick a Supplier
Parameters
Setii Parameber Please choose a supplier from
ol the grid.
Filtering Reports . Supplier Cit Country
Filter by Drop—ﬁuwn O Mew Orleans Cajun Delights Mew Orleans S0
Llért -) Grandma Kelly's Homestead Ann Arbor USA
Master-Details - O Bigfoot Breweries Bend UsA
Details 1 Mew England Sszafood Cannery Boston 58
Master/Detal Across.
Two Pages [___show Products onPage]
Detaifs of Selected | Show Froducts on Separate Page > |
£]0one % Local intranet

Figure 14: The chooseSupplierMsg Label is Displayed if No Supplier is Selected

19 of 27

3 Untitled Page - Microsoft Internet Explorer m

Fie Edt ‘Wew Favortes Tools Help
& Back » [(2] # - search Faworites 48 v dg [wl o~ & » i En

Adress | @ bt [flocathost: 2221 JASPNET Daka_Tuterial_51_CS(FiteringiPraductsFarSuppher Detals, sspiSuppisr ID=16 v EJGe

Working with Data Tutorials

<< Betym to Supplier List

Bigfoot Breweries
Simiple Display

3400 - 8th Avenue Suite 210

Declarative i
Parameters Phona: ($03] $35-9%31
Setting Farameter

Walues

Product i::aleuunr Price U;&:{:i“

24 - 12 0z

Filtering Reports

Fiter by Brop-Down sasquatch Ale Beverages brribha F14.00 111
List -

- Steeleye Stout Beverages 27~ 1% % 418,00 20
Master-Detajls- ;
Detalls Laughing 54 - 12 02

Lurmberjack Beverages . ov.. $14.00 g2
Master/Deatail Beross Lager
Two Pages
w
2] bore % Locel inkbranet

Figure 15: The Selected Supplier’s Products are Displayed in ProductsForSupplierDetails.aspx

Step 5: Displaying the Selected Supplier’s Products on the Same Page

In Step 4 we saw how to send the user to another web page to display the selected supplier’s products.
Alternatively, the selected supplier’s products can be displayed on the same page. To illustrate this, we’ll add
another GridView to RadioButtonField.aspx to display the selected supplier’s products.

Since we only want this GridView of products to display once a supplier has been selected, add a Panel Web
control beneath the suppliers GridView, setting its ID to ProductsBySupplierPanel and its Visible property
to false. Within the Panel, add the text “Products for the Selected Supplier”, followed by a GridView named
ProductsBySupplier. From the GridView’s smart tag, choose to bind it to a new ObjectDataSource named
ProductsBySupplierDataSource,.

20 of 27

Data Source Configuration Wizard

'1! Choose a Data Source Type

‘Where will the application get data from?

s U & & 4

Arcess Database Sike Map ¥ML File
Dastabase

i”c&&&é’tﬁ!&i&&;&r’ business object or DakaSet in the Bin or App_Code drrectory for the application,

Specify an D For the data source:
!Pmdu.ltsﬁs-'SL.pplierDaaSmrce

[Ok Jl Cancel]

Figure 16: Bind the ProductsBySupplier GridView to a New ObjectDataSource

Next, configure the ObjectDataSource to use the ProductsBLL class. Since we only want to retrieve those
products provided by the selected supplier, specify that the ObjectDataSource should invoke the

GetProductsBySupplierID (supplierID) method to retrieve its data. Select “(None)” from the drop-down lists
in the UPDATE, INSERT, and DELETE tabs.

21 of 27

Configure Data Source - ProducisBySupplierDataSource

j Define Data Methods
——p—

SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business object that returns dats b sssociake with the SELECT aperatian. The
method can return a DataSet, DataReader, or stronghy-typed collection,

Exarmpla; GatProducts(Int32 categoryld), retums a DataSat,

Chonse 5 method:

;GetF'mduttsEySupplierIDﬁnt?-Z supplierID), returns Prodl » |

GetProductByProductID{Ing3Z productID), returns ProducksDataTable

GetProducts), returns ProductsDataTable

GetProductsasPagedDataSource(Int32 pagelndesx, Int32 pageSize), returns PagedDataSource
GetProductsEy ategoryID{INE32 categoryID), returns ProductsDataTsble

etProductsBySupplierIDeInk 32 supplierID), returns ProductsDataT able

GetProductsPaged{Int32 startRowindesx, Ink32 maximumBows), returns ProductsDataTable

GetProductsPagedandSortedi String sortExpression, Int32 startRowlnds:, Int32 maximumPows), retums Product

GetProductsSorkedAsPagedDataSourceString sortExpression, Int32 pagelndex, Int32 pageSize), returns Paged!
]

L < Previous ji_gm = | i Cancel

Figure 17: Configure the ObjectDataSource to Use the GetProductsBySupplierID (supplierID) Method

22 of 27

Configure Data Source - ProductsBySupplierDataSource

Define Data Methods

=

SELECT | UPDATE | INSERT | DELETE |

[
| Choose s methad of the business objeck to associate with the UPDATE operation. The method sheuld

| accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

Examples: UpdateProductiProduct p), or UpdateProduck(Int32 productiD, String name, Double price)

Chonsz 3 method:
(one) W

UpdateProduch{String productianme, Mullable <Decimal> uniPrice, Int32 productID), returns Boolean
LipdateProduct{String productiame, Mullable <Decimal> uriPrice, Nullable <Int16 > unitsInStock, Int32 productiD
LipdateProduct{ String productiame, Mullable <Int32 = categoryID, Mullable<Int32 = supplierlD, Bookzan discontin
UpdateProduct(String productiane, Mullable <Int32 = supplierlD, Mullable <Int32 = cateqaryID, String quantityPer
UpdateProduct{String producthame, String quantityPerlnit, Int32 productiD), returns Boclean

[{Erevinus J[Mext = I f

Figure 18: Set the Drop-Down Lists to “(None)” in the UPDATE, INSERT, and DELETE Tabs

After configuring the SELECT, UPDATE, INSERT, and DELETE tabs, click Next. Since the
GetProductsBySupplierID (supplierID) method expects an input parameter, the Create Data Source wizard
prompts us to specify the source for the parameter’s value.

We have a couple of options here in specifying the source of the parameter’s value. We could use the default
Parameter object, and programmatically assign the value of the SuppliersselectedIndex property to the
Parameter’s DefaultValue property in the ObjectDataSource’s Selecting event handler. Refer back to the
Programmatically Setting the ObjectDataSource's Parameter Values tutorial for a refresher on programmatically
assigning values to the ObjectDataSource’s parameters.

Alternatively, we can use a ControlParameter and refer to the Suppliers GridView’s Selectedvalue property
(see Figure 19). The GridView’s selectedvalue property returns the Datakey value corresponding to the
SelectedIndex property. In order for this option to work, we need to programmatically set the GridView’s
SelectedIndex property to the selected row when the ListProducts button is clicked. As an added benefit, by
setting the SelectedIndex, the selected record will take on the selectedrowstyle defined in the
DataWebControls Theme (a yellow background).

23 of 27

Configure Data Source - ProductsBySupplierDataSource

Define Parameters
e

The wizard has detected one or more parameters in your SELECT method. Far each parameter in the SELECT
method, chooses a source For the parameter's valus,

Parameters: Parameter source:

i Mamne Yalue | Contral v

| supplierID Suppliers. Selectedvalus ControlID:
T |

Doasfalk b i :

Show advanced properkies

Method signature:
| GetProductsBySupplierID{Int32 supplierIly), refums ProductsDataTable

I | T

Figure 19: Use a ControlParameter to Specify the GridView’s SelectedValue as the Parameter Source

Upon completing the wizard, Visual Studio will automatically add fields for the product’s data fields. Remove all
but the ProductName, CategoryName, and UnitPrice BoundFields, and change the HeaderText properties to
“Product”, “Category”, and “Price”. Configure the UnitpPrice BoundField so that its value is formatted as a
currency. After making these changes, the Panel, GridView, and ObjectDataSource’s declarative markup should
look like the following:

<asp:Panel runat="server" ID="ProductsBySupplierPanel" Visible="False">
<h3>
Products for the Selected Supplier</h3>
<p>
<asp:GridView ID="ProductsBySupplier" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ProductsBySupplierDataSource" EnableViewState="False">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price" HtmlEncode="False"
SortExpression="UnitPrice" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsBySupplierDataSource" runat="server"

24 of 27

OldValuesParameterFormatString="original {O0}"
SelectMethod="GetProductsBySupplierID" TypeName="ProductsBLL">
<SelectParameters>
<asp:ControlParameter ControlID="Suppliers" Name="supplierID"
PropertyName="SelectedValue" Type="Int32" />

</SelectParameters>

</asp:0bjectDataSource>

</p>
</asp:Panel>

To complete this exercise, we need to set the GridView’s selectedIndex property to the
SelectedSuppliersIndex and the ProductsBySupplierPanel Panel’s Visible property to true when the
ListProducts button is clicked. To accomplish this, create an event handler for the ListProducts Button Web
control’s Click event and add the following code:

protected void ListProducts Click(object sender, EventArgs e)
{
// make sure one of the radio buttons has been selected
if (SuppliersSelectedIndex < 0)
{
ChooseSupplierMsg.Visible = true;
ProductsBySupplierPanel.Visible = false;
}

else

{
// Set the GridView's SelectedIndex
Suppliers.SelectedIndex = SuppliersSelectedIndex;

// Show the ProductsBySupplierPanel panel
ProductsBySupplierPanel.Visible = true;

If a supplier has not been selected from the GridView, the chooseSupplierMsg Label is displayed and the
ProductsBySupplierPanel Panel hidden. Otherwise, if a supplier has been selected, the
ProductsBySupplierPanel is displayed and the GridView’s selectedIndex property is updated.

Figure 20 shows the results after the Bigfoot Breweries supplier has been selected and the “Show Products on
Page” button has been clicked.

25 of 27

3 Untitlad Page - Microsoft Internet Explorer

FELEX

Ble Edt Wew Favonbes Jook Help

'-‘;}Bﬂ':k * & = =] 3 - search Fevarites 4 - da (W7 €& a jﬁl‘?

Bcldkess | 4] hitpflocahost: 222 1 JASPNET _Deta_Tuterial_51_cCSfEnhancedGridviewRadioBustonFisld, aspx

> Selection via a Radio Button
MBI

Working with Data Tutorials Home > Enhancing the Grigview

Hrre

Selection Via a Column of
Radio Buttons

Ceclarative i i
itieelpit Pick a Supplier

Basic Reporting

Simple Cisplay

Sething Parameter . Supplier |

Values

3 Mew Orleans Cajun Delights M (s

Filtering fepori= orleans
I b o O Grandma Kelly's Homestead Ann Arbor USA
iz tint bl (=) Bigfoot Breweries Bend LISA

List

Mew England Seafood
Master-Detalis- O corniere Boston USA
Details
Master/Detail Across | Show Products on Page |
Two Pages [Show Froducts on Separate Page >>]
Detalls of Selected
L Products for the Selected Supplier
CLISEOmMIZ &
Formatting Product Category| Price
Forimiat Colars Sasquatch ale Beverages $14.00
Steeleye Stout Bewverages $18.00
Custom Contentin a Laughing Lumberjack Lager Beverages $14.00
Eriduiew a

%d Local intranet

Figure 20: The Products Supplied by Bigfoot Breweries are Listed on the Same Page

Summary

As discussed in the Master/Detail Using a Selectable Master GridView with a Details Detail View tutorial, records
can be selected from a GridView using a CommandField whose showselectButton property is set to true. But
the CommandField displays its buttons either as regular push buttons, links, or images. An alternative row-
selection user interface is to provide a radio button or checkbox in each GridView row. In this tutorial we
examined how to add a column of radio buttons.

Unfortunately, adding a column of radio buttons isn’t as straightforward or simple as one might expect. There is no
built-in RadioButtonField that can be added at the click of a button, and using the RadioButton Web control within
a TemplateField introduces its own set of problems. In the end, to provide such an interface we either have to
create a custom DataControlField class or resort to injecting the appropriate HTML into a TemplateField during
the RowCreated event.

Having explored how to add a column of radio buttons, let us turn our attention to adding a column of checkboxes.

26 of 27

With a column of checkboxes, a user can select one or more GridView rows and then perform some operation on
all of the selected rows (such as selecting a set of emails from a web-based email client, and then choosing to
delete all selected emails). In the next tutorial we’ll see how to add such a column.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was David Suru.
Interested in reviewing my upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

27 of 27

