This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Creating a
Customized Sorting User Interface

Introduction

When displaying a long list of sorted data where there are only a handful of different values in the sorted column,
an end user might find it hard to discern where, exactly, the difference boundaries occur. For example, there are §1
products in the database, but only nine different category choices (eight unique categories plus the NULL option).
Consider the case of a user who is interested in examining the products that fall under the Seafood category. From
a page that lists a// of the products in a single GridView, the user might decide her best bet is to sort the results by
category, which will group together all of the Seafood products together. After sorting by category, the user then
needs to hunt through the list, looking for where the Seafood-grouped products start and end. Since the results are
ordered alphabetically by the category name finding the Seafood products is not difficult, but it still requires
closely scanning the list of items in the grid.

To help highlight the boundaries between sorted groups, many websites employ a user interface that adds a
separator between such groups. Separators like the ones shown in Figure 1 enables a user to more quickly find a
particular group and identify its boundaries, as well as ascertain what distinct groups exist in the data.

3 Untitled Page - Micresoft Infernet Explares
[le Rt Sesr Fgeorkes Jock Helo

Qe - D - B & 6] Peuh srfootes £ 03+ 4 5] - & DB

s | bttpe ocshost (6T nde PagngandSormgl CustomSorngUl ssps b E:GCI

Working with Data Tutorials Home » Paging and Serting > Customizing the Sarting User
nterface

Customizing the Sorting User Interface

__Product | Gategory | Supplier | Brice Eriscontioued
Category:
Sorme Waker $1.99
Category: Beverages
Sething Paramuter chal Baversges ExofbcLiguids $19.95
ias Chang Beverages Exote Liguids $19.00
Guarand Fantistica Baverages Refrascos Amencanas LTDA $4.50
Fasquatch Ale Beverages Bigfoot Breweries $14.00
Stealeye Stout Bayeérages Bigfoot Breweres $18.00
Cite de Blaye Baverages Bux poyeux scckEsiastiques $263.50
Chartrause varte Baverages Bupe goyeus ecclésiasogues $18.00
Ipeohi Coffes Baverages Leka Trading S4E_00
ﬁ;gﬂ"‘g LUmDer1ack pyerages Bigfost Breweries $14.00
Cutback Lager Beverages Favlova, Lod %15.00
Rhénbrau Klosterbier Baverages Ei:bti:;rﬂi[wlﬂrﬁﬁmﬁtﬁ A $7.75
Lakkaikbar Eaverages Earkks Oy F18.00
Format Colirs Acme Tea Baverages Exofic Liquids $19.95
Cstom Contént i & Acrme Coffee Beverages Exomc Liquids +24.95
Grichew Acme Sods Beversges Exotic Liquids $1.45
Custom Content £ 4 Acme Syrup Beverages Exofic Liquids 419.50
palevien Category: Condiments
Custom Contant n 4 Aniseed Syrup Condiments Exobc Liquids $10.00
s J:‘:‘f’r‘_"lr:;'“ CAUR ondiments Mew Grleans Cajun Delights $22.00
Chef ANKON's BUITED o dimante Naw Pelsans Callin Mallahte £91 90 ¥

Nl Locsl intraret

1 of 13

Figure 1: Each Category Group is Clearly Identified

In this tutorial we’ll see how to create such a sorting user interface.

Step 1: Creating a Standard, Sortable GridView

Before we explore how to augment the GridView to provide the enhanced sorting interface, let’s first create a
standard, sortable GridView that lists the products. Start by opening the CustomSortingUI.aspx page in the
PagingAndSorting folder. Add a GridView to the page, set its ID property to ProductList, and bind it to a new
ObjectDataSource. Configure the ObjectDataSource to use the ProductsBLL class’s GetProducts () method for
selecting records.

Next, configure the GridView such that it only contains the ProductName, CategoryName, SupplierName, and
UnitPrice BoundFields and the Discontinued CheckBoxField. Finally, configure the GridView to support sorting
by checking the Enable Sorting checkbox in the GridView’s smart tag (or by setting its AllowSorting property to
true). After making these additions to the CustomSortingUI.aspx page, the declarative markup should look
similar to the following:

<asp:GridView ID="ProductList" runat="server" AllowSorting="True"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:C}"
HeaderText="Price" HtmlEncode="False" SortExpression="UnitPrice" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued" />
</Columns>
</asp:GridvView>

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"

OldvaluesParameterFormatString="original {0}" SelectMethod="GetProducts"
TypeName="ProductsBLL"></asp:0bjectDataSource>

Take a moment to view our progress thus far in a browser. Figure 2 shows the sortable GridView when its data is
sorted by category in alphabetical order.

20f 13

A Untitied Page - Microsoft internet Explorer
Bl Edk Yew Fgeotes Jooks Help

Gtk - 3 - @ @ @ Fleach Fifeoies @ O o5 W - &
Hress] e flocafost-26 ThiCode Pagroindsortngl ustorSorbngll sepx > &=
-
Wgrking wﬂh Daia Tu‘lnrials Home = Paging and Sorting > Customizing the Sorting User
Interface
Customizing the Sorting User Interface
Basic Reporting
Simiple Display Product Lategory Supplier POt |Discontinieed
Acme Water $£1.9%
E:EWT'I:E:; Chai Beverages Exotic Liquids $19.95
- Chang Baverages Exotic Liguids $19.00
Sathing Farameter
WialleE Guarand Faritdstics Baverages E_?.g;gmm RN e
Filtering Reporks Sasquatch Ale Beverages Bigfook Breweries F14.00
Filtar by Drop-Dowr Stesleye Stout Bewverages Blgfoot Breweries $18.00
LisE Cdte de Blaye Baverages B Joyeus scclésiastigues $263.50
Master-Detais- Chariredse verte Beverages fGux joyeus scclésiastiques $18.00
Details Ipoh Coffee Baverages Leka Trading 600
Magter/Detall Acnoss Laughing & it et 2
Pigic Lumiberjack Lager Beverages Bigfaot Brewsriss F14.00
= Suthack Lager Blaverages Paulowa, Lbd. $15.00
Detalls of Galectsd - o o
Bow
B Beverages LebenzmittelgroBmarkee $7.75
Klosterbier AG
Lakkabkosn Beverages karkki Oy 18,00
Faamat Colors Bome Tes Baverages Exotic Liguids £19.55
D ——— Lerne Coffes Beaverages Exotic Liquids F24.95
Grachuvias Acme Soda Beverages Exotic Uquids $1.45
CuEtem Cortent i a Lome Syrup Beverages Exotic Liguiks $1%5.50
Detailsuiew Bpigesd Syrup Condiments Exotic Liguids £10.00
Custom Content in & Chef Antor's Cajun - Mew Orleans Cajun e
isielinn : Seazoning Condiments Diefights $22.00
| : .-!:hefF-ntu:-rrs Gumh?.fﬁ."".""‘.ﬂrﬂrﬁ Neut Oreans Cajun il v
1) o Local intranst

Figure 2: The Sortable GridView’s Data is Ordered by Category

Step 2: Exploring Techniques for Adding the
Separator Rows

With the generic, sortable GridView complete, all that remains is to be able to add the separator rows in the
GridView before each unique sorted group. But how can such rows be injected into the GridView? Essentially, we
need to iterate through the GridView’s rows, determine where the differences occur between the values in the
sorted column, and then add the appropriate separator row. When thinking about this problem, it seems natural that
the solution lies somewhere in the GridView’s RowDataBound event handler. As we discussed in the Custom
Formatting Based Upon Data tutorial, this event handler is commonly used when applying row-level formatting
based on the row’s data. However, the RowDataBound event handler is not the solution here, as rows cannot be
added to the GridView programmatically from this event handler. The GridView’s Rows collection, in fact, is read-
only.

To add additional rows to the GridView we have three choices:

¢ Add these metadata separator rows to the actual data that is bound to the GridView

o After the GridView has been bound to the data, add additional TableRow instances to the GridView’s control
collection

¢ Create a custom server control that extends the GridView control and overrides those methods responsible
for constructing the GridView’s structure

Creating a custom server control would be the best approach if this functionality was needed on many web pages or

30f 13

across several websites. However, it would entail quite a bit of code and a thorough exploration into the depths of
the GridView’s internal workings. Therefore, we’ll not consider that option for this tutorial.

The other two options — adding separator rows to the actual data being bound to the GridView and manipulating
the GridView’s control collection after its been bound - attack the problem differently and merit a discussion.

Adding Rows to the Data Bound to the GridView

When the GridView is bound to a data source, it creates a GridviewRow for each record returned by the data
source. Therefore, we can inject the needed separator rows by adding “separator records” to the data source before
binding it to the GridView. Figure 3 illustrates this concept.

4 of 13

STEP 1:

NI
s.‘____-‘

Fe———

Database

ﬁ-

The data to display is programmatically retrieved from the database.

ProductMame Category
Chai Beverages
Ikura Seafood
Queso Cabrales Dairy Products
Gravad lax Sealood
Cuthack Lager Beverages

STEP 2:

data to be sorted by the Category.

The data to display is sorted; in this case, imagine that the user requested the

ProductMame Category
Chai Beverages
Qutback Lager Beverages
Gueso Cabrales Dairy Products
lkura Seafood
Gravad lax Seafood

STEP 3:

boundary.

Iterate through the rows, injecting a "separator row" at each sort group

Dairy Praducts

STEP 4:

Bind the messaged data to the GridView,

ProductMame

Chai Beverages

Quthack Lager

Dairy Products 1
Daiy Producis

Sealood -1

Seafood
Seafood

Gravad lax

Figure 3: One Technique Involves Adding Separator Rows to the Data Source

50f13

I use the term ““separator records” in quotes because there is no special separator record; rather, we must somehow
flag that a particular record in the data source serves as a separator rather than a normal data row. For our
examples, we’re binding a ProductsDataTable instance to the GridView, which is composed of ProductRows.
We might flag a record as a “separator row” by setting its CategoryID property to -1 (since such a value couldn’t
exist normally).

To utilize this technique we’d need to perform the following steps:

1. Programmatically retrieve the data to bind to the GridView (a ProductsDataTable instance)

2. Sort the data based on the GridView’s sortExpression and SortDirection properties

3. [Iterate through the ProductsRows in the ProductsDataTable, looking for where the differences in the
sorted column lie

4. At each group boundary, inject a “separator record” ProductsRow instance into the DataTable, one that has
it’s CategoryID set to -1 (or whatever designation was decided upon to mark a record as a “separator
record”)

5. After injecting the “separator rows,” programmatically bind the data to the GridView

In addition to these five steps, we’d also need to provide an event handler for the GridView’s RowDataBound event.
Here, we’d check each DataRow and determine if it was a “separator row,” one whose CategoryID setting was -1.
If so, we’d probably want to adjust its formatting or the text displayed in the cell(s).

Using this technique for injecting the sorting group boundaries requires a bit more work than outlined above, as
you need to also provide an event handler for the GridView’s Sorting event and keep track of the
SortExpression and SortDirection values.

Manipulating the GridView’s Control Collection
After It’s Been Databound

Rather than messaging the data before binding it to the GridView, we can add the separator rows affer the data has
been bound to the GridView. The process of data binding builds up the GridView’s control hierarchy, which in
reality is simply a Table instance composed of a collection of rows, each of which is composed of a collection of
cells. Specifically, the GridView’s control collection contains a Table object at its root, a GridviewRow (which is
derived from the TableRow class) for each record in the Datasource bound to the GridView, and a TableCell
object in each GridviewRow instance for each data field in the batasource.

To add separator rows between each sorting group, we can directly manipulate this control hierarchy once it has
been created. We can be confident that the GridView’s control hierarchy has been created for the last time by the
time the page is being rendered. Therefore, this approach overrides the Page class’s Render method, at which point
the GridView’s final control hierarchy is updated to include the needed separator rows. Figure 4 illustrates this
process.

6 of 13

STEP 1:

Bind the sorted data to the GridView. In this example, the data is sorted by Category (B =
Beverage, D = Dairy Products, and S = Seafood), This will create the GridView's control
hierarchy with a Table for the root with a collection of GridViewRow instances.

Pm—————————
= — gFEm
B B D s]

o1EP 2:

Enumerate through the control hierarchy, adding additional separator rows for each new
category

STEP 3:

The GridView's allered control hierarchy is rendered into an HTML <table> with the separator
rows included

Figure 4: An Alternate Technique Manipulates the GridView’s Control Hierarchy
For this tutorial, we’ll use this latter approach to customize the sorting user experience.

Note: The code I’'m presenting in this tutorial is based on the example provided in Teemu Keiski’s blog entry,
Playing a Bit with GridView “Sort Grouping”.

Step 3: Adding the Separator Rows to the GridView’s
Control Hierarchy

Since we only want to add the separator rows to the GridView’s control hierarchy after its control hierarchy has
been created and created for the last time on that page visit, we want to perform this addition at the end of the page
lifecycle, but before the actual GridView control hierarchy has been rendered into HTML. The latest possible point
at which we can accomplish this is the Page class’s Render event, which we can override in our code-behind class
using the following method signature:

protected override void Render (HtmlTextWriter writer)

{

7of 13

// Add code to manipulate the GridView control hierarchy
base.Render (writer) ;

When the page class’s original Render method is invoked — base.Render (writer) — each of the controls in the
page will be rendered, generating the markup based on their control hierarchy. Therefore it is imperative that we
both call base.Render (writer), so that the page is rendered, and that we manipulate the GridView’s control
hierarchy prior to calling base.Render (writer), so that the separator rows have been added to the GridView’s
control hierarchy before it’s been rendered.

To inject the sort group headers we first need to ensure that the user has requested that the data be sorted. By
default, the GridView’s contents are not sorted, and therefore we don’t need to enter any group sorting headers.

Note: If you want the GridView to be sorted by a particular column when the page is first loaded, call the
GridView’s sort method on the first page visit (but not on subsequent postbacks). To accomplish this, add this call
in the Page Load event handler within an 1f (!Page.IsPostBack) conditional. Refer back to the Paging and
Sorting Report Data tutorial information for more on the Sort method.

Assuming that the data has been sorted, our next task is to determine what column the data was sorted by and then
to scan the rows looking for differences in that column’s values. The following code ensures that the data has been
sorted and finds the column by which the data has been sorted:

protected override void Render (HtmlTextWriter writer)
{
// Only add the sorting UI if the GridvView is sorted
if (!string.IsNullOrEmpty (ProductList.SortExpression))
{
// Determine the index and HeaderText of the column that
//the data is sorted by
int sortColumnIndex = -1;
string sortColumnHeaderText = string.Empty;
for (int 1 = 0; i < ProductList.Columns.Count; i++)
{
if (ProductList.Columns[i].SortExpression.CompareTo (ProductList.SortExpression)
== 0)
{

sortColumnIndex = i;
sortColumnHeaderText = ProductList.Columns[i].HeaderText;
break;

}

// TODO: Scan the rows for differences in the sorted column’s values

If the GridView has yet to be sorted, the GridView’s SortExpression property will not have been set. Therefore,
we only want to add the separator rows if this property has some value. If it does, we next need to determine the
index of the column by which the data was sorted. This is accomplished by looping through the GridView’s
Columns collection, searching for the column whose sortExpression property equals the GridView’s
SortExpression property. In addition to the column’s index, we also grab the HeaderText property, which is
used when displaying the separator rows.

With the index of the column by which the data is sorted, the final step is to enumerate the rows of the GridView.
For each row we need to determine whether the sorted column’s value differs from the previous row’s sorted
column’s value. If so, we need to inject a new GridviewRow instance into the control hierarchy. This is
accomplished with the following code:

protected override void Render (HtmlTextWriter writer)

8o0f13

// Only add the sorting UI if the GridvView is sorted

if
{

}

(!'string.IsNullOrEmpty (ProductList.SortExpression))

// ... Code for finding the sorted column index removed for brevity

// Reference the Table the GridView has been rendered into
Table gridTable = (Table)ProductList.Controls([0];

// Enumerate each TableRow, adding a sorting UI header if
// the sorted value has changed

string lastValue = string.Empty;

foreach (GridviewRow gvr in ProductList.Rows)

{

string currentValue = gvr.Cells[sortColumnIndex].Text;

if (lastValue.CompareTo (currentValue) != 0)

{
// there's been a change in value in the sorted column
int rowIndex = gridTable.Rows.GetRowIndex (gvr) ;

// Add a new sort header row

GridViewRow sortRow = new GridViewRow (rowIndex, rowIndex,
DataControlRowType.DataRow, DataControlRowState.Normal) ;

TableCell sortCell = new TableCell();

sortCell.ColumnSpan = ProductList.Columns.Count;

sortCell.Text = string.Format ("{O0}: {1}",
sortColumnHeaderText, currentValue);

sortCell.CssClass = "SortHeaderRowStyle";

// Add sortCell to sortRow, and sortRow to gridTable
sortRow.Cells.Add (sortCell) ;
gridTable.Controls.AddAt (rowIndex, sortRow);

// Update lastValue
lastValue = currentValue;

base.Render (writer) ;

This code starts by programmatically referencing the Table object found at the root of the GridView’s control
hierarchy and creating a string variable named lastvalue. lastvalue is used to compare the current row’s sorted
column value with the previous row’s value. Next, the GridView’s Rows collection is enumerated and for each row

the value of the sorted column is stored in the currentvalue variable.

Note: To determine the value of the particular row’s sorted column I use the cell’s Text property. This works well
for BoundFields, but will not work as desired for TemplateFields, CheckBoxFields, and so on. We’ll look at how

to account for alternate GridView fields shortly.

The currentvalue and lastValue variables are then compared. If they differ we need to add a new separator row
to the control hierarchy. This is accomplished by determining the index of the GridviewRow in the Table object’s
rRows collection, creating new GridviewRow and TableCell instances, and then adding the TablecCell and

GridViewRow to the control hierarchy.

Note that the separator row’s lone TableCell is formatted such that it spans the entire width of the GridView, is
formatted using the sortHeaderRowstyle CSS class, and has its Text property such that it shows both the sort
group name (such as “Category”) and the group’s value (such as “Beverages”). Finally, 1astvalue is updated to

9 of 13

the value of currentvalue.

The CSS class used to format the sorting group header row — SortHeaderRowStyle — needs to be specified in the
styles.css file. Feel free to use whatever style settings appeal to you; I used the following:

.SortHeaderRowStyle

{
background-color: #c00;
text-align: left;
font-weight: bold;
color: White;

}

With the current code, the sorting interface adds sort group headers when sorting by any BoundField (see Figure 5,
which shows a screenshot when sorting by supplier). However, when sorting by any other field type (such as a
CheckBoxField or TemplateField), the sort group headers are nowhere to be found (see Figure 6).

} Uintithed Page - Micrasafi Imternet Expharer

i e Edt . Yew Fagwoites Jook - Help
Qisa = D - W @ G Powd drfecds 8O- 5 @ - &l
¢ s | @ it ocalhost: 2676 Codte PagingAndSor ting)CustonSartingll g - G
A
Working with Data Tutorials ems > Pasingand serting > Customizing the orting User
erface
Acome Water $1.99
Supplier: Aux joyeund ecclésiastiques
Bux joyex
Cote de Blaye Beyerages aeckésiantiquies $263.50
Fitering Reports 5 Al Joyeu
I : g R 2 Chartreuss verte Beverages acclésiastiaues $18.00
Fifter fu»m‘gp-puiw supplier: Bigfoot Brewerias
List Sasquatch Ale Beverages Bigfook Brewenes $14.00
m&—mw Steeleye Stout Beverages Bigfook Braweries $18.00
Ceta Laughing
R : Lurnberjack Lager Beverages Bigfoot Breweries $14.00
Two Pages verativa de Quesos 'Las Cabras'
T ; Drairy Conperativa de Quesos
Qg0 Cabrales Products 'Las Cabras' #2100
Queso Manchego Dary Cooperativa de Quesas 438,00
La Pastora Products Lot Cabiras” :
Supplicr: Escargots MNouvoaus
Escargots de T =
Bourgoans Seafood E=scargobs Mouveaux $13.25
Custom Content m 4 Supplier: Exotic Ligquids
“"‘W Chai Beverages Exofic Liquids $19.95
Custom Content i a Charsg Beverages Exofic Luids $1%,00
Cretallsiiien Arigeed Syrup Condiments Exebic Liqlids $10.00
'Cmbmmn‘emt mna Lome Tea Bevypranes Fxofic 1 s 19 95 i)
4] oon= % iocal nbranet

Figure 5: The Sorting Interface Includes Sort Group Headers When Sorting by BoundFields

10 of 13

3 Untitiad Page - Microgoft Interned Explorer

Ble Edt Yem Fgwortes Jook Help
G Bach. = Kl (@ 1| Foech drfaokes & | S 5 (9 - & B
Adekr i viﬂP&n:fm:m::ﬁ?ﬂtademﬂmhqltmbmh!:rﬂ.aim b ﬂ =
Working with Data Tutorials tems> Pasing and Serting > Customizing the Sorting User
nterface
Customizing the Sorting User Interface
#sic Reporting
: : Product Category Supplier
= Pripddus

Sh‘rq:ﬂe I:.:ﬂ?pl ! Chef Antor's condiments TMEW Orleans Cajun 421,35

Declarative Gumbo Mix ‘- Dralights i

Paramaters Mishi Kobe Nku Meat/Poultry Tokyo Traders $97.00

Sekting Farameter Akce MUTEonN Meat/Foultry Paviowa, Ltd. $39.00

\alues: Guarand Refrescos Americanas
Eapaio Beverages LTCA $4.50

T, Pl zar
Fiter by Drop-Dirwi Fossle Saverkraut Froduce LebensmittelgroBmarkte $45.60
List e
. Flutzer

Master-Detalls- Thidringer

Detalls . ROEEHEAWLIREE MeakFoultry I:Eberrsmltbelgmﬁnwkte $123.79

Master/Datal Acrase CHIAOOTEAN = : =

Two Pages ;D‘iﬁn e Mag GTOMS/Cereals Leka Trading $14.00

petalls of Safected Ferth Pasties Meat/Foultry G'day, Mate £32.80

Fow Chai Baverages Exotic Liguids $19.95
Chang Beverages Exotic Liguids $19.00
Aniseed Syrup Condiments Exotic Liquids $10.00
ChefAfne. — comdiments (NN DIMORLEIN T So e v

|£I % Local ntranst

Figure 6: The Sort Group Headers are Missing When Sorting a CheckBoxField

The reason the sort group headers are missing when sorting by a CheckBoxField is because the code currently uses
just the TableCell’s Text property to determine the value of the sorted column for each row. For CheckBoxFields,
the TableCell’s Text property is an empty string; instead, the value is available through a CheckBox Web control
that resides within the TableCell’s Controls collection.

To handle field types other than BoundFields, we need to augment the code where the currentvalue variable is
assigned to check for the existence of a CheckBox in the TableCell’s Controls collection. Instead of using
currentValue = gvr.Cells[sortColumnIndex].Text, replace this code with the following:

string currentValue = string.Empty;

if (gvr.Cells[sortColumnIndex].Controls.Count > 0)

{
if (gvr.Cells[sortColumnIndex].Controls[0] is CheckBox)
{

if (((CheckBox)gvr.Cells[sortColumnIndex].Controls[0]) .Checked)
currentValue = "Yes";
else
currentValue = "No";
}
// ... Add other checks here if using columns with other

// Web controls in them (Calendars, DropDownLists, etc.)

}
else
currentValue = gvr.Cells[sortColumnIndex].Text;

This code examines the sorted column TablecCell for the current row to determine if there are any controls in the
Controls collection. If there are, and the first control is a CheckBox, the currentvalue variable is set to “Yes” or
“No”, depending on the CheckBox’s Checked property. Otherwise, the value is taken from the TableCell’s Text
property. This logic can be replicated to handle sorting for any TemplateFields that may exist in the GridView.

110f13

With the above code addition, the sort group headers are now present when sorting by the Discontinued
CheckBoxField (see Figure 7).

B Untitled Page - Micresaft ntarnet Exploras
Fle Edt Yew Fgwortes Jook Hel

ek - D - (8] @ 0D O Search Sy Fovortes 8 | D3 B (W] - &% p
5 |) hkipciocahost: 261 [ode PagreirdSortirg i ustomicort ingUE asos S
Worklng wﬂh Data Tutorlals Home > Paging and Serting > Custemizing the Sorting User

Customizing the Sorting User Interface

r-'lnmr..ﬂii@tadl BToss
Two Fages

Detsls of Salectad
Row

Category

Singaparean
Hikkian Fried Mee

Ferth Pasties

Discontinued: No

Supplier

AG

Grains/Careals Leka Trading

Meat/Poultry

G'day, Mate

| Price

DE:E_'HF'U""B Chef Anton's Mew Orleans Cagn i
Paramelers Gumbo Mix ks Delights e
Satong Parametsr Mishi Kobe Mk Meat/Poultry. Tokyo Traders $97.00
values Alice Multon MeatfPoultry Pavlova, L $32.0:0
Guarans Refrescos Amercanas
gt Beverages LTDA $4.50
Filter by Drop-Cown Flutzer
List Rissle Sauerkraut Produce Lebensmittelgrobmébrkts $45.60
Mazter-Diatails- ;E
Ciekals: Thisinger LiEZer
FiaetrabuLEat Meat/Poultry Lebensmittelgromarkte $123.79

$14.00
$32.60

Discontinued

:—':., St Chas Beverages Exotic Liquids $19.95
- — Chang Beverages Exotic Liguids $15.00
2 : anigesd Syrup Condiments Exotic Liguids 10,00
CUEEam Cantant i & ;
Gridulew Chef ANIOITE: ' Condmatits - oW CrISEOS CaMG =" g0 b v

%4 | ocalintranet

|& =

Figure 7: The Sort Group Headers are Now Present When Sorting a CheckBoxField

Note: If you have products with NULL database values for the CategoryID, SupplierID, or UnitPrice fields,
those values will appear as empty strings in the GridView by default, meaning the separator row’s text for those
products with NULL values will read like “Category:” (that is, there’s no name after “Category:” like with
“Category: Beverages”). If you want a value displayed here you can either set the BoundFields’ NullbisplayText
property to the text you want displayed or you can add a conditional statement in the Render method when
assigning the currentvalue to the separator row’s Text property.

Summary

The GridView does not include many built-in options for customizing the sorting interface. However, with a bit of
low-level code, it’s possible to tweak the GridView’s control hierarchy to create a more customized interface. In
this tutorial we saw how to add a sort group separator row for a sortable GridView, which more easily identifies the
distinct groups and those groups’ boundaries. For additional examples of customized sorting interfaces, check out
Scott Guthrie’s A Few ASP.NET 2.0 GridView Sorting Tips and Tricks blog entry.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently

12 0of 13

completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting.NET.

13 of 13

