Clasificación semántica en Azure AI Search
En Azure AI Search, la clasificación semántica es una característica que mejora considerablemente la relevancia de la búsqueda mediante los modelos de reconocimiento del lenguaje de Microsoft para cambiar los resultados de búsqueda. Este artículo es una introducción general. La sección al final abarca disponibilidad y precios.
El clasificador semántico es una característica premium que se factura por uso. Si necesita información general, le recomendamos este artículo, pero si prefiere empezar a trabajar, siga estos pasos:
- Comprobar la disponibilidad regional
- Inicie sesión en Azure Portal para comprobar que el servicio de búsqueda es Básico o superior
- Habilitar la clasificación semántica y elegir un plan de precios
- Configurar una configuración semántica en un índice de búsqueda
- Configurar consultas para devolver subtítulos y resaltados semánticos.
- Opcionalmente, devuelva respuestas semánticas
Nota:
La clasificación semántica no usa IA generativa ni vectores. Si busca compatibilidad con vectores y búsqueda de similitud Echa un vistazo a Vector de búsqueda en Azure AI Search para más información.
¿Qué es la clasificación semántica?
El clasificador semántico es una colección de funcionalidades del lado de la consulta que mejoran la calidad de un resultado de búsqueda clasificado BM25 o clasificado RRF para consultas basadas en texto. Cuando la habilitas en el servicio de búsqueda, la clasificación semántica extiende la canalización de ejecución de consultas de dos maneras.
En primer lugar, agrega una clasificación secundaria sobre un conjunto de resultados inicial puntuado mediante BM25 o RRF. Esta clasificación secundaria usa modelos de aprendizaje profundo y multilingües adaptados de Microsoft Bing para promover los resultados más semánticamente relevantes.
En segundo lugar, extrae y devuelve subtítulos y respuestas en la respuesta, que puede representar en una página de búsqueda para mejorar la experiencia de búsqueda del usuario.
Estas son las funcionalidades del clasificador semántico.
Característica | Descripción |
---|---|
Clasificación semántica | Usa el contexto o el significado semántico de una consulta para calcular una nueva puntuación de relevancia en los resultados clasificados previamente. |
Títulos y resaltados semánticos | Extrae las oraciones y frases textuales de un documento que mejor resumen el contenido; se resaltan los pasajes clave para facilitar el análisis. Los títulos que resumen un resultado son útiles cuando los campos de contenido individuales son demasiado densos para la página de resultados de búsqueda. El texto resaltado eleva los términos y frases más relevantes para que los usuarios puedan determinar rápidamente por qué se consideró relevante una coincidencia. |
Respuestas semánticas | Es una subestructura opcional y adicional que se devuelve desde una consulta semántica. Proporciona una respuesta directa a una consulta que se parece a una pregunta. Requiere que un documento tenga texto con las características de una respuesta. |
Cómo funciona el clasificador semántico
La clasificación semántica alimenta una consulta y los resultados para los modelos de reconocimiento del lenguaje hospedados por Microsoft y busca mejores coincidencias.
En la ilustración siguiente se explica el concepto. Usemos como ejemplo el término "capital". Tiene significados diferentes en función de si el contexto es finanzas, ley, geografía o demás. Mediante el reconocimiento del lenguaje, el clasificador semántico puede detectar contexto y promover resultados que se ajusten a la intención de la consulta.
La clasificación semántica es una operación que consume tiempo y recursos. Para completar el procesamiento según la latencia esperada de una operación de consulta, las entradas en el clasificador semántico se consolidan y reducen para que el pasos de reclasificación subyacentes se pueda completar lo más rápido posible.
Hay dos pasos para la clasificación semántica: resumen y puntuación. Los resultados constan de resultados reclasificados, títulos y respuestas.
Cómo se recopilan y resumen las entradas
En la clasificación semántica, el subsistema de consultas pasa los resultados de búsqueda como entrada para modelos de resumen y clasificación. Dado que los modelos de clasificación tienen restricciones de tamaño de entrada y procesan de forma intensiva, los resultados de búsqueda deben tener un tamaño y una estructura (resumidos) para un control eficaz.
La clasificación semántica comienza con un resultado clasificado BM25 de una consulta de texto o un resultado clasificado RRF desde una consulta híbrida. Solo se usan campos de texto en el ejercicio de reclasificación y solo los 50 primeros resultados progresan a la clasificación semántica, aunque los resultados incluyan más de 50. Normalmente, los campos usados en la clasificación semántica son informativos y descriptivos.
Para cada documento del resultado de la búsqueda, el modelo de resumen acepta hasta 2000 tokens, donde un token tiene aproximadamente 10 caracteres. Las entradas se ensamblan a partir de los campos "title", "keyword" y "content" enumerados en la configuración semántica.
Cualquier cadena que sea excesivamente larga se recorta para garantizar que la longitud total cumple los requisitos de entrada del paso de resumen. Este ejercicio de recorte es el motivo por el que es importante agregar campos a la configuración semántica en orden de prioridad. Si tiene documentos muy grandes con campos con mucho texto, se omite todo lo que se encuentra después del límite máximo.
Campo semántico Límite de tokens "title" 128 tokens "Palabras clave" 128 tokens "contenido" tokens restantes El resultado del resumen es una cadena de resumen para cada documento, compuesta de la información más relevante de cada campo. Las cadenas de resumen se envían al clasificador para la puntuación y a los modelos de comprensión de lectura automática para títulos y respuestas.
La longitud máxima de cada cadena de resumen generada que se pasa al clasificador semántico es de 256 tokens.
Resultados del clasificador semántico
A partir de cada cadena de resumen, los modelos de comprensión de lectura automática encuentran pasajes que son los más representativos.
Los resultados son:
Un título semántico para el documento. Cada subtítulo está disponible en una versión de texto sin formato y en una versión de resaltado, y con frecuencia es menor que 200 palabras por documento.
Una respuesta semántica opcional, suponiendo que hayas especificado el parámetro
answers
, la consulta se planteó como una pregunta y se encuentra un paso en la cadena larga que proporciona una respuesta probable a la pregunta.
Los títulos y respuestas siempre son texto textual del índice. No hay ningún modelo de IA generativo en este flujo de trabajo que cree o componga contenido nuevo.
Cómo se puntúan los resúmenes
La puntuación se realiza sobre el título y cualquier otro contenido de la cadena de resumen que rellene la longitud del token de 256.
Los subtítulos se evalúan para la relevancia conceptual y semántica, en relación con la consulta proporcionada.
Se asigna un @search.rerankerScore a cada documento en función de la importancia semántica del documento para la solicitud determinada. Las puntuaciones van de 4 a 0 (alta a baja), donde una puntuación más alta indica una mayor relevancia.
Los resultados se muestran en orden descendente en función de la puntuación y se incluyen en la carga de respuesta de la consulta. La carga útil incluye respuestas, texto sin formato y subtítulos resaltados, así como cualquier campo que se haya marcado como recuperable o especificado en una cláusula SELECT.
Nota:
Para cualquier consulta determinada, las distribuciones de @search.rerankerScore pueden presentar pequeñas variaciones debido a las condiciones en el nivel de infraestructura. También se sabe que las actualizaciones del modelo de clasificación afectan a la distribución. Por estos motivos, si escribe código personalizado para umbrales mínimos o establece la propiedad threshold para consultas híbridas y vectoriales, no establezca unos límites demasiado pormenorizados.
Funcionalidades y limitaciones semánticas
El clasificador semántico es una tecnología novedosa, por lo que es importante establecer expectativas sobre lo que puede y no puede hacer. Lo que puede hacer:
Promover las coincidencias que están semánticamente más cerca de la intención de la consulta original.
Buscar cadenas para usarlas como títulos y respuestas. Los títulos y las respuestas se devuelven en la respuesta y se pueden representar en una página de resultados de búsqueda.
Lo que la clasificación semántica no puede hacer es volver a ejecutar la consulta en todo el corpus para buscar resultados semánticamente relevantes. La clasificación semántica vuelve a clasificar el conjunto de resultados existente, que consta de los 50 primeros resultados puntuados por el algoritmo de clasificación predeterminado. Además, la clasificación semántica no puede crear nuevas cadenas o información. Los títulos y las respuestas se extraen textualmente del contenido, por lo que si los resultados no incluyen texto parecido a una respuesta, los modelos de lenguaje no producirán uno.
Aunque la clasificación semántica no es ventajosa en todos los escenarios, cierto contenido puede beneficiarse significativamente de sus funcionalidades. Los modelos de lenguaje de la clasificación semántica funcionan mejor en contenido que permite búsquedas, que tiene gran cantidad de información y está estructurado como prosa. Una knowledge base, documentación en línea o los documentos con contenido descriptivo son los que más se benefician de las funcionalidades de la clasificación semántica.
La tecnología subyacente es de Bing y Microsoft Research, y se integra con la infraestructura de Azure AI Search como una característica de complemento. Para más información sobre las inversiones en investigación e inteligencia artificial que respaldan la clasificación semántica, consulta Formas en que la inteligencia artificial de Bing Azure se usa en AI Search (blog de Microsoft Research).
En el vídeo siguiente se proporciona información general de las funcionalidades.
Disponibilidad y precios
El clasificador semántico está disponible en los servicios de búsqueda en los niveles básico y superior, sujeta a disponibilidad regional.
Al habilitar el clasificador semántico, elige un plan de precios para la característica:
- En volúmenes de consulta más bajos (inferiores a 1000 mensuales), la búsqueda semántica es gratuita.
- En volúmenes de consulta más altos, elige el plan de precios estándar.
En la página de precios de Azure AI Search se muestra la tasa de facturación para diferentes monedas e intervalos.
Los cargos por la clasificación semántica se aplican cuando las solicitudes de consulta incluyen queryType=semantic
y la cadena de búsqueda no está vacía (por ejemplo, search=pet friendly hotels in New York
). Si la cadena de búsqueda está vacía (search=*
), no pagas nada, aunque queryType esté establecido en semantic.