Kaganapan
Mar 17, 9 PM - Mar 21, 10 AM
Sumali sa serye ng meetup upang bumuo ng mga scalable AI solusyon batay sa mga kaso ng paggamit ng tunay na mundo sa mga kapwa developer at eksperto.
Magparehistro naHindi na suportado ang browser na ito.
Mag-upgrade sa Microsoft Edge para samantalahin ang mga pinakabagong tampok, update sa seguridad, at teknikal na suporta.
Azure AI Translator containers enable you to run several features of the Translator service in your own environment and are great for specific security and data governance requirements.
There can be times when you're running a container with a multi-layered ingestion process when you discover that you need to implement an update to sentence and/or phrase files. Since the standard phrase and sentence files are encrypted and read directly into memory at runtime, you need to implement a quick-fix engineering solution to implement a dynamic update. This update can be implemented using our user-managed glossary feature:
To deploy the phrasefix solution, you need to create a phrasefix glossary file to specify that a listed phrase is translated in a specified way.
To deploy the sentfix solution, you need to create a sentfix glossary file to specify an exact target translation for a source sentence.
The phrasefix and sentfix files are then included with your translation request and read directly into memory at runtime.
Mahalaga
UTF-16 LE is the only accepted file format for the managed-glossary folders. For more information about encoding your files, see Encoding
To get started manually creating the folder structure, you need to create and name your folder. The managed-glossary folder is encoded in UTF-16 LE BOM format and nests phrasefix or sentfix source and target language files. Let's name our folder customhotfix
. Each folder can have phrasefix and sentfix files. You provide the source (src
) and target (tgt
) language codes with the following naming convention:
Glossary file name format | Example file name |
---|---|
{src }.{tgt }.{container-glossary}.{phrasefix}.src.snt |
en.es.container-glossary.phrasefix.src.snt |
{src }.{tgt }.{container-glossary}.{phrasefix}.tgt.snt |
en.es.container-glossary.phrasefix.tgt.snt |
{src }.{tgt }.{container-glossary}.{sentfix}.src.snt |
en.es.container-glossary.sentfix.src.snt |
{src }.{tgt }.{container-glossary}.{sentfix}.tgt.snt |
en.es.container-glossary.sentfix.tgt.snt |
Note
Next, to dynamically reload glossary entry updates, create a version.json
file within the customhotfix
folder. The version.json
file should contain the following parameters: VersionId. An integer value.
Sample version.json file
{
"VersionId": 5
}
Tip
Reload can be controlled by setting the following environmental variables when starting the container:
Use the docker run command
Docker run command required options
docker run --rm -it -p 5000:5000 \
-e eula=accept \
-e billing={ENDPOINT_URI} \
-e apikey={API_KEY} \
-e Languages={LANGUAGES_LIST} \
-e HotfixDataFolder={path to glossary folder}
{image}
Example docker run command
docker run -rm -it -p 5000:5000 \
-v /mnt/d/models:/usr/local/models -v /mnt/d /customerhotfix:/usr/local/customhotfix \
-e EULA=accept \
-e billing={ENDPOINT_URI} \
-e apikey={API_Key} \
-e Languages=en,es \
-e HotfixDataFolder=/usr/local/customhotfix\
mcr.microsoft.com/azure-cognitive-services/translator/text-translation:latest
Kaganapan
Mar 17, 9 PM - Mar 21, 10 AM
Sumali sa serye ng meetup upang bumuo ng mga scalable AI solusyon batay sa mga kaso ng paggamit ng tunay na mundo sa mga kapwa developer at eksperto.
Magparehistro naPagsasanay
Module
Introduction to Translator - Training
Translator is a cloud-based service that uses AI to reliably translate text and documents between languages in near real time. You can add multilanguage user experiences to your apps in 90 languages and dialects, along with free text translation with any operating system. Translator also has customizable translation models that can better understand industry-specific terminology or pronouns.
Sertipikasyon
Microsoft Certified: Azure Data Scientist Associate - Certifications
Manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Python, Azure Machine Learning and MLflow.
Dokumentasyon
Container: Translate document - Azure AI services
Understand the parameters, headers, and body request/response messages for the Azure AI Translator container translate document operation.
Container: Translate text - Azure AI services
Understand the parameters, headers, and body messages for the Azure AI Translator container translate document operation.
What are Azure AI Translator containers? - Azure AI services
Translate text and documents using Azure AI Translator containers.