Ócáid
Tóg Feidhmchláir agus Gníomhairí AI
Mar 17, 9 PM - Mar 21, 10 AM
Bí ar an tsraith meetup chun réitigh AI inscálaithe a thógáil bunaithe ar chásanna úsáide fíor-dhomhanda le forbróirí agus saineolaithe eile.
Cláraigh anoisNí thacaítear leis an mbrabhsálaí seo a thuilleadh.
Uasghrádú go Microsoft Edge chun leas a bhaint as na gnéithe is déanaí, nuashonruithe slándála, agus tacaíocht theicniúil.
Follow this quickstart to create Azure AI services resource using Bicep.
Azure AI services help developers and organizations rapidly create intelligent, cutting-edge, market-ready, and responsible applications with out-of-the-box and prebuilt and customizable APIs and models. Example applications include natural language processing for conversations, search, monitoring, translation, speech, vision, and decision-making.
Nod
Try Azure AI services including Azure OpenAI, Content Safety, Speech, Vision, and more in the Azure AI Foundry portal. For more information, see What is Azure AI Foundry?.
Most Azure AI services are available through REST APIs and client library SDKs in popular development languages. For more information, see each service's documentation.
Bicep is a domain-specific language (DSL) that uses declarative syntax to deploy Azure resources. It provides concise syntax, reliable type safety, and support for code reuse. Bicep offers the best authoring experience for your infrastructure-as-code solutions in Azure.
Using Bicep to create an Azure AI services resource lets you create a multi-service resource. This enables you to:
The Bicep file used in this quickstart is from Azure Quickstart Templates.
@description('That name is the name of our application. It has to be unique.Type a name followed by your resource group name. (<name>-<resourceGroupName>)')
param aiServicesName string = 'aiServices-${uniqueString(resourceGroup().id)}'
@description('Location for all resources.')
param location string = resourceGroup().location
@allowed([
'S0'
])
param sku string = 'S0'
resource account 'Microsoft.CognitiveServices/accounts@2023-05-01' = {
name: aiServicesName
location: location
identity: {
type: 'SystemAssigned'
}
sku: {
name: sku
}
kind: 'AIServices'
properties: {
publicNetworkAccess: 'Disabled'
networkAcls: {
defaultAction: 'Deny'
}
disableLocalAuth: true
}
}
One Azure resource is defined in the Bicep file. The kind
field in the Bicep file defines the type of resource.
As needed, change the sku
parameter value to the pricing instance you want. The sku
depends on the resource kind
that you use. For example, use TextAnalytics
for the Azure AI Language service. The TextAnalytics
kind uses S
instead of S0
for the sku
value.
Save the Bicep file as main.bicep to your local computer.
Deploy the Bicep file using either Azure CLI or Azure PowerShell.
az group create --name exampleRG --location eastus
az deployment group create --resource-group exampleRG --template-file main.bicep
When the deployment finishes, you should see a message indicating the deployment succeeded.
Use the Azure portal, Azure CLI, or Azure PowerShell to list the deployed resources in the resource group.
az resource list --resource-group exampleRG
When no longer needed, use the Azure portal, Azure CLI, or Azure PowerShell to delete the resource group and its resources.
az group delete --name exampleRG
Ócáid
Tóg Feidhmchláir agus Gníomhairí AI
Mar 17, 9 PM - Mar 21, 10 AM
Bí ar an tsraith meetup chun réitigh AI inscálaithe a thógáil bunaithe ar chásanna úsáide fíor-dhomhanda le forbróirí agus saineolaithe eile.
Cláraigh anoisOiliúint
Modúl
Create and consume Azure AI services - Training
Learn to create and consume Azure AI services.
Deimhniú
Microsoft Certified: Azure AI Fundamentals - Certifications
Demonstrate fundamental AI concepts related to the development of software and services of Microsoft Azure to create AI solutions.