Megjegyzés
Az oldalhoz való hozzáféréshez engedély szükséges. Megpróbálhat bejelentkezni vagy módosítani a címtárat.
Az oldalhoz való hozzáféréshez engedély szükséges. Megpróbálhatja módosítani a címtárat.
A következőkre vonatkozik:
Databricks SQL
Databricks Runtime
Az előző table_reference sorait egy adott oszloplista egyedi értékeinek külön oszlopokká alakításával alakítja át.
Syntax
PIVOT ( { aggregate_expression [ [ AS ] agg_column_alias ] } [, ...]
FOR column_list IN ( expression_list ) )
column_list
{ column_name |
( column_name [, ...] ) }
expression_list
{ expression [ AS ] [ column_alias ] |
{ ( expression [, ...] ) [ AS ] [ column_alias] } [, ...] ) }
Paraméterek
-
Bármilyen típusú kifejezés, amelyben az összes oszlophivatkozás
table_referenceaz összesítő függvényekargumentumai. -
Az összesítés eredményének választható aliasa. Ha nincs megadva alias,
PIVOTlétrehoz egy aliast azaggregate_expressionalapján. column_list
Az elforgatni kívánt oszlopok készlete.
-
Egy oszlop
table_reference.
-
expression_list
Az értékeket
column_listoszlop aliasaihoz rendeli.-
Olyan literális kifejezés, amely egy legkisebb közös típussal rendelkezik a megfelelő
column_name-val.Az egyes rekordokban lévő kifejezések számának
-
Nem kötelező alias, amely megadja a létrehozott oszlop nevét. Ha nincs megadva
PIVOTalias, az s alapján létrehoz egy aliastexpression.
-
Eredmény
A következő űrlap ideiglenes táblázata:
A
table_referenceköztes eredményhalmazának összes olyan oszlopa, amelyet nem adtak meg semmilyenaggregate_expression-ben vagycolumn_list-ben.Ezek az oszlopok csoportosító oszlopok.
Minden
expressionésaggregate_expressionkombinációhozPIVOTegy oszlopot hoz létre. A típus a típus.aggregate_expressionHa csak egyetlen
aggregate_expressionlétezik, az oszlopotcolumn_aliasalapján nevezik el. Ellenkező esetben a nevecolumn_alias_agg_column_alias.Az egyes cellákban lévő érték a használat
aggregation_expressioneredményeFILTER ( WHERE column_list IN (expression, ...).
Példák
-- A very basic PIVOT
-- Given a table with sales by quarter, return a table that returns sales across quarters per year.
> CREATE TEMP VIEW sales(year, quarter, region, sales) AS
VALUES (2018, 1, 'east', 100),
(2018, 2, 'east', 20),
(2018, 3, 'east', 40),
(2018, 4, 'east', 40),
(2019, 1, 'east', 120),
(2019, 2, 'east', 110),
(2019, 3, 'east', 80),
(2019, 4, 'east', 60),
(2018, 1, 'west', 105),
(2018, 2, 'west', 25),
(2018, 3, 'west', 45),
(2018, 4, 'west', 45),
(2019, 1, 'west', 125),
(2019, 2, 'west', 115),
(2019, 3, 'west', 85),
(2019, 4, 'west', 65);
> SELECT year, region, q1, q2, q3, q4
FROM sales
PIVOT (sum(sales) AS sales
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 east 100 20 40 40
2019 east 120 110 80 60
2018 west 105 25 45 45
2019 west 125 115 85 65
-- The same query written without PIVOT
> SELECT year, region,
sum(sales) FILTER(WHERE quarter = 1) AS q1,
sum(sales) FILTER(WHERE quarter = 2) AS q2,
sum(sales) FILTER(WHERE quarter = 3) AS q2,
sum(sales) FILTER(WHERE quarter = 4) AS q4
FROM sales
GROUP BY year, region;
2018 east 100 20 40 40
2019 east 120 110 80 60
2018 west 105 25 45 45
2019 west 125 115 85 65
-- Also PIVOT on region
> SELECT year, q1_east, q1_west, q2_east, q2_west, q3_east, q3_west, q4_east, q4_west
FROM sales
PIVOT (sum(sales) AS sales
FOR (quarter, region)
IN ((1, 'east') AS q1_east, (1, 'west') AS q1_west, (2, 'east') AS q2_east, (2, 'west') AS q2_west,
(3, 'east') AS q3_east, (3, 'west') AS q3_west, (4, 'east') AS q4_east, (4, 'west') AS q4_west));
2018 100 105 20 25 40 45 40 45
2019 120 125 110 115 80 85 60 65
-- The same query written without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'east'))) AS q1_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'west'))) AS q1_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'east'))) AS q2_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'west'))) AS q2_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'east'))) AS q3_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'west'))) AS q3_west,
sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'east'))) AS q4_east,
sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'west'))) AS q4_west
FROM sales
GROUP BY year;
2018 100 105 20 25 40 45 40 45
2019 120 125 110 115 80 85 60 65
-- To aggregate across regions the column must be removed from the input.
> SELECT year, q1, q2, q3, q4
FROM (SELECT year, quarter, sales FROM sales) AS s
PIVOT (sum(sales) AS sales
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 205 45 85 85
2019 245 225 165 125
-- The same query without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE quarter = 1) AS q1,
sum(sales) FILTER(WHERE quarter = 2) AS q2,
sum(sales) FILTER(WHERE quarter = 3) AS q3,
sum(sales) FILTER(WHERE quarter = 4) AS q4
FROM sales
GROUP BY year;
-- A PIVOT with multiple aggregations
> SELECT year, q1_total, q1_avg, q2_total, q2_avg, q3_total, q3_avg, q4_total, q4_avg
FROM (SELECT year, quarter, sales FROM sales) AS s
PIVOT (sum(sales) AS total, avg(sales) AS avg
FOR quarter
IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
2018 205 102.5 45 22.5 85 42.5 85 42.5
2019 245 122.5 225 112.5 165 82.5 125 62.5
-- The same query without PIVOT
> SELECT year,
sum(sales) FILTER(WHERE quarter = 1) AS q1_total,
avg(sales) FILTER(WHERE quarter = 1) AS q1_avg,
sum(sales) FILTER(WHERE quarter = 2) AS q2_total,
avg(sales) FILTER(WHERE quarter = 2) AS q2_avg,
sum(sales) FILTER(WHERE quarter = 3) AS q3_total,
avg(sales) FILTER(WHERE quarter = 3) AS q3_avg,
sum(sales) FILTER(WHERE quarter = 4) AS q4_total,
avg(sales) FILTER(WHERE quarter = 4) AS q4_avg
FROM sales
GROUP BY year;
2018 205 102.5 45 22.5 85 42.5 85 42.5
2019 245 122.5 225 112.5 165 82.5 125 62.5