Olvasás angol nyelven

Megosztás a következőn keresztül:


PrincipalComponentAnalysisTransformer Class

Definition

PCA is a dimensionality-reduction transform which computes the projection of the feature vector onto a low-rank subspace.

C#
public sealed class PrincipalComponentAnalysisTransformer : Microsoft.ML.Data.OneToOneTransformerBase
Inheritance
PrincipalComponentAnalysisTransformer

Remarks

Principle Component Analysis (PCA) is a dimensionality-reduction algorithm which computes the projection of the feature vector to onto a low-rank subspace. Its training is done using the technique described in the paper: Combining Structured and Unstructured Randomness in Large Scale PCA, and the paper Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

For more information, see also:

Methods

Explicit Interface Implementations

Extension Methods

Preview(ITransformer, IDataView, Int32)

Preview an effect of the transformer on a given data.

GetColumnPairs(OneToOneTransformerBase)

Returns the names of the input-output column pairs on which the transformation is applied.

Append<TTrans>(ITransformer, TTrans)

Create a new transformer chain, by appending another transformer to the end of this transformer chain.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

Applies to

Termék Verziók
ML.NET 1.0.0, 1.1.0, 1.2.0, 1.3.1, 1.4.0, 1.5.0, 1.6.0, 1.7.0, 2.0.0, 3.0.0, 4.0.0, Preview