This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Using SQL
Cache Dependencies

Introduction

The caching techniques examined in the Caching Data with the ObjectDataSource and Caching Data in the
Architecture tutorials used a time-based expiry to evict the data from the cache after a specified period. This
approach is the simplest way to balance the performance gains of caching against data staleness. By selecting a
time expiry of x seconds, a page developer concedes to enjoy the performance benefits of caching for only x
seconds, but can rest easy that her data will never be stale longer than a maximum of x seconds. Of course, for
static data, x can be extended to the lifetime of the web application, as was examined in the Caching Data at
Application Startup tutorial.

When caching database data, a time-based expiry is often chosen for its ease of use but is frequently an inadequate
solution. Ideally, the database data would remain cached until the underlying data has been modified in the
database; only then would the cache be evicted. This approach maximizes the performance benefits of caching and
minimizes the duration of stale data. However, in order to enjoy these benefits there must be some system in place
that knows when the underlying database data has been modified and evicts the corresponding items from the
cache. Prior to ASP.NET 2.0, page developers were responsible for implementing this system.

ASP.NET 2.0 provides a sglCacheDependency class and the necessary infrastructure to determine when a change
has occurred in the database so that the corresponding cached items can be evicted. There are two techniques for
determining when the underlying data has changed: notification and polling. After discussing the differences
between notification and polling, we’ll create the infrastructure necessary to support polling and then explore how
to use the SqlCacheDependency class in declarative and programmatically scenarios.

Understanding Notification and Polling

There are two techniques that can be used to determine when the data in a database has been modified: notification
and polling. With notification, the database automatically alerts the ASP.NET runtime when the results of a
particular query have been changed since the query was last executed, at which point the cached items associated
with the query are evicted. With polling, the database server maintains information about when particular tables
have last been updated. The ASP.NET runtime periodically polls the database to check what tables have changed
since they were entered into the cache. Those tables whose data has been modified have their associated cache
items evicted.

The notification option requires less setup than polling and is more granular since it tracks changes at the query
level rather than at the table level. Unfortunately, notifications are only available in the full editions of Microsoft
SQL Server 2005 (i.e., the non-Express editions). However, the polling option can be used for all versions of
Microsoft SQL Server from 7.0 to 2005. Since these tutorials use the Express edition of SQL Server 2005, we will
focus on setting up and using the polling option. Consult the Further Reading section at the end of this tutorial for
further resources on SQL Server 2005’s notification capabilities.

With polling, the database must be configured to include a table named

AspNet SglCacheTablesForChangeNotification that has three columns - tableName, notificationCreated,
and changeId. This table contains a row for each table that has data that might need to be used in a SQL cache
dependency in the web application. The tableName column specifies the name of the table while

1 of 22

notificationCreated indicates the date and time the row was added to the table. The changeId column is of
type int and has an initial value of 0. Its value is incremented with each modification to the table.

In addition to the AspNet SglCacheTablesForChangeNotification table, the database also needs to include
triggers on each of the tables that may appear in a SQL cache dependency. These triggers are executed whenever a
row is inserted, updated, or deleted and increment the table’s changeId value in

AspNet SglCacheTablesForChangeNotification.

The ASP.NET runtime tracks the current change1d for a table when caching data using a SqlCacheDependency
object. The database is periodically checked and any sqlCacheDependency objects whose change1d differs from
the value in the database are evicted since a differing changeId value indicates that there has been a change to the
table since the data was cached.

Step 1: Exploring the aspnet_regsql.exe Command Line Program

With the polling approach the database must be setup to contain the infrastructure described above: a predefined
table (AspNet SqglCacheTablesForChangeNotification), a handful of stored procedures, and triggers on each of
the tables that may be used in SQL cache dependencies in the web application. These tables, stored procedures, and
triggers can be created through the command line program aspnet regsql.exe, which is found in the
SWINDOWS$\Microsoft.NET\Framework\version folder. To create the
AspNet_SqglCacheTablesForChangeNotification table and associated stored procedures, run the following from
the command line:

/* For SQL Server authentication... */
aspnet regsgl.exe -S server -U user -P password -d database -ed

/* For Windows Authentication... */
aspnet regsgl.exe -S server -E -d database -ed

Note: To execute these commands the specified database login must be in the db_securityadmin and
db_ddladmin roles. To examine the T-SQL sent to the database by the aspnet regsqgl.exe command line

program, refer to this blog entry.

For example, to add the infrastructure for polling to a Microsoft SQL Server database named pubs on a database
server named ScottsServer using Windows Authentication, navigate to the appropriate directory and, from the
command line, enter:

aspnet regsgl.exe -S ScottsServer -E -d pubs -ed

After the database-level infrastructure has been added, we need to add the triggers to those tables that will be used
in SQL cache dependencies. Use the aspnet regsql.exe command line program again, but specify the table
name using the -t switch and instead of using the -ed switch use -et, like so:

/* For SQL Server authentication... */

aspnet regsqgl.exe -S <i>server</i>

-U <i>user</i> -P <i>password</i> -d <i>database</i> -t <i>tableName</i> -et
/* For Windows Authentication... */

aspnet regsqgl.exe -S <i>server</i>
-E -d <i>database</i> -t <i>tableName</i> -et

To add the triggers to the authors and titles tables on the pubs database on ScottsServer, use:

20f22

aspnet regsgl.exe -S ScottsServer -E -d pubs -t authors -et
aspnet regsgl.exe -S ScottsServer -E -d pubs -t titles -et

For this tutorial add the triggers to the Products, Categories, and suppliers tables. We’ll look at the particular
command line syntax in Step 3.

Step 2: Referencing a Microsoft SQL Server 2005 Express Edition
Database in App _Data

The aspnet regsql.exe command line program requires the database and server name in order to add the
necessary polling infrastructure. But what is the database and server name for a Microsoft SQL Server 2005
Express database that resides in the 2pp_Data folder? Rather than having to discover what the database and server
names are, I’ve found that the simplest approach is to attach the database to the localhost\sQLExpress database
instance and rename the data using SQL Server Management Studio. If you have one of the full versions of SQL
Server 2005 installed on your machine, then you likely already have SQL Server Management Studio installed on
your computer. If you only have the Express edition, you can download the free Microsoft SQL Server
Management Studio Express Edition.

Start by closing Visual Studio. Next, open SQL Server Management Studio and choose to connect to the
localhost\SQLExpress server using Windows Authentication.

.‘.! Connect to Server

Microsoft /4! Windows Server System
SQL Server 2005
Server type: | D'atabaze Engine 1 v
Server name: El.nn:alhcust'xSDLE :-:press-] v
Authentication: windows .-’-'-.uthentiu:ati-:_un. v-
[Connect l [Cancel][Help] [Options » >

Figure 1: Attach to the localhost\SQLExpress Server

After connecting to the server, Management Studio will show the server and have subfolders for the databases,
security, and so forth. Right-click on the Databases folder and choose the Attach option. This will bring up the
Attach Databases dialog box (see Figure 2). Click the Add button and select the NORTHWND . MDF database folder in
your web application’s 2pp_Data folder.

30f22

P Attach Databases
A Genaral 5 S <+ L Hey
Dalabases bo shlack:
MDF File Locstion Datsbaze | Ahachds Owiresr Statug Message

[[CAMy Projects\ie [] BFBSSCZ. S4FSBACZ. MONS.

.......

E Sdd...] Bemove |
"54!‘.55‘3:2’1.32‘?:1444‘-“ DPE@M@E.."MIqm dE!.dtl
Diginel Fie Nama Fie Type Cusrent File Path Meszage
| Cooamdiie | [NOATHWND MDF | Dala C:\My ProjectsVwiingsh. [
B | | NORTHWND logbdf Log My Projects\Werhings'. .. |:|
locathos\SOLE xprass
Connection:

MONSTERMIT CHELL\MAdministra
B¢ Yiew connecton piopertieg

Flesdy

[o || ceca |

Figure 2: Attach the NORTHWND . MDF Database from the app_Data Folder

This will add the database to the Databases folder. The database name might be the full path to the database file or
the full path prepended with a GUID. To avoid having to type in this lengthy database name when using the
aspnet_regsql.exe command line tool, rename the database to a more human-friendly name by right-clicking on
database just attached and choosing Rename. I’ve renamed my database to “DataTutorials”.

4 of 22

File Edit Mew Tools window Community Help

D) Hew Query | [y | i i B [B A @ B (B
CII:n]E-n:I' s N |
Connect~ | @3 m [F

= L_.ﬂ localhost SLEpress (0L Server 9.0,1399 -
= 3 Database

| BCakaTukorials I
[+ [Secorty
[+ [server Ohjects
3 Replication
[Managernent

Figure 3: Rename the Attached Database to a More Human-Friendly Name

Step 3: Adding the Polling Infrastructure to the Northwind Database

Now that we have attached the NORTHWND . MDF database from the App_Data folder, we’re ready to add the polling
infrastructure. Assuming that you’ve renamed the database to “DataTutorials”, run the following four commands:

aspnet regsqgl.exe -S localhost\SQLExpress -E -d DataTutorials -ed

aspnet regsqgl.exe -S localhost\SQLExpress -E -d DataTutorials -t Products -et
aspnet regsqgl.exe -S localhost\SQLExpress -E -d DataTutorials -t Categories -et
aspnet regsqgl.exe -S localhost\SQLExpress -E -d DataTutorials -t Suppliers -et

After running these four commands, right-click on the database name in Management Studio, go to the Tasks
submenu, and choose Detach. Then close Management Studio and reopen Visual Studio.

Once Visual Studio has reopened, drill into the database through the Server Explorer. Note the new table

(AspNet SglCacheTablesForChangeNotification), the new stored procedures, and the triggers on the
Products, Categories, and Suppliers tables.

50f22

Server Explorer

[2] < | T, .
= [} Data Connections T
(=RE ™ 1/ OF TH!ND MDF 3
- [Database Diagrams

= 3 2
=4{EH .ﬁ.spNet_SqICan:heTal:nlesFn:anhangeNn:ntiFin:atin:nn]
i | =] kableMame
=] notificationCreated
Z] changeld

= [Categories
Z] CategoryID

- [E] RrochurePath
[-_-Z Categnries_ﬂ.spmeI:_S|:|ICau:heNu:utiFin:atiu:un_Trigger]
-] CoskomerCostomerDerno
[CustomerDemographics
- [Cuskomers
#- [Emplovess
#- [EmploveeTerritaries
F- [Order Details
- [Orders
- [Products
- [Region
[shippers
- [Suppliers
][] Territaries
[[Views

=

&

Stared Procedures
j Asphet_SqlCachePollingStoredProcedure
j Asphlet_SqlCacheQueryRegisteredTablesStoredProcedure
j Asphlet_SqlCacheRegister TableStoredProcedure
j Asphlet_SqlCachelnRegister TableStoredProcedure
j Asphlet_SqlCachelpdateChangeldstoredProcedure
== | CUSEOrderHis
5] j CustOrdersDetail
1] CustOrdersOrders
] j Employves Sales by Country
= QGetPdeuctsByCategury
]
]
]

-] GetProducksPaged
j GetProductsPagedandsorted
o] Sales by Year
- o] SalesByCakeqary
E=) j Ten Most Expensive Products
[# [Functions
- [Synonyms
. [Tupes
L“:'f'gSculutiDn Explorer |8 Properties | 58 Server Explorer [Class Wiew

| %

Figure 4: The Database Now Includes the Necessary Polling Infrastructure

Step 4: Configuring the Polling Service

6 of 22

After creating the needed tables, triggers, and stored procedures in the database, the final step is to configure the
polling service, which is done through web. config by specifying the databases to use and the polling frequency in
milliseconds. The following markup polls the Northwind database once every second.

<?xml version="1.0"?>
<configuration>
<connectionStrings>
<add name="NORTHWNDConnectionString" connectionString=
"Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True"
providerName="System.Data.SglClient"/>
</connectionStrings>
<system.web>

<!-- Configure the polling service used for SQL cache dependencies -->
<caching>
<sqglCacheDependency enabled="true" pollTime="1000" >
<databases>

<add name="NorthwindDB"
connectionStringName="NORTHWNDConnectionString" />
</databases>
</sglCacheDependency>
</caching>
</system.web>
</configuration>

The name value in the <add> element (“NorthwindDB”) associates a human-readable name with a particular
database. When working with SQL cache dependencies, we’ll need to refer to the database name defined here as
well as the table that the cached data is based on. We’ll see how to use the SglCacheDependency class to
programmatically associate SQL cache dependencies with cached data in Step 6.

Once a SQL cache dependency has been established, the polling system will connect to the databases defined in the
<databases> elements every pol1Time milliseconds and execute the

AspNet SglCachePollingStoredProcedure stored procedure. This stored procedure - which was added back in
Step 3 using the aspnet regsgl.exe command line tool - returns the tableName and changeId values for each
record in AspNet SqlCacheTablesForChangeNotification. Outdated SQL cache dependencies are evicted from
the cache.

The pollTime setting introduces a tradeoff between performance and data staleness. A small pol1Time value
increases the number of requests to the database, but more quickly evicts stale data from the cache. A larger
pollTime value reduces the number of database requests, but increases the delay between when the backend data
changes and when the related cache items are evicted. Fortunately, the database request is executing a simple
stored procedure that’s returning just a few rows from a simple, lightweight table. But do experiment with different
pollTime values to find an ideal balance between database access and data staleness for your application. The
smallest pol1Time value allowed is 500.

Note: The above example provides a single pol1Time value in the <sqlCacheDependency> element, but you

can optionally specify the pol1Time value in the <add> element. This is useful if you have multiple
databases specified and want to customize the polling frequency per database.

Step 5: Declaratively Working with SQL Cache Dependencies

In Steps 1 through 4 we looked at how to setup the necessary database infrastructure and configure the polling

7 of 22

system. With this infrastructure in place, we can now add items to the data cache with an associated SQL cache
dependency using either programmatic or declarative techniques. In this step we’ll examine how to declaratively
work with SQL cache dependencies. In Step 6 we’ll look at the programmatic approach.

The Caching Data with the ObjectDataSource tutorial explored the declarative caching capabilities of the
ObjectDataSource. By simply setting the EnableCaching property to True and the CacheDuration property to
some time interval, the ObjectDataSource will automatically cache the data returned from its underlying object for
the specified interval. The ObjectDataSource can also use one or more SQL cache dependencies.

To demonstrate using SQL cache dependencies declaratively, open the SqlCacheDependencies.aspx page in the
Caching folder and drag a GridView from the Toolbox onto the Designer. Set the GridView’s ID to
ProductsDeclarative and, from its smart tag, choose to bind it to a new ObjectDataSource named
ProductsDataSourceDeclarative.

Data Source Configuration Wizard

Choose a Data Source Type

Where will the application get data from?

| 1 | |
A 8 ll? ._ﬁ; Ly
Access Database Sike Map EML File
Database

r Connect to a middie-tier business abject or DataSet in the Bin or App_Code directory for the application,

Specify an [0 for the data source:

|ProductsDataSourceDeclarative

| ik] 1 Cancel

Figure 5: Create a New ObjectDataSource Named ProductsDataSourceDeclarative

Configure the ObjectDataSource to use the ProductsBLL class and set the drop-down list in the SELECT tab to
GetProducts (). In the UPDATE tab, choose the UpdateProduct overload with three input parameters -
productName, unitPrice, and productID. Set the drop-down lists to “(None)” in the INSERT and DELETE tabs.

8 of 22

Configure Data Source - ProductsDataSourceDeclarative |1—_i|[§| lEE'

| SELECT | UPDATE | INSERT | DELETE |

Define Data Methods

Chaose & mathad of the business objeck to associate with the UPDATE aperation, The method should

al:capcll:aa parameter for each property of the data object, or a single parameter which is the data object
ko update.

Examplas: UpdateProduct{Product p), or UpdateProduck(Int32 productiD, String name, Double price)

Chansz & method:
;Llj:udatePruductt:StrMQ productiame, Mullable<Decdmal> u » |

LipdateProduct] String produckManss, Mullable <Decemal> undPrice, Int32 producklD), returns Boolesn
LipdateProduct{String productiame, Mullable <Decimal> unitPrice, Nullable <Intl6 > unitsInStock, Int32 productID
LipdateProduct{ String productiame, Mullable <Ink32 = categoryID, Mullable <Int32 = supplier]D, Bookzan discontin
UpdateProduct(String productiane, Mullable <Int32 = supplier]lD, Mullable<Int32 = cateqaryID, String quantityPer
UpdateProduct{String productiame, String quantityPesUnit, Int32 productID), returns Boolean

ei> | (o) (ot]

Figure 6: Use the UpdateProduct Overload with Three Input Parameters

9 of 22

Configure Dala Source - ProductsDataSourceDeclarative [E]@ EEE|

J Define Data Methods

fl=

SELECT UPDATE | INSERT DELETE |

Choose 5 method of the business object bo associate wikh the INSERT operation, The method should

accept a parameter For each property of the data object, or a single parameter which is the data object
kb insesk,

I Examples: InsertProduct(Product pl, or InsertProduct{Int32 productID, String name, Double price)

Chonse 3 method:
fvore) R

Method signature:

(o) (et

Figure 7: Set the Drop-Down List to “(None)” for the INSERT and DELETE Tabs

After completing the Configure Data Source wizard, Visual Studio will create BoundFields and CheckBoxFields in
the GridView for each of the data fields. Remove all fields but ProductName, CategoryName, and UnitPrice, and
format these fields as you see fit. From the GridView’s smart tag, check the Enable Paging, Enable Sorting, and
Enable Editing checkboxes. Visual Studio will set the ObjectDataSource’s 01dvaluesParameterFormatString
property to original {0}. In order for the GridView’s edit feature to work properly, either remove this property
entirely from the declarative syntax or set it back to its default value, {0}.

Finally, add a Label Web control above the GridView and set its ID property to ODSEvents and its
EnableViewState property to False. After making these changes, your page’s declarative markup should look
similar to the following. Note that I’ve made a number of aesthetic customizations to the GridView fields that are
not necessary to demonstrate the SQL cache dependency functionality.

<asp:Label ID="ODSEvents" runat="server" EnableViewState="False" />

<asp:GridView ID="ProductsDeclarative" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ProductsDataSourceDeclarative"
AllowPaging="True" AllowSorting="True">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:TemplateField HeaderText="Product" SortExpression="ProductName">
<EditItemTemplate>
<asp:TextBox ID="ProductName" runat="server"
Text="<%# Bind ("ProductName") %>' />
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"

10 of 22

ControlToValidate="ProductName" Display="Dynamic"
ErrorMessage="You must provide a name for the product.”
SetFocusOnError="True"
runat="server">*</asp:RequiredFieldvValidator>
</EditItemTemplate>
<ItemTemplate>
<asp:Label ID="Label2" runat="server"
Text='<%# Bind("ProductName") %>' />
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:TemplateField HeaderText="Price" SortExpression="UnitPrice">
<EditItemTemplate>
S$<asp:TextBox ID="UnitPrice" runat="server" Columns="8"

Text="<%# Bind ("UnitPrice", "{0:N2}") %>'></asp:TextBox>

<asp:CompareValidator ID="CompareValidatorl" runat="server"

ControlToValidate="UnitPrice"

ErrorMessage="You must enter a valid currency value with
no currency symbols. Also, the value must be greater than
or equal to zero."

Operator="GreaterThanEqual" SetFocusOnError="True"

Type="Currency" Display="Dynamic"

ValueToCompare="0">*</asp:CompareValidator>

</EditItemTemplate>
<ItemStyle HorizontalAlign="Right" />
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text='<%# Bind("UnitPrice", "{0:c}") %>' />
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="ProductsDataSourceDeclarative" runat="server"
SelectMethod="GetProducts" TypeName="ProductsBLL"
UpdateMethod="UpdateProduct">
<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="productID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

Next, create an event handler for the ObjectDataSource’s Selecting event and in it add the following code:

Protected Sub ProductsDataSourceDeclarative Selecting
(sender As Object, e As ObjectDataSourceSelectingEventArgs)
Handles ProductsDataSourceDeclarative.Selecting
ODSEvents.Text = "-- Selecting event fired"

End Sub

Recall that the ObjectDataSource’s selecting event fires only when retrieving data from its underlying object. If
the ObjectDataSource accesses the data from its own cache, this event is not fired.

Now, visit this page through a browser. Since we’ve yet to implement any caching, each time you page, sort, or

11 0f22

edit the grid the page should display the text, “—Selecting event fired”, as Figure 8 shows.

N Untitled Page - Microsoft Internet Explorer II'IIT""E |‘__|[E'E|
Eie - Edk Ve Favorbes Jooek Help 1]

i Back - = [S | 7 Search Favorkes £ ol (W - & 8 m‘g
Sddress (@] bekpefacalost: 41 PEIASPHET _Diata_Tuborid_fl_CSMCaching/SalCachalepandandias aspe v| e
Working with Data Tutorials Home > Caching > Using §0L Cache

Dependencies

Using SQL Cache Dependencies

=it Reporting
Slmpe Display

Dﬁdﬂrﬂm’ﬂ.‘ [- Selecting event flrEd]
‘Farameters

Setting Parameter Catedory | Price

Declarative Use of SQL Cache Dependencies

Walues Update Candel|Chai Taa Beverages ¢19.96
Fiitering Reports Edit Chang Beversges $£19.00
Edit Arisesd Syrup Condiments F10,00

Fiter by Drop-Down
List i # Chef Anton's Cajun

Edit Condiments $26.62

Seagzoning
x:ﬁ;;'m Lails Edit Chef Anton's Gurmbo Mix Condiments $21.35
Grandma's Boysenberry
- Edit Condiments $30,25
Master/Detall oross Spread
Twitr Pages: Edit :::’3.; Bob's Organic Dred Bl $30.00
Rieas DERARE RS Edit Morthwoods Cranberry Sauce Condiments $36.00
Edit Mizhi Kabe Miku Meat/Foultry F97.00
Edit fhara seafood $31.00
1233007
-
&) 8 Local intraret

Figure 8: The ObjectDataSource’s selecting Event Fires Each Time the GridView is Paged, Edited, or
Sorted

As we saw in the Caching Data with the ObjectDataSource tutorial, setting the EnableCaching property to True
causes the ObjectDataSource to cache its data for the duration specified by its CacheDuration property. The
ObjectDataSource also has a SglCacheDependency property, which adds one or more SQL cache dependencies to
the cached data using the pattern:

databaseNamel:tableNamel;databaseName2:tableName2; . ..

Where databaseName is the name of the database as specified in the name attribute of the <add> element in
Web.config, and fableName is the name of the database table. For example, to create an ObjectDataSource that
caches data indefinitely based on a SQL cache dependency against the Northwind’s Products table, set the
ObjectDataSource’s EnableCaching property to True and its SglCacheDependency property to
“NorthwindDB:Products”.

Note: You can use a SQL cache dependency and a time-based expiry by setting EnableCaching to True,
CacheDuration to the time interval, and SqlCacheDependency to the database and table name(s). The
ObjectDataSource will evict its data when the time-based expiry is reached or when the polling system notes
that the underlying database data has changed, whichever happens first.

The GridView in SqlCacheDependencies.aspx displays data from two tables - Products and Categories (the

12 of 22

product’s CategoryName field is retrieved via a JOIN on Categories). Therefore, we want to specify two SQL
cache dependencies: “NorthwindDB:Products;NorthwindDB:Categories”.

% ASPNIT Data_Tutorial_61_CS - Microsoft Visual Studio = =1
Bl Edt Wew Wetste Buid Debug Fomst Bayout Trob Wndow Commundy Help gddns
L e LR - N W Lt I b€ [# shsous e
it u = :
® l'-udrlllq.l'f;dl:il---.ndenrmmmpu = P w
! u # | ProductsDataSourceDecarative Syston, Wb UL WebConbrob Object DataSouwce -
Declarative Use uf_ SQL o 1571 (] ¢
Cache Dapandancies AR
Dot efethiod -
i o Db s et b { Coollat Ficr)
CSEwvents --
focsevents] ((Eratlecaching True |
. FragoleP soing Faks
| Broduct | Categery | Prige Erathefiwstabe Trus
Edit Databound Databound Databound R xaniion
- Hiter o amesters {Collaction)
Edit Databownd Databownd Databound fnsetiisthod
Edit Databownd Databound Ratabound InsertFaramebers {Colaction)
Edit Databound Databound Databound Micimunilosvs P ar st e flame PR
v i b 4D B e b d Ol apma P ar st For mak Shring $0
Edit Databound Databound Databown: Selact
Edit Databioud Databound Databound Salartiethad GetProducts
Edit Databound Databound Databound Salactiurwrntens (Colaction)
Do vt
Edit Databound Databownd Databownd sb_schaDepardsncy sortbaindDi:Froducts SorthaindD B stegones |
Edit Databownd Databownd Databownd SartRowindsFarameterlane startRodndes
= Typehiare ProductsBLL
it Databound Databoend Databownd
B UpchstaHsthod Upidat e rodusct
1a UpdsteParamates {Collaction) -
=
‘Enim:mm“e ProductsiataSo roeDer o TrpeName
s | | The type thet contams the methods specifisd o ths control
) »
[bosign |2 soorce | 4| <eprobioctdetossrondore, +| | Slsokution Expiorer | S Froperties Sy Server Copkore |55 ess e
& B Lt 3] Cumput |5 P Mesiis 4
Plssedy

Figure 9: Configure the ObjectDataSource to Support Caching Using SQL Cache Dependencies on
Products and Categories

After configuring the ObjectDataSource to support caching, revisit the page through a browser. Again, the text “—
Selecting event fired” should appear on the first page visit, but should go away when paging, sorting, or clicking
the Edit or Cancel buttons. This is because after the data is loaded into the ObjectDataSource’s cache, it remains
there until the Products or Categories tables are modified or the data is updated through the GridView.

After paging through the grid and noting the lack of the “—Selecting event fired” text, open a new browser
window and navigate to the Basics tutorial in the Editing, Inserting, and Deleting section
(~/EditInsertDelete/Basics.aspx). Update the name or price of a product. Then, from to the first browser
window, view a different page of data, sort the grid, or click a row’s Edit button. This time, the “—Selecting event
fired” should reappear, as the underlying database data has been modified (see Figure 10). If the text does not
appear, wait a few moments and try again. Remember that the polling service is checking for changes to the
Products table every pol1Time milliseconds, so there is a delay between when the underlying data is updated and
when the cached data is evicted.

13 of 22

B LN ges fgeies Dak b i

Qs s 3 4 d G S amh (e 8 - i []
- e

L T T R i

H i i B+ CAURING * Uneg BOL CEche
Working with Data Tutorials e s

Using SQL Cache

Dependencies

Declarative Use of SQL Cache

Ches ke ic hes.

|| Produg | Gategory | Poce]

£ Qe Cabirabey iy Produects §21 . 00

el Quetg PP Lo P fors Daery i oaucts § 3000

Lz morda smatie] B 00

EmTofu o | e

Ech Geren Shoayu Condimenty. §1%.50

s Paviowas Eiedeciorn B17.4%

LT e Peuitry §3% 00

iy Car v Tigers] [DR -]

e Taatrme CRoooiate BIguRs Cordectori 5 20

B S Rpadnay' i Marmalads: Confectiorn B0
13040 L3

(1) The “- Selecting
Event Fired"” text is not
present, as the data is
being served from the
cache...

e BR gew Fpahe ol e

Q= G - @ @ G e

Forvintas £

e o TR [Vot 41 LA e Codn e 1. 3=

=

Gridview

(2) The Product “Chai
Tea" is Updated from
the Basics.aspx page

Editing and Deleting Data from a

Edlil Cistene :"Lru-r ADoR'E Gl 2 —
Echi Ggiets & :'Wm kgt Spread z 12+ Box jar
i - "
[1] e]

L
Qi = 9 4 @ &

s] i [et o RERSTPNEY Dt o g O3

Working with Data Tutorials

Using SQL Cache
Dependencies

Fgpvie Lk
[S W]

g bl -+ B
F

A e Iy Pt (e B] e

HEmg = Casheng » Uing §0L Cazhe
Depandenties

Declarative Use of SQL Cacha
Dependencies

L Procuet | Category | frice |
E@lChad Tea Bemrages §19.95
Edg Charg Boweragns §19.00
Eal Arvieed Tprud Conderseitt §10.00
Bt Cref Anton’s Cajun Sedsorng Condenents §20662
Bt Chef Arbon’s Gumbd M Condements §21.35
it Grarvdeni's Boysenbeny Speeed Condmants §310 24
Bt Uit Bo's Organic Dried Paary Prociio IO
Edi] Movmhmoady Cranlairy GEite Condemants E16 D0
il M o Pllng Mgt Fouttry ¥37 .00
Eiiif iurs S L KA]

1088k

S ot et

(3) Returning to the
First Page in
SqlCacheDependencies
.aspx redisplays the “-
Selecting Event Fired”
text since the cached
data was evicted when
the Products lable was
updated in Step 2

Figure 10: Modifying the Products Table Evicts the Cached Product Data

14 of 22

Step 6: Programmatically Working with the sqlcacheDependency Class

The Caching Data in the Architecture tutorial looked at the benefits of using a separate Caching Layer in the
architecture as opposed to tightly coupling the caching with the ObjectDataSource. In that tutorial we created a
ProductsCL class to demonstrate programmatically working with the data cache. To utilize SQL cache
dependencies in the Caching Layer, use the SqlCacheDependency class.

With the polling system, a SgqlCacheDependency object must be associated with a particular database and table
pair. The following code, for example, creates a SqlCacheDependency object based on the Northwind database’s
Products table:

Dim productsTableDependency As
New Caching.SglCacheDependency ("NorthwindDB", "Products")

The two input parameters to the SqlCacheDependency’s constructor are the database and table names,
respectively. Like with the ObjectDataSource’s SqlCacheDependency property, the database name used is the
same as the value specified in the name attribute of the <add> element in Web.config. The table name is the actual
name of the database table.

To associate a SqlCacheDependency with an item added to the data cache, use one of the Insert method
overloads that accepts a dependency. The following code adds value to the data cache for an indefinite duration,
but associates it with a SqlCacheDependency on the Products table. In short, value will remain in the cache until
it is evicted due to memory constraints or because the polling system has detected that the Products table has
changed since it was cached.

Dim productsTableDependency As
New Caching.SglCacheDependency ("NorthwindDB", "Products")
Cache.Insert (key,
value,
productsTableDependency,
System.Web.Caching.Cache.NoAbsoluteExpiration,
System.Web.Caching.Cache.NoSlidingExpiration)

The Caching Layer’s ProductsCL class currently caches data from the Products table using a time-based expiry
of 60 seconds. Let’s update this class so that it uses SQL cache dependencies instead. The ProductscCL class’s
AddCacheItem method, which is responsible for adding the data to the cache, currently contains the following
code:

Private Sub AddCachelItem(ByVal rawKey As String, ByVal value As Object)
Dim DataCache As System.Web.Caching.Cache = HttpRuntime.Cache

' Make sure MasterCacheKeyArray(0) is in the cache - if not, add it
If DataCache (MasterCacheKeyArray(0)) Is Nothing Then

DataCache (MasterCacheKeyArray(0)) = DateTime.Now
End If

' Add a CacheDependency
Dim dependency As
New Caching.CacheDependency (Nothing, MasterCacheKeyArray)
DataCache.Insert (GetCacheKey(rawKey), value, dependency,
DateTime.Now.AddSeconds (CacheDuration),
Caching.Cache.NoSlidingExpiration)
End Sub

15 of 22

Update this code to use a SglCacheDependency object instead of the MasterCacheKeyArray cache dependency:

Private Sub AddCachelItem(ByVal rawKey As String, ByVal value As Object)
Dim DataCache As System.Web.Caching.Cache = HttpRuntime.Cache

' Add the SglCacheDependency objects for Products
Dim productsTableDependency As New
Caching.SglCacheDependency ("NorthwindDB", "Products")

DataCache.Insert (GetCacheKey (rawKey), value, productsTableDependency,
Cache.NoAbsoluteExpiration, Caching.Cache.NoSlidingExpiration)
End Sub

To test this functionality, add a GridView to the page beneath the existing ProductsDeclarative GridView. Set
this new GridView’s ID to ProductsProgrammatic and, through its smart tag, bind it to a new ObjectDataSource
named ProductsDataSourceProgrammatic. Configure the ObjectDataSource to use the ProductscCL class, setting
the drop-down lists in the SELECT and UPDATE tabs to GetProducts and UpdateProduct, respectively.

Configure Data Source - ProductsDataSourceP rogrammatic |E|[E| Eg|

Choose a Business Object
=

Select a business object that can be used to retrieve or update data (For example, an object defined in the Bin
or App_Code directory For this application),

Choose your business object;
[ProductscL s [#] Show only data components

Mor thawindT ableAdapters EmployessTableadapter -
Morthwind T ableAdaphers. ProducksT ableAdapher

MorthauindT ablesdapters. SuppliersT ableAdapter

ProducksBLL

PraductsOptimisbicConcurmencyBLL
StaticCache
SuppliersBLL b

coc

Figure 11: Configure the ObjectDataSource to Use the ProductscL Class

16 of 22

Configure Data Source - ProductsDataSourceP rogrammatic

J Define Data Methods
=g
SELECT | UPDATE | INSERT | DELETE |

Chaoss & mathod of the business object that returns daks bo sssociate with the SELECT aperation., The
method can return a DataSet, DataReader, or stronghy-typed collection,

Exarnpbe; GatProducts(Int32 categoryld), returns a DataSst,

Chansz & methaod:

| GetProducts(), returns ProductsDataTable

GetProducts(), returns ProductsDiataTable
GetProducksByCategoryID{Ink32 categorviD), returns ProductsDataTable

GetPraducts(), returns ProductsDataTable

o> | (o [_cons

Figure 12: Select the GetProducts Method from the SELECT Tab’s Drop-Down List

17 of 22

Configure Data Source - ProductsDataSourceP rogrammatic

J Define Data Methods
-

SELECT | UPDATE | INSERT | DELETE |

Chaoss & mathad of the business object to associate wikh the UPDATE operation. The method shoukd
accept a parameter for each property of the data object, or a single parameter which is the data object
ko update.

| Examples: UpdateProduckProduct o), or UpdateProduck(Int32 produckiD, String name, Double price)

Chanse & method:
pdateProduct String productiams, Mullable <Dedmal> u

UpdateProduct{ String productiame, Mullsble <Decimal> uréPrice, Ink32 produckID), returns Boolean
UipelataPraduck{String producthlame, Nullsble <Dedmal> unitPrics, Int32 productID), returns Boolean

P |

Figure 13: Choose the UpdateProduct Method from the UPDATE Tab’s Drop-Down List

After completing the Configure Data Source wizard, Visual Studio will create BoundFields and CheckBoxFields in
the GridView for each of the data fields. Like with the first GridView added to this page, remove all fields but
ProductName, CategoryName, and UnitPrice, and format these fields as you see fit. From the GridView’s smart

tag, check the Enable Paging, Enable Sorting, and Enable Editing checkboxes. As with the
ProductsDataSourceDeclarative ObjectDataSource, Visual Studio will set the

ProductsDataSourceProgrammatic ObjectDataSource’s OldvValuesParameterFormatString property to
original_ {0}. In order for the GridView’s edit feature to work properly, set this property back to {0} (or remove

the property assignment from the declarative syntax altogether).

After completing these tasks, the resulting GridView and ObjectDataSource declarative markup should look like

the following:

<asp:GridView ID="ProductsProgrammatic" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="ProductsDataSourceProgrammatic" AllowPaging="True"
AllowSorting="True">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:TemplateField HeaderText="Product" SortExpression="ProductName">
<EditItemTemplate>
<asp:TextBox ID="ProductName" runat="server"
Text='<%# Bind("ProductName") %>' />
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
ControlToValidate="ProductName" Display="Dynamic"
ErrorMessage="You must provide a name for the product.”

18 of 22

SetFocusOnError="True"
runat="server">*</asp:RequiredFieldvValidator>
</EditItemTemplate>
<ItemTemplate>
<asp:Label ID="Label2" runat="server"
Text="<%# Bind ("ProductName") %>' />
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:TemplateField HeaderText="Price" SortExpression="UnitPrice">
<EditItemTemplate>
$<asp:TextBox ID="UnitPrice" runat="server" Columns="8"
Text="<%# Bind ("UnitPrice", "{0:N2}") %>'></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl" runat="server"
ControlToValidate="UnitPrice" Display="Dynamic"
ErrorMessage="You must enter a valid currency value with no
currency symbols. Also, the value must be greater than
or equal to zero."
Operator="GreaterThanEqual" SetFocusOnError="True"
Type="Currency" ValueToCompare="0">*</asp:CompareValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign="Right" />
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text='<%# Bind("UnitPrice", "{0O:c}") %>' />
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:Gridview>
<asp:0bjectDataSource ID="ProductsDataSourceProgrammatic" runat="server"
OldValuesParameterFormatString="{0}" SelectMethod="GetProducts"
TypeName="ProductsCL" UpdateMethod="UpdateProduct">
<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="productID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

To test the SQL cache dependency in the Caching Layer set a breakpoint in the ProductCL class’s AddCacheItem
method and then start debugging. When you first visit SqlCacheDependencies.aspx, the breakpoint should be hit
as the data is requested for the first time and placed into the cache. Next, move to another page in the GridView or
sort one of the columns. This causes the GridView to requery its data, but the data should be found in the cache
since the Products database table has not been modified. If the data is repeatedly not found in the cache, make
sure there is sufficient memory available on your computer and try again.

After paging through a few pages of the GridView, open a second browser window and navigate to the Basics
tutorial in the Editing, Inserting, and Deleting section (~/EditInsertDelete/Basics.aspx). Update a record
from the Products table and then, from the first browser window, view a new page or click on one of the sorting
headers.

In this scenario you will see one of two things: either the breakpoint will be hit, indicating that the cached data was

evicted due to the change in the database; or, the breakpoint will not be hit, meaning that
SqlCacheDependencies.aspx is now showing stale data. If the breakpoint is not hit, it is likely because the

19 of 22

polling service has not yet fired since the data was changed. Remember that the polling service is checking for
changes to the Products table every pollTime milliseconds, so there is a delay between when the underlying data
is updated and when the cached data is evicted.

Note: This delay is more likely to appear when editing one of the products through the GridView in
SglCacheDependencies.aspx. In the Caching Data in the Architecture tutorial we added the
MasterCacheKeyArray cache dependency to ensure that the data being edited through the ProductscL
class’s UpdateProduct method was evicted from the cache. However, we replaced this cache dependency
when modifying the AddCacheItem method earlier in this step and therefore the ProductscL class will
continue to show the cached data until the polling system notes the change to the Products table. We’ll see
how to reintroduce the MasterCacheKeyArray cache dependency in Step 7.

Step 7: Associating Multiple Dependencies with a Cached Item

Recall that the MasterCacheKeyArray cache dependency is used to ensure that a// product-related data is evicted
from the cache when any single item associated within it is updated. For example, the GetProductsByCategoryID
(category1D) method caches ProductsbDataTables instances for each unique categoryID value. If one of these
objects is evicted, the MasterCacheKeyArray cache dependency ensures that the others are also removed. Without
this cache dependency, when the cached data is modified the possibility exists that other cached product data may
be out of date. Consequently, it’s important that we maintain the MasterCacheKeyArray cache dependency when
using SQL cache dependencies. However, the data cache’s Insert method only allows for a single dependency
object.

Furthermore, when working with SQL cache dependencies we may need to associate multiple database tables as
dependencies. For example, the ProductsDataTable cached in the ProductsCL class contains the category and
supplier names for each product, but the AddCacheItem method only uses a dependency on Products. In this
situation, if the user updates the name of a category or supplier, the cached product data will remain in the cache
and be out of date. Therefore, we want to make the cached product data dependent on not only the Products table,
but on the Categories and Suppliers tables as well.

The AggregateCacheDependency class provides a means for associating multiple dependencies with a cache item.
Start by creating an AggregateCacheDependency instance. Next, add the set of dependencies using the
AggregateCacheDependency’s Add method. When inserting the item into the data cache thereafter, pass in the
AggregateCacheDependencyinMBnce.VVhCHCUU/OfﬂnaAggregateCacheDependencyinMBnce’SdependeanE
change, the cached item will be evicted.

The following shows the updated code for the productscCL class’s AddCacheItem method. The method creates the
MasterCacheKeyArray cache dependency along with SqlCacheDependency objects for the Products,
Categories,andSupplierstabkm.Thﬁsean3aﬂconﬂﬁnedinu)OneAggregateCacheDependency(ﬂﬁectnanwd
aggregateDependencies, which is then passed into the Insert method.

Private Sub AddCachelItem(ByVal rawKey As String, ByVal value As Object)
Dim DataCache As System.Web.Caching.Cache = HttpRuntime.Cache

' Make sure MasterCacheKeyArray(0) is in the cache - if not, add it.
If DataCache (MasterCacheKeyArray(0)) Is Nothing Then

DataCache (MasterCacheKeyArray(0)) = DateTime.Now
End If

'Create the CacheDependency
Dim masterCacheKeyDependency As
New Caching.CacheDependency (Nothing, MasterCacheKeyArray)

20 of 22

' Add the SglCacheDependency objects for Products, Categories, and Suppliers
Dim productsTableDependency As
New Caching.SglCacheDependency ("NorthwindDB", "Products")
Dim categoriesTableDependency As
New Caching.SglCacheDependency ("NorthwindDB", "Categories")
Dim suppliersTableDependency As
New Caching.SglCacheDependency ("NorthwindDB", "Suppliers")

' Create an AggregateCacheDependency

Dim aggregateDependencies As New Caching.AggregateCacheDependency ()

aggregateDependencies.Add (masterCacheKeyDependency, productsTableDependency,
categoriesTableDependency, suppliersTableDependency)

DataCache.Insert (GetCacheKey (rawKey), value, aggregateDependencies,
Caching.Cache.NoAbsoluteExpiration, Caching.Cache.NoSlidingExpiration)
End Sub

Test this new code out. Now changes to the Products, Categories, or Suppliers tables cause the cached data to
be evicted. Moreover, the ProductsCL class’s UpdateProduct method, which is called when editing a product
through the GridView, evicts the MasterCacheKeyArray cache dependency, which causes the cached
ProductsDataTable to be evicted and the data to be re-retrieved on the next request.

Note: SQL cache dependencies can also be used with output caching. For a demonstration of this
functionality, see: Using ASP.NET Output Caching with SQL Server.

Summary

When caching database data, the data will ideally remain in the cache until it is modified in the database. With
ASP.NET 2.0, SQL cache dependencies can be created and used in both declarative and programmatic scenarios.
One of the challenges with this approach is in discovering when the data has been modified. The full versions of
Microsoft SQL Server 2005 provide notification capabilities that can alert an application when a query result has
changed. For the Express Edition of SQL Server 2005 and older versions of SQL Server, a polling system must be
used instead. Fortunately, setting up the necessary polling infrastructure is fairly straightforward.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following resources:

Using Query Notifications in Microsoft SQL Server 2005
Creating a Query Notification

Caching in ASP.NET with the SqlcacheDependency Class
ASP.NET SQL Server Registration Tool (aspnet_regsgl.exe)
OveﬂdewlOqulCacheDependency

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

21 of 22

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Marko Rangel,
Teresa Murphy, and Hilton Giesenow. Interested in reviewing my upcoming MSDN articles? If so, drop me a line
at mitchell@4GuysFromRolla.com.

22 of 22

