This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Nested Data
Web Controls

Introduction

In addition to static HTML and databinding syntax, templates can also include Web controls and User Controls.
These Web controls can have their properties assigned via declarative, databinding syntax, or can be accessed
programmatically in the appropriate server-side event handlers.

By embedding controls within a template, the appearance and user experience can be customized and improved
upon. For example, in the Using TemplateFields in the GridView Control tutorial, we saw how to customize the
GridView’s display by adding a Calendar control in a TemplateField to show an employee’s hire date; in the
Adding Validation Controls to the Editing and Inserting Interfaces and Customizing the Data Modification
Interface tutorials, we saw how to customize the editing and inserting interfaces by adding validation controls,
TextBoxes, DropDownLists, and other Web controls.

Templates can also contain other data Web controls. That is, we can have a Datal ist that contains another DataList
(or Repeater or GridView or DetailsView, and so on) within its templates. The challenge with such an interface is
binding the appropriate data to the inner data Web control. There are a few different approaches available, ranging
from declarative options using the ObjectDataSource to programmatic ones.

In this tutorial we will explore how to use a Repeater nested inside another Repeater. The outer Repeater will
contain an item for each category in the database, displaying the category’s name and description. Each category
item’s inner Repeater will display information for each product belonging to that category (see Figure 1) in a
bulleted list. Our examples will illustrate how to populate the inner Repeater both declaratively and
programmatically.

1 of 10

2 Untitled Page - Microsoft Internel Explorer
| ple Edt Yew Fgvontes Jook Help

= & f D sewch fhFavorkes B (-

wF s

{ iefress | @) bitp: flocalost-4550]Code/DiskaistRepeaterBasis NestedC onirols. asps

Basic Reporting
Simple Display

Declarative
Farameters

Setting Parameter
Waklies

Filtering Reports
Fliter by Drop-Down
List

Macter-Details-
D=taks

‘Master/Detall Across
Two Pages

Details of Selected

Formaf ':.‘o‘lors

Custom Contentin a
Gridview

Custom: Content in a
Detalis\iew

Custom Contentin a
Formifew

Surmmary Data I
Footer

Wnrklng with Data Tutorials

nd Repeater > Hasting aRepeater
- vﬂthlnaﬂntau:t

Nested DataBmdmg

Beverages

Soft drinks, coffees, teas, beers, and alas

Chai (£19.36)

Chang (£19.00)

Guarand Fantastica (§4.50)
Sasquatch Ale ($14.00)
Steeleye Stout (£18.00)
Cite de Blaye ($253.50)
Chartreuse verte (£18.00)
Ipoh Coffee ($46.00)
Laughing Lumberjack Lager ($14.00)
Outback Lager ($15.00)
Rhonbrau Klosterbier (£7.75)
Lakkalikodri (£18.00)

Acma Tea ($19,95)

Acme Coffee ($24.95)

Acme Soda ($1.45)

Acme Syrup (£19.50)

- L LN L " & L] L | - @ L

Condiments
Sweet and savory sauces, relishes, spreads, and seasonings

Aniseed Syrup ($10.00)

Chef Anton's Cajun Seasoning ($26.62)
Chef Anton's Gumbo Mix (£21,35)
Grandma's Boysenberry Spread (£30.25)
Northwoods Cranberry Sauce ($36,00)

M Ohoasnaas FE1C OO

o B oR @ @

% L pcal intranat:

Figure 1: Each Category, Along with its Products, are Listed

Step 1: Creating the Category Listing

When building a page that uses nested data Web controls, I find it helpful to design, create, and test the outermost
data Web control first, without even worrying about the inner nested control. Therefore, let’s start by walking
through the steps necessary to add a Repeater to the page that lists the name and description for each category.

Start by opening the NestedControls.aspx page in the DataListRepeaterBasics folder and add a Repeater

control to the page, setting its ID property to CategoryList. From the Repeater’s smart tag, choose to create a new
ObjectDataSource named CategoriesDataSource.

20of 10

Data Source Configuration Wizard

Choose a Data Source Type

Where will the application get data from?

éjkﬁﬁiigi‘%

Arcess Database Site Map ML File
Database

Connect to a middle-tier business object or DakaSet in the Binor App_Code directory for the application,

Specify an [0 For the data source:
|Categnri&iDataSm.|rce

ok || cancel |

Figure 2: Name the New ObjectDataSource CategoriesDataSource

Configure the ObjectDataSource so that it pulls its data from the CategoriesBLL class’s GetCategories method.

Configure Data Source - CategoriesDataSource

% Define Data Methods

SELECT | UPDATE | INSERT | DELETE |

Choose & method of the business objeck thak returns dats ko associake with the SELECT operation. The
method can return a Dataset, DataReader, or strongly-tvped colleckion,

Exarple; GetProducts(Ink3Z2 categoryid), returns a DataSeat,

Choose a method:

!GﬂtCategu-riesﬂ, rekumns CategoriesDataTable W
ebCateqories!), returns CaktegoriesDataTable
GﬂCa&gmyB&CategmyID{Intaz cakeqorylD), returns CategoriesDakaT able
| GetCateoories(), retums CategoriesDataTable |

flek = [Einish J[Cancel]

30f 10

Figure 3: Configure the ObjectDataSource to Use the categoriesBLL Class’s GetCategories Method

To specify the Repeater’s template content we need to go to the Source view and manually enter the declarative
syntax. Add an ItemTemplate that displays the category’s name in an <h4> element and the category’s description
in a paragraph element (<p>). Furthermore, let’s separate each category with a horizontal rule (<hr>). After making
these changes your page should contain declarative syntax for the Repeater and ObjectDataSource that is similar to
the following:

<asp:Repeater ID="CategoryList" DataSourceID="CategoriesDataSource"
EnableViewState="False" runat="server">
<ItemTemplate>
<h4><%# Eval ("CategoryName") $%$></h4>
<p><%$# Eval ("Description") $></p>
</ItemTemplate>

<SeparatorTemplate>
<hr />
</SeparatorTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

Figure 4 shows our progress when viewed through a browser.

A Untitled Pape - Microsoft Internct Explorer :f:' rE” r:ﬁﬁl 5_(
Fle Edt View Favortes Took Heb

Ty

¢ D - HE fa| Foeach frFavoiies £ £33 A (W] - & e B

Address (] hetpeflocalhost 4SS0/ Code/Dat allsti epaaterBlasicsNestedControls, aspx i &

A

DataList and Repeater > Mesting a
Repeater within a DataList

Working with Data Tutorials ~ Home> isplaving bata with the

Horme

- Nested DataBinding
Beverages
Dedarative
Fargmeters Saft drinks, coffeas, teas, baers, and ales
Setting Parameter
WValues
Condiments

Filtering Reports

Filter by Drop-Dowr
List
Master-Detals-
Details
Master/Detail Across:
Two Pages

Detalls of Selected

Sweet and savory sauces, relishes, spreads, and seasonings

Confections

Deszarts, candies, and sweet breads

Dairy Products

Fhaacoss

&l i Local inkranet

Figure 4: Each Category’s Name and Description is Listed, Separated by a Horizontal Rule

4 of 10

Step 2: Adding the Nested Product Repeater

With the category listing complete, our next task is to add a Repeater to the CategoryList’s ItemTemplate that
displays information about those products belonging to the appropriate category. There are a number of ways we
can retrieve the data for this inner Repeater, two of which we’ll explore shortly. For now, let’s just create the
products Repeater within the CategoryList Repeater’s ItemTemplate. Specifically, let’s have the product
Repeater display each product in a bulleted list with each list item including the product’s name and price.

To create this Repeater we need to manually enter the inner Repeater’s declarative syntax and templates into the
CategoryList’s ItemTemplate. Add the following markup within the categoryList Repeater’s ItemTemplate:

<asp:Repeater ID="ProductsByCategoryList" EnableViewState="False"
runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%$# Eval ("ProductName") $%$>
(<%# Eval ("UnitPrice", "{0:C}") %>)</1li>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

Step 3: Binding the Category-Specific Products to the
ProductsByCategoryList Repeater

If you visit the page through a browser at this point, your screen will look the same as in Figure 4 because we’ve
yet to bind any data to the Repeater. There are a few ways that we can grab the appropriate product records and
bind them to the Repeater, some more efficient than others. The main challenge here is getting back the appropriate
products for the specified category.

The data to bind to the inner Repeater control can either be accessed declaratively, through an ObjectDataSource in
the CategoryList Repeater’s ItemTemplate, or programmatically, from the ASP.NET page’s code-behind page.
Similarly, this data can be bound to the inner Repeater either declaratively - through the inner Repeater’s
DataSourceID property or through declarative databinding syntax — or programmatically — by referencing the
inner Repeater in the CategoryList Repeater’s ItemDataBound event handler, programmatically setting its
DataSource property, and calling its DataBind () method. Let’s explore each of these approaches.

Accessing the Data Declaratively with an
ObjectDataSource Control and the ItembataBound
Event Handler

Since we’ve used the ObjectDataSource extensively throughout this tutorial series, the most natural choice for
accessing data for this example is to stick with the ObjectDataSource. The ProductsBLL class has a
GetProductsByCategoryID (categoryID) method that returns information about those products that belong to the
specified categoryrp. Therefore, we can add an ObjectDataSource to the CategoryList Repeater’s
ItemTemplate and configure it to access its data from this class’s method.

50of 10

Unfortunately, the Repeater doesn’t allow its templates to be edited through the Design view so we need to add the
declarative syntax for this ObjectDataSource control by hand. The following syntax shows the CategoryList
Repeater’s ItemTemplate after adding this new ObjectDataSource (ProductsByCategoryDataSource):

<h4><%# Eval ("CategoryName") $%$></h4>
<p><%$# Eval ("Description") $></p>

<asp:Repeater ID="ProductsByCategoryList" EnableViewState="False"
DataSourceID="ProductsByCategoryDataSource" runat="server">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<%$# Eval ("ProductName") $%$> -
sold as <%# Eval ("QuantityPerUnit") %> at
<%# Eval ("UnitPrice", "{0:C}") %></1li>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="ProductsByCategoryDataSource" runat="server"
SelectMethod="GetProductsByCategoryID" TypeName="ProductsBLL">
<SelectParameters>
<asp:Parameter Name="CategoryID" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

When using the ObjectDataSource approach we need to set the ProductsByCategoryList Repeater’s
DataSourceID property to the 1D of the ObjectDataSource (ProductsByCategoryDataSource). Also, notice that
our ObjectDataSource has an <asp:Parameter> element that specifies the category1p value that will be passed
into the GetProductsByCategoryID (categoryID) method. But how do we specify this value? Ideally, we’d be
able to just set the Defaultvalue property of the <asp:Parameter> element using databinding syntax, like so:

<asp:Parameter Name="CategoryID" Type="Int32"
DefaultValue='<%# Eval ("CategoryID")' />

Unfortunately, databinding syntax is only valid in controls that have a DataBinding event. The Parameter class
lacks such an event and therefore the above syntax is illegal and will result in a runtime error.

To set this value, we need to create an event handler for the categoryList Repeater’s ItemDataBound event.
Recall that the TtemDataBound event fires once for each item bound to the Repeater. Therefore, each time this
event fires for the outer Repeater we can assign the current CategoryID value to the
ProductsByCategoryDataSource ObjectDataSource’s CategoryID parameter.

Create an event handler for the CategoryList Repeater’s ItemDataBound event with the following code:

Protected Sub CategoryList ItemDataBound(sender As Object, e As RepeaterItemEventArgs)
Handles CategoryList.ItemDataBound
If e.Item.ItemType = ListItemType.AlternatingItem _
OrElse e.Item.ItemType = ListItemType.Item Then
' Reference the CategoriesRow object being bound to this RepeaterItem
Dim category As Northwind.CategoriesRow = _
CType (CType (e.Item.Dataltem, System.Data.DataRowView) .Row,
Northwind.CategoriesRow)
' Reference the ProductsByCategoryDataSource ObjectDataSource
Dim ProductsByCategoryDataSource As ObjectDataSource = _

6 0of 10

CType (e.Item.FindControl ("ProductsByCategoryDataSource"),
ObjectDataSource)

' Set the CategoryID Parameter value
ProductsByCategoryDataSource.SelectParameters ("CategoryID") .DefaultvValue =
category.CategoryID.ToString ()
End If
End Sub

This event handler starts by ensuring that we’re dealing with a data item rather than the header, footer, or separator
item. Next, we reference the actual categoriesRow instance that has just been bound to the current RepeaterItem.
Finally, we reference the ObjectDataSource in the ItemTemplate and assign its CategoryID parameter value to
the CategoryID of the current RepeaterTItem,

With this event handler, the ProductsByCategoryList Repeater in each RepeaterIten is bound to those products
in the RepeaterItem’s category. Figure 5 shows a screen shot of the resulting output.

X Untilled Page - Microsoft Internet Explorer]
| ple ER Yew Fgvorites ook Help :
% O HE G Pt Frorte: @ -0 B0 OWBE
Agdress é]m:;&m:m_:mba&wmummﬂwdﬁm 5! ‘-'*J
Custom Content in & ; =
Cotaieton Condiments
Custorn Content in a Sweet and savory sauces, relishes, spreads, and seasonings
Formiview
Surnrmary Diata in + Aniseed Syrup ($10.00)
Footer + Chef Anton's Cajun Seasoning ($26.62)
st anid + Chef Anton's Gumbo Mis ($21.35)
i T + Grandma's Boysenberry Spread ($30.25)
+ Northwoods Cranberry Sauce {$36.00)
+ Genen Shouyu (15507
Data Modification + Cula Malacca ($19.45)
Events « Sirop d'érable ($28.50)
Error Handiing +* Louisiana Fiery Hot Pepper Sauce ($21.05)
+ Louisiana Hot Spiced Okra {§17.00)
Adding Data Entry « Original Frankfurter griine SoBe (£12.00)
Validation
Customize the User
Interface .
. Confections
Opumistic
Emmn‘anw_ Desserts, candies, and sweet breads
Confirm On Delete
) « Pavilova (§17.45)
I
E:g:mﬂ?g + Teatime Chocolate Biscuits ($£59.20)
i " __ + Sir Rodney's Marmalade ($81.00%
Paging and Sorting + 5ir Rodney's Scones (§10.00}
Em'ple Paging & « MuNuCa Nufi-Nougat-Creme (§14.00)
| B cectins Evamnlac 4 -
] Doee Wl Locdl irsnet

Figure 5: The Outer Repeater Lists Each Category; the Inner One Lists the Products for that Category

Accessing the Products by Category Data
Programmatically

Instead of using an ObjectDataSource to retrieve the products for the current category, we could create a method in
our ASP.NET page’s code-behind class (or in the 2pp_Code folder or in a separate Class Library project) that
returns the appropriate set of products when passed in a CategoryID. Imagine that we had such a method in our

7 of 10

ASP.NET page’s code-behind class and that it was named GetProductsInCategory (categoryID). With this
method in place we could bind the products for the current category to the inner Repeater using the following
declarative syntax:

<asp:Repeater runat="server" ID="ProductsByCategoryList" EnableViewState="False"
DataSource="'<%# GetProductsInCategory (CType (Eval ("CategoryID"), Integer)) %>'>

</asp:Repeater>

The Repeater’s DatasSource property uses the databinding syntax to indicate that its data comes from the
GetProductsInCategory (categoryID) method. Since Eval ("CategoryID") returns a value of type Object, we
cast the object to an Integer before passing it into the GetProductsInCategory (categoryID) method. Note that
the categoryID accessed here via the databinding syntax is the CategoryID in the oufer Repeater
(CategoryList), the one that’s bound to the records in the Categories table. Therefore, we know that
CategoryID cannot be a database NULL value, which is why we can blindly cast the Eval method without checking
if we’re dealing with a DBNul1.

With this approach, we need to create the GetProductsInCategory (categoryID) method and have it retrieve the
appropriate set of products given the supplied categoryrp. We can do this by simply returning the
ProductsDataTable returned by the ProductsBLL class’s GetProductsByCategoryID (categoryID) method.
Let’s create the GetProductsInCategory (categoryID) method in the code-behind class for our
NestedControls.aspx page. Do so using the following code:

Protected Function GetProductsInCategory (ByVal categoryID As Integer)
As Northwind.ProductsDataTable

' Create an instance of the ProductsBLL class
Dim productAPI As ProductsBLL = New ProductsBLL ()

' Return the products in the category
Return productAPI.GetProductsByCategoryID (categoryID)
End Function

This method simply creates an instance of the ProductsBLL method and returns the results of the
GetProductsByCategorylID (categoryID) method. Note that the method must be marked Public or Protected;
if the method is marked Private, it will not be accessible from the ASP.NET page’s declarative markup.

After making these changes to use this new technique, take a moment to view the page through a browser. The
output should be identical to the output when using the ObjectDataSource and ItembataBound event handler
approach (refer back to Figure 5 to see a screen shot).

Note: It may seem like busywork to create the GetProductsInCategory (categoryID) method in the ASP.NET
page’s code-behind class. After all, this method simply creates an instance of the ProductsBLL class and returns
the results of its GetProductsByCategoryID (categoryID) method. Why not just call this method directly from
the databinding syntax in the inner Repeater, like: DataSource="'<%# ProductsBLL.GetProductsByCategoryID
(CType (Eval ("CategoryID"), Integer)) %>'? Although this syntax won’t work with our current
implementation of the ProductsBLL class (since the GetProductsByCategoryID (categoryID) method is an
instance method), you could modify ProductsBLL to include a static GetProductsByCategoryID (categoryID)
method or have the class include a static ITnstance () method to return a new instance of the ProductsBLL class.

While such modifications would eliminate the need for the GetProductsInCategory (categoryID) method in the

ASP.NET page’s code-behind class, the code-behind class method gives us more flexibility in working with the
data retrieved, as we’ll see shortly.

8of 10

Retrieving All of the Product Information at Once

The two pervious techniques we’ve examined grab those products for the current category by making a call to the
ProductsBLL class’s GetProductsByCategoryID (categoryID) method (the first approach did so through an
ObjectDataSource, the second through the GetProductsInCategory (category1p) method in the code-behind
class). Each time this method is invoked, the Business Logic Layer calls down to the Data Access Layer, which
queries the database with a SQL statement that returns rows from the Products table whose CategoryID field
matches the supplied input parameter.

Given N categories in the system, this approach nets N + 1 calls to the database — one database query to get all of
the categories and then N calls to get the products specific to each category. We can, however, retrieve all the
needed data in just two database calls — one call to get all of the categories and another to get all of the products.
Once we have all of the products, we can filter those products so that only the products matching the current
CategoryID are bound to that category’s inner Repeater.

To provide this functionality, we only need to make a slight modification to the GetProductsInCategory
(category1D) method in our ASP.NET page’s code-behind class. Rather than blindly returning the results of the
ProductsBLL class’s GetProductsByCategoryID (categoryID) method, we can instead first access all of the
products (if they haven’t been accessed already) and then return just the filtered view of the products based on the
passed-in CategoryID.

Private allProducts As Northwind.ProductsDataTable = Nothing

Protected Function GetProductsInCategory(ByVal categoryID As Integer)
As Northwind.ProductsDataTable

' First, see if we've yet to have accessed all of the product information
If allProducts Is Nothing Then

Dim productAPI As ProductsBLL = New ProductsBLL ()

allProducts = productAPI.GetProducts ()
End If

' Return the filtered view
allProducts.DefaultView.RowFilter = "CategoryID = " & categoryID
Return allProducts

End Function

Note the addition of the page-level variable, al1products. This holds information about all of the products and is
populated the first time the GetProductsInCategory (category1D) method is invoked. After ensuring that the
allProducts object has been created and populated, the method filters the DataTable’s results such that only those
rows whose CategoryID matches the specified CategoryID are accessible. This approach reduces the number of
times the database is accessed from N + 1 down to two.

This enhancement does not introduce any change to the rendered markup of the page, nor does it bring back fewer
records than the other approach. It simply reduces the number of calls to the database.

Note: One might intuitively reason that reducing the number of database accesses would assuredly improve
performance. However, this might not be the case. If you have a large number of products whose cCategoryIDis
NULL, for example, then the call to the GetProducts method returns a number of products that are never displayed.
Moreover, returning all of the products can be wasteful if you’re only showing a subset of the categories, which
might be the case if you have implemented paging.

As always, when it comes to analyzing the performance of two techniques, the only surefire measure is to run
controlled tests tailored for your application’s common case scenarios.

90of 10

Summary

In this tutorial we saw how to nest one data Web control within another, specifically examining how to have an
outer Repeater display an item for each category with an inner Repeater listing the products for each category in a
bulleted list. The main challenge in building a nested user interface lies in accessing and binding the correct data to
the inner data Web control. There are a variety of techniques available, two of which we examined in this tutorial.
The first approach examined used an ObjectDataSource in the outer data Web control’s ItemTemplate that was
bound to the inner data Web control through its bataSourceID property. The second technique accessed the data
via a method in the ASP.NET page’s code-behind class. This method can then be bound to the inner data Web
control’s DataSource property through databinding syntax.

While the nested user interface examined in this tutorial used a Repeater nested within a Repeater, these techniques
can be extended to the other data Web controls. You can nest a Repeater within a GridView, or a GridView within
a Datal.ist, and so on.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Zack Jones
and Liz Shulok. Interested in reviewing my upcoming articles? If so, drop me a line at
mitchell@4guysfromrolla.com.

10 of 10

