This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Master/Detail
Using a Bulleted List of Master Records with a
Details DataList

Introduction

In the preceding tutorial we looked at how to separate a master/detail report across two pages. In the “master”
page we used a Repeater control to render a bulleted list of categories. Each category name was a hyperlink
that, when clicked, would take the user to the “details” page, where a two-column DataList showed those
products belonging to the selected category.

In this tutorial we’ll compress the two-page tutorial into a single page, showing a bulleted list of category names
on the left side of the screen with each category name rendered as a LinkButton. Clicking one of the category
name LinkButtons induces a postback and binds the selected category’s products to a two-column DataList on
the right of the screen. In addition to displaying each category’s name, the Repeater on the left shows how many
total products there are for a given category (see Figure 1).

B Uinlitied Hage - Microsadt Infermed Caplorer
Be EX Yew Fyorber Jook e
) Bach. =

w8 et o shost: 304 e Dt st s sherFibarirqUCat s abindPrack it epon

Working with Data Tutorials

W Saanh Favortes &9 o -

..-ﬂc.-.

Home » Mazter Datall Reports with the Datalist and Bepester > Maser Detall
on One Page

Categories & Products Master/Detail on One Page

manpimup Driad

Unecla Bobs Organic Drisd Paars Anpilus

Suppled by Grandma Kely's Homestead
FI0.00

Suppled Dy O'day, Mate
$53.00

Filtar by Drog-Down
List

Todu

Suppliod by Mayumi's
F23.25

Rossle Bauscrkraut

Langlife Tals

Supplad by Todyo
Tradars
FLLA0

Supphad by Phtzor Labemimittelgrobmankie

1;'5 0

Patade nf Salartart ™
&1 el Local ntraret

Figure 1: The Category’s Name and Total Number of Products are Displayed on the Left

Step 1: Displaying a Repeater in the Left Portion of
the Screen

For this tutorial we need to have the bulleted list of categories appear to the left of the selected category’s
products. Content within a web page can be positioned using standard HTML elements — paragraph tags, non-
breaking spaces, <table>s, and so on — or through cascading stylesheet (CSS) techniques. All of our tutorials

1 of 18

thus far have used CSS techniques for positioning. When we built the navigation user interface in our master
page in the Master Pages and Site Navigation tutorial we used absolute positioning, indicating the precise pixel
offset for the navigation list and the main content. Alternatively, CSS can be used to position one element to the
right or left of another through floating. We can have the bulleted list of categories appear to the left of the
selected category’s products by floating the Repeater to the left of the DataList

Open the categoriesAndProducts.aspx page from the bataListRepeaterFiltering folder and add to the
page a Repeater and a DataList. Set the Repeater’s 1D to categories and the DataList’s to categoryProducts.
Go to the Source view and put the Repeater and DataList controls within their own <div> elements. That is,
enclose the Repeater within a <div> element first and then the DataList in its own <div> element directly after
the Repeater. Your markup at this point should look similar to the following:

<div>
<asp:Repeater ID="Categories" runat="server">
</asp:Repeater>

</div>

<div>
<asp:Datalist ID="CategoryProducts" runat="server">
</asp:DatalList>

</div>

To float the Repeater to the left of the DataList, we need to use the f10at CSS style attribute, like so:

<div style="float: left; width: 33%; padding-right: 10px;">
Repeater

</div>

<div>
Datalist

</div>

The f1oat: left; floats the first <div> element to the left of the second one. The width and padding-right
settings indicate the first <div>’s width and how much padding is added between the <div> element’s content
and its right margin. For more information on floating elements in CSS check out the Floatutorial.

Rather than specify the style setting directly through the first <p> element’s style attribute, let’s instead create
anew CSS class in Styles.css named FloatLeft:

.FloatLeft

{
float: left;
width: 33%;
padding-right: 10px;

Then we can replace the <div style="float: left;"> Wwith<div class="FloatLeft">.

After adding the CSS class and configuring the markup in the categoriesAndProducts.aspx page, go to the
Designer. You should see the Repeater floating to the left of the DataList (although right now both just appear
as gray boxes since we’ve yet to configure their data sources or templates).

20f18

#2 Code - Microzolt Visual Studic e =1 =0
B (ot Yew ‘Webgho [uld [ebug Foemat Layout Jooks . Window Commondly Help | Adding

RN B R R plo o | b) PR Producs Categores i
B 7 0 LB = =
» i ”P;m_fm.%-'n.hhlm-aid . -I:ul:\;l-ﬂ;‘!ma---.l:;ﬂ;ﬂ!i-mi -D-\;-lluh.lﬂ-ﬂnlm—l’nﬂh{‘ti-mw - X .-LJI
. £
Coavbent - Cortentl mm} -
Categories & Products Master/Detail
on One Page :
i3] "

m-fw»;]bdnl.lit - CatagoryProducts
Swaltch Lo soUPCH viewr [0 o0 the Rigik-chck o chooms the Ed Templates back to &0t emplate

conknols bemplates. Conend,
Tha Jherm T amplabs i raquined,

o |

w :.
»
---ine-sm-: = Source by | coffrcofbantiooniant] > | b Hostislt> E:';F-’_M-"_‘w-“—;; L
& ';. Lat | e ks i.' ol Fodts |
Fasdy

Figure 2: The Repeater is Floated to the Left of the DataList

Step 2: Determining the Number of Products for
Each Category

With the Repeater and DataList’s surrounding markup complete, we’re ready to bind the category data to the

Repeater control. However, as the bulleted list of categories in Figure 1 shows, in addition to each category’s

name we also need to display the number of products associated with the category. To access this information
we can either:

e Determine this information from the ASP.NET page’s code-behind class. Given a particular
categoryID we can determine the number of associated products by calling the ProductsBLL class’s
GetProductsByCategoryID (categoryID) method. This method returns a ProductsbataTable object
whose count property indicates how many ProductsRows exists, which is the number of products for the
specified categoryrp. We can create an TtemDataBound event handler for the Repeater that, for each
category bound to the Repeater, calls the ProductsBLL class’s Get ProductsByCategoryID
(category1D) method and includes its count in the output.

e Update the categoriesDataTable in the Typed DataSet to include a NumberOfProducts column. We
can then update the Getcategories () method in the categoriesbataTable to include this information
or, alternatively, leave Getcategories () as-is and create a new CategoriesDataTable method called
GetCategoriesAndNumberOfProducts ().

Let’s explore both of these techniques. The first approach is simpler to implement since we don’t need to update
the Data Access Layer; however, it requires more communications with the database. The call to the
ProductsBLL class’s GetProductsByCategoryID (categoryID) method in the ItemDataBound event handler
adds an extra database call for each category displayed in the Repeater. With this technique there are N + 1
database calls, where N is the number of categories displayed in the Repeater. With the second approach, the
product count is returned with information about each category from the categoriesBLL class’s
GetCategories () (Or GetCategoriesAndNumberOfProducts ()) method, thereby resulting in just one trip to
the database.

30f 18

Determining the Number of Products in the
ItemDataBound Event Handler

Determining the number of products for each category in the Repeater’s ItembataBound event handler does not
require any modifications to our existing Data Access Layer. All modifications can be made directly within the
CategoriesAndProducts.aspx page. Start by adding a new ObjectDataSource named
CategoriesDataSource via the Repeater’s smart tag. Next, configure the categoriesDataSource
ObjectDataSource so that it retrieves its data from the categoriesBLL class’s GetCategories () method.

Configure Data Source - CategoriesDataSource

J Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Chaose amethod:
?GﬂtCateguries{L retumns CategoriesDataTable v |

GetCateqories(}, refurns CategoriesDataTab
GebCateqoryByCategory ID(INt32 cakegoryID), returns CateqoriesDataT able

| GekCakenaries(), returns CategoriasDataTable

o> |] et]

Figure 3: Configure the ObjectDataSource to Use the CategoriesBLL class’s GetCategories () Method

Each item in the categories Repeater needs to be clickable and, when clicked, cause the categoryProducts
DataList to display those products for the selected category. This can be accomplished by making each category
a hyperlink, linking back to this same page (CategoriesAndProducts.aspx), but passing the categoryID
through the querystring, much like we saw in the previous tutorial. The advantage of this approach is that a page
displaying a particular category’s products can be bookmarked and indexed by a search engine.

Alternatively, we can make each category a LinkButton, which is the approach we’ll use for this tutorial. The
LinkButton renders in the user’s browser as a hyperlink but, when clicked, induces a postback; on postback, the
DataList’s ObjectDataSource needs to be refreshed to display those products belonging to the selected category.
For this tutorial, using a hyperlink makes more sense than using a LinkButton; however, there may be other
scenarios where using a LinkButton is more advantageous. While the hyperlink approach would be ideal for this
example, let’s instead explore using the LinkButton. As we’ll see, using a LinkButton introduces some
challenges that would not otherwise arise with a hyperlink. Therefore, using a LinkButton in this tutorial will
highlight these challenges and help provide solutions for those scenarios where we may want to use a

4 of 18

LinkButton instead of a hyperlink.

Note: You are encouraged to repeat this tutorial using a HyperLink control or <a> element In lieu of the
LinkButton.

The following markup shows the declarative syntax for the Repeater and the ObjectDataSource. Note that the
Repeater’s templates render a bulleted list with each item as a LinkButton:

<asp:Repeater ID="Categories" runat="server" DataSourcelD="CategoriesDataSource">
<HeaderTemplate>

</HeaderTemplate>

<ItemTemplate>
<asp:LinkButton runat="server" ID="ViewCategory"></asp:LinkButton></1i>
</ItemTemplate>

<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

Note: For this tutorial the Repeater must have its view state enabled (note the omission of the
EnablevViewState="False" from the Repeater’s declarative syntax). In step 3 we’ll be creating an event
handler for the Repeater’s 1temCcommand event in which we’ll be updating the DataList’s ObjectDataSource’s
Selectparameters collection. The Repeater’s 1temCommand, however, won’t fire if view state is disabled. See
A Stumper of an ASP.NET Question and its solution for more information on why view state must be enabled
for a Repeater’s ItemCommand event to fire.

The LinkButton with the 1D property value of viewCategory does not have its Text property set. If we had just
wanted to display the category name, we would have set the Text property declaratively, through databinding
syntax, like so:

<asp:LinkButton runat="server" ID="ViewCategory"
Text='<%# Eval ("CategoryName") %>' />

However, we want to show both the category’s name and the number of products belonging to that category.
This information can be retrieved from the Repeater’s 1tembataBound event handler by making a call to the
ProductBLL class’s GetCategoriesByProductID (categoryID) method and determining how many records
are returned in the resulting ProductsbataTable, as the following code illustrates:

Protected Sub Categories ItemDataBound(sender As Object, e As RepeaterItemEventArgs)
' Make sure we're working with a data item...
If e.Item.ItemType = ListItemType.Item OrElse
e.Item.ItemType = ListItemType.AlternatingItem Then

' Reference the CategoriesRow instance bound to this RepeaterItem
Dim category As Northwind.CategoriesRow = _
CType (CType (e.Item.Dataltem, System.Data.DataRowView) .Row,
Northwind.CategoriesRow)
' Determine how many products are in this category
Dim productsAPI As New NorthwindTableAdapters.ProductsTableAdapter

50f 18

Dim productCount As Integer = _
productsAPI.GetProductsByCategoryID (category.CategoryID) .Count

' Reference the ViewCategory LinkButton and set its Text property
Dim ViewCategory As LinkButton = _

CType (e.Item.FindControl ("ViewCategory"), LinkButton)
ViewCategory.Text =

String.Format ("{0} ({1:NO})", category.CategoryName, productCount)

End If
End Sub

We start out by ensuring that we’re working with a data item (one whose ITtemType iS Item Or
AlternatingItem) and then reference the categoriesRow instance that has just been bound to the current
RepeaterItem. Next, we determine the number of products for this category by creating an instance of the
ProductsBLL class, calling its GetCategoriesByProductID (categoryID) method, and determining the
number of records returned using the count property. Finally, the viewCategory LinkButton in the
ItemTemplate is references and its Text property is set to “CategoryName (NumberOfProductsinCategory)”,
where NumberOfProductsinCategory is formatted as a number with zero decimal places.

Note: Alternatively, we could have added a formatting function to the ASP.NET page’s code-behind class that
accepts a category’s CategoryName and CategoryID values and returns the categoryName concatenated with
the number of products in the category (as determined by calling the GetCategoriesByProductID
(category1D) method). The results of such a formatting function could be declaratively assigned to the
LinkButton’s Text property replacing the need for the rtembpataBound event handler. Refer to the Using
TemplateFields in the GridView Control or Formatting the Datalist and Repeater Based Upon Data tutorials for
more information on using formatting functions.

After adding this event handler, take a moment to test the page through a browser. Note how each category is
listed in a bulleted list, displaying the category’s name and the number of products associated with the category
(see Figure 4).

3 Lintitled Pape - Microsofl Interpet Explorer |4k [ES] [= | _El
Bl Edt ‘Wew Fyvorbss Jook Help 18

a0

= |Z :. & Sewrch Faeorites 45 . | m""ﬂd:.

ngcess @Y http:(Moot SE0LICodedTa ListPrapaster FiteringdCatgories AndProducts sy v B

i

Working with Data Tutorials ~ fome> asteretat feports with the DataList ang

Heme Categories & Products Master/Detail

on One Page

Basic Reporting

Simple Display
Dieclarative « Bevaragas (16}
Parameters " el
[] E:gl"l gc!.ﬂg& l!
it * Dairy Products (10)
» Graing/Cereals (7}
Fittering Reports o MestPoultey (&)
Filter by Drop=Diown * Produce (5)
List * Seafogd (12}
Master-Details- u
£ 0one & Local iniranat

Figure 4: Each Category’s Name and Number of Products are Displayed

Updating the CategoriesDataTable and CategoriesTableAdapter to Include the Number of Products

60f 18

for Each Category

Rather than determining the number of products for each category as it’s bound to the Repeater, we can
streamline this process by adjusting the categoriesbDataTable and CategoriesTableAdapter in the Data
Access Layer to include this information natively. To achieve this, we must add a new column to
CategoriesDataTable to hold the number of associated products. To add a new column to a DataTable, open
the Typed DataSet (app Code\DAL\Northwind.xsd), right-click on the DataTable to modify, and choose Add /
Column. Add a new column to the categoriesbDataTable (see Figure 5).

* Code - Microsofl Yisual Studio

e s

o Flfry Sppher |0 Gt roductify Sappber 10 (B5ung...
T FilPaged, GetProduct tPaged (EstatRowledex, ...
I FiPsgedindorted, GetFroductsagedirddarted. .
#al IrsertProduct (@Productiiane, @SupplesiD, ..,
m Totabhumber OfProducts (1 v

gl Erre Lisk|| T Curpet S P Rt |
Ready

Figure 5: Add a New Column to the categoriesDataSource

This will add a new column named columni, which you can change by simply typing in a different name.
Rename this new column to NumberofProducts. Next, we need to configure this column’s properties. Click on
the new column and go to the Properties window. Change the column’s pataType property from
System.String to System.Int32 and set the Readonly property to True, as shown in Figure 6.

7 of 18

| MNumberOfProducts Caolumn -

o= [A]

nEs
AllowDERUI True
Autolncrement False
AutoIncrementSeed 0
AucolncrementSkep 1
Caption MumberOfProducts

w
DateTimeMode UnspecifiedLocal
Defaultvalue <DBMull =
Expression
MaxLength -1
Marne NMumberOfProducts
rully alue {Throw exception)
[Read@nl';.f True]
Source
nique False
DataType

Indicates the bype of data stored in this calumn,

I;:;=~;|Sculuti... EofiProp... (S8 Serv... |Efclass...

Figure 6: Set the pataType and Readonly Properties of the New Column

While the categoriesDataTable now has a NumberofProducts column, its value is not set by any of the
corresponding TableAdapter’s queries. We can update the Getcategories () method to return this information
if we want such information returned every time category information is retrieved. If, however, we only need to
grab the number of associated products for the categories in rare instances (such as just for this tutorial), then
we can leave GetCategories () as-is and create a new method that returns this information. Let’s use this latter
approach, creating a new method named GetCategoriesAndNumberOfProducts ().

To add this new GetCategoriesAndNumberOfProducts () method, right-click on the
CategoriesTableAdapter and choose New Query. This brings up the TableAdapter Query Configuration
Wizard, which we’ve used numerous times in previous tutorials. For this method, start the wizard by indicating
that the query uses an ad-hoc SQL statement that returns rows.

8of 18

TableAdapter Query Configuration Wizard | j
-

Choose a Command Type
TableAdapter query uses QL statements or a stored procedure, | -

How should the TableAdapter query access the database?

(¥ Use SQL statements :
Speciy a SELECT statement ko load data.

") Create new stored procedure
Specy a SELECT statement, and the wizard will generate a new stored procedure to select records.

(") Use existing stored procedure
Choose an existing stored procedure,

Figure 7: Create the Method Using an Ad-Hoc SQL Statement

TableAdapter Query Configuration Wizard

Choose a Query Type g |
Choose the bype of query to be generated lé - —l

What type of SQL query would you like to use?

Returns one oF many rows o columns.

() SELECT which returns a single value
Returns a single value (For axample, Sum, Count, or any other agaregate function),
) UPDATE
Changes existing data in a table.
(") DELETE
Remaves rows From a table.
() INSERT
Adds a new row bo a table.

[= Previous ” et = J Cancel

90of 18

Figure 8: The SQL Statement Returns Rows

The next wizard screen prompts us for the query to use. To return each category’s categoryID, CategoryName,
and Description fields, along with the number of products associated with the category, use the following
SELECT statement:

SELECT CategoryID, CategoryName, Description,
(SELECT COUNT (*) FROM Products p WHERE p.CategoryID = c.CategoryID)
as NumberOfProducts
FROM Categories c

TableAdapter Query Configuration Wizard

Specify a SQL SELECT statement A |
The SELECT statement will be used by the query, % . i) ;

Type vour 5L stakement or use the Query Bulder bo construct it. What data should be loaded into the table?
What data should the table load?

SELECT CategorylD, Categorvilame, Description, |
{SELECT COUNT(*} FROM Producks p WHERE p.CategoryID = ¢, CateqgoryID) as

MurnberOf Producks

FROM Categaries cf

[*:Er&vicuus ” Mext = H Einish ” Cance |

Figure 9: Specify the Query to Use

Note that the subquery that computes the number of products associated with the category is aliased as
NumberOfProducts. This naming match causes the value returned by this subquery to be associated with the
CategoriesDataTable’S NumberOfProducts column.

After entering this query, the last step is to choose the name for the new method. Use
FillWithNumberOfProducts and GetCategoriesAndNumberOfProducts for the Fill a DataTable and Return a
DataTable patterns, respectively.

10 of 18

TableAdapter Query Configuration Wizard

Choose Methods to Generate E .
E i

The TableAdapter methods boad and save data between your application and the
database.

¥Which methods do you want to add ko the TableAdapter?
Fill a DataTable

Creakes a method that takes a DataTable or DataSet as a parameter and executes the SQL stakement or
SELECT stored procedure entered an the previous page.

Method name: | FilwithNumberOfProducts

Return a DataTahle

Creates a method that returns a new DataTable Filled with the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetCatewriesAnﬂEumbeerPmducts

[< Previous ” et = ||_Einish ” Cancel | _

Figure 10: Name the New TableAdapter’s Methods FillwithNumberOfProducts and
GetCategoriesAndNumberOfProducts

At this point the Data Access Layer has been extended to include the number of products per category. Since all
our presentation layer routes all calls to the DAL through a separate Business Logic Layer we need to add a
corresponding GetCategoriesAndNumberOfProducts method to the categoriesBLL class:

<System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, False)>

Public Function GetCategoriesAndNumberOfProducts () As Northwind.CategoriesDataTable
Return Adapter.GetCategoriesAndNumberOfProducts ()

End Function

With the DAL and BLL complete, we’re ready to bind this data to the categories Repeater in
CategoriesAndProducts.aspx! If you’ve already created an ObjectDataSource for the Repeater from the
“Determining the Number of Products in the TtembataBound Event Handler” section, delete this
ObjectDataSource and remove the Repeater’s bataSourceID property setting; also unwire the Repeater’s
ItemDataBound event from the event handler by removing the “Handles Categories.OnItemDataBound”
syntax in the ASP.NET code-behind class.

With the Repeater back in its original state, add a new ObjectDataSource named CategoriesDataSource via
the Repeater’s smart tag. Configure the ObjectDataSource to use the categoriesBLL class, but instead of
having it use the GetCategories () method, have it use GetCategoriesAndNumberOfProducts () instead (see
Figure 11).

11 of 18

Configure Data Source - CategoriesDataSource

™)

j Define Data Methods
. -—I{i.:.;=F,::I

SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daks bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Choose a method:

GetCategoriesAndilumberOrProducts(), returns Categorie
Gebategories!), retumns CategoriesDataTable

GebsteqoriesAndiumberOfProduckst), returns CateqorlesDataT sble
GetCategoryByCategory ID(IN32 categoryID), returns CategoriesDataT able |

o> | (o] o

Figure 11: Configure the ObjectDataSource to Use the GetCategoriesAndNumberOfProducts Method

Next, update the TtemTemplate so that the LinkButton’s Text property is declaratively assigned using
databinding syntax and includes both the categoryName and NumberOfProducts data fields. The complete
declarative markup for the Repeater and the categoriesbatasource ObjectDataSource follow:

<asp:Repeater ID="Categories" runat="server" DataSourcelD="CategoriesDataSource">
<HeaderTemplate>

</HeaderTemplate>

<ItemTemplate>
<asp:LinkButton runat="server" ID="ViewCategory"
Text="'<%# String.Format ("{0} ({1:NO})", _
Eval ("CategoryName"), Eval ("NumberOfProducts")) %>' />
</1li>
</ItemTemplate>

<FooterTemplate>

</FooterTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategoriesAndNumberOfProducts" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

The output rendered by updating the DAL to include a NumberOfProducts column is the same as using the

ItemDataBound event handler approach (refer back to Figure 4 to see a screen shot of the Repeater showing the
category names and number of products).

12 of 18

Step 3: Displaying the Selected Category’s Products

At this point we have the categories Repeater displaying the list of categories along with the number of
products in each category. The Repeater uses a LinkButton for each category that, when clicked, causes a
postback, at which point we need to display those products for the selected category in the categoryProducts
DatalList.

One challenge facing us is how to have the DataList display just those products for the selected category. In the
Master/Detail Using a Selectable Master GridView with a Details DetailsView tutorial we saw how to build a
GridView whose rows could be selected, with the selected row’s details being displayed in a DetailsView on the
same page. The GridView’s ObjectDataSource returned information about all products using the
ProductsBLL’S GetProducts () method while the DetailsView’s ObjectDataSource retrieved information about
the selected product using the GetProductsByProductID (product1D) method. The product1p parameter
value was provided declaratively by associating it with the value of the GridView’s selectedvalue property.
Unfortunately, the Repeater does not have a selectedvalue property and cannot serve as a parameter source.

Note: This is one of those challenges that appear when using the LinkButton in a Repeater. Had we used a
hyperlink to pass in the category1D through the querystring instead, we could use that QueryString field as the
source for the parameter’s value.

Before we worry about the lack of a selectedvalue property for the Repeater, though, let’s first bind the
DataList to an ObjectDataSource and specify its TtemTemplate.

From the DataList’s smart tag, opt to add a new ObjectDataSource named categoryProductsDataSource and
configure it to use the ProductsBLL class’s Get ProductsByCategoryID (categoryID) method. Since the
DatalList in this tutorial offers a read-only interface, feel free to set the drop-down lists in the INSERT,
UPDATE, and DELETE tabs to (None).

13 of 18

Configure Data Source - CategoryProductsDataSource

;g Define Data Methods

| SELECT | |UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Chaoose a method:

GetProducksByCategoryID(Int32 categoryID), reburns Pro s |

GetProduckEyProduckID{Ing32 productiD), returns ProducksDataTable
GetProductst), returns ProducksDakaTable

sEviC steqoryID{Int32 cakegarylD), raburns ProductsDataTshls
GetProducksBySupplierID{Int32 supplierIDY, returns ProducksDataTable
GetProductsPaged(Int32 startRowindesx, Ink32 maximumRows), returns ProducksDataTable
GetProductsPagedAndSorbed(String sortExpression, Int32 startRowlnde:, INt32 maximumPows), reburns Produc

(et) Lotz) [o

Figure 12: Configure the ObjectDataSource to Use ProductsBLL Class’s GetProductsByCategoryID
(categoryID) Method

Since the GetProductsByCategoryID (categoryID) method expects an input parameter (categoryID), the
Configure Data Source wizard allows us to specify the parameter’s source. Had the categories been listed in a
GridView or a DataList, we’d set the Parameter source drop-down list to Control and the ControlID to the 1D of
the data Web control. However, since the Repeater lacks a selectedvalue property it cannot be used as a
parameter source. If you check, you’ll find that the ControlID drop-down list only contains one control 10 —
CategoryProducts, the 1D of the DataList.

For now, set the Parameter source drop-down list to None. We’ll end up programmatically assigning this
parameter value when a category LinkButton is clicked in the Repeater.

14 of 18

Configure Data Source - CategoryProductsDataSource

{1 Define Parameters

The wizard has detected one or more parameters in your SELECT method. For each parameter in the SELECT
method, choose a source for the parameter's value,

Parameters: Parameter source:
Hlame akie | CESE———
Eekondl Defaultyalue:
L b LI
Method signature:

| GetProductsByCategoryID(InE32 categorylD), returns ProductsDataTable |

II!HEHHIII Flext [Finish J [Cance

Figure 13: Do Not Specify a Parameter Source for the categoryrp Parameter

After completing the Configure Data Source wizard, Visual Studio auto-generates the DataList’s
ItemTemplate. Replace this default 1temTemplate with the template we used in the preceding tutorial; also, set
the DataList’s RepeatColumns property to 2. After making these changes the declarative markup for your
DataList and its associated ObjectDataSource should look like the following:

<asp:Datalist ID="CategoryProducts" runat="server" DataKeyField="ProductID"
DataSourceID="CategoryProductsDataSource" RepeatColumns="2"
EnableViewState="False">
<ItemTemplate>
<h5><%# Eval ("ProductName") $%></h5>
<p>
Supplied by <%# Eval ("SupplierName") %>

<%# Eval ("UnitPrice", "{0:C}") %>
</p>
</ItemTemplate>
</asp:DatalList>

<asp:0bjectDataSource ID="CategoryProductsDataSource"
OldvValuesParameterFormatString="original {0}" runat="server"
SelectMethod="GetProductsByCategoryID" TypeName="ProductsBLL">
<SelectParameters>
<asp:Parameter Name="categoryID" Type="Int32" />
</SelectParameters>
</asp:0bjectDataSource>

Currently, the categoryProductsbataSource ObjectDataSource’s categoryID parameter is never set, SO no
products are displayed when viewing the page. What we need to do is have this parameter value set based on
the categoryID of the clicked category in the Repeater. This introduces two challenges: first, how do we
determine when a LinkButton in the Repeater’s 1temTemplate has been clicked; and second, how can we

15 of 18

determine the categoryID of the corresponding category whose LinkButton was clicked?

The LinkButton — like the Button and ImageButton controls — has a c1ick event and a Command event. The
click event is designed to simply note that the LinkButton has been clicked. At times, however, in addition to
noting that the LinkButton has been clicked we also need to pass some extra information to the event handler. If
this is the case, the LinkButton’s CommandName and CommandArgument properties can be assigned this extra
information. Then, when the LinkButton is clicked, its command event fires (instead of its c1ick event) and the
event handler is passed the values of the commandName and CommandArgument properties.

When a command event is raised from within a template in the Repeater, the Repeater’s rtemCommand event fires
and is passed the CommandName and commandargument values of the clicked LinkButton (or Button or
ImageButton). Therefore, to determine when a category LinkButton in the Repeater has been clicked, we need
to do the following:

1. Set the commandName property of the LinkButton in the Repeater’s ItemTemplate to some value (I’ve
used “ListProducts”). By setting this CommandName value, the LinkButton’s command event fires when the
LinkButton is clicked.

2. Set the LinkButton’s commandargument property to the value of the current item’s CategoryID.

Create an event handler for the Repeater’s TtemCommand event. In the event handler, set the

CategoryProductsDataSource ObjectDataSource’s categoryID parameter to the value of the passed-in

CommandArgument.

(98]

The following rtemTemplate markup for the Categories Repeater implements steps 1 and 2. Note how the
CommandArgument value is assigned the data item’s categoryID using databinding syntax:

<ItemTemplate>
<1li>
<asp:LinkButton CommandName="ListProducts" runat="server"
CommandArgument="'<%# Eval ("CategoryID") %>' ID="ViewCategory"

Text="'<%# string.Format ("{0} ({1:NO})", _
Eval ("CategoryName"), Eval ("NumberOfProducts")) %>'>
</asp:LinkButton>
</1li>
</ItemTemplate>

Whenever creating an ItemCommand event handler it is prudent to always first check the incoming commandName
value because any command event raised by any Button, LinkButton, or ImageButton within the Repeater will
cause the TtemCommand event to fire. While we currently only have one such LinkButton now, in the future we
(or another developer on our team) might add additional button Web controls to the Repeater that, when
clicked, raises the same 1temcommand event handler. Therefore, it’s best to always make sure you check the
CommandName property and only proceed with your programmatic logic if it matches up to the value expected.

After ensuring that the passed-in CommandName value equals “ListProducts”, the event handler then assigns the
CategoryProductsDataSource ObjectDataSource’s categoryID parameter to the value of the passed-in
CcommandArgument. This modification to the ObjectDataSource’s selectParameters automatically causes the
DataList to rebind itself to the data source, showing the products for the newly selected category.

Protected Sub Categories ItemCommand(source As Object, e As RepeaterCommandEventArgs)

Handles Categories.ItemCommand

' If it's the "ListProducts" command that has been issued...

If String.Compare (e.CommandName, "ListProducts", True) = 0 Then
' Set the CategoryProductsDataSource ObjectDataSource's CategoryID parameter
' to the CategoryID of the category that was just clicked (e.CommandArgument)...
CategoryProductsDataSource.SelectParameters ("CategoryID") .DefaultValue =

e.CommandArgument.ToString ()

16 of 18

End If
End Sub

With these additions, our tutorial is complete! Take a moment to test it out in a browser. Figure 14 shows the
screen when first visiting the page. Since a category has yet to be selected, no products are displayed. Clicking
on a category, such as Produce, displays those products in the Product category in a two-column view (see
Figure 15).

allnlilbd Pape - Microsoft Intermet Explorer r>_C|
Ble Bt Wew Faeortes ook Heb i

) S [B | Poewdh Hrwoss 8 G- B0 W BB
Agoress € hitpef Nocathost 3501 Hoodeflat aListR epeater Fiterngd Cat egonies dndProduct s aepx v = =]
3

Home > Master Detall Reparts with the DataLlist i
Fepeater > Maser/Detail on One Page

Working with Data Tutorials

Hame

Categories & Products Master/Detail
on One Page

Basic Reporiing

Simple Display
Dedarstie] E.m;a_laﬂ_ﬂ_uﬂ
Parameters + Condimeats (11
- « Comfectiong (131
Settng Parameter » Diry Products (10
Walues - BN 1

w M LEs

& Pr [

b

S Local intranat

Figure 14: No Products are Displayed When First Visiting the Page

3 Lniiied Page - Microsodt Infermed Cuplover
De Got Wew Fgortes ook e

Qoo -

Fepdran | it T shost: 301 [Code flat st R eCoe sber Fibee riat sqresiraPrachucts. g

2

#) A e S Seanh Favirtes £ e oo - oo i

u.m

-

Wgrking with Data Tutorials Home > Master Datall Reports with ihe D3akist 30d Repaaier> Maser Detall
e e L e S e et Ee R e TR R o

Categories & Products Master/Detail on One Page

il

LN T

£1

Bieviraos
i

Ladd

e
e Lddd

Doty Preducta ity
GransfLaraas (1)

WL ta)

iecle Bob™s Organic Deimd Paars

Supphed by Grandma Kely's Homestead
$30.00

Todu

Suppdiod by Mayumi's
F2325

Riossle Bausrkraat
Supphed by Phezor Labanamitedynaimankoe

]
FE550

manpimup Driad
Apples

Suppled Dy O'day, Mate
$52.00
Longlife Tals

Suppled by Todyo

Tradars
§10.00

ol Locel niraret

Figure 15: Clicking the Produce Category Lists the Matching Products to the Right

Summary

17 of 18

As we saw in this tutorial and the preceding one, master/detail reports can be spread out across two pages, or
consolidated on one. Displaying a master/details report on a single page, however, introduces some challenges
on how best to layout the master and details records on the page. In the Master/Detail Using a Selectable
Master GridView with a Details DetailsView tutorial we had the details records appear above the master
records; in this tutorial we used CSS techniques to have the master records float to the left of the details.

Along with displaying master/details reports, we also had the opportunity to explore how to retrieve the number
of products associated with each category as well as how to perform server-side logic when a LinkButton (or

Button or ImageButton) is clicked from within a Repeater.

This tutorial completes our examination of master/detail reports with the DataList and Repeater. Our next set of
tutorials will illustrate how to add editing and deleting capabilities to the DataList control.

Happy Programming!

Further Reading

For more information on the topics discussed in this tutorial, refer to the following resources:

o Floatutorial — a tutorial on floating CSS elements with CSS
e CSS Positioning — more information on positioning elements with CSS
e Laying Out Content with HTML — using <table>s and other HTML elements for positioning

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Zack Jones.
Interested in reviewing my upcoming articles? If so, drop me a line at mitchell@4guysfromrolla.com.

18 of 18

