This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Master Pages
and Site Navigation

Introduction

One common characteristic of user-friendly websites is that they have a consistent, site-wide page layout and
navigation scheme. ASP.NET 2.0 introduces two new features that greatly simplify implementing both a site-wide
page layout and navigation scheme: master pages and site navigation. Master pages allow for developers to create a
site-wide template with designated editable regions. This template can then be applied to ASP.NET pages in the
site. Such ASP.NET pages need only provide content for the master page's specified editable regions — all other
markup in the master page is identical across all ASP.NET pages that use the master page. This model allows
developers to define and centralize a site-wide page layout, thereby making it easier to create a consistent look and
feel across all pages that can easily be updated.

The site navigation system provides both a mechanism for page developers to define a site map and an API for that
site map to be programmatically queried. The new navigation Web controls — the Menu, TreeView, and
SiteMapPath — make it easy to render all or part of the site map in a common navigation user interface element.
We'll be using the default site navigation provider, meaning that our site map will be defined in an XML-formatted
file.

To illustrate these concepts and make our tutorials website more usable, let's spend this lesson defining a site-wide
page layout, implementing a site map, and adding the navigation UI. By the end of this tutorial we'll have a
polished website design for building our tutorial web pages.

1 of 20

3 Hame - Wicrossdl Internet Faplores

Bl [ew Pueocdes Dok fise

Yo E O Ot s 8 [3- B e & B
B g (b 6 R b e = B
Working with Data Tutorials Home

Welcome to the Working with Data Tutorial Site

Thies site 15 boanag built as part of & set of tutonads that lustrate some of the new
data access and databindieg Teatures in ASPUNET 2.0 and Yiual Welbs Davalopar.

Cwar ma, it wil inelude § ot of samplat That demansliate:

Buiding & DAL [dats access layer),
Using strangly typed Tabiwasdapters and DataTables
o ter-Detal raporis

Fiterng

faging,

Twi-way databindrg,

Editing.

Deleting,

IFgrting,

Hierarchical data browsing,
Hararchical dril-down,

CIptisiglic ¢omncurTancy,

&red mors!

I I S I T O B

ol el mty el

Figure 1: The End Result of This Tutorial

Step 1: Creating the Master Page

The first step is to create the master page for the site. Right now our website consists of only the Typed DataSet
(Northwind.xsd, in the App_Code folder), the BLL classes (ProductsBLL.vb, CategoriesBLL.vb, and so on, all
in the 2pp_Code folder), the database (NORTHWND.MDF, in the 2pp Data folder), the configuration file
(Wweb.config), and a CSS stylesheet file (Styles.css). I cleaned out those pages and files demonstrating using the
DAL and BLL from the first two tutorials since we will be reexamining those examples in greater detail in future
tutorials.

2 of 20

BLL
18] CategoriesBLL.vh
8] EmploveesBLL.vhb
8] ProductsBLL.vh
8] ProductsDataTable. ColurmnChanging. vb
i "."_E_ﬂ SuppliersBLL. vb
=~ (& DAL
[+ @ Morthwind, xsd
E- [App_Data
o A styles.css
._; Web, Config

= &

= y F T T T 7]
LL:‘QIEDMUD... _.ﬁF‘rnpertles |5 Server ... | Class Wiew

Figure 2: The Files in Our Project

To create a master page, right-click on the project name in the Solution Explorer and choose Add New Item. Then
select the Master Page type from the list of templates and name it Site.master.

Add Mew Item - C:WMy Projects\Writings\Wicrosoft\MSDN Articles\WWSDN Online ArticlesiDataTutori. .. ?El
Tomplatns: =
Wisual Studio nstalled templales L
2 0 E & 8 § § &«
Weh For Master Page ek Lisar HTML Page ‘Wieh Sardce Class Sevle Sheat gobal
Conkrol fppheati.. .
- B | j L = b]
"' £l — - A E"
3 & o 2 == W = &
Wb WL File HHL Schema Yok Fils Resource Fle 500 Dtabase Dtafet Generic
Configurati. .. Haridwer
w H S il - s &
Siba Map Mobda Wb VBSCcript Pl Reapoet, JorriphFile Mobile \Weld Maobike Wab ¥5LT Fila
Form User Control Configurati.... w
A Miszter Page For Wb Appications
Tame: b, marster
LN sl Basic w | [#]Plsce cods in separste Fle
I

Figure 3: Add a New Master Page to the Website

Define the site-wide page layout here in the master page. You can use the Design view and add whatever Layout or
Web controls you need, or you can manually add the markup by hand in the Source view. In my master page I use
cascading style sheets for positioning and styles with the CSS settings defined in the external file Style.css.
While you cannot tell from the markup shown below, the CSS rules are defined such that the navigation <div>'s
content is absolutely positioned so that it appears on the left and has a fixed width of 200 pixels.

3 0f 20

Site.master

<%@ Master Language="VB" AutoEventWireup="true"
CodeFile="Site.master.vb" Inherits="Site" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>Working with Data Tutorials</title>
<link href="Styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="wrapper">

<form id="forml" runat="server">

<div id="header">
Working with Data Tutorials

TODO: Breadcrumb will go here...
</div>

<div id="content">
<asp:contentplaceholder id="MainContent"
runat="server">
<!-- Page-specific content will go here... -->
</asp:contentplaceholder>
</div>

<div id="navigation">
TODO: Menu will go here...

</div>
</form>
</div>
</body>
</html>

A master page defines both the static page layout and the regions that can be edited by the ASP.NET pages that use
the master page. These content editable regions are indicated by the ContentPlaceHolder control, which can be
seen within the content <div>. Our master page has a single ContentPlaceHolder (MainContent), but master page's
may have multiple ContentPlaceHolders.

With the markup entered above, switching to the Design view shows the master page's layout. Any ASP.NET
pages that use this master page will have this uniform layout, with the ability to specify the markup for the
MainContent region.

4 of 20

T Conile - Micresall Visusd Studio
Ele Edt Yew Cweebgie Guld Debog Fomat Layedd ook Windiey Comwindy Help gddes
F RN RN B R I W [fornFanidy il
B T U = ==L
N - YE— b =
% Stesnaster - %
. . . CIE=N0r | e
Working with Data Tutorials ope: P ©\Code,
Ereaderumb will S [Ap_Code
o e T £ e e L S s ey A e e C i pr—
ToOD: Menu wil ga z o e e o
heare. .. CanteniPlac sHokier - MarTonlend - RORTHWID MOF
ol |
-\js:,u-s.m
L Weh. Config
v
4 ¥
[3 Dwign | i Soumen | [chodys | ciwawrappers [cFomistomi> W) ||os... P s g
A‘I'I"'l" o] Cakgup i"\.:i--’.!]
Rty

Figure 4: The Master Page, When Viewed Through the Design View

Step 2: Adding a Homepage to the Website

With the master page defined, we're ready to add the ASP.NET pages for the website. Let's start by adding
Default.aspx, our website's homepage. Right-click on the project name in the Solution Explorer and choose Add

New Item. Pick the Web Form option from the template list and name the file befault.aspx. Also, check the
"Select master page" checkbox.

Add Mew Item - C:WMy Projects\Writings\Wicrosoft\MSDN Articles\WSDN Online ArticlesiDataTutori. .. "_E_
Tomplatns: =
Wisual Studio nstalled templales L. |
g 0O H g 8 8§ B
Weh P Master Page ek Lisar HTMLPage ‘Wih Sarvice Class Sevle Sheat gobal
Conkrol fppheati.. .
- 2 B m =| &
3 & o 2 == W = &
Wb WL File HHL Schema Yok Fils Resource Fle 500 Dtabase Dtafet Generic
Configurati. .. Haridwer
A @ # =9 [s &
Siba Map Mobda Wb VBSCcript Pl Reapoet, JorriphFile Mobile \Weld Maobike Wab ¥5LT Fila
Form User Control Configurati.... A
A bartn for ek Apgivcations
[dame: D aulk, seps
Languiage: Wisual Basic [
I

Figure 5: Add a New Web Form, Checking the '"Select master page'" Checkbox

After clicking the OK button, we're asked to choose what master page this new ASP.NET page should use. While

50f20

you can have multiple master pages in your project, we have only one.

Select a Master Pape E“z]
Project Foldars: Contents of folder:
| = & o \Codet [Site. master
& =) App_Code
&L App_Data

o J[coa |

Figure 6: Choose the Master Page this ASP.NET Page Should Use

After picking the master page, the new ASP.NET pages will contain the following markup:

Default.aspx

<%@ Page Language="VB" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits=" Default" Title="Untitled Page" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent"
Runat="Server">
</asp:Content>

In the @Page directive there's a reference to the master page file used (MasterpPageFile="~/Site.master"), and
the ASP.NET page's markup contains a Content control for each of the ContentPlaceHolder controls defined in the
master page, with the control's ContentPlaceHolderID mapping the Content control to a specific
ContentPlaceHolder. The Content control is where you place the markup you want to appear in the corresponding
ContentPlaceHolder. Set the epage directive's Title attribute to Home and add some welcoming content to the
Content control:

Default.aspx

<%@ Page Language="VB" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits=" Default" Title="Home" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent"
Runat="Server">
<hl>Welcome to the Working with Data Tutorial Site</hl>

<p>This site is being built as part of a set of tutorials

6 of 20

that illustrate some of the new data access and databinding
features in ASP.NET 2.0 and Visual Web Developer.</p>

<p>Over time, it will include a host of samples that
demonstrate:</p>

Building a DAL (data access layer),
<1i>Using strongly typed TableAdapters and DataTables</1li>
Master-Detail reports</1li>
Filtering</1i>
Paging,</1i>
Two-way databinding,</1i>
Editing,</1i>
Deleting,</1i>
Inserting,</1i>
Hierarchical data browsing,</1i>
Hierarchical drill-down,</1i>
Optimistic concurrency,</1i>
<1i>And more!</1i>

</asp:Content>

The Title attribute in the ¢Page directive allows us to set the page's title from the ASP.NET page, even though the
<title> element is defined in the master page. We can also set the title programmatically, using Page . Title.
Also note that the master page's references to stylesheets (such as style.css) are automatically updated so that
they work in any ASP.NET page, regardless of what directory the ASP.NET page is in relative to the master page.

Switching to the Design view we can see how our page will look in a browser. Note that in the Design view for the
ASP.NET page that only the content editable regions are editable — the non-ContentPlaceHolder markup defined in
the master page is grayed out.

% Code - Micresolt Visual Studio
Fils Gt Yes Webgis Bold [ebug Fomet Lapout Jook Windom Communky Heb pddes

PRAE L= - | . A i
b e i Bl : . il
b Coefoalt daped © Sibe arderber - ._:J
E

TOOD: Menu will go Content - Contentl {Cusiom) .
ere. .. . ’ . L
Welcome to the Working with Data Tutorial

Site ;

o

Thiz site iz baing buit = part of 5 =at of tutorials that ilEtrate some
of the new dats access snd databmding features in 50 HET 2.0 and
Widwal Wosh Davelopear

Chwar tima, it wil include a host of samples that demonstrate: i
o

» Bualding 2 DAL (data access layar),

® Uking strongly typed Tablesdapters and DataT aales

® Master-DEtal reparts

= Fitanng

» Pagng
= Tavi—waw datahinrrn L
€ »
[G pewin | R Seincn by coERaanps s || damEtom =
g Ermae st 5] Cutpe | T P Rrimiuits 1
Rady

7 of 20

Figure 7: The Design View for the ASP.NET Page Shows Both the Editable and Non-Editable Regions

When the Default.aspx page is visited by a browser, the ASP.NET engine automatically merges the page's
master page content and the ASP.NET's content, and renders the merged content into the final HTML that is sent
down to the requesting browser. When the master page's content is updated, all ASP.NET pages that use this
master page will have their content remerged with the new master page content the next time they are requested. In
short, the master page model allows for a single page layout template to be defined (the master page) whose
changes are immediately reflected across the entire site.

Adding Additional ASP.NET Pages to the Website

Let's take a moment to add additional ASP.NET page stubs to the site that will eventually hold the various
reporting demos. There will be more than 35 demos in total, so rather than creating all of the stub pages let's just
create the first few. Since there will also be many categories of demos, to better manage the demos add a folder for
the categories. Add the following three folders for now:

e BasicReporting
e Filtering
e CustomFormatting

Finally, add new files as shown in the Solution Explorer in Figure 8. When adding each file, remember to check the
"Select master page" checkbox.

Solution Explorer - T, \Code), -« 1 X
2| 3[8a] & @ @
@

- L) App_Code
= L App_Daka
- |] NORTHWND.MDF
=+ | F BasicRepoarking
- .:] DeclarativeParams, asp:x
& | Default.aspx
- .:] ProgrammaticParams . aspe:
[+ .:] SimpleDisplay, aspx
= | F CustomFormatking
H- [E| CustomColars, aspx
& | Default.aspx
& [DetailsviewTemplateField, asp:x
- .:] Farmview, aspx
& [Z| GridviewTemplateField. aspx
[+ .:] SurmaryDatalnFooter, aspx
= [Filkering
& | Default.aspx
- | DetailsBySelecting, aspx
- .:] FilkerByDropDownList, asps
- | MasterDetailsDetails, aspx
B | Defaulk.aspx
-] Site.master
Jﬂ Skyles,css
5 web, Corfig

L':;'i]SDIu... '-ﬁF‘rnp... ?‘-EISEW... f_f%tl.as...

8 0f 20

Figure 8: Add the Following Files

Step 2: Creating a Site Map

One of the challenges of managing a website composed of more than a handful of pages is providing a
straightforward way for visitors to navigate through the site. To begin with, the site's navigational structure must be
defined. Next, this structure must be translated into navigable user interface elements, such as menus or
breadcrumbs. Finally, this whole process needs to be maintained and updated as new pages are added to the site
and existing ones removed. Prior to ASP.NET 2.0, developers were on their own for creating the site's navigational
structure, maintaining it, and translating it into navigable user interface elements. With ASP.NET 2.0, however,
developers can utilize the very flexible built in site navigation system.

The ASP.NET 2.0 site navigation system provides a means for a developer to define a site map and to then access
this information through a programmatic API. ASP.NET ships with a site map provider that expects site map data
to be stored in an XML file formatted in a particular way. But, since the site navigation system is built on the
provider model it can be extended to support alternative ways for serializing the site map information. Jeff Prosise's
article, The SQL Site Map Provider You've Been Waiting For shows how to create a site map provider that stores
the site map in a SQL Server database; another option is to create a site map provider based on the file system
structure.

For this tutorial, however, let's use the default site map provider that ships with ASP.NET 2.0. To create the site
map, simply right-click on the project name in the Solution Explorer, choose Add New Item, and choose the Site
Map option. Leave the name as Web. sitemap and click the Add button.

Add New ltem - C:Wiy ProjectsVWritings\Wicrosoft\MSDN ArticlesWSDN Onbine Articles\DataTutord.., |7 (3]

Tnmplates:
Wisnial STudio nstalled templates A
= e L 5 -
- @ b A |
Weh Forn Master Page Wb sy HTML Page ‘Wieh Sardce Class yle Sheat Fabal
Corkrol fppheati.. .
1 o 3| = =L 3)
_* J o 2 = gl _J a5 =
Wb WL File HHL Schema Yok Fils Resource Fle 500 Dtabase Dtafet Generic
Corfigurati,, Handes
5 & — B =Y i W
- . k.- P . o Al
= £ i £ 3 iy &
Mobde Wb VBScript Rl Report JSoriphFle Mobile\Web MobleWeb ¥SLT Fie
Form User Control Configurati.... w
& ke e b Creabs & Sba map
[dame: Web.skemap
[g || comd

Figure 9: Add a Site Map to Your Project

The site map file is an XML file. Note that Visual Studio provides IntelliSense for the site map structure. The site
map file must have the <siteMap> node as its root node, which must contain precisely one <siteMapNode> child
element. That first <siteMapNode> element can then contain an arbitrary number of descendent <siteMapNode>
elements.

9 of 20

Define the site map to mimic the file system structure. That is, add a <siteMapNode> element for each of the three
folders, and child <siteMapNode> elements for each of the ASP.NET pages in those folders, like so:

Web.sitemap:

<?xml version="1.0" encoding="utf-8" 2>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="~/Default.aspx" title="Home" description="Home">
<siteMapNode title="Basic Reporting"
url="~/BasicReporting/Default.aspx"
description="Basic Reporting Samples">
<siteMapNode url="~/BasicReporting/SimpleDisplay.aspx"
title="Simple Display"
description="Displays the complete contents
of a database table." />
<siteMapNode url="~/BasicReporting/DeclarativeParams.aspx"
title="Declarative Parameters"
description="Displays a subset of the contents
of a database table using parameters." />
<siteMapNode url="~/BasicReporting/ProgrammaticParams.aspx"
title="Setting Parameter Values"
description="Shows how to set parameter values
programmatically." />
</siteMapNode>

<siteMapNode title="Filtering Reports"
url="~/Filtering/Default.aspx"
description="Samples of Reports that Support Filtering">
<siteMapNode url="~/Filtering/FilterByDropDownList.aspx"
title="Filter by Drop-Down List"
description="Filter results using a drop-down list." />
<siteMapNode url="~/Filtering/MasterDetailsDetails.aspx"
title="Master-Details-Details"
description="Filter results two levels down." />
<siteMapNode url="~/Filtering/DetailsBySelecting.aspx"
title="Details of Selected Row"
description="Show detail results for a selected item in a GridvView." />
</siteMapNode>

<siteMapNode title="Customized Formatting"

url="~/CustomFormatting/Default.aspx"
description="Samples of Reports Whose Formats are Customized">

<siteMapNode url="~/CustomFormatting/CustomColors.aspx"
title="Format Colors"

description="Format the gridé's colors based

on the underlying data." />

<siteMapNode
url="~/CustomFormatting/GridviewTemplateField.aspx"
title="Custom Content in a GridvView"
description="Shows using the TemplateField to
customize the contents of a field in a Gridview." />

<siteMapNode
url="~/CustomFormatting/DetailsViewTemplateField.aspx"
title="Custom Content in a DetailsView"

10 of 20

description="Shows using the TemplateField to customize
the contents of a field in a DetailsView." />
<siteMapNode url="~/CustomFormatting/FormView.aspx"
title="Custom Content in a FormView"
description="Illustrates using a FormView for a
highly customized view." />

<siteMapNode url="~/CustomFormatting/SummaryDataInFooter.aspx"
title="Summary Data in Footer"
description="Display summary data in the grids footer." />
</siteMapNode>
</siteMapNode>
</siteMap>

The site map defines the website's navigational structure, which is a hierarchy that describes the various sections of
the site. Each <siteMapNode> element in Web . sitemap represents a section in the site's navigational structure.

Hame

Butiig Cuisiom Cusinm || Custem Summary
m m”m Foemal .D?MH Cosmriima Iqimmln- | Diatm in

Fimmtty || dnaie- Cistnds of
Lst || Daimis Fizsm

Figure 10: The Site Map Represents a Hierarchical Navigational Structure

ASP.NET exposes the site map's structure through the .NET Framework's SiteMap class. This class has a
CurrentNode property, which returns information about the section the user is currently visiting; the RootNode
property returns the root of the site map (Home, in our site map). Both the CurrentNode and RootNode properties
return SiteMapNode instances, which have properties like ParentNode, ChildNodes, NextSibling,
PreviousSibling, and so on, that allow for the site map hierarchy to be walked.

Step 3: Displaying a Menu Based on the Site Map

Accessing data in ASP.NET 2.0 can be accomplished programmatically, like in ASP.NET 1.x, or declaratively,
through the new data source controls. There are several built-in data source controls such as the SqlDataSource
control, for accessing relational database data, the ObjectDataSource control, for accessing data from classes, and
others. You can even create your own custom data source controls.

The data source controls serve as a proxy between your ASP.NET page and the underlying data. In order to display
a data source control's retrieved data, we'll typically add another Web control to the page and bind it to the data
source control. To bind a Web control to a data source control, simply set the Web control's batasourceID
property to the value of the data source control's ID property.

To aid in working with the site map's data, ASP.NET includes the SiteMapDataSource control, which allows us to
bind a Web control against our website's site map. Two Web controls — the TreeView and Menu — are commonly
used to provide a navigation user interface. To bind the site map data to one of these two controls, simply add a

11 0f20

SiteMapDataSource to the page along with a TreeView or Menu control whose DataSourceID property is set
accordingly. For example, we could add a Menu control to the master page using the following markup:

<div id="navigation">
<asp:Menu ID="Menul" runat="server"
DataSourceID="SiteMapDataSourcel">
</asp:Menu>

<asp:SiteMapDataSource ID="SiteMapDataSourcel" runat="server" />
</div>

For a finer degree of control over the emitted HTML, we can bind the SiteMapDataSource control to the Repeater
control, like so:

<div id="navigation">

<asp:HyperLink runat="server" ID="lnkHome"
NavigateUrl="~/Default.aspx">Home</asp:HyperLink></11i>

<asp:Repeater runat="server" ID="menu"
DataSourceID="SiteMapDataSourcel">
<ItemTemplate>

<asp:HyperLink runat="server"
NavigateUrl='<%$# Eval ("Url") %>'>
<%# Eval ("Title") %></asp:HyperLink>
</1i>
</ItemTemplate>
</asp:Repeater>

<asp:SiteMapDataSource ID="SiteMapDataSourcel"
runat="server" ShowStartingNode="false" />
</div>

The SiteMapDataSource control returns the site map hierarchy one level at a time, starting with the root site map
node (Home, in our site map), then the next level (Basic Reporting, Filtering Reports, and Customized Formatting),
and so on. When binding the SiteMapDataSource to a Repeater, it enumerates the first level returned and
instantiates the ItemTemplate for each siteMapNode instance in that first level. To access a particular property of
the SiteMapNode, we can use Eval (propertyName), which is how we get each SiteMapNode's Url and Title
properties for the HyperLink control.

The Repeater example above will render the following markup:

Basic Reporting
</1i>

Filtering Reports
</1i>

Customized Formatting

12 of 20

</1li>

These site map nodes (Basic Reporting, Filtering Reports, and Customized Formatting) comprise the second level
of the site map being rendered, not the first. This is because the SiteMapDataSource's ShowStartingNode property
is set to False, causing the SiteMapDataSource to bypass the root site map node and instead begin by returning the
second level in the site map hierarchy.

To display the children for the Basic Reporting, Filtering Reports, and Customized Formatting siteMapNodes, we
can add another Repeater to the initial Repeater's ItemTemplate. This second Repeater will be bound to the
SiteMapNode instance's ChildNodes property, like so:

<asp:Repeater runat="server" ID="menu" DataSourcelID="SiteMapDataSourcel">
<ItemTemplate>

<asp:HyperLink runat="server"
NavigateUrl='<%$# Eval ("Url") %>'>
<%# Eval ("Title") %></asp:HyperLink>

<asp:Repeater runat="server"
DataSource="<%# CType (Container.Dataltem,
SiteMapNode) .ChildNodes %>">
<HeaderTemplate>

</HeaderTemplate>

<ItemTemplate>

<asp:HyperLink runat="server"
NavigateUrl='<%$# Eval ("Url") %>'>
<%# Eval ("Title") %></asp:HyperLink>

</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
</1i>
</ItemTemplate>

</asp:Repeater>

These two Repeaters result in the following markup (some markup has been removed for brevity):

<1li>
Basic Reporting

<1li>

Simple Display
</1i>
<1li>

Declarative Parameters
</1i>
<1li>

13 of 20

Setting Parameter Values
</1i>

</1i>

Filtering Reports

</1li>

Customized Formatting

</1li>

Using CSS styles chosen from Rachel Andrew's book The CSS Anthology: 101 Essential Tips, Tricks, & Hacks,
the and <1i> elements are styled such that the markup produces the following visual output:

ic Reporting

Filtering Reports

14 of 20

Figure 11: A Menu Composed from Two Repeaters and Some CSS

This menu is in the master page and bound to the site map defined in web . sitemap, meaning that any change to the
site map will be immediately reflected on all pages that use the site.master master page.

Disabling ViewState

All ASP.NET controls can optionally persist their state to the view state, which is serialized as a hidden form field
in the rendered HTML. View state is used by controls to remember their programmatically-changed state across
postbacks, such as the data bound to a data Web control. While view state permits information to be remembered
across postbacks, it increases the size of the markup that must be sent to the client and can lead to severe page bloat
if not closely monitored. Data Web controls — especially the GridView — are particularly notorious for adding
dozens of extra kilobytes of markup to a page. While such an increase may be negligible for broadband or intranet
users, view state can add several seconds to the round trip for dial-up users.

To see the impact of view state, visit a page in a browser and then view the source sent by the web page (in Internet
Explorer, go to the View menu and choose the Source option). You can also turn on page tracing to see the view
state allocation used by each of the controls on the page. The view state information is serialized in a hidden form
field named _ VIEWSTATE, located in a <div> element immediately after the opening <form> tag. View state is
only persisted when there is a Web Form being used; if your ASP.NET page does not include a <form
runat="server"> in its declarative syntax there won't be a _ VIEWSTATE hidden form field in the rendered
markup.

The _ viewsTATE form field generated by the master page adds roughly 1,800 bytes to the page's generated
markup. This extra bloat is due primarily to the Repeater control, as the contents of the SiteMapDataSource control
are persisted to view state. While an extra 1,800 bytes may not seem like much to get excited about, when using a
GridView with many fields and records, the view state can easily swell by a factor of 10 or more.

View state can be disabled at the page or control level by setting the EnableviewState property to False, thereby
reducing the size of the rendered markup. Since the view state for a data Web control persists the data bound to the
data Web control across postbacks, when disabling the view state for a data Web control the data must be bound on
each and every postback. In ASP.NET version 1.x this responsibility fell on the shoulders of the page developer;
with ASP.NET 2.0, however, the data Web controls will rebind to their data source control on each postback if
needed.

To reduce the page's view state let's set the Repeater control's EnableviewState property to False. This can be
done through the Properties window in the Designer or declaratively in the Source view. After making this change
the Repeater's declarative markup should look like:

<asp:Repeater runat="server" ID="menu" DataSourceID="SiteMapDataSourcel"
EnableViewState="False">
<ItemTemplate>
. <i>ItemTemplate contents omitted for brevity</i> ...
</ItemTemplate>
</asp:Repeater>

After this change, the page's rendered view state size has shrunk to a mere 52 bytes, a 97% savings in view state
size! In the tutorials throughout this series we'll disable the view state of the data Web controls by default in order
to reduce the size of the rendered markup. In the majority of the examples the Enableviewstate property will be
set to False and done so without mention. The only time view state will be discussed is in scenarios where it must
be enabled in order for the data Web control to provide its expected functionality.

15 of 20

Step 4: Adding Breadcrumb Navigation

To complete the master page, let's add a breadcrumb navigation Ul element to each page. The breadcrumb quickly
shows users their current position within the site hierarchy. Adding a breadcrumb in ASP.NET 2.0 is easy — just
add a SiteMapPath control to the page; no code is needed.

For our site, add this control to the header <div>:

<asp:SiteMapPath ID="SiteMapPathl" runat="server">
</asp:SiteMapPath>

The breadcrumb shows the current page the user is visiting in the site map hierarchy as well as that site map node's
"ancestors," all the way up to the root (Home, in our site map).

Home > Basic Reporting = Declarative Parameters

Figure 12: The Breadcrumb Displays the Current Page and its Ancestors in the Site Map Hierarchy

Step 5: Adding the Default Page for Each Section

The tutorials in our site are broken down into different categories — Basic Reporting, Filtering, Custom Formatting,
and so on — with a folder for each category and the corresponding tutorials as ASP.NET pages within that folder.
Additionally, each folder contains a Default.aspx page. For this default page, let's display all of the tutorials for
the current section. That is, for the Default.aspx in the BasicReporting folder we'd have links to
SimpleDisplay.aspx,DeclarativeParams.aspx,andProgrammaticParams.aspx.}Rxe,agahh\vecanlwethe
siteMap class and a data Web control to display this information based upon the site map defined in Web.sitemap.

Let's display an unordered list using a Repeater again, but this time we'll display the title and description of the
tutorials. Since the markup and code to accomplish this will need to be repeated for each Default.aspx page, we
can encapsulate this Ul logic in a User Control. Create a folder in the website called UserControls and add to that
a new item of type Web User Control named sectionLevelTutoriallisting.ascx, and add the following
markup:

16 of 20

Add Mew Item - C:WMy Projects\Writings\Wicrosoft\MSDN Articles\WSDN Online ArticlesiDataTutori. .. ?El
Templates: E=
'l":iq.hﬁ Stipdio nstalled bemplates L+ |

2 08 0 8 8 & &

Weh For Master Page e Lisar HTMLPage ‘Wih Sarvice Sevle Sheat
Conkral fppheati.. .
: = | = L =
I il = = 4 wE
| ; ﬁ e e = g] = =
Wb WL File HHL Schema Yok Fils Resource Fle 500 Dtabase Dtafet Generic
Corfigurati.... Handlar
an] it = — = 5 |
ans) = = =3 £ B s &
Sike MHap Mobis Wb VESCript File Reaport JSiript File Mobile VWb Mobils Wb ¥5LT Fle
Form User Control Configurati.... w

A 5P NET server conkrel created using thes visual designer
Tame: SectionlevelTutonalListing. asce|
[T sl Basic w | [#]Plsce cods in separste Fle

Figure 13: Add a New Web User Control to the Usercontrols Folder

SectionLevelTutorialListing.ascx

<%@ Control Language="VB" AutoEventWireup="true"
CodeFile="SectionLevelTutoriallisting.ascx.vb"
Inherits="UserControls SectionLevelTutorialListing" %>
<asp:Repeater ID="TutoriallList" runat="server" EnableViewState="False">
<HeaderTemplate></HeaderTemplate>
<ItemTemplate>
<asp:HyperLink runat="server"
NavigateUrl="'<%$# Eval ("Url") %>'
Text="<%# Eval ("Title") %>'></asp:HyperLink>
- <%# Eval ("Description") %></1i>
</ItemTemplate>
<FooterTemplate></FooterTemplate>
</asp:Repeater>

SectionLevelTutorialListing.ascx.vb

Partial Class UserControls SectionLevelTutoriallListing
Inherits UserControl

Protected Sub Page Load(sender As Object, e As EventArgs) Handles Me.Load
If SiteMap.CurrentNode IsNot Nothing Then
TutoriallList.DataSource = SiteMap.CurrentNode.ChildNodes
TutorialList.DataBind()
End If
End Sub
End Class

17 of 20

In the previous Repeater example we bound the SiteMap data to the Repeater declaratively; the
SectionLevelTutorialListing User Control, however, does so programmatically. In the Page_Load event
handler, a check is made to ensure that this page's URL maps to a node in the site map. If this User Control is used
in a page that does not have a corresponding <siteMapNode> entry, SiteMap.CurrentNode will return Nothing
and no data will be bound to the Repeater. Assuming we have a CurrentNode, we bind its ChildNodes collection
to the Repeater. Since our site map is set up such that the befault.aspx page in each section is the parent node of
all of the tutorials within that section, this code will display links to and descriptions of all of the section's tutorials,
as shown in the screen shot below.

Once this Repeater has been created, open the Default.aspx pages in each of the folders, go to the Design view,
and simply drag the User Control from the Solution Explorer onto the Design surface where you want the tutorial
list to appear.

¥ Code - Microssdt Vismal Studio

Die [Wew Webgte Dukd [ebug Pomst Lmmit Tnok Wndos Commnty e dddns

e L T - Y i b e =
| y : = o
% Piltering Defmltswps | Costorformattrg Del e aps 0 x BT -~ 0 X
R aEod he
B L NORTIWID. NP &

3 iy Basichaportng
A [Deschaaboyel . dfe
L] Dtk e
B 2] Prograreretic s,
B [sepisCiplyy, g

= L@ CigtomFormsting

Content - Cortent] (Custoen) W | Cuskomnion. apn
2 Dol i
H — H 3] Dt emma T mpiabam bl e
Filtering Tutorials A} ~rioghen
] GchewTanplsbeekd, s
M a Gaksbound - Datsbound # 3 SursmersDstainFocher, mps
& Pprgbaynd - Patabound = |2 Flearng
= [Fatsgoung - Patsbound # 2| o, i
* Eakabaund - Patsbaund B L] DestdsrySebacting. op
% [utsbound * Detsbound # - [FilberByOropDowsnl i, s
[MerbarTistalelut sl o

S % Ussrfortioh

£ |G ¥
S <hody cdviherapper> | <formdfomd = 4 | s, [, | g er Fiil=s

it | 5] Fnd Reslts 1

Figure 14: The User Control has Been Added to Default.aspx

18 of 20

T Untitled Page - Microsoft Internet Explores
Fle [Edt Wiew Faewikes Toos Help

Qs = @) = 8] 2 o H Sewch Favorkes 48 - __}.:. - Y .111_1“1-5'
Adiress | @] bttpeflocathost: 26 CodefasicReporting|Def auk. sspx v B
Working with Data Tutorials Home > Basic Reporting

Basic Reporting Tutorials

+ Simple Display - Displays the complete contents of a
Simpie Displa

B ¥ database table
Declarative # [eclargtive Paramaters — Displayvs 3 subset of the
Parameters contents of a database table using parameters

Setbng Paramersr » Setting Parameter vValues - Shows how ta set

alues paramiber values programmatssally.

Fiter by Drop-Dawn
List

Maztar-Details-

<

% Local intraret

=

Figure 15: The Basic Reporting Tutorials are Listed

Summary

With the site map defined and the master page complete, we now have a consistent page layout and navigation
scheme for our data-related tutorials. Regardless of how many pages we add to our site, updating the site-wide
page layout or site navigation information is a quick and simple process due to this information being centralized.
Specifically, the page layout information is defined in the master page Site.master and the site map in
Web.sitemap. We didn't need to write any code to achieve this site-wide page layout and navigation mechanism,
and we retain full WYSIWYG designer support in Visual Studio.

Having completed the Data Access Layer and Business Logic Layer and having a consistent page layout and site
navigation defined, we're ready to begin exploring common reporting patterns. In the next three tutorials we'll look
at basic reporting tasks — displaying data retrieved from the BLL in the GridView, DetailsView, and FormView
controls.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following resources:

ASP.NET Master Pages Overview

Master Pages in ASP.NET 2.0

ASP.NET 2.0 Design Templates

ASP.NET Site Navigation Overview
Examining ASP.NET 2.0's Site Navigation
ASP.NET 2.0 Site Navigation Features
Understanding ASP.NET View State

How to: Enable Tracing for an ASP.NET Page
ASP.NET User Controls

19 of 20

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Liz Shulok,
Dennis Patterson, and Hilton Giesenow. Interested in reviewing my upcoming MSDN articles? If so, drop me a
line at mitchell@4GuysFromRolla.com.

20 of 20

