빠른 시작: PII(개인 식별 정보) 검색

참고

이 빠른 시작에서는 문서에서 PII 검색만 다룹니다. 대화에서 PII를 검색하는 방법에 대해 자세히 알아보려면 대화에서 PII를 검색하고 수정하는 방법을 참조하세요.

참조 설명서 | 추가 샘플 | 패키지(NuGet) | 라이브러리 소스 코드

이 빠른 시작을 사용하여 .NET용 클라이언트 라이브러리를 사용하여 PII(개인 식별 정보) 검색 애플리케이션을 만듭니다. 다음 예제에서는 텍스트에서 인식된 중요한 정보를 식별할 수 있는 C# 애플리케이션을 만듭니다.

Language Studio를 사용하여 코드를 작성할 필요 없이 문서에서 PII 검색을 시도할 수 있습니다.

필수 구성 요소

  • Azure 구독 - 체험 구독 만들기
  • Visual Studio IDE
  • Azure 구독이 있으면 Azure Portal에서 언어 리소스를 만들어 키와 엔드포인트를 가져옵니다. 배포 후 리소스로 이동을 클릭합니다.
    • 애플리케이션을 API에 연결하려면 만든 리소스의 키와 엔드포인트가 필요합니다. 이 빠른 시작의 뒷부분에 나오는 코드에 키와 엔드포인트를 붙여넣습니다.
    • 평가판 가격 책정 계층(Free F0)을 통해 서비스를 사용해보고, 나중에 프로덕션용 유료 계층으로 업그레이드할 수 있습니다.
  • 분석 기능을 사용하려면 표준(S) 가격 책정 계층을 사용하는 언어 리소스가 필요합니다.

설치

새 .NET Core 애플리케이션 만들기

Visual Studio IDE를 사용하여 새 .NET Core 콘솔 앱을 만듭니다. 이렇게 하면 program.cs라는 단일 C# 원본 파일이 포함된 "Hello World" 프로젝트가 생성됩니다.

솔루션 탐색기에서 솔루션을 마우스 오른쪽 단추로 클릭하고 NuGet 패키지 관리를 선택하여 클라이언트 라이브러리를 설치합니다. 열리는 패키지 관리자에서 찾아보기를 선택하고 Azure.AI.TextAnalytics를 검색합니다. 5.2.0 버전, 설치를 차례로 선택합니다. 패키지 관리자 콘솔을 사용할 수도 있습니다.

코드 예제

program.cs 파일에 다음 코드를 복사합니다. key 변수를 리소스의 키로 바꾸고 endpoint 변수를 리소스의 엔드포인트로 바꾸어야 합니다.

중요

Azure Portal로 이동합니다. 필수 구성 요소 섹션에서 만든 언어 리소스가 성공적으로 배포된 경우 다음 단계 아래에서 리소스로 이동 단추를 클릭합니다. 리소스 관리에서 리소스의 키 및 엔드포인트 페이지로 이동하여 키와 엔드포인트를 찾을 수 있습니다.

중요

완료되면 코드에서 키를 제거하고 공개적으로 게시하지 마세요. 프로덕션의 경우 Azure Key Vault와 같은 자격 증명을 안전하게 저장하고 액세스하는 방법을 사용합니다. 자세한 내용은 Cognitive Services 보안 문서를 참조하세요.

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        private static readonly AzureKeyCredential credentials = new AzureKeyCredential("replace-with-your-key-here");
        private static readonly Uri endpoint = new Uri("replace-with-your-endpoint-here");

        // Example method for detecting sensitive information (PII) from text 
        static void RecognizePIIExample(TextAnalyticsClient client)
        {
            string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
        
            PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
        
            Console.WriteLine($"Redacted Text: {entities.RedactedText}");
            if (entities.Count > 0)
            {
                Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
                foreach (PiiEntity entity in entities)
                {
                    Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
                }
            }
            else
            {
                Console.WriteLine("No entities were found.");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            RecognizePIIExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

출력

Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8

참조 설명서 | 추가 샘플 | 패키지(Maven) | 라이브러리 소스 코드

이 빠른 시작을 사용하여 Java용 클라이언트 라이브러리를 사용하여 PII(개인 식별 정보) 검색 애플리케이션을 만듭니다. 다음 예제에서는 텍스트에서 인식된 중요한 정보를 식별할 수 있는 Java 애플리케이션을 만듭니다.

Language Studio를 사용하여 코드를 작성할 필요 없이 문서에서 PII 검색을 시도할 수 있습니다.

필수 구성 요소

  • Azure 구독 - 체험 구독 만들기
  • JDK(Java Development Kit) 버전 8 이상
  • Azure 구독이 있으면 Azure Portal에서 언어 리소스를 만들어 키와 엔드포인트를 가져옵니다. 배포 후 리소스로 이동을 클릭합니다.
    • 애플리케이션을 API에 연결하려면 만든 리소스의 키와 엔드포인트가 필요합니다. 이 빠른 시작의 뒷부분에 나오는 코드에 키와 엔드포인트를 붙여넣습니다.
    • 평가판 가격 책정 계층(Free F0)을 통해 서비스를 사용해보고, 나중에 프로덕션용 유료 계층으로 업그레이드할 수 있습니다.
  • 분석 기능을 사용하려면 표준(S) 가격 책정 계층을 사용하는 언어 리소스가 필요합니다.

설치

클라이언트 라이브러리 추가

선호하는 IDE 또는 개발 환경에서 Maven 프로젝트를 만듭니다. 그런 다음, 프로젝트의 pom.xml 파일에 다음 종속성을 추가합니다. 온라인에서 다른 빌드 도구용 구현 구문을 찾을 수 있습니다.

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

코드 예제

Example.java라는 Java 파일을 만듭니다. 파일을 열고 아래 코드를 복사합니다. key 변수를 리소스의 키로 바꾸고 endpoint 변수를 리소스의 엔드포인트로 바꾸어야 합니다.

중요

Azure Portal로 이동합니다. 필수 구성 요소 섹션에서 만든 언어 리소스가 성공적으로 배포된 경우 다음 단계 아래에서 리소스로 이동 단추를 클릭합니다. 리소스 관리에서 리소스의 키 및 엔드포인트 페이지로 이동하여 키와 엔드포인트를 찾을 수 있습니다.

중요

완료되면 코드에서 키를 제거하고 공개적으로 게시하지 마세요. 프로덕션의 경우 Azure Key Vault와 같은 자격 증명을 안전하게 저장하고 액세스하는 방법을 사용합니다. 자세한 내용은 Cognitive Services 보안 문서를 참조하세요.

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    private static String KEY = "replace-with-your-key-here";
    private static String ENDPOINT = "replace-with-your-endpoint-here";

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(KEY, ENDPOINT);
        recognizePiiEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }

    // Example method for detecting sensitive information (PII) from text 
    static void recognizePiiEntitiesExample(TextAnalyticsClient client)
    {
        // The text that need be analyzed.
        String document = "My SSN is 859-98-0987";
        PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
        System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
        piiEntityCollection.forEach(entity -> System.out.printf(
            "Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
                + " confidence score: %f.%n",
            entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
    }
}

출력

Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.

참조 설명서 | 추가 샘플 | 패키지(npm) | 라이브러리 소스 코드

이 빠른 시작을 사용하여 Node.js용 클라이언트 라이브러리를 사용하여 PII(개인 식별 정보) 검색 애플리케이션을 만듭니다. 다음 예제에서는 텍스트에서 인식된 중요한 정보를 식별할 수 있는 JavaScript 애플리케이션을 만듭니다.

Language Studio를 사용하여 코드를 작성할 필요 없이 문서에서 PII 검색을 시도할 수 있습니다.

필수 구성 요소

  • Azure 구독 - 체험 구독 만들기
  • Node.js v14 LTS 이상
  • Azure 구독이 있으면 Azure Portal에서 언어 리소스를 만들어 키와 엔드포인트를 가져옵니다. 배포 후 리소스로 이동을 클릭합니다.
    • 애플리케이션을 API에 연결하려면 만든 리소스의 키와 엔드포인트가 필요합니다. 이 빠른 시작의 뒷부분에 나오는 코드에 키와 엔드포인트를 붙여넣습니다.
    • 평가판 가격 책정 계층(Free F0)을 통해 서비스를 사용해보고, 나중에 프로덕션용 유료 계층으로 업그레이드할 수 있습니다.
  • 분석 기능을 사용하려면 표준(S) 가격 책정 계층을 사용하는 언어 리소스가 필요합니다.

설치

새 Node.js 애플리케이션 만들기

콘솔 창(예: cmd, PowerShell 또는 Bash)에서 앱에 대한 새 디렉터리를 만들고 이 디렉터리로 이동합니다.

mkdir myapp 

cd myapp

package.json 파일을 사용하여 노드 애플리케이션을 만들려면 npm init 명령을 실행합니다.

npm init

클라이언트 라이브러리 설치

npm 패키지를 설치합니다.

npm install @azure/ai-text-analytics@5.1.0

코드 예제

파일을 열고 아래 코드를 복사합니다. key 변수를 리소스의 키로 바꾸고 endpoint 변수를 리소스의 엔드포인트로 바꾸어야 합니다.

중요

Azure Portal로 이동합니다. 필수 구성 요소 섹션에서 만든 언어 리소스가 성공적으로 배포된 경우 다음 단계 아래에서 리소스로 이동 단추를 클릭합니다. 리소스 관리에서 리소스의 키 및 엔드포인트 페이지로 이동하여 키와 엔드포인트를 찾을 수 있습니다.

중요

완료되면 코드에서 키를 제거하고 공개적으로 게시하지 마세요. 프로덕션의 경우 Azure Key Vault와 같은 자격 증명을 안전하게 저장하고 액세스하는 방법을 사용합니다. 자세한 내용은 Cognitive Services 보안 문서를 참조하세요.

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");
const key = '<paste-your-key-here>';
const endpoint = '<paste-your-endpoint-here>';
// Authenticate the client with your key and endpoint
const textAnalyticsClient = new TextAnalyticsClient(endpoint,  new AzureKeyCredential(key));

// Example method for detecting sensitive information (PII) from text 
async function piiRecognition(client) {

    const documents = [
        "The employee's phone number is (555) 555-5555."
    ];

    const results = await client.recognizePiiEntities(documents, "en");
    for (const result of results) {
        if (result.error === undefined) {
            console.log("Redacted Text: ", result.redactedText);
            console.log(" -- Recognized PII entities for input", result.id, "--");
            for (const entity of result.entities) {
                console.log(entity.text, ":", entity.category, "(Score:", entity.confidenceScore, ")");
            }
        } else {
            console.error("Encountered an error:", result.error);
        }
    }
}
piiRecognition(textAnalyticsClient)

출력

Redacted Text:  The employee's phone number is **************.
 -- Recognized PII entities for input 0 --
(555) 555-5555 : Phone Number (Score: 0.8 )

참조 설명서 | 추가 샘플 | 패키지(PyPi) | 라이브러리 소스 코드

이 빠른 시작을 사용하여 Python용 클라이언트 라이브러리를 사용하여 PII(개인 식별 정보) 검색 애플리케이션을 만듭니다. 다음 예제에서는 텍스트에서 인식된 중요한 정보를 식별할 수 있는 Python 애플리케이션을 만듭니다.

Language Studio를 사용하여 코드를 작성할 필요 없이 문서에서 PII 검색을 시도할 수 있습니다.

필수 구성 요소

  • Azure 구독 - 체험 구독 만들기
  • Python 3.7 이상
  • Azure 구독이 있으면 Azure Portal에서 언어 리소스를 만들어 키와 엔드포인트를 가져옵니다. 배포 후 리소스로 이동을 클릭합니다.
    • 애플리케이션을 API에 연결하려면 만든 리소스의 키와 엔드포인트가 필요합니다. 이 빠른 시작의 뒷부분에 나오는 코드에 키와 엔드포인트를 붙여넣습니다.
    • 평가판 가격 책정 계층(Free F0)을 통해 서비스를 사용해보고, 나중에 프로덕션용 유료 계층으로 업그레이드할 수 있습니다.
  • 분석 기능을 사용하려면 표준(S) 가격 책정 계층을 사용하는 언어 리소스가 필요합니다.

설치

클라이언트 라이브러리 설치

Python을 설치한 후, 다음을 사용하여 클라이언트 라이브러리를 설치할 수 있습니다.

pip install azure-ai-textanalytics==5.2.0

코드 예제

새 Python 파일을 만들고 아래 코드를 복사합니다. key 변수를 리소스의 키로 바꾸고 endpoint 변수를 리소스의 엔드포인트로 바꾸어야 합니다.

중요

Azure Portal로 이동합니다. 필수 구성 요소 섹션에서 만든 언어 리소스가 성공적으로 배포된 경우 다음 단계 아래에서 리소스로 이동 단추를 클릭합니다. 리소스 관리에서 리소스의 키 및 엔드포인트 페이지로 이동하여 키와 엔드포인트를 찾을 수 있습니다.

중요

완료되면 코드에서 키를 제거하고 공개적으로 게시하지 마세요. 프로덕션의 경우 Azure Key Vault와 같은 자격 증명을 안전하게 저장하고 액세스하는 방법을 사용합니다. 자세한 내용은 Cognitive Services 보안 문서를 참조하세요.

key = "paste-your-key-here"
endpoint = "paste-your-endpoint-here"

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example method for detecting sensitive information (PII) from text 
def pii_recognition_example(client):
    documents = [
        "The employee's SSN is 859-98-0987.",
        "The employee's phone number is 555-555-5555."
    ]
    response = client.recognize_pii_entities(documents, language="en")
    result = [doc for doc in response if not doc.is_error]
    for doc in result:
        print("Redacted Text: {}".format(doc.redacted_text))
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("\tCategory: {}".format(entity.category))
            print("\tConfidence Score: {}".format(entity.confidence_score))
            print("\tOffset: {}".format(entity.offset))
            print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

출력

Redacted Text: The ********'s SSN is ***********.
Entity: employee
        Category: PersonType
        Confidence Score: 0.97
        Offset: 4
        Length: 8
Entity: 859-98-0987
        Category: USSocialSecurityNumber
        Confidence Score: 0.65
        Offset: 22
        Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
        Category: PersonType
        Confidence Score: 0.96
        Offset: 4
        Length: 8
Entity: 555-555-5555
        Category: PhoneNumber
        Confidence Score: 0.8
        Offset: 31
        Length: 12

참조 설명서

이 빠른 시작을 사용하여 REST API를 통해 PII(개인 식별 정보) 검색 요청을 보냅니다. 다음 예제에서는 cURL을 사용하여 텍스트에서 인식된 중요한 정보를 식별합니다.

Language Studio를 사용하여 코드를 작성할 필요 없이 문서에서 PII 검색을 시도할 수 있습니다.

사전 요구 사항

  • 현재 버전의 cURL.
  • Azure 구독이 있으면 Azure Portal에서 언어 리소스를 만들어 키와 엔드포인트를 가져옵니다. 배포 후 리소스로 이동을 클릭합니다.
    • 애플리케이션을 API에 연결하려면 만든 리소스의 키와 엔드포인트가 필요합니다. 이 빠른 시작의 뒷부분에 나오는 코드에 키와 엔드포인트를 붙여넣습니다.
    • 평가판 가격 책정 계층(Free F0)을 통해 서비스를 사용해보고, 나중에 프로덕션용 유료 계층으로 업그레이드할 수 있습니다.

참고

  • 다음 BASH 예제에서는 \ 줄 연속 문자를 사용합니다. 콘솔 또는 터미널에서 다른 줄 연속 문자를 사용하는 경우 해당 문자를 사용하세요.
  • GitHub에서 언어별 샘플을 찾을 수 있습니다.
  • Azure Portal로 이동하여 필수 구성 요소에서 만든 언어 리소스의 키와 엔드포인트를 찾습니다. 리소스의 키 및 엔드포인트 페이지의 리소스 관리 아래에 있습니다. 그런 다음, 아래 코드의 문자열을 키와 엔드포인트로 바꿉니다. API를 호출하려면 다음 정보가 필요합니다.
매개 변수 Description
-X POST <endpoint> API에 액세스하기 위한 엔드포인트를 지정합니다.
-H Content-Type: application/json JSON 데이터를 보내기 위한 콘텐츠 형식.
-H "Ocp-Apim-Subscription-Key:<key> API에 액세스하기 위한 키를 지정합니다.
-d <documents> 보내려는 문서가 포함된 JSON.

다음 cURL 명령은 BASH 셸에서 실행됩니다. 사용자 고유의 리소스 이름, 리소스 키 및 JSON 값을 사용하여 이 명령을 편집합니다.

PII(개인 식별 정보) 검색

  1. 명령을 텍스트 편집기에 복사합니다.
  2. 필요한 경우 명령에서 다음 내용을 변경합니다.
    1. <your-language-resource-key> 값을 키로 바꿉니다.
    2. 요청 URL <your-language-resource-endpoint>의 첫 번째 부분을 고유한 엔드포인트 URL로 바꿉니다.
  3. 명령 프롬프트 창을 엽니다.
  4. 텍스트 편집기에서 명령 프롬프트 창으로 명령을 붙여넣은 후 명령을 실행합니다.
curl -i -X POST https://<your-language-resource-endpoint>/language/:analyze-text?api-version=2022-05-01 \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key:<your-language-resource-key>" \
-d \
'
{
    "kind": "PiiEntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
            }
        ]
    }
}
'

JSON 응답

{
	"kind": "PiiEntityRecognitionResults",
	"results": {
		"documents": [{
			"redactedText": "Call our office at ************, or send an email to *******************",
			"id": "1",
			"entities": [{
				"text": "312-555-1234",
				"category": "PhoneNumber",
				"offset": 19,
				"length": 12,
				"confidenceScore": 0.8
			}, {
				"text": "support@contoso.com",
				"category": "Email",
				"offset": 53,
				"length": 19,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-01-15"
	}
}

리소스 정리

Cognitive Services 구독을 정리하고 제거하려면 리소스나 리소스 그룹을 삭제하면 됩니다. 리소스 그룹을 삭제하면 해당 리소스 그룹에 연결된 다른 모든 리소스가 함께 삭제됩니다.

다음 단계