빠른 시작: Linux(Ubuntu)용 Data Science Virtual Machine 설정

중요

이 문서에 표시된 항목(미리 보기)은 현재 퍼블릭 미리 보기에서 확인할 수 있습니다. 미리 보기 버전은 서비스 수준 계약 없이 제공되며 프로덕션 워크로드에는 권장되지 않습니다. 특정 기능이 지원되지 않거나 기능이 제한될 수 있습니다. 자세한 내용은 Microsoft Azure Preview에 대한 추가 사용 약관을 참조하세요.

Ubuntu 20.04 Data Science Virtual Machine 및 PyTorch용 Azure DSVM(미리 보기)을 사용하여 시작하고 실행합니다.

사전 요구 사항

Ubuntu 20.04 Data Science Virtual Machine 또는 PyTorch용 Azure DSVM을 만들려면 Azure 구독이 있어야 합니다. Azure 평가판 체험하기.

참고

Azure 체험 계정은 GPU 사용 가상 머신 SKU를 지원하지 않습니다.

Linux용 데이터 과학 Virtual Machine 만들기

다음은 Ubuntu 20.04 Data Science Virtual Machine 또는 PyTorch용 Azure DSVM의 인스턴스를 만드는 단계입니다.

  1. Azure 포털로 이동합니다. 아직 로그인하지 않은 경우 Azure 계정에 로그인하라는 메시지가 표시될 수 있습니다.

  2. "데이터 과학 가상 머신"을 입력하고 "Data Science Virtual Machine- Ubuntu 20.04" 또는 "PyTorch용 Azure DSVM(미리 보기)"을 선택하여 가상 머신 목록을 찾습니다.

  3. 다음 창에서 만들기를 선택합니다.

  4. "가상 머신 만들기" 블레이드로 리디렉션됩니다.

  5. 다음 정보를 입력하여 마법사의 각 단계를 구성합니다.

    1. 기본 사항:

      • 구독: 둘 이상의 구독이 있으면 머신을 만들고 요금을 청구할 구독을 선택합니다. 이 구독에 대한 리소스 만들기 권한이 있어야 합니다.

      • 리소스 그룹: 새 그룹을 만들거나 기존 그룹을 사용합니다.

      • 가상 머신 이름: 가상 머신의 이름을 입력합니다. 이 이름은 Azure Portal에서 사용됩니다.

      • 지역: 가장 적합한 데이터 센터를 선택합니다. 가장 빠른 네트워크 액세스를 위해 대부분의 데이터가 있거나 물리적 위치에 가장 가까운 데이터 센터입니다. Azure 지역에 대해 자세히 알아보세요.

      • 이미지: 기본값을 그대로 둡니다.

      • Size: 이 옵션은 일반 워크로드에 적합한 크기로 자동 채워집니다. Azure의 Linux VM 크기에 대해 자세히 읽어보세요.

      • 인증 형식: 더 빨리 설치하려면 "암호"를 선택합니다.

        참고

        JupyterHub를 사용하려면 "암호"를 선택해야 합니다. JupyterHub는 SSH 공개 키를 사용하도록 구성되지 않기 때문입니다.

      • 사용자 이름: 관리자 사용자 이름을 입력합니다. 이 사용자 이름을 사용하여 가상 머신에 로그인합니다. 이 사용자 이름은 Azure 사용자 이름과 같을 필요는 없습니다. 대문자는 사용하지 마십시오.

        중요

        사용자 이름에 대문자를 사용하면 JupyterHub가 작동하지 않으며 500 내부 서버 오류가 발생합니다.

      • 암호: 가상 머신에 로그인하는 데 사용할 암호를 입력합니다.

    2. 검토 + 만들기를 선택합니다.

    3. 검토+만들기

      • 입력한 모든 정보가 올바른지 확인합니다.
      • 만들기를 선택합니다.

    프로비전에는 약 5분이 걸립니다. 상태가 Azure Portal에 표시됩니다.

Ubuntu Data Science Virtual Machine에 액세스하는 방법

Ubuntu DSVM에는 다음 세 가지 방법 중 하나를 사용하여 액세스할 수 있습니다.

  • 터미널 세션에 대한 SSH
  • 그래픽 세션에 대한 X2Go
  • Jupyter 노트북에 대한 JupyterHub 및 JupyterLab

SSH

SSH 인증을 사용하여 VM을 구성한 경우 텍스트 셸 인터페이스에 대한 3단계의 기본 섹션 에 만든 계정 자격 증명을 사용하여 로그온할 수 있습니다. Windows에서는 PuTTY와 같은 SSH 클라이언트 도구를 다운로드할 수 있습니다. 그래픽 데스크톱(X Windows 시스템)을 선호하는 경우 PuTTY에서 X11 전달을 사용할 수 있습니다.

참고

테스트 결과 X2Go 클라이언트의 성능이 X11 전달보다 더 우수했습니다. 그래픽 데스크톱 인터페이스에서는 X2Go 클라이언트를 사용하는 것이 좋습니다.

X2Go

Linux VM은 이미 X2Go 서버와 함께 프로비저닝되었고 클라이언트 연결을 허용할 준비가 되었습니다. Linux VM 그래픽 데스크톱에 연결하려면 클라이언트에서 다음 절차를 완료합니다.

  1. 사용 중인 클라이언트 플랫폼용 X2Go 클라이언트를 X2Go에서 다운로드하여 설치합니다.

  2. 가상 머신의 공용 IP 주소를 기록해 둡니다. 이 주소는 사용자가 만든 가상 머신을 열어 Azure Portal에서 찾을 수 있습니다.

    Ubuntu 머신 IP 주소

  3. X2Go 클라이언트를 실행합니다. “새 세션” 창이 자동으로 팝업되지 않으면 세션 -> 새 세션으로 이동합니다.

  4. 구성 창이 열리면 다음과 같은 구성 매개 변수를 입력합니다.

    • 세션 탭:
      • 호스트: 앞서 기록해 둔 VM의 IP 주소를 입력합니다.
      • 로그인: Linux VM에서 사용자 이름을 입력합니다.
      • SSH 포트: 기본값 22를 그대로 사용합니다.
      • 세션 유형: 값을 XFCE로 변경합니다. 현재 Linux VM은 XFCE 데스크톱만 지원합니다.
    • 미디어 탭: 사운드 지원 및 클라이언트 인쇄를 사용하지 않으려면 해제할 수 있습니다.
    • 공유 폴더: 이 탭을 사용하여 VM에 탑재할 클라이언트 머신 디렉터리를 추가합니다.

    X2go 구성

  5. 확인을 선택합니다.

  6. X2Go 창의 오른쪽 창에 있는 상자를 클릭하여 VM의 로그인 화면을 표시합니다.

  7. VM의 암호를 입력합니다.

  8. 확인을 선택합니다.

  9. 연결을 마치려면 방화벽을 우회할 수 있는 X2Go 권한을 부여해야 할 수도 있습니다.

  10. 이제 Ubuntu DSVM의 그래픽 인터페이스가 표시됩니다.

JupyterHub 및 JupyterLab

Ubuntu DSVM은 다중 사용자 Jupyter 서버인 JupyterHub를 실행합니다. 연결하려면 다음 단계를 수행합니다.

  1. Azure Portal에서 VM을 검색하고 선택하여 VM에 대한 공용 IP 주소를 기록해 둡니다. Ubuntu 컴퓨터 IP 주소

  2. 로컬 머신에서 웹 브라우저를 열고 https:https://your-vm-ip:8000으로 이동합니다. “your-vm-ip”는 앞에서 기록해 둔 IP 주소로 대체해야 합니다.

  3. 브라우저에서 인증서 오류가 있음을 알리는 페이지를 직접 열지 못할 수 있습니다. DSVM은 자체 서명된 인증서를 통해 보안을 제공합니다. 대부분의 브라우저는 이 경고 후에 클릭할 수 있습니다. 대부분의 브라우저는 웹 세션 전체에서 인증서에 대한 일종의 시각적 경고를 계속 제공합니다.

    참고

    브라우저에 ERR_EMPTY_RESPONSE 오류 메시지가 표시되는 경우 HTTP 또는 웹 주소만 사용하는 대신 HTTPS 프로토콜을 명시적으로 사용하여 머신에 액세스해야 합니다. 주소 줄에 https://가 없는 웹 주소를 입력하면 대부분의 브라우저는 기본적으로 http로 설정되며 이 오류가 표시됩니다.

  4. VM을 만드는 데 사용한 사용자 이름과 암호를 입력하여 로그인합니다.

    Jupyter 로그인 입력

    참고

    이 단계에서 500 오류가 표시되면 사용자 이름에 대문자를 사용했을 수 있습니다. 이는 Jupyter 허브와 사용하는 PAMAuthenticator 간의 알려진 상호 작용입니다. "이 페이지에 연결할 수 없습니다."라는 오류가 표시되면 네트워크 보안 그룹 권한을 조정해야 할 수 있습니다. Azure Portal에서 리소스 그룹 내의 네트워크 보안 그룹 리소스를 찾습니다. 공용 인터넷에서 JupyterHub에 액세스하려면 포트 8000이 열려 있어야 합니다. (이미지는 이 VM이 Just-In-Time 액세스를 위해 구성되어 있음을 보여 하며, 이는 매우 권장됩니다. Just-In-Time 액세스를 사용하여 관리 포트 보안을 참조하세요.) 네트워크 보안 그룹 구성

  5. 사용 가능한 다양한 샘플 노트북을 찾아봅니다.

Jupyter 노트북의 차세대 JupyterLab 및 JupyterHub도 제공됩니다. 액세스하려면 JupyterHub에 로그인한 다음, URL https:https://your-vm-ip:8000/user/your-username/lab으로 이동합니다. “your-username”은 VM을 구성할 때 선택한 사용자 이름으로 대체해야 합니다. 인증서 오류로 인해 처음에 사이트에 액세스하는 것이 차단될 수도 있습니다.

다음 줄을 /etc/jupyterhub/jupyterhub_config.py에 추가하여 JupyterLab을 기본 Notebook 서버로 설정할 수 있습니다.

c.Spawner.default_url = '/lab'

다음 단계

학습과 탐색을 계속하는 방법은 다음과 같습니다.

  • Linux용 Data Science Virtual Machine의 데이터 과학 연습에서는 여기서 프로비저닝된 Linux DSVM을 사용하여 몇 가지 일반적인 데이터 과학 작업을 수행하는 방법을 보여 줍니다.
  • 이 문서에서 설명하는 도구를 사용하여 DSVM에서 다양한 데이터 과학 도구를 살펴봅니다. 가상 머신 내의 셸에서 dsvm-more-info를 실행하여 VM에 설치된 도구에 대한 기본 소개 및 자세한 정보에 대한 포인터를 확인할 수도 있습니다.
  • 팀 데이터 과학 프로세스를 사용하여 분석 솔루션을 체계적으로 빌드하는 방법을 알아봅니다.
  • Azure AI 서비스를 사용하는 기계 학습 및 데이터 분석 샘플을 보려면 Azure AI Gallery를 방문합니다.
  • 이 가상 머신에 적합한 참조 설명서를 참조합니다.