
Tell us about your PDF experience.

Microsoft Azure Well-Architected
Framework
Article • 03/28/2023

The Azure Well-Architected Framework is a set of guiding tenets that you can use to
improve the quality of a workload. The framework consists of five pillars of architectural
excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

Incorporating these pillars helps produce a high quality, stable, and efficient cloud
architecture:

Pillar Description

Reliability The ability of a system to recover from failures and continue to function.

Security Protecting applications and data from threats.

Cost optimization Managing costs to maximize the value delivered.

Operational excellence Operations processes that keep a system running in production.

Performance efficiency The ability of a system to adapt to changes in load.

To learn about how to architect successful workloads on Azure by using the Well-
Architected Framework, watch this video:

The following diagram is a high-level overview of the Azure Well-Architected
Framework:

https://learn.microsoft.com/shows/azure-enablement/architect-successful-workloads-
on-azure--introduction-ep-1-well-architected-series/player

Overview

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/
https://learn.microsoft.com/en-us/azure/well-architected/cost/
https://learn.microsoft.com/en-us/azure/well-architected/devops/
https://learn.microsoft.com/en-us/azure/well-architected/scalability/
https://learn.microsoft.com/shows/azure-enablement/architect-successful-workloads-on-azure--introduction-ep-1-well-architected-series/player
https://aka.ms/learn-pdf-feedback

In the center is the Well-Architected Framework, which includes the five pillars of
architectural excellence. Surrounding the Well-Architected Framework are six supporting
elements:

Azure Well-Architected Review
Azure Advisor
Documentation
Partners , Support , and Services Offers
Reference architectures
Design principles

To assess your workload using the tenets found in the Microsoft Azure Well-Architected
Framework, see the Microsoft Azure Well-Architected Review.

Assess your workload

https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/architecture/framework/
https://azure.microsoft.com/partners/
https://azure.microsoft.com/support/options/#support-plans
https://learn.microsoft.com/en-us/azure/architecture/guide/
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment

We also recommend that you use Azure Advisor and Advisor Score to identify and
prioritize opportunities to improve the posture of your workloads. Both services are free
to all Azure users and align to the five pillars of the Well-Architected Framework:

Azure Advisor is a personalized cloud consultant that helps you follow best
practices to optimize your Azure deployments. It analyzes your resource
configuration and usage telemetry. It recommends solutions that can help you
improve the reliability, security, cost effectiveness, performance, and operational
excellence of your Azure resources. Learn more about Azure Advisor.

Advisor Score is a core feature of Azure Advisor that aggregates Advisor
recommendations into a simple, actionable score. This score enables you to tell at
a glance if you're taking the necessary steps to build reliable, secure, and cost-
efficient solutions. It helps to prioritize the actions that yield the biggest
improvement to the posture of your workloads. The Advisor Score consists of an
overall score, which can be further broken down into five category scores
corresponding to each of the Well-Architected pillars. Learn more about Advisor
Score.

A reliable workload is both resilient and available. Resiliency is the ability of the system
to recover from failures and continue to function. The goal of resiliency is to return the
application to a fully functioning state after a failure occurs. Availability is whether your
users can access your workload when they need to.

Reliability

https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/azure-advisor-score
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/
https://learn.microsoft.com/en-us/azure/well-architected/_images/well-architected-review.png#lightbox

For more information about resiliency, watch the following video that shows you how to
start improving the reliability of your Azure workloads:

The following resources offer guidance on designing and improving reliable Azure
applications:

Reliability design principles
Design patterns for resiliency
Best practices:

Transient fault handling
Retry guidance for specific services

For an overview of reliability principles, see Reliability design principles.

Think about security throughout the entire lifecycle of an application, from design and
implementation to deployment and operations. The Azure platform provides protections
against various threats, such as network intrusion and DDoS attacks. You still need to
build security into your application and into your DevOps processes.

Learn to ask the right questions about secure application development on Azure by
watching the following video:

Consider the following broad security areas:

Identity management
Protect your infrastructure
Application security
Data sovereignty and encryption
Security resources

For more information, see Overview of the security pillar.

https://learn.microsoft.com/shows/azure-enablement/start-improving-the-reliability-of-
your-azure-workloads--reliability-ep-1--well-architected-series/player

Reliability guidance

Security

https://learn.microsoft.com/shows/azure-enablement/ask-the-right-questions-about-
secure-application-development-on-azure/player

Security guidance

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/reliability-patterns
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/well-architected/security/overview#identity-management
https://learn.microsoft.com/en-us/azure/well-architected/security/overview#protect-your-infrastructure
https://learn.microsoft.com/en-us/azure/well-architected/security/overview#application-security
https://learn.microsoft.com/en-us/azure/well-architected/security/overview#data-sovereignty-and-encryption
https://learn.microsoft.com/en-us/azure/well-architected/security/overview#security-resources
https://learn.microsoft.com/en-us/azure/well-architected/security/overview
https://learn.microsoft.com/shows/azure-enablement/start-improving-the-reliability-of-your-azure-workloads--reliability-ep-1--well-architected-series/player
https://learn.microsoft.com/shows/azure-enablement/ask-the-right-questions-about-secure-application-development-on-azure/player

When you design a cloud solution, focus on generating incremental value early. Apply
the principles of Build-Measure-Learn to accelerate your time to market while avoiding
capital-intensive solutions. See What is the build-measure-learn feedback loop.

For more information, see Cost optimization and watch the following video on how to
start optimizing your Azure costs:

The following resources offer cost optimization guidance as you develop the Well-
Architected Framework for your workload:

Review cost principles
Develop a cost model
Create budgets and alerts
Review the cost optimization checklist

For a high-level overview, see Overview of the cost optimization pillar.

Operational excellence covers the operations and processes that keep an application
running in production. Deployments must be reliable and predictable. Automate
deployments to reduce the chance of human error. Fast and routine deployment
processes don't slow down the release of new features or bug fixes. Equally important,
you must be able to quickly roll back or roll forward if an update has problems.

For more information, watch the following video about bringing security into your
DevOps practice on Azure:

The following resources provide guidance on designing and implementing DevOps
practices for your Azure workload:

Operational excellence patterns

Cost optimization

https://learn.microsoft.com/shows/azure-enablement/start-optimizing-your-azure-
costs--cost-optimization-ep-1--well-architected-series/player

Cost guidance

Operational excellence

https://learn.microsoft.com/shows/azure-enablement/devsecops-bringing-security-into-
your-devops-practice-on-azure/player

Operational excellence guidance

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/innovate/considerations/adoption#what-is-the-build-measure-learn-feedback-loop
https://learn.microsoft.com/en-us/azure/well-architected/cost/
https://learn.microsoft.com/en-us/azure/well-architected/cost/overview
https://learn.microsoft.com/en-us/azure/well-architected/cost/design-model
https://learn.microsoft.com/en-us/azure/well-architected/cost/monitor-alert
https://learn.microsoft.com/en-us/azure/well-architected/cost/optimize-checklist
https://learn.microsoft.com/en-us/azure/well-architected/cost/overview
https://learn.microsoft.com/en-us/azure/well-architected/devops/
https://learn.microsoft.com/en-us/azure/well-architected/devops/devops-patterns
https://learn.microsoft.com/shows/azure-enablement/start-optimizing-your-azure-costs--cost-optimization-ep-1--well-architected-series/player
https://learn.microsoft.com/shows/azure-enablement/devsecops-bringing-security-into-your-devops-practice-on-azure/player

Best practices: Monitoring and diagnostics guidance

For a high-level summary, see Overview of the operational excellence pillar.

Performance efficiency is the ability of your workload to scale to meet the demands
placed on it by users in an efficient manner. The main ways to achieve performance
efficiency include using scaling appropriately and implementing PaaS offerings that have
scaling built in.

For more information, watch Performance Efficiency: Fast & Furious: Optimizing for
Quick and Reliable VM Deployments.

The following resources offer guidance on how to design and improve the performance
efficiency posture of your Azure workload:

Performance efficiency patterns
Best practices:

Autoscaling
Background jobs
Caching
CDN
Data partitioning

For a high-level overview, see Overview of the performance efficiency pillar.

Learn more about:

Azure Well-Architected Review
Well-Architected Series
Introduction to the Microsoft Azure Well-Architected Framework
Microsoft Defender for Cloud
Cloud Adoption Framework
Azure Deployment Environments
Microsoft Dev Box

Performance efficiency

Performance efficiency guidance

Next steps

https://learn.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://learn.microsoft.com/en-us/azure/well-architected/devops/overview
https://learn.microsoft.com/en-us/azure/well-architected/scalability/
https://learn.microsoft.com/en-us/events/all-around-azure-well-architected-the-backstage-tour/performance-efficiency
https://learn.microsoft.com/en-us/azure/well-architected/scalability/performance-efficiency-patterns
https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://learn.microsoft.com/en-us/azure/architecture/best-practices/caching
https://learn.microsoft.com/en-us/azure/architecture/best-practices/cdn
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/azure/well-architected/scalability/overview
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://channel9.msdn.com/Tags/well-architected-series
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-introduction/
https://learn.microsoft.com/en-us/azure/security-center/
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/
https://learn.microsoft.com/en-us/azure/deployment-environments/
https://learn.microsoft.com/en-us/azure/dev-box/

What's new in the Azure Well-
Architected Framework
Article • 05/08/2024

Find out about recent changes in the Azure Well-Architected Framework.

This month, we added two new service guides and new documentation about Oracle
workloads on Azure infrastructure as a service (IaaS).

Service guides

Azure Well-Architected Framework perspective on App Service: Review design
considerations and recommendations for App Service. Azure App Service is a type
of platform as a service (PaaS) compute service that allows you to host your
workload on the Azure platform.
Azure Well-Architected Framework perspective on Azure Blob Storage: Review
design considerations and configuration recommendations that are relevant to
Azure Blob Storage. Azure Blob Storage is a cloud-based object storage solution
that is optimized for storing massive amounts of unstructured data, such as text or
binary data.

Oracle workloads on Azure

Create an Oracle workload on Azure: Learn about best practices for an Oracle
workload on Azure IaaS to help you create a performant, secure, and highly
available solution.
Design principles for an Oracle workload on Azure: Review the design principles
built upon the five pillars of architectural excellence: reliability, security, cost
optimization, performance efficiency, and operation excellence. Gain insight into
best practices for designing and implementing Oracle workloads on Azure IaaS.
Choose compute and storage: Choose the correct combination of compute and
storage for Azure IaaS and the location of application workloads relative to
database services. Learn how to apply right-size compute and storage principles to
Oracle workloads using the Azure IaaS model.
Design Oracle applications: Review the design area for Oracle applications and see
how to apply these principles to Oracle on Azure IaaS workloads. Understand

April 2024

New articles

https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/get-started
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/review-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/choose-compute-storage
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/design-applications

which functionalities each version of an application supports so that you can avoid
problems during a migration to the cloud.
Optimize business continuity and disaster recovery: Oracle on Azure IaaS can fulfill
the required resiliency objectives of the most demanding Oracle workloads. See
how to apply these principles to Oracle on Azure IaaS workloads.
Optimize security for your Oracle workload: Review security recommendations for
the Azure control plane related to Oracle application workloads that are deployed
on virtual machines (VMs) on Azure. Learn how to optimize security for Oracle
workloads on Azure by using the defense-in-depth approach to employ a
combination of various layer security measures and create a robust security
posture.
Monitor your Oracle workload: Learn how to use Azure Virtual Machines to
monitor your Oracle workloads. Identify failures and abnormalities to ensure the
health of your mission-critical workloads.

Health modeling for workloads: Use health modeling to improve workload
reliability in Azure. Differentiate between healthy, degraded, and unhealthy states.
Learn how to quantify application health and build your own health model.
Azure Well-Architected Framework review for Log Analytics: Learn about the
architectural recommendations for Log Analytics workspaces in Azure Monitor.
These workspaces are the primary log and metric sink for a large portion of the
monitoring data. Workspaces support multiple features in Azure Monitor, including
ad-hoc queries, visualizations, and alerts.

Recommendations for standardizing tools and processes: Find new guidance to
implement standards for naming and tagging your resources.

Azure Well-Architected Framework perspective on Azure Front Door: Find design
considerations and configuration recommendations for Azure Front Door. Azure

March 2024

New articles

Updated articles

February 2024

New articles

https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/optimize-business-continuity-disaster-recovery
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/optimize-security
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/monitor-workloads

Front Door is a global load balancer and content delivery network that routes
HTTP and HTTPS traffic.
Azure Well-Architected Framework perspective on Azure OpenAI: Find design
considerations and configuration recommendations for Azure OpenAI. This service
provides REST API access to the OpenAI large language models (LLMs), adding
capabilities for Azure networking and security.
Azure Well-Architected Framework perspective on Azure Machine Learning: Find
design considerations and configuration recommendations for Azure Machine
Learning. This service provides a cloud-based environment you can use to train,
deploy, automate, manage, and track machine learning models.

Architecture design diagrams: We expanded the guidance for using official icons
and service names to include examples of links to icons for Microsoft services.
Azure Well-Architected Framework review for Azure Kubernetes Service (AKS): We
updated the design checklist and the recommendations for AKS configuration.
Find information about Azure Spot Virtual Machines, Cluster Autoscaler, Node
Autoprovision, and the AKS Cost Analysis add-on.
Recommendations for securing a development lifecycle: We streamlined and
clarified guidance about the security design patterns that the application code
should implement.
Encryption strategy recommendations: We added information about confidential
computing and explained how it fits into key design strategies.

In January we added two new articles, and we updated two articles.

In Virtual Machines and scale sets, find guidance about how to review your virtual
machine and scale set workloads by using the Well-Architected Framework. Use
the Azure Virtual Machines compute service to create and run virtual machines on
the Azure platform. You can choose from different SKUs, operating systems, and
configurations.

In Optimize workload design using flows, learn how to optimize workloads
through structured flow design. Take a look at a three-step process for workload
optimization, including defining flow structures, setting technical requirements,

Updated articles

January 2024

New articles

and designing flows to meet these specifications. As you work to align flows with
business processes and use cases, find practical examples and recommendations in
this article.

Find updates to the following articles in the Operational Excellence pillar:

In Recommendations for implementing automation, find information about how to
use Azure Update Manager to help you manage and govern updates for virtual
machines. You can monitor Windows and Linux update compliance across your
workload. You can also use Update Manager to make real-time updates or
schedule them within a defined maintenance window.

In Recommendations for enabling automation in a workload, find a new section
about using Azure Monitoring Agent for change tracking and inventory. Automate
drift detection, the inventory-running services, and installed packages on the
virtual machines in your workload.

In December, we added a workload and updated recommendations for two Well-
Architected Framework pillars.

We added a new workload for workload owners, technical stakeholders, and business
stakeholders. This documentation is appropriate for roles that are accountable for
designing, building, and maintaining a solution for running applications and desktops in
a cloud environment. Use the Azure Virtual Desktop workloads documentation as your
go-to resource for optimizing the way you operate applications and desktops in Azure
Virtual Desktop.

Updated recommendations for the Reliability pillar:

Recommendations for handling transient faults
Recommendations for developing background jobs
Recommendations for designing a disaster recovery strategy
Recommendations for designing for redundancy

New articles

December 2023

New article

Updated articles

https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/overview

Updated recommendations for the Operational Excellence pillar:

Recommendations for implementing automation
Recommendations for designing an emergency response strategy
Recommendations for enabling automation in a workload
Recommendations for using infrastructure as code
Recommendations for designing a deployment failure mitigation strategy
Recommendations for safe deployment practices

The Azure Well-Architected Framework completed a significant content refresh across all
five pillars. We're breaking from our standard "What's new" format this month because
the changes that launched with Microsoft Ignite 2023 go beyond bullet points.

All five pillars of the Well-Architected Framework now follow a common structure that
consists exclusively of design principles, design review checklists, tradeoffs,
recommendation guides, and cloud design patterns.

Design principles. Presents goal-oriented principles that build a foundation for the
workload. Each principle includes a set of recommended approaches and the
benefits of taking those approaches. The principles for each pillar changed in terms
of content and coverage.

Reliability design principles
Security design principles
Cost Optimization design principles
Operational Excellence design principles
Performance Efficiency design principles

Design review checklists. Lists roughly codified recommendations that drive
action. Use the checklists during the design phase of your new workload and to
evaluate brownfield workloads.

Design review checklist for Reliability
Design review checklist for Security
Design review checklist for Cost Optimization
Design review checklist for Operational Excellence
Design review checklist for Performance Efficiency

Tradeoffs. Describes tradeoffs with other pillars. Many design decisions force a
tradeoff. It's vital to understand how achieving the goals of one pillar might make

November 2023

The core pillars of architecture have been restructured

https://ignite.microsoft.com/
https://ignite.microsoft.com/

achieving the goals of another pillar more challenging.
Reliability tradeoffs
Security tradeoffs
Cost Optimization tradeoffs
Operational Excellence tradeoffs
Performance Efficiency tradeoffs

Recommendation guides. Every design review checklist recommendation is
associated with one or more guides. They explain the key strategies to fulfill that
recommendation. They also include how Azure can facilitate workload design to
help achieve that recommendation. Some of these guides are new, and others are
refreshed versions of guides that covered a similar concept.

The recommendation guides include tradeoffs along with risks.

This icon indicates a tradeoff:

This icon indicates a risk:

Cloud design patterns. Build your design on proven, common architecture
patterns. The Azure Architecture Center maintains the Cloud Design Patterns
catalog. Each pillar includes descriptions of the cloud design patterns that are
relevant to the goals of the pillar and how they support the pillar.

The Well-Architected Review assessment was refreshed. Specifically, the "Core Well-
Architected Review" option now aligns to the new content structure in the Well-
Architected Framework. Every question in every pillar maps to the design review
checklist for that pillar. All choices for the questions correlate to the recommendation
guides for the related checklist item.

No other assessments were changed as part of this refresh.

Well-Architected Framework assessments

） Important

Backwards compatibility notice. The first new milestone on existing Core Well-
Architected Review assessment sessions will not be prefilled with your prior
responses due to the assessment refresh. You will be able to access prior
milestones, but when you create the first new milestone, you will need to reassess
the workload against the new questions and choices.

https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://learn.microsoft.com/en-us/assessments/azure-architecture-review/

In addition to the changes in structure and consistency, you should note some thematic
changes within the content. See the following key examples of these changes.

Workloads are more than technology. The scope of the Well-Architected
Framework is your workload. The principles and the guides provide
recommendations for people and processes of the workload team along with
technical guidance.

Workloads exist within the context of the organization. The Well-Architected
Framework frequently addresses workload responsibility to organizational
expectations. The Well-Architected Framework calls out the benefits and tradeoffs
of organizational influence.

Prior to this refresh, the guidance was more focused on the infrastructure than on
the application running on that infrastructure. Now, every pillar has developer-
centric content.

Specific service configuration has been minimized. The Well-Architected
Framework pillar content is design content, not implementation content. Before
the refresh, the Well-Architected Framework interwove Azure service-specific
guidance and design guidance. Now, the Well-Architected Framework limits
service-specific content to dedicated sections in the recommendation guides. The
Well-Architected Framework service guides continue to exist to serve as the
primary source for service-centric perspectives.

The Well-Architected Framework continues to put a healthy burden on workload
teams. It ensures that workload teams know what decisions need to be made and
what risks, benefits, and tradeoffs are associated with those decisions.

The Well-Architected Framework provides recommendations to help you make
informed and justified decisions. The Well-Architected Framework doesn't know

Thematic changes

） Important

As part of this restructuring, many pages have been added, moved, removed, or
changed. Redirection is in place where possible, but we're aware that many existing
links to the Well-Architected Framework might no longer point to the same
content.

What didn't change?

Feedback

Was this page helpful?

your business requirements or constraints, so it can't make decisions for you.

The Well-Architected Framework workloads and the Well-Architected Framework
service guides didn't undergo significant changes with this refresh. New workloads
and service guides are ongoing additions to the Well-Architected Framework. Keep
checking this page for updates.

Updated service guide: Azure Well-Architected Framework review - Azure Cosmos
DB for NoSQL
Updated service guide: Azure Well-Architected Framework review - Azure Firewall

New Reliability pillar guide: Recommendations for using availability zones and
regions
Updated service guide: Azure Well-Architected Framework review - Azure
Database for PostgreSQL

New Well-Architected Framework workload: Azure VMware Solution workloads
Updated service guide: Azure Well-Architected Framework review - Virtual
Machines

What's new in Azure Architecture Center
What's new in the Microsoft Cloud Adoption Framework for Azure

October 2023

September 2023

August 2023

Related links

 Yes No

https://learn.microsoft.com/en-us/azure/well-architected/service-guides/virtual-machines-review
https://learn.microsoft.com/en-us/azure/well-architected/service-guides/virtual-machines-review
https://learn.microsoft.com/en-us/azure/architecture/changelog
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/whats-new

What is the Azure Well-Architected
Framework?
Article • 11/14/2023

The Azure Well-Architected Framework is a design framework that can improve the
quality of a workload by helping it to:

Be resilient, available, and recoverable.
Be as secure as you need it to be.
Deliver a sufficient return on investment.
Support responsible development and operations.
Accomplish its purpose within acceptable timeframes.

The framework is founded on the five pillars of architectural excellence, which are
mapped to those goals. They are: Reliability, Security, Cost Optimization, Operational
Excellence, and Performance Efficiency.

Each pillar provides recommended practices, risk considerations, and tradeoffs. The
design decisions must be balanced across all pillars, given the business requirements.
The technical and actionable guidance is broad enough for all workloads and applies to
a specific scenario. This guidance is centered on Azure.

Workload architecture isn't the same as its implementation. The Well-Architected
Framework can set you up for success through architectural design, but the
implementation choices depend on the business requirements and constraints of your
organization.

The Well-Architected Framework applies to teams that are responsible for improving
workloads and addressing cross-cutting concerns.

The Well-Architected Framework provides valuable insights and recommendations for
anyone involved in the lifecycle of a workload. Regardless of your role in a workload
team, whether architect, developer, operator, or business stakeholder, if you have the
authority to make decisions within the scope of a workload, you can benefit from this
framework.

This guidance is beneficial regardless of the scale of your organization. Whether you're
part of a large enterprise, a small business, or an independent software vendor, you can
move a step closer to optimal design. The framework caters to a wide range of

Audience

organizational structures and sizes, ensuring that all workload users can effectively use
its benefits.

If you're seeking guidance for improving a portfolio of workloads through centralized
controls, this content might not fully apply. We recommend that you refer to Cloud
Adoption Framework. If you have no vested interest in designing workloads on Azure,
this content isn't relevant for you.

For information about the role and duties of an architect, see Architect's fundamentals
and Architect's checklist.

The primary objective of the Well-Architected Framework is to set you up for success
when you deploy your workload on Azure.

Successful implementation: A well-architected design leads to successful
implementation. Given the breadth and depth of coverage in concepts, you're
well-equipped to make informed decisions.

Confidence in success: Proven assessments, seen on numerous workloads
deployed on Azure, back the tenets of the framework.

Understand tradeoffs and risks: The framework helps you understand that
adopting the recommendations might require making choices against the other
pillars. It highlights the tradeoffs and also the potential risks that you might want
to address in the short term.

Optimize over time: The framework is designed for iterative use and as a tool for
continuous improvement. Measure the maturity of your workload against the
guidance. Treat that evaluation as a moving score that evolves with your workload,
ensuring that the design remains efficient and effective in meeting your business
objectives.

The Well-Architected Framework is structured in a layered approach: pillars, workload,
and service guides.

Goals

Layers of the Well-Architected Framework

Pillars

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/

The foundation of this framework lies in the pillars. If you don't have a comprehensive
understanding of these pillars, the subsequent layers—the workload layer and service
guides—might not be fully comprehensible.

At the pillar level, start your journey with the Design principles, each of which has a
specific goal. Within each principle, follow the approaches to craft your design strategy.
These approaches aren't optional and must be taken into account.

Next, move on to the Checklist, which is always your starting point for evaluation. Each
item on the checklist is accompanied by one or more Recommendation guides that
describe key strategies and how Azure helps you attain the recommendation.

Be sure to cover cloud design patterns. They're mapped to the pillars they directly
support.

Each architectural decision entails a series of considerations. These tradeoffs represent
recognized and accepted compromises that balance the various aspects of the

framework. Tradeoffs are noted with this icon and risks are noted with this icon

 .

For more information, see About the Well-Architected Framework pillars.

The workload layer represents how the pillars apply to a specific class of workload.
During the initial design phase, workload architecture is segmented based on utility, and
each segment represents the prioritized or design areas. These design areas are specific
to the workload class and serve as focal points for optimization. The Well-Architected
Framework includes several workloads. Find one that closely matches your business
requirements.

Begin with Get started to understand the solution context. As a refresher, read the
Design principles to understand how the workload adopts the pillar guidance. Then,
dive deep into Design areas that focus on the technical decision points with
recommendations that follow. Workload guidance also includes an assessment that
helps you evaluate your readiness in production.

For more information, see About the Well-Architected Framework workloads.

Service guides are instrumental in decision-making related to the individual Azure
components that reside within the workload. They offer the core features and
capabilities of each service that are necessary to attain architectural excellence. It’s
important to note that these guides aren’t configuration guides. Also, they aren’t a
compiled list of all features and capabilities. The intent is to highlight the utility of the
features through Well-Architected pillar perspectives.

For more information, see the available guides.

Microsoft Azure Well-Architected Review is offered at no charge. It's a collection of
questionnaires tied to the pillar checklists to evaluate your design choices. Track your
score through iterative runs to identify possible areas for enhancement.

For more information, see Azure Well-Architected Review tool.

Workload

Service guides

Assessment

https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment

Here are some resources to get started with using the Well-Architected Framework
documentation:

Azure Well-Architected Framework
Introducing the Azure Well-Architected Framework
Training for the Well-Architected Framework
Azure Well-Architected

Related links

https://azure.microsoft.com/blog/introducing-the-microsoft-azure-wellarchitected-framework/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-introduction/
https://azure.microsoft.com/solutions/cloud-enablement/well-architected/

Solution architect's fundamentals
Article • 11/14/2023

Every workload passes through a component and topology design process. This process
is most intense at the inception of the workload, which includes designing for initial
requirements and long-term success of the workload. Architecture is also designed
when the workload changes over time and the organization adds, changes, or removes
functionality.

Component and topology design is the primary function of an architect. Architects who
focus on cloud-based and hybrid solutions are often called cloud solution architects. In
some organizations, cloud solution architects exist in a centralized capacity within an
enterprise architecture group. They can also focus on a specific workload.

A dedicated role can deliver the function of an architect. In some cases, trusted technical
specialists (such as a workload engineering lead) can deliver the function of an architect.
Or an organization might distribute the function among a small group of senior
engineers who are associated with the workload.

Architects usually have experience in roles beyond system design. They might have:

Been developers and operations team members.
Worked with customer support teams.
Developed an understanding of how a system is tested for quality assurance and
user acceptance.
Been through disaster recovery drills or incident responses.
Been exposed to both incremental and large functional changes in workloads.
Interpreted specifications and user-acceptance criteria.

Although the preceding list isn't exhaustive, those perspectives are an important aspect
of what an architect brings to design duties. The Azure Well-Architected Framework
assumes that these practices are in place for the most effective use of the guidance.

The following sections highlight the guiding principles that architects should follow to
be effective in their function.

A key aspect of design is using a consistent process to make decisions. An architect
should approach both initial and incremental design with rigor.

Have a decision-making framework

Identify expected decisions. Use learned experiences to help with decision
identification. Log all decisions that you plan to make.

Make informed decisions. Consider limitations, constraints, tradeoffs, effort,
reversibility, and risk. Include supporting evidence from proofs of concept, along with
technology documentation and guidance.

Document decisions in an architecture decision record (ADR). Document the
justification along with each decision.

Follow up on implementation. Communicate and implement all decisions. Learn from
the implementation to help guide future decisions. Look for areas where a failure to
identify decisions introduced risk.

Cloud design patterns are a fundamental building block of architecture. Cloud-based
architecture and application design are often an exercise in pattern recognition.

Evaluate a workload's functional and nonfunctional requirements to recognize
patterns. Look for opportunities to map your design to use cases via standardized
patterns.

Designing to achieve current requirements is a must, but it's important for an architect
to predict the workload's evolution. Incorporating change in an implemented system is
more expensive than changing the design before implementation.

To design a system that will last until its planned end of life, you must design the
workload with architectural flexibility in mind. Avoid design cliffs when you can identify
them.

Growth model. Predict how the workload's usage will grow or shrink over time.

Compliance changes. Take proactive measures if you expect the workload to be under
compliance requirements in the future. This approach can reduce rework when following
compliance becomes a requirement.

Regional expansion. Consider future expansion of the workload into multiple regions. A
design that's limited to a single region will need to be heavily refactored for multiple-
region deployment, and that can be a costly change. There's even more complexity if
the workload design needs to accommodate multiple geographies with different

Know cloud design patterns

Be forward-thinking

compliance requirements. Make sure that your design factors in any reasonable
prediction about regional expansion.

Product roadmaps. In your design, don't include components that are on the path to
deprecation. Likewise, be careful when you include features in your design that are
currently in a preview state. They might be released, but they might also be canceled.
Being ahead of the curve by using preview features can be highly advantageous. Soon
after the feature is released, the workload is prepared to go to production. But include
preview features in your design only after you do a careful risk analysis. Ship only
features that have a tolerated risk profile.

Design workloads with three key support perspectives:

Cloud provider support. The workload should operate within the supported
configuration of your cloud provider to avoid disruptions when you're engaging
platform support channels.

Operational visibility. The design should provide execution visibility for the workload
operations team to prevent confusion during incident response.

Customer support capabilities. The design should meet user needs but also facilitate
customer support functions. A design that hinders the support team's ability to
investigate or to assist customers is inadequate.

An architect's expertise is often rooted in practical experience. It's important to invest in
expanding your skill set to keep up with the evolving cloud ecosystem.

Education. Seek opportunities for training and certification that technology providers
offer for architects.

Community participation. Engage with peers through online and local architecture
communities.

Exploratory exercises. Participate in organizationally sponsored hackathons or similar
events to develop skills in unfamiliar areas.

Design for supportability

Maintain and enhance your skills

Collaborate for success

An architect should take advantage of the expertise of the cloud provider or
implementation partner. Most providers want your workload to succeed on their
platform, and they often provide services such as architecture design review sessions or
consultative sessions with their cloud solution architects. Seek opportunities for review
and assistance within your vendor relationships.

Architecture frameworks support an architect by offering workload perspectives and
methodological approaches. The Well-Architected Framework provides a comprehensive
workload viewpoint. Architects can combine the Well-Architected Framework with other
architecture frameworks, such as The Open Group Architecture Framework (TOGAF).

Use the principles, checklists, assessments, and reference materials in architecture
frameworks to establish a process that fits the workload. Combine frameworks with
personal techniques, such as mind mapping.

Architecture is about communication as much as it's about the end product. Make sure
that you're optimizing for intentional decision-making, tradeoff acknowledgment, and
clear communication in your established processes.

Be methodical in your design approach

Next steps
Architect's checklist

Solution architect's checklist
Article • 11/14/2023

The responsibility of an architect is to deliver designs and plans. Keep in mind that an
architect isn't the implementor of a workload. The architect translates functional and
nonfunctional requirements into cloud design patterns and fit-for-purpose
components. The architect also designs a workload that's flexible enough to adapt when
needed, but durable enough to weather the planned life of the functionality.

Also included in the design are the operational aspects of the workload, including
observability and supportability, and accounting for undesirable situations such as
disaster recovery. Finally, the design must be constrained by all business, financial,
compliance, and organizational requirements.

Architecture frameworks, such as the Azure Well-Architected Framework, help to give
architects a holistic perspective on system design. The Well-Architected Framework
artifacts include elements like design principles, checklists, and recommendations. To
support the requirements of a workload, these artifacts should be combined with other
resources, such as decision trees, reference architectures, and assessments, to make
informed decisions.

 Deliverable tasks

☐ Develop an architecture design specification that's accompanied by diagrams as a
structured packet. The specification must meet the workload's functional and nonfunctional
requirements and include provisions for routine, ad hoc, and emergency operations.

☐ Create architecture design diagrams that illustrate all aspects of system design, from a broad
overview to detailed dimensions such as network and identity.

☐ Maintain an architecture decision record (ADR) that contains justifications for architectural
decisions that are made during the design process.

☐ Collaborate with the workload team during implementation to provide clarity and
recommendations about the implementation sequence. This collaboration helps you
maximize learning and make improvements from the outset. Also renegotiate requirements
with stakeholders, if needed.

☐ Support modeling exercises that provide contextualized information about workload
concerns. The contextualized information can cover costs, application health, and other areas.

Checklist

 Deliverable tasks

☐ Provide optimization recommendations that are based on observations of usage patterns
and changes in workload functionality or cloud provider changes.

☐ Participate in audit, compliance, and confidence reviews to provide a valuable perspective
to external parties who have the authority to conduct reviews.

☐ Be a consultant during change reviews to provide insight into the estimated cost of change
and its feasibility.

Get started with the Well-Architected Framework pillars, and familiarize yourself with
their key concepts.

Next steps

Azure Well-Architected Framework pillars

Workload architecture design
specification
Article • 11/14/2023

A workload architecture design specification is a detailed specification that describes
design choices and is accompanied by diagrams. The design choices must meet
functional and nonfunctional requirements and include provisions for routine, ad-hoc,
and emergency operations.

For information about diagrams, see Architecture design diagrams.

Workload architecture design, typically expansive, starts with application design and
progresses to cloud service selection. These phases mutually inform each other. The
combined application and infrastructure design must fulfill all requirements.

Achieving a solution that satisfies all requirements is a collaborative effort among
stakeholders, developers, testers, operations teams, and product owners. The design
process should involve refining requirements with clarity and negotiation. The process is
iterative and often requires multiple reviews.

We recommend that you align your design with the Azure Well-Architected Framework
fundamental guidance, which includes design principles and recommendation guides,
and acknowledge the tradeoffs.

Ultimately, the workload architecture design specification is implemented by the
workload development team, so it must be clear and unambiguous. The specification
should be readily available and stored with the workload's documentation.

In order to meet the reliability requirements for the workload, an architect needs to
design a system that can recover within the target recovery time objective (RTO) and
recovery point objective (RPO) goals. The architecture design specification must include
the recovery plan. This plan must cover the involved architecture components, failover
mechanisms and impact to user and data flow, and operational recommendations. It
should describe which recovery targets are met by the design and how.

Although the initial plan is expected to evolve based on insights from drills and post-
incident reviews, it's the architect's responsibility to deliver the initial plan for all new
architecture.

Disaster recovery plans

An architect is responsible for designing a solution that adheres to pertinent security
and compliance constraints. It's important for the design artifacts to highlight the
affordances incorporated in the design to support these requirements, and to identify
any necessary compensating controls when requirements can't be met directly.

Security and compliance documentation

Next steps
Architect's checklist

Architecture design diagrams
Article • 11/14/2023

Architects often communicate through diagrams. Diagrams are powerful communication
tools that help implementers and stakeholders see the broad vision or dive deep into
highly sensitive or nuanced areas of a system. To communicate with intention, an
architect must select which diagram is useful in each situation.

The list of diagrams in this article isn't exhaustive. Diagrams are often a composite of
multiple types.

Ultimately, the choice of architecture diagram depends on what you're trying to convey
and the audience profile. An architect uses multiple types of diagrams throughout
activities for design, refinement of requirements, and communication.

Diagrams present substantial information without the need for textual explanation.
Avoid ambiguity in diagrams. Here are some recommendations:

Use standard notations. Use widely recognized symbols, icons, and presentation
conventions for good readability and interpretation of a diagram.

Avoid ambiguous lines. Diagrams often show relationships between entities
represented as lines. Be consistent in how you use the lines.

Avoid lines without arrows. It's hard to know what the relationship is without direction,
so use arrows. Label all lines without arrows to denote the relationships.

Avoid lines with double arrows. Double arrows imply a bidirectional dependency. Prefer
using a single-ended arrow to represent the flow from client to server.

Label everything. Provide clear, accurate, and meaningful labels for each icon. Label
lines when the relationships aren't clear.

Maintain consistency. Use standardized colors, casing, icons, icon sizes, line types, arrow
heads, and other representations for similar elements throughout a diagram and across
related diagrams. Draw from existing data or taxonomies.

Be accurate. Diagrams are abstractions, but don't sacrifice accuracy in the process. For
example, don't represent a service in a virtual network if it's not present in that virtual
network. A diagram is a communication tool, so you need to avoid miscommunication
from inaccuracies.

Diagramming practices

Include metadata. Ensure that a diagram contains metadata that provides essential
information about the purpose of the diagram. Metadata also gives context to help
viewers understand the diagram's scope and significance. Include items such as title,
description, last updated date, author, and external references.

Use official icons and service names. When you're representing a specific technology,
use the latest icons from your technology provider. If identifying the technology is
important, use the official name for the service. Use the official Azure architecture icons
for diagrams that involve Azure components.

Workload architecture is complex and multidimensional. Each dimension type focuses
on a specific aspect of the system by providing a level of detail that's specific to that
dimension. For instance, flowcharts illustrate process flow. Entity-relationship diagrams
depict relationships between system components.

Having different types of diagrams allows for a comprehensive understanding of
dimensions. It helps encourage effective communication, problem-solving, and
decision-making among stakeholders.

A high-level system diagram serves as a broad overview of a whole workload or of a
subsection within a workload. It includes the main components, their relationships to
each other, and the rough order in which data flows through the system. Arrows show
the direction of interaction.

These diagrams are good for reaching a common understanding so that you can start
deeper discussions or for stakeholder communication.

A block diagram breaks down a workload into its major functional blocks. The blocks are
usually technology agnostic. They refer to the functionality that's being performed
instead of a specific component.

For example, a block diagram might reference a "messaging bus" instead of a specific
message-bus technology. This type of diagram can help explain a system's structure,
data flow, and processing flow without distracting the audience with fine details.

Types of design diagrams

High-level system diagram

Block diagram

https://learn.microsoft.com/en-us/azure/architecture/icons/

A component diagram works like a block diagram but replaces generic functionality
blocks with specific technologies. It presents a detailed view with the goal of
communicating the system's individual technology components and their relationships,
such as client/server. These diagrams are a sort of visual bill of materials for the scope of
the diagram.

A deployment diagram focuses on the deployment of infrastructure, commercial off-
the-shelf (COTS) software, and custom code across the workload. It shows how the
software and code are distributed across the hosting infrastructure.

A data-flow diagram (DFD) illustrates how data moves through a system, which is useful
when you're modeling data-centric systems. In a diagram like this, it's a good idea to
note if data is moved in batches or in real time to remove ambiguity.

A sequence diagram depicts the communication exchanges between workload
components over time. It illustrates client/server relationships and their synchronous or
asynchronous nature. It also highlights dependencies in these exchanges and evaluates
fault scenarios within them.

A user-flow diagram focuses on a scoped interaction between workloads, users, or
actors and the workload. It's helpful for clarifying and visualizing functional
requirements across various ways that a user and the user's data interact with the
system.

An entity-relationship diagram (ERD) is a modeling diagram that represents the
structure of a database or another storage system. It shows the relationship between
entities (such as tables) through industry-standard attributes and association
symbology.

Component diagram

Deployment diagram

Data-flow diagram

Sequence diagram

User-flow diagram

Entity-relationship diagram

A network diagram illustrates the solution from the perspective of the network that it
runs on or interacts with. These diagrams are useful in visualizing the workload's
network segmentation, network points of failure, and key network transitions such as
internet egress and ingress points.

Network diagrams usually have a life past implementation. They're often used in audits
and incident response.

A state diagram is a specialized visualization. It shows the state that a flow (or an
individual component) is in. It also shows how the flow transitions between states in
response to conditions or events.

Although it's not an architecture diagram specifically, a flowchart is another way to bring
clarity to a design. Flowcharts are often useful when they represent complex workflows
or logic. You can use them to help refine requirements and to help drive implementation
choices.

Network diagram

State diagram

Flowchart

Next steps
Architect's checklist

Architecture decision record
Article • 11/14/2023

An architecture decision record (ADR) is one of the most important deliverables of a
solution architect. This record documents architectural decisions that you make
throughout the design process. It also provides context-specific justifications and
implications for each decision.

The ADR documents all key decisions, including alternatives that you ruled out. It
incorporates requirements and constraints into the documented effects of a decision.

Start the ADR at the onset of a workload and maintain it throughout the workload's
lifespan. The ADR serves as an append-only log. It extends beyond the initial design to
include design aspects against future functional and nonfunctional requirements. This
log should be readily available and stored with the workload's documentation.

In general, an architect can help a workload team achieve recommendations of
Operational Excellence by helping to establish and maintain a document and asset
repository. Architects help teams place all of their assets into the repository. They also
encourage the teams' unified adoption of a single source of truth to be used for
reference, audits, and incident response.

Implement an ADR

Next steps
Architect's checklist

Collaboration with the workload team
Article • 11/14/2023

Delivering architecture specifications isn't a one-off task. An architect should expect to
engage with the workload team throughout the implementation.

Provide clarity. Architects should be readily available to provide clarity on any
delivered specifications to ensure that implementation teams remain unblocked. To
address potential blockers, architects should actively participate in iteration
planning exercises and team meetings.

Make implementation sequencing suggestions. Architects understand that the
journey from design to a production-ready product is iterative. They can
recommend which parts of the application to implement first. This approach
enables the workload team to learn from that experience and apply the knowledge
that they gain to the remaining parts of the workload.

Set implementation review checkpoints. Workload teams should establish regular
review checkpoints for comparing the implementation with the architectural
specification. This practice helps ensure that the design is implemented according
to the specification and that the specification meets the predicted requirements.
This feedback loop can rectify any design or implementation errors.

Communicate with stakeholders. Architects have an established relationship with
stakeholders and the business and have an intimate understanding of the
workload. As a result, they're often in a good position to relay implementation
team concerns or requests for negotiating changes to requirements.

Make environment recommendations. Workload design often extends beyond
designing for production and its disaster recovery. Production is just one of many
environments a workload implementation team might need. Architects can also
assist workload teams in right-sizing preproduction environments.

Use a proof of concept (POC). Architects frequently use POCs in their designs to
inform decisions about the design specifications for the workload architecture.
These POCs can also provide insight into the feasibility of the actual workload
implementation. If a POC doesn't exist, an architect should create one before the
implementation team starts development.

Continuous collaboration tasks

Next steps
Architect's checklist

Support the workload in a consultative
role
Article • 11/14/2023

Architects should seek ways to stay involved with the workload as it changes over time.
Their role doesn't end with design handoff or consultation during the initial
implementation. Architects bring perspective that can be used in other activities that are
related to the product's evolution.

Teams can model workloads in multiple dimensions and for multiple purposes. For
example, workloads can abstract health signals out of implementation details and into
business constructs. Or they can model system growth over time or the licensing
process to evaluate alternative billing models.

Whether the model is an abstraction or evaluates hypotheticals to inform a future
business decision, architects contribute to that process. They use their insight into the
workload design, its known or predicted limitations, and its scaling characteristics, to
validate or tune the assumptions in the model and approximate the system more
accurately. For example, architects review the health model for a critical flow by
evaluating the characteristics of dependencies, such as service-level objectives (SLOs).

Architects stay current with fundamentals like cloud provider offerings and industry
design patterns. Features that were state of the art when a workload was designed
might no longer be. Or the expected usage patterns of the application might not
manifest in the way that they were predicted. In cases like these, there's an opportunity
for you to present a recommendation to further optimize or refine the current design
based on this new knowledge.

As an architect, you should follow up with the workload team periodically after the
workload is live. Continued communication helps you expand your knowledge for future
design work by seeing how the design was implemented and how it's performing with
actual use. It also allows you to offer optimization recommendations based on the
actual implementation and use.

Support modeling exercises

Share potential improvements

When a workload is under review, such as by an official audit or a compliance review,
the system architect's involvement can be a boon to the process. They bring the
workload's architecture decision record to help answer questions on implementation
choices. They also provide updated diagrams to visualize the system during
conversations and provide subject-matter expertise.

Architects have authoritative knowledge that builds confidence in the product during
select customer or funding engagements. They can learn about unique demands that
customers have for the product and consider those needs in the design of the system.

Every workload has a backlog of work that ranges from broad, directional-level work to
specific tasks. Architects should be involved in gathering requirements, scoping, and
building acceptance criteria for work items.

The implementation team is busy delivering on current work items, so architects can use
their time to review, validate, and refine future work items. They can help detect when a
new feature requires a redesign of a component in the system, provide cost analysis on
a proposed change, or propose an approach to incrementally introduce new changes.
Ultimately, involving an architect early in the process for a proposed change that
involves new functionality or an expanded user base minimizes rework and helps the
team discover cliffs in the design.

Assist in reviews

Review proposed changes

Next steps
Architect's checklist

Microsoft Azure Well-Architected
Framework pillars
Article • 11/14/2023

The Azure Well-Architected Framework pillars drive architectural excellence at the
fundamental level of a workload.

Use this matrix to familiarize yourself with the key concepts:

Pillar Workload concern Apply the principles Strike a
balance

Reliability Resiliency, availability,
recovery

Design for business requirements,
resilience, recovery, and operations,
while keeping it simple.
Design principles

Tradeoffs

Security Data protection, threat
detection, and
mitigation

Protect confidentiality, integrity, and
availability.
Design principles

Tradeoffs

Cost
Optimization

Cost modeling,
budgets, reduce waste

Optimize on usage and rate utilization
while keeping a cost-efficient mindset.
Design principles

Tradeoffs

Operational
Excellence

Holistic observability,
DevOps practices

Streamline operations with standards,
comprehensive monitoring, and safe
deployment practices.
Design principles

Tradeoffs

Performance
Efficiency

Scalability, load testing Scale horizontally, test early and often,
and monitor the health of the solution.
Design principles

Tradeoffs

） Important

The reference architectures available in the Azure Architecture Center are designed
with the design principles in mind. The architecture articles describe a prescriptive
path for applying the design principles and provide a holistic view on the Ten
design principles for Azure applications.

Assessment review tool

https://learn.microsoft.com/en-us/azure/architecture/browse/
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/

Assess your workload by using the core pillars to identify and prioritize opportunities
for improving the posture of your workloads.

Start your assessment with the Azure Well-Architected Review.

Azure Advisor uses the core pillars as a basis for analyzing your resource
configuration and usage telemetry and provides appropriate recommendations.

Azure Advisor score is a core feature of Azure Advisor that aggregates Advisor
recommendations into a simple, actionable score. You can categorize the overall
score into the core pillars of the Well-Architected Framework. Use the score to
prioritize the actions that yield the biggest improvement.

Integrate with Azure recommendation services

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/azure-advisor-score
https://learn.microsoft.com/en-us/azure/well-architected/_images/well-architected-review.png#lightbox

Reliability quick links
Apply reliability guidance to your architecture to make your workload resilient to
malfunction and to ensure that it returns to a fully functioning state after a failure
occurs.

Learn key points

ｆ QUICKSTART

Design principles

Checklist

Tradeoffs

Reliability patterns

Azure Well-Architected Review assessment

ｄ TRAINING

Reliability

ｑ VIDEO

Inside Azure datacenter architecture with Mark Russinovich

Review design principles

ｐ CONCEPT

Design for business requirements

Design for resilience

Design for recovery

Design for operations

Keep it simple

Set and measure reliability targets

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-reliability/
https://www.youtube.com/watch?v=69PrhWQorEM

ｃ HOW-TO GUIDE

Identify flows

Perform failure mode analysis

Set reliability targets

Design a monitoring and alerting strategy

Achieve reliability targets

ｃ HOW-TO GUIDE

Design for redundancy

Use availability zones and regions

Implement highly available multi-region design

Partition data

Reliably scale

Design for self-healing and preservation

Use background jobs

Handle transient faults

Design with simplicity

Test and conduct drills

ｃ HOW-TO GUIDE

Design a testing strategy

Design a recovery strategy

Explore related resources

ｉ REFERENCE

Azure Advisor: Reliability recommendations

https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-reliability-recommendations

Azure reliability documentation

Site reliability engineering documentation

https://learn.microsoft.com/en-us/azure/reliability
https://learn.microsoft.com/en-us/azure/site-reliability-engineering/

Reliability design principles
Article • 11/14/2023

Outages and malfunctions are serious concerns for all workloads. A reliable workload
must survive those events and continue to consistently provide its intended
functionality. It must be resilient so that it can detect, withstand, and recover from
failures within an acceptable time period. It must also be available so that users can
access the workload during the promised time period at the promised quality level.

It's not realistic to assume failures won't occur, especially when the workload is built to
run on distributed systems. Some components might fail while others continue to
operate. At some point, the user experience might be affected, which compromises
business goals.

Workload architectures should have reliability assurances in application code,
infrastructure, and operations. Design choices shouldn't change the intent that's
specified by business requirements. Such changes should be considered significant
tradeoffs.

The design principles are intended to provide guidance for aspects of reliability that
you should consider throughout the development lifecycle. Start with the recommended
approaches and justify the benefits for a set of requirements. After you set your
strategy, drive actions by using the Reliability checklist.

If you don't apply these principles to your design, the workload most likely won't be
prepared to anticipate or handle problems in production. The outcome might be
service disruptions that lead to financial loss. In the case of critical workloads, failing to
apply these principles could jeopardize safety.

 Gather business requirements with a focus on the intended utility of the workload.

Requirements must cover user experience, data, workflows, and characteristics that are
unique to the workload. The outcome of the requirements process must clearly state the
expectations. The goals must be achievable and negotiated with the team, given a
specified investment. They must be documented to drive technological choices,
implementations, and operations.

Design for business requirements

Approach Benefit

Quantify success by setting targets
on indicators for individual
components, system flows, and the
system as a whole. Do those targets
make user flows more reliable?

Metrics quantify expectations. They enable you to
understand complexities and determine whether the
downstream costs of those complexities are within the
investment limit.

The target values indicate an ideal state. You can use the
values as test thresholds that help you detect deviations
from that state and how long it takes to return to the
target state.

Compliance requirements must also have predictable
outcomes for in-scope flows. Prioritizing these flows
bring attention to areas that are the most sensitive.

Understand platform commitments.
Consider the limits, quotas, and
capacity constraints for services.

Service-level agreements (SLAs) vary by service. Not all
services and features are covered equally. Having a good
understanding of coverage and limits can help you
detect drift and build resiliency and recovery
mechanisms.

Determine dependencies and their
effect on resiliency.

Keeping track of dependent infrastructure, services, APIs,
and functions developed by other teams or third parties
helps you determine whether the workload can operate
in absence of those dependencies. It also helps you
understand cascading failures and improve downstream
operations.

Developers can implement resilient design patterns to
handle potential failures when you use external services
that might be susceptible to failures.

 The workload must continue to operate with full or reduced functionality.

You should expect that component malfunctions, platform outages, performance
degradations, and other faults will occur. Build resiliency in the system so that it's fault-
tolerant and can degrade gracefully.

Approach Benefit

Distinguish components that are
on the critical path from those

Not all components of the workload need to be equally
reliable. Determining criticality helps you design according
to the criticality of each component. You won't

Design for resilience

Approach Benefit

that can function in a degraded
state.

overengineer resiliency for components that could slightly
deteriorate the user experience, as opposed to components
that can cause end-to-end problems if they fail.

The design can be efficient in allocating resources to critical
components. You can also implement fault isolation
strategies so that if a noncritical component fails or enters a
degraded state, it can be isolated to prevent cascading
failures.

Identify potential failure points in
the system, especially for the
critical components, and determine
the effect on user flows.

You can analyze the failure cases, blast radius, and
intensity of fault: full or partial outage. This analysis
influences the design of error handling capabilities at the
component level.

Build self-preservation capabilities
by using design patterns correctly
and modularizing the design to
isolate faults.

The system will be able to prevent a problem from
affecting downstream components. The system will be able
to mitigate transient and permanent failures, performance
bottlenecks, and other problems that might affect reliability.

You'll also be able to minimize the blast radius.

Add the capability to scale out the
critical components (application
and infrastructure) by considering
the capacity constraints of services
in the supported regions.

The workload will be able to handle variable capacity
spikes and fluctuations. This capability is crucial when
there's an unexpected load on the system, like a surge in
valid usage.

Build redundancy in layers and
resiliency on various application
tiers.

Aim for redundancy in physical
utilities and immediate data
replication. Also aim for
redundancy in the functional layer
that covers services, operations,
and personnel.

Redundancy helps minimize single points of failure. For
example, if there’s a component, zonal, or regional outage,
redundant deployment (in active-active or active-passive)
allows you to meet uptime targets.

Adding intermediaries prevents direct dependency between
components and improves buffering. Both of these benefits
harden the resiliency of the system.

Overprovision to immediately
mitigate individual failure of
redundant instances and to buffer
against runaway resource
consumption.

Higher investment in overprovisioning increases resiliency.

The system will continue to operate at full utility during an
active failure even before scaling operations can start to
remediate the failure. Likewise, you can reduce the risk of
unexpected runaway resource consumption claiming your
planned buffer, gaining critical triage time, before system
faults or aggressive scaling occurs.

 The workload must be able to anticipate and recover from most failures, of all
magnitudes, with minimal disruption to the user experience and business objectives.

Even highly resilient systems need disaster preparedness approaches, in both architecture
design and workload operations. On the data layer, you should have strategies that can
repair workload state in case of corruption.

Approach Benefit

Have structured, tested, and
documented recovery plans that
are aligned with the negotiated
recovery targets. Plans must cover
all components in addition to the
system as a whole.

A well-defined process leads to a quick recovery that can
prevent negative impact on the finances and reputation of
your business. Conducting regular recovery drills tests the
process of recovering system components, data, and
failover and failback steps to avoid confusion when time
and data integrity are key measures of success.

Ensure that you can repair data of
all stateful components within your
recovery targets.

Backups are essential to getting the system back to a
working state by using a trusted recovery point, like the
last-known good state.

Immutable and transactionally consistent backups ensure
that data can't be altered, and that the restored data isn't
corrupted.

Implement automated self-healing
capabilities in the design.

This automation reduces risks from external factors, like
human intervention, and shortens the break-fix cycle.

Replace stateless components with
immutable ephemeral units.

Building ephemeral units that you can spin up and destroy
on demand provides repeatability and consistency. Use
side-by-side deployment models to make the transition to
the new units incremental, minimizing disruptions.

 Shift left in operations to anticipate failure conditions.

Test failures early and often in the development lifecycle, and determine the impact of
performance on reliability. For the sake of root cause analysis and postmortems, you
need to have shared visibility, across teams, of dependency status and ongoing failures.
Insights, diagnostics, and alerts from observable systems are fundamental to effective
incident management and continuous improvement.

Design for recovery

Design for operations

Approach Benefit

Build observable systems
that can correlate telemetry.

Monitoring and diagnostics are crucial operations. If something
fails, you need to know that it failed, when it failed, and why it
failed. Observability at the component level is fundamental, but
aggregated observability of components and correlated user
flows provides a holistic view of health status. This data is
required to enable site-reliability engineers to prioritize their
efforts for remediation.

Predict potential
malfunctions and anomalous
behavior. Make active
reliability failures visible by
using prioritized and
actionable alerts.

Invest in reliable processes
and infrastructure that leads
to quicker triage.

Site reliability engineers can be notified immediately so that they
can mitigate ongoing live site incidents and proactively mitigate
potential failures identified by predictive alerts before they
become live incidents.

Simulate failures and run
tests in production and pre-
production environments.

It's beneficial to experience failures in production so you can set
realistic expectations for recovery. This allows you to make
design choices that gracefully respond to failures. Also, it enables
you to test the thresholds you set for business metrics.

Build components with
automation in mind, and
automate as much as you can.

Automation minimizes the potential for human error, bringing
consistency to testing, deployment, and operations.

Factor in routine operations
and their impact on the
stability of the system.

The workload might be subject to ongoing operations, like
application revisions, security and compliance audits, component
upgrades, and backup processes. Scrutinizing those changes
ensures the stability of the system.

Continuously learn from
incidents in production.

Based on the incidents, you can determine the impact and
oversights in design and operations that might go unnoticed in
preproduction. Ultimately, you'll be able to drive improvements
based on real-life incidents.

 Avoid overengineering the architecture design, application code, and operations.

It's often what you remove rather than what you add that leads to the most reliable
solutions. Simplicity reduces the surface area for control, minimizing inefficiencies and

Keep it simple

potential misconfigurations or unexpected interactions. On the other hand,
oversimplification can introduce single points of failure. Maintain a balanced approach.

Approach Benefit

Add components to your architecture only
if they help you achieve target business
values. Keep the critical path lean.

Designing for business requirements can lead to a
straightforward solution that's easy to implement
and manage. Avoid having too many critical
components, because each one is a significant
point of failure.

Establish standards in code
implementation, deployment, and
processes, and document them. Identify
opportunities to enforce those standards
by using automated validations.

Standards provide consistency and minimize
human errors. Approaches like standard naming
conventions and code style guides can help you
maintain quality and make assets easy to identify
during troubleshooting.

Evaluate whether theoretical approaches
translate to pragmatic design that applies
to your use cases.

Application code that's too granular can lead to
unnecessary interdependence, extra operations,
and difficult maintenance.

Develop just enough code. You'll be able to prevent problems that are the
result of inefficient implementations, like
unexpected resource consumption, user or
dataflow failures, and code bugs.

Conversely, reliability problems should lead to code
reviews to ensure that code is resilient enough to
handle the problems.

Take advantage of platform-provided
features and prebuilt assets that can help
you effectively meet business targets.

This approach minimizes development time. It also
enables you to rely on tried and tested practices
that have been used with similar workloads.

Next steps
Reliability checklist

Design review checklist for Reliability
Article • 11/30/2023

This checklist presents a set of recommendations for you to use to evaluate the
reliability, resiliency, and failure recovery strategies in your architecture design. To
ensure reliability, identify the best infrastructure and application design for your
workload. Make these decisions based on your business requirements that are mapped
to availability and recoverability target metrics.

To implement a reliable design, thoroughly consider decision points in your design and
be aware of how those decisions affect your workload. This checklist and the
accompanying guides provide resources to help you make those decisions. Make
workload reliability a central consideration throughout the workload design,
development, and operation lifecycle.

Approach your design with a focus on reliability to help ensure that you design a
workload that's resilient, manageable, and repeatable. If you don't include reliability
practices and consider the tradeoffs, your design is potentially at risk. Carefully consider
all the points covered in the checklist to instill confidence in your system's success.

 Code Recommendation

☐ RE:01 Design your workload to align with business objectives and avoid unnecessary
complexity or overhead. Use a practical and balanced approach to make design
decisions that deliver the desired results. Contain your design to the necessities to
reduce inefficiencies and potential problems.

☐ RE:02 Identify and rate user and system flows. Use a criticality scale based on your
business requirements to prioritize the flows.

☐ RE:03 Use failure mode analysis (FMA) to identify and prioritize potential failures in your
solution components. Perform FMA to help you assess the risk and effect of each
failure mode. Determine how the workload responds and recovers.

☐ RE:04 Define reliability and recovery targets for the components, the flows, and the overall
solution. Visualize the targets to negotiate, gain consensus, set expectations, and
drive actions to achieve the ideal state. Use the defined targets to build the health
model. The health model defines what healthy, degraded, and unhealthy states look
like.

Checklist

ﾉ Expand table

 Code Recommendation

☐ RE:05
RE:05
RE:05

Add redundancy at different levels, especially for critical flows. Apply redundancy
to the compute, data, network, and other infrastructure tiers in accordance with the
identified reliability targets.

☐ RE:06
RE:06

Implement a timely and reliable scaling strategy at the application, data, and
infrastructure levels.

☐ RE:07
RE:07
RE:07

Strengthen the resiliency and recoverability of your workload by implementing
self-preservation and self-healing measures. Build capabilities into the solution by
using infrastructure-based reliability patterns and software-based design patterns to
handle component failures and transient errors. Build capabilities into the system to
detect solution component failures and automatically initiate corrective action while
the workload continues to operate at full or reduced functionality.

☐ RE:08 Test for resiliency and availability scenarios by applying the principles of chaos
engineering in your test and production environments. Use testing to ensure that
your graceful degradation implementation and scaling strategies are effective by
performing active malfunction and simulated load testing.

☐ RE:09 Implement structured, tested, and documented business continuity and disaster
recovery (BCDR) plans that align with the recovery targets. Plans must cover all
components and the system as a whole.

☐ RE:10 Measure and publish the solution's health indicators. Continuously capture uptime
and other reliability data from across the workload and also from individual
components and key flows.

We recommend that you review the Reliability tradeoffs to explore other concepts.

Next steps

Reliability tradeoffs

Reliability tradeoffs
Article • 11/14/2023

A reliable workload consistently meets its defined reliability objectives. It should reach
established resiliency targets, ideally by circumventing events that affect reliability.
Realistically, however, a workload must tolerate and control the impact of such events
and maintain operations at a predetermined level during active malfunction. Even
during a disaster, a reliable workload must recover to a specific state within a given
period of time, both of which are agreed upon among the stakeholders. An incident
response plan that enables you to achieve rapid detection and recovery is vital.

During the design phase of a workload, you need to consider how decisions based on
the Reliability design principles and the recommendations in the Design review checklist
for Reliability might influence the goals and optimizations of other pillars. Certain
decisions might benefit some pillars but constitute a tradeoff for others. This article
describes example tradeoffs that a workload team might encounter when designing
workload architecture and operations for reliability.

 Tradeoff: Increased workload surface area. The Security pillar prioritizes a
reduced and contained surface area to minimize attack vectors and reduce the
management of security controls.

Reliability is often obtained through replication. Replication can occur at the
component level, at the data level, or even at a geographic level. Replicas, by
design, increase the surface area of a workload. From a security perspective, a
reduced and contained surface area is preferred to minimize potential attack
vectors and streamline the management of security controls.

Similarly, disaster recovery solutions, like backups, increase a workload's surface
area. However, they're often isolated from the workload's runtime. This requires
the implementation of additional security controls, which might be specific to the
disaster recovery solution.

For the sake of reliability goals, additional components might be needed for the
architecture, which increases the surface area. For example, a message bus might
be added to make requests resilient. This increased complexity increases the
surface area of the workload by adding new components that need to be secured,

Reliability tradeoffs with Security

possibly in ways that aren't already used in the system. Typically, these
components are accompanied by additional code and libraries to support their use
or general reliability patterns, which also increases the application's surface area.

 Tradeoff: Security control bypass. The Security pillar recommends that all
controls remain active in both normal and stressed systems.

When a workload is experiencing a reliability event that's being addressed under
active incident response, urgency might create pressure for workload teams to
bypass security controls that are optimized for routine access.

Troubleshooting activities can cause the team to temporary disable security
protocols, leaving an already stressed system potentially exposed to additional
security risks. There's also a risk that the security protocols won't be reestablished
promptly.

Granular implementations of security controls, like role-based access control
assignments or firewall rules, introduce configuration complexity and sensitivity,
increasing the chance for misconfiguration. Mitigating this potential reliability
impact by using broad rules erodes all three Zero Trust architecture principles.

 Tradeoff: Old software versions. The Security pillar encourages a "get current,
stay current" approach to vendor security patches.

Applying security patches or software updates can potentially disrupt the target
component, causing unavailability during the software change. Delaying or
avoiding patching might avoid the potential reliability risks, but it leaves the
system unprotected against evolving threats.

The preceding consideration also applies to the workload's code. For example, it
applies to application code that uses old libraries and containers that use old base
images. If updating and deploying application code is viewed as an unmitigated
reliability risk, the application is exposed to additional security risks over time.

 Tradeoff: Increased implementation redundancy or waste. A cost-optimized
workload minimizes underutilized resources and avoids over-provisioning resources.

Reliability tradeoffs with Cost Optimization

Replication is a key strategy for reliability. Specifically, the strategy is to have
enough replication to handle a given number of concurrent node failures. The
tolerance for more concurrent node failures requires a higher replica count, which
leads to increased costs.

Over-provisioning is another technique for absorbing unexpected load on a
system that could otherwise lead to a reliability issue. Any excess capacity that's
not utilized is considered wasteful.

If a workload uses a disaster recovery solution that excessively satisfies the
workload's recovery point and time objectives, the excess leads to higher costs
because of waste.

Workload deployments themselves are a potential source for reliability impact, and
that impact is often mitigated by redundancy at deployment time via a
deployment strategy like blue/green. This transient duplication of resources during
safe deployment typically increases the overall cost of the workload during those
periods. Costs increase with frequency of deployments.

 Tradeoff: Increased investment in operations that aren't aligned with
functional requirements. One approach to cost optimization is evaluating the value
that's provided by any deployed solution.

To achieve reliability, a system requires observability. Monitoring systems require
observability data transfer and collection. As monitoring capabilities increase, the
frequency and volume of data increase, leading to additional costs.

Reliability affordances in workloads necessitate testing and drills. Designing and
running tests takes time and potentially specialized tooling, which incurs costs.

Workloads with high reliability targets often have a rapid response process that
requires technical team members to be part of a formal on-call rotation. This
process incurs additional personnel costs and lost opportunity costs because of
attention that could be directed elsewhere. It also incurs potential tooling costs for
management of the process.

Support contracts with technology providers are a key component of a reliable
workload. Support contracts that aren't utilized because the level of support is
over-provisioned incur waste.

Reliability tradeoffs with Operational Excellence

 Tradeoff: Increased operational complexity. Operational Excellence, like
Reliability itself, prioritizes simplicity.

Reliability usually increases the complexity of a workload. As the complexity of a
workload increases, the operational elements of the workload can also increase to
support the added components and processes in terms of deployment
coordination and configuration surface area.

Having a comprehensive monitoring strategy for a workload is a key part of
operational excellence. Introducing additional components into an architecture to
implement reliability design patterns results in more data sources to manage,
increasing the complexity of implementing distributed tracing and observability.

 Tradeoff: Increased effort to generate team knowledge and awareness. The
Operational Excellence pillar recommends keeping and maintaining a
documentation repository for procedures and topologies.

As a workload becomes more robust through the addition of reliability
components and patterns, it takes more time to maintain operational procedures
and artifact documentation.

Training becomes more complex as the number of components in the workload
increases. This complexity affects the time required for onboarding and increases
the knowledge that's needed to track product roadmaps and service-level
guidance.

 Tradeoff: Increased latency. Performance Efficiency requires a system to
achieve performance targets for user and data flows.

Reliability patterns often incorporate data replication to survive replica
malfunction. Replication introduces additional latency for reliable data-write
operations, which consumes a part of the performance budget for a specific user
or data flow.

Reliability sometimes employs various forms of resource balancing to distribute or
redistribute load to healthy replicas. A dedicated component that's used for

Reliability tradeoffs with Performance
Efficiency

balancing usually affects the performance of the request or process that's being
balanced.

Distributing components across geographical boundaries or availability zones to
survive a scoped impact introduces network latency in the communication
between components that span those availability boundaries.

Extensive processes are used to observe the health of a workload. Although
monitoring is critical for reliability, instrumentation can affect system performance.
As observability increases, performance might decrease.

 Tradeoff: Increased over-provisioning. The Performance Efficiency pillar
discourages over-provisioning, instead recommending the use of just enough
resources to satisfy demand.

Automatic scaling operations aren't instantaneous and therefore can't reliably
handle a sudden and dramatic spike in demand that can't be shaped or smoothed.
Therefore, over-provisioning via either larger instances or more instances is a
critical reliability tactic to account for the lag between demand signal and supply
creation. Unused capacity counters the goals of performance efficiency.

Sometimes a component can't be scaled in reaction to demand, and that demand
isn't fully predictable. Using large instances to cover the worst case leads to over-
provisioning waste in situations that are outside that use case.

Explore the tradeoffs for the other pillars:

Security tradeoffs
Cost Optimization tradeoffs
Operational Excellence tradeoffs
Performance Efficiency tradeoffs

Related links

Cloud design patterns that support
reliability
Article • 11/14/2023

When you design workload architectures, you should use industry patterns that address
common challenges. Patterns can help you make intentional tradeoffs within workloads
and optimize for your desired outcome. They can also help mitigate risks that originate
from specific problems, which can impact security, performance, cost, and operations. If
not mitigated, those risks will eventually cause reliability issues. These patterns are
backed by real-world experience, are designed for cloud scale and operating models,
and are inherently vendor agnostic. Using well-known patterns as a way to standardize
your workload design is a component of operational excellence.

Many design patterns directly support one or more architecture pillars. Design patterns
that support the Reliability pillar prioritize workload availability, self-preservation,
recovery, data and processing integrity, and containment of malfunctions.

The following table summarizes cloud design patterns that support the goals of
reliability.

Pattern Summary

Ambassador Encapsulates and manages network communications by offloading cross-
cutting tasks that are related to network communication. The resulting
helper services initiate communication on behalf of the client. This
mediation point provides an opportunity to add reliability patterns to
network communication, such as retry or buffering.

Backends for
Frontends

Individualizes the service layer of a workload by creating separate services
that are exclusive to a specific frontend interface. Because of this
separation, a malfunction in the service layer that supports one client
might not affect the availability of another client's access. When you treat
various clients differently, you can prioritize reliability efforts based on
expected client access patterns.

Bulkhead Introduces intentional and complete segmentation between components
to isolate the blast radius of malfunctions. This failure isolation strategy
attempts to contain faults to just the bulkhead that's experiencing the
problem, preventing impact to other bulkheads.

Design patterns for reliability

https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead

Pattern Summary

Cache-Aside Optimizes access to frequently read data by introducing a cache that's
populated on demand. The cache is then used on subsequent requests
for the same data. Caching creates data replication and, in limited ways,
can be used to preserve the availability of frequently accessed data if the
origin data store is temporarily unavailable. Additionally, if there's a
malfunction in the cache, the workload can fall back to the origin data
store.

Circuit Breaker Prevents continuous requests to a malfunctioning or unavailable
dependency. By doing so, this pattern prevents overloading a faulting
dependency. You can also use this pattern to trigger graceful degradation
in the workload. Circuit breakers are often coupled with automatic
recovery to provide both self-preservation and self-healing.

Claim Check Separates data from the messaging flow, providing a way to separately
retrieve the data related to a message. Message buses don't provide the
same reliability and disaster recovery that are often present in dedicated
data stores, so separating the data from the message can provide
increased reliability for the underlying data. This separation also allows
for a message queue recovery approach after a disaster.

Compensating
Transaction

Provides a mechanism to recover from failures by reversing the effects of
previously applied actions. This pattern addresses malfunctions in critical
workload paths by using compensation actions, which can involve
processes like directly rolling back data changes, breaking transaction
locks, or even executing native system behavior to reverse the effect.

Competing
Consumers

Applies distributed and concurrent processing to efficiently handle items
in a queue. This model builds redundancy in queue processing by
treating consumers as replicas, so an instance failure doesn't prevent
other consumers from processing queue messages.

Event Sourcing Treats state change as series of events, capturing them in an immutable,
append-only log. You can use this pattern when a reliable history of
changes is crucial in a complex business process. It also facilitates state
reconstruction if you need to recover state stores.

Federated Identity Delegates trust to an identity provider that's external to the workload for
managing users and providing authentication for your application.
Offloading user management and authentication shifts reliability for
those components to the identity provider, which usually has a high SLA.
Additionally, during workload disaster recovery, authentication
components probably don't need to be addressed as part of the
workload recovery plan.

Gateway Aggregation Simplifies client interactions with your workload by aggregating calls to
multiple backend services in a single request. This topology enables you

https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/federated-identity
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation

Pattern Summary

to shift transient fault handling from a distributed implementation across
clients to a centralized implementation.

Gateway Offloading Offloads request processing to a gateway device before and after
forwarding the request to a backend node. Offloading this responsibility
to a gateway reduces the complexity of application code on backend
nodes. In some cases, offloading completely replaces functionality with a
reliable platform-provided feature.

Gateway Routing Routes incoming network requests to various backend systems based on
request intents, business logic, and backend availability. Gateway routing
enables you to route traffic to only healthy nodes in your system.

Geode Deploys systems that operate in active-active availability modes across
multiple geographies. This pattern uses data replication to support the
ideal that any client can connect to any geographical instance. It can help
your workload withstand one or more regional outages.

Health Endpoint
Monitoring

Provides a way to monitor the health or status of a system by exposing an
endpoint that's specifically designed for that purpose. You can use this
endpoint to manage your workload's health and for alerting and
dashboarding. You can also use it as a signal for self-healing remediation.

Index Table Optimizes data retrieval in distributed data stores by enabling clients to
look up metadata so that data can be directly retrieved, avoiding the
need to do full data store scans. Because clients are pointed to their
shard, partition, or endpoint through a lookup process, you can use this
pattern to facilitate a failover approach for data access.

Leader Election Establishes a leader of instances of a distributed application. The leader
coordinates responsibilities that are related to accomplishing a goal. This
pattern mitigates the effect of node malfunctions by reliably redirecting
work. It also implements failover via consensus algorithms when a leader
malfunctions.

Pipes and Filters Breaks down complex data processing into a series of independent stages
to achieve a specific outcome. The single responsibility of each stage
enables focused attention and avoids the distraction of commingled data
processing.

Priority Queue Ensures that higher-priority items are processed and completed before
lower-priority items. Separating items based on business priority enables
you to focus reliability efforts on the most critical work.

Publisher/Subscriber Decouples components of an architecture by replacing direct client-to-
service or client-to-services communication with communication via an
intermediate message broker or event bus.

Queue-Based Load
Leveling

Controls the level of incoming requests or tasks by buffering them in a
queue and letting the queue processor handle them at a controlled pace.

https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://learn.microsoft.com/en-us/azure/architecture/patterns/geodes
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://learn.microsoft.com/en-us/azure/architecture/patterns/index-table
https://learn.microsoft.com/en-us/azure/architecture/patterns/leader-election
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

Pattern SummaryThis approach can provide resilience against sudden spikes in demand by
decoupling the arrival of tasks from their processing. It can also isolate
malfunctions in queue processing so that they don't affect intake.

Rate Limiting Controls the rate of client requests to reduce throttling errors and avoid
unbounded retry-on-error scenarios. This tactic protects the client by
acknowledging the limitations and costs of communicating with a service
when the service is designed to avoid reaching specified limits. It works
by controlling the number and/or size of operations that are sent to the
service during a specific time period.

Retry Addresses failures that might be transient or intermittent by retrying
certain operations, in a controlled way. Mitigating transient faults in a
distributed system is a key technique for improving a workload's
resilience.

Saga distributed
transactions

Coordinates long-running and potentially complex transactions by
decomposing the work into sequences of smaller, independent
transactions. Each transaction must also have compensating actions to
reverse failures in execution and maintain integrity. Because monolithic
transactions across multiple distributed systems are usually impossible,
this pattern provides consistency and reliability by implementing
atomicity and compensation.

Scheduler Agent
Supervisor

Efficiently distributes and redistributes tasks across a system based on
factors that are observable in the system. This pattern uses health metrics
to detect failures and reroute tasks to a healthy agent in order to mitigate
the effects of a malfunction.

Sequential Convoy Maintains concurrent messaging ingress while also supporting processing
in a defined order. This pattern can eliminate race conditions that are
hard to troubleshoot, contentious message handling, or other
workarounds for addressing incorrectly ordered messages that can lead
to malfunctions.

Sharding Directs load to a specific logical destination to handle the specific
request, enabling colocation for optimization. Because the data or
processing is isolated to the shard, a malfunction in one shard remains
isolated to that shard.

Strangler Fig Provides an approach for systematically replacing the components of a
running system with new components, often during a migration or
modernization of the system. This pattern's incremental approach can
help mitigate risks during a transition.

Throttling Imposes limits on the rate or throughput of incoming requests to a
resource or component. You can design the limits to help prevent
resource exhaustion that might lead to malfunctions. You can also use
this pattern as a control mechanism in a graceful degradation plan.

https://learn.microsoft.com/en-us/azure/architecture/patterns/rate-limiting-pattern
https://learn.microsoft.com/en-us/azure/architecture/patterns/retry
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://learn.microsoft.com/en-us/azure/architecture/patterns/scheduler-agent-supervisor
https://learn.microsoft.com/en-us/azure/architecture/patterns/sequential-convoy
https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling

Review the cloud design patterns that support the other Azure Well-Architected
Framework pillars:

Cloud design patterns that support security
Cloud design patterns that support cost optimization
Cloud design patterns that support operational excellence
Cloud design patterns that support performance efficiency

Next steps

Recommendations for designing for
simplicity and efficiency
Article • 12/01/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:01 Design your workload to align with business objectives and avoid unnecessary
complexity or overhead. Use a practical and balanced approach to make design
decisions that deliver the desired results. Contain your design to the necessities to
reduce inefficiencies and potential problems.

This guide describes the recommendations for minimizing unnecessary complexity and
overhead to keep your workloads simple and efficient. Choose the best components to
perform the necessary workload tasks to optimize the reliability of your workload. To
lessen your development and management burdens, take advantage of efficiencies that
platform-provided services offer. This design helps you create a workload architecture
that's resilient, repeatable, scalable, and manageable.

Definitions

Term Definition

Workload A discrete capability or computing task that you can logically separate from other
tasks.

A key tenet of designing for reliability is to keep things simple and efficient. Focus your
workload design on meeting business requirements to reduce the risk of unnecessary
complexity or excess overhead. Consider the recommendations in this article to help you
make decisions about your design to create a lean, efficient, and reliable workload.
Different workloads might have different requirements for availability, scalability, data
consistency, and disaster recovery.

You must justify every design decision with a business requirement. This design principle
might seem obvious, but it's crucial for workload design. Does your application support

ﾉ Expand table

ﾉ Expand table

Key design strategies

millions of users, or a few thousand? Are there large traffic bursts, or a steady workload?
What level of application outage is acceptable? Business requirements drive these
design considerations.

 Tradeoff: A complex solution can offer more features and flexibility, but it
might affect the reliability of the workload because it requires more coordination,
communication, and management of components. Alternatively, a simpler solution
might not fully meet user expectations, or it might have a negative effect on
scalability and extensibility as the workload evolves.

Work with stakeholders to:

Define and assign a criticality level to your workload's user flows and system
flows. Focus your design on critical flows to help you determine the required
components and the best approach to achieve the required resiliency level.

Define functional and nonfunctional requirements. Consider functional
requirements to determine whether an application performs a task. Consider
nonfunctional requirements to determine how well the application performs a task.
Ensure that you understand nonfunctional requirements like scalability, availability,
and latency. These requirements influence design decisions and technology
choices.

Decompose workloads into components. Prioritize simplicity, efficiency, and
reliability in your design. Determine the components that you need to support
your flows. Some components support multiple flows. Identify which challenge a
component conceptually addresses, and consider removing a component from
individual flows to simplify the overall design while still providing full functionality.
For more information, see Recommendations for performing failure mode analysis.

Use failure mode analysis to identify single points of failure and potential risks.
Consider whether you need to account for unlikely situations, for example a
geographic area that experiences a major natural disaster that affects all the
availability zones in the region. It's expensive and involves significant tradeoffs to
mitigate these uncommon risks. Clearly understand your business's tolerance for
risk. For more information, see Recommendations for performing failure mode
analysis.

Define availability and recovery targets for your flows to inform your workload's
architecture. Business metrics include service-level objectives (SLOs), service-level

Collaborative design exercises

agreements (SLAs), mean time to recover (MTTR), mean time between failure
(MTBF), recovery time objectives (RTOs), and recovery point objectives (RPOs).
Define target values for these metrics. This exercise might require compromise and
mutual understanding between technology and business teams to ensure that
each team's goals meet business objectives and are realistic. For more information,
see Recommendations for defining reliability targets.

You can perform the following recommendations without stakeholder engagement:

Strive for simplicity and clarity in your design. Use the appropriate level of
abstraction and granularity for your components and services. Avoid
overengineering or under-engineering your solution. For example, if you break
down your code into multiple small functions, it's hard to understand, test, and
maintain.

Concede that all successful applications change over time, whether to fix bugs,
implement new features or technologies, or make existing systems more scalable
and resilient.

Use platform as a service (PaaS) options instead of infrastructure as a service
(IaaS) when possible. IaaS is like having a box of parts. You can build anything, but
you have to assemble it yourself. PaaS options are easier to configure and
administer. You don't need to set up virtual machines (VMs) or virtual networks.
You also don't have to perform maintenance tasks, such as installing patches and
updates.

Use asynchronous messaging to decouple the message producer from the
consumer.

Abstract infrastructure away from domain logic. Ensure that domain logic doesn't
interfere with infrastructure-related functionality, such as messaging or persistence.

Offload cross-cutting concerns to a separate service. Minimize the need to
duplicate code across different functions, prefer reusing services with well-defined
interfaces that can be easily consumed by different components. For example, if
several services need to authenticate requests, you can move this functionality into
its own service. Then you can evolve the authentication service. For example, you
can add a new authentication flow without touching any of the services that use it.

Evaluate the suitability of common patterns and practices for your needs. Avoid
following trends or recommendations that might not be best for your context or

Additional design recommendations

requirements. For example, microservices aren't the best option for every
application because they can introduce complexity, overhead, and dependency
issues.

The principles of simplicity, efficiency, and reliability also apply to your development
practices. In a loosely coupled, componentized workload, determine the functionality
that a component provides. Develop your flows to take advantage of that functionality.
Consider these recommendations for your development practices:

Use platform capabilities when they meet your business requirements. For
example, to offload development and management, use low-code, no-code, or
serverless solutions that your cloud provider offers.

Use libraries and frameworks.

Introduce pair programming or dedicated code review sessions as a development
practice.

Implement an approach to identify dead code. Be skeptical of the code that your
automated tests don't cover.

In the past, many organizations stored all their data in large relational SQL databases.
Relational databases provide atomic, consistent, isolated, and durable (ACID) guarantees
for relational data transactions. But these databases come with disadvantages:

Queries can require expensive joins.

You need to normalize the data and restructure it for schema on write.

Lock contention can affect performance.

In a large solution, a single data store technology likely doesn't meet all your needs.
Alternatives to relational databases include:

Key-value stores

Document databases

Develop just enough code

Use the best data store for your data

Alternatives to relational databases

Search engine databases

Time series databases

Column family databases

Graph databases

Each option has pros and cons. Different data types are better suited for different data
store types. Pick the storage technology that's the best fit for your data and how you
use it.

For example, you might store a product catalog in a document database, such as Azure
Cosmos DB, which supports a flexible schema. Each product description is a self-
contained document. For queries over the entire catalog, you might index the catalog
and store the index in Azure Cognitive Search. Product inventory might go into a SQL
database because that data requires ACID guarantees.

Consider other data stores. Relational databases aren't always appropriate. For
more information, see Understand data store models.

Remember that data includes more than just persisted application data. It also
includes application logs, events, messages, and caches.

Embrace polyglot persistence or solutions that use a combination of data store
technologies.

Consider the type of data that you have. For example, store:

Transactional data in a SQL database.

JSON documents in a document database.

Telemetry in a time series database.

Application logs in Azure Cognitive Search.

Blobs in Azure Blob Storage.

Prioritize availability over consistency. The CAP theorem implies that you have to
make tradeoffs between availability and consistency in a distributed system. You
can't completely avoid network partitions, which is the other component of the
CAP theorem. But you can adopt an eventual consistency model to achieve higher
availability.

Recommendations

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-area-data-model#cap-theorem

Consider the skill set of your development team. There are advantages to using
polyglot persistence, but it's possible to go overboard. It requires new skill sets to
adopt a new data storage technology. To get the most out of the technology, your
development team must:

Optimize queries.

Tune for performance.

Work with the appropriate usage patterns.

Consider these factors when you choose a storage technology:

Use compensating transactions. With polyglot persistence, a single transaction
might write data to multiple stores. If there's a failure, use compensating
transactions to undo any steps that have finished.

Consider bounded contexts, which is a domain-driven design concept. A bounded
context is an explicit boundary around a domain model. A bounded context
defines which parts of the domain that the model applies to. Ideally, a bounded
context maps to a subdomain of the business domain. Consider polyglot
persistence for bounded contexts in your system. For example, products might
appear in the product catalog subdomain and the product inventory subdomain.
But most likely, these two subdomains have different requirements for storing,
updating, and querying products.

Azure offers the following services:

Azure Functions is a serverless compute service that you can use to build
orchestration with minimal code.

Azure Logic Apps is a serverless workflow integration platform that you can use
to build orchestration with a GUI or by editing a configuration file.

Azure Event Grid is a highly scalable, fully managed publish-subscribe message
distribution service that offers flexible message consumption patterns that use the
MQTT and HTTP protocols. With Event Grid, you can build data pipelines with
device data, build event-driven serverless architectures, and integrate applications.

For more information, see:

Choose an Azure compute service

Azure facilitation

https://azure.microsoft.com/products/functions
https://azure.microsoft.com/products/logic-apps
https://azure.microsoft.com/products/event-grid
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree

Choose a compute option for microservices
Review your data options

For an example workload that determines components and their features based on
requirements, see Reliable Web App pattern.

Azure serverless
Cloud-native applications
Types of databases on Azure

Refer to the complete set of recommendations.

Example

Related links

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/compute-options
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-options
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/reliable-web-app/dotnet/plan-implementation
https://azure.microsoft.com/solutions/serverless
https://azure.microsoft.com/solutions/cloud-native-apps
https://azure.microsoft.com/products/category/databases

Recommendations for identifying and
rating flows
Article • 01/25/2024

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:02 Identify and rate user and system flows. Use a criticality scale based on your business
requirements to prioritize the flows.

This guide describes the recommendations for identifying and prioritizing workload
flows. Identifying and prioritizing workload flows involves mapping user flows and
system flows to determine their criticality to the organization. This practice ensures you
identify and prioritize the most critical workload functionality to reduce the risk of
damaging failures. Failure to identify and prioritize workload flows can lead to system
breakdowns and compromised workload reliability.

Definitions

Term Definition

User flow The paths or sequences of actions that users take within an application or system.

System
flow

The flow of information and processes within a system. The system automatically
follows this flow to enable user flows or workload functionality.

When you design your workload, it's essential to define the user flows and system flows.
User flows chart the movement of a user through your application. They focus on the
user interface, interactions, decisions, and the steps required to complete a task. User
flows provide a user-centric perspective on user experience and interface design. System
flows chart the internal workings of your workload. They focus on data movement, input
processing, output processing, and interactions among workload components, backend
services, and external APIs. System flows indicate the intricate details of how the
workload operates internally.

ﾉ Expand table

ﾉ Expand table

Key design strategies

You should identify and define flows early in the design phase of your workload. It gives
you a clearer understanding of what affects the reliability of your workload. It aligns
your architectural decisions closely with the reliability goals of your workload.

The output of identifying all user and system flows is a catalog of all the flows in your
workload. This identification process requires you to map out every user interaction and
process within a system from beginning to end. This mapping is a prerequisite for
identifying critical flows. Here are recommendations for identifying all user and system
flows in a workload:

Interview stakeholders. Stakeholders can provide valuable information to identify
flows, and they can even help you map and prioritize flows. You can also interview
users, business analysts, and technical teams to gather insights about user
interactions and dependencies within the workload.

Review documentation. In the design phase, you might not have documentation to
review. However, if documentation exists, you should use it. Ask for system
architecture diagrams, user manuals, and process descriptions. These documents
can help you understand the intended functionality of the workload and its
individual flows.

Observe the workload. Monitor the workload in operation, noting how users
interact with it and how different components speak with each other. You should
analyze system logs, performance metrics, and user activity logs to identify
patterns, frequent tasks, and system responses.

List identified flows. The interviews, documentation, and observation should enable
you to identify all the flows in the workload. Compile a list of all the flows you
identify and categorize them into user flows (focusing on user interactions) and
system flows (focusing on backend processes and data movement).

Define flow start and end points. For each identified flow, clearly define where the
flow starts and where it ends. For user flows, document each user interaction and
its expected outcome. Focus on the user experience and interface design. For
system flows, you need to identify its underlying triggers and expected outcomes.

Break down each flow. Break down each flow into individual steps, describing the
actions, decisions, or processes that occur at each point. Note how each step
interacts with other parts of the system, including dependencies on other flows or
external systems. You should be able to pinpoint how flows integrate with and

Identify all user and system flows

affect the workload and user experience. This dual approach provides a holistic
view of your entire workload.

Document unique outputs. Identify any alternative paths or exceptions within each
flow, such as error handling or conditional branching. If a flow has multiple
possible outcomes, you should add it to the catalog as distinct entries. For user
flows, you should identify the intended behavior of the interaction. For system
flows, you should identify the intended behavior of the process.

Visualize with diagrams. Create flowcharts or diagrams to visually represent the
flow and its steps. You can use tools like Microsoft Visio, UML sequence diagrams,
use-case diagrams, simple drawing tools, or a descriptive list in text format (see
Example flow catalog).

Update flow mapping iteratively. Flow mapping is an iterative process. Flows can
change, split, or combine, especially in the design phase. As the workload flows
become more clearly defined, you should update the catalog of flows to match.
Validate and refine your flow diagrams with feedback from stakeholders to ensure
accuracy and completeness.

Business processes are a series of tasks to achieve an output, such as order fulfillment,
customer service management, or inventory control. The identification of business
processes for each flow involves mapping flows to one or more business processes. This
mapping helps you understand the importance of each flow to the business.

You might have existing documentation or business plans that provide a mapping of
flows to business processes. Sometimes user manuals, training materials, or system
specifications can provide insights into the intended use and purpose of the workload
and its flows. If not, you need to map flows to the business processes they support. Here
are recommendations to identify business processes for each flow:

Use workload outputs. You can use the workload outputs and flow breakdown to
correlate flows with the business processes they support. First, review the outputs
the workload generates. The output could be sales reports, data files, or completed
tasks.

Conduct interviews. Speak with team members and stakeholders who interact with
the workload. You should ask specific questions about their daily tasks, how they
use the workload, and what objectives they achieve with it. Technical teams often
have a deeper understanding the workload structure and can provide insights into
the business processes it supports.

Identify business processes for each flow

Monitor workload usage. For existing workloads, monitor the workload and look for
patterns in usage that indicate underlying business processes, such as data entry,
order processing, or customer interaction.

Connect the output to a business process. Connect the dots from the flow outputs
to the overall business process they support. For example, if a flow step involves
processing customer orders, then it directly supports the business process of order
fulfillment. Order fulfillment contributes to the business objective of maintaining
customer satisfaction and generating revenue. Finally, use the flow breakdown to
help determine which flow created the sales report.

The process owner for a flow is the individual that's responsible for the successful
execution of a given process. They're responsible for that process and the flows that
support it. You should identify the process owner for each workload flow. You should
also identify the stakeholders for each flow. Stakeholders can be involved in the
workload, have dependencies on a flow, or manage a dependency that the flow has.

You might have a responsibility assignment matrix (RAM) or RACI matrix that already
identifies process owners and stakeholders. Typically, process owners are responsible or
accountable for a process, and you consult or inform stakeholders.

The identification of escalation paths is about determining channels for escalating issues
related to a flow. Issues that need escalation could be urgent updates, security concerns,
degradations, or technical incidents. The goal of identifying an escalation path is to
ensure timely and effective resolution of issues.

The escalation path you map out should start with the person or group most likely to
resolve a particular issue. If this person or group can't resolve the issue, the escalation
path should identify the next point of contact. The next point of contact has broader
responsibilities and is able to coordinate mitigation strategies with more parts of the
organization. The number of people on an escalation path varies by flow and
organization. Too many people on an escalation path can slow the resolution efforts.

The identification of the business impact of each flow is essential for understanding how
each flow contributes to key business objectives. Business impact could include revenue

Identify process owners and stakeholders for each flow

Identify escalation paths for each flow

Identify business impact of each flow

generation, customer satisfaction, or operational efficiency. By understanding both the
positive and negative impact of each flow, you can prioritize efforts to ensure the
reliability of the flows that matter the most to your business. It's important to consider
the direct impact of flow failure and its indirect effect on other interconnected
processes. Here are steps to identify the business impact of each flow:

Identify positive impact. Determine the expected benefits when a flow runs as
intended. The expected benefits could include improved efficiency, increased
revenue, enhanced customer satisfaction, or any other positive effect on the
business.

Identify negative impact. Assess the potential negative impacts if a process fails or
doesn't work as expected. Consider quantifying specific losses, such as revenue
drops. Include subjective effects like damage to reputation, erosion of customer
trust, or adverse effects on other related business processes.

Define capacity and availability assumptions. Establish assumptions about the
expected capacity and availability of each process. Consider factors like throughput
per unit of time, expected business hours, and target percentage uptime. If there
are expectations for recovery time objective (RTO) or recovery point objective
(RPO), you should include these expectations. These assumptions help in
understanding reliability requirements of each flow.

By systematically evaluating these aspects, you can gain a comprehensive view of how
each flow impacts the business and make strategic decisions about reliability
optimization.

A detailed evaluation of flow importance relative to the overall business impacts allows
you to assign a criticality rating to each flow. You can use quantitative or qualitative
criticality ratings. The purpose is to sort the flows by priority and assign a label that
allows you to identify the critical flows. This process is a logical continuation of
identifying, mapping, and aligning with business processes and impact. Use the
following criticality descriptions to assign your critical ratings:

High criticality: High criticality flows are integral to core business functions. They
directly affect critical aspects of a business such as customer experience, financial
transactions, security protocols, human health, and safety. The failure or disruption
of these flows could lead to significant immediate or long-term negative effects.
Examples of negatives effects include loss of revenue, breach of trust, and legal

Assign a criticality rating to each flow

issues. Prioritizing these flows ensures that the most crucial aspects of the
workload are robust and resilient.

Medium criticality: Medium criticality flows are important for the complete
functionality of the system but don't directly interface with the customer or critical
business operations. For example, if an issue disrupts an internal data processing
flow, you can retry the data processing without immediate external effects. These
flows are essential for smooth operations but offer a buffer in terms of immediate
customer or financial effect, allowing for managed responses to issues.

Low criticality: Low criticality flows don't have a direct or significant effect on the
core business functions or customer experience. Examples include ancillary
processes like nightly log transfers or optional user features such as feedback
surveys. While these flows contribute to the overall system, their disruption is
unlikely to cause significant immediate business or operational issues.

By following this structured approach to assigning criticality, you can effectively
prioritize resources and focus on maintaining and enhancing the reliability and
effectiveness of your most critical flows.

 Tradeoff: Higher expectations for reliability sometimes coincide with higher
setup costs, operational costs, and management burden for operators. Ensure that
stakeholders understand the potential cost increases of improving the reliability of
critical flows.

Cloud Adoption Framework provides guidance for workloads that require business
criticality classification.

For more information, see business criticality in cloud management.

Organizational alignment

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/manage/considerations/criticality

Recommendations for performing
failure mode analysis
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:03 Use failure mode analysis (FMA) to identify and prioritize potential failures in your
solution components. Perform FMA to help you assess the risk and effect of each
failure mode. Determine how the workload responds and recovers.

This guide describes the best practices for performing failure mode analysis (FMA) for
your workload. FMA is the practice of identifying potential points of failure within your
workload and the associated flows and planning mitigation actions accordingly. At each
step of the flow, you identify the blast radius of multiple failure types, which helps you
design a new workload or refactor an existing workload to minimize the widespread
effect of failures.

A key tenet of FMA is that failures happen no matter how many layers of resiliency you
apply. More complex environments are exposed to more types of failures. Given this
reality, FMA allows you to design your workload to withstand most types of failures and
recover gracefully when a failure occurs.

If you skip FMA altogether or perform an incomplete analysis, your workload is at risk of
unpredicted behavior and potential outages caused by suboptimal design.

Definitions

Term Definition

Failure
mode

A type of problem that can cause one or more workload components to be
degraded or severely affected to the point of being unavailable.

Mitigation The activities that you have identified to address problems either proactively or
reactively.

Detection Your infrastructure, data, and app monitoring and alerting processes and
procedures.

Key design strategies

Review and implement the recommendations for identifying flows. It’s assumed that you
have identified and prioritized user and system flows based on criticality.

The data that you have gathered and the artifacts that you have created in your work
provide you with a concrete description of your data paths involved throughout the
flows. To be successful in your FMA work, accuracy and thoroughness in your artifacts is
critical.

After you determine the critical flows, you can plan their required components. Next,
follow each flow step by step to identify dependencies, including third-party services
and potential points of failure, and plan your mitigation strategies.

As you move from ideation to design, you need to identify the component types that
are required to support your workload. Your workload determines the necessary
components that you must plan for. Typically, you need to plan for ingress control,
networking, compute, data, storage, supporting services (like authentication, messaging,
and secret or key management), and egress control. At this stage in your design work,
you might not know the specific technologies that you'll deploy, so your design might
look like the following example.

Prerequisites

FMA approach

Decompose the workload

After you create your initial architecture design, you can overlay your flows to identify
the discrete components that are used in those flows and create lists or workflow
diagrams that describe the flows and their components. To understand the criticality of
the components, use the criticality definitions that you have assigned to the flows.
Consider the effect of a component malfunction on your flows.

Identify your workload dependencies to perform your single point-of-failure analysis.
Decomposing your workload and overlaying flows provides insight into dependencies
that are internal and external to the workload.

Internal dependencies are components in the workload scope that are required for the
workload to function. Typical internal dependencies include APIs or secret/key

Identify dependencies

https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/failure-mode-analysis/failure-mode-example.png#lightbox

management solutions like Azure Key Vault. For these dependencies, capture the
reliability data, like availability SLAs and scaling limits. External dependencies are
required components outside the scope of the workload, such as another application or
third-party service. Typical external dependencies include authentication solutions, like
Microsoft Entra ID, and cloud connectivity solutions, like Azure ExpressRoute.

Identify and document the dependencies in your workload, and include them in your
flow documentation artifacts.

In your workload's critical flows, consider each component and determine how that
component, and its dependencies, might be affected by a failure mode. Remember that
there are many failure modes to consider when planning for resiliency and recovery. Any
one component can be affected by more than one failure mode at any given time. These
failure modes include:

Regional outage. An entire Azure region is unavailable.

Availability zone outage. An Azure availability zone is unavailable.

Service outage. One or more Azure services are unavailable.

Distributed denial-of-service (DDoS) or other malicious attack.

App or component misconfiguration.

Operator error.

Planned maintenance outage.

Component overload.

The analysis should always be in the context of the flow you're attempting to analyze, so
be sure to document the effect on the user and expected result of that flow. For
example, if you have an e-commerce application and you’re analyzing your customer
flow, the effect of a particular failure mode on one or more components might be that
all customers are unable to complete the checkout.

Consider the likelihood of each type of failure mode. Some are very unlikely, like multi-
zone or multi-region outages, and adding mitigation planning beyond redundancy isn't
a good use of resources and time.

Failure points

Mitigation

Mitigation strategies fall into two broad categories: building more resiliency and
designing for degraded performance.

Building more resiliency includes adding redundancy to your components, like
infrastructure, data, and networking, and ensuring that your application design follows
best practices for durability, for example breaking up monolithic applications into
isolated apps and microservices. For more information, see Recommendations for
redundancy and Recommendations for self-preservation.

To design for degraded performance, identify potential failure points that might disable
one or more components of your flow but don't fully disable that flow. To maintain the
functionality of the end-to-end flow, you might need to reroute one or more steps to
other components or accept that a failed component runs a function, so the function is
no longer available in the user experience. To return to the e-commerce application
example, a failed component like a microservice might cause your recommendation
engine to be unavailable, but the customers can still search for products and complete
their transaction.

You also need to plan mitigation around dependencies. Strong dependencies play a
critical role in application function and availability. If they're absent or experiencing a
malfunction, there might be significant effect. The absence of weak dependencies might
only affect specific features and not affect overall availability. This distinction reflects the
cost to maintain the high availability relationship between the service and its
dependencies. Classify dependencies as either strong or weak to help you identify which
components are essential to the application.

If the application has strong dependencies that it can't operate without, the availability
and recovery targets of these dependencies should align with the targets of the
application itself. Minimize dependencies to achieve control over application reliability.
For more information, see Minimize coordination between application services to
achieve scalability.

If the application lifecycle is closely coupled with the lifecycle of its dependencies, the
operational agility of the application might be limited, particularly for new releases.

Failure detection is essential to ensure that you have correctly identified failure points in
your analysis and properly planned your mitigation strategies. Detection in this context
means the monitoring of your infrastructure, data and application, and alerting when
issues arise. Automate detection as much as possible, and build redundancy into your
operations processes to ensure that alerts are always caught and are responded to

Detection

https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/minimize-coordination

quickly enough to meet your business requirements. For more information, see the
Recommendations for monitoring.

For the outcome of your analysis, create a set of documents that effectively
communicate your findings, the decisions that you have made relative to the flow
components and mitigation, and the effect of the failure on your workload.

In your analysis, prioritize the failure modes and mitigation strategies that you have
identified based on severity and likelihood. Use this prioritization to focus your
documentation on those failure modes that are common and severe enough to warrant
spending the time, effort, and resources on designing mitigation strategies around. For
example, there might be some failure modes that are very rare in occurrence or
detection. Designing mitigation strategies around them isn't worth the cost.

Refer to the following example table for a documentation starting point.

During your initial FMA exercise, the documents you produce will be mostly theoretical
planning. The FMA documents should be reviewed and updated regularly to ensure that
they stay up-to-date with your workload. Chaos testing and real-world experiences will
help you refine your analyses over time.

Use Azure Monitor and Log Analytics to detect issues in your workload. For further
insight into issues related to your infrastructure, apps, and databases, use tools like
Application Insights, Container Insights, Network Insights, VM Insights, and SQL Insights.

Azure Chaos Studio Preview is a managed service that uses chaos engineering to help
you measure, understand, and improve your cloud application and service resilience.

For information about applying FMA principles to common Azure services, see Failure
mode analysis for Azure applications.

As with all resiliency and reliability decisions, the amount of resiliency you build into
your systems has cost and management overhead implications. Apply the principles of
FMA to help keep costs to a minimum. Your analysis provides you with a comprehensive
list of failure points to address, and it helps you decide the level of resilience to apply
for a given flow.

Outcome

Azure facilitation

Tradeoffs

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/vm/vminsights-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-insights-overview
https://azure.microsoft.com/services/chaos-studio
https://learn.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis

The following table shows an FMA example for an e-commerce website that's hosted on
Azure App Service instances with Azure SQL databases and is fronted by Azure Front
Door.

User flow: User sign in, product search, and shopping cart interaction

Component Risk Likelihood Effect/Mitigation/Note Outage

Microsoft
Entra ID

Service outage Low Full workload outage. Dependent
on Microsoft to remediate.

Full

Microsoft
Entra ID

Misconfiguration Medium Users unable to sign in. No
downstream effect. Help desk
reports configuration issue to
identity team.

None

Azure Front
Door

Service outage Low Full outage for external users.
Dependent on Microsoft to
remediate.

External
only

Azure Front
Door

Regional outage Very low Minimal effect. Azure Front Door is
a global service, so global traffic
routing directs traffic through non-
effected Azure regions.

None

Azure Front
Door

Misconfiguration Medium Misconfigurations should be caught
during deployment. If these happen
during a configuration update,
administrators must roll back
changes. Configuration update
causes a brief external outage.

External
only

Azure Front
Door

DDoS attack Medium Potential for disruption. Microsoft
manages DDoS (L3 and L4)
protection and Well-Architected
Framework blocks most threats.
Potential risk of effect from L7
attacks.

Potential
for partial
outage

Azure SQL Service outage Low Full workload outage. Dependent
on Microsoft to remediate.

Full

Azure SQL Regional outage Very low Auto-failover group fails over to
secondary region. Potential outage
during failover. Recovery time
objectives (RTOs) and recovery
point objectives (RPOs) to be

Potential
full

Example

Component Risk Likelihood Effect/Mitigation/Note Outage

determined during reliability
testing.

Azure SQL Availability zone
outage

Low No effect None

Azure SQL Malicious attack
(injection)

Medium Minimal risk. All Azure SQL
instances are virtual network-bound
through private endpoints and
network security groups (NSGs) add
further intra-virtual network
protection.

Potential
low risk

App Service Service outage Low Full workload outage. Dependent
on Microsoft to remediate.

Full

App Service Regional outage Very low Minimal effect. Latency for users in
effected regions. Azure Front Door
automatically routes traffic to non-
effected regions.

None

App Service Availability zone
outage

Low No effect. App services have been
deployed as zone redundant.
Without zone redundancy, there's a
potential for effect.

None

App Service DDoS attack Medium Minimal effect. Ingress traffic is
protected by Azure Front Door and
Well-Architected Framework.

None

Failure mode analysis for Azure applications
Resiliency and dependencies

Refer to the complete set of recommendations.

Related links

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/design-resiliency

Recommendations for defining
reliability targets
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:04 Define reliability and recovery targets for the components, the flows, and the
overall solution. Visualize the targets to negotiate, gain consensus, set expectations,
and drive actions to achieve the ideal state. Use the defined targets to build the
health model. The health model defines what healthy, degraded, and unhealthy
states look like.

This guide describes the recommendations for defining availability and recovery target
metrics for critical workloads and flows. Reliability targets are derived through workshop
exercises with business stakeholders. The targets are refined through monitoring and
testing.

With your internal stakeholders, set realistic expectations for workload reliability so that
stakeholders can communicate those expectations to customers through contractual
agreements. Realistic expectations also help stakeholders understand and support your
architectural design decisions and know that you're designing to optimally meet the
targets you agreed on.

Consider using the following metrics to quantify the business requirements.

Term Definition

Service-level
objective (SLO)

A percentage target that represents the health of the component and the
reliability tier. The higher the tier, the more reliable the component. Composite
SLO represents the aggregate target of the entire workload and accounts for
the component SLOs.

Service-level
indicator (SLI)

A metric emitted by a service. SLI metrics are aggregated to quantify an SLO
value.

Service-level
agreement (SLA)

A contractual agreement between the service provider and the service
customer. The agreement defines the SLOs. Failure to meet the agreement
might have financial consequences for the service provider.

Mean time to
recover (MTTR)

The time taken to restore a component after a failure is detected.

Mean time
between failure

The duration for which the workload can perform the expected function
without interruption, until it fails.

Term Definition(MTBF)

Recovery time
objective (RTO)

The maximum acceptable time that an application can be unavailable after an
incident.

Recovery point
objective (RPO)

The maximum acceptable duration of data loss during an incident.

Define the workload's target values for these metrics in the context of user flows and
system flows. Identify and score those flows by how critical they are to your
requirements. Use the values to drive the design of your workload in terms of
architecture, review, testing, and incident management operations. Failure to meet the
targets will affect the business beyond the tolerance level.

Technical discussions shouldn't drive how you define reliability targets for your critical
flows. Instead, business stakeholders should focus on customers as they define a
workload's requirements. Technical experts help the stakeholders assign realistic
numerical values that correlate to those requirements. As they share knowledge,
technical experts allow for negotiation and mutual consensus about realistic SLOs.

Consider an example of how to map requirements to measurable numerical values.
Stakeholders estimate that for a critical user flow, an hour of downtime during regular
business hours results in a loss of X dollars in monthly revenue. That dollar amount is
compared to the estimated cost of designing a flow that has an availability SLO of 99.95
percent rather than 99.9 percent. Decision makers must discuss whether the risk of that
revenue loss outweighs the added costs and management burden required to protect
against it. Follow this pattern as you examine flows and build a complete list of targets.

Remember that reliability targets differ from performance targets. Reliability targets
focus on availability and recovery. To set reliability targets, start by defining the broadest
requirements and then define more specific metrics to meet the high-level
requirements.

Highest-level reliability and recovery requirements and correlated metrics might include,
for example, an application availability of 99.9 percent for all regions or a target RTO of
5 hours for the Americas region. Defining these types of targets helps you identify which
critical flows are involved in those targets. Then you can consider component-level
targets.

Key design strategies

Availability metrics

Availability metrics correlate to SLOs, which you use to define SLAs. The workload SLO
determines how much downtime is tolerable in a given period, for example, less than 1
hour per month. To make sure you can meet the SLO target, review the Microsoft SLAs
for each component. Pay attention to how much redundancy you need to meet high
SLAs. For example, Microsoft guarantees higher SLAs for multi-region deployments of
Azure Cosmos DB than it guarantees for single-region deployments.

After you gather the SLAs for the individual workload components, calculate a
composite SLA. The composite SLA should match the workload's target SLO. Calculating
a composite SLA involves several factors, depending on your architecture design.
Consider the following examples.

Composite SLAs involve multiple services that support an application, with differing
levels of availability. For example, consider an Azure App Service web app that writes to
Azure SQL Database. Hypothetically, these SLAs might be:

App Service web apps = 99.95 percent
SQL Database = 99.99 percent

What's the maximum downtime you can expect for this application? If either service
fails, the whole application fails. The probability of each service failing is independent, so
the composite SLA for this application is 99.95 percent × 99.99 percent = 99.94 percent.
That value is lower than the individual SLAs. This conclusion is unsurprising because an
application that relies on multiple services has more potential failure points.

You can improve the composite SLA by creating independent fallback paths. For
example, if SQL Database is unavailable, put transactions into a queue to be processed

SLOs and SLAs

７ Note

Azure SLAs don't always cover all aspects of a service. For example, Azure
Application Gateway has an availability SLA, but the Azure Well-Architected
Framework functionality provides no guarantee to stop malicious traffic from
passing through. Consider this limitation when you develop your SLAs and SLOs.

７ Note

The SLA values in the following examples are hypothetical and are for
demonstration purposes only. They aren't intended to represent current values
supported by Microsoft.

later:

In this design, the application is still available even if it can't connect to the database.
However, it fails if the database and the queue fail at the same time. The expected
percentage of time for a simultaneous failure is 0.0001 × 0.001, so here's the composite
SLA for this combined path:

Database or queue = 1.0 − (0.0001 × 0.001) = 99.99999 percent

The total composite SLA:

Web app and (database or queue) = 99.95 percent × 99.99999 percent = ~99.95 percent

This approach poses tradeoffs:

The application logic is more complex.
You pay for the queue.
You need to consider data consistency issues.

For multi-region deployments, the composite SLA is calculated as follows:

N is the composite SLA for the application that's deployed in one region.

R is the number of regions where the application is deployed.

The expected chance that the application fails in all regions at the same time is ((1 − N)
^ R). For example, if the hypothetical single-region SLA is 99.95 percent:

The combined SLA for two regions = (1 − (1 − 0.9995) ^ 2) = 99.999975 percent

The combined SLA for four regions = (1 − (1 − 0.9995) ^ 4) = 99.999999 percent

Defining proper SLOs takes time and careful consideration. Business stakeholders should
understand how key customers use the app. They should also understand the reliability
tolerance. This feedback should inform the targets.

https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/metrics/independent-fallback-paths.png#lightbox

The following table defines common SLA values.

SLA Downtime per week Downtime per month Downtime per year

99% 1.68 hours 7.2 hours 3.65 days

99.9% 10.1 minutes 43.2 minutes 8.76 hours

99.95% 5 minutes 21.6 minutes 4.38 hours

99.99% 1.01 minutes 4.32 minutes 52.56 minutes

99.999% 6 seconds 25.9 seconds 5.26 minutes

When you think about composite SLAs in the context of flows, remember that different
flows have different criticality definitions. Consider these differences when you build
your composite SLAs. Noncritical flows might have components that you should omit
from your calculations because they don't affect the customer experience if they're
briefly unavailable.

Think of SLIs as component-level metrics that contribute to an SLO. The most significant
SLIs are the ones that affect your critical flows from the perspective of your customers.
For many flows, SLIs include latency, throughput, error rate, and availability. A good SLI
helps you identify when an SLO is at risk of being breached. Correlate the SLI to specific
customers when possible.

To avoid collecting useless metrics, limit the number of SLIs for each flow. Aim for three
SLIs per flow if possible.

Recovery targets correspond to RTO, RPO, MTTR, and MTBF metrics. In contrast to
availability targets, recovery targets for these measurements don't depend heavily on

SLA values

７ Note

Customer-facing workloads and internal-use workloads have different SLOs.
Typically, internal-use workloads can have much less restrictive availability SLOs
than customer-facing workloads.

SLIs

Recovery metrics

Microsoft SLAs. Microsoft publishes RTO and RPO guarantees only for some products,
like SQL Database.

Definitions for realistic recovery targets rely on your failure mode analysis and your
plans and testing for business continuity and disaster recovery. Before you finish this
work, discuss aspirational targets with stakeholders and ensure that your architecture
design supports the recovery targets to the best of your understanding. Clearly
communicate to stakeholders that any flows or entire workloads that aren't thoroughly
tested for recovery metrics shouldn't have guaranteed SLAs. Make sure that
stakeholders understand that recovery targets can change over time as workloads are
updated. The workload can become more complex as customers are added or as you
adopt new technologies to improve the customer experience. These changes can
increase or decrease your recovery metrics.

As you define recovery targets, define thresholds for initiating a recovery. For example, if
a web node is unavailable for more than 5 minutes, a new node is automatically added
to the pool. Define thresholds for all components, considering what recovery for a
specific component involves, including the effect on other components and
dependencies. Your thresholds should also account for transient faults to ensure that
you don't start recovery actions too quickly. Document and share with the stakeholders
the potential risks of recovery operations, like data loss or session interruptions for
customers.

Use the data you gathered for your reliability targets to build your health model for
each workload and associated critical flows. A health model defines healthy, degraded,
and unhealthy states for the flows and workloads. The states ensure appropriate
operational prioritization. This model is also known as a traffic light model. The model
assigns green for healthy, yellow for degraded, and red for unhealthy. A health model
ensures that you know when a flow's state changes from healthy to degraded or
unhealthy.

７ Note

MTBF can be challenging to define and guarantee. Platforms as a service (PaaS) or
software as a service (SaaS) can fail and recover without any notification from the
cloud provider, and the process can be completely transparent to you or your
customers. If you define targets for this metric, cover only components that are
under your control.

Building a health model

https://learn.microsoft.com/en-us/azure/azure-sql/database/business-continuity-high-availability-disaster-recover-hadr-overview

How you define healthy, degraded, and unhealthy states depends on your reliability
targets. Here are some examples of ways you might define the states:

A green or healthy state indicates that key nonfunctional requirements and targets
are fully satisfied and that resources are used optimally. For example, 95 percent of
requests are processed in <=500 ms with Azure Kubernetes Service (AKS) node use
at X percent.

A yellow or degraded state indicates that one or more components of the flow are
alerting against their defined threshold, but the flow is operational. For example,
storage throttling has been detected.

A red or unhealthy state indicates that degradation has persisted longer than
allowable by your reliability targets or that the flow has become unavailable.

This model works by using a monitoring and alerting strategy that's developed and
operated on the principles of continuous improvement. As your workloads evolve, your
health models must evolve with them.

For detailed design considerations and recommendations for a layered application
health model, see the health modeling guidance found in the mission-critical workload
design areas. For detailed guidance about monitoring and alerting configurations, see
the health monitoring guide.

To keep your operations teams and workload stakeholders informed about the real-time
status and overall trends of the workload health model, consider creating dashboards in
your monitoring solution. Discuss visualization solutions with the stakeholders to ensure
that you deliver the information that they value and that's easy to consume. They might
also want to see generated reports weekly, monthly, or quarterly.

７ Note

The health model shouldn't treat all failures the same. The health model should
distinguish between transient and nontransient faults. It should clearly distinguish
between expected-transient but recoverable failures and a true disaster state.

Visualization

Azure facilitation

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling
https://learn.microsoft.com/en-us/azure/azure-monitor/visualize/tutorial-logs-dashboards

Azure SLAs provide the Microsoft commitments for uptime and connectivity. Different
services have different SLAs, and sometimes SKUs within a service have different SLAs.
For more information, see Service-level agreements for online services .

The Azure SLA includes procedures for obtaining a service credit if the SLA isn't met,
along with definitions of availability for each service. That aspect of the SLA acts as an
enforcement policy.

Cloud Adoption Framework provides guidance for recommendations for SLOs and SLIs
related to monitoring across the organization.

For more information, see Cloud monitoring SLOs.

A conceptual gap might exist between the technical limitations of your workload's
components and what that means for the business, for example, throughput in megabits
per second versus transactions per second. Creating a model between these two views
might be challenging. Rather than overengineering the solution, try to approach it in an
economical but meaningful way.

Well-Architected Framework mission-critical guidance for health modeling: Health
modeling and observability of mission-critical workloads on Azure

Refer to the complete set of recommendations.

Organizational alignment

Tradeoffs

Related links

Reliability checklist

Reliability checklist

https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/manage/monitor/service-level-objectives#how-do-you-define-slis
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling

Recommendations for highly available
multi-region design
Article • 01/15/2024

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:05 Add redundancy at different levels, especially for critical flows. Apply redundancy
to the compute, data, network, and other infrastructure tiers in accordance with the
identified reliability targets.

Related guides: Redundancy | Using availability zones and regions

This guide describes the recommendations for designing a highly available multi-region
cloud environment. High availability is a foundational tenet of designing for reliability. A
highly available architecture can help you avoid downtime as much as possible and
recover efficiently if downtime does occur.

Active-active and active-passive are general architecture types that can be applied in
different ways, depending on the platform you deploy your environment on. This guide
focuses on a multi-region cloud environment design. On Azure, you can also design an
active-active or active-passive architecture within a single region by using availability
zones. For detailed guidance on designing a highly available architecture by using
availability zones, see the Azure Well-Architected Framework guide.

Active-active and active-passive are the two fundamental approaches to designing a
highly available cloud environment. Active-active environments are designed to handle
production loads in every region in which you deploy your workload. Active-passive
environments are designed to handle production loads only in the primary region but
fail over to the secondary (passive) region when necessary. Selecting the best Azure
regions for your workload is a key part of designing a highly available multi-region
environment. For guidance on selecting Azure regions, see the Select Azure Regions
guide.

This section describes design options that you should consider when you evaluate each
pattern and refine your architecture to meet your business requirements.

ﾉ Expand table

Key design strategies

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/regions

See Deployment Stamps pattern for guidance on architecting your workload in a
repeatable, scalable way. This design pattern can help you optimize your high-
availability design for efficient management.

The following sections describe the design options of the two patterns.

Active-active at capacity: Mirrored deployment stamps in two or more Azure
regions, each configured to handle production workloads for the region or regions
they serve and scalable to handle loads from other regions in case of a regional
outage.

Networking: Use latency or weighted global routing to spread traffic among
regions.

Data replication and consistency: Use a globally distributed data store like Azure
Cosmos DB for multi-region read and write capabilities. For relational databases,
use readable replicas with read-only connection strings.

Advantage of this design: Lower operating costs than an overprovisioned
design.

Disadvantage of this design: Possible degradation of the user experience when
scaling up to meet the demands of a full load if another region experiences an
outage.

Active-active overprovisioned: Mirrored deployment stamps in two or more Azure
regions, each overprovisioned to handle production workloads for the region or
regions they serve and to handle loads from other regions in case of a regional
outage.

Networking: Use latency or weighted global routing to spread traffic among
regions.

Data replication and consistency: Use a globally distributed data store like Azure
Cosmos DB for multi-region read and write capabilities. For relational databases,
use readable replicas with read-only connection strings.

Advantage of this design: The most resilient design possible.

Disadvantage of this design: Higher operating costs than a scalable design.

Common advantages of both designs: High resiliency and low risk of full workload
outage.

Active-active

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#latency
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#weighted
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/azure-sql/database/read-scale-out
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#latency
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#weighted
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/azure-sql/database/read-scale-out

Common disadvantages of both designs: Higher operating costs and management
burden due to various factors, including the necessity of managing the
synchronization of application state and data.

Warm spare: One primary region and one or more secondary regions. The
secondary region is deployed with the minimum possible compute and data sizing
and runs without load. This region is known as a warm spare region. Upon failover,
the compute and data resources are scaled to handle the load from the primary
region.

Networking: Use priority global routing.

Data replication and consistency: Replicate your database to your passive region
and use the automatic failover capabilities of platform as a service (PaaS)
solutions like Azure Cosmos DB and Azure SQL Database.

Advantage of this design: Shortest recovery time among the active-passive
designs.

Disadvantage of this design: Highest operating cost among the active-passive
designs.

Cold spare: One primary region and one or more secondary regions. The
secondary region is scaled to handle full load, but all compute resources are
stopped. This region is known as a cold spare region. You need to start the
resources before failover.

Networking: Use priority global routing.

Data replication and consistency: Replicate your database to your passive region
and use the automatic failover capabilities of PaaS solutions like Azure Cosmos
DB and Azure SQL Database.

Advantage of this design: Lower operating costs than the warm spare design.

Disadvantage of this design: Longer recovery time than the warm spare design.

Redeploy on disaster: One primary region and one or more secondary regions.
Only the necessary networking is deployed in the secondary region. Operators
must run provisioning scripts in the secondary region to fail over the workloads.
This design is known as redeploy on disaster.

Networking: Use priority global routing.

Active-passive

https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#priority
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-manage-database-account#automatic-failover
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-sql-db
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#priority
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-manage-database-account#automatic-failover
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-sql-db
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#priority

Data replication and consistency: Deploy new database instances and rehydrate
the data from backups.

Advantage of this design: Lowest operating costs.

Disadvantage of this design: Longest recovery time.

Common advantages of active-passive designs: Lower operating costs and less
day-to-day management burden than active-active designs. No need to
synchronize application state.

Common disadvantages of active-passive designs: Longer, more complex recovery
process. Higher likelihood of needing manual intervention for a successful failover.

Azure Front Door combines the global routing functionality of Azure Traffic
Manager with a content delivery system and web application firewall to help you
manage your high-availability workload.

Azure Cosmos DB is a globally distributed NoSQL database platform that can help
you run an active-active environment and minimize the chance of downtime when
a regional outage occurs.

Multi-region N-tier application
Multi-region load balancing

Refer to the complete set of recommendations.

７ Note

Regardless of your high-availability design, remember to configure redundancy for
supporting services like Azure DevOps infrastructure, jump boxes, monitoring, and
any other critical service that's necessary to administer the workload.

Azure facilitation

Related links

Reliability checklist

Reliability checklist

https://azure.microsoft.com/products/frontdoor
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/multi-region-sql-server
https://learn.microsoft.com/en-us/azure/architecture/high-availability/reference-architecture-traffic-manager-application-gateway

Recommendations for designing for
redundancy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:05 Add redundancy at different levels, especially for critical flows. Apply redundancy
to the compute, data, network, and other infrastructure tiers in accordance with the
identified reliability targets.

Related guides: Highly available multiregional design | Using availability zones and
regions

This guide describes the recommendations for adding redundancy throughout critical
flows at different workload layers, which optimizes resiliency. Meet the requirements of
your defined reliability targets by applying the proper levels of redundancy to your
compute, data, networking, and other infrastructure tiers. Apply this redundancy to give
your workload a strong, reliable foundation to build on. When you build your workload
without infrastructure redundancy, there's a high risk of extended downtime due to
potential failures.

Definitions

Term Definition

Redundancy The implementation of multiple identical instances of a workload component.

Polyglot
persistence

The concept of using different storage technologies by the same application or
solution to take advantage of the best capabilities of each component.

Data
consistency

The measure of how in sync or out of sync a given dataset is across multiple
stores.

Partitioning The process of physically dividing data into separate data stores.

Shard A horizontal database partitioning strategy that supports multiple storage
instances with a common schema. Data isn't replicated in all instances.

In the context of reliability, use redundancy to contain problems that affect a single
resource and ensure that those problems don't affect the reliability of the entire system.

Key design strategies

Use the information that you identified about your critical flows and reliability targets to
make informed decisions that are required for each flow's redundancy.

For example, you might have multiple web server nodes running at once. The criticality
of the flow that they support might require that all of them have replicas that are ready
to accept traffic if there's a problem that affects the entire pool, for example a regional
outage. Alternatively, because large-scale problems are rare and it's costly to deploy an
entire set of replicas, you might deploy a limited number of replicas so the flow
operates in a degraded state until you resolve the problem.

When you design for redundancy in the context of performance efficiency, distribute the
load across multiple redundant nodes to ensure that each node performs optimally. In
the context of reliability, build in spare capacity to absorb failures or malfunctions that
affect one or more nodes. Ensure that the spare capacity can absorb failures for the
entire time that's needed to recover the affected nodes. With this distinction in mind,
both strategies need to work together. If you spread traffic across two nodes for
performance and they both run at 60 percent utilization and one node fails, your
remaining node is at risk of becoming overwhelmed because it can't operate at 120
percent. Spread the load out with another node to ensure that your performance and
reliability targets are upheld.

Consider two approaches when you design a redundant architecture: active-active or
active-passive. Choose your approach depending on the criticality of the user flow and
system flow that the infrastructure components support. In terms of reliability, a multi-
region active-active design helps you achieve the highest level of reliability possible, but
it's significantly more expensive than an active-passive design. You can also use these
design approaches for a single region by using availability zones. For more information,
see Recommendations for highly available multi-region design.

Whether you deploy in an active-active or active-passive model, follow the Deployment
Stamps design pattern to ensure that you deploy your workload in a repeatable, scalable
way. Deployment stamps are the groupings of resources that are required to deliver
your workload to a given subset of your customers. For example, the subset might be a
regional subset or a subset with all the same data privacy requirements as your
workload. Think of each stamp as a unit of scale that you can duplicate to scale your
workload horizontally or to perform blue-green deployments. Design your workload

Redundant architecture design

Deployment stamps and units of scale

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

with deployment stamps to optimize your active-active or active-passive
implementation for resiliency and management burden.

Whether you deploy an active-active or an active-passive design, take advantage of
availability zones within the active regions to fully optimize your resiliency. Many Azure
regions provide multiple availability zones, which are separated groups of data centers
within a region. Depending on the Azure service, you can take advantage of availability
zones by deploying elements of your workload redundantly across zones or pinning
elements to specific zones. For more information, see Recommendations for using
availability zones and regions.

Choose the appropriate compute service for your workload. Depending on the
type of workload that you design, there might be several options available.
Research the available services and understand which types of workloads work
best on a given compute service. For example, SAP workloads are typically best
suited for infrastructure as a service (IaaS) compute services. For a containerized
application, determine the specific functionality you need to have control over to
determine whether to use Azure Kubernetes Service (AKS) or a platform as a
service (PaaS) solution. Your cloud platform fully manages a PaaS service.

Use PaaS compute options if your requirements allow it. Azure fully manages PaaS
services, which reduces your management burden, and a documented degree of
redundancy is built in.

Use Azure Virtual Machine Scale Sets if you need to deploy virtual machines (VMs).
With Virtual Machine Scale Sets, you can automatically spread your compute
evenly across availability zones.

Keep your compute layer clean of any state because individual nodes that serve
requests might be deleted, faulted, or replaced at any time.

Use zone-redundant services where possible to provide higher resilience without
increasing your operational burden.

Overprovision critical resources to mitigate failures of redundant instances, even
before autoscaling operations begin, so the system continues to operate after a

Availability zones within Azure regions

Infrastructure layer guidance

Compute resources

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree

component failure. Calculate the acceptable effect of a fault when you incorporate
overprovisioning into your redundancy design. As with your redundancy decision-
making process, your reliability targets and financial tradeoff decisions determine
the extent that you add spare capacity with overprovisioning. Overprovisioning
specifically refers to scaling out, which means adding extra instances of a given
compute resource type, rather than increasing the compute capabilities of any
single instance. For example, if you change a VM from a lower-tier SKU to a
higher-tier SKU.

Deploy IaaS services manually or via automation in each availability zone or region
in which you intend to implement your solution. Some PaaS services have built-in
capabilities that are automatically replicated across availability zones and regions.

Determine whether synchronous or asynchronous data replication is necessary for
your workload's functionality. To help you make this determination, see
Recommendations for using availability zones and regions.

Consider the growth rate of your data. For capacity planning, plan for data growth,
data retention, and archiving to ensure your reliability requirements are met as the
amount of data in your solution increases.

Distribute data geographically, as supported by your service, to minimize the effect
of geographically localized failures.

Replicate data across geographical regions to provide resilience to regional
outages and catastrophic failures.

Automate failover after a database instance failure. You can configure automated
failover in multiple Azure PaaS data services. Automated failover isn't required for
data stores that support multi-region writes, like Azure Cosmos DB. For more
information, see Recommendations for designing a disaster recovery strategy.

Use the best data store for your data. Embrace polyglot persistence or solutions
that use a mix of data store technologies. Data includes more than just persisted
application data. It also includes application logs, events, messages, and caches.

Consider data consistency requirements and use eventual consistency when
requirements allow it. When data is distributed, use appropriate coordination to
enforce strong consistency guarantees. Coordination can reduce your throughput
and make your systems tightly coupled, which can make them more brittle. For

Data resources

https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/use-best-data-store
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/minimize-coordination#recommendations

example, if an operation updates two databases, instead of putting it into a single
transaction scope, it's better if the system can accommodate eventual consistency.

Partition data for availability. Database partitioning improves scalability and it can
also improve availability. If one shard goes down, the other shards are still
reachable. A failure in one shard only disrupts a subset of the total transactions.

If sharding isn't an option, you can use the Command and Query Responsibility
Segregation (CQRS) pattern to separate your read-write and read-only data
models. Add more redundant read-only database instances to provide more
resilience.

Understand the built-in replication and redundancy capabilities of the stateful
platform services that you use. For specific redundancy capabilities of stateful data
services, see Related links.

Decide on a reliable and scalable network topology. Use a hub-and-spoke model
or an Azure Virtual WAN model to help you organize your cloud infrastructure in
logical patterns that make your redundancy design easier to build and scale.

Select the appropriate network service to balance and redirect requests within or
across regions. Use global or zone-redundant load balancing services when
possible to meet your reliability targets.

Ensure that you have allocated sufficient IP address space in your virtual networks
and subnets to account for planned usage, including scale-out requirements.

Ensure that the application can scale within the port limits of the chosen
application hosting platform. If an application initiates several outbound TCP or
UDP connections, it might exhaust all available ports and cause poor application
performance.

Choose SKUs and configure networking services that can meet your bandwidth
and availability requirements. A VPN gateway's throughput varies based on their
SKU. Support for zone redundancy is only available for some load balancer SKUs.

Ensure that your design for handling DNS is built with a focus on resilience and
supports redundant infrastructure.

Networking

Azure facilitation

https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

The Azure platform helps you optimize the resiliency of your workload and add
redundancy by:

Providing built-in redundancy with many PaaS and software as a service (SaaS)
solutions, some of which are configurable.

Allowing you to design and implement intra-region redundancy by using
availability zones and inter-region redundancy.

Offering replica-aware load balancing services like Azure Application Gateway,
Azure Front Door, and Azure Load Balancer.

Offering easily implemented geo-replication solutions like active geo replication
for Azure SQL Database. Implement global distribution and transparent replication
by using Azure Cosmos DB. Azure Cosmos DB offers two options for handling
conflicting writes. Choose the best option for your workload.

Offering point-in-time restore capabilities for many PaaS data services.

Mitigating port exhaustion via Azure NAT Gateway or Azure Firewall.

For internal name resolution scenarios, use Azure DNS private zones, which have
built-in zone redundancy and geo redundancy. For more information, see Azure
DNS private zone resiliency.

For external name resolution scenarios, use Azure DNS public zones, which have
built-in zone redundancy and geo redundancy.

The public and private Azure DNS services are global services that are resilient to
regional outages because zone data is globally available.

For hybrid name resolution scenarios between on-premises and cloud
environments, use Azure DNS Private Resolver. This service supports zone
redundancy if your workload is located in a region that supports availability zones.
A zone-wide outage requires no action during zone recovery. The service
automatically self-heals and rebalances to take advantage of the healthy zone. For
more information, see Resiliency in Azure DNS Private Resolver.

To eliminate a single point of failure and achieve a more resilient hybrid name
resolution across regions, deploy two or more Azure DNS private resolvers across
different regions. DNS failover, in a conditional forwarding scenario, is achieved by
assigning a resolver as your primary DNS server. Assign the other resolver in a

DNS-specific Azure facilitation

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview
https://learn.microsoft.com/en-us/azure/application-gateway/
https://learn.microsoft.com/en-us/azure/frontdoor/
https://learn.microsoft.com/en-us/azure/load-balancer/
https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally
https://learn.microsoft.com/en-us/azure/cosmos-db/conflict-resolution-policies
https://learn.microsoft.com/en-us/azure/nat-gateway/nat-overview
https://learn.microsoft.com/en-us/azure/firewall/overview
https://learn.microsoft.com/en-us/azure/dns/private-dns-resiliency
https://learn.microsoft.com/en-us/azure/dns/private-resolver-reliability

different region as a secondary DNS server. For more information, see Set up DNS
failover by using private resolvers.

More workload redundancy equates to more costs. Carefully consider adding
redundancy and regularly review your architecture to ensure that you're managing
costs, especially when you use overprovisioning. When you use overprovisioning
as a resiliency strategy, balance it with a well-defined scaling strategy to minimize
cost inefficiencies.

There can be performance tradeoffs when you build in a high degree of
redundancy. For example, resources that spread across availability zones or regions
can affect performance because you have to send traffic over high-latency
connections between redundant resources, like web servers or database instances.

Different flows within the same workload might have different reliability
requirements. Flow-specific redundancy designs can potentially introduce
complexity into the overall design.

For an example of a multi-region redundant deployment, see Baseline highly available
zone-redundant web application.

The following diagram shows another example:

Tradeoffs

Example

https://learn.microsoft.com/en-us/azure/dns/tutorial-dns-private-resolver-failover
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/baseline-zone-redundant

To learn more about stateful data service redundancy, see the following resources:

Azure Storage redundancy
Zone-redundant storage
Azure SQL Database active geo-replication
Configure replication between two managed instances

Refer to the complete set of recommendations.

Related links

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/replication-between-two-instances-configure-tutorial
https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/redundancy/reliable-web-app-dotnet.png#lightbox

Recommendations for using availability
zones and regions
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:05 Add redundancy at different levels, especially for critical flows. Apply redundancy
to the compute, data, network, and other infrastructure tiers in accordance with the
identified reliability targets.

Related guides: Highly available multiregional design | Redundancy

This guide describes the recommendations for determining when to deploy workloads
across availability zones or regions.

When you design a solution for Azure, you need to decide whether you'll deploy across
multiple availability zones in a region or deploy into multiple regions. This decision
affects your solution's reliability, cost, and performance, and your team's ability to
operate the solution. This guide provides information about the key business
requirements that influence your decision, the approaches you can consider, the
tradeoffs involved in each approach, and the effect of each approach on the core pillars
of the Azure Well-Architected Framework.

Your choice of how you use regions and availability zones affects several of the pillars of
the Well-Architected Framework:

Reliability: Your choice of deployment approach can help you to mitigate various
types of risks. In general, by spreading your workload across a more geographically
distributed area, you can achieve higher resiliency.
Cost Optimization: Some architectural approaches require deploying more
resources than others, which can increase your resource costs. Other approaches
involve sending data across geographically separated availability zones or regions,
which might incur network traffic charges. It's also important to consider the
ongoing cost of managing your resources, which is usually higher when you have a
more complex architecture.
Performance Efficiency: Most workloads aren't highly sensitive to network latency,
but occasionally they can be. If latency is an issue, you need to physically locate the
components close together to minimize latency when they communicate, which
typically means deploying them into a single availability zone.

Operational Excellence: A complex architecture takes more effort to deploy,
configure, and manage. Additionally, for a highly available solution, you might
need to plan how to fail over to a secondary set of resources. Failover, failback, and
transparently redirecting your traffic can be complex, especially when manual steps
are required.

However you design your solution, the Security pillar applies. Usually, decisions about
whether and how you use availability zones and regions doesn't change your security
posture. Azure applies the same security rigor to every region and availability zone.

Definitions

Term Definition

Active-active An architecture in which multiple instances of a solution actively process
requests at the same time.

Active-passive An architecture in which one instance of a solution is designated as the
primary and processes traffic, and one or more secondary instances are
deployed to serve traffic if the primary is unavailable.

Asynchronous
replication

A data replication approach in which data is written and committed to one
location. At a later time, the changes are replicated to another location.

Availability zone A separated group of datacenters within a region. Each availability zone is
independent of the others, with its own power, cooling, and networking
infrastructure. Many regions support availability zones.

Datacenter A facility that contains servers, networking equipment, and other hardware
to support Azure resources and workloads.

Locally redundant
deployment

A deployment model in which a resource is deployed into a single region
without reference to an availability zone. In a region that supports
availability zones, the resource might be deployed in any of the region's
availability zones.

 Tip

For many production workloads, a zone-redundant deployment provides the best
balance of tradeoffs. You can extend this approach with asynchronous data backup
to another region. If you aren't sure which approach to select, start with this type
of deployment.

Consider other workload approaches when you need the specific benefits that
those approaches provide, but be aware of the tradeoffs involved.

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support

Term Definition

Multi-region
deployment

A deployment model in which resources are deployed into multiple Azure
regions.

Paired regions A relationship between two Azure regions. Some Azure regions are
connected to another defined region to enable specific types of multi-region
solutions. Newer Azure regions aren't paired.

Region A geographic perimeter that contains a set of datacenters.

Region
architecture

The specific configuration of the Azure region, including the number of
availability zones and whether the region is paired with another region.

Synchronous
replication

A data replication approach in which data is written and committed to
multiple locations. Each location must acknowledge completion of the write
operation before the overall write operation is considered complete.

Zonal (pinned)
deployment

A deployment model in which a resource is deployed into a specific
availability zone.

Zone-redundant
deployment

A deployment model in which a resource is deployed across multiple
availability zones. Microsoft manages data synchronization, traffic
distribution, and failover if a zone experiences an outage.

Azure has a large global footprint. An Azure region is a geographic perimeter that
contains a set of datacenters. You need to have a complete understanding of Azure
regions and availability zones.

Azure regions have a variety of configurations, which are also called region architectures.

Many Azure regions provide availability zones, which are separated groups of
datacenters. Within a region, availability zones are close enough to have low-latency
connections to other availability zones, but they're far enough apart to reduce the
likelihood that more than one will be affected by local outages or weather. Availability
zones have independent power, cooling, and networking infrastructure. They're
designed so that if one zone experiences an outage, then regional services, capacity,
and high availability are supported by the remaining zones.

The following diagram shows several example Azure regions. Regions 1 and 2 support
availability zones.

Key design strategies

https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair

If you deploy into an Azure region that contains availability zones, you can use multiple
availability zones together. By using multiple availability zones, you can keep separate
copies of your application and data within separate physical datacenters in a large
metropolitan area.

There are two ways to use availability zones in a solution:

Zonal resources are pinned to a specific availability zone. You can combine
multiple zonal deployments across different zones to meet high reliability
requirements. You're responsible for managing data replication and distributing
requests across zones. If an outage occurs in a single availability zone, you're
responsible for failover to another availability zone.
Zone-redundant resources are spread across multiple availability zones. Microsoft
manages spreading requests across zones and the replication of data across zones.
If an outage occurs in a single availability zone, Microsoft manages failover
automatically.

Azure services support one or both of these approaches. Platform as a service (PaaS)
services typically support zone-redundant deployments. Infrastructure as a service (IaaS)
services typically support zonal deployments. For more information about how Azure
services work with availability zones, see Azure services with availability zone support.

Microsoft aims to deploy updates to Azure services to a single availability zone at a
time. This approach reduces the impact that updates might have on an active workload,
because the workload can continue to run in other zones while the update is in process.
For more information about how Azure deploys updates, see Advancing safe
deployment practices .

Many regions also have a paired region. Paired regions support certain types of multi-
region deployment approaches. Some newer regions have multiple availability zones
and don't have a paired region. You can still deploy multi-region solutions into these
regions, but the approaches you use might be different.

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-services-with-availability-zone-support
https://azure.microsoft.com/blog/advancing-safe-deployment-practices/
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair

For more information about how Azure uses regions and availability zones, see What are
Azure regions and availability zones?

The shared responsibility principle describes how responsibilities are divided between
the cloud provider (Microsoft) and you. Depending on the type of services you use, you
might take on more or less responsibility for operating the service.

Microsoft provides availability zones and regions to give you flexibility in how you
design your solution to meet your requirements. When you use managed services,
Microsoft takes on more of the management responsibilities for your resources, which
might even include data replication, failover, failback, and other tasks related to
operating a distributed system.

Regardless of the approach you use, your own code needs to follow recommended
practices for handling transient failures. These practices are even more important in a
multi-zone or multi-region solution, because failover between zones or regions usually
requires that your application retry connections to services.

To make an informed decision about how to use availability zones and regions in your
solution, you need to understand your requirements. These requirements should be
driven by discussions between solution designers and business stakeholders.

Different organizations have different degrees of risk tolerance. Even within an
organization, risk tolerance is often different for each workload. Most workloads don't
need extremely high availability. However, some workloads are so important that it's
even worth mitigating risks that are unlikely to occur, like major natural disasters that
affect a wide geographic area.

This table lists a few of the common risks that you should consider in a cloud
environment:

Risk Examples Likelihood

Hardware
outage

Problem with hard disk or networking
equipment.

High. Any resiliency strategy
should account for these risks.

Understand shared responsibilities

Identify key business and workload requirements

Risk tolerance

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility

Risk Examples Likelihood

Host reboots.

Datacenter
outage

Power, cooling, or network failure across an
entire datacenter.

Natural disaster in one part of a metropolitan
area.

Medium

Region
outage

Major natural disaster that affects a wide
geographical area.

Network or service problem that makes one or
more Azure services unavailable in an entire
region.

Low

It would be ideal to mitigate every possible risk for every workload, but it's not practical
or cost effective to do so. It's important to have an open discussion with business
stakeholders so you can make informed decisions about the risks that you should
mitigate.

It's important to understand the resiliency requirements for your workload, including the
recovery time objective (RTO) and recovery point objective (RPO). These objectives help
you decide which approaches to rule out. If you don't have clear requirements, you can't
make an informed decision about which approach to follow. For more information, see
Target functional and nonfunctional requirements.

You should understand your solution's expected uptime service-level agreement (SLA).
For example, you might have a business requirement that your solution needs to meet
99.9% uptime.

 Tip

Generally, it's only worth mitigating the low-likelihood risks for mission-critical
workloads. For example, banks, governments, and healthcare workloads often need
to remain operational in all situations. For other workloads, the organization's risk
tolerance is usually higher.

Resiliency requirements

Service-level agreements

Azure provides SLAs for each service. An SLA indicates the level of uptime you should
expect from the service and the conditions you need to meet to achieve that expected
SLA.

Your architectural decisions affect your solution's composite SLA. In general, the more
redundancy you build into your solution, the higher your SLA is likely to be. Many Azure
services provide higher SLAs when you deploy services in a zone-redundant or multi-
region configuration. Review the SLAs for each of the Azure services you use to ensure
that you understand how to maximize the resiliency and SLA of the service.

Some organizations place restrictions on the physical locations into which their data can
be stored and processed. Sometimes these requirements are based on legal or
regulatory standards. In other situations, an organization might decide to adopt a data
residency policy to avoid customer concerns. If you have strict data residency
requirements, you might need to use a single-region deployment or use a subset of
Azure regions and services.

If your users are geographically dispersed, it might make sense to deploy your workload
across multiple regions. If your users are in one area, a single-region deployment can
simplify your operational requirements and reduce your costs.

Even if your users are in different geographical areas, you might not need a multi-region
deployment. Consider whether you can achieve your requirements within a single region
by using global traffic acceleration, like the acceleration provided by Azure Front Door.

If you operate under a constrained budget, it's important to consider the costs involved
in deploying redundant workload components. These costs can include additional
resource charges, networking costs, and the operational costs of managing more
resources and a more complex environment.

Data residency

７ Note

Avoid making unfounded assumptions about your data residency requirements. If
you need to comply with specific regulatory standards, verify what those standards
actually specify.

User location

Budget

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview

It's a good practice to avoid unnecessary complexity in your solution architecture. The
more complexity you introduce, the harder it becomes to make decisions about your
architecture. Complex architectures are harder to operate, harder to secure, and often
less performant.

By providing regions and availability zones, Azure enables you to select a deployment
approach that fits your needs. There are many approaches that you can choose from,
each of which provides benefits and incurs costs.

To illustrate the deployment approaches that you can use, consider an example scenario.
Suppose you're thinking about deploying a new solution that includes an application
that writes data to some sort of storage:

This example isn't specific to any particular Azure services. It's intended to provide a
simple example for illustrating fundamental concepts.

There are multiple ways to deploy this solution. Each approach provides a different set
of benefits and incurs different costs. At a high level, you can consider a locally
redundant, zonal (pinned), zone-redundant, or multi-region deployment. This table
summarizes some of the pillar concerns:

Pillar Locally redundant Zonal (pinned) Zone-redundant Multi-region

Reliability Low reliability Depends on
approach

High or very high
reliability

High or very
high reliability

Cost
Optimization

Low cost Depends on
approach

Moderate cost High cost

Performance
Efficiency

Acceptable
performance (for
most workloads)

High
performance

Acceptable
performance (for
most workloads)

Depends on
approach

Operational
Excellence

Low operational
requirements

High
operational
requirements

Low operational
requirements

High
operational
requirements

Complexity

Azure facilitation

This table summarizes some of the approaches you can use and how they affect your
architecture:

Architectural
concern

Locally
redundant

Zonal (pinned) Zone-redundant Multi-
region

Compliance with
data residency

High High High Depends on
region

Regional availability All regions Regions with
availability zones

Regions with
availability zones

Depends on
region

The rest of this article describes each of the approaches listed in the preceding table.
The list of approaches isn't exhaustive. You might decide to combine multiple
approaches or use different approaches in different parts of your solution.

If you don't specify multiple availability zones or regions when you deploy your
resources, Azure doesn't make any guarantees about whether the resources are
deployed into a single datacenter or split across multiple datacenters in the region. In
some situations, Azure might also move your resource between availability zones.

Most Azure resources are highly available by default, with high SLAs and built-in
redundancy within a datacenter that's managed by the platform. However, from a
reliability perspective, if any part of the region experiences an outage, there's a chance
that your workload might be affected. If it is, your solution might be unavailable, or your
data could be lost.

For highly latency-sensitive workloads, this approach might also result in lower
performance. Your workload components might not be colocated in the same
datacenter, so you might observe some latency for intra-region traffic. Azure might also
transparently move your service instances between availability zones, which might
slightly affect performance. However, this isn't a concern for most workloads.

This table summarizes some of the pillar concerns:

Deployment approach 1: Locally redundant deployments

https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair

Pillar Impact

Reliability Low reliability. Services are subject to outages if a datacenter fails. You can,
however, build an application to be resilient to other types of failures.

Cost
Optimization

Lowest cost. You only need to have a single instance of each resource, and you
don't incur any inter-zone or inter-region bandwidth costs.

Performance
Efficiency

For most workloads: Acceptable performance. This approach is likely to
provide satisfactory performance.

For highly latency-sensitive workloads: Low performance. Components aren't
guaranteed to be located in the same availability zone, so you might see lower
performance for highly latency-sensitive components.

Operational
Excellence

High operational efficiency. You only need to deploy and manage a single
instance of each resource.

This table summarizes some of the concerns from an architectural perspective:

Architectural concern Impact

Compliance with data
residency

High. When you deploy a solution that uses this approach, data is
stored in the Azure region that you select.

Regional availability High. This approach can be used in any Azure region.

You can extend a locally redundant deployment by performing regular backups of your
infrastructure and data to a secondary region. This approach adds an extra layer of
protection to mitigate against an outage in your primary region. Here's what it looks
like:

When you implement this approach, you need to carefully consider your RTO and RPO:

Recovery time: If a regional outage occurs, you might need to rebuild your
solution in another Azure region, which affects your recovery time. Consider
building your solution by using an infrastructure-as-code (IaC) approach so that

Locally redundant deployments with backup across regions

you can quickly redeploy into another region if a major disaster occurs. Ensure that
your deployment tools and processes are just as resilient as your applications so
that you can use them to redeploy your solution even if there's an outage. Plan for
and rehearse the steps that are required to restore your solution back to a working
state.
Recovery point: Your backup frequency determines the amount of data loss that
you might experience (your recovery point). You can typically control the frequency
of backups so that you can meet your RPO.

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability Moderate reliability. Services are subject to outages if a datacenter fails. Data is
backed up asynchronously to a geographically separated region, which reduces
the effect of a full region outage by minimizing data loss. In a full region outage,
you can manually restore operations into another region. However, recovery
processes can be complex, and it can take time to manually restore into the
other region.

Cost
Optimization

Low cost. Typically, adding a backup to another region costs only slightly more
than deploying a locally redundant resource.

Performance
Efficiency

For most workloads: Acceptable performance. This approach is likely to provide
satisfactory performance.

For highly latency-sensitive workloads: Low performance. Components aren't
guaranteed to be located in the same availability zone, so you might see lower
performance for highly latency-sensitive components.

Operational
Excellence

During any outage within a region: Low operational efficiency. Failover is your
responsibility and might require manual operations and redeployments.

This table summarizes some of the concerns from an architectural perspective:

Architectural
concern

Impact

Compliance with
data residency

Depends on region selection. Data is primarily stored in the Azure region
that you specify. However, you need to select another region to store your
backups, so it's important that you select a region that's compatible with
your data residency requirements.

Regional
availability

High. You can use this approach in any Azure region.

Deployment approach 2: Zonal (pinned) deployments

In a zonal deployment, you specify that your resources should be deployed to a specific
availability zone. This approach is sometimes called a zone-pinned deployment.

A zonal approach reduces the latency between your components. However, by itself, it
doesn't increase the resiliency of your solution. To increase your resiliency, you need to
deploy multiple instances of your components into multiple availability zones and
decide how to route traffic between each instance. This example shows an active-passive
traffic routing approach:

In the previous example, a load balancer is deployed across multiple availability zones.
It's important to consider how you route traffic between instances in different
availability zones, because a zone outage might also affect the networking resources
deployed into that zone. You might also consider using a global load balancer, like
Azure Front Door or Azure Traffic Manager, which isn't deployed into a region at all.

When you use a zonal deployment model, you take on many responsibilities:

You need to deploy resources to each availability zone, and configure and manage
those resources individually.
You need to decide how and when to replicate data between the availability zones,
and then configure and manage the replication.
You're responsible for distributing the requests to the correct resources, by using,
for example, a load balancer. You need to ensure that the load balancer meets your
resiliency requirements. You also need to decide whether to use an active-passive
or an active-active request distribution model.

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview

If an availability zone experiences an outage, you need to handle the failover to
send traffic to resources in another availability zone.

An active-passive deployment across multiple availability zones is sometimes called in-
region DR or Metro DR.

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability When deployed in a single availability zone: Low reliability. A zonal deployment
doesn't provide any resiliency to an outage in a datacenter or availability zone.
You must deploy redundant resources across multiple availability zones to
achieve high resiliency.

When deployed in multiple availability zones: High reliability. Services can be
made resilient to a datacenter or availability zone outage.

Cost
Optimization

When deployed in a single availability zone: Low cost. A single-zone
deployment requires only a single instance of each resource.

When deployed in multiple availability zones: High cost. You deploy multiple
instances of the resources, each of which are billed separately. You also need to
pay for inter-zone traffic for data replication.

Performance
Efficiency

High performance. Latency can be very low when the components that serve a
request are located in the same availability zone.

Operational
Excellence

Low operational efficiency. You need to configure and manage multiple
instances of your service. You need to replicate data between availability zones.
During an availability zone outage, failover is your responsibility.

This table summarizes some of the concerns from an architectural perspective:

Architectural concern Impact

Compliance with data
residency

High. When you deploy a solution that uses this approach, data is
stored in the Azure region that you select.

Regional availability Regions with availability zones. This approach is available in any
region that supports availability zones.

This approach is typically used for workloads that are based on virtual machines. For a
complete list of services that support zonal deployments, see Availability zone service
and regional support.

When you plan a zonal deployment, verify that the Azure services you use are supported
in the availability zones you plan to use. For example, to list which virtual machine SKUs

https://learn.microsoft.com/en-us/azure/site-recovery/azure-to-azure-how-to-enable-zone-to-zone-disaster-recovery
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-services-with-availability-zone-support

are available in each availability zone, see Check VM SKU availability.

When you use this approach, your application tier is spread across multiple availability
zones. When requests arrive, a load balancer that's built into the service (which itself
spans availability zones) disperses the requests across the instances in each availability
zone. If an availability zone experiences an outage, the load balancer directs traffic to
instances in the healthy availability zones.

Your storage tier is also spread across multiple availability zones. Copies of your
application's data are distributed across multiple availability zones via synchronous
replication. When the application makes a change to data, the storage service writes the
change to multiple availability zones, and the transaction is considered complete only
when all of these changes are complete. This process ensures that each availability zone
always has an up-to-date copy of the data. If an availability zone experiences an outage,
another availability zone can be used to access the same data.

A zone-redundant approach increases your solution's resiliency to issues like datacenter
outages. Because data is replicated synchronously, however, your application has to wait

 Tip

When you deploy a resource into a specific availability zone, you select the zone
number. The sequence of zone numbers is different for each Azure subscription. If
you deploy resources across multiple Azure subscriptions, verify the zone numbers
that you should use in each subscription. For more information, see What are
Azure regions and availability zones?.

Deployment approach 3: Zone-redundant deployments

https://learn.microsoft.com/en-us/azure/virtual-machines/linux/create-cli-availability-zone#check-vm-sku-availability
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview

for the data to be written across multiple separate locations that might be in different
parts of a metropolitan area. For most applications, the latency involved in inter-zone
communication is negligible. However, for some highly latency-sensitive workloads,
synchronous replication across availability zones might affect the application's
performance.

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability High reliability. Services are resilient to an outage of a datacenter or availability
zone. Data is synchronously replicated across availability zones and with no
delay.

Cost
Optimization

Moderate cost. Depending on the services you use, you might incur some
costs for higher service tiers to enable zone redundancy, or some inter-zone
networking costs.

Performance
Efficiency

For most workloads: Acceptable performance. This approach is likely to provide
satisfactory performance.

For highly latency-sensitive workloads: Low performance. Some components
might be sensitive to latency due to inter-zone traffic or data replication time.

Operational
Excellence

High operational efficiency. You typically need to manage only a single logical
instance of each resource. For most services, during an availability zone outage,
failover is the responsibility of Microsoft and happens automatically.

This table summarizes some of the concerns from an architectural perspective:

Architectural concern Impact

Compliance with data
residency

High. When you deploy a solution that uses this approach, data is
stored in the Azure region that you select.

Regional availability Regions with availability zones. This approach is available in any
region that supports availability zones.

This approach is possible with many Azure services, including Azure Virtual Machine
Scale Sets, Azure App Service, Azure Functions, Azure Kubernetes Service, Azure Storage,
Azure SQL, Azure Service Bus, and many others. For a complete list of services that
support zone redundancy, see Availability zone service and regional support.

Zone-redundant deployments with backup across regions

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-services-with-availability-zone-support

You can extend a zone-redundant deployment by performing regular backups of your
infrastructure and data to a secondary region. This approach gives you the benefits of a
zone-redundant approach and adds a layer of protection to mitigate the extremely
unlikely event of a full region outage.

When you implement this approach, you need to carefully consider your RTO and RPO:

Recovery time: If a regional outage does occur, you might need to rebuild your
solution in another Azure region, which affects your recovery time. Consider
building your solution by using an IaC approach so that you can quickly redeploy
into another region during a major disaster. Ensure that your deployment tools
and processes are just as resilient as your applications so that you can use them to
redeploy your solution even if an outage occurs. Plan for and rehearse the steps
required to restore your solution back to a working state.

Recovery point: Your backup frequency determines the amount of data loss that
you might experience (your recovery point). You can typically control the frequency
of backups to meet your RPO.

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability Very high reliability. Services are resilient to an outage of a datacenter or
availability zone. For most services, data is replicated across zones automatically
and with no delay. Data is backed up asynchronously to a geographically

 Tip

This approach often provides a good balance for all architectural concerns. If you
aren't sure which approach to use, start with this type of deployment.

Pillar Impact

separated region. This backup reduces the effect of a full region outage by
minimizing data loss. After a full region outage, you can manually restore
operations into another region. However, recovery processes can be complex,
and it can take time to manually restore into the other region.

Cost
Optimization

Moderate cost. Typically, adding a backup to another region costs only slightly
more than implementing zone redundancy.

Performance
Efficiency

For most workloads: Acceptable performance. This approach is likely to provide
satisfactory performance.

For highly latency-sensitive workloads: Low performance. Some components
might be sensitive to latency due to inter-zone traffic or data replication time.

Operational
Excellence

During an availability zone outage: High operational efficiency. Failover is the
responsibility of Microsoft and happens automatically.

During a regional outage: Low operational efficiency. Failover is your
responsibility and might require manual operations and redeployments.

This table summarizes some of the concerns from an architectural perspective:

Architectural
concern

Impact

Compliance with
data residency

Depends on region selection. Data is stored primarily in the Azure region
that you specify, but you need to select another region to store your
backups. Select a region that's compatible with your data residency
requirements.

Regional
availability

Regions with availability zones. This approach is available in any region that
supports availability zones.

You can use multiple Azure regions together to distribute your solution across a wide
geographical area. You can use this multi-region approach to improve your solution's
reliability or to support geographically distributed users. If data residency is an
important concern for your solution, carefully consider which regions you use to ensure
that your data is stored only in locations that meet your requirements.

Multi-region architectures are complex, and there are many ways to design a multi-
region solution. For some workloads, it makes sense to have multiple regions actively

Deployment approach 4: Multi-region deployments

Active and passive regions

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support

processing requests simultaneously (active-active deployments). For other workloads,
it's better to designate one primary region and use one or more secondary regions for
failover (active-passive deployments). This section focuses on the second scenario, in
which one region is active and another is passive. For information about active-active
multi-region solutions, see Deployment Stamps pattern and Geode pattern.

Communicating across regions is much slower than communicating within a region. In
general, a larger geographic distance between two regions incurs more network latency.
See Azure network round-trip latency statistics for the expected network latency when
you connect between two regions.

Cross-region network latency can significantly affect your solution design because you
need to carefully consider how the extra latency affects data replication and other
transactions. For many solutions, a cross-region architecture requires asynchronous
replication to minimize the effect of cross-region traffic on performance.

When you implement asynchronous replication across regions, your application doesn't
wait for all regions to acknowledge a change. After the change is committed in the
primary region, the transaction is considered complete. The change is replicated to the
secondary regions at a later time. This approach ensures that inter-region connection
latency doesn't directly affect application performance. However, because of the delay in
replication, a region-wide outage might result in some data loss. This data loss can
occur because a region might experience an outage after a write is completed in the
primary region but before the change could be replicated to another region.

Data replication

Asynchronous data replication

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/architecture/patterns/geodes
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability High reliability. The solution is resilient to an outage of a datacenter, an
availability zone, or an entire region. Data is replicated but might not be
synchronous, so some data loss is possible in a failover scenario.

Cost
Optimization

High cost. You need to deploy separate resources in each region, and each
resource incurs deployment and maintainenance costs. Data replication across
regions might also incur significant costs.

Performance
Efficiency

High performance. Application requests don't require cross-region traffic, so
traffic is typically low latency.

Operational
Excellence

Low operational efficiency. You need to deploy and manage resources across
multiple regions. You're also responsible for failover between regions during a
regional outage.

This table summarizes some of the concerns from an architectural perspective:

Architectural
concern

Impact

Compliance with
data residency

Depends on region selection. This approach requires you to select multiple
regions for your workload to run in. Choose regions that are compatible
with your data residency requirements.

Regional
availability

Many Azure regions are paired. Some Azure services use paired regions to
replicate data automatically. If you run your workload in a region that
doesn't have a pair, you might need to use a different approach to replicate
your data.

If you implement a synchronous multi-region solution, your application needs to wait
for write operations to complete in each Azure region before the transaction is
considered complete. The latency incurred by waiting for write operations depends on
the distance between the regions. For many workloads, inter-region latency can make
synchronous replication too slow to be useful.

Synchronous data replication

https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair

This table summarizes some of the pillar concerns:

Pillar Impact

Reliability Very high reliability. The solution is resilient to an outage of a datacenter, an
availability zone, or an entire region. Data is always in sync across regions, so,
even if a complete region loss occurs, your data is available and complete in
another region.

Cost
Optimization

High cost. You need to deploy separate resources in each region, and each
resource incurs deployment and maintainenance costs. Data replication across
regions might also incur significant costs.

Performance
Efficiency

Low performance. Application requests require cross-region traffic. Depending
on the distance between the regions, synchronous replication might add
significant latency to requests.

Operational
Excellence

Low operational efficiency. You need to deploy and manage resources across
multiple regions. You're also responsible for failover between regions during a
regional outage.

This table summarizes some of the concerns from an architectural perspective:

Architectural
concern

Impact

Compliance with
data residency

Depends on region selection. This approach requires you to select multiple
regions for your workload to run in. Select regions that are compatible with
your data residency requirements.

Regional
availability

Many Azure regions are paired. Some Azure services use paired regions to
replicate data automatically. If you run your workload in a region that

https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure
https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair

Architectural
concern

Impact

doesn't have a pair, you might need to use a different approach to replicate
your data.

When you design a multi-region solution, consider whether the Azure regions you plan
to use are paired.

You can create a multi-region solution even when the regions aren't paired. However,
the approaches that you use to implement a multi-region architecture might be
different. For example, in Azure Storage, you can use geo-redundant storage (GRS) with
paired regions. If GRS isn't available, consider using features like Azure Storage object
replication, or design your application to write to multiple regions.

You can also combine multi-zone and multi-region approaches. For example, you might
deploy zone-redundant components into each region and also configure replication
between the regions. Configuring this type of approach can be complicated, and this
approach can be expensive, but for some solutions it provides a very high degree of
reliability.

It's important to understand the specific details of the Azure services that you use. For
example, some Azure services require that you configure their availability zone
configuration when you first deploy the resource, while others support changing the
deployment approach later. Similarly, some service features might not be available with
every deployment approach.

Region architectures

Combine multi-zone and multi-region approaches

） Important

Mission-critical workloads should use both multiple availability zones and multiple
regions. For more information about the considerations that you should give when
designing mission-critical workloads, see Mission-critical workload
documentation.

How Azure services support deployment approaches

https://learn.microsoft.com/en-us/azure/reliability/cross-region-replication-azure#regions-with-availability-zones-and-no-region-pair
https://learn.microsoft.com/en-us/azure/storage/blobs/object-replication-overview

To learn more about the specific deployment options and approaches to consider for
each Azure service, visit the Reliability hub.

This section describes some common use cases and the key requirements that you
typically need to consider for each workload. For each workload, a suggested
deployment approach is provided, based on the requirements and approaches
described in this article.

Contoso, Ltd., is a large manufacturing company. The company is implementing a line-
of-business application to manage some components of its financial processes.

Business requirements: The information that the system manages is difficult to replace,
so data needs to be persisted reliably. The architects say that the system needs to incur
as little downtime and as little data loss as possible. Contoso's employees use the
system throughout the workday, so high performance is important to avoid keeping
team members waiting. Cost is also a concern, because the finance team has to pay for
the solution.

Suggested approach: Zone-redundant deployment or zone-redundant deployment with
backup across regions.

Fourth Coffee is a small business. The company is developing a new internal application
that employees can use to submit timesheets.

Business requirements: For this workload, cost efficiency is a primary concern. Fourth
Coffee evaluated the business impact of downtime and decided that the application
doesn't need to prioritize resiliency or performance. The company accepts the risk that
an outage in an Azure availability zone or region might make the application
temporarily unavailable.

Suggested approach: Locally redundant deployment.

Examples

Line-of-business application for an enterprise

Internal application

Legacy application migration

https://learn.microsoft.com/en-us/azure/reliability/reliability-guidance-overview

Fabrikam, Inc., is migrating a legacy application from an on-premises datacenter to
Azure. The implementation will use an IaaS approach that's based on virtual machines.
The application wasn't designed for a cloud environment, and communication between
the application tier and the database is very chatty.

Business requirements: Performance is a priority for this application. Resiliency is also
important, and the application must continue to work even if an Azure datacenter
experiences an outage.

Suggested approach: Zonal (pinned) deployment, with passive deployments across
multiple availability zones (in-region DR).

Lamna Healthcare Company is implementing a new electronic health record system on
Azure.

Business requirements: Because of the nature of the data that this solution stores, data
residency is critically important. Lamna operates under a strict regulatory framework
that mandates that data must remain in a specific location.

Suggested approach: Lamna might consider a zone-redundant deployment or a zone-
redundant deployment with backup across regions. The company could also consider a
multi-region deployment if there are multiple regions that fit Lamna's data residency
requirements.

Woodgrove Bank runs its core banking operations from a large solution that's deployed
to Azure.

Business requirements: This is a mission-critical system. Any outages can cause major
financial impact for customers. As a result, Woodgrove Bank has very low risk tolerance.
The system needs the highest level of reliability possible, and the architecture needs to
mitigate the risk of any failures that can be mitigated.

Suggested approach: Multi-region deployment. The architecture must use regions that
fit the company's data residency requirements.

Healthcare application

Banking system

Software as a service (SaaS)

https://learn.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/

Proseware, Inc., builds software that's used by companies across the world. The
company's user base is widely distributed geographically.

Business requirements: Proseware needs to enable each of its customers to choose a
deployment region that's close to the customer. Enabling this choice is important for
latency and for the customers' data residency requirements.

Suggested approach: Multi-region deployment. Alternatively, Proseware could consider
using a single-region deployment with a global traffic acceleration solution, like Azure
Front Door.

Following are some reference architectures and example scenarios for multi-zone and
multi-region solutions:

Baseline highly available zone-redundant web application
Highly available multi-region web application
Multi-region N-tier application
Multi-tier web application built for HA/DR

Many Azure services provide guidance about how to use multiple availability zones,
including the following examples:

Azure Site Recovery: Enable Azure VM disaster recovery between availability zones
Azure NetApp Files: Understand cross-zone replication of Azure NetApp Files
Azure Storage redundancy

Refer to the complete set of recommendations.

Related links

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/baseline-zone-redundant
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/multi-region
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/multi-region-sql-server
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/infrastructure/multi-tier-app-disaster-recovery
https://learn.microsoft.com/en-us/azure/site-recovery/azure-to-azure-how-to-enable-zone-to-zone-disaster-recovery
https://learn.microsoft.com/en-us/azure/azure-netapp-files/cross-zone-replication-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy

Recommendations for data partitioning
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:06 Implement a timely and reliable scaling strategy at the application, data, and
infrastructure levels.

Related guide: Scaling

This guide describes the recommendations for designing a data partitioning strategy for
the database and data storage technology that you deploy. This strategy helps you
improve the reliability of your data estate.

In many large-scale solutions, partitions are used to divide data so that it can be
managed and accessed separately. Partitioning data improves scalability, reduces
contention, and optimizes performance. Implement data partitioning to divide data by
usage pattern. For example, you can archive older data in inexpensive data storage.
Choose your partitioning strategy carefully to maximize the benefits and minimize
adverse effects.

Improve scalability. When you scale up a single database system, the database
eventually reaches a physical hardware limit. If you divide data across multiple
partitions, with each partition hosted on a separate server, you can scale out the
system almost indefinitely.

Improve performance. In each partition, data access operations are performed
over a smaller volume of data compared to data that isn't partitioned. Partition
data to make your system more efficient. Operations that affect more than one
partition can run in parallel.

Key design strategies

７ Note

In this article, the term partitioning means the process of physically dividing data
into separate data stores. It differs from SQL Server table partitioning.

Why partition data?

Improve security. In some cases, you can separate sensitive and nonsensitive data
into different partitions, and apply different security controls to the sensitive data.

Provide operational flexibility. You can partition data to fine-tune operations,
maximize administrative efficiency, and minimize cost. For example, you can define
strategies for management, monitoring, backup and restore, and other
administrative tasks based on the importance of the data in each partition.

Match the data store to the pattern of use. You can deploy each partition on a
different type of data store based on the cost and the built-in features that the
data store offers. For example, you can store large binary data in blob storage, and
store structured data in a document database. For more information, see
Understand data store models.

Improve availability. To avoid a single point of failure, you can separate data
across multiple servers. If one instance fails, only the data in that partition is
unavailable. Operations continue in other partitions. This consideration is less
relevant for managed platform as a service (PaaS) data stores because they have
built-in redundancy.

There are three typical strategies for partitioning data:

Horizontal partitioning (often called sharding). In this strategy, each partition is a
separate data store, but all partitions have the same schema. Each partition is
known as a shard and holds a subset of the data, such as a set of customer orders.

Vertical partitioning. In this strategy, each partition holds a subset of the fields for
items in the data store. The fields are divided according to their pattern of use. For
example, frequently accessed fields might be placed in one vertical partition and
less frequently accessed fields in another.

Functional partitioning. In this strategy, data is aggregated according to how each
bounded context in the system uses the data. For example, an e-commerce system
might store invoice data in one partition and product inventory data in another.

Consider combining these strategies when you design a partitioning scheme. For
example, you might divide data into shards and then use vertical partitioning to further
subdivide the data in each shard.

Design partitions

Horizontal partitioning (sharding)

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview

The following image shows an example of horizontal partitioning, or sharding. This
example divides product inventory data into shards that are based on the product key.
Each shard holds the data for a contiguous range of shard keys (A-G and H-Z),
organized alphabetically. When you perform sharding, it spreads the load over more
computers, which reduces contention and improves performance.

The most important factor is the sharding key that you choose. It can be difficult to
change the key after the system is in operation. The key must ensure that data is
partitioned to spread the workload as evenly as possible across the shards.

The shards don't have to be the same size. It's more important to balance the number of
requests. Some shards might be large, but each item in the shard has a low number of
access operations. Other shards might be smaller, but each item in the shard is accessed
more frequently. It's also important to ensure that a single shard doesn't exceed the
scale limits, in terms of capacity and processing resources, of the data store.

Avoid creating hot partitions that can affect performance and availability. For example, if
you use the first letter of a customer's name, it can create an unbalanced distribution
because some letters are more common than others. Instead, use a customer identifier
hash to distribute data evenly across partitions.

Choose a sharding key that minimizes the future need to split large shards, combine
small shards into larger partitions, or change the schema. These operations are time-
consuming and might require you to take one or more shards offline.

If shards are replicated, you can keep some of the replicas online while others are split,
merged, or reconfigured. However, the system might limit the operations that can be
performed during the reconfiguration. For example, the data in the replicas might be
marked as read-only to prevent data inconsistences.

For more information, see Sharding pattern.

https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/partition-data-key.png#lightbox

The most common use for vertical partitioning is to reduce the I/O and performance
costs that are associated with fetching frequently accessed items. The following image
shows an example of vertical partitioning. In this example, different properties of an
item are stored in different partitions. One partition holds data that's accessed more
frequently, including product name, description, and price. Another partition holds
inventory data, including the stock count and the last ordered date.

In this example, the application regularly queries the product name, description, and
price when it displays the product details to customers. The stock count and last
ordered date are in a separate partition because these two items are commonly used
together.

See the following advantages of vertical partitioning:

You can separate relatively slow-moving data (product name, description, and
price) from more dynamic data (stock level and last ordered date). Slow-moving
data is a good candidate for an application to cache in memory.

You can store sensitive data in a separate partition with added security controls.

Vertical partitioning can reduce the amount of concurrent access that's needed.

Vertical partitioning operates at the entity level within a data store, partially normalizing
an entity to break it down from a wide item to a set of narrow items. It's ideally suited
for column-oriented data stores, such as HBase and Cassandra. If the data in a collection
of columns is unlikely to change, consider using column stores in SQL Server.

Vertical partitioning

Functional partitioning

https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/partition-by-pattern.png#lightbox

When a bounded context can be identified for each distinct business area in an
application, functional partitioning can improve isolation and data access performance.
Another common use for functional partitioning is to separate read-write data from
read-only data. The following image shows an overview of functional partitioning that
has inventory data separated from customer data.

This partitioning strategy can help reduce data access contention across different parts
of a system.

It's vital to consider the size and workload for each partition. Balance them so that data
is distributed to achieve maximum scalability. However, you must also partition the data
so that it doesn't exceed the scaling limits of a single partition store.

Follow these steps when you design partitions for scalability:

1. Analyze the application to understand the data access patterns, such as the size of
the result set that each query returns, frequency of access, inherent latency, and
server-side compute processing requirements. In many cases, a few major entities
demand most of the processing resources.

2. Use this analysis to determine the current and future scalability targets, such as the
data size and workload. Then distribute the data across the partitions to meet the

Design partitions for scalability

https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/partition-context-or-subdomain.png#lightbox

scalability target. For horizontal partitioning, choose the right shard key to ensure
even distribution. For more information, see Sharding pattern.

3. Ensure that each partition has enough resources to handle the scalability
requirements in terms of the data size and throughput. Depending on the data
store, there might be a limit for each partition on the amount of storage space,
processing power, or network bandwidth. If the requirements are likely to exceed
these limits, you might need to refine your partitioning strategy or split data out
further. You might need to combine two or more strategies.

4. Monitor the system to verify that data is distributed as expected and that the
partitions can handle the load. Actual usage doesn't always match what an analysis
predicts. You might have to rebalance the partitions or redesign some parts of the
system to yield the required balance.

Some cloud environments allocate resources based on infrastructure boundaries. Ensure
that the limits of your selected boundary provide enough room for anticipated growth
in data volume, data storage, processing power, and bandwidth.

For example, if you use Azure Table Storage, there's a limit to the volume of requests
that a single partition can handle in a particular period of time. For more information,
see Scalability and performance targets for standard storage accounts. A busy shard
might require more resources than a single partition can handle. You might need to
repartition the shard to spread the load. If the total size or throughput of these tables
exceeds the capacity of a storage account, you might need to create more storage
accounts and spread the tables across these accounts.

You can boost query performance by using small datasets and running parallel queries.
Each partition should contain a small proportion of the entire dataset. This reduction in
volume can improve the performance of queries. However, partitioning isn't an
alternative to appropriate database design and configuration. Ensure that you
implement the necessary indexes.

Follow these steps when you design partitions for query performance:

1. Examine the application requirements and performance.

Use business requirements to determine the critical queries that must always
perform quickly.

Monitor the system to identify queries that perform slowly.

Design partitions for query performance

https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://learn.microsoft.com/en-us/azure/storage/storage-scalability-targets

Determine the queries that perform most frequently. Even if a single query
has a minimal cost, cumulative resource consumption can be significant.

2. Partition the data that's causing slow performance.

Limit the size of each partition so that the query response time is within
target.

If you use horizontal partitioning, design the shard key so that the application
can easily select the appropriate partition. This specification prevents the
query from scanning every partition.

Consider the location of a partition. Try to keep data in partitions that are
geographically close to the applications and users that access it.

3. If an entity has throughput and query performance requirements, use functional
partitioning that's based on that entity. If this allocation still doesn't satisfy the
requirements, you can add horizontal partitioning. A single partitioning strategy is
usually adequate, but in some cases, it's more efficient to combine both strategies.

4. Run queries in parallel across partitions to improve performance.

Partition data to improve the availability of applications. Partitioning ensures that the
entire dataset doesn't have a single point of failure, and you can independently manage
individual subsets of the dataset.

Consider the following factors that affect availability:

Determine the criticality of the data. Identify the critical business data, such as
transactions, and the less critical operational data, such as log files.

Store critical data in highly available partitions, and create an appropriate backup
plan.

Establish separate management and monitoring procedures for different datasets.

Place data that has the same level of criticality in the same partition so that it can
be backed up at the same frequency. For example, you might need to back up
partitions that hold transaction data more often than partitions that hold logging
or trace information.

Manage individual partitions. Design partitions to support independent management
and maintenance. This practice provides several advantages, for example:

Design partitions for availability

If a partition fails, it can be recovered independently without applications that
access data in other partitions.

Partitioning data by geographic area allows scheduled maintenance tasks to occur
at off-peak hours for each location. Ensure that partitions aren't so large that they
prevent planned maintenance from finishing during this period.

Replicate critical data across partitions. This strategy improves availability and
performance but can also introduce consistency issues. It takes time to synchronize
changes with every replica. During synchronization, different partitions contain different
data values.

Partitioning adds complexity to the design and development of your system. Partition
data as a fundamental part of your system design even if the system initially only
contains a single partition. If you address partitioning as an afterthought, it's challenging
because you already have a live system to maintain. You might:

Have to modify data access logic.

Have to migrate large quantities of existing data to distribute it across partitions.

Run into challenges because users expect to continue using the system during the
migration.

In some cases, partitioning isn't important because the initial dataset is small and a
single server can easily handle it. Some workloads can go without partitions, but many
commercial systems need to expand as the number of users increase.

Some small data stores also benefit from partitioning. For example, hundreds of
concurrent clients might access a small data store. If you partition the data in this
situation, it can help to reduce contention and improve throughput.

Consider the following points when you design a data partitioning scheme:

Minimize cross-partition data access operations. Try to keep data for the most
common database operations together in a partition to minimize cross-partition data
access operations. It can be more time-consuming to query across partitions rather than
querying within a single partition. But optimizing partitions for one set of queries might
adversely affect other sets of queries. If you must query across partitions, minimize
query time by running parallel queries and aggregating the results within the
application. In some cases, you can't use this approach, for example if the result from
one query is used in the next query.

Application design considerations

Replicate static reference data. If queries use relatively static reference data, such as
postal code tables or product lists, consider replicating this data in all the partitions to
reduce separate lookup operations in different partitions. This approach can also reduce
the likelihood of the reference data becoming a hot dataset with heavy traffic from
across the entire system. There are extra costs associated with synchronizing changes to
the reference data.

Minimize cross-partition joins. Where possible, minimize requirements for referential
integrity across vertical and functional partitions. In these schemes, the application is
responsible for maintaining referential integrity across partitions. Queries that join data
across multiple partitions are inefficient because the application typically performs
consecutive queries that are based on a key and then a foreign key. Instead, consider
replicating or de-normalizing the relevant data. If cross-partition joins are necessary, run
parallel queries over the partitions and join the data within the application.

Embrace eventual consistency. Evaluate whether strong consistency is a requirement. A
common approach in distributed systems is to implement eventual consistency. The
data in each partition is updated separately, and the application logic ensures that the
updates finish successfully. The application logic also handles the inconsistencies that
arise from querying data while an eventually consistent operation runs.

Consider how queries locate the correct partition. If a query must scan all partitions to
locate the required data, it significantly affects performance, even when multiple parallel
queries run. With vertical and functional partitioning, queries can specify the partition.
On the other hand, horizontal partitioning can make locating an item difficult because
every shard has the same schema. A typical solution is to maintain a map that's used to
look up the shard location of items. Implement this map in the sharding logic of the
application. It can also be maintained by the data store if the data store supports
transparent sharding.

Rebalance shards periodically. With horizontal partitioning, rebalancing shards can help
evenly distribute the data by size and workload. Rebalance shards to minimize hotspots,
maximize query performance, and work around physical storage limitations. This task is
complex and often requires a custom tool or process.

Replicate partitions. Replicate each partition to provide added protection against
failure. If a single replica fails, queries are directed to a working copy.

Extend scalability to a different level. If you reach the physical limits of a partitioning
strategy, you might need to extend the scalability to a different level. For example, if
partitioning is at the database level, you might need to locate or replicate partitions in
multiple databases. If partitioning is already at the database level, and there are physical
limitations, you might need to locate or replicate partitions in multiple hosting accounts.

Avoid transactions that access data in multiple partitions. Some data stores implement
transactional consistency and integrity for operations that modify data but only when
the data is located in a single partition. If you need transactional support across multiple
partitions, implement it as part of your application logic because most partitioning
systems don't provide native support.

All data stores require some operational management and monitoring activity. These
tasks include loading data, backing up and restoring data, reorganizing data, and
ensuring that the system performs correctly and efficiently.

Consider the following factors that affect operational management:

Implement appropriate management and operational tasks when the data is
partitioned. These tasks might include backup and restore, archiving data,
monitoring the system, and other administrative tasks. For example, it can be
challenging to maintain logical consistency during backup and restore operations.

Load data into multiple partitions, and add new data that comes from other
sources. Some tools and utilities might not support sharded data operations, such
as loading data into the correct partition.

Archive and delete data regularly. To prevent the excessive growth of partitions,
archive and delete data every month. You might need to transform the data to
match a different archive schema.

Locate data integrity problems. Consider running a periodic process to locate
data integrity problems, such as data in one partition that references missing
information in another. The process can either automatically attempt to fix these
issues or generate a report for manual review.

As a system matures, you might have to adjust the partitioning scheme. For example,
individual partitions might start receiving a disproportionate volume of traffic and
become hot, leading to excessive contention. Or you might have underestimated the
volume of data in some partitions, which causes the partitions to approach capacity
limits.

Some data stores, such as Azure Cosmos DB, can automatically rebalance partitions. In
other cases, you can rebalance partitions in two stages:

1. Determine a new partitioning strategy.

Which partitions need to be split or combined?

Rebalance partitions

What's the new partition key?

2. Migrate data from the old partitioning scheme to the new set of partitions.

You might need to make partitions unavailable while you relocate data, which is called
offline migration. Depending on the data store, you might migrate data between
partitions while they're in use. This technique is called online migration.

Offline migration reduces the chance of contention occurring. To perform offline
migration:

1. Mark the partition as offline. You can mark a partition as read-only so that
applications can still read the data while you move it.

2. Split-merge and move the data to the new partitions.

3. Verify the data.

4. Bring the new partitions online.

5. Remove the old partition.

Online migration is more complex but less disruptive compared to offline migration. The
process is similar to offline migration, but you don't mark the original partition as
offline. Depending on the granularity of the migration process, for example item by item
versus shard by shard, the data access code in the client applications might have to read
and write data that's in two locations, the original partition and the new partition.

The following sections describe recommendations for partitioning data that's stored in
Azure services.

A single SQL database has a limit to the volume of data that it can contain. Throughput
is constrained by architectural factors and the number of concurrent connections that it
supports.

Offline migration

Online migration

Azure facilitation

Partition in Azure SQL Database

Elastic pools support horizontal scaling for a SQL database. Use elastic pools to partition
your data into shards that are spread across multiple SQL databases. You can also add
or remove shards as the volume of data grows and shrinks. Elastic pools can also help
reduce contention by distributing the load across databases.

Each shard is implemented as a SQL database. A shard can hold more than one dataset.
Each dataset is called a shardlet. Each database has metadata that describes the
shardlets that it contains. A shardlet can be a single data item or a group of items that
share the same shardlet key. For example, in a multitenant application, the shardlet key
can be the tenant ID, and all data for a tenant can be in the same shardlet.

Applications are responsible for associating a dataset with a shardlet key. A separate
SQL database acts as a global shard map manager. This database has a list of all the
shards and shardlets in the system. The application connects to the shard map manager
database to obtain a copy of the shard map. It caches the shard map locally and uses
the map to route data requests to the appropriate shard. This functionality is hidden
behind a series of APIs that are contained in the client library of the Elastic Database
feature of SQL Database, which is available for Java and .NET.

For more information about elastic pools, see Scaling out with SQL Database.

To reduce latency and improve availability, you can replicate the global shard map
manager database. With the premium pricing tiers, you can configure active geo-
replication to continuously copy data to databases in different regions.

Alternatively, use SQL Data Sync for SQL Database or Azure Data Factory to replicate the
shard map manager database across regions. This form of replication runs periodically
and is more suitable if the shard map changes infrequently and doesn't require the
premium tier.

Elastic Database provides two schemes for mapping data to shardlets and storing them
in shards:

A list shard map associates a single key with a shardlet. For example, in a
multitenant system, the data for each tenant can be associated with a unique key
and stored in its own shardlet. To guarantee isolation, each shardlet can be held
within its own shard.

https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-database-client-library
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-sync-data
https://learn.microsoft.com/en-us/azure/data-factory

Download a Visio file of this diagram.

A range shard map associates a set of contiguous key values with a shardlet. For
example, you can group the data for a set of tenants, each with their own key,
within the same shardlet. This scheme is less expensive than a list shard map
because tenants share data storage, but it provides less isolation.

Shardlet key: 1
Shardlet key: 2

Global shard-map
manager database

Shard A Shard B
Shardlet holding data

for tenant 2

List shard map.
Each shardlet contains
data for a single key

Shardlet holding data
for tenant 1

Databases implementing
separate shards

https://arch-center.azureedge.net/data-partitioning-strategies.vsdx
https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/point-shardlet.svg#lightbox

Download a Visio file of this diagram

A single shard can contain the data for several shardlets. For example, you can use list
shardlets to store data for different non-contiguous tenants in the same shard. You can
also mix range shardlets and list shardlets in the same shard, but then they are
addressed via different maps. The following diagram shows this approach:

Range shard map.
Each shardlet holds data for
a contiguous set of keys.

Shard A
Shardlet holding data for

tenants 1, 2, and 3
Shardlet holding data for

tenants 10 and 11

Shard B

Shardlet range: 1-3
Shardlet range: 10, 11

https://arch-center.azureedge.net/data-partitioning-strategies.vsdx
https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/range-shardlet.svg#lightbox

Download a Visio file of this diagram.

With elastic pools, you can add and remove shards as the volume of data grows and
shrinks. Client applications can create and delete shards dynamically and transparently
update the shard map manager. However, removing a shard is a destructive operation
that also requires deleting all the data in that shard.

If an application needs to split a shard into two separate shards or combine shards, use
the split-merge tool. This tool runs as an Azure web service and migrates data safely
between shards.

The partitioning scheme can significantly affect the performance of your system. It can
also affect the rate at which shards have to be added or removed, or that data must be
repartitioned across shards. Consider the following points:

Group data that's used together in the same shard, and avoid operations that
access data from multiple shards. A shard is a SQL database in its own right, and
cross-database joins must be performed on the client side when operations access
multiple shards.

Range shard map.
Each shardlet holds data for
a contiguous set of keys.

Shard A
Shardlet holding data for

tenants 1, 2, and 3
Shardlet holding data for

tenants 10 and 11

Shard B

Shardlet range: 1-3
Shardlet range: 10, 11

https://arch-center.azureedge.net/data-partitioning-strategies.vsdx
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-overview-split-and-merge
https://learn.microsoft.com/en-us/azure/well-architected/reliability/media/partition-data/multiple-shard-maps.svg#lightbox

Although SQL Database doesn't support cross-database joins, you can use Elastic
Database tools to perform multi-shard queries. A multi-shard query sends
individual queries to each database and merges the results.

Design a system that doesn't have dependencies between shards. Referential
integrity constraints, triggers, and stored procedures in one database can't
reference objects in another.

Consider replicating data across shards if you have reference data that's frequently
used by queries. This approach can eliminate the need to join data across
databases. Ideally, such data should be static or slow-moving to minimize the
replication effort and reduce the chance of it becoming stale.

Use the same schema for shardlets that belong to the same shard map. This
guidance isn't enforced by SQL Database, but data management and querying is
complex if each shardlet has a different schema. Instead, create separate shard
maps for each schema. You can store data that belongs to different shardlets in the
same shard.

Store data in the same shard or implement eventual consistency if your business
logic needs to perform transactions. Transactional operations are only supported
for data that's in a shard, and not across shards. Transactions can span shardlets if
they're part of the same shard.

Place shards close to the users that access the data in those shards. This strategy
helps reduce latency.

Avoid having a combination of highly active and relatively inactive shards. Try to
spread the load evenly across shards. You might have to hash the sharding keys. If
you're geo-locating shards, ensure that the hashed keys map to shardlets held in
shards that are stored close to the users that access that data.

With Blob Storage, you can store large binary objects. Use block blobs in scenarios that
require you to quickly upload or download large volumes of data. Use page blobs for
applications that require random, rather than serial, access to parts of the data.

Each block blob or page blob is held in a container in an Azure storage account. Use
containers to group related blobs that have the same security requirements. This
grouping is logical rather than physical. Inside a container, each blob has a unique
name.

Partition in Azure Blob Storage

https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-multishard-querying

The partition key for a blob is the account name, the container name, and the blob
name. The partition key is used to partition data into ranges. These ranges are load
balanced across the system. Blobs can be distributed across many servers to scale out
access to them. A single blob can only be served by a single server.

If your naming scheme uses timestamps or numerical identifiers, it can lead to excessive
traffic to one partition. It prevents the system from effectively load balancing. For
instance, if you have daily operations that use a blob object with a timestamp, such as
yyyy-mm-dd, all the traffic for that operation goes to a single partition server. Instead,
prefix the name with a three-digit hash. For more information, see Partition naming
convention.

The actions of writing a single block or page are atomic, but operations that span
blocks, pages, or blobs aren't. If you need to ensure consistency when write operations
are performed across blocks, pages, and blobs, take out a write lock by using a blob
lease.

Data partitioning introduces some challenges and complexities that you need to
consider.

Data synchronization between the partitions might become a challenge. Ensure
that updates or changes to one partition are propagated to the other partitions in
a timely and consistent manner.

Failover and disaster recovery processes become complex when you need to
coordinate the backup and restore of multiple partitions. Data integrity issues can
arise if some partitions or their backups are corrupted or unavailable.

Data partitioning can affect performance and reliability if you need to query across
partitions, and when you rebalance the partitions if the data grows unevenly.

Building scalable cloud databases
Data Factory
Index Table pattern
Materialized View pattern
Moving data between scaled-out cloud databases
Multi-shard querying using elastic database tools
Partition naming

Tradeoffs

Related links

https://learn.microsoft.com/en-us/azure/storage/common/storage-performance-checklist#partitioning
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-database-client-library
https://learn.microsoft.com/en-us/azure/data-factory
https://learn.microsoft.com/en-us/azure/architecture/patterns/index-table
https://learn.microsoft.com/en-us/azure/architecture/patterns/materialized-view
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-overview-split-and-merge
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-multishard-querying
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-performance-checklist#partitioning

Review your data options
Scalability and performance targets for standard storage accounts
Scaling out with SQL Database
Sharding pattern
Understand data store models
Use elastic pools to manage and scale multiple databases in SQL Database
What is SQL Data Sync for Azure?

Refer to the complete set of recommendations.

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-options
https://learn.microsoft.com/en-us/azure/storage/storage-scalability-targets
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-introduction
https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-data-sync-data-sql-server-sql-database

Recommendations for designing a
reliable scaling strategy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:06 Implement a timely and reliable scaling strategy at the application, data, and
infrastructure levels.

Related guide: Data partitioning

This guide describes the recommendations for designing a reliable scaling strategy.

Definitions

Term Definition

Vertical scaling A scaling approach that adds compute capacity to existing resources.

Horizontal
scaling

A scaling approach that adds instances of a given type of resource.

Autoscaling A scaling approach that automatically adds or removes resources when a set of
conditions is met.

To design a reliable scaling strategy for your workloads, focus on identifying load
patterns for the user and system flows for each workload that leads to a scaling
operation. Here are examples of the different load patterns:

７ Note

Scaling operations can be static (regularly scheduled daily scaling to accommodate
normal load patterns), automatic (an automated process in response to conditions
being met), or manual (an operator performs a one-time scaling operation in
reaction to an unanticipated load change). Both vertical and horizontal scaling can
be performed via any of these methods. However, automatic vertical scaling
requires additional custom automation development and can cause downtime
depending on the resources being scaled.

Key design strategies

Static: Every night by 11 PM EST, the number of active users is below 100 and the
CPU utilization for the app servers drops by 90% across all nodes.

Dynamic, regular, and predictable: Every Monday morning, 1000 employees
across multiple regions sign in to the ERP system.

Dynamic, irregular, and predictable: A product launch happens on the first day of
the month and there's historical data from previous launches on how the traffic
increases in these situations.

Dynamic, irregular, and unpredictable: A large scale event causes a spike in
demand for a product. For example, companies manufacturing and selling
dehumidifiers can experience a sudden surge in traffic after a hurricane or other
flooding event when people in affected areas need to dry rooms in their home.

After you've identified these types of load patterns, you can:

Identify how the load change associated with each pattern affects your
infrastructure.

Build automation to address the scaling reliably.

For the previous examples, your scaling strategies could be:

Static: You have a scheduled scale of your compute nodes to the minimum count
(2) between 11 PM and 6 AM EST.

Dynamic, regular, and predictable: You have a scheduled scale out of your
compute nodes to the normal daily capacity before the first region starts work.

Dynamic, irregular, and predictable: You define a one-time scheduled scale up of
your compute and database instances on the morning of a product launch, and
you scale back down after one week.

Dynamic, irregular, and unpredictable: You have autoscale thresholds defined to
account for unplanned traffic spikes.

When designing your scaling automation, be sure to account for these issues:

That all components of your workload should be candidates for scaling
implementation. In most cases, global services like Microsoft Entra ID scale
automatically and transparently to you and your customers. Be sure to understand
the scaling capabilities of your networking ingress and egress controllers and your
load balancing solution.

https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/whatis

Those components that can't be scaled out. An example would be large, relational
databases that don't have sharding enabled and can't be refactored without
significant impact. Document the resource limits published by your cloud provider
and monitor those resources closely. Include those specific resources in your future
planning for migrating to scalable services.

The time it takes to perform the scaling operation so that you properly schedule
the operation to happen before the extra load hits your infrastructure. For
example, if a component like API Management takes 45 minutes to scale, adjusting
the scaling threshold to 65% instead of 90% might help you scale earlier and
prepare for the anticipated increase in load.

The relationship of the flow’s components in terms of order of scale operations.
Ensure that you don’t inadvertently overload a downstream component by scaling
an upstream component first.

Any stateful application elements that might be interrupted by a scaling
operation and any session affinity (or session stickiness) that's implemented.
Stickiness can limit your scaling ability and introduces single points of failure.

Potential bottlenecks. Scaling out doesn't fix every performance issue. For
example, if your backend database is the bottleneck, it doesn't help to add more
web servers. Identify and resolve the bottlenecks in the system first before just
adding more instances. Stateful parts of the system are the most likely cause of
bottlenecks.

Following the deployment stamp design pattern helps with your overall infrastructure
management. Basing your scaling design on stamps as units of scale is also beneficial.
And it helps you tightly control your scaling operations across multiple workloads and
subsets of workloads. Rather than managing the scaling schedules and autoscaling
thresholds of many distinct resources, you can apply a limited set of scaling definitions
to a deployment stamp and then mirror that across stamps as needed.

An autoscaling feature is available in many Azure services. It lets you easily configure
conditions to automatically scale instances horizontally. Some services have limited or
no built-in functionality to automatically scale in, so be sure to document these cases
and define processes to deal with scaling in.

Many Azure services offer APIs that you can use to design custom automatic scaling
operations using Azure Automation, such as the code samples at Autoscale your Azure

Azure facilitation

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview#supported-services-for-autoscale
https://learn.microsoft.com/en-us/azure/automation/overview
https://learn.microsoft.com/en-us/samples/azure-samples/iot-hub-dotnet-autoscale/iot-hub-dotnet-autoscale/

IoT Hub. You can use tools like KEDA for event-driven autoscaling, which is available in
Azure Kubernetes Service and Azure Container Apps.

Azure Monitor autoscale provides a common set of autoscaling functionality for Azure
Virtual Machine Scale Sets, Azure App Service, Azure Spring Apps and more. Scaling can
be performed on a schedule or based on a runtime metric, such as CPU or memory
usage. See the Azure Monitor guide for best practices.

Scaling up has cost implications, so optimize your strategy to scale down as soon as
possible to help keep costs under control. Ensure that the automation you're employing
to scale up also has triggers to scale down.

Autoscaling isn't an instant solution. Simply adding resources to a system or running
more instances of a process doesn't guarantee that the performance of the system will
improve. Consider the following points when designing an autoscaling strategy:

The system must be designed to be horizontally scalable. Avoid making assumptions
about instance affinity. Don't design solutions that require that the code is always
running in a specific instance of a process. When scaling a cloud service or website
horizontally, don't assume that a series of requests from the same source are always
routed to the same instance. For the same reason, design services to be stateless to
avoid requiring a series of requests from an application to always be routed to the same
instance of a service. When designing a service that reads messages from a queue and
processes them, don't make any assumptions about which instance of the service
handles a specific message. Autoscaling could start more instances of a service as the
queue length grows. The Competing Consumers pattern describes how to handle this
scenario.

If the solution implements a long-running task, design this task to support both scaling
out and scaling in. Without due care, such a task could prevent an instance of a process
from being shut down cleanly when the system scales in. Or, it could lose data if the
process forcibly terminates. Ideally, refactor a long-running task and break up the
processing that it performs into smaller, discrete chunks. The Pipes and Filters pattern
provides an example of how you can achieve this solution.

Alternatively, you can implement a checkpoint mechanism that records state
information about the task at regular intervals. You can then save this state in durable
storage that can be accessed by any instance of the process running the task. In this

Tradeoffs

Autoscaling considerations

https://learn.microsoft.com/en-us/samples/azure-samples/iot-hub-dotnet-autoscale/iot-hub-dotnet-autoscale/
https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/azure/container-apps/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-get-started
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices-plan
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters

way, if the process is shut down, the work that it was performing can be resumed from
the last checkpoint by another instance. There are libraries that provide this
functionality, such as NServiceBus and MassTransit. They transparently persist state,
where the intervals are aligned with the processing of messages from queues in Azure
Service Bus.

When background tasks run on separate compute instances, such as in worker roles of a
cloud-services–hosted application, you might need to scale different parts of the
application by using different scaling policies. For example, you might need to deploy
extra user interface (UI) compute instances without increasing the number of
background compute instances, or vice-versa. If you offer different levels of service, such
as basic and premium service packages, you might need to scale out the compute
resources for premium service packages more aggressively than for basic service
packages to meet service-level agreements (SLAs).

Consider the length of the queue over which UI and background compute instances
communicate. Use it as a criterion for your autoscaling strategy. This issue is one
possible indicator of an imbalance or difference between the current load and the
processing capacity of the background task. A slightly more complex but better attribute
on which to base scaling decisions is to use the time between when a message was sent
and when its processing was complete. This interval is known as the critical time. If this
critical time value is below a meaningful business threshold, then it's unnecessary to
scale, even if the queue length is long.

For example, there could be 50,000 messages in a queue. But the critical time of the
oldest message is 500 ms, and the endpoint is dealing with integration with a third-
party web service for sending out emails. Business stakeholders would likely consider
that to be a period of time that wouldn't justify spending extra money for scaling.

On the other hand, there could be 500 messages in a queue, with the same 500-ms
critical time, but the endpoint is part of the critical path in some real-time online game
where business stakeholders defined a response time of 100 ms or less. In that case,
scaling out would make sense.

To use critical time in autoscaling decisions, it's helpful to have a library automatically
add the relevant information to the headers of messages while they're sent and
processed. One library that provides this functionality is NServiceBus .

If you base your autoscaling strategy on counters that measure business processes, such
as the number of orders placed per hour or the average running time of a complex
transaction, ensure that you fully understand the relationship between the results from
these types of counters and the actual compute capacity requirements. It might be

https://learn.microsoft.com/en-us/azure/service-bus-messaging/compare-messaging-services#azure-service-bus
https://docs.particular.net/monitoring/metrics/definitions#metrics-captured-critical-time

necessary to scale more than one component or compute unit in response to changes in
business process counters.

To prevent a system from attempting to scale out excessively, and to avoid the costs
associated with running many thousands of instances, consider limiting the maximum
number of instances that are automatically added. Most autoscaling mechanisms let you
specify the minimum and maximum number of instances for a rule. In addition, consider
gracefully degrading the functionality that the system provides if the maximum number
of instances have been deployed and the system is still overloaded.

Keep in mind that autoscaling might not be the most appropriate mechanism to handle
a sudden burst in a workload. It takes time to provision and start new instances of a
service or add resources to a system, and the peak demand might pass by the time
these extra resources are available. In this scenario, it might be better to throttle the
service. For more information, see the Throttling pattern.

Conversely, if you need the capacity to process all requests when the volume fluctuates
rapidly, and cost isn't a major contributing factor, consider using an aggressive
autoscaling strategy that starts more instances more quickly. You can also use a
scheduled policy that starts a sufficient number of instances to meet the maximum load
before that load is expected.

The autoscaling mechanism should monitor the autoscaling process and log the details
of each autoscaling event (what triggered it, what resources were added or removed,
and when). If you create a custom autoscaling mechanism, ensure that it incorporates
this capability. Analyze the information to help measure the effectiveness of the
autoscaling strategy, and tune it if necessary. You can tune both in the short term, as the
usage patterns become more obvious, and over the long term, as the business expands
or the requirements of the application evolve. If an application reaches the upper limit
defined for autoscaling, the mechanism might also alert an operator who could
manually start more resources if necessary. Under these circumstances, the operator
might also be responsible for manually removing these resources after the workload
eases.

Refer to the AKS baseline reference architecture scaling guidance.

Performance efficiency scaling

Example

Related links

https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks#node-and-pod-scalability
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles

Best practices for autoscale

Refer to the complete set of recommendations.

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-best-practices#choose-the-thresholds-carefully-for-all-metric-types

Recommendations for developing
background jobs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:07 Strengthen the resiliency and recoverability of your workload by implementing self-
preservation and self-healing measures. Build capabilities into the solution by using
infrastructure-based reliability patterns and software-based design patterns to
handle component failures and transient errors. Build capabilities into the system to
detect solution component failures and automatically initiate corrective action
while the workload continues to operate at full or reduced functionality.

Related guides: Transient faults | Self-preservation

This guide describes the recommendations for developing background jobs.
Background jobs run automatically without the need for user interaction. Many
applications require background jobs that run independent of the UI.

Some examples of background jobs include batch jobs, intensive processing tasks, and
long-running processes, such as workflows. The application starts the job and processes
interactive requests from users. For example, if an application needs to generate
thumbnails of images that users upload, a background job can be performed to
generate the thumbnail and save it to storage. The user doesn't have to wait for the
process to complete. As another example, a customer places an order, which initiates a
background workflow that processes the order. The customer continues to browse the
web app while the background job runs. After the background job finishes, it updates
the stored order data and sends an email to the customer to confirm the order.

Background jobs help minimize the load on the application UI, which improves
availability and reduces interactive response time.

To choose which task to designate as a background job, consider whether the task runs
without user interaction and whether the UI needs to wait for the task to complete.
Tasks that require the user or the UI to wait while they run are typically not appropriate
background jobs.

Key design strategies

Some examples of background jobs are:

CPU-intensive jobs, such as mathematical calculations or structural model analysis.

I/O-intensive jobs, such as running a series of storage transactions or indexing
files.

Batch jobs, such as nightly data updates or scheduled processing.

Long-running workflows, such as order fulfillment or provisioning services and
systems.

Sensitive-data processing that transfers the task to a more secure location for
processing. For example, you might not want to process sensitive data within a
web app. Instead, you might use a pattern such as the Gatekeeper pattern to
transfer the data to an isolated background process that has access to protected
storage.

Initiate background jobs with:

Event-driven triggers: An event, typically a user action or a step in a workflow,
triggers the task.

Schedule-driven triggers: A schedule that's based on a timer invokes the task. The
job can be scheduled on a recurring basis or for a single run.

An action triggers an event-driven invocation that starts the background task. Examples
of event-driven triggers include:

The UI or a different job places a message in a queue. The message contains data
about a previously performed action, such as a customer that placed an order. The
background job monitors this queue and detects the arrival of a new message. It
reads the message and uses the message's data as the input for the background
job. This pattern is called asynchronous message-based communication.

The UI or a different job saves or updates a value that's in storage. The background
job monitors the storage and detects changes. It reads the data and uses it as the
input for the background job.

Types of background jobs

Triggers

Event-driven triggers

https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication

The UI or a different job makes a request to an endpoint, such as an HTTPS URI or
an API that's exposed as a web service. As part of the request, the UI or job
transfers the data that the background task requires. The endpoint or web service
invokes the background task, which uses the data as its input.

Other examples of tasks that are suited to event-driven invocation include image
processing, workflows, sending information to remote services, sending email messages,
and provisioning new users in multitenant applications.

A timer triggers a schedule-driven invocation that starts the background task. Examples
of schedule-driven triggers include:

A timer that runs locally within the application or as part of the application's
operating system regularly invokes a background task.

A timer that runs in a different application, such as Azure Logic Apps, regularly
sends a request to an API or web service. The API or web service invokes the
background task.

A separate process or application starts a timer that invokes the background task
after a time delay or at a specific time.

Other examples of tasks that are suited to schedule-driven invocation include batch-
processing routines (such as updating related products lists for customers based on
their recent behavior), routine data-processing tasks (such as updating indexes or
generating accumulated results), data analysis for daily reports, data retention cleanup,
and data consistency checks.

If you use a schedule-driven task that must run as a single instance, review the following
considerations:

If the compute instance that runs the scheduler, such as a virtual machine (VM)
that uses Windows scheduled tasks, is scaled, then you are running multiple
instances of the scheduler. Multiple instances of the scheduler can start multiple
instances of the task. For more information, see What does idempotent mean in
software systems?

If tasks run longer than the period between the scheduler events, the scheduler
might start another instance of the task while the previous task runs.

Schedule-driven triggers

Return results

https://particular.net/blog/what-does-idempotent-mean

Background jobs run asynchronously in a separate process, or even in a separate
location, from the UI or the process that invoked the background job. Ideally,
background jobs are fire and forget operations. Their runtime progress doesn't have an
effect on the UI or the calling process, which means that the calling process doesn't wait
for the tasks to complete. The UI and the calling process can't detect when the task
ends.

If you require a background task to communicate with the calling task to indicate
progress or completion, you must implement a mechanism. Some examples are to:

Write a status indicator value to storage that's accessible to the UI or the caller
task, which can monitor or check this value. Other data that the background task
returns to the caller can be placed in the same storage.

Establish a reply queue that the UI or caller monitors. The background task can
send messages to the queue that indicate the status. Data that the background
task returns to the caller can be placed in the messages. For Azure Service Bus, use
the ReplyTo and CorrelationId properties to implement this capability.

Expose an API or endpoint from the background task that the UI or caller can
access to obtain status information. The response can include the data that the
background task returns to the caller.

Configure the background task to call back to the UI or caller via an API to indicate
the status at predefined points or on completion. You can use events raised locally
or a publish-and-subscribe mechanism. The request or the event payload can
include the data that the background task returns to the caller.

If you include background jobs in an existing compute instance, consider how these
changes affect the quality attributes of the compute instance and the background job.
Consider these factors to decide whether to colocate the tasks with the existing
compute instance or separate them into a different compute instance:

Availability: Background tasks might not need the same level of availability as
other parts of the application, in particular the UI and parts that directly involve
user interaction. Background tasks might have a higher tolerance for latency,
retried connection failures, and other factors that affect availability because the
operations can be queued. However, there must be sufficient capacity to prevent
backed up requests that can block queues and affect the entire application.

Partition background jobs

Scalability: Background tasks likely have different scalability requirements
compared to the UI and the interactive parts of the application. You might need to
scale the UI to meet peaks in demand. Outstanding background tasks can run
during less busy times and with fewer compute instances.

Resiliency: If a compute instance that hosts only background tasks fails, it might
not fatally affect the entire application. The requests for these tasks can be queued
or postponed until the task is available. If the compute instance or tasks can restart
within an appropriate interval, it might not affect the application users.

Security: Background tasks might have different security requirements or
restrictions compared to the UI or other parts of the application. Use a separate
compute instance to specify a different security environment for the tasks. To
maximize security and separation, you can also use patterns such as Gatekeeper to
isolate the background compute instances from the UI.

Performance: Choose the type of compute instance for background tasks that
specifically matches the task's performance requirements. You might use a less
expensive compute option if the tasks don't require the same processing
capabilities as the UI. Or you might use a larger instance if the tasks require more
capacity and resources.

Manageability: Background tasks might have a different development and
deployment rhythm compared to the main application code or the UI. To simplify
updates and versioning, deploy background tasks to a separate compute instance.

Cost: If you add compute instances to run background tasks, hosting costs
increase. Carefully consider the tradeoff between more capacity and extra costs.

For more information, see Leader Election pattern and Competing Consumers pattern.

If you have multiple instances of a background job, they might compete for access to
resources and services, such as databases and storage. This concurrent access can result
in resource contention, which might cause service availability conflicts and harm the
integrity of the data that's in storage. Resolve resource contention by using a
pessimistic-locking approach. This approach prevents competing instances of a task
from concurrently accessing a service or corrupting data.

Another approach to resolve conflicts is to define background tasks as a singleton, so
that only one instance runs. However, this approach eliminates the reliability and
performance benefits that a multiple-instance configuration provides. This disadvantage

Conflicts

https://learn.microsoft.com/en-us/azure/architecture/patterns/leader-election
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers

is especially true if the UI supplies enough work to keep more than one background task
busy.

Ensure that the background task can automatically restart and that it has sufficient
capacity to handle peaks in demand. Allocate a compute instance with sufficient
resources, implement a queueing mechanism that stores requests to run when demand
decreases, or use a combination of these techniques.

Background tasks can be complex and require multiple tasks to run. In these scenarios,
it's common to divide the task into smaller discrete steps or subtasks that multiple
consumers can run. Multistep jobs are more efficient and more flexible because
individual steps are often reusable in multiple jobs. It's also easy to add, remove, or
modify the order of the steps.

It can be a challenge to coordinate multiple tasks and steps, but there are three
common patterns to guide your solution:

Decompose a task into multiple reusable steps. An application might be required
to perform various tasks of different complexity on the information that it
processes. A straightforward but inflexible approach to implementing such an
application is to perform this processing as a monolithic module. But this approach
is likely to reduce the opportunities for refactoring the code, optimizing it, or
reusing it if the application requires parts of the same processing elsewhere. For
more information, see the Pipes and Filters pattern.

Manage the orchestration of the steps for a task. An application might perform
tasks that comprise many steps, some of which might invoke remote services or
access remote resources. Sometimes the individual steps are independent of each
other, but they're orchestrated by the application logic that implements the task.
For more information, see Scheduler Agent Supervisor pattern.

Manage the recovery for task steps that fail. If one or more of the steps fail, an
application might need to undo the work that a series of steps performs, which
together defines an eventually consistent operation. For more information, see
Compensating Transaction pattern.

Create resilient background tasks to provide reliable services for the application. When
you plan and design background tasks, consider the following points:

Coordination

Resiliency considerations

https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/scheduler-agent-supervisor
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

Background tasks need to gracefully handle restarts without corrupting data or
introducing inconsistency into the application. For long-running or multistep tasks,
consider using checkpoints. Use checkpoints to save the state of jobs in persistent
storage or as messages in a queue. For example, you can store state information in
a message that's in a queue and incrementally update this state information with
the task progress. The task can be processed from the last known checkpoint
instead of restarting from the beginning.

For Service Bus queues, use message sessions for this purpose. With message
sessions, save and retrieve the application processing state by using the SetState
and GetState methods. For more information about designing reliable multistep
processes and workflows, see Scheduler Agent Supervisor pattern.

When you use queues to communicate with background tasks, the queues can act
as a buffer to store requests that are sent to the tasks while the application is
under higher than usual load. The tasks can catch up with the UI during less busy
periods, and restarts don't block the UI. For more information, see Queue-Based
Load Leveling pattern. If some tasks are more important than others, consider
implementing the Priority Queue pattern to ensure that these tasks run first.

Configure background tasks that are initiated by messages or that process messages to
handle inconsistencies, such as messages that arrive out of order, messages that
repeatedly cause an error (poison messages), and messages that are delivered more than
once. Consider the following recommendations:

Sometimes you need messages to be processed in a specific order, like messages
that change data based on the existing data value, for example adding a value to
an existing value. Messages don't always arrive in the order that they were sent.
Also, different instances of a background task might process messages in a
different order due to varying loads on each instance.

For messages that must be processed in a specific order, include a sequence
number, key, or another indicator that background tasks can use to process
messages in the correct order. For Service Bus, use message sessions to guarantee
the correct order of delivery. It's more efficient to design the process so that the
message order isn't important.

Typically, a background task peeks at messages in the queue, which temporarily
hides them from other message consumers. After the task successfully processes
the message, it deletes the message. If a background task fails when it processes a

Messages

https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.messagesession.setstate
https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.messagesession.getstate
https://learn.microsoft.com/en-us/azure/architecture/patterns/scheduler-agent-supervisor
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue

message, that message reappears in the queue after the peek timeout expires. A
different instance of the task processes the message, or the next processing cycle
of the original instance processes the message.

If the message consistently causes an error in the consumer, it blocks the task, the
queue, and eventually the application itself when the queue becomes full. It's vital
to detect and remove poison messages from the queue. If you use Service Bus,
automatically or manually move poison messages to an associated dead letter
queue.

Queues are at-least-once delivery mechanisms, but they might deliver the same
message more than once. If a background task fails after it processes a message
but before it deletes it from the queue, the message is available for processing
again.

Background tasks should be idempotent, which means that when the task
processes the same message more than once, it doesn't cause an error or
inconsistency in the application's data. Some operations are naturally idempotent,
for example if a stored value is set to a specific new value. However, some
operations cause inconsistencies, for example if a value is added to an existing
stored value without verifying that the stored value is still the same as when the
message was originally sent. Configure Service Bus queues to automatically
remove duplicated messages. For more information, see Idempotent message
processing.

Some messaging systems, such as Azure Storage queues and Service Bus queues,
support a dequeue count property that indicates how many times a message from
the queue is read. This data is useful for handling repeated messages and poison
messages. For more information, see Asynchronous messaging primer and
Idempotency patterns .

Background tasks must offer sufficient performance to ensure that they don't block the
application or delay operation when the system is under load. Typically, performance
improves when you scale the compute instances that host the background tasks. When
you plan and design background tasks, consider the following points related to
scalability and performance:

Azure Virtual Machines and the Web Apps feature of Azure App Service can host
deployments. They support automatic scaling, both scaling out and scaling in. The
automatic scaling is determined by the demand and load or a predefined schedule.

Scaling and performance considerations

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-data-platform#idempotent-message-processing
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/dn589781(v=pandp.10)
https://blog.jonathanoliver.com/idempotency-patterns

Use automatic scaling to help ensure that the application has sufficient
performance capabilities while minimizing runtime costs.

Some background tasks have a different performance capability compared to
other parts of an application, for example the UI or components, such as the data
access layer. In that scenario, host the background tasks together in a separate
compute service so the UI and background tasks can scale independently to
manage the load. If multiple background tasks have significantly different
performance capabilities, divide them and scale each type independently. This
technique might increase runtime costs.

To prevent the loss of performance under load, you might also need to scale
storage queues and other resources so a single point of the processing chain
doesn't cause a bottleneck. Consider other limitations, such as the maximum
throughput of storage and other services that the application and the background
tasks rely on.

Design background tasks for scaling. For example, background tasks must
dynamically detect the number of utilized storage queues to monitor messages or
send messages to the appropriate queue.

By default, a WebJob scales with its associated Web Apps instance. However, if you
want a WebJob to run as only a single instance, you can create a Settings.job file
that contains the JSON data { "is_singleton": true } . This method forces Azure
to only run one instance of the WebJob, even if there are multiple instances of the
associated web app. This technique is useful for scheduled jobs that must run as
only a single instance.

The following sections describe the Azure services that you can use to host, run,
configure, and manage background jobs.

There are several Azure platform services that can host background tasks:

Web Apps and WebJobs: Use the WebJobs feature of App Service to run custom
jobs that are based on different scripts or programs that you can run in a web app.

Azure Functions: Use function apps for background jobs that don't run for a long
time. You can also use function apps if you host your workload on an underutilized

Azure facilitation

Host environments

App Service plan.

Virtual Machines: If you have a Windows service or want to use Windows Task
Scheduler, host your background tasks in a dedicated VM.

Azure Batch: Batch is a platform service that you can use to schedule compute-
intensive work to run on a managed collection of VMs. It can automatically scale
compute resources.

Azure Kubernetes Service (AKS): AKS provides a managed hosting environment for
Kubernetes on Azure.

Azure Container Apps: With Container Apps, you can build serverless microservices
that are based on containers.

The following sections provide considerations for each of these options to help you
choose the best option for you.

You can use the WebJobs feature to run custom jobs as background jobs in a web app.
A WebJob runs as a continuous process in the context of your web app. A WebJob can
also run in response to a trigger event from Logic Apps or external factors, such as
changes to storage blobs or message queues. WebJobs can be started and stopped on
demand, and shut down gracefully. If a continuously running WebJob fails, it's
automatically restarted. You can configure retry and error actions.

When you configure a WebJob:

If you want the job to respond to an event-driven trigger, configure it to Run
continuously. The script or program is stored in the folder that's named
site/wwwroot/app_data/jobs/continuous.

If you want the job to respond to a schedule-driven trigger, configure it to Run on
a schedule. The script or program is stored in the folder named
site/wwwroot/app_data/jobs/triggered.

If you choose the Run on demand option when you configure a job, it runs the
same code as the Run on a schedule option when you start the job.

A WebJob runs in the sandbox of the web app. It has access to environment variables
and it can share information, such as connection strings, with the web app. The WebJob
has access to the unique identifier of the machine that runs the WebJob. The connection
string named AzureWebJobsStorage provides access to Storage queues, blobs, and tables

Web Apps and WebJobs

for application data. It also provides access to Service Bus for messaging and
communication. The connection string named AzureWebJobsDashboard provides access to
the WebJob action log files.

WebJobs have the following characteristics:

Security: The deployment credentials of the web app provide protection for
WebJobs.

Supported file types: Define WebJobs by using command scripts (.cmd), batch files
(.bat), PowerShell scripts (.ps1), Bash shell scripts (.sh), PHP scripts (.php), Python
scripts (.py), JavaScript code (.js), and executable programs (.exe and .jar).

Deployment: You can deploy scripts and executables by using the Azure portal,
Visual Studio, or the WebJobs SDK, or you can copy them directly to the following
locations:

For triggered deployment: site/wwwroot/app_data/jobs/triggered/<job name>

For continuous deployment: site/wwwroot/app_data/jobs/continuous/<job
name>

Log files: Console.Out is treated, or marked, as INFO . Console.Error is treated as
ERROR . Use the portal to access monitoring and diagnostics information. Download
log files directly from the website. Log files are saved in the following locations:

For triggered deployment: Vfs/data/jobs/triggered/<job name>

For continuous deployment: Vfs/data/jobs/continuous/<job name>

Configuration: Configure WebJobs by using the portal, the REST API, and
PowerShell. Use a configuration file named settings.job, which is in the same root
directory as the WebJob script, to provide configuration information for a WebJob.
For example:

{ "stopping_wait_time": 60 }

{ "is_singleton": true }

By default, WebJobs scale with the web app. To configure WebJobs to run on a
single instance, set the is_singleton configuration property to true . Single

Web Apps and WebJobs considerations

https://learn.microsoft.com/en-us/azure/app-service-web/web-sites-create-web-jobs
https://learn.microsoft.com/en-us/azure/app-service-web/websites-dotnet-deploy-webjobs
https://learn.microsoft.com/en-us/azure/app-service/webjobs-sdk-get-started

instance WebJobs are useful for tasks that you don't want to scale or run as
simultaneous multiple instances, such as reindexing or data analysis.

To minimize the effect of WebJobs on the performance of the web app, create an
empty web app instance in a new App Service plan to host long-running or
resource-intensive WebJobs.

Azure Functions is similar to WebJobs. Azure Functions is serverless and is most suitable
for event-driven triggers that run for a short period. You can also use Azure Functions to
run scheduled jobs via timer triggers if you configure a function to run at specified
times.

Azure Functions isn't recommended for large, long-running tasks because a function can
cause unexpected timeouts. However, depending on your hosting plan, consider using
functions for schedule-driven triggers.

If you expect the background task to run for a short duration in response to an event,
consider running the task in the consumption plan. You can configure the runtime to a
maximum time. A function that runs for longer costs more. CPU-intensive jobs that
consume more memory can be more expensive. If you use additional triggers for
services as part of your task, they're billed separately.

The premium plan is suitable if you have several tasks that are short but they run
continuously. This plan is more expensive because it needs more memory and CPU. As a
benefit, you can use other features, such as virtual network integration.

The dedicated plan is suitable for background jobs if your workload already runs on the
dedicated plan. If you have underutilized VMs, you can run the dedicated plan on the
same VM and share compute costs.

For more information, see:

Azure Functions hosting options
Timer trigger for Azure Functions

You can implement background tasks so that they're not deployed to Web Apps. For
example, you can implement tasks by using Windows services, third-party utilities, or

Azure Functions

Azure Functions considerations

Virtual Machines

https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer

executable programs. You can also use programs that are written for a runtime
environment that's different than the environment that hosts the application. For
example, you might use a Unix or Linux program that you want to run from a Windows
or .NET application. Choose from several operating systems for an Azure VM, and run
your service or executable on that VM.

For more information, see:

Choose an Azure compute service
Sizes for VMs in Azure
Virtual Machines Marketplace

To initiate the background task in a separate VM, you can:

Send a request to an endpoint that the task exposes to run the task on demand
directly from your application. The request transfers data that the task requires.
The endpoint invokes the task.

Use a scheduler or timer from your chosen operating system to configure the task
to run on a schedule. For example, on Windows, you can use Windows Task
Scheduler to run scripts and tasks. If you have SQL Server installed on the VM, use
SQL Server Agent to run scripts and tasks.

Use Logic Apps to initiate the task by adding a message to a queue that the task
monitors or by sending a request to an API that the task exposes.

For more information about how you can initiate background tasks, see the previous
Triggers section.

Consider the following points when you deploy background tasks in an Azure VM:

Host background tasks in a separate Azure VM to provide flexibility and precise
control over initiation, deployment, scheduling, and resource allocation. However,
runtime costs increase if you deploy a VM solely for background tasks.

There's no facility to monitor the tasks in the portal and no automated restart
capability for failed tasks. But you can use the Azure Resource Manager cmdlets
to monitor the status of the VM and manage it. There are no facilities to control
processes and threads in compute nodes. Typically, if you use a VM, you have to
implement a mechanism that collects data from instrumentation in the task, and
also from the operating system in the VM. You can use the System Center
Management Pack for Azure for this purpose.

Virtual Machines considerations

https://learn.microsoft.com/en-us/azure/app-service-web/choose-web-site-cloud-service-vm
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://azuremarketplace.microsoft.com/marketplace/apps/category/compute
https://devblogs.microsoft.com/scripting/work-with-the-azurerm-cmdlets-part-1
https://www.microsoft.com/download/details.aspx?id=50013

Consider creating monitoring probes that are exposed through HTTP endpoints.
You can configure the code for these probes to perform health checks and collect
operational information and statistics. You can also use the probes to collate error
information and return it to a management application.

For more information, see:

Health Endpoint Monitoring pattern
Virtual Machines
Virtual Machines FAQ

Consider Batch if you need to run large, parallel high-performance computing (HPC)
workloads across tens, hundreds, or thousands of VMs.

Use Batch to prepare the VMs, assign tasks to the VMs, run the tasks, monitor the
progress, and automatically scale out the VMs in response to the workload. Batch also
provides job scheduling and supports Linux and Windows VMs.

Batch is suitable for intrinsically parallel workloads. You can use Batch to perform parallel
calculations with a reduce step at the end, or run Message Passing Interface (MPI)
applications for parallel tasks that require message passing between nodes.

A Batch job runs on a pool of nodes, or VMs. You can allocate a pool only when needed
and then delete it after the job finishes. This approach maximizes utilization because
nodes aren't idle, but the job must wait for you to allocate nodes. Alternatively, you can
create a pool in advance. This approach minimizes the time that it takes for a job to start
but can result in nodes that sit idle.

For more information, see:

Nodes and pools in Batch
What is Batch?
Jobs and tasks in Batch
HPC on Azure
Batch service workflow and resources

Batch

Batch considerations

Azure Kubernetes Service

https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://azure.microsoft.com/services/virtual-machines
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/faq
https://learn.microsoft.com/en-us/azure/batch
https://learn.microsoft.com/en-us/azure/batch/batch-mpi
https://learn.microsoft.com/en-us/azure/batch/nodes-and-pools
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/batch/jobs-and-tasks
https://learn.microsoft.com/en-us/azure/architecture/topics/high-performance-computing#azure-batch
https://learn.microsoft.com/en-us/azure/batch/batch-service-workflow-features

Use AKS to manage your hosted Kubernetes environment so you can easily deploy and
manage containerized applications.

Containers are useful for running background jobs. Some of the benefits include:

Containers support high-density hosting. You can isolate a background task in a
container, while placing multiple containers in each VM.

Use the container orchestrator to perform internal load balancing, configure the
internal network, and perform other configuration tasks.

You can start and stop containers as needed.

With Azure Container Registry, you can register your containers inside Azure
boundaries to provide security, privacy, and proximity benefits.

AKS requires an understanding of how to use a container orchestrator.

For more information, see:

Overview of containers in Azure
Introduction to container registries in Azure

With Container Apps, you can build serverless microservices that are based on
containers. Container Apps:

Is optimized for running general purpose containers, especially applications that
span many microservices that are deployed in containers.

Is powered by Kubernetes and open-source technologies, like Dapr , Kubernetes
Event-driven Autoscaling (KEDA) , and Envoy .

Supports Kubernetes-style apps and microservices with features like service
discovery and traffic splitting.

Enables event-driven application architectures by supporting scaling that's based
on traffic and pulling from event sources like queues, including scale to zero.

Supports long-running processes and can run background tasks.

AKS considerations

Container Apps

https://azure.microsoft.com/overview/containers
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-intro
https://dapr.io/
https://keda.sh/
https://www.envoyproxy.io/
https://learn.microsoft.com/en-us/azure/container-apps/connect-apps
https://learn.microsoft.com/en-us/azure/container-apps/traffic-splitting
https://learn.microsoft.com/en-us/azure/container-apps/scale-app
https://learn.microsoft.com/en-us/azure/container-apps/background-processing

Container Apps doesn't provide direct access to the underlying Kubernetes APIs. If you
require access to the Kubernetes APIs and control plane, use AKS. If you want to build
Kubernetes-style applications and you don't require direct access to the native
Kubernetes APIs and cluster management, use Container Apps for a fully managed
experience. Container Apps is best suited for building container microservices.

For more information, see:

Container Apps overview
Quickstart: Deploy your first container app

Background jobs introduce more components and dependencies to the system,
which can increase the complexity and maintenance costs of the solution. For
example, background jobs might require a separate queue service, worker service,
monitoring service, and retry mechanism.

Background jobs can create challenges for data synchronization and process
coordination, especially if the background tasks depend on each other or on other
data sources. For example, background jobs might handle data consistency
problems, race conditions, deadlocks, or timeouts.

Background jobs might affect the user experience if the results of the background
tasks are presented to the user. For example, background jobs might require the
user to wait for a notification, refresh the page, or manually check the status of the
task. These behaviors can increase the complexity of the user interaction and
negatively affect the user experience.

Compensating Transaction pattern
Competing Consumers pattern
Leader Election pattern
Pipes and Filters pattern
Priority Queue pattern
Queue-Based Load Leveling pattern
Scheduler Agent Supervisor pattern

Container Apps considerations

Tradeoffs

Related links

https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/azure/container-apps/overview
https://learn.microsoft.com/en-us/azure/container-apps/get-started
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/architecture/patterns/leader-election
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/scheduler-agent-supervisor

Refer to the complete set of recommendations.

Reliability checklist

Reliability checklist

Recommendations for handling
transient faults
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:07 Strengthen the resiliency and recoverability of your workload by implementing self-
preservation and self-healing measures. Build capabilities into the solution by using
infrastructure-based reliability patterns and software-based design patterns to
handle component failures and transient errors. Build capabilities into the system to
detect solution component failures and automatically initiate corrective action
while the workload continues to operate at full or reduced functionality.

Related guides: Background jobs | Self-preservation

This guide describes the recommendations for handling transient faults in your cloud
applications. All applications that communicate with remote services and resources must
be sensitive to transient faults. This is especially true for applications that run in the
cloud, where, because of the nature of the environment and connectivity over the
internet, this type of fault is likely to be encountered more often. Transient faults include
the momentary loss of network connectivity to components and services, the temporary
unavailability of a service, and timeouts that occur when a service is busy. These faults
are often self-correcting, so, if the action is repeated after a suitable delay, it's likely to
succeed.

This article provides general guidance for transient fault handling. For information about
handling transient faults when you're using Azure services, see Retry guidance for Azure
services.

Transient faults can occur in any environment, on any platform or operating system, and
in any kind of application. For solutions that run on local on-premises infrastructure, the
performance and availability of the application and its components are typically
maintained via expensive and often underused hardware redundancy, and components
and resources are located close to each other. This approach makes failure less likely,
but transient faults can still occur, as can outages caused by unforeseen events like
external power supply or network issues, or by disaster scenarios.

Key design strategies

https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific

Cloud hosting, including private cloud systems, can offer higher overall availability by
using shared resources, redundancy, automatic failover, and dynamic resource allocation
across many commodity compute nodes. However, because of the nature of cloud
environments, transient faults are more likely to occur. There are several reasons for this:

Many resources in a cloud environment are shared, and access to these resources
is subject to throttling in order to protect the resources. Some services refuse
connections when the load rises to a specific level, or when a maximum
throughput rate is reached, to allow processing of existing requests and to
maintain performance of the service for all users. Throttling helps to maintain the
quality of service for neighbors and other tenants that use the shared resource.

Cloud environments use large numbers of commodity hardware units. They deliver
performance by dynamically distributing load across multiple computing units and
infrastructure components. They deliver reliability by automatically recycling or
replacing failed units. Because of this dynamic nature, transient faults and
temporary connection failures might occasionally occur.

There are often more hardware components, including network infrastructure like
routers and load balancers, between the application and the resources and services
that it uses. This additional infrastructure can occasionally introduce additional
connection latency and transient connection faults.

Network conditions between the client and the server might be variable, especially
when communication crosses the internet. Even in on-premises locations, heavy
traffic loads can slow communication and cause intermittent connection failures.

Transient faults can have a significant effect on the perceived availability of an
application, even if it's been thoroughly tested under all foreseeable circumstances. To
ensure that cloud-hosted applications operate reliably, you need to ensure that they can
respond to the following challenges:

The application must be able to detect faults when they occur and determine if the
faults are likely to be transient, are long-lasting, or are terminal failures. Different
resources are likely to return different responses when a fault occurs, and these
responses can also vary depending on the context of the operation. For example,
the response for an error when the application is reading from storage might differ
from the response for an error when it's writing to storage. Many resources and
services have well-documented transient-failure contracts. However, when such

Challenges

information isn't available, it can be difficult to discover the nature of the fault and
whether it's likely to be transient.

The application must be able to retry the operation if it determines that the fault is
likely to be transient. It also needs to keep track of the number of times the
operation is retried.

The application must use an appropriate strategy for retries. The strategy specifies
the number of times the application should retry, the delay between each attempt,
and the actions to take after a failed attempt. The appropriate number of attempts
and the delay between each one are often difficult to determine. The strategy
varies depending on the type of resource and on the current operating conditions
of the resource and the application.

The following guidelines can help you design suitable transient fault handling
mechanisms for your applications.

Many services provide an SDK or client library that contains a transient fault
handling mechanism. The retry policy it uses is typically tailored to the nature and
requirements of the target service. Alternatively, REST interfaces for services might
return information that can help you determine whether a retry is appropriate and
how long to wait before the next retry attempt.

You should use the built-in retry mechanism when one is available, unless you have
specific and well-understood requirements that make a different retry behavior
more appropriate.

Perform retry operations only when the faults are transient (typically indicated by
the nature of the error) and when there's at least some likelihood that the
operation will succeed when retried. There's no point in retrying operations that
attempt an invalid operation, like a database update to an item that doesn't exist
or a request to a service or resource that suffered a fatal error.

In general, implement retries only when you can determine the full effect of doing
so and when the conditions are well understood and can be validated. Otherwise,
let the calling code implement retries. Remember that the errors returned from

General guidelines

Determine if there's a built-in retry mechanism

Determine if the operation is suitable for retrying

resources and services outside your control might evolve over time, and you might
need to revisit your transient fault detection logic.

When you create services or components, consider implementing error codes and
messages that help clients determine whether they should retry failed operations.
In particular, indicate whether the client should retry the operation (perhaps by
returning an isTransient value) and suggest a suitable delay before the next retry
attempt. If you build a web service, consider returning custom errors that are
defined within your service contracts. Even though generic clients might not be
able to read these errors, they're useful in the creation of custom clients.

Optimize the retry count and the interval to the type of use case. If you don't retry
enough times, the application can't complete the operation and will probably fail.
If you retry too many times, or with too short an interval between tries, the
application might hold resources like threads, connections, and memory for long
periods, which adversely affects the health of the application.

Adapt values for the time interval and the number of retry attempts to the type of
operation. For example, if the operation is part of a user interaction, the interval
should be short and only a few retries should be attempted. By using this
approach, you can avoid making users wait for a response, which holds open
connections and can reduce availability for other users. If the operation is part of a
long running or critical workflow, where canceling and restarting the process is
expensive or time-consuming, it's appropriate to wait longer between attempts
and retry more times.

Keep in mind that determining the appropriate intervals between retries is the
most difficult part of designing a successful strategy. Typical strategies use the
following types of retry interval:

Exponential back-off. The application waits a short time before the first retry
and then exponentially increases the time between each subsequent retry. For
example, it might retry the operation after 3 seconds, 12 seconds, 30 seconds,
and so on.

Incremental intervals. The application waits a short time before the first retry,
and then incrementally increases the time between each subsequent retry. For
example, it might retry the operation after 3 seconds, 7 seconds, 13 seconds,
and so on.

Determine an appropriate retry count and interval

Regular intervals. The application waits for the same period of time between
each attempt. For example, it might retry the operation every 3 seconds.

Immediate retry. Sometimes a transient fault is brief, possibly caused by an
event like a network packet collision or a spike in a hardware component. In this
case, retrying the operation immediately is appropriate because it might
succeed if the fault is cleared in the time that it takes the application to
assemble and send the next request. However, there should never be more than
one immediate retry attempt. You should switch to alternative strategies, like
exponential back-off or fallback actions, if the immediate retry fails.

Randomization. Any of the retry strategies listed previously can include a
randomization to prevent multiple instances of the client sending subsequent
retry attempts at the same time. For example, one instance might retry the
operation after 3 seconds, 11 seconds, 28 seconds, and so on, while another
instance might retry the operation after 4 seconds, 12 seconds, 26 seconds, and
so on. Randomization is a useful technique that can be combined with other
strategies.

As a general guideline, use an exponential back-off strategy for background
operations, and use immediate or regular interval retry strategies for interactive
operations. In both cases, you should choose the delay and the retry count so that
the maximum latency for all retry attempts is within the required end-to-end
latency requirement.

Take into account the combination of all factors that contribute to the overall
maximum timeout for a retried operation. These factors include the time it takes
for a failed connection to produce a response (typically set by a timeout value in
the client), the delay between retry attempts, and the maximum number of retries.
The total of all these times can result in long overall operation times, especially
when you use an exponential delay strategy where the interval between retries
grows rapidly after each failure. If a process must meet a specific service-level
agreement (SLA), the overall operation time, including all timeouts and delays,
must be within the limits defined in the SLA.

Don't implement overly aggressive retry strategies. These are strategies that have
intervals that are too short or retries that are too frequent. They can have an
adverse effect on the target resource or service. These strategies might prevent the
resource or service from recovering from its overloaded state, and it will continue
to block or refuse requests. This scenario results in a vicious circle, where more and
more requests are sent to the resource or service. Consequently, its ability to
recover is further reduced.

Take into account the timeout of the operations when you choose retry intervals in
order to avoid launching a subsequent attempt immediately (for example, if the
timeout period is similar to the retry interval). Also, consider whether you need to
keep the total possible period (the timeout plus the retry intervals) below a specific
total time. If an operation has an unusually short or long timeout, the timeout
might influence how long to wait and how often to retry the operation.

Use the type of the exception and any data it contains, or the error codes and
messages returned from the service, to optimize the number of retries and the
interval between them. For example, some exceptions or error codes (like the HTTP
code 503, Service Unavailable, with a Retry-After header in the response) might
indicate how long the error might last, or that the service failed and won't respond
to any subsequent attempt.

In most cases, avoid implementations that include duplicated layers of retry code.
Avoid designs that include cascading retry mechanisms or that implement retry at
every stage of an operation that involves a hierarchy of requests, unless you have
specific requirements that require doing so. In these exceptional circumstances,
use policies that prevent excessive numbers of retries and delay periods, and make
sure you understand the consequences. For example, say one component makes a
request to another, which then accesses the target service. If you implement retry
with a count of three on both calls, there are nine retry attempts in total against
the service. Many services and resources implement a built-in retry mechanism.
You should investigate how you can disable or modify these mechanisms if you
need to implement retries at a higher level.

Never implement an endless retry mechanism. Doing so is likely to prevent the
resource or service from recovering from overload situations and to cause
throttling and refused connections to continue for a longer time. Use a finite
number of retries, or implement a pattern like Circuit Breaker to allow the service
to recover.

Never perform an immediate retry more than once.

Avoid using a regular retry interval when you access services and resources on
Azure, especially when you have a high number of retry attempts. The best
approach in this scenario is an exponential back-off strategy with a circuit-breaking
capability.

Avoid anti-patterns

https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

Prevent multiple instances of the same client, or multiple instances of different
clients, from sending retries simultaneously. If this scenario is likely to occur,
introduce randomization into the retry intervals.

Fully test your retry strategy under as wide a set of circumstances as possible,
especially when both the application and the target resources or services that it
uses are under extreme load. To check behavior during testing, you can:

Inject transient and nontransient faults into the service. For example, send
invalid requests or add code that detects test requests and responds with
different types of errors.

Create a mockup of the resource or service that returns a range of errors that
the real service might return. Cover all the types of errors that your retry
strategy is designed to detect.

For custom services that you create and deploy, force transient errors to occur
by temporarily disabling or overloading the service. (Don't attempt to overload
any shared resources or shared services in Azure.)

Use libraries or solutions that intercept and modify network traffic to replicate
unfavorable scenarios from your automated tests. For example, the tests can
add extra roundtrip times, drop packets, modify headers, or even change the
body of the request itself. Doing so enables deterministic testing of a subset of
the failure conditions, for transient faults and other types of failures.

When testing a client web application's resiliency to transient faults, use the
browser's developer tools or your testing framework's ability to mock or block
network requests.

Perform high load factor and concurrent tests to ensure that the retry
mechanism and strategy works correctly under these conditions. These tests
also help ensure that the retry doesn't have an adverse effect on the operation
of the client or cause cross-contamination between requests.

A retry policy is a combination of all the elements of your retry strategy. It defines
the detection mechanism that determines whether a fault is likely to be transient,
the type of interval to use (like regular, exponential back-off, and randomization),
the actual interval values, and the number of times to retry.

Test your retry strategy and implementation

Manage retry policy configurations

https://playwright.dev/docs/network#network-mocking
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/network/#block-requests

Implement retries in many places, even in the simplest application, and in every
layer of more complex applications. Rather than hard-coding the elements of each
policy at multiple locations, consider using a central point to store all policies. For
example, store values like the interval and retry count in application configuration
files, read them at runtime, and programmatically build the retry policies. Doing so
makes it easier to manage the settings and to modify and fine-tune the values in
order to respond to changing requirements and scenarios. However, design the
system to store the values rather than rereading a configuration file every time,
and use suitable defaults if the values can't be obtained from configuration.

Store the values that are used to build the retry policies at runtime in the
application's configuration system so that you can change them without needing
to restart the application.

Take advantage of built-in or default retry strategies that are available in the client
APIs that you use, but only when they're appropriate for your scenario. These
strategies are typically generic. In some scenarios, they might be all you need, but
in other scenarios they don't offer the full range of options to suit your specific
requirements. To determine the most appropriate values, you need to perform
testing to understand how the settings affect your application.

As part of your retry strategy, include exception handling and other
instrumentation that logs retry attempts. An occasional transient failure and retry
are expected and don't indicate a problem. Regular and increasing numbers of
retries, however, are often an indicator of a problem that might cause a failure or
that degrades application performance and availability.

Log transient faults as warning entries rather than as error entries so that
monitoring systems don't detect them as application errors that might trigger false
alerts.

Consider storing a value in your log entries that indicates whether retries are
caused by throttling in the service or by other types of faults, like connection
failures, so that you can differentiate them during analysis of the data. An increase
in the number of throttling errors is often an indicator of a design flaw in the
application or the need to switch to a premium service that offers dedicated
hardware.

Consider measuring and logging the overall elapsed times for operations that
include a retry mechanism. This metric is a good indicator of the overall effect of

Log and track transient and nontransient faults

transient faults on user response times, process latency, and the efficiency of
application use cases. Also log the number of retries that occur so you can
understand the factors that contribute to the response time.

Consider implementing a telemetry and monitoring system that can raise alerts
when the number and rate of failures, the average number of retries, or the overall
times elapsed before operations succeed is increasing.

Consider how to handle operations that continue to fail at every attempt.
Situations like this are inevitable.

Although a retry strategy defines the maximum number of times that an
operation should be retried, it doesn't prevent the application from repeating
the operation again with the same number of retries. For example, if an order
processing service fails with a fatal error that puts it out of action permanently,
the retry strategy might detect a connection timeout and consider it to be a
transient fault. The code retries the operation a specified number of times and
then gives up. However, when another customer places an order, the operation
is attempted again, even though it will fail every time.

To prevent continual retries for operations that continually fail, you should
consider implementing the Circuit Breaker pattern. When you use this pattern, if
the number of failures within a specified time window exceeds a threshold,
requests return to the caller immediately as errors, and there's no attempt to
access the failed resource or service.

The application can periodically test the service, on an intermittent basis and
with long intervals between requests, to detect when it becomes available. An
appropriate interval depends on factors like the criticality of the operation and
the nature of the service. It might be anything between a few minutes and
several hours. When the test succeeds, the application can resume normal
operations and pass requests to the newly recovered service.

In the meantime, you might be able to fall back to another instance of the
service (maybe in a different datacenter or application), use a similar service that
offers compatible (maybe simpler) functionality, or perform some alternative
operations based on the hope that the service will be available soon. For
example, it might be appropriate to store requests for the service in a queue or
data store and retry them later. Or you might be able to redirect the user to an
alternative instance of the application, degrade the performance of the

Manage operations that continually fail

https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

application but still offer acceptable functionality, or just return a message to
the user to indicate that the application isn't currently available.

When you're deciding on the values for the number of retries and the retry
intervals for a policy, consider whether the operation on the service or resource is
part of a long-running or multistep operation. It might be difficult or expensive to
compensate all the other operational steps that have already succeeded when one
fails. In this case, a very long interval and a large number of retries might be
acceptable as long as that strategy doesn't block other operations by holding or
locking scarce resources.

Consider whether retrying the same operation could cause inconsistencies in data.
If some parts of a multistep process are repeated and the operations aren't
idempotent, inconsistencies might occur. For example, if an operation that
increments a value is repeated, it produces an invalid result. Repeating an
operation that sends a message to a queue might cause an inconsistency in the
message consumer if the consumer can't detect duplicate messages. To prevent
these scenarios, design each step as an idempotent operation. For more
information, see Idempotency patterns .

Consider the scope of operations that are retried. For example, it might be easier
to implement retry code at a level that encompasses several operations and retry
them all if one fails. However, doing so might result in idempotency issues or
unnecessary rollback operations.

If you choose a retry scope that encompasses several operations, take into account
the total latency of all of them when you determine retry intervals, when you
monitor the elapsed times of the operation, and before you raise alerts for failures.

Consider how your retry strategy might affect neighbors and other tenants in a
shared application and when you use shared resources and services. Aggressive
retry policies can cause an increasing number of transient faults to occur for these
other users and for applications that share the resources and services. Likewise,
your application might be affected by the retry policies implemented by other
users of the resources and services. For business-critical applications, you might
want to use premium services that aren't shared. Doing so gives you more control
over the load and consequent throttling of these resources and services, which can
help to justify the extra cost.

Other considerations

https://blog.jonathanoliver.com/idempotency-patterns

Most Azure services and client SDKs provide a retry mechanism. However, these
mechanisms differ because each service has different characteristics and requirements,
and each retry mechanism is tuned to the specific service. This section summarizes the
retry mechanism features for some commonly used Azure services.

Service Retry capabilities Policy
configuration

Scope Telemetry
features

Microsoft
Entra ID

Native in the
Microsoft
Authentication
Library (MSAL)

Embedded into
the MSAL library

Internal None

Azure Cosmos
DB

Native in the
service

Not
configurable

Global TraceSource

Azure Data
Lake Storage

Native in the client Not
configurable

Individual operations None

Azure Event
Hubs

Native in the client Programmatic Client None

Azure IoT Hub Native in the client
SDK

Programmatic Client None

Azure Cache
for Redis

Native in the client Programmatic Client TextWriter

Azure
Cognitive
Search

Native in the client Programmatic Client ETW or
custom

Azure Service
Bus

Native in the client Programmatic NamespaceManager,
MessagingFactory, and
client

ETW

Azure Service
Fabric

Native in the client Programmatic Client None

Azure SQL
Database with
ADO.NET

Polly Declarative and
programmatic

Single statements or
blocks of code

Custom

SQL Database
with Entity
Framework

Native in the client Programmatic Global per AppDomain None

Azure facilitation

https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-active-directory
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#data-lake-store
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#event-hubs
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#iot-hub
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-cache-for-redis
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-search
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#service-bus
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#service-fabric
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-adonet
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#transient-fault-handling-with-polly
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-entity-framework-6

Service Retry capabilities Policy
configuration

Scope Telemetry
features

SQL Database
with Entity
Framework
Core

Native in the client Programmatic Global per AppDomain None

Azure Storage Native in the client Programmatic Client and individual
operations

TraceSource

See Issues and considerations in the Retry pattern article for further guidance on
tradeoffs and risks.

See Reliable web app pattern for .NET for an example that uses many of the patterns
discussed in this article. There's also a reference implementation on GitHub.

Circuit Breaker pattern
Compensating Transaction pattern
Idempotency patterns
Connection Resiliency
Inject mock services

Refer to the complete set of recommendations.

７ Note

For most of the Azure built-in retry mechanisms, there's currently no way to apply a
different retry policy for different types of errors or exceptions. You should
configure a policy that provides the optimum average performance and availability.
One way to fine-tune your policy is to analyze log files to determine the type of
transient faults that are occurring.

Tradeoffs

Example

Related links

Reliability checklist

https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#sql-database-using-entity-framework-core
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-storage
https://learn.microsoft.com/en-us/azure/architecture/patterns/retry#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/reliable-web-app/dotnet/apply-pattern
https://github.com/Azure/reliable-web-app-pattern-dotnet
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://blog.jonathanoliver.com/idempotency-patterns
https://learn.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests#inject-mock-services

Reliability checklist

Recommendations for self-healing and
self-preservation
Article • 12/01/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:07 Strengthen the resiliency and recoverability of your workload by implementing self-
preservation and self-healing measures. Build capabilities into the solution by using
infrastructure-based reliability patterns and software-based design patterns to
handle component failures and transient errors. Build capabilities into the system to
detect solution component failures and automatically initiate corrective action
while the workload continues to operate at full or reduced functionality.

Related guides: Background jobs | Transient faults

This guide describes the recommendations for building self-healing and self-
preservation capabilities into your application architecture to optimize reliability.

Self-preservation capabilities add resilience to your workload. They reduce the likelihood
of a full outage and allow your workload to operate in a degraded state while failed
components are recovered. Self-healing capabilities help you avoid downtime by
building in failure detection and automatic corrective actions to respond to different
failure types.

This guide describes design patterns that focus on self-preservation and self-healing.
Incorporate them into your workload to strengthen its resiliency and recoverability. If
you don't implement patterns, your apps are at risk of failure when inevitable problems
arise.

Definitions

Term Definition

Self-healing The ability of your workload to automatically resolve issues by recovering
affected components and if needed, failing over to redundant infrastructure.

Self-
preservation

The ability of your workload to be resilient against potential problems.

ﾉ Expand table

ﾉ Expand table

To design your workload for self-preservation, follow infrastructure and application
architecture design patterns to optimize your workload's resiliency. To minimize the
chance of experiencing a full application outage, increase the resiliency of your solution
by eliminating single points of failure and minimizing the blast radius of failures. The
design approaches in this article provide several options to strengthen the resilience of
your workload and meet your workload's defined reliability targets.

At the infrastructure level, a redundant architecture design should support your critical
flows, with resources deployed across availability zones or regions. Implement
autoscaling when possible. Autoscaling helps protect your workload against
unanticipated bursts in activity, further reinforcing your infrastructure.

Use the Deployment Stamps pattern or the Bulkhead pattern to minimize the blast
radius when problems arise. These patterns help to keep your workload available if an
individual component is unavailable. Use the following application design patterns in
combination with your autoscaling strategy.

Deployment Stamps pattern: Provision, manage, and monitor a varied group of
resources to host and operate multiple workloads or tenants. Each individual copy
is called a stamp, or sometimes a service unit, scale unit, or cell.

Bulkhead pattern: Partition service instances into different groups, known as pools,
based on the consumer load and availability requirements. This design helps to
isolate failures and allows you to sustain service functionality for some consumers,
even during a failure.

Avoid building monolithic applications in your application design. Use loosely coupled
services or microservices that communicate with each other via well-defined standards
to reduce the risk of extensive problems when malfunctions happen to a single
component. For example, you may standardize the use of a service bus to handle all
asynchronous communication. Standardizing communication protocols ensure that
applications design is consistent and simplified, which makes the workload more reliable
and easier to troubleshoot when malfunctions happen. When practical, prefer

Key design strategies

Self-preservation guidance

Infrastructure design guidance and patterns

Application design guidance and patterns

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead

asynchronous communication between components over synchronous communication
to minimize timeout issues, like dead-lettering. The following design patterns help you
organize your workload and define the communications between components in a way
that best meets your business requirements.

Ambassador pattern: Separate your business logic from your networking code and
resiliency logic. Create helper services that send network requests on behalf of a
consumer service or application. You can use this pattern to implement retry
mechanisms or circuit breaking.

Asynchronous Request-Reply pattern: Decouple back-end processing from a
front-end host if back-end processing needs to be asynchronous, but the front end
needs a clear response.

Cache-Aside pattern: Load data on demand from a data store into a cache. This
pattern can improve performance and help maintain consistency between data
that's held in the cache and data that's in the underlying data store.

Circuit Breaker pattern: Use circuit breakers to proactively determine whether to
allow an operation to proceed or to return an exception based on the number of
recent failures.

Claim Check pattern: Split a large message into a claim check and a payload. Send
the claim check to the messaging platform and store the payload in an external
service. This pattern allows large messages to be processed while protecting the
message bus and keeping the client from being overwhelmed or slowed down.

Competing Consumers pattern: Enable multiple concurrent consumers to process
messages that are received on the same messaging channel. A system can process
multiple messages concurrently, which optimizes throughput, improves scalability
and availability, and balances the workload.

Configure request timeouts: Configure request timeouts for calls to services or
databases. Database connection timeouts are typically set to 30 seconds.

Gatekeeper pattern: Protect applications and services by using a dedicated host
instance to broker requests between clients and the application or service. The
broker validates and sanitizes the requests and can provide an extra layer of
security to limit the system's attack surface.

Queue-Based Load Leveling pattern: Decouple the tasks from the service in your
solution by using a queue between them so they can each run asynchronously. Use
a queue as a buffer between a task and a service it invokes to help smooth
intermittent heavy loads that can cause the service to fail or the task to time out.

https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/app-design-error-handling#configure-request-timeouts
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

This pattern can help minimize the effect of peaks in demand on availability and
responsiveness for the task and the service.

Throttling pattern: Control the consumption of resources that are used by an
instance of an application, an individual tenant, or an entire service. This pattern
allows the system to continue to function and meet service-level agreements
(SLAs), even when an increase in demand places an extreme load on resources.

Transient Fault Handling pattern and Retry pattern: Implement a strategy to
handle transient failures to provide resiliency in your workload. Transient failures
are normal and expected occurrences in cloud environments. Typical causes of
transient faults include momentary loss-of-network connectivity, a dropped
database connection, or a timeout when a service is busy. For more information
about developing a retry strategy, see the transient fault handling guide in this
series.

Background jobs are an effective way to enhance the reliability of a system by
decoupling tasks from the user interface (UI). Implement a task as a background job if it
doesn't require user input or feedback and if it doesn't affect UI responsiveness.

Common examples of background jobs are:

CPU-intensive jobs, such as performing complex calculations or analyzing
structural models.
I/O-intensive jobs, such as running multiple storage operations or indexing large
files.
Batch jobs, such as updating data regularly or processing tasks at a specific time.
Long-running workflows, such as completing an order or provisioning services and
systems.

For more information, see Recommendations for background jobs.

To design your workload for self-healing, implement failure detection so automatic
responses are triggered and critical flows gracefully recover. Enable logging to provide
operational insights about the nature of the failure and the success of the recovery. The
approaches that you take to achieve self-healing for a critical flow depend on the
reliability targets that are defined for that flow and the flow's components and
dependencies.

Background jobs

Self-healing guidance

https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://learn.microsoft.com/en-us/azure/architecture/patterns/retry

At the infrastructure level, your critical flows should be supported by a redundant
architecture design with automated failover enabled for components that support it. You
can enable automated failover for the following types of services:

Compute resources: Azure Virtual Machine Scale Sets and most platform as a
service (PaaS) compute services can be configured for automatic failover.

Databases: Relational databases can be configured for automatic failover with
solutions like Azure SQL failover clusters, Always On availability groups, or built-in
capabilities with PaaS services. NoSQL databases have similar clustering capabilities
and built-in capabilities for PaaS services.

Storage: Use redundant storage options with automatic failover.

Block bad actors: If you throttle a client, it doesn't mean that client was acting
maliciously. It might mean that the client exceeded their service quota. But if a
client consistently exceeds their quota or otherwise behaves poorly, you might
block them. Define an out-of-band process for a client to request getting
unblocked.

Circuit Breaker pattern: If a failure persists after your retry mechanism is initiated,
you risk cascading failures resulting from a growing backlog of calls. A circuit
breaker that's designed to work with the retry mechanism limits the risk of
cascading failures by preventing the app from repeatedly trying to run an
operation that's likely to fail.

Compensating Transaction pattern: If you use an eventually consistent operation
that consists of a series of steps, implement the Compensating Transaction pattern.
If one or more of the steps fail, you can use this pattern to undo the work that the
steps performed.

Degrade gracefully: Sometimes you can't work around a problem, but you can
provide reduced functionality. Consider an application that shows a catalog of
books. If the application can't retrieve the thumbnail image for the cover, it might
show a placeholder image. Entire subsystems might be noncritical for the
application. For example, for an e-commerce website, showing product
recommendations is probably less critical than processing orders. Graceful
degradation can also include automatic failover operations. When a database

Infrastructure design guidance

Application design guidance and patterns

https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

automatically fails over to a replica due to a problem with the primary instance,
performance is degraded for a short time.

Leader Election pattern: When you need to coordinate a task, use leader election
to select a coordinator so one coordinator isn't a single point of failure. If the
coordinator fails, a new one is selected. Rather than implement a leader election
algorithm from scratch, consider an off-the-shelf solution, such as ZooKeeper .

Test patterns: Include testing of the patterns that you implement as part of your
standard testing procedures.

Use checkpoints for long-running transactions: Checkpoints can provide
resiliency if a long-running operation fails. When the operation restarts, for
example if it's picked up by another virtual machine, it can resume from the last
checkpoint. Consider implementing a mechanism that records state information
about the task at regular intervals. Save this state in durable storage that can be
accessed by any instance of the process running the task. If the process is shut
down, the work that it was performing can be resumed from the last checkpoint by
using another instance. There are libraries that provide this functionality, such as
NServiceBus and MassTransit . They transparently persist state, where the
intervals are aligned with the processing of messages from queues in Azure Service
Bus.

Another approach to self-healing is the use of automated actions that are triggered by
your monitoring solution when pre-determined health status changes are detected. For
example, if your monitoring detects that a web app isn't responding to requests, you
can build automation through a PowerShell script to restart the app service. Depending
on your team's skill set and preferred development technologies, use a webhook or
function to build more complex automation actions. See the Event-based cloud
automation reference architecture for an example of using a function to respond to
database throttling. Using automated actions can help you recover quickly and minimize
the necessity of human intervention.

Most Azure services and client SDKs include a retry mechanism. But they differ because
each service has different characteristics and requirements, so each retry mechanism is
tuned to a specific service. For more information, see Recommendations for transient
fault handling.

Automated self-healing actions

Azure facilitation

https://learn.microsoft.com/en-us/azure/architecture/patterns/leader-election
https://zookeeper.apache.org/doc/current/recipes.html#sc_leaderElection
https://docs.particular.net/nservicebus/sagas
https://masstransit-project.com/usage/sagas
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/serverless/cloud-automation

Use Azure Monitor action groups for notifications, like email, voice or SMS, and to
trigger automated actions. When you're notified of a failure, trigger an Azure
Automation runbook, Azure Event Hubs, an Azure function, a logic app, or a webhook to
perform an automated healing action.

Familiarize yourself with the considerations for each pattern. Ensure that the pattern is
suitable for your workload and business requirements before implementation.

Ambassador pattern
Asynchronous Request-Reply pattern
Bulkhead pattern
Cache-Aside pattern
Claim Check pattern
Compensating Transaction pattern
Competing Consumers pattern
Configure request timeouts
Gatekeeper pattern
Leader Election pattern
Queue-Based Load Leveling pattern
Retry pattern
Throttling pattern
Transient Fault Handling pattern

For example use cases of some patterns, see the reliable web app pattern for .NET.
Follow these steps to deploy a reference implementation .

Reliability patterns
Cloud design patterns
Design for self-healing

Refer to the complete set of recommendations.

Considerations

Example

Related links

Reliability checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers#issues-and-considerations
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/app-design-error-handling#configure-request-timeouts
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/leader-election#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/retry#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling#issues-and-considerations
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults#other-considerations
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/reliable-web-app/dotnet/apply-pattern
https://github.com/Azure/reliable-web-app-pattern-dotnet
https://learn.microsoft.com/en-us/azure/architecture/patterns
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/self-healing

Reliability checklist

Recommendations for designing a
reliability testing strategy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:08 Test for resiliency and availability scenarios by applying the principles of chaos
engineering in your test and production environments. Use testing to ensure that
your graceful degradation implementation and scaling strategies are effective by
performing active malfunction and simulated load testing.

This guide describes the recommendations for designing a reliability testing strategy to
validate and optimize the reliability of your workload. Reliability testing focuses on the
resiliency and availability of your workload, specifically the critical flows that you identify
when you design your solution. This guide provides general testing guidance and
guidance that's specific to fault injection and chaos engineering.

Definitions

Term Definition

Availability The amount of time that an application workload runs in a healthy state without
significant downtime.

Chaos
engineering

The practice of subjecting applications and services to real-world stresses and
failures. The goal of chaos engineering is to build and validate resilience to
unreliable conditions and missing dependencies.

Fault injection The act of introducing an error to a system to test the resiliency of the system.

Recoverability A synonym for resiliency.

Resiliency An application workload's ability to withstand and recover from failure modes.

Routinely perform testing to validate existing thresholds, targets, and assumptions.
When a major change occurs in your workload, run regular testing. Perform most
testing in testing and staging environments. It's also beneficial to run a subset of

Key design strategies

General testing guidance

tests against the production system. Plan a one-to-one parity of key test
environments with the production environment.

Automate testing to help ensure consistent test coverage and reproducibility.
Automate common testing tasks and integrate them into your build processes.
Manually testing software is tedious and susceptible to error, but you can conduct
manual exploratory testing. For cases in which you need to develop automated
testing, use manual testing to determine the scope of the tests to develop.

Adopt a shift-left testing approach to perform resiliency and availability testing
early in the development cycle.

Adapt a simple documentation format, so it's easy for everyone to understand the
process and the results of every regular test.

Share the documented results with the appropriate teams, like operational teams,
technology leadership, business stakeholders, and disaster recovery stakeholders.
The results should inform the refinement of reliability targets, such as service-level
objectives (SLOs), service-level agreements (SLAs), recovery time objectives (RTOs),
and recovery point objectives (RPOs).

Create a regular testing cadence for your backups. Restore the data to isolated
systems to help ensure that the backups are valid and that restores are functional.

Document and share recovery time metrics with your disaster recovery
stakeholders to ensure that expectations for recovery are appropriate.

Use industry standard deployment testing procedures to help ensure that you have
an automated, predictable, and efficient deployment process.

Test your workload's ability to withstand transient failures. For more information,
see Recommendations for handling transient faults.

Test your workload's ability to respond to changes in load patterns and spikes in
usage. Use this information to help you test your scaling strategy. For information
about load and stress testing, see Recommendations for testing.

Test how your workload handles failures in dependent services or other
dependencies by using fault injection.

Test and validate how your self-healing and self-preservation design responds to
malfunctions. Test automated and manual recovery operations.

Test your disaster recovery plan to respond to catastrophic failures and other major
incidents.

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing

Test your workload's ability to degrade gracefully and minimize the blast radius of
component malfunction by using fault injection.

When your workload is offline due to planned maintenance or an unplanned outage,
you have a unique opportunity to perform testing and improve your understanding of
your workload. The following sections provide recommendations for each scenario.

When you have planned maintenance windows for updates or patches, you can test
components and flows that aren't involved in the maintenance work. Perform tests
without the potential risk of unexpectedly degrading the workload or taking it offline
altogether. If you have enough time during your maintenance window, you can also test
the components and flows that are involved in the maintenance after the maintenance
work is complete.

Use every outage incident as an opportunity to learn more about your workload and
improve its resiliency by following these steps, ordered by priority:

Get the workload back online for your customers. To do so, you might perform a
workaround for the issue, resolve the issue, or initiate the recovery processes.

Determine the root cause of the outage and address it. If you can fix the root cause
as part of the investigation, document the root cause and the measures that you
took to fix it. If the issue requires taking an additional maintenance window at a
later time, ensure that your mitigation measures can handle the expected load by
thoroughly testing it. Ensure that you have set up sufficient monitoring to cover
your mitigation measures.

If applicable, look for the same issue, or configuration weaknesses that might be
affected by similar issues, across all the components in your workload. Use this
opportunity to proactively address those components. Consult your incident
history to detect patterns of similar issues across your workload.

Use your findings to improve your testing strategy. Ensure that you have
successfully addressed the root cause and similar problems by directly testing the
same failure.

Take advantage of planned and unplanned outages

Planned maintenance

Unplanned outage

Fault-injection testing follows the principles of chaos engineering by highlighting the
workload's ability to react to component failures. Perform fault-injection testing in pre-
production and production environments. Apply testing to infrastructure and
application layers. Apply the information that you learned Recommendations for
performing failure mode analysis to ensure that you test only faults that you prioritize
and that you have mitigation strategies that address faults. The key guidelines of chaos
engineering are:

Be proactive. Don't wait for failures to happen. Try to anticipate failures by
conducting chaos experiments to discover and fix issues before they affect your
production environment.

Embrace failure. Accept and learn from the failures that occur in your system. See
failures as a natural part of complex systems and use them as opportunities to
learn and improve your system's reliability.

Break the system. Deliberately inject faults or stress into your system to test its
resilience. Simulate real-world failures or disruptions to test and improve your
workload's recovery capabilities.

Identify and address single points of failure early. As you test, consult and update
your failure mode analysis to validate and address faults in your documentation.
Apply reliability approaches, like redundancy and segmentation, to increase your
workload's availability and minimize downtime.

Install guardrails and graceful mitigation. Implement safety measures, like the
Circuit Breaker pattern or the Throttling pattern, to increase availability. Implement
graceful degradation approaches that enable business continuity during failures.

Minimize the blast radius. Implement fault isolation strategies to help ensure that,
even if a failure occurs, its scope is limited. The system continues to function with
minimal effect on your customers.

Build immunity. Use chaos engineering experiments to improve your workload's
ability to prevent and recover from failures.

Chaos engineering is an integral part of workload team culture and an ongoing practice,
not a short-term tactical effort in response to a single outage. Follow this standard
method when you design your chaos experiments:

1. Start with a hypothesis. Each experiment should have a clear goal, like testing a
given flow's ability to withstand the loss of a particular component.

Fault-injection and chaos engineering guidance

2. Measure baseline behavior. Ensure that you have consistent reliability and
performance metrics for the flow and components involved in a given experiment
to compare with the degraded state when running your experiment.

3. Inject a fault or faults. The experiment should intentionally target specific
components that can be recovered quickly and you should have an informed
expectation of the effect that the fault injection will cause to help control the
experiment's blast radius.

4. Monitor the resulting behavior. Gather telemetry about the individual flow
components and the end-to-end flow behavior that the experiment targets to
properly understand the effects of the fault. Compare the metrics that you gather
with the baseline metrics for a full picture of the fault injection results.

5. Document the process and observations. Keeping detailed records of your
experiments will inform the future decisions about the workload design, ensuring
that you address the gaps that have been revealed over time.

6. Identify and act on the result. Plan for remediation steps that can be added to your
workload backlog as improvements. Ensure that design improvement plans are
reviewed and tested in nonproduction environments according to the same
processes as other deployments.

Periodically validate your process, architecture choices, and code to quickly detect
technical debt, integrate new technologies, and adapt to changing requirements.

When you conduct fault-injection experiments, you:

Confirm that monitoring is in place and alerts are set up.
Validate your process of assigning a directly responsible individual (DRI) to take
ownership of an incident.
Ensure that your documentation and investigation processes are up to date.

Integrate the following recommendations and considerations to optimize your chaos
testing strategy:

Challenge system assumptions. With testing, you try to improve the resiliency of
your workload and your workload design strategies. Look for opportunities to
inject faults into components and flows that you assume are reliable based on past
experiences. They might not be reliable in your new workload.

Validate change, such as the topology, platform, and resources. Without thorough
testing, including fault-injection testing, you might have an incomplete picture of
your workload after changes are made. For example, you might inadvertently
introduce new dependencies or broken existing dependencies in ways that aren't
immediately apparent.

Use SLA buffers. Limit chaos testing to stay within your SLAs and avoid potential
reputation or financial effects from outages. Your flow and component recovery
targets help define the scope of your testing.

Establish an error budget as an investment in chaos and fault injection. Your error
budget is the difference between achieving 100 percent of the SLO and achieving
the agreed upon SLO.

Stop the experiment if it goes beyond scope. Unknown results are an expected
outcome of chaos experiments. Strive to achieve balance between collecting
substantial result data and affecting as few production users as possible.

Work closely with development teams to ensure the relevance of the injected
failures. Use past incidents or issues as a guide. Examine dependencies and
evaluate the results when you remove those dependencies.

Identify and document previously undiscovered dependencies between different
components within your workload that are revealed through chaos testing.

Adjust recovery plans as necessary to account for dependencies that are
discovered during chaos testing.

Use the results from your experiments and tests as the basis for new experiments
and tests. As unexpected behaviors arise, new tests might target those behaviors
directly and give you the opportunity to design remediation strategies for them.

Azure Test Plans is an easy-to-use, browser-based test management solution that
provides all the capabilities required for planned manual testing, user acceptance
testing, exploratory testing, and gathering feedback from stakeholders.

Azure Chaos Studio Preview is a managed service that uses chaos engineering to help
you measure, understand, and improve your cloud application and service resilience.

Fault-injection testing in production can be disruptive and can potentially cause
downtime. Be transparent with stakeholders about this possibility and ensure that you
have safeguards in place to terminate experiments and roll back plans to quickly reverse
the failures that you introduce.

Azure facilitation

Tradeoffs

https://learn.microsoft.com/en-us/azure/devops/test/overview
https://azure.microsoft.com/services/chaos-studio

To guard against unintended outages in production, ensure that you plan for sufficient
redundancy and that your stakeholders understand the cost tradeoff.

Backup and disaster recovery for Azure applications
Checklist for reliability testing
Test applications for availability and resiliency

Refer to the complete set of recommendations.

Related links

Reliability checklist

Reliability checklist

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/backup-and-recovery
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/testing

Recommendations for designing a
disaster recovery strategy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:09 Implement structured, tested, and documented business continuity and disaster
recovery (BCDR) plans that align with the recovery targets. Plans must cover all
components and the system as a whole.

This guide describes recommendations for designing a reliable disaster recovery
strategy for a workload. To meet internal service-level objectives (SLOs) or even a
service-level agreement (SLA) that you have guaranteed for your customers, you must
have a robust and reliable disaster recovery strategy. Failures and other major issues are
expected. Your preparations to deal with these incidents determine how much your
customers can trust your business to reliably deliver for them. A disaster recovery
strategy is the backbone of preparation for major incidents.

Definitions

Term Definition

Failover The automated and/or manual shifting of production workload traffic from an
unavailable region to an unaffected geographical region.

Failback The automated and/or manual shifting of production workload traffic from a failover
region back to the primary region.

This guide assumes that you have already performed the following tasks as part of your
reliability planning:

Identify critical and noncritical flows.

Perform failure mode analysis (FMA) for your flows.

Identify reliability targets.

Design for reliability through redundancy, scaling, self-preservation, and self-
healing.

Key design strategies

Design a robust testing strategy.

A reliable disaster recovery (DR) strategy builds on the foundation of a reliable workload
architecture. Address reliability at every stage of building your workload to ensure that
necessary pieces for optimized recovery are in place before you start designing your DR
strategy. This foundation ensures that your workload's reliability targets, like recovery
time objective (RTO) and recovery point objective (RPO), are realistic and achievable.

The cornerstone of a reliable DR strategy for a workload is the DR plan. Your plan should
be a living document that's routinely reviewed and updated as your environment
evolves. Present the plan to the appropriate teams (operations, technology leadership,
and business stakeholders) regularly (every six months, for example). Store it in a highly
available, secure data store such as OneDrive for Business.

Follow these recommendations to develop your DR plan:

Clearly define what constitutes a disaster and therefore requires activation of the
DR plan.

Disasters are large-scale issues. They might be regional outages, outages of
services like Microsoft Entra ID or Azure DNS, or severe malicious attacks like
ransomware attacks or DDoS attacks.

Identify failure modes that aren't considered disasters, such as the failure of a
single resource, so that operators don't mistakenly invoke their DR escalations.

Build the DR plan on your FMA documentation. Ensure that your DR plan captures
the failure modes and mitigation strategies for outages that are defined as
disasters. Update both your DR plan and your FMA documents in parallel so
they're accurate when the environment changes or when testing uncovers
unexpected behaviors.

Whether you develop DR plans for nonproduction environments depends on
your business requirements and cost impacts. For example, if you offer quality-
assurance (QA) environments to certain customers for prerelease testing, you
might want to include those environments in your DR planning.

Clearly define roles and responsibilities within the workload team and understand
any related external roles within your organization. Roles should include:

The party responsible for declaring a disaster.

The party responsible for declaring incident closure.

Maintain a disaster-recovery plan

Operations roles.

Testing and validation roles.

Internal and external communications roles.

Retrospective and root-cause analysis (RCA) lead roles.

Define the escalation paths that the workload team must follow to ensure that
recovery status is communicated to stakeholders.

Capture component-level recovery procedures, data estate-level recovery, and
workload-wide recovery processes. Include a prescribed order of operations to
ensure that components are recovered in the least impactful way. For example,
recover and check databases before you recover the application.

Detail each component-level recovery procedure as a step-by-step guide.
Include screenshots if possible.

Define your team's responsibilities versus your cloud hosting provider's
responsibilities. For example, Microsoft is responsible for restoring a PaaS
(platform as a service), but you're responsible for rehydrating data and applying
your configuration to the service.

Include prerequisites for running the procedure. For example, list the required
scripts or credentials that need to be gathered.

Capture the root cause of the incident and perform mitigation before you start
recovery. For example, if the cause of the incident is a security issue, mitigate
that issue before you recover the affected systems in your failover environment.

Depending on the redundancy design for your workload, you might need to do
significant post-failover work before you make the workload available to your
customers again. Post-failover work could include DNS updates, database
connection string updates, and traffic routing changes. Capture all of the post-
failover work in your recovery procedures.

７ Note

Your redundancy design might allow you to automatically recover from major
incidents fully or partially, so be sure that your plan includes processes and
procedures around these scenarios. For example, if you have a fully active-
active design that spans availability zones or regions, you might be able to
transparently fail over automatically after an availability zone or regional

If you need to redeploy your app in the failover environment, use tooling to
automate the deployment process as much as possible. Ensure that your DevOps
pipelines have been predeployed and configured in the failover environments so
that you can immediately begin your app deployments. Use automated end-to-
end deployments, with manual approval gates where necessary, to ensure a
consistent and efficient deployment process. The full deployment duration needs
to align with your recovery targets.

When a stage of the deployment process requires manual intervention,
document the manual steps. Clearly define roles and responsibilities.

Automate as much of the procedure as you can. In your scripts, use declarative
programming because it allows idempotence. When you can't use declarative
programming, be mindful about developing and running your custom code. Use
retry logic and circuit breaker logic to avoid wasting time on scripts that are stuck
on a broken task. Because you run these scripts only in emergencies, you don't
want incorrectly developed scripts to cause more damage or slow down your
recovery process.

Separate the failback plan from the DR plan to avoid potential confusion with the
DR procedures. The failback plan should follow all of the DR plan's development
and maintenance recommendations and should be structured in the same way.
Any manual steps that were necessary for failover should be mirrored in the

outage and minimize the steps in your DR plan that need to be performed.
Similarly, if you designed your workload by using deployment stamps, you
might suffer only a partial outage if the stamps are deployed zonally. In this
case, your DR plan should cover how to recover stamps in unaffected zones or
regions.

７ Note

Automation poses risks. Trained operators need to monitor the automated
processes carefully and intervene if any process encounters issues. To
minimize the risk that automation will react to false positives, be thorough in
your DR drills. Test all phases of the plan. Simulate detection to generate
alerting, and then move through the entire recovery procedure.

Remember that your DR drills should validate or inform updates to your
recovery target metrics. If you find that your automation is susceptible to false
positives, you might need to increase your failover thresholds.

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

failback plan. Failback might happen quickly after failover, or it might take days or
weeks. Consider failback as separate from failover.

The need to fail back is situational. If you're routing traffic between regions for
performance reasons, failing back the load originally in the failed-over region is
important. In other cases, you might have designed your workload to function
fully regardless of which production environment it's located in at any time.

A DR testing practice is as important as a well-developed DR plan. Many industries have
compliance frameworks that require a specified number of DR drills to be performed
regularly. Regardless of your industry, regular DR drills are paramount to your success.

Follow these recommendations for successful DR drills:

Perform at least one production DR drill per year. Tabletop (dry run) drills or
nonproduction drills help ensure that the involved parties are familiar with their
roles and responsibilities. These drills also help operators build familiarity ("muscle
memory") by following recovery processes. But only production drills truly test the
validity of the DR plan and the RTO and RPO metrics. Use your production drills to
time recovery processes for components and flows to ensure that the RTO and
RPO targets that have been defined for your workload are achievable. For
functions that are out of your control, like DNS propagation, ensure that the RTO
and RPO targets for the flows that involve those functions account for possible
delays beyond your control.

Use tabletop drills not only to build familiarity for seasoned operators but also to
educate new operators about DR processes and procedures. Senior operators
should take time to let new operators perform their role and should watch for
improvement opportunities. If a new operator is hesitant or confused by a step in a
procedure, review that procedure to ensure that it's clearly written.

Many Azure products have built-in failover capabilities. Familiarize yourself with these
capabilities and include them in recovery procedures.

For IaaS (infrastructure as a service) systems, use Azure Site Recovery to automate
failover and recovery. Refer to the following articles for common PaaS products:

Azure App Service

Conduct disaster-recovery drills

Azure facilitation

https://learn.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://learn.microsoft.com/en-us/azure/app-service/overview-disaster-recovery

Azure Container Apps

Azure Kubernetes Service

Azure SQL Database

Azure Event Hubs

Azure Cache for Redis

Performing DR drills in production can cause unexpected catastrophic failures. Be sure
to test recovery procedures in nonproduction environments during your initial
deployments.

Give your team as much maintenance time as possible during drills. When planning for
maintenance time, use the recovery metrics that you capture during testing as minimum
time necessary allotments.

As your DR drill practices mature, you learn which procedures you can run in parallel
and which you must run in sequence. Early in your drill practices, assume that every
procedure must be run in sequence and that you need extra time in each step to handle
unanticipated issues.

See the DR for Azure data platform series for guidance about preparing an enterprise
data estate for DR.

Recommendations for designing for redundancy

Recommendations for highly available multi-region design

Recommendations for using availability zones and regions

Refer to the complete set of recommendations.

Tradeoffs

Example

Related links

Reliability checklist

https://learn.microsoft.com/en-us/azure/container-apps/disaster-recovery?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-multi-region
https://learn.microsoft.com/en-us/azure/azure-sql/database/disaster-recovery-guidance
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-geo-dr?tabs=portal
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-how-to-geo-replication
https://learn.microsoft.com/en-us/azure/architecture/data-guide/disaster-recovery/dr-for-azure-data-platform-overview

Reliability checklist

Recommendations for designing a
reliable monitoring and alerting
strategy
Article • 02/15/2024

Applies to this Azure Well-Architected Framework Reliability checklist
recommendation:

RE:10 Measure and publish the solution's health indicators. Continuously capture uptime
and other reliability data from across the workload and also from individual
components and key flows.

This guide describes the recommendations for designing a reliable monitoring and
alerting strategy. Implement this strategy to keep your operations teams informed of
your environment's health status and ensure that you meet the established reliability
targets for your workload.

Definitions

Term Definition

Metrics Numerical values that are collected at regular intervals. Metrics describe some
aspects of a system at a particular time.

Resource
logs

Data that a system generates. It provides information about the state of the
system.

Traces Data that provides information about the path that a request travels through
services and components.

Before you create a monitoring and alerting strategy, perform the following tasks for
your workload as part of your reliability planning:

Identify critical and noncritical flows.

Perform failure mode analysis (FMA) for your flows.

ﾉ Expand table

ﾉ Expand table

Key design strategies

Identify reliability targets.

Design for reliability by implementing redundancy, scaling, self-preservation, and
self-healing.

Design a robust testing strategy.

Create a monitoring and alerting strategy to ensure that your workload operates
reliably. A monitoring and alerting strategy provides awareness to your operations
teams so they're notified of changes in your workload's condition and can quickly
address issues. Build a robust and reliable monitoring strategy on the health models
that you develop for your critical flows and the workloads that the critical flows
comprise. The health model defines healthy, degraded, and unhealthy states. Design
your monitoring posture to immediately catch changes in these states. When health
states change from healthy to degraded or unhealthy, alerting mechanisms trigger the
automatic corrective measures and the alerts to the appropriate teams.

Implement the following recommendations to design a monitoring and alerting strategy
that meets the requirements of your business.

Understand the difference between metrics, logs, and traces.

Enable logging for all cloud resources. Use automation and governance in your
deployments to enable diagnostic logging throughout your environment.

Forward all diagnostic logs to a centralized data sink and analytics platform, like a
Log Analytics workspace. If you have regional data sovereignty requirements, you
must use local data sinks in the regions that are subject to those requirements.

 Tradeoff: There are cost implications for storing and querying logs. Notice how
your log analysis and retention affects your budget, and determine the best balance
of utilization to meet your requirements. For more information, see Best practices
for cost optimization.

If your workloads are subject to one or more compliance frameworks, some of the
component logs that handle sensitive information are also subject to those
frameworks. Send the relevant component logs to a security information and event
management (SIEM) system, like Microsoft Sentinel.

Create a log retention policy that incorporates long-term retention requirements
that the compliance frameworks impose on your workload.

General guidance

https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-platform-metrics
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-platform-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/app/asp-net-trace-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/resource-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices-logs#cost-optimization
https://learn.microsoft.com/en-us/azure/sentinel/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-retention-archive

Use structured logging for all log messages to optimize querying the log data.

Configure alerts to trigger when values pass critical thresholds that correlate to a
health model state change, like green to yellow or red.

Threshold configuration is a practice of continuous improvement. As your
workload evolves, the thresholds you define might change. In some cases, dynamic
thresholds are a good option for your monitoring strategy.

Consider using alerts when states improve, such as red to yellow or red to green,
so that the operations teams can track these events for future reference.

Visualize the real-time health of your environment by using custom dashboards.

Use data that's gathered during incidents to continuously improve your health
models and your monitoring and alerting strategy.

Incorporate cloud platform monitoring and alerting services, including:

Platform-level health, like Azure Service Health.

Resource-level health, like Azure Resource Health.

Incorporate purpose-built advanced monitoring and analytics that your cloud
provider offers, like Azure Monitor insight tools.

Implement backup and recovery monitoring to capture:

The data replication status to ensure that your workload achieves recovery
within the target recovery point objective (RPO).

Successful and failed backups and recoveries.

The recovery duration to inform your disaster recovery planning.

Create health probes or check functions and run them regularly from outside the
application. Ensure that you test from multiple locations that are geographically
close to your customers.

Log data while the application runs in the production environment. You need
sufficient information to diagnose the cause of issues in the production state.

Log events at service boundaries. Include a correlation ID that flows across service
boundaries. If a transaction flows through multiple services and one of them fails,

Monitor applications

https://stackify.com/what-is-structured-logging-and-why-developers-need-it
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-dynamic-thresholds
https://learn.microsoft.com/en-us/azure/azure-monitor/visualize/tutorial-logs-dashboards
https://learn.microsoft.com/en-us/azure/service-health/service-health-overview
https://learn.microsoft.com/en-us/azure/service-health/resource-health-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/overview#insights
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring

the correlation ID helps you track requests across your application and pinpoint
why the transaction failed.

Use asynchronous logging. Synchronous logging operations sometimes block your
application code, which causes requests to back up as logs are written. Use
asynchronous logging to preserve availability during application logging.

Separate application logging from auditing. Audit records are commonly
maintained for compliance or regulatory requirements and must be complete. To
avoid dropped transactions, maintain audit logs separate from diagnostic logs.

Use telemetry correlation to ensure that you can map transactions through the
end-to-end application and critical system flows. This process is vital for
performing root cause analysis (RCA) for failures. Collect platform-level metrics and
logs, such as CPU percentage, network in, network out, and disk operations per
second, from the application to inform a health model and to detect and predict
issues. This approach can help distinguish between transient and nontransient
faults.

Use white box monitoring to instrument the application with semantic logs and
metrics. Collect application-level metrics and logs, such as memory consumption
or request latency, from the application to inform a health model and to detect
and predict issues.

Use black box monitoring to measure platform services and the resulting customer
experience. Black box monitoring tests externally visible application behavior
without knowledge of the internals of the system. This approach is common for
measuring customer-centric service-level indicators (SLIs), service-level objectives
(SLOs), and service-level agreements (SLAs).

Monitor the availability metrics of your storage containers. When this metric drops
below 100 percent, it indicates failing writes. Transient drops in availability might
happen when your cloud provider manages the load. Track the availability trends
to determine if there's an issue with your workload.

７ Note

For more information about application monitoring, see Health Endpoint
Monitoring pattern.

Monitor data and storage

https://learn.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing-telemetry-correlation
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring#issues-and-considerations

In some cases, a drop in the availability metrics for a storage container indicates a
bottleneck in the compute layer that's associated with the storage container.

There are many metrics to monitor for databases. In the context of reliability, the
important metrics to monitor include:

Query duration

Timeouts

Wait times

Memory pressure

Locks

Azure Monitor is a comprehensive monitoring solution that's used to collect,
analyze, and respond to monitoring data from your cloud and on-premises
environments.

Log Analytics is a tool in the Azure portal that's used to edit and run log queries
against data in the Log Analytics workspace.

Application Insights is an extension of Azure Monitor. It provides application
performance monitoring (APM) features.

Azure Monitor insights are advanced analytics tools that help monitor Azure
services, like virtual machines, application services, and containers. Insights are
built on top of Azure Monitor and Log Analytics.

Azure Monitor for SAP solutions is an Azure-native monitoring product for SAP
landscapes that run on Azure.

Azure Policy helps to enforce organizational standards and to assess compliance at
scale.

Azure Business Continuity Center gives you insights into your business continuity
estate. As you apply the approaches given for business continuity and disaster
recovery (BCDR), use Azure Business Continuity Center to centralize management
of business continuity protection across Azure and hybrid workloads. Azure
Business Continuity Center pinpoints resources that lack proper protection (via
backup or disaster recovery) and takes corrective actions. The tool facilitates

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/insights-overview
https://learn.microsoft.com/en-us/azure/sap/monitor/about-azure-monitor-sap-solutions
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/business-continuity-center/business-continuity-center-overview

Feedback

Was this page helpful?

unified monitoring and lets you establish governance and auditing compliance
through Azure Policy, all conveniently accessible in one location.

For multiple workspace best practices, see Design a Log Analytics workspace
architecture.

For examples of real-world monitoring solutions, see Web application monitoring on
Azure and Baseline architecture for an Azure Kubernetes Service cluster.

Alerting for DevOps
Alerting for operations
Monitoring and diagnostics guidance
Web application monitoring on Azure

Refer to the complete set of recommendations.

Example

Related links

Reliability checklist

Reliability checklist

 Yes No

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/monitoring/app-monitoring
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks#monitor-and-collect-metrics
https://learn.microsoft.com/en-us/azure/well-architected/devops/alerts
https://learn.microsoft.com/en-us/azure/well-architected/devops/monitor-alerts
https://learn.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/monitoring/app-monitoring

Security quick links
Apply security guidance to your architecture to help ensure the confidentiality, integrity,
and availability of your data and systems.

Learn key points

ｆ QUICKSTART

Design principles

Checklist

Tradeoffs

Security patterns

Azure Well-Architected Review assessment

ｄ TRAINING

Security

ｑ VIDEO

Defense in depth security in Azure

Review design principles

ｐ CONCEPT

Plan your security readiness

Design to protect confidentiality

Design to protect integrity

Design to protect availability

Sustain and evolve your security posture

Create a security foundation

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-security/
https://learn.microsoft.com/en-us/shows/azure-videos/defense-in-depth-security-in-azure

ｃ HOW-TO GUIDE

Establish a security baseline

Improve the security of your development lifecycle

Classify data

Monitor workload security

Model threats

Protect workload assets

ｃ HOW-TO GUIDE

Segment components

Manage identities and access

Protect the network

Use encryption

Harden resources

Guard application secrets

Validate and improve security

ｃ HOW-TO GUIDE

Perform security testing

Respond to incidents

Explore related resources

ｉ REFERENCE

Microsoft Defender for Cloud: Azure security recommendations

Microsoft Defender for Cloud: AWS recommendations

Microsoft Defender for Cloud: Google Cloud recommendations

https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference-aws
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference-gcp

Azure security documentation

Microsoft cloud security benchmark

https://learn.microsoft.com/en-us/azure/security
https://learn.microsoft.com/en-us/security/benchmark/azure/introduction

Security design principles
Article • 11/15/2023

A Well-Architected workload must be built with a zero-trust approach. A secure
workload is resilient to attacks and incorporates the interrelated security principles of
confidentiality, integrity, and availability (also known as the CIA triad) in addition to
meeting business goals. Any security incident has the potential to become a major
breach that damages the brand and reputation of the workload or organization. To
measure the security efficacy of your overall strategy for a workload, start with these
questions:

Do your defensive investments provide meaningful cost and friction to prevent
attackers from compromising your workload?

Will your security measures be effective in restricting the blast radius of an
incident?

Do you understand how controlling the workload could be valuable for an
attacker? Do you understand the impact to your business if the workload and its
data are stolen, unavailable, or tampered with?

Can the workload and operations quickly detect, respond to, and recover from
disruptions?

As you design your system, use the Microsoft Zero Trust model as the compass to
mitigate security risks:

Verify explicitly so that only trusted identities perform intended and allowed
actions that originate from expected locations. This safeguard makes it harder for
attackers to impersonate legitimate users and accounts.

Use least-privilege access for the right identities, with the right set of
permissions, for the right duration, and to the right assets. Limiting permissions
helps keep attackers from abusing permissions that legitimate users don't even
need.

Assume breach of security controls and design compensating controls that limit
risk and damage if a primary layer of defense fails. Doing so helps you to defend
your workload better by thinking like an attacker who's interested in success
(regardless of how they get it).

Security isn't a one-time effort. You must implement this guidance on a recurring basis.
Continuously improve your defenses and security knowledge to help keep your

workload safe from attackers who are constantly gaining access to innovative attack
vectors as they're developed and added to automated attack kits.

The design principles are intended to establish an ongoing security mindset to help you
continuously improve the security posture of your workload as the attempts of attackers
continuously evolve. These principles should guide the security of your architecture,
design choices, and operational processes. Start with the recommended approaches and
justify the benefits for a set of security requirements. After you set your strategy, drive
actions by using the Security checklist as your next step.

If these principles aren't applied properly, a negative impact on business operations and
revenue can be expected. Some consequences might be obvious, like penalties for
regulatory workloads. Others might not be so obvious and could lead to ongoing
security problems before they're detected.

In many mission-critical workloads, security is the primary concern, alongside reliability,
given that some attack vectors, like data exfiltration, don't affect reliability. Security and
reliability can pull a workload in opposite directions because security-focused design
can introduce points of failure and increase operational complexity. The effect of
security on reliability is often indirect, introduced by way of operational constraints.
Carefully consider tradeoffs between security and reliability.

By following these principles, you can improve security effectiveness, harden workload
assets, and build trust with your users.

 Strive to adopt and implement security practices in architectural design decisions and
operations with minimal friction.

As a workload owner, you have a shared responsibility with the organization to protect
assets. Create a security readiness plan that's aligned with business priorities. It will lead
to well-defined processes, adequate investments, and appropriate accountabilities. The
plan should provide the workload requirements to the organization, which also shares
responsibility for protecting assets. Security plans should factor into your strategy for
reliability, health modeling, and self-preservation.

In addition to organizational assets, the workload itself needs to be protected from
intrusion and exfiltration attacks. All facets of Zero Trust and the CIA triad should be
factored into the plan.

Plan your security readiness

ﾉ Expand table

Functional and non-functional requirements, budget constraints, and other
considerations shouldn't restrict security investments or dilute assurances. At the same
time, you need to engineer and plan security investments with those constraints and
restrictions in mind.

Approach Benefit

Use segmentation as a strategy to plan
security boundaries in the workload
environment, processes, and team structure
to isolate access and function.

Your segmentation strategy should be
driven by business requirements. You can
base it on criticality of components, division
of labor, privacy concerns, and other factors.

You'll be able to minimize operational friction by
defining roles and establishing clear lines of
responsibility. This exercise also helps you identify
the level of access for each role, especially for
critical-impact accounts.

Isolation enables you to limit exposure of
sensitive flows to only roles and assets that need
access. Excessive exposure could inadvertently
lead to information flow disclosure.

To summarize, you'll be able to right-size security
efforts based on the needs of each segment.

Continuously build skills through role-
based security training that meets the
requirements of the organization and the
use cases of the workload.

A highly skilled team can design, implement, and
monitor security controls that remain effective
against attackers, who constantly look for new
ways to exploit the system.

Organization-wide training typically focuses on
developing a broader skill set for securing the
common elements. However, with role-based
training, you focus on developing deep expertise
in the platform offerings and security features that
address workload concerns.

You need to implement both approaches to
defend against adversaries through good design
and effective operations.

Make sure there's an incident response
plan for your workload.

Use industry frameworks that define the
standard operating procedure for
preparedness, detection, containment,
mitigation, and post-incident activity.

At the time of crisis, confusion must be avoided.

If you have a well-documented plan, responsible
roles can focus on execution without wasting time
on uncertain actions. Also, a comprehensive plan
can help you ensure that all remediation
requirements are fulfilled.

Strengthen your security posture by
understanding the security compliance

Clarity about compliance requirements will help
you design for the right security assurances and

ﾉ Expand table

Approach Benefit

requirements that are imposed by
influences outside the workload team, like
organizational policies, regulatory
compliance, and industry standards.

prevent non-compliance issues, which could lead
to penalties.

Industry standards can provide a baseline and
influence your choice of tools, policies, security
safeguards, guidelines, risk-management
approaches, and training.

If you know that the workload adheres to
compliance, you'll be able to instill confidence in
your user base.

Define and enforce team-level security
standards across the lifecycle and
operations of the workload.

Strive for consistent practices in operations
like coding, gated approvals, release
management, and data protection and
retention.

Defining good security practices can minimize
negligence and the surface area for potential
errors. The team will optimize efforts and the
outcome will be predictable because approaches
are made more consistent.

Observing security standards over time will enable
you to identify opportunities for improvement,
possibly including automation, which will
streamline efforts further and increase consistency.

Align your incident response with the
Security Operation Center (SOC)
centralized function in your organization.

Centralizing incident response functions enables
you to take advantage of specialized IT
professionals who can detect incidents in real time
to address potential threats as quickly as possible.

 Prevent exposure to privacy, regulatory, application, and proprietary information
through access restrictions and obfuscation techniques.

Workload data can be classified by user, usage, configuration, compliance, intellectual
property, and more. That data can't be shared or accessed beyond the established trust
boundaries. Efforts to protect confidentiality should focus on access controls, opacity,
and keeping an audit trail of activities that pertain to data and the system.

Design to protect confidentiality

ﾉ Expand table

ﾉ Expand table

Approach Benefit

Implement strong access controls
that grant access only on a need-
to-know basis.

Least privilege.

The workload will be protected from unauthorized access
and prohibited activities. Even when access is from trusted
identities, the access permissions and exposure time will be
minimized because the communication path is open for a
limited period.

Classify data based on its type,
sensitivity, and potential risk.
Assign a confidentiality level for
each.

Include system components that
are in scope for the identified
level.

Verify explicitly.

This evaluation helps you right-size security measures.

You'll also be able to identify data and components that have
a high potential impact and/or exposure to risk. This
exercise adds clarity to your information protection strategy
and helps ensure agreement.

Safeguard your data at rest, in
transit, and during processing by
using encryption. Base your
strategy on the assigned
confidentiality level.

Assume breach.

Even if an attacker gets access, they won't be able to read
properly encrypted sensitive data.

Sensitive data includes configuration information that's used
to gain further access inside the system. Data encryption can
help you contain risks.

Guard against exploits that might
cause unwarranted exposure of
information.

Verify explicitly.

It's crucial to minimize vulnerabilities in authentication and
authorization implementations, code, configurations,
operations, and those that stem from the social habits of the
system's users.

Up-to-date security measures enable you to block known
security vulnerabilities from entering the system. You can
also mitigate new vulnerabilities that can appear over time
by implementing routine operations throughout the
development cycle, continuously improving security
assurances.

Guard against data exfiltration
that results from malicious or
inadvertent access to data.

Assume breach.

You'll be able to contain blast radius by blocking
unauthorized data transfer. Additionally, controls applied to
networking, identity, and encryption will protect data at
various layers.

Approach Benefit

Maintain the level of
confidentiality as data flows
through various components of
the system.

Assume breach.

Enforcing confidentiality levels throughout the system
enables you to provide a consistent level of hardening.
Doing so can prevent vulnerabilities that might result from
moving data to a lower security tier.

Maintain an audit trail of all types
of access activities.

Assume breach.

Audit logs support faster detection and recovery in case of
incidents and help with ongoing security monitoring.

 Prevent corruption of design, implementation, operations, and data to avoid
disruptions that can stop the system from delivering its intended utility or cause it to
operate outside the prescribed limits. The system should provide information assurance
throughout the workload lifecycle.

The key is to implement controls that prevent tampering of business logic, flows,
deployment processes, data, and even the lower stack components, like the operating
system and boot sequence. Lack of integrity can introduce vulnerabilities that can lead
to breaches in confidentiality and availability.

Approach Benefit

Implement strong access controls that
authenticate and authorize access to the
system.

Minimize access based on privilege, scope,
and time.

Least privilege.

Depending on the strength of the controls, you'll
be able to prevent or reduce risks from
unapproved modifications. This helps ensure
that data is consistent and trustworthy.

Minimizing access limits the extent of potential
corruption.

Continuously protect against vulnerabilities
and detect them in your supply chain to
block attackers from injecting software faults

Assume breach.

Knowing the origin of software and verifying its

Design to protect integrity

ﾉ Expand table

ﾉ Expand table

Approach Benefit

into your infrastructure, build system, tools,
libraries, and other dependencies.

Supply chain should scan for vulnerabilities
during build time and runtime.

authenticity throughout the lifecycle will provide
predictability. You'll know about vulnerabilities
well in advance so that you can proactively
remediate them and keep the system secure in
production.

Establish trust and verify by using
cryptography techniques like attestation,
code signing, certificates, and encryption.

Protect those mechanisms by allowing
reputable decryption.

Verify explicitly, least privilege.

You'll know that changes to data or access to the
system is verified by a trusted source.

Even if encrypted data is intercepted in transit by
a malicious actor, the actor won't be able to
unlock or decipher the content. You can use
digital signatures to ensure that the data wasn't
tampered with during transmission.

Ensure backup data is immutable and
encrypted when data is replicated or
transferred.

Verify explicitly.

You'll be able to recover data with confidence
that backup data wasn't changed at rest,
inadvertently or maliciously.

Avoid or mitigate system implementations
that allow your workload to operate outside
its intended limits and purposes.

Verify explicitly.

When your system has strong safeguards that
check whether usage aligns with its intended
limits and purposes, the scope for potential
abuse or tampering of your compute,
networking, and data stores is reduced.

 Prevent or minimize system and workload downtime and degradation in the event of
a security incident by using strong security controls. You must maintain data integrity
during the incident and after the system recovers.

You need to balance availability architecture choices with security architecture choices.
The system should have availability guarantees to ensure that users have access to data
and that data is reachable. From a security perspective, users should operate within the
allowed access scope, and the data must be trusted. Security controls should block bad
actors, but they shouldn't block legitimate users from accessing the system and data.

Design to protect availability

ﾉ Expand table

Approach Benefit

Prevent compromised identities
from misusing access to gain
control of the system.

Check for overly pervasive scope
and time limits to minimize risk
exposure.

Least privilege.

This strategy mitigates the risks of excessive, unnecessary,
or misused access permissions on crucial resources. Risks
include unauthorized modifications and even the deletion
of resources. Take advantage of the platform-provided
just-in-time (JIT), just-enough-access (JEA), and time-based
security modes to replace standing permissions wherever
possible.

Use security controls and design
patterns to prevent attacks and
code flaws from causing resource
exhaustion and blocking access.

Verify explicitly.

The system won't experience downtime caused by
malicious actions, like distributed denial of service (DDoS)
attacks.

Implement preventative measures
for attack vectors that exploit
vulnerabilities in application code,
networking protocols, identity
systems, malware protection, and
other areas.

Assume breach.

Implement code scanners, apply the latest security patches,
update software, and protect your system with effective
antimalware on an ongoing basis.

You'll be able to reduce the attack surface to ensure
business continuity.

Prioritize security controls on the
critical components and flows in
the system that are susceptible to
risk.

Assume breach, verify explicitly.

Regular detection and prioritization exercises can help you
apply security expertise to the critical aspects of the
system. You'll be able to focus on the most likely and
damaging threats and start your risk mitigation in areas
that need the most attention.

Apply at least the same level of
security rigor in your recovery
resources and processes as you do
in the primary environment,
including security controls and
frequency of backup.

Assume breach.

You should have a preserved safe system state available in
disaster recovery. If you do, you can fail over to a secure
secondary system or location and restore backups that
won't introduce a threat.

A well-designed process can prevent a security incident
from hindering the recovery process. Corrupted backup
data or encrypted data that can't be deciphered can slow
down recovery.

ﾉ Expand table

 Incorporate continuous improvement and apply vigilance to stay ahead of attackers
who are continuously evolving their attack strategies.

Your security posture must not degrade over time. You must continually improve
security operations so that new disruptions are handled more efficiently. Strive to align
improvements with the phases defined by industry standards. Doing so leads to better
preparedness, reduced time to incident detection, and effective containment and
mitigation. Continuous improvement should be based on lessons learned from past
incidents.

It's important to measure your security posture, enforce policies to maintain that
posture, and regularly validate your security mitigations and compensating controls in
order to continuously improve your security posture in the face of evolving threats.

Approach Benefit

Create and maintain a comprehensive
asset inventory that includes classified
information about resources, locations,
dependencies, owners, and other
metadata that's relevant to security.

As much as possible, automate inventory
to derive data from the system.

A well-organized inventory provides a holistic view
of the environment, which puts you in an
advantageous position against attackers, especially
during post-incident activities.

It also creates a business rhythm to drive
communication, upkeep of critical components, and
the decommissioning of orphaned resources.

Perform threat modeling to identify and
mitigate potential threats.

You'll have a report of attack vectors prioritized by
their severity level. You'll be able to identify threats
and vulnerabilities quickly and set up
countermeasures.

Regularly capture data to quantify your
current state against your established
security baseline and set priorities for
remediations.

Take advantage of platform-provided
features for security posture
management and the enforcement of

You need accurate reports that bring clarity and
consensus to focus areas. You'll be able to
immediately execute technical remediations,
starting with the highest priority items. You'll also
identify gaps, which provide opportunities for
improvement.

Implementing enforcement helps prevent violations

Sustain and evolve your security posture

ﾉ Expand table

ﾉ Expand table

Approach Benefit

compliance imposed by external and
internal organizations.

and regressions, which preserves your security
posture.

Run periodic security tests that are
conducted by experts external to the
workload team who attempt to ethically
hack the system.

Perform routine and integrated
vulnerability scanning to detect exploits
in infrastructure, dependencies, and
application code.

These tests enable you to validate security defenses
by simulating real-world attacks by using
techniques like penetration testing.

Threats can be introduced as part of your change
management. Integrating scanners into the
deployment pipelines enables you to automatically
detect vulnerabilities and even quarantine usage
until the vulnerabilities are removed.

Detect, respond, and recover with swift
and effective security operations.

The primary benefit of this approach is that it
enables you to preserve or restore the security
assurances of the CIA triad during and after an
attack.

You need to be alerted as soon as a threat is
detected so that you can start your investigations
and take appropriate actions.

Conduct post-incident activities like root-
cause analyses, postmortems, and
incident reports.

These activities provide insight into the impact of the
breach and into resolution measures, which drives
improvements in defenses and operations.

Get current, and stay current.

Stay current on updates, patching, and
security fixes.

Continuously evaluate the system and
improve it based on audit reports,
benchmarking, and lessons from testing
activities. Consider automation, as
appropriate.

Use threat intelligence powered by
security analytics for dynamic detection of
threats.

At regular intervals, review the workload's
conformance to Security Development
Lifecycle (SDL) best practices.

You'll be able to ensure that your security posture
doesn't degrade over time.

By integrating findings from real-world attacks and
testing activities, you'll be able to combat attackers
who continuously improve and exploit new
categories of vulnerabilities.

Automation of repetitive tasks decreases the chance
of human error that can create risk.

SDL reviews bring clarity around security features.
SDL can help you maintain an inventory of workload
assets and their security reports, which cover origin,
usage, operational weaknesses, and other factors.

Next steps

Security checklist

Design review checklist for Security
Article • 11/14/2023

This checklist presents a set of security recommendations to help you ensure your
workload is secure and aligned with the Zero Trust model. If you haven't checked the
following boxes and considered the tradeoffs, then your design might be at risk.
Carefully consider all of the points covered in the checklist to gain confidence in your
workload's security.

 Code Recommendation

☐ SE:01 Establish a security baseline that's aligned to compliance requirements, industry
standards, and platform recommendations. Regularly measure your workload
architecture and operations against the baseline to sustain or improve your security
posture over time.

☐ SE:02
SE:02

Maintain a secure development lifecycle by using a hardened, mostly automated,
and auditable software supply chain. Incorporate a secure design by using threat
modeling to safeguard against security-defeating implementations.

☐ SE:03 Classify and consistently apply sensitivity and information type labels on all
workload data and systems involved in data processing. Use classification to influence
workload design, implementation, and security prioritization.

☐ SE:04 Create intentional segmentation and perimeters in your architecture design and in
the workload's footprint on the platform. The segmentation strategy must include
networks, roles and responsibilities, workload identities, and resource organization.

☐ SE:05 Implement strict, conditional, and auditable identity and access management
(IAM) across all workload users, team members, and system components. Limit
access exclusively to as necessary. Use modern industry standards for all
authentication and authorization implementations. Restrict and rigorously audit
access that's not based on identity.

☐ SE:06 Isolate, filter, and control network traffic across both ingress and egress flows. Apply
defense-in-depth principles by using localized network controls at all available
network boundaries across both east-west and north-south traffic.

☐ SE:07 Encrypt data by using modern, industry-standard methods to guard confidentiality
and integrity. Align the encryption scope with data classifications, and prioritize
native platform encryption methods.

☐ SE:08 Harden all workload components by reducing extraneous surface area and
tightening configurations to increase attacker cost.

Checklist

 Code Recommendation

☐ SE:09 Protect application secrets by hardening their storage and restricting access and
manipulation and by auditing those actions. Run a reliable and regular rotation
process that can improvise rotations for emergencies.

☐ SE:10 Implement a holistic monitoring strategy that relies on modern threat detection
mechanisms that can be integrated with the platform. Mechanisms should reliably
alert for triage and send signals into existing SecOps processes.

☐ SE:11 Establish a comprehensive testing regimen that combines approaches to prevent
security issues, validate threat prevention implementations, and test threat detection
mechanisms.

☐ SE:12 Define and test effective incident response procedures that cover a spectrum of
incidents, from localized issues to disaster recovery. Clearly define which team or
individual runs a procedure.

We recommend that you review the Security tradeoffs to explore other concepts.

Next steps

Security tradeoffs

Security tradeoffs
Article • 11/14/2023

Security provides confidentiality, integrity, and availability assurances of a workload's
system and its users' data. Security controls are required for the workload and for the
software development and operational components of the system. When teams design
and operate a workload, they can almost never compromise on security controls.

During the design phase of a workload, it's important to consider how decisions based
on the Security design principles and the recommendations in the Design review
checklist for Security might influence the goals and optimizations of other pillars.
Certain security decisions might benefit some pillars but constitute tradeoffs for others.
This article describes example tradeoffs that a workload team might encounter when
establishing security assurances.

 Tradeoff: Increased complexity. The Reliability pillar prioritizes simplicity and
recommends that points of failure are minimized.

Some security controls can increase the risk of misconfiguration, which can lead to
service disruption. Examples of security controls that can introduce
misconfiguration include network traffic rules, identity providers, virus scanning
exclusions, and role-based or attribute-based access control assignments.

Increased segmentation usually results in a more complex environment in terms of
resource and network topology and operator access. This complexity can lead to
more points of failure in processes and in workload execution.

Workload security tooling is often incorporated into many layers of a workload's
architecture, operations, and runtime requirements. These tools might affect
resiliency, availability, and capacity planning. Failure to account for limitations in
the tooling can lead to a reliability event, like SNAT port exhaustion on an egress
firewall.

 Tradeoff: Increased critical dependencies. The Reliability pillar recommends
minimizing critical dependencies. A workload that minimizes critical dependencies,
especially external ones, has more control over its points of failure.

Security tradeoffs with Reliability

The Security pillar requires a workload to explicitly verify identities and actions.
Verification occurs via critical dependencies on key security components. If those
components aren't available or if they malfunction, verification might not complete. This
failure puts the workload in a degraded state. Some examples of these critical single-
point-of-failure dependencies are:

Ingress and egress firewalls.
Certificate revocation lists.
Accurate system time provided by a Network Time Protocol (NTP) server.
Identity providers, like Microsoft Entra ID.

 Tradeoff: Increased complexity of disaster recovery. A workload must reliably
recover from all forms of disaster.

Security controls might affect recovery time objectives. This effect can be caused
by the additional steps that are needed to decrypt backed up data or by
operational access delays created by site reliability triage.

Security controls themselves, for example secret vaults and their contents or edge
DDoS protection, need to be part of the disaster recovery plan of the workload and
must be validated via recovery drills.

Security or compliance requirements might limit data residency options or access
control restrictions for backups, potentially further complicating recovery by
segmenting even offline replicas.

 Tradeoff: Increased rate of change. A workload that experiences runtime
change is exposed to more risk of reliability impact due to that change.

Stricter patching and update policies lead to more changes in a workload's
production environment. This change comes from sources like these:

Application code being released more frequently because of updates to libraries
or updates to base container images
Increased routine patching of operating systems
Staying current with versioned applications or data platforms
Applying vendor patches to software in the environment

Rotation activities for keys, service principal credentials, and certificates increase
the risk of transient issues due to the timing of the rotation and clients using the
new value.

 Tradeoff: Additional infrastructure. One approach to cost optimizing a
workload is to look for ways to reduce the diversity and number of components and
increase density.

Some workload components or design decisions exist only to protect the security
(confidentiality, integrity, and availability) of systems and data. These components,
although they enhance the security of the environment, also increase costs. They must
also be subject to cost optimization themselves. Some example sources for these
security-centric additional resources or licensing costs are:

Compute, network, and data segmentation for isolation, which sometimes involves
running separate instances, preventing co-location and reducing density.
Specialized observability tooling, like a SIEM that can perform aggregation and
threat intelligence.
Specialized networking appliances or capabilities, like firewalls or distributed
denial-of-service prevention.
Data classification tools that are required for capturing sensitivity and information-
type labels.
Specialized storage or compute capabilities to support encryption at rest and in
transit, like an HSM or confidential-compute functionality.
Dedicated testing environments and testing tools to validate that security controls
are functioning and to uncover previously undiscovered gaps in coverage.

The preceding items often also exist outside of production environments, in
preproduction and disaster recovery resources.

 Tradeoff: Increased demand on infrastructure. The Cost Optimization pillar
prioritizes driving down demand on resources to enable the use of cheaper SKUs,
fewer instances, or reduced consumption.

Premium SKUs: Some security measures in cloud and vendor services that can
benefit the security posture of a workload might only be found in more expensive
SKUs or tiers.

Log storage: High fidelity security monitoring and audit data that provide broad
coverage increase storage costs. Security observability data is also often stored for
longer periods of time than would typically be needed for operational insights.

Security tradeoffs with Cost Optimization

Increased resource consumption: In-process and on-host security controls can
introduce additional demand for resources. Encryption for data at rest and in
transit can also increase demand. Both scenarios can require higher instance
counts or larger SKUs.

 Tradeoff: Increased process and operational costs. Personnel process costs
are part of the overall total cost of ownership and are factored into a workload's
return on investment. Optimizing these costs is a recommendation of the Cost
Optimization pillar.

A more comprehensive and strict patch management regime leads to an increase
in time and money spent on these routine tasks. This increase is often coupled with
the expectation of investing in preparedness for ad hoc patching for zero-day
exploits.

Stricter access controls to reduce the risk of unauthorized access can lead to more
complex user management and operational access.

Training and awareness for security tools and processes take up employee time
and also incur costs for materials, instructors, and possibly training environments.

Complying with regulations might necessitate additional investments for audits
and generating compliance reporting.

Planning for and conducting drills for security-incident response preparedness
takes time.

Time needs to be allocated for designing and performing routine and ad hoc
processes that are associated with security, like key or certificate rotation.

The security validation of the SDLC usually requires specialized tools. Your
organization might need to pay for these tools. Prioritizing and remediating issues
found during testing also takes time.

Hiring third-party security practitioners to perform white-box testing or testing
that's performed without the knowledge of a system's internal workings
(sometimes known as black-box testing), including penetration testing, incurs costs.

 Tradeoff: Complications in observability and serviceability. Operational
Excellence requires architectures to be serviceable and observable. The most

Security tradeoffs with Operational Excellence

serviceable architectures are those that are the most transparent to everyone
involved.

Security benefits from extensive logging that provides high fidelity insight into the
workload for alerting on deviations from baselines and for incident response. This
logging can generate a significant volume of logs, which can make it harder to
provide insights that are targeted at reliability or performance.

When compliance guidelines for data masking are followed, specific segments of
logs or even large amounts of tabular data are redacted to protect confidentiality.
The team needs to evaluate how this observability gap might affect alerting or
hinder incident response.

Strong resource segmentation increases the complexity of observability by
requiring additional cross-service distributed tracing and correlation for capturing
flow traces. The segmentation also increases the surface area of compute and data
to service.

Some security controls impede access by design. During incident response, these
controls can slow down workload operators' emergency access. Therefore, incident
response plans need to include more emphasis on planning and drills in order to
reach acceptable efficacy.

 Tradeoff: Decreased agility and increased complexity. Workload teams
measure their velocity so that they can improve the quality, frequency, and
efficiency of delivery activities over time. Workload complexity factors into the effort
and risk involved in operations.

Stricter change control and approval policies to reduce the risk of introducing
security vulnerabilities can slow down the development and safe deployment of
new features. However, the expectation of addressing security updates and
patching can increase demand for more frequent deployments. Additionally,
human-gated approval policies in operational processes can make it more difficult
to automate those processes.

Security testing results in findings that need to be prioritized, potentially blocking
planned work.

Routine, ad hoc, and emergency processes might require audit logging to meet
compliance requirements. This logging increases the rigidity of running the
processes.

Workload teams might increase the complexity of identity management activities
as the granularity of role definitions and assignments is increased.

An increased number of routine operational tasks that are associated with security,
like certificate management, increases the number of processes to automate.

 Tradeoff: Increased coordination efforts. A team that minimizes external
points of contact and review can control their operations and timeline more
effectively.

As external compliance requirements from the larger organization or from external
entities increase, the complexity of achieving and proving compliance with auditors
also increases.

Security requires specialized skills that workload teams don't typically have. Those
proficiencies are often sourced from the larger organization or from third parties.
In both cases, coordination of effort, access, and responsibility needs to be
established.

Compliance or organizational requirements often require maintained
communication plans for responsible disclosure of breaches. These plans must be
factored into security coordination efforts.

 Tradeoff: Increased latency and overhead. A performant workload reduces
latency and overhead.

Inspection security controls, like firewalls and content filters, are located in the
flows that they secure. Those flows are therefore subject to additional verification,
which adds latency to requests.

Identity controls require each invocation of a controlled component to be verified
explicitly. This verification consumes compute cycles and might require network
traversal for authorization.

Encryption and decryption require dedicated compute cycles. These cycles increase
the time and resources consumed by those flows. This increase is usually
correlated with the complexity of the algorithm and the generation of high-
entropy and diverse initialization vectors (IVs).

Security tradeoffs with Performance Efficiency

As the extensiveness of logging increases, the impact on system resources and
network bandwidth for streaming those logs can also increase.

Resource segmentation frequently introduces network hops in a workload's
architecture.

 Tradeoff: Increased chance of misconfiguration. Reliably meeting
performance targets depends on predictable implementations of the design.

A misconfiguration or overextension of security controls can impact performance
because of inefficient configuration. Examples of security control configurations that can
affect performance include:

Firewall rule ordering, complexity, and quantity (granularity).

Failing to exclude key files from file integrity monitors or virus scanners. Neglecting
this step can lead to lock contention.

Web application firewalls performing deep packet inspection for languages or
platforms that are irrelevant for the components that are being protected.

Explore the tradeoffs for the other pillars:

Reliability tradeoffs
Cost Optimization tradeoffs
Operational Excellence tradeoffs
Performance Efficiency tradeoffs

Related links

Cloud design patterns that support
security
Article • 02/14/2024

When you design workload architectures, you should use industry patterns that address
common challenges. Patterns can help you make intentional tradeoffs within workloads
and optimize for your desired outcome. They can also help mitigate risks that originate
from specific problems, which can affect reliability, performance, cost, and operations.
Those risks might be indicative of lack of security assurances, if left unattended can pose
significant risks to the business. These patterns are backed by real-world experience, are
designed for cloud scale and operating models, and are inherently vendor agnostic.
Using well-known patterns as a way to standardize your workload design is a
component of operational excellence.

Many design patterns directly support one or more architecture pillars. Design patterns
that support the Security pillar prioritize concepts like segmentation and isolation,
strong authorization, uniform application security, and modern protocols.

The following table summarizes cloud design patterns that support the goals of security.

Pattern Summary

Ambassador Encapsulates and manages network communications by offloading cross-
cutting tasks that are related to network communication. The resulting
helper services initiate communication on behalf of the client. This
mediation point provides an opportunity to augment security on network
communications.

Backends for
Frontends

Individualizes the service layer of a workload by creating separate services
that are exclusive to a specific frontend interface. Because of this
separation, the security and authorization in the service layer that support
one client can be tailored to the functionality provided by that client,
potentially reducing the surface area of an API and lateral movement
among different backends that might expose different capabilities.

Bulkhead Introduces intentional and complete segmentation between components
to isolate the blast radius of malfunctions. You can also use this strategy to
contain security incidents to the compromised bulkhead.

Design patterns for security

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead

Pattern Summary

Claim Check Separates data from the messaging flow, providing a way to separately
retrieve the data related to a message. This pattern supports keeping
sensitive data out of message bodies, instead keeping it managed in a
secured data store. This configuration enables you to establish stricter
authorization to support access to the sensitive data from services that are
expected to use the data, but remove visibility from ancillary services like
queue monitoring solutions.

Federated Identity Delegates trust to an identity provider that's external to the workload for
managing users and providing authentication for your application. By
externalizing user management and authentication, you can get evolved
capabilities for identity-based threat detection and prevention without
needing to implement these capabilities in your workload. External
identity providers use modern interoperable authentication protocols.

Gatekeeper Offloads request processing that's specifically for security and access
control enforcement before and after forwarding the request to a backend
node. Adding a gateway into the request flow enables you to centralize
security functionality like web application firewalls, DDoS protection, bot
detection, request manipulation, authentication initiation, and
authorization checks.

Gateway
Aggregation

Simplifies client interactions with your workload by aggregating calls to
multiple backend services in a single request. This topology often reduces
the number of touch points a client has with a system, which reduces the
public surface area and authentication points. The aggregated backends
can stay fully network-isolated from clients.

Gateway Offloading Offloads request processing to a gateway device before and after
forwarding the request to a backend node. Adding a gateway into the
request flow enables you to centralize security functionality like web
application firewalls and TLS connections with clients. Any offloaded
functionality that's platform-provided already offers enhanced security.

Publisher/Subscriber Decouples components in an architecture by replacing direct client-to-
service communication with communication via an intermediate message
broker or event bus. This replacement introduces an important security
segmentation boundary that enables queue subscribers to be network-
isolated from the publisher.

Quarantine Ensures external assets meet a team-agreed quality level before being
authorized to consume them in the workload. This check serves as a first
security validation of external artifacts. The validation on an artifact is
conducted in a segmented environment before it's used within the secure
development lifecycle (SDL).

Sidecar Extends the functionality of an application by encapsulating nonprimary or
cross-cutting tasks in a companion process that exists alongside the main
application. By encapsulating these tasks and deploying them out-of-

https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/federated-identity
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/quarantine
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

Pattern Summary

process, you can reduce the surface area of sensitive processes to only the
code that's needed to accomplish the task. You can also use sidecars to
add cross-cutting security controls to an application component that's not
natively designed with that functionality.

Throttling Imposes limits on the rate or throughput of incoming requests to a
resource or component. You can design the limits to help prevent resource
exhaustion that could result from automated abuse of the system.

Valet Key Grants security-restricted access to a resource without using an
intermediary resource to proxy the access. This pattern enables a client to
directly access a resource without needing long-lasting or standing
credentials. All access requests start with an auditable transaction. The
granted access is then limited in both scope and duration. This pattern
also makes it easier to revoke the granted access.

Review the cloud design patterns that support the other Azure Well-Architected
Framework pillars:

Cloud design patterns that support reliability
Cloud design patterns that support cost optimization
Cloud design patterns that support operational excellence
Cloud design patterns that support performance efficiency

Next steps

https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://learn.microsoft.com/en-us/azure/architecture/patterns/valet-key

Recommendations for establishing a
security baseline
Article • 11/14/2023

Applies to Azure Well-Architected Framework Security checklist recommendation:

SE:01 Establish a security baseline aligned to compliance requirements, industry
standards, and platform recommendations. Regularly measure your workload
architecture and operations against the baseline to sustain or improve your security
posture over time.

This guide describes the recommendations for establishing a security baseline. A
security baseline is a document that specifies your organization's bare minimum security
requirements and expectations across a range of areas. A good security baseline helps
you:

Keep your data and systems secure.
Comply with regulatory requirements.
Minimize risk of oversight.
Reduce the likelihood of breaches and subsequent business effects.

Security baselines should be published widely throughout your organization so that all
stakeholders are aware of the expectations.

This guide provides recommendations about setting a security baseline that's based on
internal and external factors. Internal factors include business requirements, risks, and
asset evaluation. External factors include industry benchmarks and regulatory standards.

Definitions

Term Definition

Baseline The minimum level of security affordances that a workload must have to
avoid being exploited.

Benchmark A standard that signifies the security posture that the organization aspires
to. It's evaluated, measured, and improved over time.

Controls Technical or operational controls on the workload that help prevent attacks

ﾉ Expand table

ﾉ Expand table

Term Definition

and increase attacker costs.

Regulatory
requirements

A set of business requirements, driven by industry standards, that laws and
authorities impose.

A security baseline is a structured document that defines a set of security criteria and
capabilities that the workload must fulfill in order to increase security. In a more mature
form, you can extend a baseline to include a set of policies that you use to set
guardrails.

The baseline should be considered the standard for measuring your security posture.
The goal should always be full attainment while keeping a broad scope.

Your security baseline should never be an ad-hoc effort. Industry standards, compliance
(internal or external) or regulatory requirements, regional requirements, and the cloud
platform benchmarks are main drivers for the baseline. Examples include Center for
Internet Security (CIS) Controls, National Institute of Standards and Technology (NIST),
and platform-driven standards, such as Microsoft cloud security benchmark (MCSB). All
of these standards are considered a starting point for your baseline. Build the
foundation by incorporating security requirements from the business requirements.

For links to the preceding assets, see Related links.

Create the baseline by gaining consensus among business and technical leaders. The
baseline shouldn't be restricted to technical controls. It should also include the
operational aspects of managing and maintaining the security posture. So, the baseline
document also serves as the organization's commitment to investment toward workload
security. The security baseline document should be distributed widely within your
organization to ensure there's awareness about the workload's security posture.

As the workload grows and the ecosystem evolves, it's vital to keep your baseline in
synch with the changes to ensure the fundamental controls are still effective.

Creating a baseline is a methodical process. Here are some recommendations about the
process:

Asset inventory. Identify stakeholders of workload assets and the security
objectives for those assets. In the asset inventory, classify by security requirements
and criticality. For information about data assets, see Recommendations on data
classification.

Key design strategies

Risk assessment. Identity potential risks associated with each asset and prioritize
them.

Compliance requirements. Baseline any regulatory or compliance for those assets
and apply industry best practices.

Configuration standards. Define and document specific security configurations
and settings for each asset. If possible, templatize or find a repeatable, automated
way to apply the settings consistently across the environment.

Access control and authentication. Specify the role-based access control (RBAC)
and multifactor authentication (MFA) requirements. Document what just enough
access means at the asset level. Always start with the principle of least privilege.

Patch management. Apply latest versions on all the resource types to strengthen
against attack.

Documentation and communication. Document all configurations, policies, and
procedures. Communicate the details to the relevant stakeholders.

Enforcement and accountability. Establish clear enforcement mechanisms and
consequences for noncompliance with the security baseline. Hold individuals and
teams accountable for maintaining security standards.

Continuous monitoring. Assess the effectiveness of the security baseline through
observability and make improvements overtime.

Here are some common categories that should be part of a baseline. The following list
isn't exhaustive. It's intended as an overview of the document's scope.

A workload might be subject to regulatory compliance for specific industry segments,
there might be some geographic restrictions, and so on. It's key to understand the
requirements as given in the regulatory specifications because those influence the
design choices and in some cases must be included in the architecture.

The baseline should include regular evaluation of the workload against regulatory
requirements. Take advantage of the platform-provided tools, such as Microsoft
Defender for Cloud, which can identify areas of noncompliance. Work with the
organization's compliance team to make sure all requirements are met and maintained.

Composition of a baseline

Regulatory compliance

The baseline needs prescriptive recommendations for the main components of the
workload. These usually include technical controls for networking, identity, compute,
and data. Reference the security baselines provided by the platform and add the missing
controls to the architecture.

Refer to Example.

The baseline must have recommendations about:

System classification.
The approved set of resource types.
Tracking the resources.
Enforcing policies for using or configuring resources.

The development team needs to have a clear understanding of the scope for security
checks. For example, threat modeling is a requirement in making sure that potential
threats are identified in code and in deployment pipelines. Be specific about static
checks and vulnerability scanning in your pipeline and how regularly the team needs to
perform those scans.

For more information, see Recommendations on threat analysis.

The development process should also set standards on various testing methodologies
and their cadence. For more information, see Recommendations on security testing.

The baseline must set standards on using threat detection capabilities and raising alerts
on anomalous activities that indicate actual incidents. Threat detection needs to include
all layers of the workload, including all the endpoints that are reachable from hostile
networks.

The baseline should include recommendations for setting up incident response
processes, including communication and a recovery plan, and which of those processes
can be automated to expedite detection and analysis. For examples, see Security
baselines for Azure overview.

The incident response should also include a recovery plan and the requirements for that
plan, such as resources for regularly taking and protecting backups.

Architecture components

Development processes

Operations

https://learn.microsoft.com/en-us/security/benchmark/azure/security-baselines-overview
https://learn.microsoft.com/en-us/security/benchmark/azure/security-baselines-overview

You develop data breach plans by using industry standards and recommendations
provided by the platform. The team then has a comprehensive plan to follow when a
breach is discovered. Also, check with your organization to see if there's coverage
through cyberinsurance.

Develop and maintain a security training program to ensure the workload team is
equipped with the appropriate skills to support the security goals and requirements. The
team needs fundamental security training, but use what you can from your organization
to support specialized roles. Role-based security training compliance and participation
in drills are part of your security baseline.

Use the baseline to drive initiatives, such as:

Preparedness toward design decisions. Create the security baseline and publish it
before you start the architecture design process. Ensure team members are fully
aware of your organization's expectations early, which avoids costly rework caused
by a lack of clarity. You can use baseline criteria as workload requirements that the
organization has committed to and design and validate controls against those
constraints.

Measure your design. Grade the current decisions against the current baseline.
The baseline sets actual thresholds for criteria. Document any deviations that are
deferred or deemed long-term acceptable.

Drive improvements. While the baseline sets attainable goals, there are always
gaps. Prioritize the gaps in your backlog and remediate based on prioritization.

Track your progress against the baseline. Continuous monitoring of security
measures against a set baseline is essential. Trend analysis is a good way of
reviewing security progress over time and can reveal consistent deviations from
the baseline. Use automation as much as possible, pulling data from various
sources, internal and external, to address current issues and prepare for future
threats.

Set guardrails. Where possible, your baseline criteria must have guardrails.
Guardrails enforce required security configurations, technologies, and operations,
based on internal factors and external factors. Internal factors include business
requirements, risks, and asset evaluation. External factors include benchmarks,

Training

Use the baseline

regulatory standards, and threat environment. Guardrails help minimize the risk of
inadvertent oversight and punitive fines for noncompliance.

Explore Azure Policy for custom options or use built-in initiatives like CIS benchmarks or
Azure Security Benchmark to enforce security configurations and compliance
requirements. Consider creating Azure Policies and initiatives out of baselines.

Continuously improve security standards incrementally towards the ideal state to ensure
continual risk reduction. Conduct periodic reviews to ensure that the system is up-to-
date and in compliance with external influences. Any change to the baseline must be
formal, agreed upon, and sent through proper change management processes.

Measure the system against the new baseline and prioritize remediations based on their
relevance and effect on the workload.

Ensure that the security posture doesn't degrade over time by instituting auditing and
monitoring compliance with organizational standards.

The Microsoft cloud security benchmark (MCSB) is a comprehensive security best
practice framework that you can use as a starting point for your security baseline. Use it
along with other resources that provide input to your baseline.

For more information, see Introduction to the Microsoft cloud security benchmark.

Use the Microsoft Defender for Cloud (MDC) regulatory compliance dashboard to track
those baselines and be alerted if a pattern outside of a baseline is detected. For more
information, see the Customize the set of standards in your regulatory compliance
dashboard.

Other features that help in establishing and improving the baseline:

Create custom Azure security policies

Understand security policies, initiatives, and recommendations

Regulatory compliance checks

Evaluate the baseline regularly

Azure facilitation

Example

https://learn.microsoft.com/en-us/security/benchmark/azure/introduction
https://learn.microsoft.com/en-us/azure/defender-for-cloud/update-regulatory-compliance-packages
https://learn.microsoft.com/en-us/azure/defender-for-cloud/update-regulatory-compliance-packages
https://learn.microsoft.com/en-us/azure/defender-for-cloud/custom-security-policies?pivots=azure-portal
https://learn.microsoft.com/en-us/azure/defender-for-cloud/security-policy-concept
https://learn.microsoft.com/en-us/azure/defender-for-cloud/regulatory-compliance-dashboard

This logical diagram shows an example security baseline for architectural components
that encompass network, infrastructure, endpoint, application, data, and identity to
demonstrate how a common IT environment may be securely protected. Other
recommendation guides build on this example.

Infrastructure

A common IT environment, with an on-premises layer with basic resources.

Azure Security services

Azure security services and features by the types of resources they protect.

Azure security monitoring services

The monitoring services available on Azure that go beyond simple monitoring services,
including security information event management (SIEM) and security orchestration
automated response (SOAR) solutions and Microsoft Defender for Cloud.

Threats

On-premises

Routers Firewalls DNS

Azure

VPN/ER PiP

Servers VMs Workstations

VM Disk VDI (AVD)

Applications File Servers Databases

Web Apps Azure Storage Database

ADDS

Entra ID

Th
re

at
s

Azure Security Services

A
zu

re

Azure Policies

Sentinel

Defender for Cloud

Monitor

Log Analytics

IT
 E

nv
iro

nm
en

t

- Network Security Group (NSG)
- Azure Firewall
- App GW with WAF
- DDOS
- Private Endpoint
- TLS/SSL

Network Security Compute Security
- Bastion
- Key Vault
- Disk Encryption
- Just In Time
- Antimalware
- Update Management

Application and Data Security
- FrontDoor with WAF
- API Management
- Storage encryption
- Storage SAS
- Transparent Data Encryption
- Dynamic Data Masking

Identity Security
- MFA
- Conditional Access
- ID protection
- Privileged ID Management
- RBAC
- Password Protection

IdentityNetwork Infrastructure and Endpoint Application and Data

Metrics | Alerts | Network Watcher | VM Insights | Application Insights

Log Ingestion | Log Archive | Table Transformation

Data Connectors | Analytic Queries | Hunting, Incident Response | Automation

Recommendations | Automatic Alerts | Workload Protection

``

Tactics | Techniques | Tools

Personas (bad actors)

Persistence | Brute Force | Metasploit (e.g.)

Remote Admins | Remote employees | External Developers | Customer’s clients | Anonymous attackers

VNET
VMs

https://learn.microsoft.com/en-us/azure/well-architected/security/images/baseline/security-baseline.svg#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/security/images/baseline/security-baseline.svg#lightbox

Feedback

Was this page helpful?

This layer brings a recommendation and reminder that threats may be mapped
according to your organization's concerns regarding threats, regardless of the
methodology or matrix-like Mitre Attack Matrix or Cyber Kill chain.

Microsoft compliance

Security baselines for Azure overview

What is incident response? Plan and steps

Azure Security benchmarks

CIS Microsoft Azure Foundations Benchmark

Cybersecurity framework | NIST

Refer to the complete set of recommendations.

Related links

Community links

Security checklist

Security checklist

 Yes No

https://learn.microsoft.com/en-us/compliance/
https://learn.microsoft.com/en-us/security/benchmark/azure/security-baselines-overview
https://www.microsoft.com/security/business/security-101/what-is-incident-response
https://www.microsoft.com/security/business/security-101/what-is-incident-response
https://learn.microsoft.com/en-us/security/benchmark/azure/overview
https://www.cisecurity.org/benchmark/azure/
https://www.cisecurity.org/benchmark/azure/
https://www.nist.gov/cyberframework
https://www.nist.gov/cyberframework

Recommendations for securing a
development lifecycle
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:02 Maintain a secure development lifecycle by using a hardened, mostly automated,
and auditable software supply chain. Incorporate a secure design by using threat
modeling to safeguard against security-defeating implementations.

Related guide: Threat analysis

This guide describes the recommendations for hardening your code, development
environment, and software supply chain by applying security best practices throughout
the development cycle. To understand this guidance, you should have knowledge of
DevSecOps.

DevSecOps integrates security into DevOps processes by:

Automating security testing and validation.

Implementing tools like security pipelines to scan code and infrastructure as code
(IaC) for vulnerabilities.

At the core of a workload is the application code that implements business logic. The
code and the process of developing code must be free of security defects to ensure
confidentiality, integrity, and availability.

It's not enough to secure just the infrastructure plane by using controls on identity and
networking and other measures. Prevent bad implementation of code or a
compromised code block to strengthen your overall security posture. The usage plane,

that is, the application code, must also be hardened. The process of integrating security
into your development lifecycle is essentially a hardening process. Like resource
hardening, tightening up code development is also context-agnostic. The focus is on
enhancing security and not the functional requirements of the application. For
information related to hardening, see Recommendations for hardening resources.

Definitions

Term Definition

Security Development
Lifecycle (SDL)

A set of practices provided by Microsoft that supports security
assurance and compliance requirements.

Software development
lifecycle (SDLC)

A multistage, systematic process for developing software systems.

Security measures should be integrated at multiple points into your existing Software
Development Lifecycle (SDLC) to ensure:

Design choices don't lead to security gaps.

Application code and configuration don't create vulnerabilities because of
exploitable implementation and improper coding practices.

Software acquired via the supply chain doesn't introduce security threats.

Application code, build, and deployment processes aren't tampered with.

Vulnerabilities revealed through incidents are mitigated.

Unused assets are properly decommissioned.

Compliance requirements aren't compromised or reduced.

Audit logging is implemented in developer environments.

The following sections provide security strategies for the commonly practiced phases of
SDLC.

The goal of the requirements phase is to gather and analyze the functional and non-
functional requirements for an application or a new feature of an application. This

Key design strategies

Requirements phase

phase is important because it facilitates the creation of guardrails that are tailored to the
objectives of the application. Protecting the data and integrity of your application
should be a core requirement throughout every phase of the development lifecycle.

For example, consider an application that needs to support critical user flows that
enable the user to upload and manipulate data. The security design choices should
cover assurances for the user's interaction with the application, like authenticating and
authorizing the user identity, allowing only permitted actions on the data, and
preventing SQL injection. Similarly, cover non-functional requirements like availability,
scalability, and maintainability. Security choices should include segmentation
boundaries, firewall ingress and egress, and other cross-cutting security concerns.

All these decisions should lead to a good definition of the security posture of the
application. Document the security requirements in an agreed-upon specification and
reflect it in the backlog. It should explicitly state the security investments and the
tradeoffs and risks that the business is willing to take on if the investments aren't
approved by business stakeholders. For example, you might document the need to use
a web application firewall (WAF) in front of your application, like Azure Front Door or
Azure Application Gateway. If business stakeholders aren't prepared to accept the
additional cost of running a WAF, they need to accept the risk that application-layer
attacks might be directed toward the application.

Security requirement gathering is a critical part of this phase. Without this effort, the
design and implementation phases will be based on unstated choices, which can lead to
security gaps. You might need to change the implementation later to accommodate
security, which can be expensive.

During this phase, the security requirements are converted to technical requirements.
In your technical specification, document all design decisions to prevent ambiguity
during implementation. Here are some typical tasks:

Define the security dimension of the system architecture.

Overlay the architecture with security controls. For example, controls that are
practical on the isolation boundaries per your segmentation strategy, the types of
identities needed for the components of the application, and the type of
encryption methods to use. For some example architectures, see the illustrations in
the Example sections of the Identity and access management and Networking
articles.

Evaluate platform-provided affordances.

Design phase

It's important to understand the division of responsibility between you and the
cloud provider. Avoid overlap with Azure native security controls, for example.
You'll get better security coverage and be able to reallocate development
resources to the needs of the application.

For example, if your design calls for a web application firewall on ingress, you can
offload that responsibility to a load balancer like Application Gateway or Azure
Front Door. Avoid replicating features as custom code in your application.

Choose only trusted frameworks, libraries, and supply chain software. Your
design should also specify secure version control. Application dependencies
should be sourced from trusted parties. Third-party vendors should be able to
meet your security requirements and share their responsible disclosure plan. Any
security incident should be promptly reported so that you can take necessary
actions. Also, certain libraries might be prohibited by your organization. For
example, software might be secure from vulnerabilities but still disallowed because
of licensing restrictions.

To ensure that this guidance is followed by all contributors to the software,
maintain a list of approved and/or unapproved frameworks, libraries, and
vendors. When possible, place guardrails in the development pipelines to support
the list. As much as possible, automate the use of tools to scan dependencies for
vulnerabilities.

Determine the security design patterns that the application code should
implement. Patterns can support security concerns like segmentation and
isolation, strong authorization, uniform application security, and modern protocols.

For more information, see Cloud design patterns that support security.

Store application secrets securely.

Securely implement the use of application secrets and pre-shared keys that your
application uses. Credentials and application secrets should never be stored in
the source code tree. Use external resources like Azure Key Vault to ensure that, if
your source code becomes available to a potential attacker, no further access can
be obtained. In general, find ways to avoid secrets. Using managed identities, when
possible, is one way to achieve that goal. For more information, see
Recommendations for managing application secrets.

Define test plans.

Define clear test cases for security requirements. Evaluate whether you can
automate those tests in your pipelines. If your team has processes for manual

testing, include security requirements for those tests.

The initial threat modeling exercise should occur during the design phase when
the software's architecture and high-level design are being defined. Doing it
during that phase helps you to identify potential security issues before they're
incorporated into the system's structure. However, this exercise isn't a one-time
activity. It's a continuous process that should continue throughout the software's
evolution.

For more information, see Recommendations for threat analysis.

During this phase, the goal is to prevent security defects and tampering in code, build,
and deployment pipelines.

Be well-trained in secure code practices.

The development team should have formal and specialized training in secure
coding practices. For example, web and API developers might need specific
training to protect against cross-site scripting attacks, and back-end developers
can benefit from in-depth training to avoid database-level attacks like SQL
injection attacks.

Developers should be required to complete this training before they can gain
access to production source code.

You should also perform internal peer code reviews to promote continuous
learning.

Use security test tools.

Perform threat modeling to evaluate the security of the application's architecture.

Use static application security testing (SAST) to analyze code for vulnerabilities.
Integrate this methodology into the developer environment to detect

７ Note

Perform threat modeling during this phase. Threat modeling can confirm that
design choices are aligned with security requirements and expose gaps that
you should mitigate. If your workload handles highly sensitive data, invest in
security experts who can help you conduct threat modelling.

Development and testing phase

vulnerabilities in real time.

Use dynamic application security testing (DAST) during runtime. This tool chain
can check for errors in security domains and simulate a set of attacks to test the
application's security resilience. When possible, integrate this tool into your build
pipelines.

Follow industry standards for secure coding practices. For more information, see
the Community resources section of this article.

Use linters and code analyzers to prevent credentials from getting pushed to the
source code repository. For example, .NET Compiler Platform (Roslyn) Analyzers
inspect your application code.

During the build process, use pipeline add-ons to catch credentials in the source
code. Scan all dependencies, like third-party libraries and framework components,
as part of the continuous integration process. Investigate vulnerable components
that are flagged by the tool. Combine this task with other code scanning tasks that
inspect code churn, test results, and coverage.

Use a combination of tests. For information about security testing in general, see
Recommendations for security testing.

Write just enough code.

When you reduce your code footprint, you also reduce the chances of security
defects. Reuse code and libraries that are already in use and have been through
security validations instead of duplicating code.

Taking advantage of Azure features is another way to prevent unnecessary code.
One way is to use managed services. For more information, see Use platform as a
service (PaaS) options.

Write code with a deny-all approach by default. Create allowlists only for entities
that need access. For example, if you have code that needs to determine whether a
privileged operation should be allowed, you should write it so that the deny
outcome is the default case and the allow outcome occurs only when specifically
permitted by code.

Protect developer environments.

Developer workstations need to be protected with strong network and identity
controls to prevent exposure. Make sure security updates are applied diligently.

https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/managed-services

Build agents are highly privileged and have access to the build server and the
code. They must be protected with the same rigor as your workload components.
This means that access to build agents must be authenticated and authorized,
they should be network-segmented with firewall controls, they should be subject
to vulnerability scanning, and so on. Microsoft-hosted build agents should be
preferred over self-hosted build agents. Microsoft-hosted agents provide benefits
like clean virtual machines for each run of a pipeline.

Custom build agents add management complexity and can become an attack
vector. Build machine credentials must be stored securely, and you need to
regularly remove any temporary build artifacts from the file system. You can
achieve network isolation by only allowing outgoing traffic from the build agent,
because it's using the pull model of communication with Azure DevOps.

The source code repository must be safeguarded as well. Grant access to code
repositories on a need-to-know basis and reduce exposure of vulnerabilities as
much as possible to avoid attacks. Have a thorough process to review code for
security vulnerabilities. Use security groups for that purpose, and implement an
approval process that's based on business justifications.

Secure code deployments.

It's not enough to just secure code. If it runs in exploitable pipelines, all security
efforts are futile and incomplete. Build and release environments must also be
protected because you want to prevent bad actors from running malicious code in
your pipeline.

Maintain an up-to-date inventory of every component that's integrated into
your application.

Every new component that's integrated into an application increases the attack
surface. To ensure proper accountability and alerting when new components are
added or updated, you should have an inventory of these components. Store it
outside of the build environment. On a regular basis, check that your manifest
matches what's in your build process. Doing so helps ensure that no new
components that contain back doors or other malware are added unexpectedly.

Pipeline tasks. Pull tasks in your pipeline from trusted sources, like Azure
Marketplace. Run tasks that are written by your pipeline vendor. We recommend
GitHub tasks or GitHub Actions. If you use GitHub workflows, prefer Microsoft-
authored tasks. Also, validate tasks because they run in the security context of your
pipeline.

Pipeline secrets. Deployment assets that run inside a pipeline have access to all
the secrets in that pipeline. Have proper segmentation in place for different
stages of the pipeline to avoid unnecessary exposure. Use secret stores that are
built into the pipeline. Remember that you can avoid using secrets in some
situations. Explore the use of workload identities (for pipeline authentication) and
managed identities (for service-to-service authentication).

The production phase presents the last responsible opportunity to fix security gaps.
Keep a record of the golden image that's released in production.

Keep versioned artifacts.

Keep a catalog of all deployed assets and their versions. This information is useful
during incident triage, when you're mitigating issues, and when you're getting the
system back to working state. Versioned assets can also be compared against
published Common Vulnerabilities and Exposures (CVE) notices. You should use
automation to perform these comparisons.

Emergency fixes.

Your automated pipeline design should have the flexibility to support both regular
and emergency deployments. This flexibility is important to support rapid and
responsible security fixes.

A release is typically associated with multiple approval gates. Consider creating an
emergency process to accelerate security fixes. The process might involve
communication among teams. The pipeline should allow for quick roll-forward and
rollback deployments that address security fixes, critical bugs, and code updates
that occur outside of the regular deployment lifecycle.

Keep different environments separate.

Production phase

７ Note

Always prioritize security fixes over convenience. A security fix shouldn't
introduce a regression or bug. If you want to accelerate the fix through an
emergency pipeline, carefully consider which automated tests can be
bypassed. Evaluate the value of each test against the execution time. For
example, unit tests usually complete quickly. Integration or end-to-end tests
can run for a long time.

Data used in different environments must be kept separate. Production data
shouldn't be used in lower environments because those environments might not
have the strict security controls that production has. Avoid connecting from a non-
production application to a production database, and avoid connecting non-
production components to production networks.

Progressive exposure.

Use progressive exposure to release features to a subset of users based on
chosen criteria. If there are issues, the impact is minimized to those users. This
approach is a common risk mitigation strategy because it reduces surface area. As
the feature matures and you have more confidence in security assurances, you can
gradually release it to a broader set of users.

The goal of this phase is to make sure security posture doesn't decay over time. SDLC
is an ongoing agile process. Concepts covered in the preceding phases apply to this
phase because requirements change over time.

Patch management. Keep software, libraries, and infrastructure components up to date
with security patches and updates.

Continuous improvement. Continuously assess and improve the security of the software
development process by taking into account code reviews, feedback, lessons learned,
and evolving threats.

Decommission legacy assets that are stale or no longer in use. Doing so reduces the
surface area of the application.

Maintenance also includes incident fixes. If issues are found in production, they need to
be promptly integrated back into the process so that they don't recur.

Continuously improve your secure coding practices to keep up with the threat
landscape.

Microsoft Security Development Lifecycle (SDL) recommends secure practices that you
can apply to your development lifecycle. For more information, see Microsoft Security
Development Lifecycle .

Maintenance phase

Azure facilitation

https://www.microsoft.com/securityengineering/sdl/

Defender for DevOps and the SAST tools are included as part of GitHub Advanced
Security or Azure DevOps. These tools can help you track a security score for your
organization.

Follow the Azure security recommendations that are described in these resources:

Design secure applications on Azure

Develop secure applications on Azure

Deploy secure applications on Azure

Secure development best practices on Azure

Training: Learn how Microsoft supports secure software development as part of a
cybersecurity solution

To find credentials in source code, consider using tools like GitHub Advanced Security
and OWASP source code analysis tools .

Validate the security of any open-source code in your application. These free tools and
resources can help you with your assessment:

Mend Bolt
npm-audit
OWASP Dependency-Check
GitHub Dependabot
Microsoft Security DevOps Azure DevOps extension
OWASP Secure Coding Practices
OWASP Top Ten

Cloud design patterns that support security
Design secure applications on Azure
Deploy secure applications on Azure
Develop secure applications on Azure
Microsoft Security Development Lifecycle
Recommendations for building a segmentation strategy
Recommendations for hardening resources
Recommendations for managing application secrets

Community links

Related links

https://learn.microsoft.com/en-us/azure/security/develop/secure-design
https://learn.microsoft.com/en-us/azure/security/develop/secure-develop
https://learn.microsoft.com/en-us/azure/security/develop/secure-deploy
https://learn.microsoft.com/en-us/azure/security/develop/secure-dev-overview
https://learn.microsoft.com/en-us/training/paths/secure-software-development-for-cybersecurity/
https://docs.github.com/en/github/getting-started-with-github/about-github-advanced-security
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://www.mend.io/free-developer-tools/bolt/
https://docs.npmjs.com/cli/audit
https://owasp.org/www-project-dependency-check/
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/about-dependabot-version-updates
https://learn.microsoft.com/en-us/azure/defender-for-cloud/azure-devops-extension
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/
https://owasp.org/www-project-top-ten/
https://learn.microsoft.com/en-us/azure/security/develop/secure-design
https://learn.microsoft.com/en-us/azure/security/develop/secure-deploy
https://learn.microsoft.com/en-us/azure/security/develop/secure-develop
https://www.microsoft.com/securityengineering/sdl/

Recommendations for security testing
Recommendations for threat analysis
Secure development best practices on Azure
Training: Learn how Microsoft supports secure software development as part of a
cybersecurity solution
Use platform as a service (PaaS) options

Refer to the complete set of recommendations.

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/security/develop/secure-dev-overview
https://learn.microsoft.com/en-us/training/paths/secure-software-development-for-cybersecurity/
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/managed-services

Recommendations for threat analysis
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:02 Establish a security baseline that's aligned to compliance requirements, industry
standards, and platform recommendations. Regularly measure your workload
architecture and operations against the baseline to sustain or improve your security
posture over time.

Related guide: Recommendations for securing a development lifecycle

A comprehensive analysis to identify threats, attacks, vulnerabilities, and counter
measures is crucial during the design phase of a workload. Threat modeling is an
engineering exercise that includes defining security requirements, identifying and
mitigating threats, and validating those mitigations. You can use this technique at any
stage of application development or production, but it's most effective during the
design stages of new functionality.

This guide describes the recommendations for doing threat modeling so that you can
identify security gaps quickly and design your security defenses.

Definitions

Term Definition

Software development
lifecycle (SDLC)

A multistage, systematic process for developing software systems.

STRIDE A Microsoft-defined taxonomy for categorizing types of threats.

Threat modeling A process for identifying potential security vulnerabilities in the
application and system, mitigating risks, and validating security
controls.

Threat modeling is a crucial process that an organization should integrate into its SDLC.
Threat modeling is not solely a developer's task. It's a shared responsibility between:

The workload team, which is responsible for the technical aspects of the system.
Business stakeholders, who understand the business outcomes and have a vested
interest in security.

Key design strategies

There's often a disconnect between organizational leadership and technical teams
regarding business requirements for critical workloads. This disconnect can lead to
unwanted outcomes, particularly for security investments.

When the workload team is doing a threat modeling exercise, it should consider both
business and technical requirements. The workload team and business stakeholders
must agree on security-specific needs of the workload so that they can make adequate
investments in the countermeasures.

The security requirements serve as guide for the entire process of threat modeling. To
make it an effective exercise, the workload team should have a security mindset and be
trained in threat modeling tools.

A clear understanding of the scope is crucial for effective threat modeling. It helps focus
efforts and resources on the most critical areas. This strategy involves defining the
boundaries of the system, taking inventory of the assets that need to be protected, and
understanding the level of investment that's required in security controls.

A workload architecture diagram is a starting point for gathering information because it
provides a visual representation of the system. The diagram highlights technical
dimensions of the system. For example, it shows user flows, how data moves through
the network, data sensitivity levels and information types, and identity access paths.

This detailed analysis can often provide insight into potential vulnerabilities in the
design. It's important to understand the functionality of each component and its
dependencies.

Analyze each component from an outside-in perspective. For example, how easily can
an attacker gain access to sensitive data? If attackers gain access to the environment,
can they move laterally and potentially access or even manipulate other resources?
These questions help you understand how an attacker might exploit workload assets.

Understand the scope of the exercise

Gather information about each component

Evaluate the potential threats

Classify the threats by using an industry methodology

One methodology for classifying threats is STRIDE, which the Microsoft Security
Development Lifecycle uses. Classifying threats helps you understand the nature of each
threat and use appropriate security controls.

Document all the identified threats. For each threat, define security controls and the
response to an attack if those controls fail. Define a process and timeline that minimize
exposure to any identified vulnerabilities in the workload, so that those vulnerabilities
can't be left unaddressed.

Use the assume breach approach. It can help identify controls needed in the design to
mitigate risk if a primary security control fails. Evaluate how likely it is for the primary
control to fail. If it does fail, what is the extent of the potential organizational risk? Also,
what is the effectiveness of the compensating control? Based on the evaluation, apply
defense-in-depth measures to address potential failures of security controls.

Here's an example:

Ask this question To determine controls that...

Are connections authenticated through Microsoft Entra ID,
Transport Layer Security (TLS) with mutual authentication, or
another modern security protocol that the security team
approved:

- Between users and the application?

- Between application components and services?

Prevent unauthorized access to
the application components
and data.

Are you limiting access to only accounts that need to write or
modify data in the application?

Prevent unauthorized data
tampering or alteration.

Is the application activity logged and fed into a security
information and event management (SIEM) system through
Azure Monitor or a similar solution?

Detect and investigate attacks
quickly.

Is critical data protected with encryption that the security team
approved?

Prevent unauthorized copying
of data at rest.

Are inbound and outbound network traffic encrypted through
TLS?

Prevent unauthorized copying
of data in transit.

Is the application protected against distributed denial of service
(DDoS) attacks through services such as Azure DDoS Protection?

Detect attacks designed to
overload the application so it
can't be used.

Mitigate the threats

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

Ask this question To determine controls that...

Does the application store sign-in credentials or keys to access
other applications, databases, or services?

Identify whether an attack can
use your application to attack
other systems.

Do the application controls allow you to fulfill regulatory
requirements?

Protect users' private data and
avoid compliance fines.

We highly recommend that you use a threat modeling tool. Tools can automate the
process of identifying threats and produce a comprehensive report of all identified
threats. Be sure to communicate the results to all interested teams.

Track the results as part of the workload team's backlog to allow for accountability in a
timely way. Assign tasks to individuals who are responsible for mitigating a particular
risk that threat modeling identified.

As you add new features to the solution, update the threat model and integrate it into
the code management process. If you find a security problem, make sure there's a
process to triage the problem based on severity. The process should help you determine
when and how to remediate the problem (for example, in the next release cycle or in a
faster release).

Meet regularly with executive sponsors to define requirements. These reviews provide
an opportunity to align expectations and ensure operational resource allocation to the
initiative.

The Microsoft Security Development Lifecycle provides a threat modeling tool to assist
with the threat modeling process. This tool is available at no additional cost. For more
information, see the Threat Modeling page .

This example builds on the Information Technology (IT) environment established in the
security baseline (SE:01). This approach provides a broad understanding of the threat

Track threat modeling results

Regularly review business-critical workload requirements

Azure facilitation

Example

https://www.microsoft.com/securityengineering/sdl/threatmodeling

landscape across different IT scenarios.

1. Development Lifecycle personas. There are many personas involved in a
development life cycle, including developers, testers, final users, and
administrators. All of them may be compromised and put your environment at risk
through vulnerabilities or threats created intentionally.

2. Potential attackers. Attackers consider a wide range of tools available easily to be
used at any time to explore your vulnerabilities and start an attack.

3. Security controls. As part of threat analysis, identify Azure security services to be
used to protect your solution and how effective those solutions are.

4. Log collection. Logs from Azure resources and some on-premises components
may be sent to Azure Log Analytics so you may understand the behavior of your
solution developed and try to capture initial vulnerabilities.

5. Security information event management (SIEM) solution. Microsoft Sentinel may
be added even in an early stage of the solution so you can build some analytics

On-premises

Routers Firewalls DNS

Azure

VPN/ER PiP

Servers VMs Workstations

VM Disk VDI (AVD)

Applications File Servers Databases

Web Apps Azure Storage Database

ADDS

Entra ID

Th
re

at
s

Azure Security Services

A
zu

re

Sentinel

Defender for Cloud

Monitor

Log Analytics

IT
 E

nv
iro

nm
en

t

- Network Security Group (NSG)
- Azure Firewall
- App GW with WAF
- DDOS
- Private Endpoint
- TLS/SSL

Network
Security

IdentityNetwork Infrastructure and Endpoint Application and Data

``

Azure Policies

AZURE DEVOPS

VNET
VMs

Identity
Security - MFA

- Conditional Access
- ID protection
- Privileged ID Management
- RBAC
- Password Protection

3

4

5

6

Compute
Security - Bastion

- Key Vault
- Disk Encryption
- Just In Time
- Antimalware
- Update Management

Application and
Data Security - FrontDoor with WAF

- API Management
- Storage encryption
- Storage SAS
- Transparent Data Encryption
- Dynamic Data Masking

Metrics | Alerts | Network Watcher | VM Insights | Application Insights

Log Ingestion | Log Archive | Table Transformation

Data Connectors | Analytic Queries | Hunting | Incident Response | Automation

Recommendations | Automatic Alerts | Workload Protection

Tactics, Techniques, Tools

Personas (bad actors)

Persistence | Brute Force | Metasploit

Remote Admins | Remote employees | External Developers | Customer’s clients | Anonymous attackers

2

1

https://learn.microsoft.com/en-us/azure/well-architected/security/images/secure-development-lifecycle/threat-analysis.svg#lightbox

queries to mitigate threats and vulnerabilities, anticipating your security
environment when you are in production.

6. Microsoft Defender for Cloud might make some security recommendations to
improve the security posture.

STRIDE
Threat Modeling

Open Web Application Security Project (OWASP) has documented a threat modeling
approach for applications.

Refer to the complete set of recommendations.

Related links

Community links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://www.microsoft.com/securityengineering/sdl/threatmodeling
https://owasp.org/www-community/Threat_Modeling_Process

Recommendations for data classification
Article • 11/14/2023

Applies to Azure Well-Architected Framework Security checklist recommendation:

SE:03 Classify and consistently apply sensitivity labels on all workload data and systems
involved in data processing. Use classification to influence workload design,
implementation, and security prioritization.

This guide describes the recommendations for data classification. Most workloads store
various types of data. Not all data is equally sensitive. Data classification helps you
categorize data based on its sensitivity level, information type, and scope of compliance
so you can apply the correct level of protection. Protection includes access controls,
retention policies for different information types, and so on. While the actual security
controls based on data classification are out of scope for this article, it provides
recommendations for categorizing data based on the preceding criteria set by your
organization.

Definitions

Term Definition

Classification A process to categorize workload assets by sensitivity levels, information type,
compliance requirements, and other criteria provided by the organization.

Metadata An implementation for applying taxonomy to assets.

Taxonomy A system to organize classified data by using an agreed upon structure. Typically, a
hierarchical depiction of data classification. It has named entities that indicate
categorization criteria.

Data classification is a crucial exercise that often drives building a system of record and
its function. Classification also helps you correctly size security assurances and helps the
triage team expediate discovery during incident response. A prerequisite to the design
process is to clearly understand whether data should be treated as confidential,
restricted, public, or any other sensitivity classification. It's also essential to determine
the locations where data is stored, because the data might be distributed across
multiple environments.

Key design strategies

Data discovery is necessary to locate the data. Without that knowledge, most designs
adopt a middle-ground approach, which might or might not serve the security
requirements. Data can be overprotected, resulting in cost and performance
inefficiencies. Or it might not be protected enough, which adds to the attack surface.

Data classification is often a cumbersome exercise. There are tools available that can
discover data assets and suggest classifications. But don't just rely on tooling. Have a
process in place where team members diligently do the exercises. Then use tooling to
automate when that's practical.

Along with these best practices, see Create a well-designed data classification
framework.

Taxonomy is a hierarchical depiction of data classification. It has named entities that
indicate the categorization criteria.

In general, there isn't a universal standard for classification or for defining taxonomy. It's
driven by an organization's motivation for protecting data. Taxonomy might capture
compliance requirements, promised features for the workload users, or other criteria
driven by business needs.

Here are some example classification labels for sensitivity levels, information type, and
scope of compliance.

Sensitivity Information type Scope of
compliance

Public, General, Confidential,
Highly Confidential, Secret,
Top Secret, Sensitive

Financial, Credit Card, Name, Contact Info,
Credentials, Banking, Networking, SSN, Health
fields, Date of Birth, Intellectual Property,
personal data

HIPAA, PCI,
CCPA, SOX, RTB

As a workload owner, rely on your organization to provide you with a well-defined
taxonomy. All workload roles must have a shared understanding of the structure,
nomenclature, and definition of the sensitivity levels. Don't define your own
classification system.

Most organizations have a diverse set of labels.

Understand organization-defined taxonomy

Define the classification scope

https://learn.microsoft.com/en-us/compliance/assurance/assurance-create-data-classification-framework

Clearly identify which data assets and components are in-scope and out-of-scope for
each sensitivity level. You should have a clear objective on the outcome. The objective
could be quicker triage, accelerated disaster recovery, or regulatory audits. When you
clearly understand the objectives, it ensures you correctly size your classification efforts.

Start with these simple questions and expand as necessary based on your system
complexity:

What's the origin of data and information type?
What's the expected restriction based on access? For example, is it public
information data, regulatory, or other expected use cases?
What's the data footprint? Where is data stored? How long should the data be
retained?
Which components of the architecture interact with the data?
How does the data move through the system?
What information is expected in the audit reports?
Do you need to classify preproduction data?

If you have an existing system, take inventory of all data stores and components that are
in scope. On the other hand, if you're designing a new system, create a data flow

Take inventory of your data stores

https://learn.microsoft.com/en-us/azure/well-architected/security/images/data-classification/data-classification-high-res.png#lightbox

dimension of the architecture and have an initial categorization per taxonomy
definitions. Classification applies to the system as a whole. It's distinctly different from
classifying configuration secrets and nonsecrets.

Be granular and explicit when defining the scope. Suppose your data store is a tabular
system. You want to classify sensitivity at the table level or even the columns within the
table. Also, be sure to extend classification to nondata store components that might be
related or have a part in processing the data. For example, have you classified the
backup of your highly sensitive data store? If you're caching user-sensitive data, is the
caching data store in scope? If you use analytical data stores, how is the aggregated
data classified?

Classification should influence your architectural decisions. The most obvious area is
your segmentation strategy, which should consider the varied classification labels.

For example, the labels influence the traffic isolation boundaries. There might be critical
flows where end-to-end transport layer security (TLS) is required, while other packets
can be sent over HTTP. If there are messages transmitted over a message broker, certain
messages might need to be signed.

For data at rest, the levels will affect the encryption choices. You might choose to
protect highly sensitive data through double encryption. Different application secrets
might even require control with varied levels of protection. You might be able to justify
storing secrets in a hardware security module (HSM) store, which offers higher
restrictions. Compliance labels also dictate decisions about the right protection
standards. For example, The PCI-DSS standard mandates the use of FIPS 140-2 Level 3
protection, which is available only with HSMs. In other cases, it might be acceptable for
other secrets to be stored in a regular secret management store.

If you need to protect data in use, you might want to incorporate confidential compute
in the architecture.

Classification information should move with the data as it transitions through the
system and across components of the workload. Data labeled as confidential should be
treated as confidential by all components that interact with it. For example, be sure to
protect personal data by removing or obfuscating it from any kind of application logs.

Define your scope

Design according to classification labels

Classification impacts the design of your report in the way data should be exposed. For
example, based on your information type labels, do you need to apply a data masking
algorithm for obfuscation as a result of the information type label? Which roles should
have visibility into the raw data versus masked data? If there are any compliance
requirements for reporting, how is data mapped to regulations and standards? When
you have this understanding, it's easier to demonstrate compliance with specific
requirements and generate reports for auditors.

It also impacts the data lifecycle management operations, such as data retention and
decommissioning schedules.

There are many ways to apply taxonomy labels to the identified data. Using a
classification schema with metadata is the most common way to indicate the labels.
Standardization through schema makes sure that reporting is accurate, minimizes
chances of variation, and avoids the creation of custom queries. Build automated checks
to catch invalid entries.

You can apply labels manually, programmatically, or use a combination of both. The
architecture design process should include design of the schema. Whether you have an
existing system or are building a new one, when applying labels, maintain consistency in
the key/value pairs.

Keep in mind that not all data can be clearly classified. Make an explicit decision about
how the data that can't be classified should be represented in reporting.

The actual implementation depends on the type of resources. Certain Azure resources
have built-in classification systems. For example, Azure SQL Server has a classification
engine, supports dynamic masking, and can generate reports based on metadata. Azure
Service Bus supports including a message schema that can have attached metadata.
When you design your implementation, evaluate the features supported by the platform
and take advantage of them. Make sure metadata used for classification is isolated and
stored separately from the data stores.

There are also specialized classification tools that can detect and apply labels
automatically. These tools are connected to your data sources. Microsoft Purview has
autodiscover capabilities. There are also third-party tools that offer similar capabilities.
The discovery process should be validated through manual verification.

Review data classification regularly. Classification maintenance should be built into
operations, otherwise stale metadata can lead to erroneous results for the identified
objectives and compliance issues.

Apply taxonomy for querying

 Tradeoff: Be mindful of the cost tradeoff on tooling. Classification tools require
training and can be complex.

Ultimately, classification must roll up to the organization through central teams. Get
input from them about the expected report structure. Also, take advantage of
centralized tools and processes to have organizational alignment and also alleviate
operational costs.

Microsoft Purview unifies Azure Purview and Microsoft Purview solutions to provide
visibility into data assets throughout your organization. For more information, see What
is Microsoft Purview?

Azure SQL Database, Azure SQL Managed Instance, and Azure Synapse Analytics offer
built-in classification features. Use these tools to discover, classify, label, and report the
sensitive data in your databases. For more information, see Data discovery and
classification.

This example builds on the Information Technology (IT) environment established in the
security baseline (SE:01). The example diagram below shows data stores where data is
classified.

Azure facilitation

Example

https://learn.microsoft.com/en-us/purview/purview
https://learn.microsoft.com/en-us/azure/azure-sql/database/data-discovery-and-classification-overview

1. Data stored on databases and disks should only be accessible to a few users, such
as Administrators, Database administrators. Then, it's usual that common users or
customers' final clients have access only to layers that are exposed to the internet,
such as applications or jump boxes.

2. Applications communicate with the databases or data stored on disks, such as
object storage or file servers.

3. In some cases, data might be stored in an on-premises environment and the public
cloud. Both need to be classified consistently.

4. In an operator use case, remote administrators need access jump boxes on the
cloud or a virtual machine running the workload. Access permissions should be
given as per the data classification labels.

On-premises

Routers Firewalls DNS

Azure

VPN/ER PiP

Workstations VMs Servers File Servers Databases

Web Apps

Az Storage
(Blob or File)

Relational
Database

ADDS

Entra ID

Th
re

at
s

Azure Security Services

A
zu

re

Sentinel

Defender for Cloud

Monitor

Log Analytics

IT
 E

nv
iro

nm
en

t

- Network Security Group (NSG)
- Azure Firewall
- App GW with WAF
- DDOS
- Private Endpoint
- TLS/SSL

Network
Security

IdentityNetwork Infrastructure and Endpoint Application and Data

``

VNET

VMs

Identity
Security - MFA

- Conditional Access
- ID protection
- Privileged ID Management
- RBAC
- Password Protection

No-SQL
Database

VMs

Pu
rv

ie
w Purview (Compliance)

VM Disk

Data
warehouse

Azure Policies

Compute
Security - Bastion

- Key Vault
- Disk Encryption
- Just In Time
- Antimalware
- Update Management

Application and
Data Security - FrontDoor with WAF

- API Management
- Storage encryption
- Storage SAS
- Transparent Data Encryption
- Dynamic Data Masking

Metrics | Alerts | Network Watcher | VM Insights | Application Insights

Log Ingestion | Log Archive | Table Transformation

Data Connectors | Analytic Queries | Hunting | Incident Response | Automation

Recommendations | Automatic Alerts | Workload Protection

Information Protection

174

2

6

5

3

8

8

8

9

10

5

5

Tactics | Techniques | Tools

Personas (bad actors)

Persistence | Brute Force | Metasploit (e.g.)

Remote Admins | Remote employees | External Developers | Customer’s clients | Anonymous attackers

https://learn.microsoft.com/en-us/azure/well-architected/security/images/data-classification/data-classification-enterprise.svg#lightbox

5. Data moves through the virtual machines to the backend databases and data
should be treated with the same level of confidentiality throughout the traversal
points.

6. Workloads store data directly in virtual machine disks. Those disks are in scope for
classification.

7. In a hybrid environment, different personas may access workloads on-premises
through different mechanisms to connect to different data storage technologies or
databases. Access must be granted as per the classification labels.

8. The on-premises servers connect to important data that need to be classified and
protected such as file servers, object storage, and different types of databases,
such as relational, no-SQL, and data warehouse.

9. Microsoft Purview Compliance provides a solution to classify files and emails.

10. Microsoft Defender for Cloud provides a solution that helps your company to track
compliance in your environment, including many of your services used to store
data, mentioned in these se cases above.

Cloud Adoption Framework provides guidance for central teams about how to classify
data so that workload teams can follow the organizational taxonomy.

For more information, see What is data classification? - Cloud Adoption Framework.

Data classification and sensitivity label taxonomy - Microsoft Service Assurance
Create a well-designed data classification framework - Microsoft Service Assurance

Refer to the complete set of recommendations.

Organizational alignment

Related links

Next step

Security checklist

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/policy-compliance/data-classification
https://learn.microsoft.com/en-us/compliance/assurance/assurance-data-classification-and-labels
https://learn.microsoft.com/en-us/compliance/assurance/assurance-create-data-classification-framework

Recommendations for building a
segmentation strategy
Article • 11/14/2023

Applies to Well-Architected Framework Security checklist recommendation:

SE:04 Create intentional segmentation and perimeters in your architecture design and the
workload’s footprint on the platform. The segmentation strategy must include
networks, roles and responsibilities, workload identities, and resource organization.

A segment is a logical section of your solution that needs to be secured as one unit. A
segmentation strategy defines how one unit should be separated from other units with
its own set of security requirements and measures.

This guide describes the recommendations for building a unified segmentation
strategy. Using perimeters and isolation boundaries in workloads, you can design a
security approach that works for you.

Definitions

Term Definition

Containment A technique to contain the blast radius if an attacker gains access to a
segment.

Least-privilege
access

A Zero Trust principle that aims at minimizing a set of permissions to
complete a job function.

Perimeter The trust boundary around a segment.

Resource
organization

A strategy to group related resources by flows within a segment.

Role A set of permissions needed to complete a job function.

Segment A logical unit that's isolated from other entities and protected by a set of
security measures.

The concept of segmentation is commonly used for networks. However, the same
underlying principle can be used throughout a solution, including segmenting resources
for management purposes and access control.

Key design strategies

Segmentation helps you design a security approach that applies defense in depth
based on the principles of the Zero Trust model. Ensure that an attacker who breaches
one network segment can't gain access to another by segmenting workloads with
different identity controls. In a secure system, identity and network attributes block
unauthorized access and hide the assets from being exposed. Here are some examples
of segments:

Subscriptions that isolate workloads of an organization
Resource groups that isolate workload assets
Deployment environments that isolate deployment by stages
Teams and roles that isolate job functions related to workload development and
management
Application tiers that isolate by workload utility
Microservices that isolate one service from another

Consider these key elements of segmentation to make sure you're building a
comprehensive defense in depth strategy:

The boundary or perimeter is the entry edge of a segment where you apply
security controls. Perimeter controls should block access to the segment unless
explicitly allowed. The goal is to prevent an attacker from breaking through the
perimeter and gaining control of the system. For example, an application tier might
accept an end user's access token when it processes a request. But the data tier
might require a different access token that has a specific permission, which only
the application tier can request.

Containment is the exit edge of a segment that prevents lateral movement in the
system. The goal of containment is to minimize the effect of a breach. For example,
an Azure virtual network might be used to configure routing and network security
groups to only allow traffic patterns that you expect, avoiding traffic to arbitrary
network segments.

Isolation is the practice of grouping entities with similar assurances together to
protect them with a boundary. The goal is ease of management and the
containment of an attack within an environment. For example, you might group
the resources that relate to a specific workload into one Azure subscription, and
then apply access control so that only specific workload teams can access the
subscription.

It's important to note the distinction between perimeters and isolation. Perimeter refers
to the points of location that should be checked. Isolation is about grouping. Actively
contain an attack by using these concepts together.

Isolation doesn't mean creating silos in the organization. A unified segmentation
strategy provides alignment between the technical teams and sets clear lines of
responsibility. Clarity reduces the risk of human error and automation failures that can
lead to security vulnerabilities, operational downtime, or both. Suppose a security
breach is detected in a component of a complex enterprise system. It's important that
everyone understands who's responsible for that resource so that the appropriate
person is included in the triage team. The organization and stakeholders can quickly
identify how to respond to different kinds of incidents by creating and documenting a
good segmentation strategy.

 Tradeoff: Segmentation introduces complexity because there's overhead in
management. There's also a tradeoff in cost. For example, more resources are
provisioned when deployment environments that run side by side are segmented.

 Risk: Micro-segmentation beyond a reasonable limit loses the benefit of
isolation. When you create too many segments, it becomes difficult to identify
points of communication or to allow for valid communication paths within the
segment.

Various identities such as people, software components, or devices access workload
segments. Identity is a perimeter that should be the primary line of defense to
authenticate and authorize access across isolation boundaries, regardless of where the
access request originates. Use identity as a perimeter to:

Assign access by role. Identities only need access to the segments required to do
their job. Minimize anonymous access by understanding the roles and
responsibilities of the requesting identity so that you know the entity that's
requesting access to a segment and for what purpose.

An identity might have different access scopes in different segments. Consider a
typical environment setup, with separate segments for each stage. Identities
associated with the developer role have read-write access to the development
environment. As the deployment moves to staging, those permissions are curbed.
By the time the workload is promoted to production, scope for developers is
reduced to read-only access.

Consider application and management identities separately. In most solutions,
users have a different level of access than developers or operators. In some

Identity as the perimeter

applications, you might use different identity systems or directories for each type
of identity. Consider using access scopes and creating separate roles for each
identity.

Assign least-privilege access. If the identity is allowed access, determine the level
of access. Start with the least privilege for each segment and broaden that scope
only when needed.

By applying the least privilege, you limit the negative effects if the identity is ever
compromised. If access is limited by time, the attack surface is reduced further.
Time-limited access is especially applicable to critical accounts, such as
administrators or software components that have a compromised identity.

 Tradeoff: The performance of the workload can be affected by identity
perimeters. Verifying each request explicitly requires extra compute cycles and extra
network IO.

Role-based access control (RBAC) also results in management overhead. Keeping
track of identities and their access scopes can become complex in role assignments.
The workaround is to assign roles to security groups instead of individual identities.

 Risk: Identity settings can be complex. Misconfigurations can affect the
reliability of the workload. For example, suppose there's a misconfigured role
assignment that's denied access to a database. The requests start failing, eventually
causing reliability issues that can't otherwise be detected until runtime.

For information about identity controls, see Identity and access management.

In contrast to network access controls, identity validates access control at access time.
It's highly recommended to conduct regular access review and require an approval
workflow to obtain privileges for critical impact accounts. For example, see Identity
segmentation patterns.

Identity perimeters are network agnostic while network perimeters augment identity but
never replace it. Network perimeters are established to control blast radius, block
unexpected, prohibited, and unsafe access, and obfuscate workload resources.

While the primary focus of the identity perimeter is least privilege, you should assume
there will be a breach when you're designing the network perimeter.

Networking as a perimeter

Create software-defined perimeters in your networking footprint using Azure services
and features. When a workload (or parts of a given workload) is placed into separate
segments, you control traffic from or to those segments to secure communication
paths. If a segment is compromised, it's contained and prevented from laterally
spreading through the rest of your network.

Think like an attacker to achieve a foothold within the workload and establish controls
to minimize further expansion. The controls should detect, contain, and stop attackers
from gaining access to the entire workload. Here are some examples of network
controls as a perimeter:

Define your edge perimeter between public networks and the network where your
workload is placed. Restrict line of sight from public networks to your network as
much as possible.
Implement demilitarized zones (DMZs) in front of the application with proper
controls via firewalls.
Create micro-segmentation within your private network by grouping parts of the
workload into separate segments. Establish secure communication paths between
them.
Create boundaries based on intent. For example, segment workload functional
networks from operational networks.

For common patterns related to networking segmentation, see Networking
segmentation patterns.

 Tradeoff: Network security controls are often expensive because they're
included with the premium SKUs. Configuring rules on firewalls often results in
overwhelming complexity requiring broad exceptions.

Private connectivity changes architectural design, often adding more components
such as jump boxes for private access to compute nodes.

Because network perimeters are based on control points, or hops, on the network,
each hop can be a potential point of failure. These points can have an effect on the
reliability of the system.

 Risk: Network controls are rule-based and there's a significant chance of
misconfiguration, which is a reliability concern.

For information about network controls, see Networking and connectivity.

Segmentation that prevents confusion and security risks is achieved by clearly defining
lines of responsibility within a workload team.

Document and share roles and functions to create consistency and facilitate
communication. Designate groups or individual roles that are responsible for key
functions. Consider the built-in roles in Azure before creating custom roles for objects.

Consider consistency while accommodating several organizational models when
assigning permissions for a segment. These models can range from a single centralized
IT group to mostly independent IT and DevOps teams.

 Risk: Membership of groups can change over time as employees join or leave
teams or change roles. Management of roles across segments can result in
management overhead.

Segmentation allows you to isolate workload resources from other parts of the
organization or even within the team. Azure constructs, such as management groups,
subscriptions, environments, and resource groups, are ways of organizing your
resources that promote segmentation. Here are some examples of resource-level
isolation:

Polyglot persistence involves a combination of data storing technologies instead of
a single database system to support segmentation. Use polyglot persistence for
separation by various data models, separation of functionalities such as data
storage and analytics, or to separate by access patterns.
Allocate one service for each server when organizing your compute. This level of
isolation minimizes complexity and can help contain an attack.
Azure provides built-in isolation for some services, for example separation of
compute from storage. For other examples, see Isolation in the Azure public cloud.

 Tradeoff: Resource isolation might result in an increase in total cost of
ownership (TCO). For data stores, there might be added complexity and
coordination during disaster recovery.

Roles and responsibilities

Resource organization

Azure facilitation

https://learn.microsoft.com/en-us/azure/security/fundamentals/isolation-choices

Certain Azure services are available for use in implementing a segmentation strategy, as
outlined in the following sections.

Azure RBAC supports segmentation by isolating access by job function. Only certain
actions are allowed for certain roles and scopes. For example, job functions that only
need to observe the system can be assigned reader permissions versus contributor
permissions that allow the identity to manage resources.

For more information, see Best practices for RBAC.

Virtual networks: Virtual networks provide network-level containment of resources
without adding traffic between two virtual networks. Virtual networks are created in
private address spaces within a subscription

Network security groups (NSG): An access control mechanism for controlling traffic
between resources in virtual networks and external networks, such as the internet.
Implement user-defined routes (UDR) to control the next hop for traffic. NSGs can take
your segmentation strategy to a granular level by creating perimeters for a subnet, a
virtual machine (VM), or a group of VMs. For information about possible operations with
subnets in Azure, see Subnets.

Application security groups (ASGs): ASGs allow you to group a set of VMs under an
application tag and define traffic rules that are then applied to each of the underlying
VMs.

Identity

Networking

https://learn.microsoft.com/en-us/azure/role-based-access-control/best-practices
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/rest/api/virtualnetwork/subnets
https://learn.microsoft.com/en-us/azure/virtual-network/application-security-groups
https://learn.microsoft.com/en-us/azure/well-architected/security/images/segmentation/network-segmentation-highres.png#lightbox

Azure Firewall: A cloud-native service, which can be deployed in your virtual network or
in Azure Virtual WAN hub deployments. Use Azure Firewall to filter traffic flowing
between cloud resources, the internet, and on-premises resources. Use Azure Firewall
or Azure Firewall Manager to create rules or policies that allow or deny traffic using layer
3 to layer 7 controls. Filter internet traffic using Azure Firewall and third parties by
directing traffic through third-party security providers for advanced filtering and user
protection. Azure supports network virtual appliance deployment, which helps
segmentation from third-party firewalls.

Here are some common patterns for segmenting a workload in Azure. Choose a pattern
based on your needs.

This example builds on the Information Technology (IT) environment established in the
security baseline (SE:01). The diagram below shows segmentation at the management
group level done by an organization.

Example

Management Group #1

Azure Subscrip�on #1

Azure Subscrip�on #2

PRODUCTION | Workload A

DEVELOPMENT | Workload B

Entra ID (Tenant #1)

Management Group #2

Azure Subscrip�on #3

Resource Group #2Resource Group #1

PRODUCTION DEVELOPMENT

Entra ID (Tenant #2)

Workload A Workload B

1

2

3

4

https://learn.microsoft.com/en-us/azure/firewall/
https://learn.microsoft.com/en-us/azure/virtual-wan/virtual-wan-about
https://learn.microsoft.com/en-us/azure/firewall-manager/overview
https://learn.microsoft.com/en-us/azure/well-architected/security/images/segmentation/segmentation-enterprise.svg#lightbox

One way to organize security groups is by job title like software engineer, database
administrator, site reliability engineer, quality assurance engineer, or security analyst.
This approach involves creating security groups for your workload team based on their
roles, without considering the work that needs to be accomplished. Grant security
groups RBAC permissions, standing or just in time (JIT), according to their
responsibilities in the workload. Assign human and service principles to security groups
based on their as-needed access.

Membership is highly visible at the role assignment level, making it easy to see what a
role has access to. Each person is usually a member of only one security group, which
makes onboarding and offboarding easy. However, unless job titles overlap perfectly
with responsibilities, title-based grouping isn't ideal for least-privilege implementation.
You might end up combining implementation with function-based grouping.

Function-based grouping is a security group organization method that reflects discrete
work that needs to be accomplished, not taking into account your team structure. With
this pattern, you grant security groups RBAC permissions, standing or JIT as needed,
according to their required function in the workload.

Assign human and service principles to security groups based on their as-needed
access. Where possible, use existing homogeneous groups as members of the function-
based groups, such as those groups from pattern 1. Examples of function-based groups
include:

Production database operators
Preproduction database operators
Production certificate rotation operators
Preproduction certificate rotation operators
Production live-site/triage
Preproduction all access

This approach maintains the strictest least-privilege access and provides security groups
where scope is evident, which makes it easy to audit memberships relative to job duties
performed. Often a built-in Azure role exists to match this job function.

Identity segmentation patterns

Pattern 1: Job title-based grouping

Pattern 2: Function-based grouping

However, membership is abstracted at least one layer, forcing you to go to the identity
provider to understand who's in the group when looking from the resource perspective.
Additionally, one person needs to have multiple memberships maintained for complete
coverage. The matrix of overlapping security groups can be complex.

Pattern 2 is recommended to make the access patterns the focus, not the organization
chart. Organization charts and member roles sometimes change. Capturing your
workload's identity and access management from a functional perspective allows you to
abstract your team organization from the secure management of the workload.

In this pattern, the workload is placed in a single virtual network using subnets to mark
boundaries. Segmentation is achieved using two subnets, one for database and one for
web workloads. You must configure NSGs that allow Subnet 1 to only communicate with
Subnet 2 and Subnet 2 to only communicate with the internet. This pattern provides
layer 3 level control.

Networking segmentation patterns

Pattern 1: Segmentation within a workload (soft boundaries)

Pattern 2: Segmentation within a workload

https://learn.microsoft.com/en-us/azure/well-architected/security/images/segmentation/az1-appgw-user-highres.png#lightbox

This pattern is an example of platform-level segmentation. Workload components are
spread across multiple networks without peering between them. All communication is
routed through an intermediary that serves as a public access point. The workload team
owns all networks.

Pattern 2 provides containment but has the added complexity of virtual network
management and sizing. Communication between the two networks takes place over
the public internet, which can be a risk. There's also latency with public connections.
However, the two networks can be peered, breaking segmentation by connecting them
to create a larger segment. Peering should be done when no other public endpoints are
needed.

Considerations Pattern 1 Pattern 2

Connectivity and
routing: How each
segment
communicates

System routing provides default
connectivity to workload
components. No external
component can communicate with
the workload.

Within the virtual network, same
as pattern 1.
Between networks, the traffic
goes over the public internet.
There's no direct connectivity
between the networks.

https://learn.microsoft.com/en-us/azure/well-architected/security/images/segmentation/az1-appgw-1-highres.png#lightbox

Considerations Pattern 1 Pattern 2

Network-level traffic
filtering

Traffic between the segments is
allowed by default. Use NSGs or
ASGs to filter traffic.

Within the virtual network, same
as pattern 1.
Between the networks, you can
filter both ingress and egress
traffic through a firewall.

Unintended open
public endpoints

Network interface cards (NICs)
don't get public IPs. Virtual
networks aren't exposed to
internet API management.

Same as pattern 1. Intended open
public endpoint on one virtual
network, which can be
misconfigured to accept more
traffic.

Consider an Azure estate that contains multiple workloads and shared service
components like hub virtual networks, firewalls, identity services, and security services
like Microsoft Sentinel. Components throughout the estate should be grouped based on
their functional areas, workloads, and ownership. For example, shared networking
resources should be grouped together into a single subscription and managed by a
networking team. Components that are dedicated to individual workloads should be in
their own segment and might be further divided based on application tiers or other
organizational principles.

Grant access to manage resources within individual segments by creating RBAC role
assignments. For example, the cloud networking team might be granted administrative

Resource organization

Organize Azure resources based on ownership responsibility

https://learn.microsoft.com/en-us/azure/well-architected/security/images/segmentation/services-and-workloads-highres.png#lightbox

access to the subscription that contains their resources, but not to individual workload
subscriptions.

A good segmentation strategy makes it possible to easily identify the owners of each
segment. Consider using Azure resource tags to annotate resource groups or
subscriptions with the owner team.

Grant appropriate access based on need by clearly defining segments for your
resources.

Consider the principle of least privilege when you define access control policies. It's
important to distinguish between control plane operations (management of the resource
itself) and data plane operations (access to the data stored by the resource). For
example, suppose you have a workload that contains a database with sensitive
information about employees. You might grant management access to some users that
need to configure settings like database backups or users that monitor the performance
of the database server. However, these users shouldn't be able to query the sensitive
data stored in the database. Select permissions that grant the minimum scope needed
for users to perform their duties. Regularly review role assignments for each segment
and remove access that's no longer required.

Isolation in the Azure public cloud
Recommendations for RBAC
Virtual networks overview
ASGs
Azure Firewall
Firewall Manager overview

Configure and review access control

７ Note

Some highly privileged roles, like the owner role in RBAC, give users the ability to
grant other users access to a resource. Limit how many users or groups are
assigned the owner role, and regularly review audit logs to ensure they only
perform valid operations.

Related links

Security checklist

https://learn.microsoft.com/en-us/azure/security/fundamentals/isolation-choices
https://learn.microsoft.com/en-us/azure/role-based-access-control/best-practices
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/virtual-network/application-security-groups
https://learn.microsoft.com/en-us/azure/firewall/
https://learn.microsoft.com/en-us/azure/firewall-manager/overview

Refer to the complete set of recommendations.

Security checklist

Recommendations for identity and
access management
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:05 Implement strict, conditional, and auditable identity and access management (IAM)
across all workload users, team members, and system components. Limit access
exclusively to as necessary. Use modern industry standards for all authentication
and authorization implementations. Restrict and rigorously audit access that's not
based on identity.

This guide describes the recommendations for authenticating and authorizing identities
that are attempting to access your workload resources.

From a technical control perspective, identity is always the primary perimeter. This
scope doesn't just include the edges of your workload. It also includes individual
components that are inside your workload. Typical identities include:

Humans. Application users, admins, operators, auditors, and bad actors.

Systems. Workload identities, managed identities, API keys, service principals, and
Azure resources.

Anonymous. Entities who haven't provided any evidence about who they are.

Definitions

Terms Definition

Authentication
(AuthN)

A process that verifies that an identity is who or what it says it is.

Authorization
(AuthZ)

A process that verifies whether an identity has permission to perform a
requested action.

Conditional
access

A set of rules that allows actions based on specified criteria.

IdP An identity provider, like Microsoft Entra ID.

Persona A job function or a title that has a set of responsibilities and actions.

Preshared keys A type of secret that's shared between a provider and consumer and used
through a secure and agreed upon mechanism.

Terms Definition

Resource identity An identity defined for cloud resources that's managed by the platform.

Role A set of permissions that define what a user or group can do.

Scope Different levels of organizational hierarchy where a role is permitted to
operate. Also a group of features in a system.

Security principal An identity that provides permissions. It can be a user, a group, or a service
principal. Any group members get the same level of access.

User identity An identity for a person, like an employee or an external user.

Workload identity A system identity for an application, service, script, container, or other
component of a workload that's used to authenticate itself to other services
and resources.

An identity provider (IdP) is a cloud-hosted service that stores and manages users as
digital identities.

Take advantage of the capabilities provided by a trusted IdP for your identity and
access management. Don't implement custom systems to replace an IdP. IdP systems
are improved frequently based on the latest attack vectors by capturing billions of
signals across multiple tenants each day. Microsoft Entra ID is the IdP for Azure cloud
platform.

Authentication is a process that verifies identities. The requesting identity is required to
provide some form of verifiable identification. For example:

A user name and password.

７ Note

An identity can be grouped with other, similar identities under a parent called a
security principal. A security group is an example of a security principal. This
hierarchical relationship simplifies maintenance and improves consistency. Because
identity attributes aren't handled at the individual level, chances of errors are also
reduced. In this article, the term identity is inclusive of security principals.

The role of an identity provider

Authentication

A preshared secret, like an API key that grants access.

A shared access signature (SAS) token.

A certificate that's used in TLS mutual authentication.

As much as possible, the verification process should be handled by your IdP.

Authorization is a process that allows or denies actions that are requested by the
verified identity. The action might be operational or related to resource management.

Authorization requires that you assign permissions to the identities, which you need to
do by using the functionality provided by your IdP.

To get a holistic view of the identity needs for a workload, you need to catalog the flows,
workload assets, and personas, and the actions the assets and personas will perform.
Your strategy must cover all use cases that handle the flows that reach the workload or
its components (outside-in access) and flows that reach out from the workload to
other sources (inside-out access).

Each use case will probably have its own set of controls that you need to design with an
assume-breach mindset. Based on the identity requirements of the use case or the
personas, identify the conditional choices. Avoid using one solution for all use cases.
Conversely, the controls shouldn't be so granular that you introduce unnecessary
management overhead.

You need to log the identity access trail. Doing so helps validate the controls, and you
can use the logs for compliance audits.

Outside-in access. Your identity design must authenticate all users that access the
workload for various purposes. For example, an end user who accesses the
application by calling APIs.

At a granular level, components of the workload might also need access from
outside. For example, an operator who needs access through the portal or access
to the compute to run commands.

Authorization

Key design strategies

Determine all identities for authentication

Both are examples of user identities that have different personas.

Inside-out access. Your application will need to access other resources. For
example, reading from or writing to the data platform, retrieving secrets from the
secret store, and logging telemetry to monitoring services. It might even need to
access third-party services. These access needs require workload identity, which
enables the application to authenticate itself against the other resources.

The concept applies at the component level. In the following example, the
container might need access to deployment pipelines to get its configuration.
These access needs require resource identity.

All these identities should be authenticated by your IdP.

Here's an example of how identity can be implemented in an architecture:

Next, you need to know what each authenticated identity is trying to do so that those
actions can be authorized. The actions can be divided by the type of access that they
require:

Data plane access. Actions that take place in the data plane cause data transfer for
inside-out or outside-in access. For example, an application reading data from a

Determine actions for authorization

https://learn.microsoft.com/en-us/azure/well-architected/security/images/identity-access/architecture-identity-highres.png#lightbox

database and writing data to a database, fetching secrets, or writing logs to a
monitoring sink. At the component level, compute that's pulling or pushing images
to or from a registry are considered data plane operations.

Control plane access. Actions that take place in the control plane cause an Azure
resource to be created, modified, or deleted. For example, changes to resource
properties.

Applications typically target data plane operations, while operations often access both
control and data planes. To identify authorization needs, note the operational actions
that can be performed on the resource. For information about the permitted actions for
each resource, see Azure resource provider operations.

Based on the responsibility of each identity, authorize actions that should be permitted.
An identity must not be allowed to do more than it needs to do. Before you set
authorization rules, you need to have a clear understanding of who or what is making
requests, what that role is allowed to do, and to what extent it can do it. Those factors
lead to choices that combine identity, role, and scope.

Consider a workload identity as an exmaple. The application must have data plane
access to the database, so read and write actions to the data resource must be allowed.
However, does the application need control plane access to the secret store? If the
workload identity is compromised by a bad actor, what would the impact to the system
be, in terms of confidentiality, integrity, and availability?

A role is a set of permissions that's assigned to an identity. Assign roles that only allow
the identity to complete the task, and no more. When user's permissions are restricted
to their job requirements, it's easier to identify suspicious or unauthorized behavior in
the system.

Ask questions like these:

Is read-only access enough?
Does the identity need permissions to delete resources?

Limiting the level of access that users, applications, or services have to Azure
resources reduces the potential attack surface. If you grant only the minimum
permissions that are required to perform specific tasks, the risk of a successful attack or
unauthorized access is significantly reduced. For example, security teams only need

Provide role-based authorization

Role assignment

https://learn.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations

read-only access to security attributes for all technical environments. That level is
enough to assess risk factors, identify potential mitigations, and report on the risks.

There are scenarios in which users need more access because of the organizational
structure and team organization. There might be an overlap between various roles, or
single users might perform multiple standard roles. In this case, use multiple role
assignments that are based on the business function instead of creating a custom role
for each of these users. Doing so makes the roles easier to manage.

Avoid permissions that specifically reference individual resources or users. Granular
and custom permissions create complexity and confusion because they don't pass on
the intention to new resources that are similar. This can create a complex legacy
configuration that's difficult to maintain and negatively impact both security and
reliability.

 Tradeoff: A granular access control approach enables better auditing and
monitoring of user activities.

A role also has an associated scope. The role can operate at the allowed management
group, subscription, resource group, or resource scope, or at another custom scope.
Even if the identity has a limited set of permissions, widening the scope to include
resources that are outside the identity's job function is risky. For example, read access to
all source code and data can be dangerous and must be controlled.

You assign roles to identities by using role-based access control (RBAC). Always use IdP-
provided RBAC to take advantage of features that enable you to apply access control
consistently and revoke it rigorously.

Use built-in roles. They're designed to cover most use cases. Custom roles are powerful
and sometimes useful, but you should reserve them for scenarios in which built-in roles
won't work. Customization leads to complexity that increases confusion and makes
automation more complex, challenging, and fragile. These factors all negatively impact
security.

Grant roles that start with least privilege and add more based your operational or
data access needs. Your technical teams must have clear guidance to implement
permissions.

If you want fine-grained control on RBAC, add conditions on the role assignment based
on context, such as actions and attributes.

Make conditional access choices

Don't give all identities the same level of access. Base your decisions on two main
factors:

Time. How long the identity can access your environment.

Privilege. The level of permissions.

Those factors aren't mutually exclusive. A compromised identity that has more privileges
and unlimited duration of access can gain more control over the system and data or use
that access to continue to change the environment. Constrain those access factors both
as a preventive measure and to control the blast radius.

Just in Time (JIT) approaches provide the required privileges only when they're
needed.

Just Enough Access (JEA) provides only the required privileges.

Although time and privilege are the primary factors, there are other conditions that
apply. For example, you can also use the device, network, and location from which the
access originated to set policies.

Use strong controls that filter, detect, and block unauthorized access, including
parameters like user identity and location, device health, workload context, data
classification, and anomalies.

For example, your workload might need to be accessed by third-party identities like
vendors, partners, and customers. They need the appropriate level of access rather than
the default permissions that you provide to full-time employees. Clear differentiation of
external accounts makes it easier to prevent and detect attacks that come from these
vectors.

Your choice of IdP must be able to provide that differentiation, provide built-in features
that grant permissions based on the least privilege, and provide built-in threat
intelligence. This includes monitoring of access requests and sign-ins. The Azure IdP is
Microsoft Entra ID. For more information, see the Azure facilitation section of this article.

Administrative identities introduce some of the highest impact security risks because the
tasks they perform require privileged access to a broad set of these systems and
applications. Compromise or misuse can have a detrimental effect on your business and
its information systems. Security of administration is one of the most critical security
areas.

Critical impact accounts

Protecting privileged access against determined adversaries requires you to take a
complete and thoughtful approach to isolate these systems from risks. Here are some
strategies:

Minimize the number of critical impact accounts.

Use separate roles instead of elevating privileges for existing identities.

Avoid permanent or standing access by using the JIT features of your IdP. For
break glass situations, follow an emergency access process.

Use modern access protocols like passwordless authentication or multifactor
authentication. Externalize those mechanisms to your IdP.

Enforce key security attributes by using conditional access policies.

Decommission administrative accounts that aren't being used.

Use a single identity across environments and associate a single identity with the user or
principal. Consistency of identities across cloud and on-premises environments reduces
human errors and the resulting security risks. Teams in both environments that manage
resources need a consistent, authoritative source in order to meet security assurances.
Work with your central identity team to ensure that identities in hybrid environments are
synchronized.

 Risk: There's a risk associated with synchronizing high privilege identities. An
attacker can get full control of on-premises assets, and this can lead to a successful
compromise of a cloud account. Evaluate your synchronization strategy by filtering
out accounts that can add to the attack surface.

Access to identities must not last longer than the resources that the identities access.
Ensure that you have a process for disabling or deleting identities when there are
changes in team structure or software components.

This guidance applies to source control, data, control planes, workload users,
infrastructure, tooling, the monitoring of data, logs, metrics, and other entities.

Establish an identity governance process to manage the lifecycle of digital identities,
high-privileged users, external/guest users, and workload users. Implement access
reviews to ensure that when identities leave the organization or the team, their workload
permissions are removed.

Establish processes to manage the identity lifecycle

Application secrets like preshared keys should be considered vulnerable points in the
system. In the two-way communication, if the provider or consumer is compromised,
significant security risks can be introduced. Those keys can also be burdensome because
they introduce operational processes.

When you can, avoid using secrets and consider using identity-based authentication for
user access to the application itself, not just to its resources.

The following list provides a summary of guidance. For more information, see
Recommendations for application secrets.

Treat these secrets as entities that can be dynamically pulled from a secret store.
They shouldn't be hard coded in your application code, IaC scripts, deployment
pipelines, or in any other artifact.

Be sure that you have the ability to revoke secrets.

Apply operational practices that handle tasks like key rotation and expiration.

For information about rotation policies, see Automate the rotation of a secret for
resources that have two sets of authentication credentials and Tutorial: Updating
certificate auto-rotation frequency in Key Vault.

All code and scripts, pipeline tooling, and source control systems should be considered
workload assets. Access to writes should be gated with automation and peer review.
Read access to source code should be limited to roles on a need-to-know basis. Code
repositories must have versioning, and security code reviews by peers must be a regular
practice that's integrated with the development lifecycle. You need to have a process in
place that scans resources regularly and identifies the latest vulnerabilities.

Use workload identities to grant access to resources from deployment environments,
such as GitHub.

One aspect of identity management is ensuring that the system is auditable. Audits
validate whether assume-breach strategies are effective. Maintaining an audit trail helps
you:

Protect nonidentity based secrets

Keep development environments safe

Maintain an audit trail

https://learn.microsoft.com/en-us/azure/key-vault/secrets/tutorial-rotation-dual
https://learn.microsoft.com/en-us/azure/key-vault/certificates/tutorial-rotate-certificates

Verify that identity is authenticated with strong authentication. Any action must be
traceable to prevent repudiation attacks.

Detect weak or missing authentication protocols and get visibility into and
insights about user and application sign-ins.

Evaluate access from identities to the workload based on security and compliance
requirements and consider user account risk, device status, and other criteria and
policies that you set.

Track progress or deviation from compliance requirements.

Most resources have data plane access. You need to know the identities that access
resources and the actions that they perform. You can use that information for security
diagnostics.

For more information, see Recommendations on security monitoring and threat analysis.

We recommend that you always use modern authentication protocols that take into
account all available data points and use conditional access. Microsoft Entra ID
provides identity and access management in Azure. It covers the management plane of
Azure and is integrated with the data planes of most Azure services. Microsoft Entra ID
is the tenant that's associated with the workload subscription. It tracks and manages
identities and their allowed permissions and simplifies overall management to minimize
the risk of oversight or human error.

These capabilities natively integrate into the same Microsoft Entra identity and
permission model for user segments:

Microsoft Entra ID. Employees and enterprise resources.

Microsoft Entra External ID. Partners.

Azure AD B2C. Customers.

Microsoft Entra federation compatibility list. Third-party federation solutions.

You can use Microsoft Entra ID for authentication and authorization of custom
applications via Microsoft Authentication Library (MSAL) or platform features, like
authentication for web apps. It covers the management plane of Azure, the data planes
of most of Azure services, and integration capabilities for your applications.

You can stay current by visiting What's new in Microsoft Entra ID.

Azure facilitation

https://learn.microsoft.com/en-us/azure/active-directory/
https://learn.microsoft.com/en-us/azure/active-directory/b2b/
https://learn.microsoft.com/en-us/azure/active-directory-b2c/
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-fed-compatibility
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/whats-new

 Tradeoff: Microsof Microsoft Entra ID is a single point of failure just like any
other foundational service. There's no workaround until the outage is fixed by
Microsoft. However, the rich feature set of Microsoft Entra outweighs the risk of
using custom solutions.

Azure supports open protocols like OAuth2 and OpenID Connect. We recommend that
you use these standard authentication and authorization mechanisms instead of
designing your own flows.

Azure RBAC represents security principals in Microsoft Entra ID. All role assignments are
done via Azure RBAC. Take advantage of built-in roles that provide most of the
permissions that you need. For more information, see Microsoft Entra built-in roles.

Here are some use cases:

By assigning users to roles, you can control access to Azure resources. For more
information, see Overview of role-based access control in Microsoft Entra ID.

You can use Privileged Identity Management to provide time-based and approval-
based role activation for roles that are associated with high-impact identities. For
more information, see What is Privileged Identity Management?.

For more information about RBAC, see Best practices for Azure RBAC.

For information about attribute-based controls, see What is Azure ABAC?.

Microsoft Entra ID can handle your application's identity. The service principal that's
associated with the application can dictate its access scope.

For more information, see What are workload identities?.

The service principal is also abstracted when you use a managed identity. The
advantage is that Azure manages all credentials for the application.

Not all services support managed identities. If you can't use managed identities, you can
use service principals. However, using service principals increases your management
overhead. For more information, see What are managed identities for Azure resources?.

Azure RBAC

Workload identity

https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://learn.microsoft.com/en-us/azure/active-directory/roles/custom-overview
https://learn.microsoft.com/en-us/azure/active-directory/privileged-identity-management/pim-configure
https://learn.microsoft.com/en-us/azure/role-based-access-control/best-practices
https://learn.microsoft.com/en-us/azure/role-based-access-control/conditions-overview
https://learn.microsoft.com/en-us/azure/active-directory/workload-identities/workload-identities-overview
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

The concept of managed identities can be extended to Azure resources. Azure
resources can use managed identities to authenticate themselves to other services that
support Microsoft Entra authentication. For more information, see Azure services that
can use managed identities to access other services.

Conditional access describes your policy for an access decision. To use conditional
access, you need to understand the restrictions that are required for the use case.
Configure Microsoft Entra Conditional Access by setting up an access policy for that's
based on your operational needs.

For more information, see Conditional access: Users, groups, and workload identities.

Instead of granting permissions to specific users, assign access to groups in Microsoft
Entra ID. If a group doesn't exist, work with your identity team to create one. You can
then add and remove group members outside of Azure and make sure that permissions
are current. You can also use the group for other purposes, like mailing lists.

For more information, see Secure access control using groups in Microsoft Entra ID.

Microsoft Entra ID Protection can help you detect, investigate, and remediate identity-
based risks. For more information, see What is Identity Protection?.

Threat detection can take the form of reacting to an alert of suspicious activity or
proactively searching for anomalous events in activity logs. User and Entity Behavior
Analytics (UEBA) in Microsoft Sentinel makes it easy to detect suspicious activities. For
more information, see Identify advanced threats with UEBA.

On Azure, don't synchronize accounts to Microsoft Entra ID that have high privileges
in your existing Active Directory. This synchronization is blocked in the default
Microsoft Entra Connect Sync configuration, so you only need to confirm that you
haven't customized this configuration.

Resource identity

Conditional access policies

Group access management

Threat detection

Hybrid systems

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-managed-identities
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/concept-conditional-access-users-groups
https://learn.microsoft.com/en-us/azure/active-directory/develop/secure-group-access-control
https://learn.microsoft.com/en-us/azure/active-directory/identity-protection/overview-identity-protection
https://learn.microsoft.com/en-us/azure/sentinel/identify-threats-with-entity-behavior-analytics

For information about filtering in Microsoft Entra ID, see Microsoft Entra Connect Sync:
Configure filtering.

Enable diagnostic settings on Azure resources to emit information that you can use as
an audit trail. The diagnostic information shows which identities attempt to access which
resources and the outcome of those attempts. The collected logs are sent to Azure
Monitor.

 Tradeoff: Logging incurs costs because of the data storage that's used to store
the logs. It also might cause a performance impact, especially on the code and on
logging solutions that you add to the application.

The following example shows an identity implementation. Different types of identities
are used together to provide the required levels of access.

Identity logging

Example

https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-sync-configure-filtering
https://learn.microsoft.com/en-us/azure/well-architected/security/images/identity-access/identity-architecture-design-highres.png#lightbox

System-managed identities. Microsoft Entra ID provides access to service data
planes that don't face users, like Azure Key Vault and data stores. These identities
also control access, via RBAC, to the Azure management plane for workload
components, deployment agents, and team members.

Workload identities. The application services in the Azure Kubernetes Service
(AKS) cluster use workload identities to authenticate themselves to other
components in the solution.

Managed identities. System components in the client role use system-managed
identities, including build agents.

Human identities. User and operator authentication is delegated to Microsoft
Entra ID or Microsoft Entra ID (native, B2B, or B2C).

The security of preshared secrets is critical for any application. Azure Key Vault provides
a secure storage mechanism for these secrets, including Redis and third-party secrets.

A rotation mechanism is used to help ensure that secrets aren't compromised. Tokens
for the Microsoft identity platform implementation of OAuth 2 and OpenID Connect are
used to authenticate users.

Azure Policy is used to ensure that identity components like Key Vault use RBAC instead
of access policies. JIT and JEA provide traditional standing permissions for human
operators.

Access logs are enabled across all components via Azure Diagnostics, or via code for
code components.

Tutorial: Automate the rotation of a secret for resources that have two sets of
authentication credentials
Tutorial: Updating certificate auto-rotation frequency in Key Vault
What's new in Microsoft Entra ID?
Microsoft Entra built-in roles
Overview of role-based access control in Microsoft Entra ID
What are workload identities?
What are managed identities for Azure resources?
Conditional access: Users, groups, and workload identities
Microsoft Entra Connect Sync: Configure filtering

Identity components

Related links

https://learn.microsoft.com/en-us/azure/key-vault/secrets/tutorial-rotation-dual
https://learn.microsoft.com/en-us/azure/key-vault/certificates/tutorial-rotate-certificates
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/whats-new
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference
https://learn.microsoft.com/en-us/azure/active-directory/roles/custom-overview
https://learn.microsoft.com/en-us/azure/active-directory/workload-identities/workload-identities-overview
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/concept-conditional-access-users-groups
https://learn.microsoft.com/en-us/azure/active-directory/hybrid/connect/how-to-connect-sync-configure-filtering

Refer to the complete set of recommendations.

Security checklist

Security checklist

Recommendations for networking and
connectivity
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:05 Isolate, filter, and control network traffic across both ingress and egress flows.
Apply defense in depth principles by using localized network controls at all
available network boundaries across both east-west and north-south traffic.

This guide describes the recommendations for network design. The focus is on security
controls that can filter, block, and detect adversaries crossing network boundaries at
various depths of your architecture.

You can strengthen your identity controls by implementing network-based access
control measures. Along with identity-based access control, network security is a high
priority for protecting assets. Proper network security controls can provide a defense-in-
depth element that can help detect and contain threats, and prevent attackers from
gaining entry into your workload.

Definitions

Term Definition

East-west traffic Network traffic that moves within a trusted boundary.

Egress flow Outbound workload traffic.

Hostile network A network that isn't deployed as part of your workload. A hostile network
is considered a threat vector.

Ingress flow Inbound workload traffic.

Network filtering A mechanism that allows or blocks network traffic based on specified
rules.

Network
segmentation or
isolation

A strategy that divides a network into small, isolated segments, with
security controls applied at the boundaries. This technique helps protect
resources from hostile networks, such as the internet.

Network
transformation

A mechanism that mutates network packets to obscure them.

North-south traffic Network traffic that moves from a trusted boundary to external networks
that are potentially hostile, and vice versa.

Network security uses obscurity to protect workload assets from hostile networks.
Resources that are behind a network boundary are hidden until the boundary controls
mark the traffic as safe to move forward. Network security design is built on three main
strategies:

Segment. This technique isolates traffic on separate networks by adding
boundaries. For example, traffic to and from an application tier passes a boundary
to communicate with other tiers, which have different security requirements. Layers
of segmentation actualize the defense-in-depth approach.

The foremost security boundary is the networking edge between your application
and public networks. It's important to clearly define this perimeter so that you
establish a boundary for isolating hostile networks. The controls on this edge must
be highly effective, because this boundary is your first line of defense.

Virtual networks provide a logical boundary. By design, a virtual network can't
communicate with another virtual network unless the boundary has been
intentionally broken through peering. Your architecture should take advantage of
this strong, platform-provided security measure.

You can also use other logical boundaries, such as carved-out subnets within a
virtual network. A benefit of subnets is that you can use them to group together
resources that are within an isolation boundary and have similar security
assurances. You can then configure controls on the boundary to filter traffic.

Filter. This strategy helps ensure that traffic that enters a boundary is expected,
allowed, and safe. From a Zero-Trust perspective, filtering explicitly verifies all
available data points at the network level. You can place rules on the boundary to
check for specific conditions.

For example, at the header level, the rules can verify that the traffic originates from
an expected location or has an expected volume. But these checks aren't sufficient.
Even if the traffic exhibits expected characteristics, the payload might not be safe.
Validation checks might reveal an SQL injection attack.

Transform. Mutate packets at the boundary as a security measure. For example,
you can remove HTTP headers to eliminate the risk of exposure. Or you can turn
off Transport Layer Security (TLS) at one point and reestablish it at another hop
with a certificate that's managed more rigorously.

Key design strategies

Classify the traffic flows

The first step in classifying flows is to study a schematic of your workload architecture.
From the schematic, determine the intent and characteristics of the flow with respect
to the functional utility and operational aspects of your workload. Use the following
questions to help classify the flow:

If the workload needs to communicate with external networks, what should the
required level of proximity to those networks be?

What are the network characteristics of the flow, such as the expected protocol
and the source and shape of the packets? Are there any compliance requirements
at the networking level?

There are many ways to classify traffic flows. The following sections discuss commonly
used criteria.

Public. A workload is public facing if its application and other components are
reachable from the public internet. The application is exposed through one or
more public IP addresses and public Domain Name System (DNS) servers.

Private. A workload is private if it can only be accessed through a private network
such as a virtual private network (VPN). It's exposed only through one or more
private IP addresses and potentially through a private DNS server.

In a private network, there's no line of sight from the public internet to the
workload. For the gateway, you can use a load balancer or firewall. These options
can provide security assurances.

Even with public workloads, strive to keep as much of the workload private as possible.
This approach forces packets to cross through a private boundary when they arrive from
a public network. A gateway in that path can function as a transition point by acting as a
reverse proxy.

Ingress. Ingress is inbound traffic that flows toward a workload or its components.
To help secure ingress, apply the preceding set of key strategies. Determine what
the traffic source is and whether it's expected, allowed, and safe. Attackers who
scan public cloud provider IP address ranges can successfully penetrate your
defenses if you don't check ingress or implement basic network security measures.

Visibility from external networks

Traffic direction

Egress. Egress is outbound traffic that flows away from a workload or its
components. To check egress, determine where the traffic is headed and whether
the destination is expected, allowed, and safe. The destination might be malicious
or associated with data exfiltration risks.

You can also determine your level of exposure by considering your workload's
proximity to the public internet. For example, the application platform typically serves
public IP addresses. The workload component is the face of the solution.

North-south. Traffic that flows between a workload network and external networks
is north-south traffic. This traffic crosses the edge of your network. External
networks can be the public internet, a corporate network, or any other network
that's outside your scope of control.

Ingress and egress can both be north-south traffic.

As an example, consider the egress flow of a hub-spoke network topology. You can
define the networking edge of your workload so that the hub is an external
network. In that case, outbound traffic from the virtual network of the spoke is
north-south traffic. But if you consider the hub network within your sphere of
control, north-south traffic is extended to the firewall in the hub, because the next
hop is the internet, which is potentially hostile.

East-west. Traffic that flows within a workload network is east-west traffic. This type
of traffic results when components in your workload communicate with each other.
An example is traffic between the tiers of an n-tier application. In microservices,
service-to-service communication is east-west traffic.

To provide defense in depth, maintain end-to-end control of security affordances that
are included in each hop or that you use when packets cross internal segments.

Scope of influence

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/internet-network-public-highres.png#lightbox

Different risk levels require different risk remediation methods.

The preceding diagram illustrates network defense in depth in the private cloud. In this
diagram, the border between the public and private IP address spaces is significantly
farther from the workload than in the public cloud diagram. Multiple layers separate the
Azure deployments from the public IP address space.

After you classify flows, perform a segmentation exercise to identify firewall injection
points on the communication paths of your network segments. When you design your
network defense in depth across all segments and all traffic types, assume a breach at
all points. Use a combination of various localized network controls at all available
boundaries. For more information, see Segmentation strategies.

Internet edge traffic is north-south traffic and includes ingress and egress. To detect or
block threats, an edge strategy must mitigate as many attacks as possible to and from
the internet.

For egress, send all internet-bound traffic through a single firewall that provides
enhanced oversight, governance, and control of traffic. For ingress, force all traffic from
the internet to go through a network virtual appliance (NVA) or a web application
firewall.

Firewalls are usually singletons that are deployed per region in an organization. As
a result, they're shared among workloads and owned by a central team. Make sure
that any NVAs that you use are configured to support the needs of your workload.

７ Note

Identity is always the primary perimeter. Access management must be applied to
networking flows. Use managed identities when you use Azure role-based access
control (RBAC) between components of your network.

Apply firewalls at the edge

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/network-defense-in-depth-private-highres.png#lightbox

We recommend that you use Azure native controls as much as possible.

In addition to native controls, you can also consider partner NVAs that provide
advanced or specialized features. Partner firewall and web application firewall
vendor products are available in Azure Marketplace.

The decision to use native features as opposed to partner solutions should be
based on your organization's experience and requirements.

 Tradeoff: Partner capabilities often provide advanced features that can
protect against sophisticated, but typically uncommon, attacks. The
configuration of partner solutions can be complex and fragile, because these
solutions don't integrate with the cloud's fabric controllers. From a cost
perspective, native control is preferred because it's cheaper than partner
solutions.

Any technological options that you consider should provide security controls and
monitoring for both ingress and egress flows. To see options that are available for Azure,
see the Edge security section in this article.

The primary objective of a private cloud is to obscure resources from the public internet.
There are several ways of achieving this goal:

Move to private IP address spaces, which you can accomplish by using virtual
networks. Minimize network line of sight even within your own private networks.

Minimize the number of public DNS entries that you use to expose less of your
workload.

Add ingress and egress network flow control. Don't allow traffic that's not trusted.

To minimize network visibility, segment your network and start with least-privilege
network controls. If a segment isn't routable, it can't be accessed. Broaden the scope to
include only segments that need to communicate with each other through network
access.

You can segment virtual networks by creating subnets. The criteria for division should be
intentional. When you collocate services inside a subnet, make sure that those services
can see each other.

Design virtual network and subnet security

Segmentation strategy

You can base your segmentation on many factors. For example, you can place different
application tiers in dedicated segments. Another approach is to plan your subnets based
on common roles and functions that use well-known protocols.

For more information, see Segmentation strategies.

It's important to inspect each subnet's inbound and outbound traffic. Use the three
main strategies discussed earlier in this article, in Key design strategies. Check whether
the flow is expected, allowed, and safe. To verify this information, define firewall rules
that are based on the protocol, source, and destination of the traffic.

On Azure, you set firewall rules in network security groups. For more information, see
the Network security groups section in this article.

For an example of a subnet design, see Azure Virtual Network subnets.

After you minimize the visibility of your network, map out your Azure resources from a
network perspective and evaluate the flows. The following types of flows are possible:

Planned traffic, or intentional communication between services according to your
architecture design. For example, you have planned traffic when your architecture
recommends that Azure Functions pulls messages from Azure Service Bus.

Management traffic, or communication that happens as part of the service's
functionality. This traffic isn't part of your design, and you have no control over it.
An example of managed traffic is the communication between the Azure services
in your architecture and the Azure management plane.

Distinguishing between planned and management traffic helps you build localized, or
service-level, controls. Have a good understanding of the source and destination at each
hop. Especially understand how your data plane is exposed.

As a starting point, determine whether each service is exposed to the internet. If it is,
plan how to restrict access. If it isn't, place it in a virtual network.

If you expect a service to be exposed to the internet, take advantage of the service-
level firewall that's available for most Azure resources. When you use this firewall, you

Subnet firewalls

Use controls at the component level

Service firewalls

https://learn.microsoft.com/en-us/azure/virtual-network/quick-create-portal

can set rules based on access patterns. For more information, see the Azure service
firewalls section in this article.

Consider using private endpoints to help secure access to PaaS services. A private
endpoint is assigned a private IP address from your virtual network. The endpoint allows
other resources in the network to communicate with the PaaS service over the private IP
address.

Communication with a PaaS service is achieved by using the service's public IP address
and DNS record. That communication occurs over the internet. You can make that
communication private.

A tunnel from the PaaS service into one of your subnets creates a private channel. All
communication takes place from the component's private IP address to a private
endpoint in that subnet, which then communicates with the PaaS service.

In this example, the image on the left shows the flow for publicly exposed endpoints. On
the right, that flow is secured by using private endpoints.

For more information, see the Private endpoints section in this article.

７ Note

When your component isn't a service, use a host-based firewall in addition to
network-level firewalls. A virtual machine (VM) is an example of a component that's
not a service.

Connectivity to platform as a service (PaaS) services

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/private-endpoints-101-highres.png#lightbox

Another advantage of using private endpoints is that you don't need to open the ports
on the firewall for outbound traffic. Private endpoints lock down all outbound traffic
on the port for the public internet. Connectivity is limited to resources within the
network.

 Tradeoff: Azure Private Link is a paid service that has meters for inbound and
outbound data that's processed. You're also charged for private endpoints.

A DDoS attack attempts to exhaust an application's resources to make the application
unavailable to legitimate users. DDoS attacks can target any endpoint that's publicly
reachable through the internet.

A DDoS attack is usually a massive, widespread, geographically dispersed abuse of your
system's resources that makes it hard to pinpoint and block the source.

For Azure support to help protect against these attacks, see the Azure DDoS Protection
section in this article.

You can use the following Azure services to add defense-in-depth capabilities to your
network.

Virtual Network helps your Azure resources securely communicate with each other, the
internet, and on-premises networks.

By default, all resources in a virtual network can engage in outbound communication
with the internet. But inbound communication is restricted by default.

７ Note

We recommend that you use private endpoints in conjunction with service firewalls.
A service firewall blocks incoming internet traffic and then exposes the service
privately to internal users who use the private endpoint.

Protect against distributed denial of service (DDoS)
attacks

Azure facilitation

Azure Virtual Network

https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

Virtual Network offers features for filtering traffic. You can restrict access at the virtual-
network level by using a user-defined route (UDR) and a firewall component. At the
subnet level, you can filter traffic by using network security groups.

By default, ingress and egress both flow over public IP addresses. Depending on the
service or topology, either you set these addresses or Azure assigns them. Other ingress
and egress possibilities include passing traffic through a load balancer or network
address translation (NAT) gateway. But these services are intended for traffic distribution
and not necessarily for security.

The following technology choices are recommended:

Azure Firewall. You can use Azure Firewall at the network edge and in popular
network topologies, such as hub-spoke networks and virtual WANs. You typically
deploy Azure Firewall as an egress firewall that acts as the final security gate
before traffic goes to the internet. Azure Firewall can route traffic that uses non-
HTTP and non-HTTPS protocols, such as Remote Desktop Protocol (RDP), Secure
Shell Protocol (SSH), and File Transfer Protocol (FTP). The feature set of Azure
Firewall includes:

Destination network address translation (DNAT), or port forwarding.
Intrusion detection and prevention system (IDPS) signature detection.
Strong layer 3, layer 4, and fully qualified domain name (FQDN) network rules.

If you don't use a virtual WAN topology, you must deploy a UDR with a
NextHopType of Internet to your NVA's private IP address. UDRs are applied at the
subnet level. By default, subnet-to-subnet traffic doesn't flow through the NVA.

You can also use Azure Firewall simultaneously for ingress. It can route HTTP and
HTTPS traffic. In higher-tiered SKUs, Azure Firewall offers TLS termination so that
you can implement payload-level inspections.

The following practices are recommended:

Enable diagnostics settings in Azure Firewall to collect traffic flow logs, IDPS
logs, and DNS request logs.

Edge security

７ Note

Most organizations have a forced tunneling policy that forces traffic to flow
through an NVA.

https://learn.microsoft.com/en-us/azure/firewall/overview

Be as specific as possible in rules.

Where it's practical, avoid FQDN service tags. But when you use them, use the
regional variant, which allows communication with all endpoints of the service.

Use IP groups to define sources that must share the same rules over the life of
the IP group. IP groups should reflect your segmentation strategy.

Override the infrastructure FQDN allow rule only if your workload requires
absolute egress control. Overriding this rule comes with a reliability tradeoff,
because Azure platform requirements change on services.

 Tradeoff: Azure Firewall can impact your performance. Rule order,
quantity, TLS inspection, and other factors can cause significant latency.

There can also be an impact on the reliability of your workload. It might
experience source network address translation (SNAT) port exhaustion. To help
overcome this problem, add public IP addresses as needed.

 Risk: For egress traffic, Azure assigns a public IP address. This assignment
can have a downstream impact on your external security gate.

Azure Web Application Firewall. This service supports inbound filtering and only
targets HTTP and HTTPS traffic.

It offers basic security for common attacks, such as threats that the Open
Worldwide Application Security Project (OWASP) identifies in the OWASP Top 10
document. Azure Web Application Firewall also provides other security features
that are focused on layer 7, such as rate limiting, SQL-injection rules, and cross-site
scripting.

With Azure Web Application Firewall, TLS termination is required, because most
checks are based on payloads.

You can integrate Azure Web Application Firewall with routers, such as Azure
Application Gateway or Azure Front Door. Azure Web Application Firewall
implementations for those kinds of routers can vary.

Azure Firewall and Azure Web Application Firewall aren't mutually exclusive choices. For
your edge security solution, various options are available. For examples, see Firewall and
Application Gateway for virtual networks.

https://learn.microsoft.com/en-us/azure/web-application-firewall/overview
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/firewall-application-gateway

A network security group is a layer 3 and layer 4 firewall that you apply at the subnet or
network interface card (NIC) level. Network security groups aren't created or applied by
default.

Network security group rules act as a firewall to stop traffic that flows in and out at the
perimeter of a subnet. A network security group has a default rule set that's overly
permissive. For example, the default rules don't set a firewall from the egress
perspective. For ingress, no inbound internet traffic is allowed.

To create rules, start with the default rule set:

For inbound traffic, or ingress:
Virtual network traffic from direct, peered, and VPN gateway sources is allowed.
Azure Load Balancer health probes are allowed.
All other traffic is blocked.

For outbound traffic, or egress:
Virtual network traffic to direct, peered, and VPN gateway destinations is
allowed.
Traffic to the internet is allowed.
All other traffic is blocked.

Then consider the following five factors:

Protocol
Source IP address
Source port
Destination IP address
Destination port

The lack of support for FQDN limits network security group functionality. You need to
provide specific IP address ranges for your workload, and they're hard to maintain.

But for Azure services, you can use service tags to summarize source and destination IP
address ranges. A security benefit of service tags is that they're opaque to the user, and
the responsibility is offloaded to Azure. You can also assign an application security
group as a destination type to route traffic to. This type of named group contains
resources that have similar inbound or outbound access needs.

 Risk: Service tag ranges are very broad so that they accommodate the widest
possible range of customers. Updates to service tags lag behind changes in the
service.

Network security groups

https://learn.microsoft.com/en-us/azure/virtual-network/manage-network-security-group
https://learn.microsoft.com/en-us/azure/virtual-network/service-tags-overview#available-service-tags

In the preceding image, network security groups are applied at the NIC. Internet traffic
and subnet-to-subnet traffic are denied. The network security groups are applied with
the VirtualNetwork tag. So in this case, the subnets of peered networks have a direct
line of sight. The broad definition of the VirtualNetwork tag can have a significant
security impact.

When you use service tags, use regional versions when possible, such as Storage.WestUS
instead of Storage . By taking this approach, you limit the scope to all endpoints in a
particular region.

Some tags are exclusively for inbound or outbound traffic. Others are for both types.
Inbound tags usually allow traffic from all hosting workloads, such as
AzureFrontDoor.Backend , or from Azure to support service runtimes, such as

LogicAppsManagement . Similarly, outbound tags allow traffic to all hosting workloads or
from Azure to support service runtimes.

Scope the rules as much as possible. In the following example, the rule is set to specific
values. Any other type of traffic is denied.

Information Example

Protocol Transmission Control Protocol (TCP), UDP

Source IP address Allow ingress to the subnet from <source-IP-address-range>: 4575/UDP

Source port Allow ingress to the subnet from <service-tag>: 443/TCP

Destination IP
address

Allow egress from the subnet to <destination-IP-address-range>:
443/TCP

Destination port Allow egress from the subnet to <service-tag>: 443/TCP

To summarize:

Be precise when you create rules. Only allow traffic that's necessary for your
application to function. Deny everything else. This approach limits the network line

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/vnet-isolation-peer-highres.png#lightbox

of sight to network flows that are needed to support the operation of the
workload. Supporting more network flows than necessary leads to unnecessary
attack vectors and extends the surface area.

Restricting traffic doesn't imply that allowed flows are beyond the scope of an
attack. Because network security groups work at layers 3 and 4 on the Open
Systems Interconnection (OSI) stack, they only contain shape and direction
information. For example, if your workload needs to allow DNS traffic to the
internet, you would use a network security group of Internet:53:UDP . In this case,
an attacker might be able to exfiltrate data through UDP on port 53 to some other
service.

Understand that network security groups can differ slightly from one another. It's
easy to overlook the intent of the differences. To have granular filtering, it's safer
to create extra network security groups. Set up at least one network security
group.

Adding a network security group unlocks many diagnostics tools, such as flow
logs and network traffic analytics.

Use Azure Policy to help control traffic in subnets that don't have network
security groups.

If a subnet supports network security groups, add a group, even if it's minimally
impactful.

Most Azure services offer a service-level firewall. This feature inspects ingress traffic to
the service from specified classless inter-domain routing (CIDR) ranges. These firewalls
offer benefits:

They provide a basic level of security.
There's a tolerable performance impact.
Most services offer these firewalls at no extra cost.
The firewalls emit logs through Azure diagnostics, which can be useful for
analyzing access patterns.

But there are also security concerns associated with these firewalls, and there are
limitations associated with providing parameters. For example, if you use Microsoft-
hosted build agents, you have to open the IP address range for all Microsoft-hosted
build agents. The range is then open to your build agent, other tenants, and adversaries
who might abuse your service.

Azure service firewalls

If you have access patterns for the service, which can be configured as service firewall
rule sets, you should enable the service. You can use Azure Policy to enable it. Make sure
you don't enable the trusted Azure services option if it isn't enabled by default. Doing so
brings in all dependent services that are in the scope of the rules.

For more information, see the product documentation of individual Azure services.

Private Link provides a way for you to give a PaaS instance a private IP address. The
service is then unreachable over the internet. Private endpoints aren't supported for all
SKUs.

Keep the following recommendations in mind when you use private endpoints:

Configure services that are bound to virtual networks to contact PaaS services
through private endpoints, even if those PaaS services also need to offer public
access.

Promote the use of network security groups for private endpoints to restrict
access to private endpoint IP addresses.

Always use service firewalls when you use private endpoints.

When possible, if you have a service that's only accessible via private endpoints,
remove the DNS configuration for its public endpoint.

Consider runtime line-of-sight concerns when you implement private endpoints.
But also consider DevOps and monitoring concerns.

Use Azure Policy to enforce resource configuration.

 Tradeoff: Service SKUs with private endpoints are expensive. Private endpoints
can complicate operations because of network obscurity. You need to add self-
hosted agents, jump boxes, a VPN, and other components to your architecture.

DNS management can be complex in common network topologies. You might have to
introduce DNS forwarders and other components.

You can use the virtual network injection process to deploy some Azure services into
your network. Examples of such services include Azure App Service, Functions, Azure API

Private endpoints

Virtual network injection

https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview

Management, and Azure Spring Apps. This process isolates the application from the
internet, systems in private networks, and other Azure services. Inbound and outbound
traffic from the application is allowed or denied based on network rules.

You can use Azure Bastion to connect to a VM by using your browser and the Azure
portal. Azure Bastion enhances the security of RDP and SSH connections. A typical use
case includes connecting to a jump box in the same virtual network or a peered virtual
network. Using Azure Bastion removes the need for the VM to have a public IP address.

Every property in Azure is protected by Azure DDoS infrastructure protection at no extra
cost and with no added configuration. The level of protection is basic, but the protection
has high thresholds. It also doesn't provide telemetry or alerting, and it's workload-
agnostic.

Higher-tiered SKUs of DDoS Protection are available but aren't free. The scale and
capacity of the globally deployed Azure network offers protection against common
network-layer attacks. Technologies like always-on traffic monitoring and real-time
mitigation provide this capability.

For more information, see Azure DDoS Protection overview.

Here are some examples that demonstrate the use of network controls recommended in
this article.

This example builds on the Information Technology (IT) environment established in the
security baseline (SE:01). This approach provides a broad understanding of network
controls applied at various perimeters to restrict traffic.

Azure Bastion

Azure DDoS Protection

Example

IT environment

https://learn.microsoft.com/en-us/azure/bastion/bastion-overview
https://learn.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview

1. Network attack personas. Several personas may be considered in a network
attack, including Admins, employees, customer’s clients and anonymous attackers.

2. VPN access. A bad actor might access the on-premises environment through a
VPN or an Azure environment that's connected to the on-premises environment
through a VPN. Configure with IPSec protocol to enable secure communication.

3. Public access to the application. Have a web application firewall (WAF) in front of
the application to protect it on Layer 7 of the network OSI layer.

4. Operator access. Remote access through Layer 4 of network OSI layers must be
secured. Consider using Azure Firewall with IDP/IDS features.

5. DDoS protection. Have DDoS protection for your entire VNet.

6. Network topology. A network topology such as hub-spoke, is more secure, and
optimize costs. The hub network provides centralized firewall protection to all the

On-premises

Routers Firewalls DNS

Azure

Servers VMs Workstations Applications File Servers Databases ADDS

Entra ID

Th
re

at
s

Azure Security Services

A
zu

re

Sentinel

Defender for Cloud

Monitor

Log Analytics

IT
 E

nv
iro

nm
en

t

Compute
Security - Bastion

- Key Vault
- Disk Encryption
- Just In Time
- Antimalware
- Update Management

Identity
Security - MFA

- Conditional Access
- ID protection
- Privileged ID Management
- RBAC
- Password Protection

IdentityNetwork Infrastructure and Endpoint Application and Data

Metrics | Alerts | Network Watcher | VM Insights | Application Insights

Log Ingestion | Log Archive | Table Transformation

Data Connectors | Analytic Queries | Hunting | Incident Response | Automation

Recommendations | Automatic Alerts | Workload Protection

``

App Subnet FE Subnet

PAASHUB VNET

PE Subnet

SPOKE VNET

VPN / ER

FIREWALL

DDOS

APP GW

NSG

VM

NIC
AZ SQL

STORAGE

NSG

VM

WEB APP

Security
Subnet

GW Subnet

- Network Security Group (NSG)
- Azure Firewall
- App GW with WAF
- DDOS
- Private Endpoint
- TLS/SSL

Network
Security

VM

VM

4

2

3

8

7
5

6

Application and
Data Security - FrontDoor with WAF

- API Management
- Storage encryption
- Storage SAS
- Transparent Data Encryption
- Dynamic Data Masking

Azure Policies

10

9

1113

12

Tactics | Techniques | Tools

Personas (bad actors)

Persistence | Brute Force | Metasploit (e.g.)

Remote Admins | Remote employees | External Developers | Customer’s clients | Anonymous attackers

1

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/network-controls.svg#lightbox

peered spokes.

7. Private endpoints: Consider adding publically exposed services into your private
network by using private endpoints. These create a Network Card (NIC) in your
private VNet and bind with the Azure service.

8. TLS communication. Protect data in transit by communicating over TLS.

9. Network Security Group (NSG): Protect segments within a VNet with NSG, a free
resource that filters TCP/UDP inbound and outbound communication considering
IP and port ranges. Part of NSG is the Application Security Group (ASG) that allows
you to create tags for traffic rules for easier management.

10. Log Analytics. Azure resources emit telemetry that's ingested in Log Analytics then
used with a SIEM solution like Microsoft Sentinel for analysis.

11. Microsoft Sentinel Integration. Log Analytics is integrated with Microsoft Sentinel
and other solutions like Microsoft Defender for Cloud.

12. Microsoft Defender for Cloud. Microsoft Defender for Cloud delivers many
workload protection solutions, including Network recommendations for your
environment.

13. Traffic Analytics: Monitor your network controls with Traffic Analytics. This is
configured through Network Watcher, part of Azure Monitor, and aggregates
inbound and outbound hits in your subnets collected by NSG.

This example architecture combines the network controls that are described in this
article. The example doesn't show the complete architecture. Instead, it focuses on
ingress controls on the private cloud.

Architecture for a containerized workload

Application Gateway is a web traffic load balancer that you can use to manage traffic
to your web applications. You deploy Application Gateway in a dedicated subnet that
has network security group controls and web application firewall controls in place.

Communication with all PaaS services is conducted through private endpoints. All
endpoints are placed in a dedicated subnet. DDoS Protection helps protect all public IP
addresses that are configured for a basic or higher level of firewall protection.

Management traffic is restricted through Azure Bastion, which helps provide secure
and seamless RDP and SSH connectivity to your VMs directly from the Azure portal over
TLS. Build agents are placed in the virtual network so that they have a network view to
workload resources such as compute resources, container registries, and databases. This
approach helps provide a secure and isolated environment for your build agents, which
boosts protection for your code and artifacts.

https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/controlled-ingress-highres.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/security/images/networking/controlled-egress.png#lightbox

Network security groups at the subnet level of the compute resources restrict egress
traffic. Forced tunneling is used to route all traffic through Azure Firewall. This approach
helps provide a secure and isolated environment for your compute resources, which
boosts protection for your data and applications.

Recommendations for designing segmentation strategies
Azure Virtual Network subnets
Azure Virtual Network
Azure Firewall
Azure Web Application Firewall
Firewall and Application Gateway for virtual networks
Network security groups
Service tags
Azure Private Link
Private endpoints
Azure Bastion
Azure DDoS Protection overview

Refer to the complete set of recommendations.

Related links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/firewall/overview
https://learn.microsoft.com/en-us/azure/web-application-firewall/overview
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/firewall-application-gateway
https://learn.microsoft.com/en-us/azure/virtual-network/manage-network-security-group
https://learn.microsoft.com/en-us/azure/virtual-network/service-tags-overview#available-service-tags
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/bastion/bastion-overview
https://learn.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview

Recommendations for data encryption
Article • 02/05/2024

Applies to Well-Architected Framework Security checklist recommendation:

SE:07 Encrypt data by using modern industry-standard methods to guard confidentiality
and integrity. Align encryption scope with data classifications; prioritize native
platform encryption methods.

If your data isn't protected, it can be maliciously modified, which leads to loss of
integrity and confidentiality.

This guide describes the recommendations for encrypting and protecting your data.
Encryption is the process of using cryptography algorithms to make the data
unreadable and lock the data with a key. In the encrypted state, data can't be
deciphered. It can only be decrypted by using a key that's paired with the encryption
key.

Definitions

Terms Definition

Certificates Digital files that hold the public keys for encryption or decryption.

Cipher suite A set of algorithms that are used to encrypt and decrypt information to
secure a network connection over Transport Layer Security (TLS).

Confidential
computing

Confidential Computing is the protection of data in use by performing
computation in a hardware-based, attested Trusted Execution Environment.

Decryption The process in which encrypted data is unlocked with a secret code.

Double
encryption

The process of encrypting data by using two or more independent layers of
encryption.

Encryption The process by which data is made unreadable and locked with a secret code.

Hashing The process of transforming data to text or numbers with the intent of hiding
information.

Keys A secret code that's used to lock or unlock encrypted data.

ﾉ Expand table

ﾉ Expand table

Terms Definition

Signature An encrypted stamp of authentication on data.

Signing The process of verifying data's authenticity by using a signature.

X.509 A standard that defines the format of public key certificates.

Organizational mandates or regulatory requirements might enforce encryption
mechanisms. For example, there might be a requirement that data must remain only in
the selected region, and copies of the data are maintained in that region.

These requirements are often the base minimum. Strive for a higher level of protection.
You're responsible for preventing confidentiality leaks and tampering of sensitive data,
whether it's external user data or employee data.

Encryption mechanisms likely need to secure the data in three stages:

Data at rest is all information that's kept in storage objects.

An example of securing data at rest is using BitLocker to encrypt data that's saved
to storage on a disk.

Data in transit is information that's transferred between components, locations, or
programs.

An example of securing data in transit is encrypting data with TLS so packets that
move over public and private networks are secure.

Data in use is data that's actively being worked on in memory.

An example of securing data in use is encrypting with confidential computing to
protect data as it's processed.

The preceding choices aren't mutually exclusive. They're often used together in the
context of the entire solution. One stage might act as a compensating control. For
example, you might need to isolate data to prevent tampering when data is read from
memory.

Key design strategies

Encryption scenarios

Scope of encryption

Classify data by its purpose and sensitivity level to determine what data you need to
encrypt. For data that should be encrypted, determine the required level of protection.
Do you need end-to-end TLS encryption for all data in transit? For data at rest, which
Azure features can meet your requirements? Do you need to double encrypt data at
every storage point? How do you implement information protection?

It's important to balance your encryption decisions because there are significant
tradeoffs.

 Tradeoff: Every encryption hop can introduce performance latency. Operational
complexities can occur in relation to troubleshooting and observability. Recovery
can be a challenge.

Scope these tradeoffs. Anticipate tradeoffs for data that's classified as sensitive.
Requirements might even determine the tradeoffs, for example if a certain type of
data must be encrypted and stored within certain thresholds.

There are cases when encryption isn't possible because of technical limitations,
investment, or other reasons. Ensure that those reasons are clear, valid, and
documented.

Strong encryption mechanisms shouldn't be your only form of defense. Implement data
theft prevention processes, proper testing methods, and anomaly detection.

For information about classification, see Recommendations on data classification.

Most Azure services provide a base level of encryption. Explore platform-provided
encryption options.

It's highly recommended that you don't disable platform capabilities to develop your
own functionality. Platform encryption features use modern industry standards, are
developed by experts, and are highly tested.

For rare occasions, if you need to replace the platform-provided encryption, evaluate
the pros and cons and use industry-standard cryptographic algorithms.

Developers should use cryptography APIs that are built into the operating system rather
than nonplatform cryptography libraries. For .NET, follow the .NET cryptography model.

Native encryption mechanisms

Encryption keys

https://learn.microsoft.com/en-us/dotnet/standard/security/cryptography-model

By default, Azure services use Microsoft-managed encryption keys to encrypt and
decrypt data. Azure is responsible for key management.

You can opt for customer-managed keys. Azure still uses your keys, but you're
accountable for key operations. You have the flexibility to change keys when you want.
Decryption is a compelling reason to use customer-managed keys.

You should pair strong encryption with strong decryption. From a security perspective,
protecting a decryption key is important because rotation is a common way to control
the blast radius if a key is compromised. Monitor access to detect anomalous access and
activities.

Store keys separate from encrypted data. This decoupling helps ensure that the
compromise of one entity doesn't affect the other. If you use customer-managed keys,
store them in a key store. Store highly sensitive data in a managed hardware security
module (HSM).

Both stores are protected with identity-based access. This feature enables you to deny
access, even to the platform.

Use cryptography algorithms that are well-established and follow industry standards
instead of creating custom implementations.

Industry standards for algorithms require encryption schemes to have a certain level of
entropy. The entropy sources are injected during encryption. Entropy makes the
algorithm strong and makes it difficult for an attacker to extract information. Determine
the tolerable thresholds of entropy. Encryption procedures are processor-intensive.
Find the right balance so that you're maximizing the compute cycles that are spent on
the encryption, relative to the overall performance targets of the compute request.

 Tradeoff: If you choose an algorithm that's highly complex or injects more than
a reasonable amount of entropy, it degrades your system's performance.

Typically, hashing is an error detection technique. You can also use hashing for security
because it detects changes to data that might be caused by tampering. Hash functions
are based on cryptography, but they don't use keys. Hash functions use algorithms to
produce checksums. Checksums can compare data to verify the integrity of it.

Standard encryption algorithms

Hashes and checksums

Applications should use the SHA-2 family of hash algorithms, such as SHA-256, SHA-
384, or SHA-512.

Classify and protect information storage objects in accordance with the internal and
external compliance requirements. See the following recommendations:

Encrypt data by using native options that are provided for storage services, data
stores, and other resources that are used to persist data. Encrypt this data even if
you store data in these storage services or resources only temporarily. Also encrypt
your backup data to maintain the same level of security as the original source.

For more information, see Data at rest protection.

Use double encryption. If your business requirements call for higher assurance,
you can perform double encryption. Encrypt data in two or more layers by using
independent customer-managed keys. Store the data in a managed HSM. To read
the data, you need access to both keys. If one key is compromised, the other key
still protects the data. This technique aims to increase attacker costs.

You can also use platform-provided encryption to double encrypt data. Platform-
provided encryption protects the storage media at the infrastructure level, and you
apply another layer of encryption at the data level. For example, a message broker
service has platform-provided encryption via Microsoft-managed keys that
protects the message pipe. This method allows you to encrypt the messages with
customer-managed keys.

Use more than one encryption key. Use a key encryption key (KEK) to protect your
data encryption key (DEK).

Use identity-based access controls to control access to data. Add network
firewalls to provide an extra layer of security that blocks unexpected and unsafe
access.

For more information, see Recommendations for identity and access management.

Store keys in a managed HSM that has least-privilege access control. Separate the
data from the keys to the data.

Store limited amount of data so that you only encrypt what's necessary. Your data
shouldn't live longer than your encryption cycle. When data is no longer needed,
delete the encrypted data without spending decryption cycles.

Data at rest

Use secure protocols for client-server communication. Transport protocols have a
built-in layer of security. TLS is the industry standard for exchanging data between
client and server endpoints.

Don't use versions lower than TLS 1.2. Migrate solutions to support TLS 1.2, and
use this version by default. All Azure services support TLS 1.2 on public HTTPS
endpoints.

 Risk: Older clients that don't support TLS 1.2 might not work properly if
backward compatibility isn't supported.

All website communication should use HTTPS, regardless of the sensitivity of
the transferred data. During a client-server handshake, negotiate the use of the
HTTP Strict Transport Security (HSTS) policy so that HTTPS transport is
maintained and doesn't drop to HTTP during communication. This policy
protects against man-in-the-middle attacks.

Support for HSTS is for newer versions. You might break backward
compatibility with older browsers.

Manage the lifecycle of certificates. Certificates have a predetermined lifespan.
Don't keep long-lived certificates, and don't let them expire on their own.
Implement a process that renews certificates at an acceptable frequency. You can
automate the process for renewals that occur at short intervals.

Data in transit

７ Note

You can also encrypt protocols to establish secure connections for databases.
For example, Azure SQL Database supports the Tabular Data Stream (TDS)
protocol, which integrates a TLS handshake.

A cipher suite is a set of algorithms that are used to standardize the
handshake between the client and the server. The ciphers ensure that the
exchange is encrypted and authenticated. The choice of ciphers depends on
the TLS version that the server uses. For some services, such as Azure
Application Gateway, you can choose the version of TLS and the cipher suites
that you want to support. Implement cipher suites that use the Advanced
Encryption Standard (AES) as a symmetric block cipher. AES-128, AES-192, and
AES-256 are acceptable.

Double encrypt VPN connections if needed. Perform double encryption to add
defense in depth to your VPN tunnel. When you use two VPN servers, you can hide
the IP address between the servers, and also hide the IP address between the
server and the destination. During this process, data in transit is also encrypted
twice.

 Tradeoff: Compared to single VPN setups, double VPN setups are often
more expensive, and connections are often slower.

Implement logging and monitoring processes. Keep track of access sign-in
resources that store information about clients, like their source IP, port, and
protocol. Use this information to detect anomalies.

７ Note

If you use certificate pinning, familiarize yourself with the agility and
certificate management limitations.

Your workflow shouldn't allow invalid certificates to be accepted in the
environment. The certificate pinning process should validate certificates and
enforce that validation check. You should monitor access logs to ensure that
the signing key is used with proper permissions.

If a key is compromised, the certificate must be revoked immediately. A
certificate authority (CA) provides a certificate revocation list (CRL) that
indicates the certificates that are invalidated before their expiration. Your
validation check should account for CRLs.

 Tradeoff: The certification validation process can be cumbersome and
usually involves a CA. Determine the data that you must encrypt with
certificates. For other types of communication, determine if you can
implement localized compensating controls to add security.

One way of localizing controls is with mutual TLS (mTLS). It establishes trust in
both directions between the client and the server. Both the client and the
server have their own certificates, and each certificate is authenticated with
their public or private key pair. With mTLS, you're not dependent on the
external CA. The tradeoff is the added complexity of managing two
certificates.

https://learn.microsoft.com/en-us/azure/security/fundamentals/certificate-pinning

For high security workloads, segmentation, isolation and least-priviledge are
recommended design patterns.

In the context of in-use protection, hardware boundaries may require encryption of data
while it's in use in the physical CPU and memory to ensure isolation of VMs, host
management code and other components.

Encryption and decryption of data must only be done within those isolation boundaries.

More stringent security or regulatory requirements may also require hardware based,
cryptographically signed evidence that data is being encrypted whilst in-use, this can be
obtained through attestation.

Use of modern security and privacy measures is a common requirement for regulatory
workloads. Confidential computing is one such technology that supports the
requirement. Specific services in Azure offer the ability to protect data while it's being
computed-upon. For more information, see Azure Facilitation: Azure Confidential
Compute.

Consider the end-end lifecycle of data you are protecting data often moves through
multiple systems in its lifetime, take care to ensure that all component parts of a
solution can provide the required levels of protection, or ensure that your data
management strategy provides appropriate segmentation or masking.

The following sections describe Azure services and features that you can use to encrypt
your data.

Store customer-managed keys in Azure Key Vault or in a Key Vault-managed HSM.

Key Vault treats the keys like any other secret. Azure role-based access controls (RBAC)
access the keys via a permission model. This identity-based control must be used with
Key Vault access policies.

For more information, see Provide access to Key Vault keys, certificates, and secrets by
using RBAC.

Data-in-use

Azure facilitation

Customer-managed keys

https://learn.microsoft.com/en-us/azure/key-vault/general/rbac-guide

Azure Key Vault Premium and Managed-HSM further enhances the offering by including
confidential computing capabilites and Secure Key Release which supports a policy to
ensure that that a key is only ever released to a workload that can cryptographically
prove it is executing inside a Trusted Execution Environment (TEE).

Azure Storage automatically encrypts your data with block ciphers when the data
is persisted to a storage account. For Azure Blob Storage and Azure Queue
Storage, Storage also provides client-side encryption via libraries.

For more information, see Storage encryption.

Azure Virtual Machines has disk files that serve as virtual storage volumes. You can
encrypt the virtual disk files so the contents can't be accessed.

Managed disks can be exported from the portal. Server-side encryption and
encryption at host can protect data only after it's exported. However, you should
protect data during the export process. You can use Azure Disk Encryption to
protect and safeguard your data during the export process.

Azure offers several encryption options for managed disks. For more information,
see Overview of managed disk encryption options.

SQL Database offers a transparent data encryption feature that's used to encrypt a
database file at the page level.

With Key Vault , you can provision, manage, and deploy public and private Secure
Sockets Layer (SSL) or TLS certificates. You can use the certificates with Azure and with
your internal connected resources.

Specific services in Azure offer the ability to protect data while it's being computed
upon within the physical CPU and memory of a host using Azure confidential
computing.

Confidential Virtual Machines offer an entire virtual machine running inside a TEE,
the memory and executing CPU contents of the virtual machine are encrypted
offering a simple 'lift & shift' approach for moving unmodified applications with
high security requirements to Azure. Each Azure confidential VM has its own

Data-at-rest protection

Data-in-transit protection

Data-in-use protection

https://learn.microsoft.com/en-us/azure/confidential-computing/concept-skr-attestation
https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/disk-encryption-overview
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://azure.microsoft.com/services/key-vault/#product-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/overview-azure-products
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions

dedicated virtual Trust Platform Module (TPM). Encryption is performed while the
operating system components securely boot.

Confidential AKS worker nodes, Confidential Containers on AKS or Confidential
Containers on Azure Container Instances (ACI) offer the ability to to run and
manage unmodified containers inside a TEE which enables customers to benefit
from in-use protection. Container offerings are built-upon Confidential Virtual
Machines and benefit from the same protections.

Application Enclave solutions are specially built applications taking advantage of
specific CPU extensions offered by virtual machine SKUs that support Intel
Software Guard Extensions (SGX), these offer a very granular Trusted Compute
Base (TCB) but require applications to be specifically coded to take advantage of
the features.

Secure Key Release can be combined with these technologies to ensure that
encrypted data is only ever decrypted inside a TEE which proves it provides the
required level of protection through a process known as Attestation.

You can use Key Vault to securely store and control access to tokens, passwords,
certificates, API keys, and other secrets. Use Key Vault as a key and certificate
management solution. Premium SKU supports HSMs.

The following example shows encryption solutions that you can use to manage keys,
certificates, and secrets.

Secret management

Example

https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/choose-confidential-containers-offerings
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-compute-base
https://learn.microsoft.com/en-us/azure/confidential-computing/concept-skr-attestation
https://learn.microsoft.com/en-us/azure/confidential-computing/attestation-solutions
https://azure.microsoft.com/services/key-vault/#product-overview

.NET cryptography model
Azure Disk Encryption
Storage encryption for data at rest
Certificate pinning in Azure services
Provide access to Key Vault keys, certificates, and secrets by using RBAC
Overview of managed disk encryption options
Transparent data encryption
Trust Platform Module overview
Azure confidential computing

Key Vault overview

Refer to the complete set of recommendations.

Related links

Community links

Security checklist

https://learn.microsoft.com/en-us/dotnet/standard/security/cryptography-model
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://learn.microsoft.com/en-us/azure/security/fundamentals/certificate-pinning
https://learn.microsoft.com/en-us/azure/key-vault/general/rbac-guide
https://learn.microsoft.com/en-us/azure/virtual-machines/disk-encryption-overview
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/
https://azure.microsoft.com/services/key-vault/#product-overview
https://learn.microsoft.com/en-us/azure/well-architected/security/images/encryption/manage-keys-certificates-secrets-high-res.png#lightbox

Security checklist

Recommendations for hardening
resources
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:08 Harden all workload components by reducing extraneous surface area and
tightening configurations to increase attacker cost.

This guide describes the recommendations for hardening resources by developing
localized controls within a workload and maintaining them to withstand repeated
attacks.

Security hardening is an intentional self-preservation exercise. The goal is to reduce an
attack surface and increase attackers' costs in other areas, which limits opportunities
for malicious actors to exploit vulnerabilities. To protect your workload, implement
security best practices and configurations.

Security hardening is an ongoing process that requires continuous monitoring and
adaptation to evolving threats and vulnerabilities.

Definitions

Term Definition

Hardening The practice of reducing an attack surface area by removing
extraneous resources or adjusting configurations.

Privileged access
workstation (PAW)

A dedicated and secure machine that you use to perform sensitive
tasks, which reduces the risk of compromise.

Secure administrative
workstation (SAW)

A specialized PAW that's used by critical impact accounts.

Surface area A logical footprint of a workload that contains vulnerabilities.

Security hardening is a highly localized exercise that strengthens controls at the
component level, whether it's resources or processes. When you tighten the security of
each component, it improves the aggregate security assurance of your workload.

Key design strategies

Security hardening doesn't consider the functionality of the workload, and it doesn't
detect threats or perform automated scanning. Security hardening focuses on
configuration tuning with an assume-breach and defense-in-depth mentality. The
goal is to make it difficult for an attacker to gain control of a system. Hardening
shouldn't alter the intended utility of a workload or its operations.

The first step of the hardening process is to gather a comprehensive inventory of all
hardware, software, and data assets. Keep your inventory records up to date by adding
new assets and removing decommissioned assets. For all assets in your inventory,
consider the following best practices:

Reduce the footprint. Remove extraneous surface area or reduce the scope.
Eliminate easy targets, or cheap and well-established attack vectors, such as
unpatched software exploits and brute force attacks. Prior to the production
deployment, you should clean identities, build components, and other nonrequired
assets from the source tree.

Fine-tune configurations. Evaluate and tighten the remaining surface area. When
resources are hardened, tried and tested methods that attackers use are no longer
successful. It forces attackers to acquire and use advanced or untested attack
methods, which increases their costs.

Maintain defenses. Maintain protective measures by performing continuous
threat detection to help ensure that hardening efforts are dependable over time.

Also consider the following factors.

Trusted source. Part of the hardening exercise involves the software supply chain. This
guidance assumes that all components are obtained from trusted sources. Your
organization must approve software that's procured from third-party vendors. This
approval applies to sources of the operating system, images, and other third-party tools.
Without trusted resources, hardening can be an infinite drain of security assurances on
untrusted sources.

For recommendations about security for your supply chain, see Recommendations for
securing a development lifecycle.

Training. Hardening is a specialized skill. It's methodical and requires a high level of
competency. You need to understand the functionality of a component and how
changes affect the component. A team member must be able to discern the guidance
that's from industry experts and the platform to distinguish it from guidance from
uncertain sources. Educate your team members in creating a security-aware culture.

Ensure that your team is proficient in security best practices, has awareness of
potential threats, and learns from post-incident retrospectives.

Documentation. Document and publish hardening requirements, decisions, and defined
methods. For transparency, also document exceptions or deviations from those
requirements.

Hardening can be cumbersome, but it's a crucial security exercise that you must
document. Harden the core components first, and then expand to other areas, such as
automated processes and human processes, to tighten up potential gaps. Be meticulous
about changes. For example, a necessary step is to disable the default settings because
changes to default values can't affect the stability of the system. Even if the replacement
configuration is the same as the default, it must be defined. The following sections
describe common targets for hardening. Evaluate key design areas of your workload and
follow the key strategies to harden at a component level.

Divide the network into segments to isolate critical assets and sensitive data from less
secure assets, which reduces lateral movements by attackers. In those segments, apply a
deny-by-default approach. Only add access to the allowlist if it's justified.

Disable ports and protocols that aren't actively used. For example, on Azure App
Service, if you don't need to deploy via FTP, you can disable it. Or if you perform
management operations via an internal network, you can disable administrative access
from the internet.

Remove or disable legacy protocols. Attackers exploit systems that use old versions.
Use an Azure detection service to review logs and determine protocol usage. It might be
difficult to remove protocols because it can disrupt the functionality of the system. Test
all changes before implementation to mitigate the risk of operational interruption.

Treat public IP (PIP) addresses as high-risk assets because they're easy to access and
have a broad worldwide reach. To reduce exposure, remove unnecessary internet access
to the workload. Use shared public IP addresses that Microsoft services, like Azure Front
Door, provide. These services are designed to be internet-facing, and they block access
to disallowed protocols. Many such services perform initial checks on incoming requests
at the network edge. With a dedicated PIP, you're responsible for managing its security
aspects, allowing or blocking ports, and scanning incoming requests to ensure their
validity.

For internet-facing applications, restrict access by adding a layer-7 service that can filter
invalid traffic. Explore native services that enforce distributed denial-of-service (DDoS)

Networking

protection, have web application firewalls, and provide protection at the edge before
traffic reaches the application tier.

Domain Name System (DNS) hardening is another network security practice. To ensure
that the DNS infrastructure is secure, we recommend that you use trusted DNS
resolvers. To validate information from DNS resolvers and provide an extra layer of
security, when possible, use a DNS security protocol for highly sensitive DNS zones. To
prevent attacks such as DNS cache poisoning, DDoS attacks, and amplification attacks,
explore other DNS-related security controls such as query rate limiting, response rate
limiting, and DNS cookies.

Remove unused or default accounts. Disable unused authentication and authorization
methods.

Disable legacy authentication methods because they're frequently attack vectors. Old
protocols often lack attack-counter measures, such as account lockouts. Externalize your
authentication requirements to your identity provider (IdP), such as Microsoft Entra ID.

Prefer federation over creating duplicate identities. If an identity is compromised, it's
easier to revoke its access when it's centrally managed.

Understand platform capabilities for enhanced authentication and authorization.
Harden access controls by taking advantage of multifactor authentication, passwordless
authentication, Conditional Access, and other features that Microsoft Entra ID offers to
verify identity. You can add extra protection around sign-in events and reduce the scope
in which an attacker can make a request.

Use managed identities and workload identities with no credentials where possible.
Credentials can be leaked. For more information, see Recommendations for protecting
application secrets.

Use the least-privilege approach for your management processes. Remove
unnecessary role assignments and perform regular Microsoft Entra access reviews. Use
role assignment descriptions to keep a paper trail of justifications, which is crucial for
audits.

The preceding hardening recommendations for networking and identity apply to
individual cloud services. For networking, pay special attention to service-level firewalls,
and evaluate their inbound rules.

Identity

Cloud resources

Discover and disable unused capabilities or features, such as unused data plane access
and product features, that other components might cover. For example, App Service
supports Kudu, which provides FTP deployments, remote debugging, and other features.
If you don't need those features, turn them off.

Always keep up with the Azure roadmap and the workload roadmap. Apply patching
and versioning updates that Azure services offer. Allow platform-provided updates, and
subscribe to automated update channels.

 Risk: Cloud resources often have requirements for allowances or must run in
documented configurations to be considered supported. Some hardening
techniques, such as aggressively blocking outbound traffic, can cause a service to
fall outside a supported configuration, even if the service operates normally.
Understand each cloud resource's runtime requirements from your platform to
ensure that you maintain support for that resource.

Evaluate areas where your application might inadvertently leak information. For
example, suppose you have an API that retrieves user information. A request might have
a valid user ID, and your application returns a 403 error. But with an invalid customer ID,
the request returns a 404 error. Then you're effectively leaking information about your
user IDs.

There might be more subtle cases. For example, the response latency with a valid user
ID is higher than an invalid customer ID.

Consider implementing application hardening in the following areas:

Input validation and sanitization: Prevent injection attacks such as SQL injection
and cross-site scripting (XSS) by validating and sanitizing all user inputs. Automate
input sanitization by using input validation libraries and frameworks.

Session management: Protect session identifiers and tokens from theft or session
fixation attacks by using secure session management techniques. Implement
session timeouts, and enforce reauthentication for sensitive actions.

Error management: Implement custom error handling to minimize exposing
sensitive information to attackers. Securely log errors and monitor these logs for
suspicious activity.

HTTP security headers: Mitigate common web vulnerabilities by utilizing security
headers in HTTP responses, such as the Content Security Policy (CSP), X-Content-

Applications

Type-Options, and X-Frame-Options.

API security: Secure your APIs with proper authentication and authorization
mechanisms. To further enhance security, implement rate limiting, request
validation, and access controls for API endpoints.

Follow secure coding practices when you develop and maintain applications. Regularly
conduct code reviews and scan applications for vulnerabilities. For more information,
see Recommendations for securing a development lifecycle.

Also harden other non-runtime resources. For example, reduce your build operations
footprint by taking an inventory of all assets and removing unused assets from your
pipeline. Then, pull in tasks that are published by trusted sources, and only run tasks
that are validated.

Determine if you need Microsoft-hosted or self-hosted build agents. Self-hosted build
agents need extra management and must be hardened.

From an observability perspective, implement a process for reviewing logs for potential
breaches. Regularly review and update access control rules based on access logs. Work
with central teams to analyze security information event management (SIEM) and
security orchestration automated response (SOAR) logs to detect anomalies.

Consider requiring PAWs or SAWs for privileged management operations. PAWs and
SAWs are hardened physical devices that offer significant security advantages, but their
implementation requires careful planning and management. For more information, see
Securing devices as part of the privileged access story.

Microsoft Defender for Cloud offers several hardening capabilities:

Server hardening
Adaptive network hardening
Docker host hardening

The Center for Internet Security (CIS) offers hardened images in Azure Marketplace.

You can use Azure VM Image Builder to build a repeatable process for hardened OS
images. Common Base Linux-Mariner is a hardened Linux distribution that's developed

Management operations

Azure facilitation

https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-devices
https://learn.microsoft.com/en-us/azure/defender-for-cloud/apply-security-baseline
https://learn.microsoft.com/en-us/azure/defender-for-cloud/adaptive-network-hardening

by Microsoft that follows security standards and industry certifications. You can use it
with Azure infrastructure products to build workload implementations.

The following procedure is an example of how to harden an operating system:

1. Reduce the footprint. Remove unnecessary components in an image. Install only
what you need.

2. Fine-tune configurations. Disable unused accounts. The default configuration of
operating systems has extra accounts that are linked to security groups. If you
don't use those accounts, disable or remove them from the system. Extra identities
are threat vectors that can be used to gain access to the server.

Disable unnecessary access to the file system. Encrypt the file system and fine-tune
access controls for identity and networking.

Run only what's needed. Block applications and services that run by default.
Approve only applications and services that are needed for workload functionality.

3. Maintain defenses. Regularly update operating system components with the latest
security updates and patches to mitigate known vulnerabilities.

Cloud Adoption Framework for Azure provides guidance about creating centralized
identity and access management functions. For more information, see Azure identity
and access management design area.

Adaptive network hardening
Recommendations for protecting application secrets
Recommendations for securing a development lifecycle
Securing devices as part of the privileged access story
Server hardening

CIS benchmarks

Example

Organizational alignment

Related links

Community links

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-area/identity-access
https://learn.microsoft.com/en-us/azure/defender-for-cloud/adaptive-network-hardening
https://learn.microsoft.com/en-us/security/privileged-access-workstations/privileged-access-devices
https://learn.microsoft.com/en-us/azure/defender-for-cloud/apply-security-baseline
https://www.cisecurity.org/cis-benchmarks

Refer to the complete set of recommendations.

Security checklist

Security checklist

Recommendations for protecting
application secrets
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:09 Protect application secrets by hardening their storage and restricting access and
manipulation and by auditing those actions. Run a reliable and regular rotation
process that can improvise rotations for emergencies.

This guide describes the recommendations for securing sensitive information in
applications. Proper management of secrets is crucial for maintaining the security and
integrity of your application, workload, and associated data. Improper handling of
secrets can lead to data breaches, service disruption, regulatory violations, and other
issues.

Credentials, such as API keys, Open Authorization (OAuth) tokens, and Secure Shell
(SSH) keys are secrets. Some credentials, such as client-side OAuth tokens, can be
dynamically created at runtime. Dynamic secrets still need to be safeguarded despite
their temporary nature. Noncredential information, like certificates and digital signature
keys, can also be sensitive. Compliance requirements might cause configuration settings
that aren't typically considered secret to be treated as application secrets.

Definitions

Term Definition

Certificates Digital files that hold the public keys for encryption or decryption.

Credentials Information that's used to verify the identity of the publisher or consumer in a
communication channel.

Credential
scanning

The process of validating source code to make sure secrets aren't included.

Encryption The process by which data is made unreadable and locked with a secret code.

Key A secret code that's used to lock or unlock encrypted data.

Least-privilege
access

A Zero Trust principle that aims at minimizing a set of permissions to complete
a job function.

Managed
identity

An identity that's assigned to resources and managed by Azure.

Term Definition

Nonsecret Information that doesn't jeopardize the security posture of the workload if it's
leaked.

Rotation The process of regularly updating secrets so that, if they're compromised,
they're available only for a limited time.

Secret A confidential component of the system that facilitates communication
between workload components. If leaked, secrets can cause a breach.

X.509 A standard that defines the format of public key certificates.

Your secret management strategy should minimize secrets as much as possible and
integrate them into the environment by taking advantage of platform features. For
example, if you use a managed identity for your application, access information isn't
embedded in connection strings and it's safe to store the information in a configuration
file. Consider the following areas of concern before storing and managing secrets:

Created secrets should be kept in secure storage with strict access controls.

Secret rotation is a proactive operation, whereas revocation is reactive.

Only trusted identities should have access to secrets.

You should maintain an audit trail to inspect and validate access to secrets.

Build a strategy around these points to help prevent identity theft, avoid repudiation,
and minimize unnecessary exposure to information.

） Important

Don't treat nonsecrets like secrets. Secrets require operational rigor that's
unnecessary for nonsecrets and that might result in extra costs.

Application configuration settings, such as URLs for APIs that the application uses,
are an example of nonsecrets. This information shouldn't be stored with the
application code or application secrets. Consider using a dedicated configuration
management system such as Azure App Configuration to manage these settings.
For more information, see What is Azure App Configuration?.

Key design strategies

Safe practices for secret management

https://learn.microsoft.com/en-us/azure/azure-app-configuration/overview

If possible, avoid creating secrets. Find ways to delegate responsibility to the platform.
For example, use the platform's built-in managed identities to handle credentials. Fewer
secrets result in reduced surface area and less time spent on secret management.

We recommend that keys have three distinct roles: user, administrator, and auditor. Role
distinction helps to ensure that only trusted identities have access to secrets with the
appropriate level of permission. Educate developers, administrators, and other relevant
personnel about the importance of secret management and security best practices.

You can control access by creating distinct keys for each consumer. For example, a
client communicates with a third-party API using a preshared key. If another client needs
to access the same API, they must use another key. Don't share keys even if two
consumers have the same access patterns or roles. Consumer scopes might change over
time, and you can't independently update permissions or distinguish usage patterns
after a key is shared. Distinct access also makes revocation easier. If a consumer's key is
compromised, it's easier to revoke or rotate that key without affecting other consumers.

This guidance applies to different environments. The same key shouldn't be used for
both preproduction and production environments. If you're responsible for creating
preshared keys, make sure you create multiple keys to support multiple clients.

For more information, see Recommendations for identity and access management.

Use a secret management system, like Azure Key Vault, to store secrets in a hardened
environment, encrypt at-rest and in-transit, and audit access and changes to secrets. If
you need to store application secrets, keep them outside the source code for easy
rotation.

Certificates should only be stored in Key Vault or in the OS's certificate store. For
example, storing an X.509 certificate in a PFX file or on a disk isn't recommended. If you
need a higher level of security, choose systems that have hardware security module
(HSM) capabilities instead of software-based secret stores.

 Tradeoff: HSM solutions are offered at a higher cost. You might also see an
effect on application performance due to added layers of security.

Preshared keys

Secret storage

A dedicated secret management system makes it easy to store, distribute, and control
access to application secrets. Only authorized identities and services should have access
to secret stores. Access to the system can be restricted via permissions. Always apply the
least-privilege approach when assigning permissions.

You also need to control access at the secret level. Each secret should only have access
to a single resource scope. Create isolation boundaries so that a component is only able
to use secrets that it needs. If an isolated component is compromised, it can't gain
control of other secrets and potentially the entire workload. One way to isolate secrets is
to use multiple key vaults. There's no added costs for creating extra key vaults.

Implement auditing and monitoring for secret access. Log who accesses secrets and
when to identify unauthorized or suspicious activity. For information about logging from
a security perspective, see Recommendations on security monitoring and threat
detection.

Have a process in place that maintains secret hygiene. The longevity of a secret
influences the management of that secret. To reduce attack vectors, secrets should be
retired and replaced with new secrets as frequently as possible.

Handle OAuth access tokens carefully, taking into consideration their time to live.
Consider if the exposure window needs to be adjusted to a shorter period. Refresh
tokens must be stored securely with limited exposure to the application. Renewed
certificates should also use a new key. For information about refresh tokens, see Secure
OAuth 2.0 On-Behalf-Of refresh tokens.

Replace secrets after they reach their end of life, are no longer used by the workload,
or if they've been compromised. Conversely, don't retire active secrets unless it's an
emergency. You can determine a secret's status by viewing access logs. Secret rotation
processes shouldn't affect the reliability or performance of the workload. Use strategies
that build redundancy in secrets, consumers, and access methods for smooth rotation.

For more information on how Azure Storage handles rotation, see Manage account
access keys.

Rotation processes should be automated and deployed without any human interaction.
Storing secrets in a secret management store that natively supports rotation concepts
can simplify this operational task.

Secret rotation

Safe practices for using secrets

https://learn.microsoft.com/en-us/azure/architecture/example-scenario/secrets/secure-refresh-tokens
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage?tabs=azure-portal

As a secret generator or operator, you should be able to distribute secrets in a safe
manner. Many organizations use tools to securely share secrets both within the
organization and externally to partners. In absence of a tool, have a process for properly
handing off credentials to authorized recipients. Your disaster recovery plans should
include secret recovery procedures. Have a process for situations where a key is
compromised or leaked and needs to be regenerated on demand. Consider the
following best practices for safety when using secrets:

Don't hard code secrets as static text in code artifacts such as application code,
configuration files, and build-deployment pipelines. This high-risk practice makes the
code vulnerable because secrets are exposed to everyone with read access.

You can avoid this situation by using managed identities to eliminate the need to store
credentials. Your application uses its assigned identity to authenticate against other
resources via the identity provider (IdP). Test in nonproduction environments with fake
secrets during development to prevent accidental exposure of real secrets.

Use tools that periodically detect exposed secrets in your application code and build
artifacts. You can add these tools as Git precommit hooks that scan for credentials
before source code commits deploy. Review and sanitize application logs regularly to
help ensure that no secrets are inadvertently recorded. You can also reinforce detection
via peer reviews.

As a workload owner, you need to understand the secret rotation plan and policies so
that you can incorporate new secrets with minimal disruption to users. When a secret
is rotated, there might be a window when the old secret isn't valid, but the new secret
hasn't been placed. During that window, the component that the application is trying to
reach doesn't acknowledge requests. You can minimize these issues by building retry
logic into the code. You can also use concurrent access patterns that allow you to have
multiple credentials that can be safely changed without affecting each other.

Prevent hardcoding

７ Note

If the scanning tools discover a secret, that secret must be considered
compromised. It should be revoked.

Respond to secret rotation

Work with the operations team and be part of the change management process. You
should let credential owners know when you decommission a part of the application
that uses credentials that are no longer needed.

Integrate secret retrieval and configuration into your automated deployment pipeline.
Secret retrieval helps to ensure secrets are automatically fetched during deployment.
You can also use secret injection patterns to insert secrets into application code or
configuration at runtime, which prevents secrets from being accidentally exposed to
logs or version control.

Store secrets by using Key Vault. Store secrets in the Azure secret management system,
Key Vault, Azure Managed HSM, and other locations. For more information, see How to
choose the right key management solution.

Integrate identity-based access control. Microsoft Entra ID and managed identities help
minimize the need for secrets. Microsoft Entra ID offers a highly secure and usable
experience for access control with built-in mechanisms for handling key rotation, for
anomalies, and more.

Use Azure role-based access control (RBAC) to assign permissions to users, groups, and
applications at a certain scope.

Use an access model to control key vaults, permissions, and secrets. For more
information, see Access model overview.

Implement secret exposure detection. Integrate processes in your workload that detect
suspicious activity and periodically check for exposed keys in your application code.
Some options include:

Azure DevOps Credential Scanner task
Defender for Cloud secret scanning
Microsoft Defender for Key Vault
GitHub Secret Scanner

Don't store keys and secrets for any environment type in application configuration files
or continuous integration and continuous delivery (CI/CD) pipelines. Developers should
use Visual Studio Connected Services or local-only files to access credentials.

Azure facilitation

Related links

https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management-choose
https://learn.microsoft.com/en-us/azure/key-vault/general/secure-your-key-vault#access-model-overview
https://learn.microsoft.com/en-us/azure/security/develop/security-code-analysis-customize#credential-scanner-task
https://learn.microsoft.com/en-us/azure/defender-for-cloud/detect-exposed-secrets
https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-key-vault-introduction
https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning
https://learn.microsoft.com/en-us/azure/key-vault/general/vs-key-vault-add-connected-service

Access model overview
Azure DevOps Credential Scanner task
Configure the Microsoft Security DevOps Azure DevOps extension
Configure GitHub Advanced Security for Azure DevOps
Defender for Cloud secret scanning
How to choose the right key management solution
Manage account access keys
Microsoft Defender for Key Vault
Recommendations on security monitoring and threat detection
Recommendations for identity and access management
Secure OAuth 2.0 On-Behalf-Of refresh tokens for web services
Visual Studio Connected Services

GitHub secret scanner

Refer to the complete set of recommendations.

Community links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/key-vault/general/secure-your-key-vault#access-model-overview
https://learn.microsoft.com/en-us/azure/security/develop/security-code-analysis-customize#credential-scanner-task
https://learn.microsoft.com/en-us/azure/defender-for-cloud/azure-devops-extension
https://learn.microsoft.com/en-us/azure/devops/repos/security/configure-github-advanced-security-features
https://learn.microsoft.com/en-us/azure/defender-for-cloud/detect-exposed-secrets
https://learn.microsoft.com/en-us/azure/security/fundamentals/key-management-choose
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-key-vault-introduction
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/secrets/secure-refresh-tokens
https://learn.microsoft.com/en-us/azure/key-vault/general/vs-key-vault-add-connected-service
https://docs.github.com/code-security/secret-scanning/about-secret-scanning

Recommendations for monitoring and
threat detection
Article • 02/13/2024

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:10 Implement a holistic monitoring strategy that relies on modern threat detection
mechanisms that can be integrated with the platform. Mechanisms should reliably
alert for triage and send signals into existing SecOps processes.

This guide describes the recommendations for monitoring and threat detection.
Monitoring is fundamentally a process of getting information about events that have
already occurred. Security monitoring is a practice of capturing information at different
altitudes of the workload (infrastructure, application, operations) to gain awareness of
suspicious activities. The goal is to predict incidents and learn from past events.
Monitoring data provides the basis of post-incident analysis of what occurred to help
incident response and forensic investigations.

Monitoring is an Operational Excellence approach that's applied across all Well-
Architected Framework pillars. This guide provides recommendations only from a
security perspective. General concepts of monitoring, like code instrumentation, data
collection, and analysis, are out of scope for this guide. For information about core
monitoring concepts, see Recommendations for designing and building an observability
framework.

Definitions

Term Definition

Audit logs A record of activities in a system.

Security information and
event management (SIEM)

An approach that uses built-in threat detection and intelligence
capabilities based on data that's aggregated from multiple
sources.

Threat detection A strategy for detecting deviations from expected actions by
using collected, analyzed, and correlated data.

ﾉ Expand table

ﾉ Expand table

Term Definition

Threat intelligence A strategy for interpreting threat detection data to detect
suspicious activity or threats by examining patterns.

Threat prevention Security controls that are placed in a workload at various
altitudes to protect its assets.

The main purpose of security monitoring is threat detection. The primary objective is to
prevent potential security breaches and maintain a secure environment. However, it's
equally important to recognize that not all threats can be preemptively blocked. In such
instances, monitoring also serves as a mechanism to identify the cause of a security
incident that has occurred despite the prevention efforts.

Monitoring can be approached from various perspectives:

Monitor at various altitudes. Observing from various altitudes is the process of
getting information about user flows, data access, identity, networking, and even
the operating system. Each of these areas offers unique insights that can help you
identify deviations from expected behaviors that are established against the
security baseline. Conversely, continuously monitoring a system and applications
over time can help establish that baseline posture. For example, you might
typically see around 1,000 sign-in attempts in your identity system every hour. If
your monitoring detects a spike of 50,000 sign-in attempts during a short period,
an attacker might be trying to gain access to your system.

Monitor at various scopes of impact. It's critical to observe the application and
the platform. Assume an application user accidentally gets escalated privileges or
a security breach occurs. If the user performs actions beyond their designated
scope, the impact might be confined to actions that other users can perform.

However, if an internal entity compromises a database, the extent of the potential
damage is uncertain.

If a compromise occurs on the Azure resource side, the impact could be global,
affecting all entities that interact with the resource.

The blast radius or impact scope could be significantly different, depending on
which of these scenarios occurs.

Use specialized monitoring tools. It's critical to invest in specialized tools that can
continuously scan for anomalous behavior that might indicate an attack. Most of

Key design strategies

these tools have threat intelligence capabilities that can perform predictive
analysis based on a large volume of data and known threats. Most tools aren't
stateless and incorporate a deep understanding of telemetry in a security context.

The tools need to be platform-integrated or at least platform-aware to get deep
signals from the platform and make predictions with high fidelity. They must be
able to generate alerts in a timely manner with enough information to conduct
proper triage. Using too many diverse tools can lead to complexity.

Use monitoring for incident response. Aggregated data, transformed into
actionable intelligence, enables swift and effective reactions to incidents.
Monitoring helps with post-incident activities. The goal is to collect enough data
to analyze and understand what happened. The process of monitoring captures
information on past events to enhance reactive capabilities and potentially predict
future incidents.

The following sections provide recommended practices that incorporate the preceding
monitoring perspectives.

The objective is to maintain a comprehensive audit trail of events that are significant
from a security perspective. Logging is the most common way to capture access
patterns. Logging must be performed for the application and the platform.

For an audit trail, you need to establish the what, when, and who that's associated with
actions. You need to identify the specific timeframes when actions are performed. Make
this assessment in your threat modeling. To counteract a repudiation threat, you should
establish strong logging and auditing systems that result in a record of activities and
transactions.

The following sections describe use cases for some common altitudes of a workload.

Your application should be designed to provide runtime visibility when events occur.
Identify critical points within your application and establish logging for these points.
For example, when a user logs into the application, capture the user's identity, source
location, and other relevant information. It's important to acknowledge any escalation in
user privileges, the actions performed by the user, and whether the user accessed
sensitive information in a secure data store. Keep track of activities for the user and the
user session.

Capture data to keep a trail of activities

Application user flows

To facilitate this tracking, code should be instrumented via structured logging. Doing
so enables easy and uniform querying and filtering of the logs.

Maintain a thorough record of access patterns for the application and modifications to
platform resources. Have robust activity logs and threat detection mechanisms,
particularly for identity-related activities, because attackers often attempt to manipulate
identities to gain unauthorized access.

Implement comprehensive logging by using all available data points. For example,
include the client IP address to differentiate between regular user activity and potential
threats from unexpected locations. All logging events should be timestamped by the
server.

Record all resource access activities, capturing who's doing what and when they're
doing it. Instances of privilege escalation are a significant data point that should be
logged. Actions related to account creation or deletion by the application must also be
recorded. This recommendation extends to application secrets. Monitor who accesses
secrets and when they're rotated.

Although logging successful actions is important, recording failures is necessary from a
security perspective. Document any violations, like a user attempting an action but
encountering an authorization failure, access attempts for nonexistent resources, and
other actions that seem suspicious.

By monitoring network packets and their sources, destinations, and structures, you gain
visibility into access patterns at the network level.

Your segmentation design should enable observation points at the boundaries to
monitor what crosses them and log that data. For example, monitor subnets that have

） Important

You need to enforce responsible logging to maintain the confidentiality and
integrity of your system. Secrets and sensitive data must not appear in logs. Be
aware of leaking personal data and other compliance requirements when you
capture this log data.

Identity and access monitoring

Network monitoring

network security groups that generate flow logs. Also monitor firewall logs that show
the flows that were allowed or denied.

There are access logs for inbound connection requests. These logs record the source IP
addresses that initiate the requests, the type of request (GET, POST), and all other
information that's part of the requests.

Capturing DNS flows is a significant requirement for many organizations. For instance,
DNS logs can help identify which user or device initiated a particular DNS query. By
correlating DNS activity with user/device authentication logs, you can track activities to
individual clients. This responsibility often extends to the workload team, especially if
they deploy anything that makes DNS requests part of their operation. DNS traffic
analysis is a key aspect of platform security observability.

It's important to monitor unexpected DNS requests or DNS requests that are directed
toward known command and control endpoints.

 Tradeoff: Logging all network activities can result in a large amount of data.
Every request from layer 3 can be recorded in a flow log, including every transaction
that crosses a subnet boundary. Unfortunately, it's not possible to capture only
adverse events because they can only be identified after they occur. Make strategic
decisions about the type of events to capture and how long to store them. If you're
not careful, managing the data can be overwhelming. There's also a tradeoff on the
cost of storing that data.

Because of the tradeoffs, you should consider whether the benefit of network
monitoring of your workload is sufficient to justify the costs. If you have a web
application solution with a high request volume and your system makes extensive use of
managed Azure resources, the cost might outweigh the benefits. On the other hand, if
you have a solution that's designed to use virtual machines with various ports and
applications, it might be important to capture and analyze network logs.

To maintain the integrity of your system, you should have an accurate and up-to-date
record of system state. If there are changes, you can use this record to promptly address
any issues that arise.

Build processes should also emit telemetry. Understanding the security context of
events is key. Knowing what triggered the build process, who triggered it, and when it
was triggered can provide valuable insights.

Capture system changes

Track when resources are created and when they're decommissioned. This information
must be extracted from the platform. This information provides valuable insights for
resource management and accountability.

Monitor drift in resource configuration. Document any change to an existing resource.
Also keep track of changes that don't complete as part of a rollout to a fleet of
resources. Logs must capture the specifics of the change and the exact time it occurred.

Have a comprehensive view, from a patching perspective, of whether the system is up-
to-date and secure. Monitor routine update processes to verify that they complete as
planned. A security patching process that doesn't complete should be considered a
vulnerability. You should also maintain an inventory that records the patch levels and
any other required details.

Change detection also applies to the operating system. This involves tracking whether
services are added or turned off. It also includes monitoring for the addition of new
users to the system. There are tools that are designed to target an operating system.
They help with context-less monitoring in the sense that they don't target the
functionality of the workload. For example, file integrity monitoring is a critical tool that
enables you to track changes in system files.

You should set up alerts for these changes, particularly if you don't expect them to occur
often.

In your test plans, include the validation of logging and alerting as prioritized test
cases.

Data collected from these monitoring activities must be stored in data sinks where it can
be thoroughly examined, normalized, and correlated. Security data should be persisted
outside the system's own data stores. Monitoring sinks, whether they're localized or
central, must outlive the data sources. The sinks can't be ephemeral because sinks are
the source for intrusion detection systems.

Networking logs can be verbose and take up storage. Explore different tiers in storage
systems. Logs can naturally transition to colder storage over time. This approach is

） Important

When you roll out to production, be sure that alerts are configured to catch
anomalous activity that's detected on the application resources and build process.

Store, aggregate, and analyze data

beneficial because older flow logs typically aren't used actively and are only needed on
demand. This method ensures efficient storage management while also ensuring that
you can access historical data when you need to.

The flows of your workload are typically a composite of multiple logging sources.
Monitoring data must be analyzed intelligently across all those sources. For example,
your firewall will only block traffic that reaches it. If you have a network security group
that has already blocked certain traffic, that traffic isn't visible to the firewall. To
reconstruct the sequence of events, you need to aggregate data from all components
that are in flow and then aggregate data from all flows. This data is particularly useful in
a post-incident response scenario when you're trying to understand what happened.
Accurate timekeeping is essential. For security purposes, all systems need to use a
network time source so that they're always in sync.

You can use a system like security information and event management (SIEM) to
consolidate security data in a central location where it can be correlated across various
services. These systems have built-in threat detection mechanisms. They can connect to
external feeds to obtain threat intelligence data. Microsoft, for example, publishes
threat intelligence data that you can use. You can also buy threat intelligence feeds from
other providers, like Anomali and FireEye. These feeds can provide valuable insights and
enhance your security posture. For threat insights from Microsoft, see Security Insider .

A SIEM system can generate alerts based on correlated and normalized data. These
alerts are a significant resource during an incident response process.

 Tradeoff: SIEM systems can be expensive, complex, and require specialized
skills. However, if you don't have one, you might need to correlate data on your
own. This can be a time-consuming and complex process.

SIEM systems are usually managed by an organization's central teams. If your
organization doesn't have one, consider advocating for it. It could alleviate the burden
of manual log analysis and correlation to allow more efficient and effective security
management.

Some cost-effective options are provided by Microsoft. Many Microsoft Defender
products provide the alerting functionality of a SIEM system, but without a data-
aggregation feature.

By combining several smaller tools, you can emulate some functions of a SIEM system.
However, you need to know that these makeshift solutions might not be able to

Centralized threat detection with correlated logs

https://www.microsoft.com/security/business/security-insider/

perform correlation analysis. These alternatives can be useful, but they might not fully
replace the functionality of a dedicated SIEM system.

Be proactive about threat detection and be vigilant for signs of abuse, like identity
brute force attacks on an SSH component or an RDP endpoint. Although external
threats might generate a lot of noise, especially if the application is exposed to the
internet, internal threats are often a greater concern. An unexpected brute force attack
from a trusted network source or an inadvertent misconfiguration, for instance, should
be investigated immediately.

Keep up with your hardening practices. Monitoring isn't a substitute for proactively
hardening your environment. A larger surface area is prone to more attacks. Tighten
controls as much as practice. Detect and disable unused accounts, remove unused ports,
and use a web application firewall, for example. For more information about hardening
techniques, see Recommendations on security hardening.

Signature-based detection can inspect a system in detail. It involves looking for signs or
correlations between activities that might indicate a potential attack. A detection
mechanism might identify certain characteristics that are indicative of a specific type of
attack. It might not always be possible to directly detect the command-and-control
mechanism of an attack. However, there are often hints or patterns associated with a
particular command-and-control process. For example, an attack might be indicated by
a certain flow rate from a request perspective, or it might frequently access domains
that have specific endings.

Detect anomalous user access patterns so that you can identify and investigate
deviations from expected patterns. This involves comparing current user behavior with
past behavior to spot anomalies. Although it might not be feasible to perform this task
manually, you can use threat intelligence tools to do it. Invest in User and Entity
Behavior Analytics (UEBA) tools that collect user behavior from monitoring data and
analyze it. These tools can often perform predictive analysis that maps suspicious
behaviors to potential types of attack.

Detect threats during pre-deployment and post-deployment stages. During the
predeployment phase, incorporate vulnerability scanning into pipelines and take
necessary actions based on the results. Post-deployment, continue to conduct
vulnerability scanning. You can use tools like Microsoft Defender for Containers, which
scans container images. Include the results in the collected data. For information about
secure development practices, see Recommendations for using safe deployment
practices.

Detect abuse

Take advantage of platform-provided detection mechanisms and measures. For
example, Azure Firewall can analyze traffic and block connections to untrusted
destinations. Azure also provides ways to detect and protect against distributed denial-
of-service (DDoS) attacks.

Azure Monitor provides observability across your entire environment. With no
configuration, you automatically get platform metrics, activity logs, and diagnostics logs
from most of your Azure resources. The activity logs provide detailed diagnostic and
auditing information.

Set up alerts based on predefined or custom metrics and logs to get notifications when
specific security-related events or anomalies are detected.

For more information, see Azure Monitor documentation.

Microsoft Defender for Cloud provides built-in capabilities for threat detection. It
operates on collected data and analyzes logs. Because it's aware of the types of logs
generated, it can use built-in rules to make informed decisions. For example, it checks
lists of potentially compromised IP addresses and generates alerts.

Enable built-in threat protection services for Azure resources. For example, enable
Microsoft Defender for Azure resources, like virtual machines, databases, and containers,
to detect and protect against known threats.

Defender for Cloud provides cloud workload protection platform (CWPP) capabilities for
threat detection of all workload resources.

For more information, see What is Microsoft Defender for Cloud?.

Alerts generated by Defender can also feed into SIEM systems. Microsoft Sentinel is the
native offering. It uses AI and machine learning to detect and respond to security threats
in real time. It provides a centralized view of security data and facilitates proactive threat
hunting and investigation.

Azure facilitation

７ Note

Platform logs aren't available indefinitely. You need to keep them so that you can
review them later for auditing purposes or offline analysis. Use Azure storage
accounts for long-term/archival storage. In Azure Monitor, specify a retention
period when you enable diagnostic settings for your resources.

https://learn.microsoft.com/en-us/azure/azure-monitor/
https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction

For more information, see What is Microsoft Sentinel?.

Microsoft Sentinel can also use threat intelligence feeds from various sources. For more
information, see Threat intelligence integration in Microsoft Sentinel.

Microsoft Sentinel can analyze user behavior from monitoring data. For more
information, see Identify advanced threats with User and Entity Behavior Analytics
(UEBA) in Microsoft Sentinel.

Defender and Microsoft Sentinel work together, despite some overlap in functionality.
This collaboration enhances your overall security posture by helping to ensure
comprehensive threat detection and response.

Take advantage of Azure Business Continuity Center to identify gaps in your business
continuity estate and defend against threats like ransomware attacks, malicious
activities, and rogue-administrator incidents. For more information, see What is Azure
Business Continuity Center?.

Review all logs, including raw traffic, from your network devices.

Security group logs. Review flow logs and diagnostic logs.

Azure Network Watcher. Take advantage of the packet capture feature to set alerts
and gain access to real-time performance information at the packet level.

Packet capture tracks traffic in and out of virtual machines. You can use it to run
proactive captures based on defined network anomalies, including information
about network intrusions.

For an example, see Monitor networks proactively with alerts and Azure Functions
using Packet Capture.

Monitor identity-related risk events on potentially compromised identities and
remediate those risks. Review the reported risk events in these ways:

Use Microsoft Entra ID reporting. For more information, see What is Identity
Protection? and Identity Protection.

Use Identity Protection risk detection API members to get programmatic access to
security detections via Microsoft Graph. For more information, see riskDetection

Networking

Identity

https://learn.microsoft.com/en-us/azure/sentinel/overview
https://learn.microsoft.com/en-us/azure/sentinel/threat-intelligence-integration
https://learn.microsoft.com/en-us/azure/sentinel/identify-threats-with-entity-behavior-analytics
https://learn.microsoft.com/en-us/azure/business-continuity-center/business-continuity-center-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-portal
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-alert-triggered-packet-capture
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-alert-triggered-packet-capture
https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/concept-user-at-risk
https://learn.microsoft.com/en-us/azure/active-directory/active-directory-identityprotection
https://learn.microsoft.com/en-us/graph/api/resources/riskdetection

and riskyUser.

Microsoft Entra ID uses adaptive machine learning algorithms, heuristics, and known
compromised credentials (user name and password pairs) to detect suspicious actions
that are related to your user accounts. These user name and password pairs are surfaced
by monitoring the public and dark web and by working with security researchers, law
enforcement, security teams at Microsoft, and others.

DevOps advocates change management of workloads via continuous integration and
continuous delivery (CI/CD). Be sure to add security validation in the pipelines. Follow
the guidance described in Securing Azure Pipelines.

Recommendations for designing and creating an observability framework
Security Insider
Recommendations for hardening resources
Recommendations for using safe deployment practices
Azure Monitor documentation
What is Microsoft Defender for Cloud?
What is Microsoft Sentinel?
Threat intelligence integration in Microsoft Sentinel
Identify advanced threats with User and Entity Behavior Analytics (UEBA) in
Microsoft Sentinel
Tutorial: Log network traffic to and from a virtual machine using the Azure portal
Packet capture
Monitor networks proactively with alerts and Azure Functions using Packet Capture
What is Identity Protection?
Identity Protection
riskDetection
riskyUser
Learn how to add continuous security validation to your CI/CD pipeline

Refer to the complete set of recommendations.

Azure Pipelines

Related links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/graph/api/resources/riskyuser
https://learn.microsoft.com/en-us/azure/devops/migrate/security-validation-cicd-pipeline
https://www.microsoft.com/security/business/security-insider/
https://learn.microsoft.com/en-us/azure/azure-monitor/
https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction
https://learn.microsoft.com/en-us/azure/sentinel/overview
https://learn.microsoft.com/en-us/azure/sentinel/threat-intelligence-integration
https://learn.microsoft.com/en-us/azure/sentinel/identify-threats-with-entity-behavior-analytics
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-portal
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-alert-triggered-packet-capture
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-alert-triggered-packet-capture
https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/concept-user-at-risk
https://learn.microsoft.com/en-us/azure/active-directory/active-directory-identityprotection
https://learn.microsoft.com/en-us/graph/api/resources/riskdetection
https://learn.microsoft.com/en-us/graph/api/resources/riskyuser
https://learn.microsoft.com/en-us/azure/devops/migrate/security-validation-cicd-pipeline

Feedback

Was this page helpful? Yes No

Recommendations for security testing
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Security checklist recommendation:

SE:11 Establish a comprehensive testing regimen that combines approaches to prevent
security issues, validate threat prevention implementations, and test threat
detection mechanisms.

Rigorous testing is the foundation of good security design. Testing is a tactical form of
validation to make sure controls are working as intended. Testing is also a proactive way
to detect vulnerabilities in the system.

Establish testing rigor through cadence and verification from multiple perspectives. You
should include inside-out viewpoints that test platform and infrastructure and outside-in
evaluations that test the system like an external attacker.

This guide provides recommendations for testing the security posture of your workload.
Implement these testing methods to improve your workload's resistance to attacks and
maintain confidentiality, integrity, and availability of resources.

Definitions

Term Definition

Application security
testing (AST)

A Microsoft Security Development Lifecycle (SDL) technique that uses
white-box and black-box testing methodologies to check for security
vulnerabilities in code.

Black-box testing A testing methodology that validates the externally visible application
behavior without knowledge of the internals of the system.

Blue team A team that defends against the attacks of the red team in a war game
exercise.

Penetration testing A testing methodology that uses ethical hacking techniques to validate
the security defenses of a system.

Red team A team that plays the role of an adversary and attempts to hack the
system in a war game exercise.

Security Development
Lifecycle (SDL)

A set of practices provided by Microsoft that supports security
assurance and compliance requirements.

Software development
lifecycle (SDLC)

A multistage, systematic process for developing software systems.

Term Definition

White-box testing A testing methodology where the structure of the code is known to the
practitioner.

Testing is a nonnegotiable strategy, especially for security. It allows you to proactively
discover and address security issues before they can be exploited and to verify that the
security controls that you implemented are functioning as designed.

The scope of testing must include the application, infrastructure, and automated and
human processes.

SDL includes several types of tests that catch vulnerabilities in code, verify runtime
components, and use ethical hacking to test the security resilience of the system. SDL is
a key shift-left activity. You should run tests like static code analysis and automated
scanning of infrastructure as code (IaC) as early in the development process as possible.

Be involved in test planning. The workload team might not design the test cases. That
task is often centralized in the enterprise or completed by external security experts. The
workload team should be involved in that design process to ensure that security
assurances integrate with the application's functionality.

Think like an attacker. Design your test cases with the assumption that the system has
been attacked. That way, you can uncover the potential vulnerabilities and prioritize the
tests accordingly.

Run tests in a structured manner and with a repeatable process. Build your testing
rigor around cadence, types of tests, driving factors, and intended outcomes.

Use the right tool for the job. Use tools that are configured to work with the workload.
If you don't have a tool, buy the tool. Don't build it. Security tools are highly specialized,
and building your own tool might introduce risks. Take advantage of the expertise and

Key design strategies

７ Note

This guidance makes a distinction between testing and incident response. Although
testing is a detection mechanism that ideally fixes issues prior to production, it
shouldn't be confused with the remediation or investigation that's done as part of
incident response. The aspect of recovering from security incidents is described in
Incident Response recommendations.

tools offered by central SecOps teams or by external means if the workload team
doesn't have that expertise.

Set up separate environments. Tests can be classified as destructive or nondestructive.
Nondestructive tests aren't invasive. They indicate there's a problem, but they don't alter
functionality in order to remediate the problem. Destructive tests are invasive and might
damage functionality by deleting data from a database.

Testing in production environments gives you the best information but causes the most
disruption. You tend to do only nondestructive tests in production environments. Testing
in nonproduction environments is typically less disruptive but might not accurately
represent the production environment's configuration in ways that are important to
security.

If you deploy by using IaC and automation, consider whether you can create an isolated
clone of your production environment for testing. If you have a continuous process for
routine tests, we recommend using a dedicated environment.

Always evaluate the test results. Testing is a wasted effort if the results aren't used to
prioritize actions and make improvements upstream. Document the security guidelines,
including best practices, that you uncover. Documentation that captures results and
remediation plans educates the team about the various ways that attackers might try to
breach security. Conduct regular security training for developers, admins, and testers.

When you design your test plans, think about the following questions:

How often do you expect the test to run, and how does it affect your environment?

What are the different test types that you should run?

Test the workload regularly to make sure changes don't introduce security risks and that
there aren't any regressions. The team must also be ready to respond to organizational
security validations that might be conducted at any time. There are also tests that you
can run in response to a security incident. The following sections provide
recommendations on the frequency of tests.

Routine tests are conducted at a regular cadence, as part of your standard operating
procedures and to meet compliance requirements. Various tests might be run at
different cadences, but the key is that they're conducted periodically and on a schedule.

How often do you expect the tests to run?

Routine tests

You should integrate these tests into your SDLC because they provide defense in depth
at each stage. Diversify the test suite to verify assurances for identity, data storage and
transmission, and communication channels. Conduct the same tests at different points
in the lifecycle to ensure that there aren't any regressions. Routine tests help establish
an initial benchmark. However that's just a starting point. As you uncover new issues at
the same points of the lifecycle, you add new test cases. The tests also improve with
repetition.

At each stage, these tests should validate code that's added or removed or
configuration settings that have changed in order to detect the security impact of those
changes. You should improve the tests' efficacy with automation, balanced with peer
reviews.

Consider running security tests as part of an automated pipeline or scheduled test run.
The sooner you discover security issues, the easier it is to find the code or configuration
change that causes them.

Don't rely only on automated tests. Use manual testing to detect vulnerabilities that
only human expertise can catch. Manual testing is good for exploratory use cases and
finding unknown risks.

Improvised tests provide point-in-time validation of security defenses. Security alerts
that might affect the workload at that time trigger these tests. Organizational mandates
might require a pause-and-test mindset to verify the effectiveness of defense strategies
if the alert escalates to an emergency.

The benefit of improvised tests is preparedness for a real incident. These tests can be a
forcing function to do user acceptance testing (UAT).

The security team might audit all workloads and run these tests as needed. As a
workload owner, you need to facilitate and collaborate with security teams. Negotiate
enough lead time with security teams so that you can prepare. Acknowledge and
communicate to your team and stakeholders that these disruptions are necessary.

In other cases, you might be required to run tests and report the security state of the
system against the potential threat.

 Tradeoff: Because improvised tests are disruptive events, expect to reprioritize
tasks, which may delay other planned work.

Improvised tests

 Risk: There's risk of the unknown. Improvised tests might be one-time efforts
without established processes or tools. But the predominant risk is the potential
interruption of the rhythm of business. You need to evaluate those risks relative to
the benefits.

There are tests that detect the cause of a security incident at its source. These security
gaps must be resolved to make sure the incident isn't repeated.

Incidents also improve test cases over time by uncovering existing gaps. The team
should apply the lessons learned from the incident and routinely incorporate
improvements.

Tests can be categorized by technology and by testing methodologies. Combine those
categories and approaches within those categories to get complete coverage.

By adding multiple tests and types of tests, you can uncover:

Gaps in security controls or compensating controls.

Misconfigurations.

Gaps in observability and detection methods.

A good threat modeling exercise can point to key areas to ensure test coverage and
frequency. For recommendations on threat modeling, see Recommendations for
securing a development lifecycle.

Most tests described in these sections can be run as routine tests. However, repeatability
can incur costs in some cases and cause disruption. Consider those tradeoffs carefully.

Here are some examples of types of tests and their focus areas. This list isn't exhaustive.
Test the entire stack, including the application stack, front end, back end, APIs,
databases, and any external integrations.

Data security: Test the effectiveness of data encryption and access controls to
ensure data is properly protected from unauthorized access and tampering.

Security incident tests

What are the different types of tests?

Tests that validate the technology stack

Network and connectivity: Test your firewalls to ensure they only allow expected,
allowed, and safe traffic to the workload.

Application: Test source code through application security testing (AST) techniques
to make sure that you follow secure coding practices and to catch runtime errors
like memory corruption and privilege issues. For details, see these community links.

Identity: Evaluate whether the role assignments and conditional checks work as
intended.

There are many perspectives on testing methodologies. We recommend tests that
enable threat hunting by simulating real-world attacks. They can identify potential threat
actors, their techniques, and their exploits that pose a threat to the workload. Make the
attacks as realistic as possible. Use all the potential threat vectors that you identify
during threat modeling.

Here are some advantages of testing through real-world attacks:

When you make these attacks a part of routine testing, you use an outside-in
perspective to check the workload and make sure the defense can withstand an
attack.

Based on the lessons they learned, the team upgrades their knowledge and skill
level. The team improves situational awareness and can self-assess their readiness
to respond to incidents.

 Risk: Testing in general can affect performance. There might be business
continuity problems if destructive tests delete or corrupt data. There are also risks
associated with information exposure; make sure to maintain the confidentiality of
data. Ensure the integrity of data after you complete testing.

Some examples of simulated tests include black-box and white-box testing, penetration
testing, and war game exercises.

These test types offer two different perspectives. In black-box tests, the internals of the
system aren't visible. In white-box tests, the tester has a good understanding of the
application and even has access to code, logs, resource topology, and configurations for
conducting the experiment.

Test methodology

Black-box and white-box testing

 Risk: The difference between the two types is upfront cost. White-box testing
can be expensive in terms of time taken to understand the system. In some cases,
white-box testing requires you to purchase specialized tools. Black-box testing
doesn't need ramp-up time, but it might not be as effective. You might need to put
in extra effort to uncover issues. It's a time investment tradeoff.

Security experts who aren't part of the organization's IT or application teams conduct
penetration testing, or pentesting. They look at the system in the way that malicious
actors scope an attack surface. Their goal is to find security gaps by gathering
information, analyzing vulnerabilities, and reporting the results.

 Tradeoff: Penetration tests are improvised and can be expensive in terms of
disruptions and monetary investment because pentesting is typically a paid offering
by third-party practitioners.

 Risk: A pentesting exercise might affect the runtime environment and might
disrupt the availability for normal traffic.

The practitioners might need access to sensitive data in the entire organization. Follow
the rules of engagement to ensure that access isn't misused. See the resources listed in
Related links.

In this methodology of simulated attacks, there are two teams:

The red team is the adversary attempting to model real-world attacks. If they're
successful, you find gaps in your security design and evaluate the blast radius
containment of their breaches.

The blue team is the workload team that defends against the attacks. They test
their ability to detect, respond, and remediate the attacks. They validate the
defenses that have been implemented to protect workload resources.

If they're conducted as routine tests, war game exercises can provide ongoing visibility
and assurance that your defenses work as designed. War game exercises can potentially
test across levels within your workloads.

Tests that simulate attacks through penetration testing

Tests that simulate attacks through war game exercises

A popular choice to simulate realistic attack scenarios is the Microsoft Defender for
Office 365 Attack simulation training.

For more information, see Insights and reports for Attack simulation training.

For information about red-team and blue-team setup, see Microsoft Cloud Red
Teaming .

Microsoft Sentinel is a native control that combines security information event
management (SIEM) and security orchestration automated response (SOAR) capabilities.
It analyzes events and logs from various connected sources. Based on data sources and
their alerts, Microsoft Sentinel creates incidents and performs threat analysis for early
detection. Through intelligent analytics and queries, you can proactively hunt for
security issues. If there's an incident, you can automate workflows. Also, with workbook
templates, you can quickly gain insights through visualization.

For product documentation, see Hunting capabilities in Microsoft Sentinel.

Microsoft Defender for Cloud offers vulnerability scanning for various technology areas.
For details, see Enable vulnerability scanning with Microsoft Defender Vulnerability
Management - Microsoft Defender for Cloud.

The practice of DevSecOps integrates security testing as part of an ongoing and
continuous improvement mindset. War game exercises are a common practice that's
integrated into the rhythm of business at Microsoft. For more information, see Security
in DevOps (DevSecOps).

Azure DevOps supports third-party tools that can be automated as part of the
continuous integration/continuous deployment pipelines. For details, see Enable
DevSecOps with Azure and GitHub - Azure DevOps.

Follow the rules of engagement to make sure that access isn't misused. For guidance
about planning and executing simulated attacks, see the following articles:

Penetration Testing Rules of Engagement

Penetration testing

Azure facilitation

Related links

https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/attack-simulation-training-get-started
https://learn.microsoft.com/en-us/microsoft-365/security/office-365-security/attack-simulation-training-insights
https://download.microsoft.com/download/C/1/9/C1990DBA-502F-4C2A-848D-392B93D9B9C3/Microsoft_Enterprise_Cloud_Red_Teaming.pdf
https://learn.microsoft.com/en-us/azure/sentinel/hunting
https://learn.microsoft.com/en-us/azure/defender-for-cloud/deploy-vulnerability-assessment-defender-vulnerability-management
https://learn.microsoft.com/en-us/devops/operate/security-in-devops
https://learn.microsoft.com/en-us/devops/devsecops/enable-devsecops-azure-github
https://www.microsoft.com/msrc/pentest-rules-of-engagement
https://learn.microsoft.com/en-us/azure/security/fundamentals/pen-testing

You can simulate denial of service (DoS) attacks in Azure. Be sure to follow the policies
laid out in Azure DDoS Protection simulation testing.

Application security testing: Tools, types, and best practices - GitHub Resources
describes the types of testing methodologies that can test the build-time and runtime
defenses of the application.

Penetration Testing Execution Standard (PTES) provides guidelines about common
scenarios and the activities required to establish a baseline.

OWASP Top Ten | OWASP Foundation provides security best practices for applications
and test cases that cover common threats.

Refer to the complete set of recommendations.

Community links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/ddos-protection/test-through-simulations
https://resources.github.com/security/application-security-testing/
http://www.pentest-standard.org/index.php/Main_Page
https://owasp.org/www-project-top-ten/

Recommendations for security incident
response
Article • 11/14/2023

Applies to Azure Well-Architected Framework Security checklist recommendation:

SE:12 Define and test effective incident response procedures that cover a spectrum of
incidents, from localized issues to disaster recovery. Clearly define which team or
individual runs a procedure.

This guide describes the recommendations for implementing a security incident
response for a workload. If there's a security compromise to a system, a systematic
incident response approach helps to reduce the time that it takes to identify, manage,
and mitigate security incidents. These incidents can threaten the confidentiality,
integrity, and availability of software systems and data.

Most enterprises have a central security operation team (also known as Security
Operations Center (SOC), or SecOps). The responsibility of the security operation team is
to rapidly detect, prioritize, and triage potential attacks. The team also monitors
security-related telemetry data and investigates security breaches.

However, you also have a responsibility to protect your workload. It's important that any
communication, investigation, and hunting activities are a collaborative effort between
workload team and SecOps team.

This guide provides recommendations for you and your workload team to help you
rapidly detect, triage, and investigate attacks.

Definitions

Term Definition

Alert A notification that contains information about an incident.

Alert fidelity The accuracy of the data that determines an alert. High-fidelity alerts contain the
security context that's needed to take immediate actions. Low-fidelity alerts lack
information or contain noise.

False
positive

An alert that indicates an incident that didn't happen.

Incident An event that indicates unauthorized access to a system.

Incident
response

A process that detects, responds to, and mitigates risks that are associated with an
incident.

Triage An incident response operation that analyzes security issues and prioritizes their
mitigation.

You and your team perform incident response operations when there's a signal or alert
for a potential compromise. High-fidelity alerts contain ample security context that
makes it easy for analysts to make decisions. High-fidelity alerts result in a low number
of false positives. This guide assumes that an alerting system filters low-fidelity signals
and focuses on high-fidelity alerts that might indicate a real incident.

Security alerts need to reach the appropriate people on your team and in your
organization. Establish a designated point of contact on your workload team to receive
incident notifications. These notifications should include as much information as
possible about the resource that's compromised and the system. The alert must include
the next steps, so your team can expedite actions.

We recommend that you log and manage incident notifications and actions by using
specialized tooling that keeps an audit trail. By using standard tools, you can preserve
evidence that might be required for potential legal investigations. Look for
opportunities to implement automation that can send notifications based on the
responsibilities of accountable parties. Keep a clear chain of communication and
reporting during an incident.

Take advantage of security information event management (SIEM) solutions and security
orchestration automated response (SOAR) solutions that your organization provides.

Key design strategies

Assign incident notification

Alternatively, you can procure incident management tools and encourage your
organization to standardize them for all workload teams.

The team member that receives an incident notification is responsible for setting up a
triage process that involves the appropriate people based on the available data. The
triage team, often called the bridge team, must agree on the mode and process of
communication. Does this incident require asynchronous discussions or bridge calls?
How should the team track and communicate the progress of investigations? Where can
the team access incident assets?

Incident response is a crucial reason to keep documentation up to date, like the
architectural layout of the system, information at a component level, privacy or security
classification, owners, and key points of contact. If the information is inaccurate or
outdated, the bridge team wastes valuable time trying to understand how the system
works, who's responsible for each area, and what the effect of the event might be.

For further investigations, involve the appropriate people. You might include an incident
manager, security officer, or workload-centric leads. To keep the triage focused, exclude
people that are outside of the scope of the problem. Sometimes separate teams
investigate the incident. There might be a team that initially investigates the issue and
tries to mitigate the incident, and another specialized team that might perform forensics
for a deep investigation to ascertain wide issues. You can quarantine the workload
environment to enable the forensics team to do their investigations. In some cases, the
same team might handle the entire investigation.

In the initial phase, the triage team is responsible for determining the potential vector
and its effect on the confidentiality, integrity, and availability (also called the CIA) of the
system.

Within the categories of CIA, assign an initial severity level that indicates the depth of
the damage and the urgency of remediation. This level is expected to change over time
as more information is discovered in the levels of triage.

In the discovery phase, it's important to determine an immediate course of action and
communication plans. Are there any changes to the running state of the system? How
can the attack be contained to stop further exploitation? Does the team need to send
out internal or external communication, such as a responsible disclosure? Consider
detection and response time. You might be legally obligated to report some types of
breaches to a regulatory authority within a specific time period, which is often hours or
days.

Investigate with a triage team

If you decide to shut down the system, the next steps lead to the workload's disaster
recovery (DR) process.

If you don't shut down the system, determine how to remediate the incident without
affecting the functionality of the system.

Treat a security incident like a disaster. If the remediation requires complete recovery,
use proper DR mechanisms from a security perspective. The recovery process must
prevent chances of recurrence. Otherwise, recovery from a corrupted backup
reintroduces the issue. Redeploying a system with the same vulnerability leads to the
same incident. Validate failover and failback steps and processes.

If the system remains functioning, assess the effect on the running parts of the system.
Continue to monitor the system to ensure that other reliability and performance targets
are met or readjusted by implementing proper degradation processes. Don't
compromise privacy due to mitigation.

Diagnosis is an interactive process until the vector, and a potential fix and fallback, is
identified. After diagnosis, the team works on remediation, which identifies and applies
the required fix within an acceptable period.

Recovery metrics measure how long it takes to fix an issue. In the event of a shutdown,
there might be an urgency regarding the remediation times. To stabilize the system, it
takes time to apply fixes, patches, and tests, and deploy updates. Determine
containment strategies to prevent further damage and the spread of the incident.
Develop eradication procedures to completely remove the threat from the environment.

 Tradeoff: There's a tradeoff between reliability targets and remediation times.
During an incident, it's likely that you don't meet other nonfunctional or functional
requirements. For example, you might need to disable parts of your system while
you investigate the incident, or you might even need to take the entire system
offline until you determine the scope of the incident. Business decision-makers need
to explicitly decide what the acceptable targets are during the incident. Clearly
specify the person that's accountable for that decision.

An incident uncovers gaps or vulnerable points in a design or implementation. It's an
improvement opportunity that's driven by lessons in technical design aspects,

Recover from an incident

Learn from an incident

automation, product development processes that include testing, and the effectiveness
of the incident response process. Maintain detailed incident records, including actions
taken, timelines, and findings.

We highly recommended that you conduct structured post-incident reviews, such as
root-cause analysis and retrospectives. Track and prioritize the outcome of those
reviews, and consider using what you learn in future workload designs.

Improvement plans should include updates to security drills and testing, like business
continuity and disaster recovery (BCDR) drills. Use security compromise as a scenario for
performing a BCDR drill. Drills can validate how the documented processes work. There
shouldn't be multiple incident response playbooks. Use a single source that you can
adjust based on the size of the incident and how widespread or localized the effect is.
Drills are based on hypothetical situations. Conduct drills in a low-risk environment, and
include the learning phase in the drills.

Conduct post-incident reviews, or postmortems, to identify weaknesses in the response
process and areas for improvement. Based on the lessons you learn from the incident,
update the incident response plan (IRP) and the security controls.

Implement a communication plan to notify users of a disruption and to inform internal
stakeholders about the remediation and improvements. Other people in your
organization need to be notified of any changes to the workload's security baseline to
prevent future incidents.

Generate incident reports for internal use and, if necessary, for regulatory compliance or
legal purposes. Also, adopt a standard format report (a document template with defined
sections) that the SOC team uses for all incidents. Ensure that every incident has a report
associated with it before you close the investigation.

Microsoft Sentinel is an SIEM and SOAR solution. It's a single solution for alert
detection, threat visibility, proactive hunting, and threat response. For more information,
see What's Microsoft Sentinel?

Ensure that the Azure enrollment portal includes administrator contact information so
security operations can be notified directly via an internal process. For more information,
see Update notification settings.

Send the necessary communication

Azure facilitation

https://learn.microsoft.com/en-us/azure/sentinel/overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/manage/ea-portal-administration#update-notification-settings

To learn more about establishing a designated point of contact that receives Azure
incident notifications from Microsoft Defender for Cloud, see Configure email
notifications for security alerts.

Cloud Adoption Framework for Azure provides guidance about incident response
planning and security operations. For more information, see Security operations.

Automatically create incidents from Microsoft security alerts
Conduct end-to-end threat hunting by using the hunts feature
Configure email notifications for security alerts
Incident response overview
Microsoft Azure incident readiness
Navigate and investigate incidents in Microsoft Sentinel
Security control: Incident response
SOAR solutions in Microsoft Sentinel
Training: Introduction to Azure incident readiness
Update Azure portal notification settings
What's an SOC?
What's Microsoft Sentinel?

Refer to the complete set of recommendations.

Organizational alignment

Related links

Security checklist

Security checklist

https://learn.microsoft.com/en-us/azure/security-center/security-center-provide-security-contact-details
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/secure/security-operations
https://learn.microsoft.com/en-us/azure/sentinel/create-incidents-from-alerts
https://learn.microsoft.com/en-us/azure/sentinel/hunts
https://learn.microsoft.com/en-us/azure/security-center/security-center-provide-security-contact-details
https://learn.microsoft.com/en-us/security/operations/incident-response-overview
https://learn.microsoft.com/en-us/services-hub/unified/health/ir-azure
https://learn.microsoft.com/en-us/azure/sentinel/investigate-incidents
https://learn.microsoft.com/en-us/security/benchmark/azure/mcsb-incident-response
https://learn.microsoft.com/en-us/azure/sentinel/automation
https://learn.microsoft.com/en-us/training/technical-support/intro-to-azure-incident-readiness/
https://learn.microsoft.com/en-us/azure/cost-management-billing/manage/ea-portal-administration#update-notification-settings
https://www.microsoft.com/security/business/security-101/what-is-a-security-operations-center-soc
https://learn.microsoft.com/en-us/azure/sentinel/overview

Cost optimization quick links
Apply cost optimization guidance in your architecture to sustain and improve your
return on investment (ROI).

Learn key points

ｆ QUICKSTART

Design principles

Checklist

Tradeoffs

Cost optimization patterns

Azure Well-Architected Review assessment

ｄ TRAINING

Cost optimization

ｑ VIDEO

What tradeoffs have you made to optimize for cost?

Review design principles

ｐ CONCEPT

Develop cost-management discipline

Design with a cost-efficiency mindset

Design for usage optimization

Design for rate optimization

Monitor and optimize over time

Set, measure, and protect financial targets

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-cost-optimization/
https://www.microsoft.com/videoplayer/embed/RE4zw3n

ｃ HOW-TO GUIDE

Create a culture of financial responsibility

Create a cost model

Collect and review cost data

Set spending guardrails

Take cost optimization actions

ｃ HOW-TO GUIDE

Get the best rates

Align usage to billing increments

Optimize component costs

Consolidate

Optimize

ｃ HOW-TO GUIDE

Environments

Flows

Data

Application code

Scaling

Personnel time

Explore related resources

ｉ REFERENCE

Azure Advisor: Cost recommendations

Azure Pricing Calculator

https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-cost-recommendations
https://azure.microsoft.com/pricing/calculator

Microsoft Azure Total Cost of Ownership (TCO) Calculator

Microsoft Cost Management

Visualize cost reports

https://azure.microsoft.com/pricing/tco/calculator/
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-best-practices
https://learn.microsoft.com/en-us/power-bi/connect-data/desktop-connect-azure-cost-management

Cost Optimization design principles
Article • 11/14/2023

Architecture design is always driven by business goals and must factor in return on
investment (ROI) and financial constraints. Typical questions to consider include:

Do the allocated budgets enable you to meet your goals?
What's the spending pattern for the application and its operations? What are
priority areas?
How will you maximize the investment in resources, by better utilization or by
reduction?

A cost-optimized workload isn't necessarily a low-cost workload. There are significant
tradeoffs. Tactical approaches are reactive and can reduce costs only in the short term.
To achieve long-term financial responsibility, you need to create a strategy with
prioritization, continuous monitoring, and repeatable processes that focuses on
optimization.

The design principles are intended to provide optimization strategies that you need to
consider when you design and implement your workload architecture. Start with the
recommended approaches and justify the benefits for a set of business requirements.
After you set your strategy, drive actions by using the Cost Optimization checklist as
your next step.

As you prioritize business requirements to align with technology needs, you can adjust
costs. However, you should expect a series of tradeoffs in areas in which you want to
optimize cost, such as security, scalability, resilience, and operability. If the cost of
addressing the challenges in those areas is high and these principles aren't applied
properly, you might make risky choices in favor of a cheaper solution, ultimately
affecting your organization's business goals and reputation.

 Build a team culture that has awareness of budget, expenses, reporting, and cost
tracking.

Cost optimization is conducted at various levels of the organization. It's important to
understand how your workload is aligned with organizational goals and FinOps
practices. A view into the business units, resource organization, and centralized audit
policies allows you to adopt a standardized financial system.

Develop cost-management discipline

Approach Benefit

Develop a cost model. This
fundamental exercise is a prerequisite
to setting up a financial tracking
system.

A cost model helps segment expenses and estimate and
forecast the total cost of ownership, including
infrastructure, support, and implementation. It enables
you to identify cost drivers early and predict how any
change, growth, or shrinkage will affect overall spending
in your projected business model.

Have an effective but flexible
accountability model that's
implemented with properly assigned
roles and responsibilities.

As the architecture evolves, various roles participate in
decision making. Clear accountability helps enforce the
functional expectations of each role (given a scope),
drive clarity, and generate reports with transparency at
desired levels.

Estimate realistic budgets that cover
all non-negotiable functional and
nonfunctional requirements, personnel
and training costs, and processes that
provide for anticipated growth.

You'll be able to set financial boundaries and establish
ways to check your spending against the allocated
budget. You'll also get notifications when certain
thresholds are exceeded, which prevents overspending
at the tenant scope, resource scope, and other scopes
that are applied to the budget.

Use governance and processes to
implement the accountability model
and budgets.

It's not enough to get notifications, because that's
reactionary. Proactive governance can help you avoid
actions that might lead to unnecessary expenditure
that's beyond the budget.

Certain actions can improve the current state. Are
retention policies too relaxed? Do you need scalability
limits to ensure responsible engineering?

Build capabilities in the system that
capture and classify expense.

You'll be able to calculate the costs that reveal technical
and business perspectives at different billing
boundaries.

You'll also be able to conduct regular reviews and drive
showback and chargeback processes.

Plan on training costs, hiring
expenses, and the cost of
infrastructure needed to augment
skills as the workload matures.

Investing in staffing complements existing skills
through full-time or vendor support.

Encourage upstream communication
from architects and application
owners.

Research costs are reduced when you act on feedback,
which should be considered as meaningful as numeric
data. You'll empower employees by using their input to
drive realistic design changes and business strategies.

Design with a cost-efficiency mindset

 Spend only on what you need to achieve the highest return on your investments.

Every architectural decision has direct and indirect financial implications. Understand
the costs associated with build versus buy options, technology choices, the billing
model and licensing, training, operations, and so on.

Given a set of requirements, optimize and make tradeoff decisions, in relation to costs,
that still effectively address the cross-cutting concerns of the workload.

Approach Benefit

Measure the total cost incurred by
technology and automation choices, taking
into account the impact on ROI. The design
must work within the acceptable boundaries
for all functional and nonfunctional
requirements. The design must also be
flexible to accommodate predicted evolution.

Factor in the cost of acquisition, training, and
change management.

Implementing a balanced approach that takes
ROI into account prevents overengineering,
which might increase costs.

Discarding alternatives that are expensive and
lack business justification provides buffer in your
budget that you can spend in other areas.

We don't recommend that you design beyond
planned growth because doing so might divert
investments that are allocated for near-term
design choices and tradeoff compensation.

Establish the initial cost, using the billing
models that are best suited to fulfill your
requirements.

Refining cost estimates will help you forecast how
costs compare to the budget and identify the
main cost drivers. Do the cost drivers help meet
the business requirements?

You need to know the initial cost before you can
readjust your choices and evaluate other cost-
effective options. You'll uncover hidden costs that
might go undetected if the design was in a purely
hypothetical state.

Fine-tune the design by prioritizing services
that can reduce the overall cost, don't need
additional investment, or don't have a
significant impact on functionality.
Prioritization should account for the business
model and technology choices that bring
high ROI.

You'll be able to explore cheaper options that
might enable resource flexibility or dynamic
scaling, or you might justify the use of existing
investments. The prioritization parameters might
factor in costs that are required for critical
workloads, runtime, and operations, and other
costs that might help the team work more
efficiently.

Design your architecture to support cost
guardrails.

Enforcement via governance policies or built-in
application design patterns can prevent incidental
or unapproved charges.

Approach Benefit

For workloads that are backed by service-
level agreements (SLAs), weigh the pros and
cons of reserving budget for penalties
versus using it for implementation. You can
avoid penalties if your implementation is
sound.

Ensuring that your design fulfills its intended
function and meets commitments is a proactive
approach that reduces eventual risks of liability.

Negotiating realistic cost commitments or
working with your product owner to create a
dedicated violation budget makes these goals
more achievable.

 Maximize the use of resources and operations. Apply them to the negotiated
functional and nonfunctional requirements of the solution.

Services and offerings provide various capabilities and pricing tiers. After you purchase
a set of features, avoid underutilizing them. Find ways to maximize your investment in
the tier. Likewise, continuously evaluate billing models to find those that better align to
your usage, based on current production workloads.

Approach Benefit

Evaluate whether your chosen
resource SKUs provide
additional features that can help
you meet performance, security,
reliability, or operational targets.

By taking advantage of features offered by the SKU that you
selected for your design, you can maximize the use of what
you paid for and avoid paying for unused features.

Use consumption-based pricing
when it's practical.

You'll pay for exactly what you use. This option might be more
expensive than a fully utilized prepaid option. However, if you
don't expect to fully utilize pre-purchased compute,
consumption billing might be a better choice.

Apply policies to comply with
the design and the design's
upper and lower limits.

Governance ensures that only allowed regions and services
and their budgeted quantity are provisioned. This governance
reduces waste and the over-provisioning of resources.

Prioritize deployment of active-
active models or active-only
over active-passive models, as
part of your recovery plan, if you
already paid for the resources.

If your design defaults to using active-passive models, you
might have idle resources that could otherwise be used.
Converting to active-active might enable you to meet your
load leveling and scale bursting requirements without
overspending. If you can meet your recovery targets with an
active-only model, the costs of those resources can be
removed completely.

Design for usage optimization

Approach Benefit

Regularly and rigorously review
deployments for unused
resources and data and
decommission them.

Shutting down unused resources and deleting data when you
no longer need it reduces waste and frees up funds so you
can invest them elsewhere.

Find additional uses for
resources that you committed
to in discounted longer-term
plans.

Consider pre-purchased resources, existing licenses, and
other commitment-based discounted resources that are
unused. You can save money by using these resources. You
can use these resources for tests, additional environments, or
even addressing functional and nonfunctional requirements.

Likewise, finding opportunities to utilize committed plans for
resources that your workload is using will enable your
workload to optimize those resource costs via the
precommitment.

Take advantage of your
investment in your support
plan.

Using your support plan to handle production problems or
for proactive reviews will help you get your money's worth.
Fully engage with your Microsoft support model.

 Increase efficiency without redesigning, renegotiating, or sacrificing functional or
nonfunctional requirements.

Take advantage of opportunities to optimize the utility and costs of your existing
resources and operations. If you don't, you unnecessarily spend money without any
added ROI.

Approach Benefit

Optimize by committing and pre-
purchasing to take advantage of
discounts offered on resource types
that aren't expected to change over
time and for which costs and
utilization are predictable.

Also, work with your licensing team
to influence future purchase
agreement programs and renewals.

Microsoft offers reduced rates for predictable and long-
term commitment to specific resources and resource
categories. Resources cost less during the usage period
and can be amortized over the period.

By keeping your licensing team aware of the current and
predicted investment by resource, you can help them
right-size commitments when your organization signs the
agreement. In some cases, these projections and
commitments could influence your organization's price
sheet, which benefits your workload's cost and also other
teams that use the same technology.

Design for rate optimization

Approach Benefit

Find ways to reduce licensing costs
by evaluating alternatives that don't
require additional licensing.
Consider options like hybrid use and
pre-production subscription pricing.

You'll be able to reduce licensing costs for services,
operating systems, and tools by taking advantage of
options that give you usage rights to the same or
comparable technologies at a lower cost.

Switch to fixed-price billing instead
of consumption-based billing for a
resource when its utilization is high
and predictable and a comparable
SKU or billing option is available.

When utilization is high and predictable, the fixed-price
model usually costs less and often supports more features.
Using it could increase your ROI.

Use centralized resources that are
provided by your organization, and
share the cost with other teams.

Shared resources often have higher capacity to support
multiple workloads, and costs are distributed across
teams. Taking a dependency on shared resources can save
money, as long as the functionality of your workload isn't
compromised.

Showback and chargeback are other potential benefits.

Deploy to regions that cost less. If you can still meet functional and nonfunctional
requirements, you can save money by selecting a region
that has favorable pricing for your resources.

Co-locate usage with other
resources, workloads, and even
teams.

Prefer services that make it easier
to achieve higher density.

Consider the potential tradeoffs,
especially on security boundaries.

You'll be able to save costs by optimizing hardware
utilization.

As density increases, the amount of resources that you
need to run a workload decreases. This decrease reduces
cost per unit and the cost of management.

 Continuously right-size investment as your workload evolves with the ecosystem.

What was important yesterday might not be important today. As you learn through
evaluation of production workloads, expect changes in architecture, business
requirements, processes, and even team structure. Your software development lifecycle
(SDLC) practices might need to evolve. External factors might also change, like the cloud
platform, its resources, and your agreements.

Monitor and optimize over time

You should carefully assess the impact of all changes on cost. Monitor changes and the
ROI trend on a regular cadence, and evaluate whether you need to adjust functional and
nonfunctional requirements.

Approach Benefit

By using your cost tracking system,
continuously evaluate and optimize the
costs of resources, data, and paid
support. Are there underutilized
resources that can be retired,
replaced, rebuilt, or refactored?

You'll reduce costs by avoiding paying for resources
that aren't fully utilized. Understanding pricing metrics
can help you make decisions that are more aligned with
your cost model. It can also prevent unwarranted
billing. By resizing or removing underutilized resources,
or even changing SKUs, you can reduce costs.

You might also be able to save some costs by
evaluating the use of your support contract and right-
sizing it.

Continuously adjust architecture
design decisions, resources, code, and
workflows based on ROI data.

Regular reviews of metrics, performance data, billing
reports, and feature usage might lead to fine-tuning
that can reduce costs.

Treat different SDLC environments
differently, and deploy the right
number of environments.

Production environments should be
your main cost driver.

You can save money by understanding that not all
environments need to simulate production.
Nonproduction environments can have different
features, SKUs, instance counts, and even logging.

You also can save costs by creating pre-production
environments on-demand and removing them when
you no longer need them.

Next steps
Cost Optimization checklist

Design review checklist for Cost
Optimization
Article • 11/14/2023

This checklist presents a set of recommendations about cost optimization for your
workload to help you achieve a high return on investment (ROI) based on the business
value that your workload delivers. Cost optimization balances actual costs versus
perceived value, team efficiency, focus, and effort, while meeting the defined functional
and nonfunctional requirements of your workload.

Every workload has direct and indirect costs, and every workload is designed to deliver
value. If you don't incorporate the recommendations in this article and consider the
tradeoffs, your design might not make the best use of your time and money. Carefully
consider the points covered in the following checklist to instill confidence in your
design's success.

Cost optimization is a continuous process in which you optimize workload costs and
align your workload with the broader governance discipline of cost management.
What's important today might not be important tomorrow. Technology choices or
options and features that your platform offers today might be different. Learn from
production and nonproduction environments, be aware of platform changes, and apply
your findings to your workload and your workload's dependencies.

 Code Recommendation

☐ CO:01 Create a culture of financial responsibility. Regularly train personnel so technical
skills remain sharp. Foster creativity and spending accountability in the work
environment. Invest in tooling and implementing automation.

☐ CO:02 Create and maintain a cost model. A cost model should estimate the initial cost, run
rates, and ongoing costs. Negotiate a budget that covers a cost model and has a
buffer for unplanned spending.

☐ CO:03 Collect and review cost data. Data collection should capture daily costs. In cost
reports, include incurred costs (metered), prepaid costs (amortized), trends, and
forecasts. Stakeholders should regularly review spending against the budget and
cost model. Automate alerts to trigger notifications at key thresholds and detect
anomalies to indicate deviations from trend baselines.

☐ CO:04 Set spending guardrails. Guardrails should include release gates, governance
policies, resource limits, and access controls. Prioritize platform automation over

Checklist

 Code Recommendation

manual processes.

☐ CO:05 Get the best rates from providers. You should find and use the best rates for cloud
resources and licenses. Regularly review cost savings. Cost reviews should include
regional pricing, pricing tiers, pricing models (consumption or commitment-based),
license portability, corporate purchasing plans, and price sheets.

☐ CO:06 Align usage to billing increments. You should understand billing increments
(meters) and align resource usage to those increments. Modify the service to align
with billing increments, or modify resource usage to align with billing increments.
Consider using a proof-of-concept to validate billing knowledge and design choices
for major cost drivers and to reveal ways to align billing and resource usage.

☐ CO:07 Optimize component costs. Regularly remove or optimize legacy, unneeded, and
underutilized workload components, including application features, platform
features, and resources.

☐ CO:08 Optimize environment costs. Align spending to prioritize preproduction, production,
operations, and disaster recovery environments. For each environment, consider the
required availability, licensing, operating hours and conditions, and security.
Nonproduction environments should emulate the production environment.
Implement strategic tradeoffs into nonproduction environments.

☐ CO:09 Optimize flow costs. Align the cost of each flow with flow priority. When you
prioritize flows, consider the features, functionality, and nonfunctional requirements
of each flow. Optimizing flow spend often requires strategic compromises.

☐ CO:10 Optimize data costs. Data spending with data priority. Data optimization should
include improvements to data management (tiering and retention), volume,
replication, backups, file formats, and storage solutions.

☐ CO:11 Optimize code costs. Evaluate and modify code to meet functional and
nonfunctional requirements with fewer or cheaper resources.

☐ CO:12 Optimize scaling costs. Evaluate alternative scaling within your scale units. Consider
alternative scaling configurations, and align with the cost model. Considerations
should include utilization against the inherit limits of every instance, resource, and
scale unit boundary. Use strategies for controlling demand and supply.

☐ CO:13 Optimize personnel time. Align the time personnel spends on tasks with the priority
of the task. The goal is to reduce the time spent on tasks without degrading the
outcome. Optimization efforts should include minimizing noise, reducing build times,
high fidelity debugging, and production mocking.

☐ CO:14 Consolidate resources and responsibility. Look within the workload for ways to
consolidate resources and increase density. Outside the workload, use existing
centralized resources and services that enable you to consolidate workload
responsibilities.

We recommend that you review the Cost Optimization tradeoffs to explore other
concepts.

Next steps

Cost Optimization tradeoffs

Cost Optimization tradeoffs
Article • 11/14/2023

When you design a workload to maximize return on investment (ROI) under financial
constraints, you first need clearly defined functional and nonfunctional requirements. A
work and effort prioritization strategy is essential. The foundation is a team that has a
strong sense of financial responsibility. The team should have a strong understanding of
available technologies and their billing models.

After you understand the ROI of a workload, you can start improving it. To improve the
ROI, consider how decisions based on the Cost Optimization design principles and the
recommendations in the design review checklist for Cost Optimization might influence
the goals and optimizations of other Azure Well-Architected Framework pillars. For cost
optimization, it's important to avoid focusing on a cheaper solution. Choices that focus
only on minimizing spending can increase the risk of undermining your workload's
business goals and reputation. This article describes example tradeoffs that a workload
team might encounter when considering the target setting, design, and operations for
cost optimization.

The cost of a service disruption must be measured against the cost of preventing or
recovering from one. If the cost of disruptions exceeds the cost of reliability design, you
should invest more to prevent or mitigate disruptions. Conversely, the cost of the
reliability efforts might be more than the cost of a disruption, including factors like
compliance requirements and reputation. You should consider strategic divestment in
reliability design only in this scenario.

 Tradeoff: Reduced resiliency. A workload incorporates resiliency measures to
attempt to avoid and withstand specific types and quantities of malfunction.

To save money, the workload team might underprovision a component or
overconstrain its scaling, making the component more likely to fail during sudden
spikes in demand.

Consolidating workload resources (increasing density) for cost optimization makes
individual components more likely to fail during spikes in demand and during
maintenance operations like updates.

Cost Optimization tradeoffs with Reliability

Removing components that support resiliency design patterns, like a message bus,
and creating a direct dependency reduces self-preservation capabilities.

Saving money by reducing redundancy can limit a workload's ability to handle
concurrent malfunctions.

Using budget SKUs might limit the maximum service-level objective (SLO) that the
workload can reach.

Setting hard spending limits can prevent a workload from scaling to meet
legitimate demand.

Without reliability testing tools or tests, the reliability of a workload is unknown,
and it's less likely to meet reliability targets.

 Tradeoff: Limited recovery strategy. A workload that's reliable has a tested
incident response and recovery plan for disaster scenarios.

Reduced testing or drilling of a workload's disaster recovery plan might affect the
speed and effectiveness of recovery operations.

Creating or retaining fewer backups decreases possible recovery points and
increases the chance of losing data.

A less expensive support contract might increase workload recovery time due to
potential delays in technical assistance.

 Tradeoff: Increased complexity. A workload that uses straightforward
approaches and avoids unnecessary or overengineered complexity is generally
easier to manage in terms of reliability.

Using cost-optimization cloud patterns can add new components, like a content
delivery network (CDN), or shift duties to edge and client devices that a workload
must provide reliability targets for.

Event-based scaling can be more complicated to tune and validate than resource-
based scaling.

Reducing data volume and tiering data through data lifecycle actions, possibly in
conjunction with implementing aggregated data points before a lifecycle event,
introduces reliability factors to consider in the workload.

The cost of a compromise to confidentiality, integrity, and availability in a workload
must always be balanced against the cost of the effort to prevent that compromise. A
security incident can have a wide range of financial and legal impacts and harm a
company's reputation. Investing in security is a risk mitigation activity. The cost of
experiencing the risks must be balanced against the investment. As a rule, don't
compromise on security to gain cost optimizations that are below the point of
responsible and agreed upon risk mitigation. Optimizing security costs by rightsizing
solutions is an important optimization practice, but be aware of tradeoffs like the
following when doing so.

 Tradeoff: Reduced security controls. Security controls are established across
multiple layers, sometimes redundantly, to provide defense in depth.

One cost optimization tactic is to look for ways to remove components or processes
that accrue unit or operational costs. Be aware that removing security components like
the following examples for the sake of saving money impacts security. You need to
carefully perform a risk analysis on this impact.

Reducing or simplifying authentication and authorization techniques compromises
the verify explicitly principle of zero-trust architecture. Examples of these
simplifications include using a basic authentication scheme like preshared keys
rather than investing time to learn industry OAuth approaches, or using simplified
role-based access control assignments to reduce management overhead.

Removing encryption in transit or at rest to reduce costs on certificates and their
operational processes exposes data to potential integrity or confidentiality
breaches.

Removing or reducing security scanning or inspection tooling or security testing
because of the associated cost and time investment can directly impact the
confidentiality, integrity, or availability that the tooling and testing is intended to
protect.

Reducing the frequency of security patching because of the operational time
invested in cataloging and performing the patching affects a workload's ability to
address evolving threats.

Removing network controls like firewalls might lead to a failure to block malicious
inbound and outbound traffic.

Cost Optimization tradeoffs with Security

 Tradeoff: Increased workload surface area. The Security pillar prioritizes a
reduced and contained surface area to minimize attack vectors and the
management of security controls.

Cloud design patterns that optimize costs sometimes necessitate the introduction of
additional components. These additional components increase the surface area of the
workload. The components and the data within them must be secured, possibly in ways
that aren't already used in the system. These components and data are often subject to
compliance. Examples of patterns that can introduce components include:

Using the Static Content Hosting pattern to offload data to a new CDN
component.

Using the Valet Key pattern to offload processing and secure resource access to
client compute.

Using the Queue-Based Load Leveling pattern to smooth costs by introducing a
message bus.

 Tradeoff: Removed segmentation. The Security pillar prioritizes strong
segmentation to support the application of targeted security controls and to control
the blast radius.

Sharing resources, for example in multi-tenancy situations or co-locating multiple
applications on a shared application platform, is an approach for reducing costs by
increasing density and reducing the management surface. This increased density can
lead to security concerns like these:

Lateral movement between components that share resources is easier. A security
event that compromises the availability of the application platform host or an
individual application also has a larger blast radius.

Co-located resources might share a workload identity and have less meaningful
audit trails in access logs.

Network security controls must be broad enough to cover all co-located resources.
This configuration potentially violates the principle of least privilege for some
resources.

Co-locating disparate applications or data on a shared host can lead to extending
compliance requirements and security controls to applications or data that would

otherwise be out of scope. This broadening of scope necessitates additional
security scrutiny and auditing effort on the co-located components.

 Tradeoff: Compromised software development lifecycle (SDLC) capacities. A
workload's SDLC process provides rigor, consistency, specificity, and prioritization to
change management in a workload.

Reducing testing efforts to save time and the cost associated with test personnel,
resources, and tooling can result in more bugs in production.

Delaying paying back technical debt to focus personnel efforts on new features
can lead to slower development cycles and overall reduced agility.

Deprioritizing documentation to focus personnel efforts on product development
can lead to longer onboarding time for new employees, impact the effectiveness of
incident response, and compromise compliance requirements.

A lack of investment in training leads to stagnated skills, reducing the team's ability
to adopt newer technologies and practices.

Removing automation tooling to save money can result in personnel spending
more time on the tasks that are no longer automated. It also increases the risk of
errors and inconsistencies.

Reducing planning efforts, like scoping and activity prioritization, to cut expenses
can increase the likelihood of rework due to vague specifications and poor
implementation.

Avoiding or reducing continuous improvement activities, like retrospectives and
after-incident reports, to keep the workload team focused on delivery can create
missed opportunities to optimize routine, unplanned, and emergency processes.

 Tradeoff: Reduced observability. Observability is necessary to help ensure that
a workload has meaningful alerting and successful incident response.

Decreasing log and metric volume to save on storage and transfer costs reduces
system observability and can lead to:

Cost Optimization tradeoffs with Operational
Excellence

Fewer data points for creating alerts related to reliability, security, and
performance.
Coverage gaps in incident response activities.
Limited observability into interactions or boundaries related to security or
compliance.

Cost optimization design patterns can add components to a workload, increasing
its complexity. The workload monitoring strategy must include those new
components. For example, some patterns might introduce flows that span multiple
components or shift processes from the server to the client. These changes can
increase the complexity of correlating and tracking information.

Reduced investment in observability tooling and the maintenance of effective
dashboards can decrease the ability to learn from production, validate design
choices, and inform product design. This reduction can also hamper incident
response activities and make it harder to meet the recovery time objective and
SLO.

 Tradeoff: Deferred maintenance. Workload teams are expected to keep code,
tooling, software packages, and operating systems patched and up to date in a
timely and orderly way.

Letting maintenance contracts with tooling vendors expire can result in missed
optimization features, bug resolutions, and security updates.

Increasing the time between system patches to save time can lead to missed bug
fixes or a lack of protection against evolving security threats.

The Cost Optimization and Performance Efficiency pillars both prioritize maximizing a
workload's value. Performance Efficiency emphasizes meeting performance targets
without spending more than necessary. Cost Optimization emphasizes maximizing the
value produced by a workload's resources without exceeding performance targets. As a
result, Cost Optimization often improves Performance Efficiency. However, there are
Performance Efficiency tradeoffs associated with Cost Optimization. These tradeoffs can
make it harder to reach performance targets and hinder ongoing performance
optimization.

Cost Optimization tradeoffs with Performance
Efficiency

 Tradeoff: Underprovisioned or underscaled resources. A performance-
efficient workload has enough resources to serve demand but doesn't have
excessive unused overhead, even when usage patterns fluctuate.

Reducing costs by downsizing resources can deprive applications of resources. The
application might not be able to handle significant usage pattern fluctuations.

Limiting or delaying scaling to cap or reduce costs might result in insufficient
supply to meet demand.

Autoscale settings that scale down aggressively to reduce costs might leave a
service unprepared for sudden spikes in demand or cause frequent scaling
fluctuations (flapping).

 Tradeoff: Lack of optimization over time. Evaluating the effects of changes in
functionality, changes in usage patterns, new technologies, and different
approaches on the workload is one way to try to increase efficiency.

Limiting the focus on developing expertise in performance optimization in order to
prioritize delivery can cause missed opportunities for improving resource usage
efficiency.

Removing access performance testing or monitoring tools increases the risk of
undetected performance issues. It also limits the ability for a workload team to
execute on measure/improve cycles.

Neglecting areas prone to performance degradation, like data stores, can gradually
deteriorate query performance and elevate overall system usage.

Explore the tradeoffs for the other pillars:

Reliability tradeoffs
Security tradeoffs
Operational Excellence tradeoffs
Performance Efficiency tradeoffs

Related links

Cloud design patterns that support cost
optimization
Article • 11/14/2023

When you design workload architectures, you should use industry patterns that address
common challenges. Patterns can help you make intentional tradeoffs within workloads
and optimize for your desired outcome. They can also help mitigate risks that originate
from specific problems, which can affect reliability, security, performance, and
operations. If not mitigated, risks will eventually increase costs. These patterns are
backed by real-world experience, are designed for cloud scale and operating models,
and are inherently vendor agnostic. Using well-known patterns as a way to standardize
your workload design is a component of operational excellence.

Many design patterns directly support one or more architecture pillars. Design patterns
that support the Cost Optimization pillar align with implementing favorable billing
models, reducing overprovisioning, changing scaling dimensions, and maximizing value
during migrations.

The following table summarizes cloud design patterns that support the goals of cost
optimization.

Pattern Summary

Claim Check Separates data from the messaging flow, providing a way to separately
retrieve the data related to a message. Messaging systems often impose
limits on message size, and increased size limits is often a premium
feature. Reducing the size of message bodies might enable you to use a
cheaper messaging solution.

Competing
Consumers

Applies distributed and concurrent processing to efficiently handle items
in a queue. This pattern can help you optimize costs by enabling scaling
that's based on queue depth, down to zero when the queue is empty. It
can also optimize costs by enabling you to limit the maximum number of
concurrent consumer instances.

Compute Resource
Consolidation

Optimizes and consolidates compute resources by increasing density.
This pattern combines multiple applications or components of a
workload on a shared infrastructure. Doing so maximizes the utilization
of computing resources by avoiding unused provisioned capacity via
aggregation of components or even whole workloads on a pooled
infrastructure. Container orchestrators are a common example.

Design patterns for cost optimization

https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation

Pattern Summary

Gateway Offloading Offloads request processing to a gateway device before and after
forwarding the request to a backend node. Adding an offloading
gateway into the request process enables you to redirect costs from
resources that would be spent per-node into the gateway
implementation. Costs in the centralized processing model are frequently
lower than those of the distributed model.

Messaging Bridge Provides an intermediary to enable communication between messaging
systems that are otherwise incompatible because of protocol or format.
This intermediary can increase the longevity of your existing system
while still allowing interoperability with systems that use a different
messaging or eventing technology.

Publisher/Subscriber Decouples components of an architecture by replacing direct client-to-
service or client-to-services communication with communication by
using an intermediate message broker or event bus. This design can
enable an event-driven approach in your architecture, which couples well
with consumption-based billing to avoid overprovisioning.

Queue-Based Load
Leveling

Controls the level of incoming requests or tasks by buffering them in a
queue and letting the queue processor handle them at a controlled pace.
Because load processing is decoupled from the request or task intake,
you can use this approach to reduce the need to overprovision resources
to handle peak load.

Sharding Directs load to a specific logical destination to handle the specific
request, enabling colocation for optimization. A system that implements
shards often benefits from using multiple instances of less expensive
compute or storage resources rather than a single more expensive
resource. In many cases, this configuration can save you money.

Static Content
Hosting

Optimizes the delivery of static content to workload clients by using a
hosting platform that's designed for that purpose. Dynamic application
hosts are usually more expensive than static hosts because dynamic
hosts can run your coded business logic. Using an application platform
to deliver static content isn't cost-effective.

Strangler Fig Provides an approach for systematically replacing the components of a
running system with new components, often during a migration or
modernization of the system. The goal of this approach is to maximize
the use of existing investments in the currently running system while
modernizing incrementally. It enables you to perform high-ROI
replacements before low-ROI replacements.

Throttling Imposes limits on the rate or throughput of incoming requests to a
resource or component. The limits can inform cost modeling and can
even be directly tied to the business model of your application. They also

https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://learn.microsoft.com/en-us/azure/architecture/patterns/messaging-bridge
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding
https://learn.microsoft.com/en-us/azure/architecture/patterns/static-content-hosting
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig
https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling

Pattern Summary

put clear upper bounds on utilization, which can be factored into
resource sizing.

Valet Key Grants security-restricted access to a resource without using an
intermediary resource to proxy the access. This design offloads
processing as an exclusive relationship between the client and the
resource without adding a component to directly handle all client
requests. The benefit is most dramatic when client requests are frequent
or large enough to require significant proxy resources.

Review the cloud design patterns that support the other Azure Well-Architected
Framework pillars:

Cloud design patterns that support reliability
Cloud design patterns that support security
Cloud design patterns that support operational excellence
Cloud design patterns that support performance efficiency

Next steps

https://learn.microsoft.com/en-us/azure/architecture/patterns/valet-key

Recommendations for creating a culture
of financial responsibility
Article • 11/14/2023

Applies to this Azure Well-Architected-Framework Cost Optimization checklist
recommendation:

CO:01 Create a culture of financial responsibility. Regularly train personnel so technical
skills remain sharp. Foster creativity and spending accountability in the work
environment. Invest in tooling and implementing automation.

This guide describes the recommendations for creating a culture of financial
responsibility in an organization. Creating a culture of financial responsibility is where
the workload team is equipped and motivated to make prudent financial decisions. It
drives the team to proactively seek out and implement strategies that enhance
efficiency and reduce unnecessary expenses. Without this culture, there's often a
disconnect between resource utilization and project goals. It can lead to budget
overruns and diminished return on investment for the workload.

Definitions

Term Definition

Financial
responsibility

The sense of shared ownership of cost outcomes.

Microsoft learning
partner

An organization that meets program requirements to teach training content
developed by Microsoft and that employs Microsoft Certified Trainers to
deliver content.

Creating a culture of financial responsibility involves cost transparency, skill
development, and clear communication. Be open about budgets and costs with the
team. Hold regular workshops to teach cost-saving strategies. Invest in training for skills
like budgeting and cloud cost management. Finally, set clear financial goals and
encourage open communication for sharing ideas on cost optimization.

Key design strategies

Make budgets and costs transparent

Making budgets and costs transparent requires openly communicating financial
information about a workload or project with stakeholders. It helps cultivate an
environment of trust and accountability, where everyone understands the financial
implications of their actions and works collaboratively towards cost optimization. To
make costs transparent, consider these strategies:

Involve everyone: Ensure that everyone involved in the project or workload has
access to budget information. Include team members, managers, and decision-
makers. Sharing the budget information makes everyone feel accountable for their
actions and decisions by fostering a sense of ownership.
Share budget details: Consider sharing the allocated budget, cost breakdowns, and
financial goals for the workload or project with stakeholders.
Share workload costs: Strive for maximum transparency in the cost of the workload.
Consider providing detailed information about the expenses for various aspects of
the project, such as infrastructure costs, software licenses, and operational
expenses. The more transparent the cost information is, the better it is for
facilitating cost optimization efforts.

A benefit of sharing cost details is early detection of overspending. Transparent budgets
provide a clear threshold for spending. If a team is approaching or exceeding a budget,
it can take corrective actions early to avoid overspending.

Encouraging a culture of continuous improvement is about fostering an environment
where the workload team is empowered to explore and propose cost-saving measures.
It requires open dialog, training, and team-building focused on cost optimization. With
this mindset, the workload team is more likely to be proactive in identifying and
implementing cost optimization strategies. To encourage continuous improvement,
consider these suggestions:

Cost workshops: Conduct workshops or training sessions to help leaders enhance
their understanding of financial responsibility and its importance. These workshops
can cover topics such as budgeting, cost management, and financial decision-
making.

Evaluate the current financial practices and culture in the organization. Identify
areas that require improvement to determine the specific interventions that
address those areas. Collaborate with subject matter experts or external
consultants, if necessary, to design and develop engaging and informative
workshop content.

Encourage continuous improvement

Team-building activities: Organize team-building activities that focus on financial
responsibility. These activities can include group exercises, case studies, or
simulations that encourage collaboration and problem-solving in financial matters.

Foster a culture of knowledge sharing. Encourage the workload team to share its
expertise and best practices with colleagues through internal forums,
presentations, or mentoring programs.

Open dialog: Create an environment where personnel feel comfortable speaking up
about cost optimization ideas. Encourage open discussions, provide a platform for
feedback, and welcome alternative suggestions. This environment helps create a
culture of continuous improvement and innovation.

Empowerment: Give the workload team the authority and responsibility to evaluate
and propose the adoption of new technologies. The workload team should assess
the suitability of new tools and technologies for their specific workload. They
should consider factors such as compatibility, scalability, ease of integration, and
potential cost savings.

Developing skills in-house means investing in training the workload team. The goal is
for the team to gain the necessary expertise to optimize costs within a workload.

This effort involves providing training programs, resources, and support to enhance the
skills and capabilities of employees in the organization. It allows you to use the existing
talent pool and empower employees to take ownership of cost optimization initiatives.
Consider following these strategies:

Assess skills: Evaluate the existing skills and knowledge of the workload team to
identify areas that need improvement in terms of workload cost optimization.

Define training objectives: Determine the specific skills and expertise that are
required to optimize costs within the workload. Include topics such as cloud cost
management, resource optimization techniques, budgeting, and data analysis.

Provide training and resources: Offer training programs, workshops, and resources
to enhance skills in the identified areas. Include both internal training sessions and
external training programs provided by vendors or industry experts.

Gather or create learning resources such as documentation, tutorials, videos, and
case studies to support the training. These resources should provide step-by-step
guidance on optimizing costs in the workload.

Develop skills in-house

Give hands-on experience: Provide opportunities for employees to apply their
newly acquired skills in real-world scenarios. Assign them to cost optimization
projects, or give them responsibilities that allow them to refine their skills.

Create a workspace or sandbox where employees can explore, practice, and learn
new concepts related to cost optimization. Allocate a budget for experimentation
to encourage employees to think about the financial effects of their actions.

Set aside time (a day or a week) for people to explore new technologies, build new
tools, and express their creative thinking. Employees are closest to the challenges
they face daily. They often find ways to optimize their time when they're given
space to think about it.

Encourage continuous learning: Encourage employees to attend conferences,
webinars, and industry events, and to participate in online communities and
forums. Arrange opportunities for employees to shadow and learn from
experienced individuals who have a deep understanding of cost optimization
practices. This practical experience can provide valuable insights and guidance.

Communicating financial expectations to a workload team involves conveying financial
goals and establishing open channels for exchanging cost-saving ideas and knowledge.
This process includes reshaping organizational values to emphasize financial
responsibility, clear goals, and cross-functional communication. Consider these
recommendations:

Reshape values: Review and update values and mission statements to include
financial responsibility. Ensure that these values are communicated and reinforced
throughout the organization, and that they're aligned with the overall business
objectives.

Recognize and reward individuals and teams who demonstrate financial
responsibility and contribute to cost optimization efforts. Use performance
evaluations, incentives, or other recognition programs.

Establish expectations: Set clear expectations and goals for all stakeholders who are
aligned with the mission. Encourage accountability and responsibility for all actions
taken. Establish and promote success metrics that are aligned with individual
teams' goals.

Establish communication channels: Use email groups, chat platforms, or dedicated
collaboration tools as communication channels. Encourage team members to share

Communicate financial expectations

their ideas and insights about cost optimization. Promote diverse perspectives.
Make sure everyone is aware of the channels and how to access them.

Extend communication channels: Make the communication channels available to
the broader organization or department to encourage cross-functional
collaboration and knowledge sharing. Identify power users or people in the
organization who can act as champions for cost optimization. These individuals can
help drive the adoption of cost-saving practices and help others understand the
importance of cost optimization.

Use internal knowledge-sharing sessions, conferences, or industry forums.
Employees can learn from others and contribute to the collective knowledge in the
organization.

Making budgets and costs transparent: For your Azure related budgets and costs, you
can create and management budgets and provide read access to make these details
available to the broader team. You can also create daily reports and export cost data to
make cost data accessible to stakeholders.

Encouraging continuous improvement: Azure regularly updates its services and
introduces new features to improve efficiency and cost optimization. You can benefit
from the latest advancements in cloud technology and take advantage of automation,
advanced deployment strategies, and infrastructure as code (IaaS) practices.

Azure offers Visual Studio subscriptions with credits to try new features and learn new
skills. Azure also provides role-based access control (RBAC), which allows read access to
billing data through Microsoft Entra Privileged Identity Management.

Azure has a partner ecosystem that includes training partners who can provide
expertise and guidance. Organizational leaders can talk to Microsoft and engage Cloud
Solution Architects to get help and guidance in creating a culture of financial
responsibility.

Developing skills in-house: Azure provides a wide range of learning resources. These
resources include documentation, video series, training modules, tutorials, and learning
paths. These resources help personnel enhance their skills and knowledge. Azure also
offers certifications that validate expertise in Azure services and technologies.

Microsoft offers the Cloud Skills Challenge, which allows individuals to test and improve
their Azure skills. It's a fun, free, and interactive skilling program that gives you access to
Microsoft skilling resources for your specific solution area. Gain access to Microsoft

Azure facilitation

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-export-acm-data?tabs=azure-portal
https://visualstudio.microsoft.com/vs/pricing-details/
https://azure.microsoft.com/partners/
https://developer.microsoft.com/offers/30-days-to-learn-it

learning paths, virtual training days, and a virtual leaderboard to compete with peers in
the industry.

Azure publishes blogs , announcements , and marketing materials that provide
information on cost optimization and cost-optimized resources. They often contain
information about upcoming or preview technology that you can experiment with.

Find an Azure partner

Refer to the complete set of recommendations.

Related links

Cost Optimization checklist

Cost Optimization checklist

https://techcommunity.microsoft.com/t5/custom/page/page-id/Blogs
https://techcommunity.microsoft.com/
https://azure.microsoft.com/partners/

Recommendations for creating a cost
model
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:02 Create and maintain a cost model. A cost model should estimate the initial cost, run
rates, and ongoing costs. Negotiate a budget that covers a cost model and has a
buffer for unplanned spending.

This guide describes the best practices for creating a cost model for your workload. A
cost model is an estimate that predicts the combined costs of services and their
associated expenses. It's foundational for expense forecasting and budget planning. A
cost model provides scenario analysis, which allows you to assess the cost implications
of potential workload changes. Without a cost model, you risk unforeseen expenses,
budget overruns, and missed opportunities for cost optimization.

Definitions

Term Definition

Chargeback An accounting model in which you charge departments for their workload usage
and receive payments from them.

Cost model The estimated cost of a workload. It captures all the dimensions of billing, including
operations.

Cost meter A tracking mechanism that you use to measure the usage of resources over time. It
tracks usage, such as compute hours, data transfer, and input-output operations. It
emits the records that are used to calculate the bill for each resource based on its
associated meter.

Showback An accounting model in which you show departments the cost of their workload
usage, and you don't receive payment from them.

A cost model provides a projection of the workload cost based on existing data. The
purpose of a cost model isn't to gain visibility into expenses or control them. The goal is
to forecast the predicted expenses, considering all available known factors. From that
prediction, you determine the best solution for your workload. The best solution aligns

Key design strategies

spending to workload priorities. A cost model enables you to establish a workload
budget, ensure alignment with this budget, and allocate funds for cloud resources.

Conducting a workload assessment involves systematically evaluating and analyzing the
workload. A workload assessment helps identify workload characteristics that can inform
cost optimization strategies, such as choosing the most suitable discount options based
on usage patterns. You need to assess the workload characteristics to determine which
available discounts are most suitable for your workload. For example, if your workload
has predictable usage patterns, you might consider using a commitment-based model
(reservations) to optimize costs. When you assess a workload, consider these
recommendations:

Analyze key components: Analyze the key components of your workload, including
essential resources such as servers, databases, networks, and licenses. This
identification allows for precise cost allocation within the model.

Understand characteristics: Understand the workload's stability, predictability, and
sensitivity to external factors like downtime and degraded performance. Such
insights help anticipate fluctuating costs based on workload behavior.

Understand requirements: Assess the specific requirements of your workload like
performance, scalability, observability, backup, and disaster recovery. Recognizing
these requirements ensures the model accounts for all potential expenses.

Understand supporting services. Services that support observability, security, and
governance incur costs and play a pivotal role in the operation of your workload.
Observability solutions, such as monitoring tools and logging mechanisms, offer
insights into workload usage and performance. Robust security measures, like
encryption or access controls and regular security audits, safeguard your workload
and ensure regulation compliance. Governance practices and policies ensure
compliance and efficient resource utilization. Incorporate the expenses for these
supporting services into your budget.

If you include these often-forgotten factors in your budgeting early on, your cost
modeling will be thorough, effective, and prevent future unexpected expenses.

Estimating workload costs involves assessing all potential expenditures and savings
linked to the workload. It encompasses direct vendor costs, operational maintenance

Conduct workload assessment

Estimate workload costs

expenses, billing model choices, and potential savings from customer or enterprise
agreements. By evaluating these factors, you can create a robust cost model, enabling
precise forecasting and budgeting. To estimate workload costs, consider the following
strategies:

Select the best billing model. A billing model determines how the cloud service
provider charges for their services. Billing models include consumption-based (pay-as-
you-go), commitment-based plans (reservations), and spot pricing. Identify the most
suitable and cost-effective billing model by understanding the specific requirements and
usage patterns of each model. Each billing model has advantages and disadvantages of
cost structure and flexibility. For example, pay-as-you-go might provide flexibility but
might be more expensive over time compared to commitment-base plans instances.

Use customer agreements. Cloud service providers offer customer agreements or
enterprise agreements for customers. Some agreements offer discounts through
available programs or allow you to use your existing licenses to save money. Implement
these cost optimization strategies to maximize the value of your resources and reduce
your overall expenses.

Estimate license costs. Calculate estimates for license costs to create an accurate cost
model. To find the best deal, contact the software provider or the software reseller. If
you're an existing customer, use existing licensing benefits and discounts.

Estimate service costs. Cloud service providers provide many services to support your
workload. Choose services that help you meet your short-term and long-term cost
objectives. For example, you might want to move an on-premises workload to the cloud
with minimal changes to your workload. Choose a cloud service that supports your
workload goals and provides the greatest return on your investment. Use the cloud
platform's cost calculator to estimate your workload's resource costs. These tools help
you understand the different cost meters in a resource and the billing model cost
implications.

Consider the cost advantages and disadvantages of each service. Service-level objectives
(SLOs) and platform features have cost implications. For example, downtime might cost
your organization a considerable amount of money. If you invest more money into
reaching higher SLOs, you can generate revenue by avoiding downtime and increasing
customer satisfaction. Use built-in features as a cost-efficient alternative to building
custom features that you need to develop and maintain.

Estimate resiliency costs. To estimate resiliency costs, consider factors such as
infrastructure, maintenance, data replication, data storage, disaster recovery, and
performance. Consider the specific requirements and goals of your application or
system. It could include the required level of resiliency, the desired SLOs, and the

availability goals for each dependency on the critical path. The costs vary based on the
cloud services and technologies that you choose.

Estimate operational costs. To estimate the cost of workload maintenance, consider the
ongoing operational expenses for monitoring, testing, and maintenance of the
infrastructure. These costs include monitoring the performance and health of the
infrastructure. It should include monitoring tools and services to help track system
metrics, detect issues, and ensure availability.

You should estimate the cost of regular testing activities such as load testing, security
testing, and performance testing. These tests are essential for maintaining the integrity
of your workload. Include the resources and tools that are required for testing the
system's resilience, scalability, and security. You also need to include Regular
maintenance tasks, such as applying software patches, updates, and security fixes, are
necessary to keep the system up to date. Routine tasks like data backup, system
optimization, and configuration management contribute to ongoing maintenance costs.

The cost model is an estimate of all costs associated with the workload. These costs
include infrastructure, software licenses, personnel, maintenance, and support costs.

Cost drivers are specific factors or variables that influence the overall cost. It includes
any factors that have a direct impact on the cost of resources, services, or operations
within the workload. These drivers can include variables such as usage volume, the
number of customers served, storage capacity.

Assign quantitative values to the identified cost drivers, such as estimating usage
volumes or determining the number of customers or resources. Quantify the effect of
each cost driver by using methods such as estimating usage volumes or determining the
number of customers or resources. Based on the cost categories and drivers, establish
mathematical models or formulas that relate the cost drivers to the associated costs.
These models can include simple linear relationships or complex calculations, depending
on the cost category.

Associating costs with business metrics means linking workload expenses to specific
business indicators, like cost per customer served or cost per transaction processed. This

Develop the cost model

Align estimates to cost drivers

Associate costs with business metrics

practice provides a clearer understanding of how the workload consumes resources. It
allows you to anticipate costs related to workload fluctuations and ensures efficient
resource utilization based on demand. For example, if you expect the number of
customers to grow, you can estimate how much it costs to support those customers.

You should emphasize clear visibility in the workload cost models. While it can make the
model more intricate, it also allows for adaptability. Such a flexible cost model aids in
scenario analysis, helping to predict expenses tied to workload or business shifts. To
estimate the cost associated with each customer, divide the total workload cost by the
number of customers. For a precise cost per customer, account for specific resources
and services they utilize, like cloud services or software licenses.

Document the cost categories, drivers, and mathematical relationships that are used to
calculate the costs. Create comprehensive and easily understood documentation for
stakeholders. Ensure that the cost model is accessible to all relevant stakeholders.
Publish the cost model in a format or on a platform that allows for seamless data
exchange and enables efficient collaboration between stakeholders.

The cost model provides a foundation for negotiating your workload budget. The cost
model is an estimate. The budget is a reality. Sometimes you have to negotiate to align
the two. It's important that everyone understands how the workload supports business
objectives. Present the cost model in alignment with business objectives to help clarify
the value of the workload.

Share the cost model: When you share the cost model with stakeholders, make sure
the estimates are clear. Stakeholders should be able to see the cost distribution,
cost variables, and optimization efforts.

Modify the cost model to fit the budget: Stakeholders might not agree to the
proposed budget and they might offer a budget that's less than the cost model.
It's important that stakeholders know how the budget affects the workload. Create
a second cost model that fits the budget and includes a buffer. Explain any
functionality loss with the reduced budget.

The resulting budget should be realistic, but include a buffer for predicted usage
changes over the budget period. The cost model helps predict these changes. A
budget should also include a small and reasonable buffer for unplanned overages
that result from a mistake or an unplanned business change.

Publish the cost model

Set a budget

Set budget caps and quotas: Define budget caps and quotas to control costs and
limit spending. This practice ensures that you don't exceed the allocated budget
for your workload. By setting budget caps and quotas, you can monitor and
manage your spending effectively.

Set budget alerts: Implement alerts for cost management. Set up alerts to notify
you when spending reaches certain thresholds. This practice allows you to take
immediate action and make necessary adjustments to stay within the budget.
Monitor usage and set alerts to help identify trends, peak usage times, and
opportunities for cost optimization.

A cost model isn't just an analytical tool. It's a decision-making aid. Use the cost model
for budgeting, scenario analysis, and resource optimization. To maximize the use of the
cost model, consider these strategies:

Use the cost model for budgeting: Use the cost model to project future expenses,
allocate funds effectively, and avoid financial pitfalls. Regularly compare actual
expenses against the budget and make adjustments if there are deviations.

Use cost model for scenario analysis: Using the cost model for scenario analysis
involves considering different scenarios and the associated costs with each one.
Scenario analysis can help stakeholders understand the financial implications of
business model changes, such as modifications to pricing, product offerings, or
revenue streams. Scenario analysis also enables you to anticipate how changes in
customer acquisition, retention, or churn rates might affect costs. You can forecast
increased expenses and plan for scaling.

Use cost model for resource optimization: Use the cost model to help identify areas
where cloud resources are underutilized and make adjustments for significant cost
savings. The cost model can also forecast the financial implications of scaling up
resources in response to increased customer traffic or processing needs. It also
helps compare the costs that are associated with cloud providers’ billing models,
which allows you to choose the most economical option.

It's important to regularly update the cost model to reflect the latest data, business
conditions, and any changes in the external environment. You should engage
stakeholders, including product owners and the technical team, in discussions around
the cost model to ensure its relevance and alignment with different teams' needs. Run

Use the cost model

Maintain the cost model

simulations and review the findings to inform decision-making. Educate all team
members on how to use the cost model to foster a culture of data-driven decision-
making. Consider the following recommendations:

Track resource usage. Monitor the usage of resources in your workload. Tracking
resource usage is critical for adjusting cost models and identifying opportunities for cost
optimization. Conduct utilization audits to identify underutilized resources and adjust
cost estimates accordingly.

Generate and review forecasts. Utilize usage data to generate forecasts and project the
cost of the workload. Update forecasts regularly and view them often. Investigate any
forecasts that deviate significantly from the current cost model. When you find an issue,
update the cost model accordingly. The definition of a significant deviation from the
cost model is different for each workload. The deviation might be due to changes in
workload usage patterns, resource requirements, or pricing changes. By using a forecast,
you can foresee exceeding your budget and make changes to the budget or workload
design.

Update the cost model. Review the cost model periodically to ensure that the workload
receives the budget it needs. Use the metrics from the workload in production to inform
budget reviews. The potential effect of services or technology changes can create the
need for review. As services and technologies evolve, you might need to make changes
to the workload design to optimize costs or take advantage of new features. Regular
review ensures that the cost model remains aligned with the changing landscape.
Review the cost model before and after workload design changes.

Update the cost model whenever you change services. Use the cloud platform's
calculator to estimate the cost of the cloud resources that your workload needs. For new
workloads, some of the cost variables, such as data transfer and storage amount, can be
difficult to estimate. A business target can help you generate estimates. For example, to
create a customer-based estimation, divide the daily revenue target ($100,000) by the
average purchase per visitor ($100) to get the estimated number of daily visitors that
you need to support (1,000).

Estimating workload costs and developing a cost model: The Azure pricing overview
provides pricing information for all Azure services. It shows a comprehensive view of the
costs that are associated with different Azure services.

The Azure pricing calculator is a tool that allows you to estimate the hourly or
monthly costs of your workload. Input the services that you plan to use to generate an

Azure facilitation

https://azure.microsoft.com/pricing/#product-pricing
https://azure.microsoft.com/pricing/calculator/

estimate of the associated costs. This estimate helps you plan and budget for your
Azure usage.

The total cost of ownership (TCO) calculator helps you estimate the cost savings of
migrating your workload to Azure. It takes into account factors such as infrastructure,
management, and labor costs to provide an estimate of the total cost of ownership. This
estimate helps you make informed decisions about the financial aspects of your Azure
migration.

Azure Hybrid Benefit is a program that cloud service providers, like Azure, offer. It
allows customers to use their own licenses for certain software products on the cloud.
Use your own license to take advantage of discounted pricing for using that software on
the cloud platform. Sometimes Azure Hybrid Benefit is part of the customer agreement
between the cloud service provider and the customer. This agreement outlines the
terms and conditions for utilizing the benefit and the eligible software products that are
covered under it.

When you extend your existing investments in software licenses to the cloud, you save
on costs. Instead of paying the full price for using the software on the cloud, you benefit
from the discounted pricing that Azure Hybrid Benefit offers.

Setting a budget: Azure provides tools that allow you to create and manage budgets.
Budgets help you proactively inform others about their spending, manage costs, and
monitor spending over time. You can set budget thresholds, receive alerts, and track
expenses to ensure cost control and optimization.

Maintaining a cost model: Azure automatically provides cost forecasts, which enable
you to plan and budget for your Azure usage. These forecasts help you understand the
projected costs based on your current usage patterns and allow you to make proactive
decisions to optimize costs.

Azure allows you to use tag inheritance to group and allocate costs. Tags are metadata
that you can assign to Azure resources. With tag inheritance, you can track and manage
costs for different teams or projects within your organization to help with cost allocation
and analysis.

Measure unit costs
View and download Azure usage and charges

Related links

Cost Optimization checklist

https://azure.microsoft.com/pricing/tco/calculator/
https://azure.microsoft.com/pricing/hybrid-benefit/
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis#understand-your-forecast
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/enable-tag-inheritance
https://learn.microsoft.com/en-us/azure/cost-management-billing/finops/capabilities-unit-costs
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/download-azure-daily-usage

Refer to the complete set of recommendations.

Cost Optimization checklist

Recommendations for collecting and
reviewing cost data
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:03 Collect and review cost data. Data collection should capture daily costs. In cost
reports, include incurred costs (metered), prepaid costs (amortized), trends, and
forecasts. Stakeholders should regularly review spending against the budget and
cost model. Automate alerts to trigger notifications at key thresholds and detect
anomalies to indicate deviations from trend baselines.

This guide describes the recommendations for collecting and reviewing cost data for
your workload. Gather cost data to paint a holistic picture of your workload and ensure
spending is optimized. Data collection includes all indicators of cost optimization, like
billing data, resource utilization, and usage patterns.

Collected data allows you to understand the cost of architecture decisions and business
drivers like costs per user or unit. This data gives you a clearer understanding of where
money goes and how to optimize spending. Failure to collect and review cost data can
lead to budget overruns, no baseline for spending, and a lack of understanding of the
financial health of your cloud workloads.

Definitions

Term Definition

Billing
boundary

The scope of what a bill includes.

Chargeback An accounting model in which you charge departments for their workload
usage and receive payments from them.

Resource
utilization

The amount of resource capacity a workload uses.

Showback An accounting model in which you show departments the cost of their
workload usage, and you don't receive payment from them.

Key design strategies

Data collection is essential for identifying cost-saving opportunities, accounting
(showback and chargeback), and for efficient resource usage. You must prioritize the
collection and review of cost data from all relevant sources. You should centralize the
collected data for streamlined analysis and regular review, assign resource owners, and
automate alerts where possible.

Effective cost management of cloud workloads requires a comprehensive grasp of
associated expenses, from computing to network usage. Data collected provides a
granular view of where and how resources are being consumed. It allows you to identify
inefficiencies, make informed decisions about resource allocation, and ultimately
optimize costs to ensure you're getting the best value for your investment.

Enable data collection. Data collection should include all sources of workload cost, such
as compute, storage, network usage, and any other services or features the workload
uses. The data should include invoiced and metered data. Invoiced data is real. It reflects
actual billed expenses. Metered data is a predictive form of data based on the billing
plans for services. While still valuable, daily slices of metered data are considered good
estimates rather than precise figures. Recognizing the distinctions between invoiced and
metered data in these components can provide more accuracy in financial planning and
analysis.

Use all available collection methods. To collect cost data, use all available tools and
methods at your disposal like service provider's cost monitoring and utilities to monitor
workload expenses. While these tools typically offer detailed insights into cost
breakdowns, usage trends, and optimization suggestions, they might not capture
everything. Understand their default capabilities, like data dictionaries and taxonomies.

Design custom views if they're required for your specific workload. Beyond native tools,
if your service provider offers APIs, tap into them to programmatically retrieve cost data.
APIs facilitate automated cost reporting and seamlessly integrate with your existing
management systems. Remember, the goal is to gather cost details from every possible
source. Whether that means pulling data via an API, manually entering costs, or syncing
with your financial systems, it's vital to ensure a centralized and comprehensive cost
overview.

Centralize cost data. Centralized cost data allows for easier management and analysis of
that data. It ensures you have a unified view, through a common data schema, of all
workload costs and enables better cost optimization strategies. You need to combine
usage data, and the data should flow into a central analytical sink. You can use a cost
management tool provided by your cloud provider or integrate the data with third-party

Collect cost data

cost management solutions. The goal is to have a low-cost solution that's easily
accessible by authorized stakeholders and provides robust data analysis capabilities.

 Tradeoff: Retaining cost data for longer periods enables historical analysis and
trend identification. However, storing data can be costly. To minimize cost, store
older data as aggregated data points without the granularity of newer data. Also,
determine the best retention period based on your analysis needs.

Grouping data allows you to gain better insights to manage costs effectively. You can
break down costs based on different dimensions, such as departments or projects,
allowing you to accurately allocate costs to the respective stakeholders. Grouping data
promotes transparency, accountability, and cost awareness.

Group cost data into meaningful categories such as resources, services, environments,
regions, departments, projects, or teams. For example, understanding the cost
breakdown at the resource and service level can help you make informed decisions
about resource allocation, scaling, or even decommissioning. When you group cost data
by environment, such as production, disaster recovery, or quality assurance, it can help
you identify cost discrepancies and optimize resource usage based on the specific needs
of each environment. When you group workload data, consider the following
recommendations:

Collect usage and component data. Collect detailed information about the usage
and cost of each component in your workload. You can analyze costs from
different angles and gain insights into the cost breakdown by capturing this data.

See different dimensions. Break down your daily expenses by technical dimensions
(for example, resource types or service categories), resource organization
dimensions (for example, departments or teams), and business model dimensions
(for example, projects or cost centers). This breakdown allows you to analyze costs
based on the dimensions that matter the most to your specific problem or
scenario.

Apply metadata. Metadata can be used to group data and help generate
meaningful cost reports. It enables you to identify areas of high cost and
implement accountability measures or cost optimization strategies at the
department or project level. Using metadata, you can design a mechanism to
group costs in a way that reflects your application's core business model. For
example, tagging resources with tenant identifiers instead of shared resources in a

Group data

multitenant solution. The ability to pivot cost data based on your application's
pricing model can deliver key insights.

After collecting cost data, you need to use it to generate cost reports. Cost reports
provide visibility into spending and facilitate the analysis of your workload spending
patterns. You can identify areas where cost optimization is needed and make informed
decisions to optimize your spending. Cost reports enable you to allocate costs to
different teams, departments, or projects. This allocation helps in understanding
distribution and facilitates accurate chargeback or showback.

Address common scenarios. When generating cost reports for workload costs, you want
to be able to address common cost concerns. Gathering data in common concern areas
helps ensure that the necessary data sets, such as costs, metrics, and usage, are
interpreted cooperatively. Common concern areas include:

Granular costs: Cost reports should provide information on the amount allocated
per user and the cost per device.

Resource utilization: Cost reports should help assess if current resources are fully
utilized and identify potential savings.

Alternative solutions: Cost reports should compare the costs and potential savings
of transitioning to a new solution. They should also evaluate the feasibility of
switching to a dynamic solution.

Return on investment: Cost reports should help determine what percentage of
revenue goes into system operation. If the system doesn't boost revenue, other
ROI metrics should be measured.

Spending patterns: Cost reports should analyze spending patterns to identify trends
and patterns in costs over time. Spending patterns help in making informed
decisions about cost optimization and budget planning.

Align to accounting standards. Cost reports should accommodate your internal
accounting standards. Common systems are showback and chargeback. Showback is
about visibility, and chargeback is about accountability.

Showback refers to providing cost visibility throughout an organization without
charging individual teams or departments for their cloud costs. You can use cost
reports to generate showback statements that showcase the costs incurred by each
team or department. For example, the marketing team utilized $15,000, while the

Generate cost reports

engineering department incurred costs of $25,000 for a combined workload
expenditure of $40,000. Showback provides each department with a breakdown of
costs, allowing each team to review and optimize their resource consumption.
These reports provide transparency and enable stakeholders to understand their
usage and associated costs.

Chargeback involves billing internal teams or departments for their respective
cloud costs based on their actual usage. Chargeback is dual-faceted. You can
charge others and others can charge you based on resource consumption and
services rendered. For example, your workload uses centralized security services.
For one month, the security team billed you $10,000 for their services. But you
charged the sales and marketing departments $7,000 and $8,000, respectively, for
using your workload. All chargeback transactions, both credits and debits, are
integrated into your centralized cost data sink. Chargeback ensures every expense
is accounted for and incorporated into your organization's financial management.
It provides a holistic view and promoting optimization of interdepartmental costs.

Provide comprehensive reports. Cost reports should include the cost of cloud services
and vendors. The report should include costs incurred (invoiced), prepaid costs
(amortized), trends, forecasts, credits, and cost variance. In both showback and
chargeback systems, cost reports should include the following elements:

Incurred costs: Incurred costs refer to the actual costs accrued based on metered
usage. These costs are calculated based on the consumption of resources or
services within a specific billing period.

Prepaid costs: Prepaid costs are expenses paid in advance and are spread out over
a specific period of time. These costs are typically amortized or allocated evenly
over the duration of the prepaid period.

Trends: Analyzing cost trends involves examining the historical data to identify
patterns and changes in spending over time. This analysis helps you understand
how costs fluctuate and identify any underlying factors.

Forecasts: Cost forecasts predict future spending based on historical data and
trends, allowing you to estimate future costs and plan accordingly. Forecasts can
be generated using various techniques such as machine learning algorithms.

Credits: Service providers often provide credits (free utilization) on services. Cost
reports should include credit balances and usage to properly understand spending
needs.

Cost variance: Cost variance in a cost report refers to the difference between the
actual costs incurred and the expected or budgeted costs. It helps you identify
deviations from the planned costs and understand the reasons behind them.

Each cost item should have a directly responsible individual (DRI) as the resource owner.
Assigning a resource owner to each cost item ensures clear accountability for the
associated costs. It helps identify who is responsible for managing and optimizing the
usage and cost of specific resources or services. Resource owners are important for:

Cost allocation: Having a resource owner assigned to each cost item enables
accurate cost allocation. Resource owners ensure cost attribution to the
appropriate teams, departments, or projects, facilitating financial transparency and
budget management.

Communication: Assigning resource owners promotes effective communication
and collaboration within a workload team and organization. It facilitates
discussions about cost management, encourages sharing of best practices, and
enables resource owners to work together to optimize costs collectively.

Decision-making: Resource owners play a crucial role in decision-making related to
resource provisioning, scaling, and optimization. They have the necessary insights
and ownership to make informed decisions that align with business objectives and
cost optimization goals. Resource owners can actively monitor and analyze the
costs associated with their resources. They can identify cost-saving opportunities,
optimize resource usage, and make decisions to control and reduce costs.

Regularly review spending against the budget and cost model with stakeholders.
Regular reviews help in identifying cost trends, outliers, and areas for optimization. It's
important to involve stakeholders such as finance teams, operations teams, and
decision-makers in these reviews to drive cost optimization initiatives. Reviews ensure
that costs are aligned with expectations and allow for adjustments if necessary. Monitor
changes in usage patterns, adjust resource allocations as needed, and implement cost-
saving measures based on ongoing analysis of cost data.

Assign resource owners

Review cost data

Analyze cost data

Review the cost data collected from your workload to gain insights into your spending
patterns. Reviews can include analyzing resource utilization, identifying cost drivers, and
understanding the distribution of costs across different components of your workload.
You should also notice increases and decreases in costs, for example, in compute usage
and network transfer costs. Look for areas where you can optimize costs without
sacrificing performance or functionality. For example, identify underutilized resources,
rightsizing instances, or cost-saving features provided by your cloud provider.

When examining the architectural decisions of your workload, it's essential to focus on
cost implications. Utilizing alternative patterns or cloud-native offerings can lead to
significant cost savings. Opting for platform as a service (PaaS) or software as a service
(SaaS) over infrastructure as a service (IaaS) can be more economical. With PaaS, not
only are infrastructure expenses part of the service's pricing, but the platform also
simplifies the provisioning and management of these resources under a unified cost. For
instance, deploying a lower tier virtual machine as a jump box might introduce extra
costs for storage, server management, and public IP configuration. In contrast, PaaS
handles these complexities, offering a consolidated cost that often encompasses
enhanced security.

Implementing automated alerts can trigger budget notifications at key thresholds. These
alerts can be set up to notify stakeholders and DRIs when costs exceed predefined limits
or when there are significant deviations from expected spending patterns. Budget alerts
and forecast alerts are two different types of cost alerts used for automating cost alerts.

Use budget alerts. Budget alerts allow you to set a budget amount and define
thresholds for actual costs. When the actual costs exceed the specified thresholds,
budget alerts are triggered. These alerts help you monitor your spending and notify you
when you're approaching or exceeding your budget. Budget alerts are based on the
actual costs you accrued. Workload spend tends to vary. You should, at minimum, set
alerts for the target budget at the anticipated costs (100 percent), ideal spend (90
percent), and less than ideal spend (110 percent).

Use forecast alerts. Forecast alerts provide advanced notification when your spending
trends are likely to exceed your budget. These alerts are generated based on forecasted
cost predictions. When the forecasted cost exceeds the set threshold, forecast alerts are
triggered. Forecast alerts help you anticipate potential cost overruns so you can take

Review architectural choices

Automate cost alerts

proactive measures to control your spending. You should set the forecast alert at 110
percent of the target budget.

Use anomaly detection. Anomaly detection helps identify unexpected or abnormal
patterns in cost data, allowing you to detect and address cost anomalies promptly.
Utilize anomaly detection techniques to identify deviations from trend baselines, such as
unexpected spikes or drops in costs, and take appropriate action. You should tune
anomaly detection to catch fluctuations that your spending guardrails can't or
intermittently don't prevent.

Based on the analysis of cost anomalies, determine the necessary actions to address the
situation. Action plans might involve optimizing resource utilization, resizing virtual
machines, implementing Azure Policy controls, or adjusting budgets. It's important to
align cost control measures with business values and obtain the necessary approvals for
budget adjustments.

Implement automated processes to identify and address cost variances in real-time.
Options include automatically scaling resources, automating shutdowns, or establishing
workflows for investigation and mitigation of cost anomalies. Establish key performance
indicators (KPIs) to measure the accuracy of cost forecasts, cost versus budget, the
number of unexpected anomalies, and the time to react to forecast alerts. Regularly
review forecasts, track variance, and ensure alignment with budget expectations.

 Risk: Automating the collection and review of cost data can save time and
effort. However, relying solely on automation might overlook certain cost
optimization opportunities that require manual review and analysis. Finding the
right balance between automation and manual review is crucial.

Collecting and grouping cost data: Azure provides services like Cost analysis and Azure
Advisor that help track and analyze your Azure spending and usage. These services
capture the necessary data to calculate costs accurately. Use Azure tags to group costs
to align with different business units, engineering environments, and cost departments.
Tags provide the visibility needed for businesses to manage and allocate costs across
different groups.

Generating cost reports: Cost analysis offers customizable reports that provide insights
into your incurred costs, prepaid costs, trends, and forecasts. These reports can be
tailored to your specific requirements and provide a comprehensive view of your costs.

Azure facilitation

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis

Reviewing cost data: Microsoft Power BI can help with collecting and reviewing cost
data. Power BI provides a comprehensive solution for collecting, reviewing, and
analyzing cost data. It enables you to gain insights, track trends, and optimize costs
effectively. It integrates with Cost Management and allows you to import cost data into
Power BI.

For smaller cost data sets, you can use Usage Details API to get programmatic retrieval
of raw, unaggregated cost data that corresponds to your Azure bill.

Reviewing architecture design choices: Azure provides a wide range of PaaS resources.
Here are some examples of when you might consider PaaS options:

Task Use

Host a web server Azure App Service instead of setting up IIS servers.

Indexing and querying
heterogenous data

Azure Cognitive Search instead of ElasticSearch.

Host a database server Azure offers many SQL and no-SQL options such as Azure SQL
Database and Azure Cosmos DB.

Secure access to virtual
machine

Azure Bastion instead of virtual machines as jump boxes.

Network security Azure Firewall instead of virtual network appliances.

Automating alerts: Cost Management enables you to set up automated alerts and
actions based on spending thresholds or budgets. These alerts can trigger notifications
to stakeholders when costs exceed predefined limits or deviate from expected patterns.
You should use Cost analysis to view and respond to cost anomalies. This feature can
highlight unexpected spikes or drops in costs, allowing for timely investigation and
action.

Group and filter options in cost analysis and budgets
Monitor usage and spending with cost alerts in Cost Management
Azure billing and cost management budget scenario
Group and allocate costs using tag inheritance.
Allocate Azure costs

Related links

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/manage-automation#suggestions-for-handling-large-datasets
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/manage-automation#automate-retrieval-with-usage-details-api
https://learn.microsoft.com/en-us/azure/app-service/
https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://learn.microsoft.com/en-us/azure/bastion
https://learn.microsoft.com/en-us/azure/firewall/
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/manage-automation#automate-alerts-and-actions-with-budgets
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/analyze-unexpected-charges#identify-cost-anomalies
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/group-filter
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending
https://learn.microsoft.com/en-us/azure/cost-management-billing/manage/cost-management-budget-scenario
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/enable-tag-inheritance
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/allocate-costs

Refer to the complete set of recommendations.

Cost Optimization checklist

Recommendations for setting spending
guardrails
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:04 Set spending guardrails. Guardrails should include release gates, governance
policies, resource limits, and access controls. Prioritize platform automation over
manual processes.

This guide describes the recommendations for setting spending guardrails. Spending
guardrails are measures to control and manage costs within a specified budget. They
help prevent unexpected or excessive spending and promote cost-effective utilization of
resources. Without spending guardrails, your workload costs might exceed your budget,
leading to unplanned expenses that can strain your financial resources.

Definitions

Term Definition

Governance
policies

A set of rules that enforce compliance and enable auditing of workload
resources.

Governance A set of policies, processes, and controls that help ensure that the workload
is managed effectively, securely, and in compliance with organizational and
regulatory requirements.

Infrastructure as
code (IaC)

A descriptive model for defining and deploying infrastructure, including
networks, virtual machines, load balancers, and connection topologies.

Release gate A condition or checkpoint in a release pipeline that must be satisfied before
the deployment can proceed. A release gate helps to ensure that specific
criteria are met before software is released.

Set spending guardrails by implementing measures to control and manage your costs
within a specified budget. These measures include governance policies, access controls,
release gates, budget thresholds, and alerts. Automation reduces the risk of human
error, improves efficiency, and assists the consistent application of spending guardrails.
Prioritize platform automation over manual processes. Automation tools and services

Key design strategies

the platform provides can streamline resource provisioning, configuration, and
management.

Governance policies can act as spending guardrails on various aspects of resources such
as resource types, configurations, tags, location, and data management. Many cloud
platforms have a service that automates the enforcement of governance policies. Use
automated policies to control resource usage, enforce accountability, and eliminate
spending on restricted resource types. Here are some of the policies you should
consider enforcing:

Restricted resource types: Policies can specify which types of resources are allowed
or disallowed within an organization. For example, an organization might have a
policy that restricts the use of certain expensive resource types to control costs.

Resource limits: Set resource limits to controls costs and prevent overprovisioning.
Include limits on the number of resources that can be provisioned, the size of
resources, and the duration of resource usage in your policy. These limits can help
you to prevent excessive spending and optimize resource utilization. For example,
resource limits can minimize the effects of an unauthorized account breach related
to crypto mining.

Defined resource configurations: Policies can define specific configurations for
resources. You can enforce settings on resources that promote cost optimization
such as automatic scaling and data archiving

Restricted locations: You can use policies to restrict the deployment of resources to
specific regions or locations. Consider restricting locations to avoid costly data
transfer fees and to maintain compliance with data sovereignty regulations.

Managed data: Use policies to enforce data management practices that help
optimize costs. For example, you can implement policies that require the use of
lower-cost storage tiers for less frequently accessed data or policies that define
expiration rules for data retention.

Enforced metadata: Establish policies that mandate the use of specific metadata for
better tracking and cost allocation. You can also use metadata in your automation
or manual review. For example, use metadata to automate resources backups by
using a backup tag. A consistent metadata policy helps to align costs with
spending guardrails.

Use governance policies

Limited idle resources: Use policies to identify idle resources so you can delete or
repurpose them. Consider setting policies that automatically shut down instances
during the hours they’re not in use.

 Risk: If you implement automatic scaling, set a maximum scaling threshold
based on testing. Maximum thresholds can help you avoid massive scaling spikes
that cause cost overruns, but a threshold that’s set too low might negatively affect
performance. For more information, see Recommendations for optimizing scaling
costs.

Configure access controls to set restrictions that prevent overspending and to help
ensure that only authorized individuals can consume resources. Access controls can help
reduce the risk of accidental or unnecessary changes that negatively affect cost
optimization. To implement access controls for cost optimization, follow these steps:

1. Identify necessary control. Identify the resources and services that need access
controls.

2. Define access policies. Define access policies based on the principle of least-
privilege access, granting users only the necessary permissions to perform their
tasks. For example, some users might need only read access, while others might
also require write or delete permissions.

3. Implement authentication. Implement authentication methods, like
username/password, multifactor authentication, or integration with identity
providers, to help ensure that only authorized users can access resources.

4. Use role-based access control (RBAC). Set up RBAC to assign roles and permissions
to users based on their job responsibilities. Using RBAC can help you manage
resource access effectively.

5. Review and update controls. Regularly review and update access controls to ensure
that they align with the changing needs of the organization. Remove unnecessary
access permissions and adjust access levels as needed.

Release gates are checkpoints or conditions that must be met before a release or
deployment can proceed. Use release gates to help ensure that the release is cost-
effective and aligns with optimization goals. Release gates offer a structured approach

Configure access controls

Use release gates

to the identification and implementation of cost-saving measures. To implement release
gates for workload cost optimization, consider the following steps:

1. Establish release gate criteria. Establish the conditions or criteria that must be met
before resources are released or deployed. Include factors such as spending limits,
resource utilization thresholds, or project milestones.

2. Incorporate release gates. Incorporate the release gates into the deployment
pipeline. You can use automation tools or custom scripts to ensure that resource
deployments are subject to the defined criteria.

3. Monitor spending. Continuously monitor spending and resource usage against the
defined criteria. If the organization exceeds spending thresholds, the release gates
should prevent further deployments until the issue is addressed.

It's important to set alerts for budgets, cost anomalies, and commitment-based plan
utilization to optimize costs. These alerts provide visibility into your cloud spending and
enable proactive cost management. Be careful to manage notification recipients for
alerts and keep the recipient list up to date with current responsibilities and access.
Some alerts that you might create to optimize costs include:

Budget alerts: Set alerts on budgets to track your spending against predefined
thresholds. You can monitor your costs and receive notifications when you
approach or exceed the budgeted amount by creating a monthly budget, billing
account, or resource group. Budget alerts help you to stay informed on your
spending and take preventative actions to control costs.

Cost anomaly alerts: Anomaly alerts notify you about unexpected cost variations
that might indicate inefficiencies or abnormal spending patterns. You can
configure these alerts to identify anomalies in the actual or forecasted costs. Use
cost anomaly alerts to investigate the underlying cause of a cost variation and take
corrective actions when necessary.

Commitment-based plan utilization alerts: Implement commitment-based plan
utilization alerts to monitor your plan usage. If you have commitment-based plans,
setting alerts on plan utilization can help you effectively manage and maximize the
value of these commitments. You can configure these alerts to notify stakeholders
if the utilization of commitment-based resources drops below a desired threshold.
Optimize your commitment-based resources and ensure that you use the benefits
of your commitments.

Configure cost alerts

Infrastructure as code is the practice of managing and provisioning infrastructure
resources by using code, typically in the form of configuration files. Implement this
strategy to define and automate the deployment and configuration of infrastructure
resources, such as virtual machines, networks, and storage, by using code-based
templates.

IaC strategies provide a structured and repeatable approach to managing and
controlling infrastructure resources. IaC can help you to deploy resources as-needed,
delete resources without running them continuously, and optimize costs by ensuring
you deploy and configure resources according to predefined rules. Follow these steps to
use IaC for cost optimization:

1. Create IaC templates. Create a code-based template language to define your
infrastructure resources and their configurations. These templates let you specify
the desired state of your infrastructure resources in a declarative manner.
Implement best practices for cost optimization in your infrastructure code.
Consider right-sizing your resources by using reserved instances or savings plans.
Use cost-effective storage options and apply resource metadata for cost allocation
and tracking.

2. Store templates. Store IaC templates in a version control system to track changes
and manage different versions. You can use version control to maintain a history of
your infrastructure configurations and foster collaboration among team members.

3. Use parameters. Use parameters in your templates to make them reusable and
configurable. By using parameters, you can easily customize your infrastructure
deployments for different environments or scenarios.

4. Use ephemeral environments. Use ephemeral environments for development,
testing, and staging purposes to optimize costs. Ephemeral environments should
only be run when necessary. Create these environments by using IaC tools and
delete the environment when you're finished.

5. Use IaC tools. Use IaC tools and frameworks to automate the deployment and
configuration of your infrastructure resources. Use automation to consistently and
reliably deploy resources according to your defined policies.

6. Monitor deployed resources. Regularly monitor your resources and their costs to
ensure compliance with your spending policies. Use monitoring and alerting tools
to identify any deviations from the defined guardrails and take corrective actions

Use IaC

as needed. Check for unused resources and delete them, preferably with
automation.

Using governance policies: Use Azure Policy to define and enforce governance policies
that align with your cost optimization goals. You can use Azure Policy to set rules on
management groups, subscriptions, and resource groups. These policies can regulate
resource provisioning, usage limits, and cost allocation. Use policies to promote
rightsizing of resources, identify and eliminate idle or underutilized resources, and
encourage the use of cost-effective services and architectures.

Azure allows you to set limits or quotas to prevent unexpected costs. You can define
limits on the number of resources that can be provisioned, in addition to the size and
duration of resource usage. Set these limits to help prevent overprovisioning and to
control costs.

Identify underused or idle resources. Use Azure Advisor to optimize and reduce your
overall Azure costs by identifying idle and under-utilized resources. Receive cost
recommendations from the cost section in the advisor dashboard.

Add resource metadata. Use Azure governance to implement resource tagging and
categorization. Tag resources using relevant metadata to track and allocate costs
to different departments, projects, or cost centers. Visibility into cost attribution
can help you identify areas of high spending, optimize resource allocation, and
facilitate better cost management.

Configuring access controls: Use Azure RBAC to manage access to resources. You can
use RBAC to grant permissions to users, groups, or applications based on their roles.
Implement RBAC to help ensure that only authorized users have access to resources,
reducing the risk of unauthorized resource usage and potential cost implications.

Using release gates: Use Azure Pipelines release management to define and enforce
your release gates. You can set up manual or automated checkpoints to help ensure that
you meet specific criteria, such as security checks, compliance requirements, and cost
thresholds.

Using infrastructure as code. You can use Azure tools and services to deploy and
manage infrastructure resources by using code. By using tools like Azure Resource
Manager (ARM) templates, Azure Bicep, and Azure DevOps, you can define and deploy
your infrastructure resources in a declarative manner. Azure has Bicep, Azure Resource
Manager, and Terraform templates for every Azure resource.

Azure facilitation

https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/devops/pipelines/release/approvals/
https://learn.microsoft.com/en-us/azure/templates/

Use Azure Pipelines or other continuous integration and continuous delivery (CI/CD)
tools to automate the build, test, and deployment processes. Teams can use pipelines to
define a series of steps and actions that run automatically whenever changes are made
to the codebase. Automate these processes to reduce manual effort, ensure consistency,
and accelerate the delivery of software.

Consider using lower-cost resources for your ephemeral or nonproduction
environments to optimize costs. Azure provides various pricing tiers for resources. Azure
DevTest Labs pricing and Azure Reservations are cost-saving methods that you can
explore for ephemeral environments.

Git repositories, such as Azure Repos and GitHub , provide version control capabilities
for managing code and infrastructure configurations. Teams and developers can use
automated repositories to collaborate, track changes, and maintain a history of their
codebase.

Azure Deployment Environments empowers development teams to quickly and easily
create app infrastructure by using project-based templates that establish consistency
and best practices while maximizing security. On-demand access to secure
environments accelerates the stages of the software development lifecycle in a
compliant and cost-efficient way.

The Azure Developer CLI is an open-source tool that accelerates the time it takes for you
to get your application from a local development environment to Azure. The Azure
Developer CLI offers developer-friendly commands that map to key stages in your
workflow, whether you're working in the terminal, an integrated development
environment (IDE), or CI/CD.

Configuring cost alerts: Use Microsoft Cost Management to optimize costs and enforce
spending guardrails. You can use cost management features to set budgets and alerts,
visualize cost information by using tools like Power BI, and analyze cost patterns and
performance bottlenecks.

Central teams should use the Cloud Adoption Framework guidance to set up spending
guardrails across the organization so workload teams understand what the central team
can offer.

For more information, see Cost Management policy compliance processes and Develop
cost governance policy statements. We encourage the organization to Adopt policy-
driven guardrails for implementation.

Organizational alignment

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos
https://github.com/
https://learn.microsoft.com/en-us/azure/deployment-environments/overview-what-is-azure-deployment-environments
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/compliance-processes
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/#develop-governance-policy-statements
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/enterprise-scale/dine-guidance

Assign access to Cost Management data
Cost Management tools in Azure
Create and manage budgets
Identify anomalies and unexpected changes in cost
Monitor usage and spending with cost alerts

Refer to the complete set of recommendations.

Related links

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/assign-access-acm-data
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/toolchain
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/analyze-unexpected-charges
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending

Recommendations for getting the best
rates from providers
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:05 Get the best rates from providers. You should find and use the best rates for cloud
resources and licenses. Regularly review cost savings. Cost reviews should include
regional pricing, pricing tiers, pricing models (consumption or commitment-based),
license portability, corporate purchasing plans, and price sheets.

This guide describes the recommendations for getting the best rates from providers for
your workload. Getting the best rates is the practice of finding and securing the most
cost-efficient pricing options for cloud and software resources without modifying
architecture, resources, or functionality. By optimizing rates, you can reduce cloud costs
without changing the workload. A small rate reduction on services you use a lot
provides significant cost savings. Without rate optimization, you end up paying more for
your resources, services, and licenses than necessary.

Definitions

Term Definition

Consumption-based
billing model

A pricing model where you're charged based on the actual usage of the
service. Examples include the number of virtual machines deployed, the
amount of storage used, and the amount of data transferred.

Commitment-based
billing model

A pricing model where you reserve and pay for a specific amount of usage
in advance and can often get a discounted rate compared to consumption
pricing.

Rate The unit price for using a service or license.

Getting the best rates requires actively searching for the most cost-effective pricing
models for all workload components. It takes into consideration price differences across
regions, the benefits of different billing models, such as consumption (pay-as-you-go)
versus commitment-based billing. It also involves software licenses and corporate
discount plans.

Key design strategies

To get the best rates on the resources and licenses in your workload, you should start
with identifying and reducing costs in the most expensive areas. Evaluate the discounts
available from providers, and choose the right discounts based on workload needs.
Regularly check for discounts and reduce licensing fees where possible. Determine if it's
more cost effective to build or buy new workload solutions.

Understanding the workload is the first step to finding and using the best rates on
infrastructure, resources, licenses, and third-party services. It prepares you to make
informed decisions and implement cost optimization strategies that are specific to the
needs of the workload.

Here are actions that you can take to understand the workload rates:

Take inventory. List all the components of your workload, including infrastructure,
cloud resources, licenses, third-party services, and any other expenses related to
the workload.

Understand spending. Gain a clear understanding of the current spending for each
item in the inventory list. Identify what you're paying for and where most of your
expenses lie.

Create an ordered list of workload expenses. List the most expensive components
and work your way down to the least expensive. This exercise helps you prioritize
your optimization efforts and focus on the areas that have the highest effects on
cost.

For your billing model, you choose between consumption (pay-as-you-go) and
commitment-based billing models. You base the selection of consumption versus
commitment-based pricing on the predictability, duration, and usage consistency of
workload components. When you make this decision, you must collaborate with
development and purchasing teams to evaluate resource needs, usage patterns, and
potential cost optimization ideas.

Selecting the right billing model is crucial for cost-effectiveness. It helps align the
workload with business objectives and get the best rates for the specific requirements of
a workload. To determine the right billing model, consider the following strategies:

Create an ordered list of expenses

Determine the right billing model

Understand the consumption-based billing model

Consumption-based billing model (pay-as-you-go) is a flexible pricing model that allows
you to pay for services as you use them. Cost variables for consumption pricing include
how long a resource is running. Service meters have various billing increments, such as
per hour or per second. This model provides flexibility and cost control, because you
pay for only what you consume.

The consumption-based billing model is best suited for the following scenarios:

Variable workload: A variable workload has unpredictable spikes or seasonal
variations in usage. Consumption-based billing allows you to scale resources up or
down to meet the fluctuations in demand. It helps you to provide the required
performance and not overpay during times of low usage.

Preproduction environments: Consumption-based billing is preferred for
development and test environments that are ephemeral. It offers the advantage of
paying only during the project. Ensure that you provide resources aligned with the
development effort. Resources cost less when development is scaled down.

Short-term projects: Short-term projects often have specific resource requirements.
Consumption-based billing allows you to pay for the resources only during the
project.

 Tradeoff: Many on-premises environments are always on and always available.
Being intentional about services might lower rates, but you must account for some
creation time and operational overhead.

Commitment-based pricing allows you to reserve a specific amount for a specific
duration and pay for it in advance. By reserving the usage up front, you can get a
discounted rate compared to consumption-based billing.

The amount you save with commitment-based pricing depends on factors such as the
duration of the reservation, the reserved capacity, and the service. Commitment-based
pricing is best suited for the following scenarios:

Predictable workloads: If your workload has a consistent usage pattern, you can
commit to a certain capacity over time and get a significant discount over
consumption-based billing. Those instances incur charges whether you use them
or not.

Production environments: Commitment-based billing is suitable for production
environments where you have a good understanding of the workload's resource

Understand the commitment-based billing model

needs.

Long-term projects: Commitment-based billing can be cost-effective for projects
that have long-term resource requirements, even if they aren't highly predictable.

To ensure effective optimization of workload costs, the development team (or architect)
and the purchasing team must work together. Combining their expertise enables you to
identify opportunities to optimize costs and make informed decisions.

Here's a suggested process for collaborating on rate reduction efforts:

1. Identify opportunities for cost optimization: Together, the teams should identify
potential areas for cost optimization, such as infrastructure, cloud resources,
licenses, and third-party services. Consider factors like usage patterns, scalability,
and workload requirements.

2. Assess resource requirements: Determine the resources needed to support the
component or workload. Consider factors such as infrastructure, maintenance, and
ongoing support. Understanding these requirements can help you gauge the long-
term commitment involved.

3. Evaluate options: Assess your options for cost optimization, such as pay-as-you-go
versus commitment-based plans. Evaluate the pros and cons of each option in
terms of cost savings and effect on performance. Evaluate the performance tiers in
each service and the pricing differences between them.

It's important to assess how long you need a particular component to determine if
committing to a commitment-based plan makes sense. If the expected usage duration is
less than a year, don't commit to a commitment-based plan. Consider the flexibility of
pay-as-you-go options for shorter-term requirements.

To determine the duration of component usage, you can follow this process:

1. Gather usage data: Collect data on the historical usage of the component or
workload. This data can include how long the component has been in operation
and the frequency of usage.

2. Analyze usage patterns: Analyze the collected usage data to identify patterns and
trends. Look for consistent usage over a specific period of time or recurring usage

Discuss options with the workload team

Determine component permanence

patterns. This analysis helps you understand the typical duration of component
usage.

3. Consider future requirements: Consider any future requirements or changes in your
component or workload. Evaluate whether any upcoming changes might affect its
usage duration.

4. Assess business needs: Evaluate the business needs and objectives associated with
the component or workload. Consider factors such as project timelines, budget
constraints, and the overall strategy of your organization.

Anticipating future developments can help you assess the long-term commitment
required and whether it aligns with your objectives. This assessment helps you
determine the appropriate duration for component usage.

When you're considering a commitment-based plan, commit to the maximum
consistent usage of a component. By committing to the maximum consistent usage, you
can maximize the potential savings and cost optimization. However, there are a few
factors to consider:

Usage patterns: Analyze the historical usage patterns of the component. If the
usage is consistently high and stable, committing to the maximum consistent
usage makes sense. But if the usage is highly variable or unpredictable, committing
to the maximum consistent usage might not be feasible or cost-effective.

Flexibility and scalability: Consider the flexibility and scalability of the component. If
the component can easily scale up or down based on demand, it might be more
suitable to opt for flexible pricing models that allow you to adjust resources
dynamically. This way, you can align your costs with the actual usage of the
component.

Engagement with the provider: Communicate with the provider to gather
information about its plans, roadmap, and commitment to the component or
workload. This dialog provides valuable insights into the provider's long-term
vision and commitment level.

Cost analysis: Perform a cost analysis to assess whether the potential savings of
committing to a higher usage level outweighs the risks of not fully utilizing the
commitment.

Determine usage consistency

Select the right commitment-based plan

Strategic usage of commitment-based plan can significantly minimize costs for
applicable resources. It allows you to effectively plan and allocate resources. To select
the right commitment-based plan, consider the following strategies:

Choose an appropriate commitment-based plan: Select a commitment-based plan
that covers the minimum capacity that the workload requires. Starting with the
minimum commitment gives you flexibility while you still benefit from cost savings.

Having a clear understanding of the workload's minimum capacity requirements
before you commit to a commitment-based plan minimizes risk and ensures that
you optimize your savings. However, there are exceptions. A commitment that
requires minimal upfront costs has a lower risk. The lower the commitment risk, the
quicker you can commit to a commitment-based plan. As the cost and risk of a
commitment grow, you need to understand your minimum consistent usage for
each component you're committing to.

Increment commitments: As the capacity of your workload grows, gradually
increase your commitments. Start small and scale up. Increment scaling up based
on the workload's actual usage.

Renegotiate and consolidate: Regularly renegotiate and normalize commitment-
based plans to align their ending time. This alignment allows you to consolidate
them into a single line item on your bill, so it's easier to manage and optimize
costs.

Eliminate underutilization: You need to evaluate and optimize commitment-based
contracts to ensure they deliver their full potential value. Regularly review and
analyze your charges and usage data. Understand the breakdown between actual
cost and amortized costs and reconcile the data to ensure accurate billing.

Monitor utilization. Keep an eye on how much you're using your commitment-
based plans. Set up alerts to tell you if you're not using all of your reserved
resources. Check how you're using them over time and get rid of any you're not
using. Make sure you're using the right size of virtual machines to get the most out
of your plan. You can also adjust the sizes to fit what you already paid for.

Modify the commitment-based plan. Consider changing the scope of the
reservation to share, allowing it to apply more broadly across your resources. It can
help increase utilization and maximize savings. If you find underused commitment-
based plans, try exchanging unused quantity or canceling and refunding plans.

Evaluate and commit to available discounts

Assess and analyze the potential discounts that can be applied to a specific workload.
This process helps you identify opportunities for cost reduction and optimize the
expenditure associated with the workload. It also helps you allocate resources more
efficiently.

Try these tasks:

Ask about trial offers: Use a provider's trial periods or negotiate free or reduced
rates to execute proofs of concept. This approach allows you to try out the services
or products with limited financial risk, so you can assess their suitability for your
workload before you commit to a purchase. Remember to review the terms and
conditions of any trial periods or negotiated agreements.

Review provider offerings: Understand the discounts and pricing models that
providers offer. Explore volume-based discounts, promotional offers, or discounts
for long-term commitments. Discuss the available options that can meet the
variability and flexibility requirements of your workload. Include information about
different pricing models, scaling options, or commitment-based agreements.

Analyze usage and consumption: Assess the workload's usage and consumption
patterns to determine if the workload meets the eligibility criteria for specific
discount programs. This analysis helps you identify the most suitable discounts for
your workload.

Evaluate contract terms: Review the terms and conditions of existing contracts or
agreements to identify any potential discount options. Consider the duration of
the commitment, renewal terms, and the possibility of negotiating better rates.

Communicate with providers: Know the actual and anticipated usage of a workload
when you discuss discounts. Let the providers know what environment the
discussion is about. For example, you can often get discounts on preproduction
environments. Ask providers to discuss available discount options, such as product
bundling. Ask specific questions about discount programs, eligibility criteria, and
any negotiation possibilities.

Understand reseller options: Consider engaging with resellers who can provide
extra insights into available discounts or offer alternative pricing models. Resellers
might have access to specialized programs or discounts that can benefit your
workload.

Committing to the right discount options is where you act on your evaluation. You're
equipped with the available options. You communicated your needs and workload data

to the various providers. Now you need to lock in the discounted rates for a defined
period, which can result in significant cost savings compared to pay-as-you-go pricing.

Building a solution in-house allows for granular control over the features and
configuration. This control can help you eliminate unnecessary functionality and
optimize rates. However, building a solution in-house requires significant upfront
investment in development time and maintenance.

When you buy a solution, such as from a marketplace, it offers quicker deployment with
potentially lower upfront costs. But buying a solution might involve ongoing
subscription or licensing fees.

Here are key considerations when you're deciding whether to build or buy a solution:

Control and customization: Assess the specific functionality that you need for your
product or solution. Determine whether buying a solution meets your
requirements or whether building allows for the customization and flexibility that
provide better rates.

Building a solution offers greater control over component selection and
configuration. You can add customization to fit business needs and minimize
unneeded features that might incur charges. Buying solutions provides
preconfigured options with limited customization capabilities.

Time to market: Assess the urgency and time constraints for deploying the
workload component or solution. Building a solution in-house might take longer
because of development and testing, whereas buying a solution allows for quicker
deployment.

Technical expertise: Building might require greater technical expertise to ensure
proper configuration and maintenance over time. A custom solution requires effort
up front and over time. Buying a solution is often more user-friendly and requires
less technical knowledge.

Cost: Evaluate the total cost of building a solution, including development
resources, infrastructure, ongoing maintenance, and support. Compare the cost of
building a solution with the cost of buying a solution. Include any support plans,
licensing, or subscription fees. Buying a solution might provide more predictable
pricing and potential discounts due to economies of scale.

Decide whether to build or buy a solution

Support and updates: Consider the availability of support and updates for both
building and buying. Assess the level of technical expertise required for each
option and the ease of accessing support resources.

Updates for custom solutions add costs by requiring separate environments,
testing, and backups. For purchased solutions, research the reputation and track
record of the marketplace providers. Consider factors such as provider reliability,
customer reviews, and the provided level of support.

Also consider the billing cycles. For example, subscription billing cycles are
incentivized to maintain the quality of the solution over time. One-time purchases
don't have the same cost incentive to maintain the solution.

Optimizing licensing costs means using various licensing programs and options to
minimize expenses while maximizing value. This approach helps ensure you get the best
rates from providers, preventing overpayment for software and services. It's important
to review the license associated with its design, build, and deployment phases. This
review should encompass tools used in its software development, security, monitoring,
and design components. These licensing programs might include options for:

Hybrid use and bundling: In addition to exploring licensing programs, consider
using hybrid use and bundling options. These programs can provide extra cost
savings by optimizing licensing for both on-premises and cloud environments.

Negotiations: Don't hesitate to negotiate with your provider to secure better
licensing terms. Negotiations can often lead to more favorable pricing and
discounts.

Dev/test pricing: Take advantage of dev/test pricing options that your provider
offers. These programs typically provide discounted rates for nonproduction
environments, so you can save costs during development and testing phases.

Volume discounts: As your usage increases, you might become eligible for volume
discounts. Cloud service providers often offer discounted rates based on the scale
of usage, so it's important to monitor your usage and explore opportunities for
cost optimization.

Existing enterprise agreements: Check your existing enterprise agreements to see if
any licensing benefits or cost-saving opportunities are available. Your procurement
department or license reseller can provide valuable insights in this area.

Optimize licensing costs

Microsoft Cost Management: Azure provides tools and features for managing and
optimizing costs, such as Microsoft Cost Management. These tools allow you to track
and analyze your cloud spending, set budgets, get cost alerts, and access detailed cost
reports.

Azure reservations and Azure savings plans: Reservations and savings plans allow you
to commit to using specific resources for a term and get significant discounts on Azure
services. Here are the details:

Azure reservations help you save money by committing to one-year or three-year
plans for multiple products. Committing allows you to get a discount on the
resources that you use.

Reservations can significantly reduce your resource costs from pay-as-you-go
prices. Reservations provide a billing discount and don't affect the runtime state of
your resources. After you purchase a reservation, the discount automatically
applies to matching resources.

You should use reserved instances when you don't expect certain services,
products, and locations to change over time. We highly recommend that you begin
with a reservation for optimal cost savings.

An Azure savings plan for compute is a flexible pricing model. It provides savings
off pay-as-you-go pricing when you commit to spending a fixed hourly amount on
compute services for one or three years.

Committing to a savings plan allows you to get discounts, up to the hourly
commitment amount, on the resources that you use. Savings plan commitments
are priced in US dollars for Microsoft Customer Agreement and Cloud Solution
Provider customers, and in local currency for Enterprise Agreement customers.
Savings plan discounts vary by meter and by commitment term (one year or three
years), not commitment amount.

Savings plans provide a billing discount and don't affect the runtime state of your
resources. You should use Azure savings plans for more flexibility in covering
diverse compute expenses by committing to specific hourly spending.

Eliminating unused reservations and savings plans: To eliminate unused reservations
and savings plans, you can use the Microsoft Cost Management and Billing tools. They
provide insights into your reservation and savings plan usage, allowing you to identify

Azure facilitation

https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/save-compute-costs-reservations
https://learn.microsoft.com/en-us/azure/cost-management-billing/savings-plan/savings-plan-compute-overview

any unused or underutilized commitments and make adjustments accordingly.
Utilization can be viewed in the Azure portal under the Reservations section.

Azure dev/test: Azure dev/test is an offer that comes with Visual Studio subscription
benefits. With this offer, you get some Azure monthly credits to try various Azure
services at no cost. Credit amounts vary by subscription level. You can also benefit from
discounted Azure dev/test rates for various Azure services, which enable cost-efficient
development and testing.

Azure services: Many Azure services offer both consumption and commitment-based
billing models. You can switch to better align to your usage, potentially without
sacrificing functionality.

Azure Hybrid Benefit: With Azure Hybrid Benefit , you can reduce the overall cost of
ownership by using your existing on-premises licenses to cover the cost of running
resources in Azure. This benefit applies to both Windows and Linux virtual machines,
along with SQL Server workloads. To take advantage of Azure Hybrid Benefit, you need
to ensure that your licenses are eligible and meet the requirements.

License Mobility: Azure supports License Mobility . You can bring your own licenses
for certain software products and apply them to Azure resources. This ability can help
reduce licensing costs and simplify license management.

Licensing agreements: Microsoft offers commitment-based and transactional licensing
options for organizations that want to purchase Microsoft cloud services subscriptions,
on-premises software licenses, or Software Assurance . Use these offers for your
workload as applicable. Microsoft offers various volume licensing programs and
agreements based on your workload's needs, including:

Microsoft Enterprise Agreement
Microsoft Customer Agreement
Microsoft Open Value program
Microsoft Products and Services Agreement

For more information, see the Microsoft licensing resources .

Azure spot instances: Azure spot instances provide access to unused Azure compute
capacity at discounted prices. By using spot instances, you can save money on
workloads that are flexible and can handle interruptions.

Azure reservations

Related links

https://learn.microsoft.com/en-us/azure/devtest/offer/overview-what-is-devtest-offer-visual-studio
https://azure.microsoft.com/pricing/hybrid-benefit/
https://www.microsoft.com/licensing/licensing-programs/software-assurance-license-mobility
https://www.microsoft.com/Licensing/licensing-programs/software-assurance-default
https://www.microsoft.com/licensing/licensing-programs/enterprise
https://www.microsoft.com/Licensing/how-to-buy/microsoft-customer-agreement
https://www.microsoft.com/Licensing/licensing-programs/open-license
https://www.microsoft.com/licensing/MPSA/default?rtc=1
https://www.microsoft.com/licensing/default
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/save-compute-costs-reservations

Azure savings plan
Azure dev/test
Azure Hybrid Benefit
License Mobility
Software Assurance
Microsoft Enterprise Agreement
Microsoft Customer Agreement
Microsoft Open Value program
Microsoft Products and Services Agreement
Microsoft licensing resources

Refer to the complete set of recommendations.

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/cost-management-billing/savings-plan/savings-plan-compute-overview
https://learn.microsoft.com/en-us/azure/devtest/offer/overview-what-is-devtest-offer-visual-studio
https://azure.microsoft.com/pricing/hybrid-benefit/
https://www.microsoft.com/licensing/licensing-programs/software-assurance-license-mobility
https://www.microsoft.com/Licensing/licensing-programs/software-assurance-default
https://www.microsoft.com/licensing/licensing-programs/enterprise
https://www.microsoft.com/Licensing/how-to-buy/microsoft-customer-agreement
https://www.microsoft.com/Licensing/licensing-programs/open-license
https://www.microsoft.com/licensing/MPSA/default?rtc=1
https://www.microsoft.com/licensing/default

Recommendations for aligning usage to
billing increments
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:06 Align usage to billing increments. You should understand billing increments
(meters) and align resource usage to those increments. Modify the service to align
with billing increments, or modify resource usage to align with billing increments.
Consider using a proof of concept to validate billing knowledge and design choices
for major cost drivers and to reveal ways to align billing and resource usage.

This guide describes the recommendations for aligning resource usage to billing
increments. Resources are billed at specific increments, such as per hour or per instance.
To optimize costs, you need to align your usage to those increments. You must either
adapt a resource to your workload usage or adapt your workload to the resource billing
increments, also called meters. Implement the following guidance so you can ensure
that your workload derives the maximum value from each resource. If you fail to align
billing and design, you might incur unnecessary charges.

Definitions

Term Definition

Billing
increment

A usage amount that incurs a cost (meter), such as a unit of time, number of
instances, or size of data.

Billing factor The type of usage that incurs costs, such as time, storage amount, data transfer
amount, or number of requests.

Aligning resource usage to billing increments is about making sure that your resource
consumption closely matches the intervals or quantities that you're charged for. For
instance, if a service charges by the hour but you use it only for a fraction of that time,
you can adjust operations to maximize the use of that hour.

To save money, ensure that you understand how you're billed for a service. You need to
understand specific increments like hourly rates, per gigabyte charges, or per request
costs. Adjust the service's configuration or how you consume the service to fit the billing

Key design strategies

increments and ensure that you don't incur unnecessary costs. Evaluate your workload's
specific needs and understand how you're billed for various resources. Based on your
findings, adjust the usage or the resource to optimize costs.

Billing factors differ among services. Billing factors include the instance number, time,
transaction rate, and transaction size. They also include availability zone, location,
storage amount, ingress data, and egress data. Familiarize yourself with the pricing
thresholds of the services that you use. You can align your usage to maximize the value
of the resource and only run incur charges when necessary.

Here are some common billing factors:

Runtime: The runtime refers to the duration that a resource actively runs or is
utilized. Runtime is typically measured in hours, days, or months. The runtime
helps you analyze the cost implications of resource usage over time. It's important
for cost optimization because you can identify opportunities to minimize resource
usage and associated costs.
Data transfer: Data transfer refers to the movement of data into and out of a
resource. Data transfer costs can vary based on the volume of data. Understand
data transfer costs, so you can optimize data transfer patterns, select appropriate
network configurations, and minimize costs associated with data movement.
Specialized services: Specialized services are services or features that you use with
other resources. These services can include specialized databases, AI services, or
other advanced capabilities. Evaluate the cost implications of specialized services
because they might have separate pricing models or incur extra charges.
Virtual CPUs (vCPUs): The utilization of vCPUs within a resource is the vCPU usage.
Resources such as virtual machines are often billed based on the number of vCPUs
allocated to them. Monitor and optimize vCPU usage, so you can ensure efficient
utilization of resources and minimize unnecessary costs.
Uptime guarantees: Uptime guarantees refer to the service-level agreements (SLAs)
that cloud providers offer on the availability and reliability of their services. Uptime
guarantees aren't directly related to billing, but they're important to consider when
you want to optimize costs. Higher uptime guarantees can coincide with higher
costs. Evaluate the tradeoff between the cost and the service availability.

Billing increments determine how resource usage is measured and billed. For each
billing factor, there's a billing increment. Familiarize yourself with the billing increments

Determine billing factors

Determine billing increments

of each service, so you can align resource usage to these billing increments.

Here are some common types of billing increments:

Time:* Resources are billed based on the duration of usage, such as per second,
hour, or day.
Per request: Some resources, particularly in serverless or event-driven architectures,
are billed based on the number of requests or invocations. Minimize unnecessary
requests and optimize the design of applications to reduce the number of billable
requests.
Data transfer increments: Data transfer costs are measured in increments, such as
gigabytes (GB) or terabytes (TB).
Storage increments: Storage costs are often measured in increments, such as GB or
TB.

Mapping usage to billing increments is an exercise to identify where resource
consumption doesn't align with the billing increments. This mapping involves analyzing
resource usage against billing increments in each billing factor to spot inefficiencies. At
this step, you're only identifying areas where usage and billing increment aren't aligned.
Later, you implement the changes. Consider the following guidance when mapping
usage to billing increments:

Create an inventory of resources. List the resources in the workload, such as
compute, storage, and networking.
Understand usage patterns. Use monitoring tools or past-usage data to identify the
resource consumption patterns for the workload. Note periods of high and low
usage.
Use pricing calculators. Input the information that you gather into an online pricing
calculator to get a detailed breakdown of costs, segmented by billing factors and
increments.
Analyze billing increments. If the calculator provides billing granularity for each
component, align your actual or expected usage with the billing increments
(hourly, daily, or per request).
Simulate scenarios. Use the pricing calculator to simulate usage scenarios in order
to understand how resource usage affects costs.

Map usage to billing increments

Consider building a proof of concept (POC)

A proof of concept is a concrete way to validate your understanding of billing factors
and billing increments. A POC helps you see the effects of design decisions on cost. It
can help you refine your workload design to align with billing increments. A POC is
important for leading cost drivers, such as the application platform and resources that
scale.

If you're unsure about your billing knowledge or want to gain more confidence in
understanding cost implications, a POC can provide a hands-on experience. You can
validate your assumptions and test various scenarios to ensure that you have a clear
understanding of the billing aspects. Consider the following guidance when you build a
POC for cost optimization:

Define POC scope: Clearly define the scope of the POC, including the specific workload
or application that you want to optimize for cost and the resources involved. Include
factors such as usage time, usage patterns, per instance charges, data transfer, storage,
compute, and any other cost-driving components. Consider billing increments when you
delineate the scope to ensure that cost factors are thoroughly addressed.

Emulate production: Design the POC to emulate the production environment, ensuring
realistic cost estimations. You should evaluate cost drivers, such as the effect of
scalability, operational decisions (stopping and starting resources), and storage costs.
Align the POC design with billing threshold knowledge to ensure that the simulated
environment accurately reflects potential cost scenarios.

Limit POC duration: Limit the lifespan of the POC, so you can gather conclusive
evidence, but you don't incur unnecessary costs. Extend the POC slightly beyond a
billing threshold to guarantee a comprehensive understanding of costs. For instance, if a
resource is billed hourly, the POC might run for just over an hour or however long it
takes to capture how costs accrue at the threshold. After you have the corroborating
evidence, you can confidently make decisions based on your findings. When the POC
provides a clear picture of billing implications, use the findings to make informed
financial decisions for the actual environment.

Aligning usage to maximize resource value involves implementing the changes
identified in the mapping exercise to realign resource usage with billing increments. This
step is about making adjustments to how resources are consumed. There are two
primary options for aligning usage to billing increments:

Modify the service. Modifying the services means using different configurations, service
tiers, or services to align the workload to billing thresholds. For example, your workload

Align usage to maximize resource value

might move 5 TB of data daily, but you’re charged in 4-TB increments. You can find a
different service tier or configuration, so you can transfer the data at a cheaper or faster
rate.

Modify usage. Modifying usage is about redesigning the usage pattern workload to
align with a billing increment. For example, you can compress the 5-TB data to 4 TB
before transferring. You can also extend the usage to the billing increment. For example,
if you need to transfer 2 TB of data each day, you can modify the schedule to transfer 4
TBs of data every other day.

If neither option is feasible, you need to accept the extra cost. Rework the budgets as
needed if the extra cost isn’t included in the budget.

 Risk: Cost optimization decisions shouldn't compromise security requirements
or compliance regulations. If you opt for cheaper solutions without adequate
security measures, you can expose the workload to potential vulnerabilities.

Determining billing factors and increments: Azure has product pricing details for every
Azure product . Search for the products in your workload and catalog the different
billing factors and increments for each billing factor. You can also use the Azure pricing
calculator to estimate the cost of different increments.

Mapping usage to billing increments: You can use your Azure bill to analyze resource
usage patterns and identify areas of high consumption. You can view and download
your Azure invoice. These features help you understand how resources are utilized, so
you can make informed decisions about optimizing their usage and minimizing
unnecessary costs.

You can get a quick overview of your invoiced usage and charges on the Subscriptions
page in the Azure portal. It's important to understand the terms in your Azure usage
and charges file.

Aligning usage to maximize value: Microsoft Cost Management and Billing and Azure
Advisor provide optimization recommendations that are based on usage and cost data.
These recommendations help you identify opportunities for cost savings. With this data,
you can determine if resources are over-provisioned or underutilized, and right-size
them to match the workload requirements. Right-sizing resources can help align to
billing increments.

Azure facilitation

https://azure.microsoft.com/pricing/#product-pricing
https://azure.microsoft.com/pricing/calculator/
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/review-individual-bill
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/download-azure-invoice
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/review-individual-bill
https://learn.microsoft.com/en-us/azure/cost-management-billing/understand/understand-usage
https://learn.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview

Product SKUs represent the service tiers in Azure products. Azure offers various SKUs
within each service. Switching SKUs can help you align billing increments with usage
patterns. You can use the Azure product pricing pages to compare the different tiers
for each product.

With Azure, you can set up cost alerts and budgets. Cost alerts notify you when
consumption reaches predefined thresholds, allowing you to proactively monitor
spending. Budgets help you set limits and track the burn rate of your resources, which
helps ensure cost control.

Recommendations for collecting and reviewing cost data
Recommendations for optimizing data costs

Refer to the complete set of recommendations.

Next steps

Cost Optimization checklist

Cost Optimization checklist

https://azure.microsoft.com/pricing/#product-pricing
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets

Recommendations for optimizing
component costs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:07 Optimize component costs. Regularly remove or optimize legacy, unneeded, and
underutilized workload components, including application features, platform
features, and resources.

This guide describes the recommendations for optimizing workload component costs.
Optimizing component costs refers to the process of evaluating and improving the cost-
efficiency of individual elements within a workload. It emphasizes the continuous review
and potential removal or improvement of outdated, unnecessary, or rarely used
components, such as application features, platform features, and resources. It also
covers cost optimization of disaster recovery environments and how to avoid
introducing unoptimized components. The guidance in this article applies to existing
workloads that aren't in the design phase. Neglecting regular component optimization
can lead to inflated costs, resource waste, and inefficient workloads that drain both time
and money.

Definitions

Term Definition

Application
feature

A distinct capability within the application software that enables users to perform
specific tasks or access specific information.

Platform
feature

A specific functionality or capability provided by a platform. It can vary depending
on the platform, but generally, platform features are designed to enhance the
user experience, improve productivity, or enable specific tasks or actions.

Resource A single entity or component that you can create, configure, and utilize within a
cloud service provider.

Optimizing workload components is about refining the various elements of a workload,
including application features, platform capabilities, and resource. The goal is to ensure
the workload uses all components efficiently and cost-effectively. Strategies include
removing, modifying, and avoiding components that cause you to spend more than you

Key design strategies

need. The component cost optimization process ensures you allocate resources to
features and components that deliver the most value, avoiding unnecessary expenses.

Optimizing application features is the process of either removing, reinvesting, or
monetizing application features based on value. It ensures you allocate resources to
application features that provide the most value to customers. Optimizing application
features helps avoid investing in features that contribute to technical debt or don't yield
enough return on investment.

To determine the value of a feature, consider its effects on the overall application and
the value it provides to the customers. Some factors to consider include:

Customer needs: Assess how well the feature meets the needs and expectations of
customers. Customer feedback, surveys, and usage data can be valuable in
understanding the perceived value.

Business goals: Evaluate how the feature aligns with the strategic objectives of the
business. Consider how features support revenue generation, customer
satisfaction, or competitive advantage.

Effect on user experience: Determine the effect the feature has on enhancing the
user experience and improving usability or productivity.

Differentiation: Assess whether the feature provides a unique selling point or
competitive advantage compared to other applications in the market.

It's essential that you understand the cost associated with each feature for effective
resource allocation and optimization. Consider various aspects when evaluating costs,
such as:

Development effort: Assess the time, resources, and expertise required to develop
and maintain the feature or surrounding features. Underutilized features often
become a key source of technical debt.

Maintenance and support: Consider the ongoing costs associated with maintaining
and supporting the feature, including bug fixes, security updates, and
troubleshooting.

Optimize application features

Evaluate application feature value

Evaluate application feature cost

Infrastructure and resource utilization: Evaluate the effect of the feature on
infrastructure requirements, including server resources, storage, and bandwidth.

Integration complexity: Assess the complexity and cost of integrating the feature
with other systems or third-party services.

Performance considerations: Evaluate the effect of the feature on the application's
performance, including scalability, response time, and resource usage.

Review the value of application features with stakeholders by engaging key personnel,
such as product managers, software developers, and business analysts, to assess the
value of specific features on business objectives. This collaboration is essential for cost
optimization as it provides insights into maintenance efforts and identifies features that
might hinder productivity or detract from developing new, valuable features. Your
development team can give you important information about how much work it takes
to maintain certain features. Encourage them to speak up about features that might be
more trouble than they're worth, especially if these features distract the team from
creating new ones.

Based on your analysis and evaluation, determine the future of the application features.
Remove, reinvest, or monetize any application feature that doesn't provide a return on
investment:

Removal: Consider the planned end of life of an application feature based on data.
Reasons for feature removal might include low customer demand, high
maintenance costs, complexity, or redundancy that’s not worth the effort to fix.
Create a plan for the removal, which might involve refactoring the code, updating
dependencies, or reorganizing the UI.

 Risk: You can inadvertently remove features that are critical for certain
users or scenarios and might negatively affect performance, operations, and
security in your application.

Reinvest: Some application features might not add enough value in their current
state but could add value if you reinvest in them. Reinvestment means reworking
or promoting the application feature. Prioritize the identified improvements based
on their value and feasibility. Determine the roadmap and timeline for

Review application feature value with stakeholders

Determine the future of the feature

implementing the changes. Consider factors such as development resources,
dependencies, and the potential effect on the application.

Monetize: Turn application features into a revenue-generating opportunity via
monetization. Sometimes features provide value to users but aren’t worth the
current investment. Explore opportunities to monetize these features, such as
offering them as separate paid add-ons or licensing them to other companies.

Optimizing workload resources involves removing any resources that unused and
optimizing any underutilized resources that the workload needs. This effort can save
money, avoid waste, and ensure that the workload only uses the resources that add
value.

Remove unused workload resources. Unused resources are deployed services your
workload or operations processes don't use. These resources might be long-term idled,
orphaned, or forgotten. They provide no return on investment, and you should remove
them. Common causes of unused resources include:

Alerts.
Demo builds.
Environment decommissioning.
Feature decommissioning.
IP addresses.
Network firewalls.
Proof of concept.
Snapshots.
Storage accounts.
Temporary testing environments.
Temporary triage environments.

To remove unused resources in a workload, consider these steps:

1. Take an inventory: Conduct a thorough inventory of all resources within the
workload across environments.

2. Find orphaned resources: Resources can become orphaned when they're no longer
needed or when their parent resources are removed. For example, you might
remove a virtual machine, but its associated storage account isn't removed. Review
your workload to identify unneeded or orphaned resources.

Optimize workload resources

3. Remove idle components: There’s typically a cost associated with a deployed
resource. Even if the resource allows you to stop or reallocate, you might continue
to pay for the resource. Consider removing idle resources. If you need the data,
back it up first and then remove the resource. You’re better off redeploying the
resource and restoring the data than allowing the resource to remain idle.

Optimize underutilized resources. Underutilized resources represent wasted
expenditure as you pay for resource capacity that isn't fully utilized. Identify and
optimize these resources to reduce costs and allocate resources more effectively. To
evaluate and optimize the cost of underutilized resources, follow these steps:

1. Monitor resources: Use tools to monitor how much CPU, memory, and storage you
actually use. Choose the best plan that matches your needs based on this
information.

2. Analyze utilization: Look at the data to find out which resources you don't use. Pay
attention to the resources that have low usage over time or large differences in
usage between busy and slow times.

3. Right-sizing: Check if there are too many resources allocated to features that aren't
in use. If so, adjust their size to better match what you actually need.

4. Automatic scaling: Use automatic scaling to adjust the resources you use based on
how busy you are. Make sure that you set a maximum scaling limit to avoid
sudden spikes that can be costly and unnecessary.

After you make these adjustments, test to make sure everything still works as it should.
Continuously monitor resource utilization and adjust resource allocation as workload
demands change over time. Regularly review and optimize resource utilization to
maintain cost efficiency and performance optimization.

Optimize disaster recovery resources. Optimizing disaster recovery environments is
about ensuring the resources allocated for disaster recovery are used efficiently. A warm
(active-passive) disaster recovery strategy is a common source of underutilization. In a
warm disaster recovery strategy, one environment receives all the load while the other
environment is idle until there's a disaster scenario. To optimize a disaster recovery
environment, consider how a hot (active-active), cold (active-off), or active-redeploy
approach can help avoid underutilized resources. Here's an overview of these three
disaster recovery approaches:

Hot plans: Both the primary and secondary environments serve traffic concurrently.
Your workload can balance loads between these environments and respond to
demands in real-time. Distributing the load between two active environments,

allows you to use cheaper resources, reduce single-point bottlenecks, and utilize
capacities to the fullest. It can lead to reduced costs in terms of resource wastage
or idling. A hot approach might demand more investment in synchronization and
maintaining parity between the two environments.

Cold plans: A cold disaster recovery model involves a standby environment that
remains dormant until a disaster triggers the need for failover. Since the standby
environment isn't actively running, costs related to compute, storage, and network
operations are minimized. Your expenses revolve around storing backups, virtual
machine (VM) images, or templates. Failover in the cold model can take longer
because resources need to be booted up and data might need to be restored.
Ensure that the recovery time aligns with your business's recovery time objectives
(RTO) before committing to this approach.

Active-redeploy: This strategy uses infrastructure as code. When a failover event
occurs, you deploy the secondary environment, using predefined templates and
scripts. With no predeployed compute resources in the disaster recovery
environment, you save on the costs associated with maintaining idle resources. You
only incur costs during the actual deployment in a failover scenario. Like the cold
approach, this model might introduce longer recovery times, especially if the
infrastructure's complexity is high. You should test and measure the recovery time
to ensure it meets your recovery time objective.

Optimizing platform features involves eliminating or updating platform features, such as
performance tiers and configuration settings, to optimize costs. It helps align spending
with the requirements of the workload and avoids unnecessary expenses on unneeded
features. Here are some tips to optimize the cost of platform features:

Know the capabilities of the things you purchase: Before you can optimize, you need
a clear inventory of the services and their features across your cloud platforms.
Understand the features and functionalities of the platforms or services in your
workload. Be aware of the specific tier you chose and the features each tier offers.
For example, if you don't require autoscaling or advanced networking, a lower-tier
plan might suffice.

Disable unused features: Identify and disable platform features that cost money.
You might have unneeded storage snapshots, unused disks, redundant security
features, or underutilized networking capabilities.

Optimize platform features

Use the right versions: Newer versions of a service can provide similar performance
for the same price. For example, a virtual machine with newer hardware can often
provide the same performance for less money.

Use the right configurations: You might be paying for more availability or
performance than you need. Eliminate availability or performance guarantees that
the workload doesn’t need.

Eliminate unneeded automation: Evaluate your automation processes and eliminate
any unused automation that might incur extra costs.

Eliminate tool redundancy: Get rid of tools that you don't need or tools that
provide the same function. Evaluate potential redundancy in the tools you use for
building software, writing code, security, and monitoring. For example, if you use
GitHub Actions to build your software, you don't need to buy another tool that
builds software. Before you buy features or tools, check if there's already a tool in
your workload that can do the job. Eliminate tool redundancy to avoid wasted
money and make the most of what you already have.

Preventing unoptimized components is about proactively ensuring components are
essential and optimized before adding or modifying. The best way to get rid of waste is
to avoid it in the first place. Use strategies that prevent unnecessary expenses by
addressing inefficiencies at the root, ensuring a workload runs cost-effectively from the
outset. To help prevent waste, consider these strategies:

Find the root cause before changing solutions: Before you fix a problem, make sure
you know what's actually causing it. For example, if your website is slow, don't
immediately switch to a new system. First, figure out why it's slow. You might find
out that the real issue is something else, like bad database queries. Fix the real
problem to save time and money.

Apply metadata: Apply metadata to organize and track resources. You can use
metadata to categorize and group resources, making it easier to track, delete, and
avoid orphaned resources. Create a consistent metadata strategy across resources.
Consider adding owners, the anticipated resource duration (for example, sunset-
30d), or other tags.

Document nonstandard changes: Document any changes made to your
infrastructure or configurations performed outside the normal control process of
your workload to cut unexpected costs. For example, you might increase a

Prevent unoptimized components

resource’s scaling (up or out) capacities to meet a short-term demand or triage an
issue but forget to scale it back down. Make a list of nonstandard changes and use
it as a reminder to revert the changes when they're no longer necessary.

Keep things simple: Simplify your infrastructure and minimize complexity to help
reduce costs. Use only the necessary resources and services that meet your
requirements.

Optimizing application features: You can use Azure Monitor and Application Insights to
monitor the usage of your application and identify areas that are or aren't used. Based
on the insights gathered, you can make informed decisions to remove or optimize
unused or underutilized features.

Optimizing workload resources and platform features: Azure Advisor provides cost
recommendations provides recommendations to identify and eliminate unused
resources. You can use Advisor to analyze your resource usage and receive suggestions
about resources to remove or scale down. The Cost Optimization workbook in Azure
Advisor serves as a centralized hub for some of the most commonly used tools that can
help you drive utilization and efficiency goals. It offers a range of recommendations,
including Azure Advisor cost recommendations. It also helps identify idle resources and
manage of improperly deallocated virtual machines.

Azure Monitor supports workbooks. With Azure Monitor workbooks, you can find or
create a workbook that finds and reports orphaned resources across a defined scope.
You can use Azure Automation to shut down virtual machines during periods of
inactivity. Resource shutdowns help reduce costs by minimizing the use of idle
resources.

You can use the autoscale feature in Azure to automatically scale your application based
on predefined conditions, so you don’t have to overprovision capacity. Automatic
scaling can help you allocate resources efficiently and cost-effectively.

From a design perspective, Azure load balancers can distribute loads across availability
zones and regions. These load balancers can help eliminate idle resources, for example,
in disaster recovery approaches.

Recommendations for continuous performance optimization
Recommendations for defining reliability targets

Azure facilitation

Related links

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-optimization-workbook
https://learn.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-overview
https://learn.microsoft.com/en-us/azure/automation/automation-solution-vm-management-config
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

Recommendations for highly available multi-region design
Recommendations for optimizing scaling and partitioning
Recommendations for setting spending guardrails

Refer to the complete set of recommendations.

Cost Optimization checklist

Cost Optimization checklist

Recommendations for optimizing
environment costs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:08 Optimize environment costs. Align spending to prioritize preproduction,
production, operations, and disaster recovery environments. For each environment,
consider the required availability, licensing, operating hours and conditions, and
security. Nonproduction environments should emulate the production
environment. Implement strategic tradeoffs into nonproduction environments.

This guide describes the recommendations for cost optimizing workload environments.
Each environment should be tailored for its specific purpose and optimized for cost
effectiveness. It's important to make strategic tradeoffs and allocate resources where
they matter the most, without compromising on critical components. By treating
environments differently and optimizing them accordingly, you can achieve a balance
between cost optimization and meeting the required objectives.

Definitions

Term Definition

Recovery point
objective (RPO)

The maximum acceptable duration of data loss during an incident.

Recovery time
objective (RTO)

The maximum acceptable time that an application can be unavailable after an
incident.

Service-level
agreement (SLA)

A contractual agreement between the service provider and the service
customer. The agreement defines the service-level objectives (SLOs). Failure to
meet the agreement might have financial consequences for the service
provider.

The goal of optimizing environment costs is to find the right balance of value, cost, and
risk for each environment, including production, preproduction, and disaster recovery
(DR) environments. Customize each environment for its particular use to save money
and efficiently use resources. Determine the benefits of each environment, like efficiency
or customer satisfaction. You want to evaluate the return on investment (ROI) for the

Key design strategies

environment, even if it doesn't make a direct profit. Spend more money on high-risk
environments to reduce issues and save money on low-risk environments. Aim to
balance value, cost, and risk in each environment.

Assessing the value of each environment means understanding its broader effect on
business, gauging user satisfaction, and determining how it aligns with overarching
organizational goals. This assessment helps you make informed decisions about
resource allocation and align cost with environmental priorities. The essence of value
extends beyond how much revenue an environment generates. When evaluating an
environment's value, you need to prioritize spending in a manner that resonates with
the goals of the workload. To assess the value of each environment, consider the
following factors:

Consider the user: Consider who uses each environment and what they need from
it. For example, customers use the production environment, which must be reliable
and meet specific SLAs for performance and uptime.

On the other hand, the development environment is mainly for the workload team,
such as developers and testers. This environment doesn't have to meet customer-
facing SLAs, but it should have the necessary tools and resources for the team to
work effectively.

When you understand the unique needs of users in each environment, you can
better allocate resources and avoid extra costs. This avoidance helps ensure each
environment is functional and cost effective.

Align with organizational measures of value: Align your cost-cutting efforts with
your organization's priorities, like profit or employee satisfaction. For each
environment, understand how success is defined, so you can keep your actions on
target. For example, if your organization focuses on profit maximization or
employee satisfaction, align your spending decisions with those metrics.

Determining environment costs is about knowing the costs of infrastructure, services,
licenses, and operational expenses in each workload environment. Cost management
tools are key to gaining insights into spending patterns and trends across environments.
To determine environment costs, consider these strategies:

Assess environment value

Determine environment costs

Identify cost drivers: Identify the key factors that drive costs in each environment.
These factors can include resource utilization, storage usage, data retention, data
transfer, and specific services.

Evaluate risks: Assess the risks that are associated with spending decisions and
their potential effect on the environment and business operations. Consider factors
such as data security, compliance, performance, audits, and SLA requirements.

Monitor and adjust your spending: Continuously monitor and analyze spending
patterns, value delivery, and risk factors. Regularly review and adjust your spending
optimization strategies as the needs of the environment and business evolve.

Optimizing costs in the production environment involves implementing strategies to
reduce unnecessary expenses and improve operational efficiencies. Focus on
differentiating production deployments and meeting the needs of users. Here are
recommendations for optimizing the production environment:

Differentiate regions: Spend less on regions that serve fewer customers. For
example, you should invest more in a region that serves 90 percent of your users
than in a region that serves 10 percent of your users. Adjust your deployment
strategy to meet the requirements of each region and user segment.

Differentiate scaling: Implement horizontal and vertical scaling strategies. Scale
resources efficiently to meet demand without over-provisioning.

Differentiate infrastructure: Choose cost-effective hardware and infrastructure
solutions that meet the required performance and scalability. Consider factors such
as performance, cost, reliability, and scalability.

Tune tenant models: Customize the environment based on the tenant model. For
example, spend more on services and features for paid tenants and spend less for
nonpaying tenants.

A DR environment refers to infrastructure and processes that a workload uses to recover
after a disruptive event. Disruptive events include natural disasters, cyber attacks, and
hardware failures. Balance the cost of maintaining a DR environment and the potential
affects of a disruptive event. Consider the following strategies:

Optimize the production environment

Optimize the DR environment

Evaluate the criticality of systems and data: Assess the importance of systems and
data to determine the required level of protection and resources for each
component.

Determine RTOs and RPOs: To help determine the design of the DR environment,
define the acceptable downtime and data loss limits for each system or
application.

Optimize a cold DR environment: A cold DR environment has little or no
infrastructure or running services. You can use infrastructure as code (IaC) to
quickly deploy infrastructure during a disruptive event. Your backup and storage
policies need to meet the RPOs and RTOs of the environment. Ensure that the
amount and frequency of data backups isn't more robust than needed.

 Tradeoff: A cold DR environment is a cost-effective option, but you might
have long recovery times.

Optimize a hot DR environment: All infrastructure and services run in a hot DR
environment. The data mirrors the primary site in real time. It provides near-
instantaneous failover and minimal data loss if there's a disaster. Consider an
active-active deployment to optimize costs.

Optimize a warm DR environment: A warm DR approach is a middle ground
between a cold DR environment and a hot DR environment. A warm environment
is partially active and periodically syncs with the primary site. It offers a balance
between cost and recovery time. However, it’s the least cost-optimized approach.
Consider a cold or hot approach to optimize costs.

Optimizing preproduction environments involves strategically managing resources
within development, testing, and staging areas to closely simulate production while
reducing unnecessary costs. Preproduction environments don't require the full scale and
availability of production environments. The most opportunities lie in tailoring these
environments to specific testing and development needs without duplicating production
exactly. Areas of cost reduction include using lower-cost resources, turning off
unneeded services, and applying discounts offered for preproduction usage. Consider
the following strategies to optimize preproduction environments:

Optimize preproduction environments

Evaluate preproduction environments

Insufficient or improper allocation of preproduction environments might lead to over-
provisioning or under-provisioning of resources. To evaluate your preproduction
environments for your workload, consider the following guidance:

Understand the environment types: Identify the types of preproduction
environments, such as development, testing, and staging, that you need for your
workload. Each environment should have a defined role and specific function to
ensure efficient resource allocation.

Align with users' requirements: Before you set up preproduction environments,
understand the requirements and expectations of your users. Tailor the features
and specifications based on their needs to avoid unnecessary expenses of features
or resources.

Consolidate the environment: Determine if you can combine environments without
compromising their functionality. Combine environments that have functions that
don’t overlap. For instance, you can merge a user acceptance environment with a
quality assurance environment. The functions are distinct, and one environment is
usually idle when the other is in use.

 Risk: Be cautious when you combine environments to ensure that you
don't introduce conflicts or compromise the testing or development processes.

The following table provides examples of common preproduction environments.

Preproduction
environment example

Description

Development
environment

Developers use this environment to write and test code. It provides a
sandbox space, so developers can experiment, build, and integrate
code changes.

Quality assurance
environment

This environment is dedicated to quality assurance activities. It for
testing to identify and fix bugs or issues before deploying to the
production environment.

Security environment This environment is for security testing. It's for ensuring an application
is secure against threats and vulnerabilities.

User acceptance testing
environment

In this environment, end users and stakeholders test an application to
validate its functionality and ensure that it meets requirements and
expectations.

Staging environment This environment closely resembles the production environment. It's
for final testing and validation before deploying to production.

Applying governance is about limiting deployment options in preproduction
environments to control expenses and mitigate risks. In preproduction, you have
flexibility to tailor configurations and deploy resources. The more the preproduction
environment deviates from the production environment, the greater the potential risk.
Use governance to constrain preproduction environments. Consider the following
guidelines:

Limit performance tiers: Evaluate the performance requirements of your
preproduction environments. Choose performance tiers that balance cost and
performance. A service often has different performance tiers, and some of these
tiers are more suitable for testing. Some services have tiers that offer production-
like features but don't come with an SLA. These services reduce costs but still
provide the necessary functionality for testing and development.

Understand preproduction SKUs: Some SKUs are designed for development
environments. To optimize costs, evaluate services and tiers. Opt for low-
performance tiers if the workload doesn't require high performance.

Control the number of instances and CPUs: Determine the optimal number of
instances and CPU resources that your preproduction environment needs based on
workload demands. Avoid over-provisioning resources to minimize costs.

Limit retention and logging: Define retention policies for logs and data in
preproduction environments. Consider the necessary duration for retaining logs
and data based on compliance requirements and cost considerations. Avoid
excessive logging and retention to reduce storage costs.

Use a consistent CPU architecture: Use the same CPU architecture in preproduction
and production. For example, x86 applications don't run natively on Azure
Resource Manager, and vice versa. Use the same CPU architecture as your
production environment to ensure compatibility and minimize potential issues.

Use the same operating system: Avoid changing the operating system (for example
from Windows to Linux) or kernel in preproduction environments. Software built
for Windows often doesn't run natively on Linux without a compatibility layer, and
vice versa. The file systems and directory structures are different, which can cause
application patching issues. Consistent environments help reduce the risk of
compatibility issues and ensure smooth deployments.

Constrain scaling: To optimize cost, you can constrain automation to mitigate
runaway automation. For example, set a maximum scaling limit at three in the

Apply governance

development environment, and set it at 10 in the production environment.
Constrain scaling to help control the resource usage and automation cost.

Turn off unneeded resources: Turn off resources when they aren't actively used, such
as during off hours and weekends. You can use automation tools or scripts to
schedule the shutdown and startup of resources. Some vendors provide APIs that
you can use to programmatically stop and start the resources. Consider using IaC
to create ephemeral environments that you can remove when you no longer need
them.

It's often unnecessary and expensive for preproduction environments to mirror the
production environment exactly. The goal is to ensure each preproduction environment
is appropriately different from production to avoid unnecessary costs. However, when
preproduction and production are different, there's a risk of deploying a bug into
production. The more different these environments are, the more risk there is. Tailoring
the preproduction environment to meet your needs can help you manage risks while
optimizing cost. To balance the similarity with production, consider the following
recommendations:

Avoid exact replicas: Avoid making the preproduction environment an exact copy
of production. It can unnecessarily increase costs. Create a preproduction
environment that's cost-effective but enable you to uncover and address potential
risks before deployment.

Avoid extreme deviations: Avoid excessive deviation from production, like the use
of different services. Different services might not accurately simulate real-world
risks. Determine a risk threshold, and don't cross the threshold solely to save
money.

Shorten runtimes: Consider shortening the runtimes of processes in the
preproduction stage to save money. Be cautious of new vulnerabilities that might
arise, such as undetected memory leaks.

Review licenses: Review the licensing plans for your security tools. If the number of
nodes vary significantly between your production and preproduction setups,
reassess your needs to fine-tune costs without compromising security.

Balance similarity with production

Optimize development environments

Development environments are designed for development, testing, and debugging
purposes. They have shorter lifecycles and are often created as needed and exist for a
short time. Development environments typically have lower requirements for reliability,
capacity, and security compared to other preproduction and production environments.
They might have fewer capabilities and can accept lower resource utilization. To
optimize your development environment:

Evaluate tooling: Regularly assess the cost-effectiveness of your current tooling
setup, including integrated development environments (IDEs), licenses, and related
tools. Consider free or open-source alternatives that offer similar functionality
without compromising quality. Continuously reevaluate the necessity and
efficiency of these tools as the development landscape evolves.

Consider hardware: Evaluate the cost and performance of your current hardware
setups. Investing in better and more efficient hardware can enhance productivity
and reduce long-term costs. Instead of frequent hardware replacements, consider
upgrading existing systems to prolong their lifespan and improve performance.

Optimize the number of environments: Analyze the advantages and disadvantages
of individualized development environments versus a shared environment.
Individual environments can mimic production setups, prevent interference among
developers, and offer customized setups. However, scaling becomes more costly as
the number of developers increases. Shared environments can save costs, but
reliability concerns might arise if issues affect the entire development team
simultaneously. Find the right balance based on cost, risk mitigation, efficiency,
and developer satisfaction.

Regularly clean up: Routinely clean up and optimize your development
environment to avoid the accumulation of orphaned resources, unused data, and
proof-of-concept experiments. Implement clean-up processes or automated tools
to identify and remove unused resources. Keep only essential and active
components. Regular clean-up helps reduce storage costs and ensures efficient
resource utilization.

Implement sampled scaling: Instead of scaling all components to their maximum
capacity, consider a sampled approach in which you selectively scale vital
components. This approach can be cost-effective while minimizing risks. Evaluate
the risk-to-benefit ratio of not scaling certain elements and consider the potential
effect on the environment.

Optimize data management: Development environments might have low needs for
data retention and backup frequency.

You can optimize costs in a preproduction environment by using endpoint emulation or
mock endpoints, particularly for expensive resources like GPUs. Identify components or
services in your preproduction environment that are the most expensive or resource-
intensive. Use mock endpoints to simulate the responses of these costly components
without invoking them. To simulate API responses, you can use tools like WireMock,
Postman's mock server, or custom implementations.

Emulation and mock endpoints help save costs, but you must ensure that they represent
the production environment to a sufficient degree for testing. Strike a balance between
accuracy and cost to help avoid future issues in production. For example, if GPUs are a
major cost factor, consider GPU emulation for tasks that don't require real GPU
processing power in preproduction stages. Emulation might not fully represent the
performance or quirks of real GPUs, so use it when exact GPU behavior isn't critical for
preproduction testing.

Determining and optimizing environment costs: Microsoft Cost Management is a suite
of tools that help organizations monitor, allocate, and optimize the cost of their
Microsoft Cloud workloads. Cost Management is available to anyone with access to a
billing or resource management scope.

Azure Advisor is a tool that provides cost optimization recommendations, including
identifying areas of virtual machine usage that need optimization. Use Advisor to help
you make informed decisions and optimize costs in your Azure environment. Azure
provides cost management tools and features that help prioritize spending. You can use
these tools to track and analyze costs across environments, set budgets, and receive
cost optimization recommendations.

Applying governance: With Azure Policy, you can limit resource types, SKUs, and
instances by defining policy rules that enforce restrictions on the types of resources that
you can deploy in your Azure environment. You can maintain control over the
provisioned resources and ensure compliance with your organization's policies and best
practices.

To limit resource types by using Azure Policy, you can define policy rules that specify the
allowed resource types. Apply those rules to the relevant Azure subscriptions or
resource groups. Azure Policy prevents users from deploying resources that aren't
allowed.

Consider endpoint emulation

Azure facilitation

https://learn.microsoft.com/en-us/azure/cost-management-billing/cost-management-billing-overview
https://learn.microsoft.com/en-us/azure/advisor/advisor-overview

Use Azure Resource Manager to define and manage resources in a declarative manner.
You can tune resources that are allocated to each environment based on their specific
requirements. Use templates and parameterize resource configurations to optimize
costs.

Optimizing preproduction environments: Azure offers dev/test pricing options that
provide discounted rates for nonproduction environments. You can allocate more
resources and budget to critical production environments, which optimizes costs in
nonproduction environments. You can also use the Azure licensing offer, Azure Hybrid
Benefit.

You can use Azure API Management for API mocking. API Management acts as a facade
to back-end services, which allows API providers to abstract API implementations and
evolve back-end architecture without affecting API consumers.

Cloud Adoption Framework provides guidance to stress the importance of optimizing
environment costs across the organization.

For more information, see Best practices for costing and sizing Azure resources.

Refer to the complete set of recommendations.

Organizational alignment

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/govern/cost-management/best-practices#best-practice-reduce-nonproduction-costs

Recommendations for optimizing flow
costs
Article • 12/20/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:09 Optimize flow costs. Align the cost of each flow with flow priority. When you
prioritize flows, consider the features, functionality, and nonfunctional
requirements of each flow. Optimizing flow spend often requires strategic
compromises.

This guide describes the recommendations for optimizing the cost of each of the flows
in your workload. Cost-optimizing the flows in a workload involves strategically
allocating and managing resources to minimize expenses while maintaining
performance. This optimization is crucial because it ensures efficient utilization of
invested resources, reduces unnecessary expenditures, and improves the overall return
on investment for the infrastructure. If you don't cost-optimize the flows in a workload,
you risk overspending on resources, which results in inflated operational costs and
diminished profitability.

Definitions

Term Definition

Decouple The strategy of removing a flow from a resource that contains multiple flows and
placing it into a separate resource.

Flow In a workload, the sequence of actions that performs a specific function. A flow
involves the movement of data and the running of processes between components
of the workload.

System
flow

The flow of information and processes within a system. The system automatically
follows this flow to enable user flows or workload functionality.

User flow The paths or sequences of actions that users take within an application or system.

ﾉ Expand table

ﾉ Expand table

Key design strategies

Invest more in high-priority flows than in lower-priority flows. Aligning flow priority and
spending can involve decoupling flows that currently share the same resource. It can
also involve combining flows that have similar requirements but are run on separate
resources. For example, suppose you have a web application that includes multiple
flows, like user registration, sign-in, and data processing. These flows run on a single
server, even though they have different resource needs. To optimize both costs and
performance, you might separate flows or combine flows:

Separate flows. For example, you might decouple the user registration flow from
the others and move it to a dedicated, lower-cost server. This flow is important but
not resource-intensive, so it's a good candidate for a less expensive server.

Combine flows. For example, you might combine the sign-in and data processing
flows, which both have higher resource requirements, and run them together on a
high-performance server. Combining these flows enables the server to efficiently
handle the resource-intensive needs of both flows. It optimizes performance and
costs.

In a workload, there can be different types of flows or paths that you need to consider.
This guide focuses on the following flow types:

System flows. Optimizing system flows involves streamlining the communication
and interaction between system components, minimizing bottlenecks, and
ensuring efficient resource utilization.

User flows. Optimizing user flows involves improving the user experience, reducing
friction points, and ensuring smooth navigation and interaction within the
application or system.

A flow inventory is a comprehensive list and description of all the sequences of actions,
data transitions, and system interactions within a workload. A flow inventory is the first
step to ensuring investments align with the priority of flows. You should only optimize
flows when you fully understand their purpose and dependencies. Here are steps for
creating an inventory of workload flows:

1. Document flows. Start by documenting and listing all existing flows in your
workload to get an understanding of the comprehensive state of the system.
Include every sequence of actions, data transitions, and system interactions.
Familiarize yourself with every component, like external services, databases,
middleware, and third-party integrations. Additionally, track or estimate the
volume of requests over time.

Create an inventory of flows

2. Visualize flows. To get a clearer perspective, represent your findings visually,
possibly in flowcharts or diagrams. Visualizations help you see the
interdependencies between components. Consider using a tool like Visio to help
you with the visualizations.

3. Categorize flows. Bundle similar flows, taking into account attributes like their
functionality (for example, authentication, data retrieval, and transaction
processing), criticality to business, or the resources they use (CPU, memory, or
bandwidth).

Flow prioritization is the process of classifying flows based on their influence on
business outcomes, implications on user experience, and the resources they consume.
Critical flows often require higher levels of availability, faster recovery times, and better
performance to meet workload objectives. By prioritizing flows, you can better align
spending to flow priority. To prioritize flows, consider the following steps:

Identify flow value. When you optimize workload flow costs, you need to identify
the flow that provides the most value. You don't want to spend more than a flow is
worth. Instead of simply cutting costs, consider shifting costs to prioritize the more
valuable flows. For example, your checkout flow is critical for business, but the
purchase history isn't. You should allocate more resources and budget to the
checkout flow.

Low-priority flows have lower expectations for availability, recovery, and
performance. You can reduce costs by using cheaper configurations to reduce
performance, availability, or business continuity spending.

Consider flow metrics. If you're struggling to prioritize your flows, consider the
availability and recovery goals that you assigned to them. Critical flows often have
high availability requirements and service-level agreements (SLAs). Flows
associated with a lower RPO and RTO are more important than flows that have a
higher RPO and RTO.

Sometimes your flows are already running on different resources. In these cases, you
can more easily evaluate and optimize spending. Evaluate the components and
processes involved in each independent flow to determine whether there are ways to
optimize or simplify them. To optimize independent flows, you can follow these steps:

Prioritize flows

Optimize independent flows

Eliminate unnecessary components. Remove any extraneous elements that don't
contribute to the flow's core functionality, thereby reducing complexity and cost.

Redesign the flow. Consider redesigning the flow's architecture to enhance its
efficiency. You might change the sequence of operations, reduce latency, or
improve data transfer speeds, for example.

Choose an appropriate performance tier. Different flows might have varying
demands in terms of processing speed, memory, or other resource metrics. Make
sure to choose a resource tier that aligns well with each flow's specific
requirements.

Adjust scaling settings. If a flow experiences variable demand, consider
implementing autoscaling to dynamically adjust resources according to real-time
needs, thus optimizing costs.

Fine-tune configurations. Fine-tune other settings, like networking or data storage
options, to better align with the flow's performance and budget requirements.

Separating dissimilar flows onto different resources is a process of allocating distinct
tasks with varying computational needs to dedicated resources. Dissimilar flows are
flows that have different attributes. These attributes can include computational
requirements, data dependencies, I/O operations, latency sensitivity, security needs, and
compliance requirements. It's often more cost efficient to run different types of flows on
separate resources. Doing so enables precise resource allocation to each flow, which
reduces unnecessary expenditures and ensures maximum efficiency.

Consider separating dissimilar flows that are currently combined. This separation boosts
scalability, fault tolerance, and adaptability and also streamlines costs. By ensuring that
each flow operates independently, you reduce interference risks and can allocate
resources more cost-effectively based on each flow's priority. For example, assume that
you colocate CRM (user flow) with a data engine (data flow). User traffic to the CRM
system during office hours might slow down the data engine. When you decouple flows,
the data engine can scale each component or service independently based on workload
demand. This decoupling optimizes resource allocation and reduces costs.

Combining similar flows onto a single resource is a process of consolidating tasks or
processes with comparable attributes and using shared resources for them. This strategy

Separate dissimilar flows

Combine similar flows

eliminates redundancies and ensures more efficient use of resources, leading to
significant cost savings. Similar types of flows share similar attributes. You might
consider the same attributes that you look at when you separate dissimilar flows:
computational requirements, data dependencies, I/O operations, latency sensitivity,
security needs, and compliance requirements. Here are some examples where
combining similar workload flows to use the same resource can lead to substantial
savings:

Web servers. Instead of dedicating separate web servers for each application,
consider consolidating them, especially if their traffic isn't consistently high. A
shared web server, paired with a reverse proxy, can effectively manage and route
traffic to multiple applications.

API gateways. Rather than maintaining individual API gateways for separate
microservices or applications, you can use a centralized API gateway to streamline
requests and direct them to the relevant service. Doing so makes management
easier and also reduces costs.

Log processing. Instead of having multiple applications or services that each
operate their own log processing instances, consider directing them all to a shared
log processing tool. This approach minimizes the number of active instances,
which translates to direct cost savings.

Authentication services. If multiple applications deploy their own distinct
authentication mechanisms, redundancy is introduced. Integrating a single sign-on
(SSO) solution or a communal authentication service reduces this duplication and
optimizes resource usage, which reduces costs.

 Risk: Don't mistake coincidence with design. Two flows that look similar don't
necessarily serve the same purpose. You need to understand the function and
design of each flow before merging or changing them. Misinterpreting a flow by
focusing solely on its appearance can lead to unintended consequences and disrupt
the service or process that it supports. If multiple flows serve the same function and
there are no discernible differences in their design or intent, consider consolidating
them.

The nature of flows and workloads can change over time, so you need to review flow
spending to ensure that costs align with priorities. Evaluate the resource utilization of
each flow by analyzing the compute, storage, and network usage associated with each
flow. Identify any inefficiencies or areas where resources are underutilized. This analysis

Continuously monitor flows

helps you pinpoint opportunities for cost optimization. Here are some considerations to
take into account when you review flow utilization:

Analyze usage patterns. Analyze the usage patterns of the flows. Some flows might
be more active during certain times of the day or month, while others might have a
consistent load. By understanding these patterns, you can predict resource needs
and adjust allocation to avoid bottlenecks and overprovisioning.

Monitor relevant metrics. Determine the metrics that can help you assess the
efficiency and cost-effectiveness of each flow. Consider CPU utilization, data
transfer costs, transaction costs, and storage footprint. Use monitoring tools to
gather detailed metrics about resource usage and performance.

Consider ongoing maintenance. Consider the cost of maintenance, especially when
you use infrastructure-as-a-service solutions like virtual machines. You need to
account for activities like patching, upgrades, backups, monitoring, and security.

During your analysis, identify any inefficiencies or areas where resources aren't utilized
effectively. Consider idle compute instances, unused data, and low network bandwidth.
These inefficiencies can indicate opportunities for cost optimization.

Prioritizing, optimizing, and monitoring flows: The User Flow tool in Application
Insights provides a visual representation of user navigation across your site’s pages and
features. This tool aids in identifying areas where users frequently leave, repeat actions,
or follow specific paths. By comparing actual user behavior with your anticipated
outcomes and objectives, you can identify critical flows. It also allows you to optimize
potential issues such as high churn rates, repetitive actions, or design flaws. The tool
also allows for custom property filtering through dimensions, offering a more tailored
analysis.

Azure Monitor helps you gain insights into the performance and health of your
applications. It provides monitoring and diagnostics capabilities. These capabilities
enable you to identify performance bottlenecks, optimize resource utilization, and
detect and troubleshoot issues that might affect costs.

Log Analytics is a tool that enables you to collect, analyze, and visualize log data from
various sources. By using Log Analytics, you can gain insights into your application and
infrastructure logs, identify trends, and optimize costs by managing usage and data
retention. Consider colocating logs and using dedicated solutions instead of shared
ones to better manage costs.

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/app/usage-flows
https://azure.microsoft.com/products/monitor
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview

User Flow tool
Azure Monitor

Refer to the complete set of recommendations.

Related links

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/app/usage-flows
https://azure.microsoft.com/products/monitor

Recommendations for optimizing data
costs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:10 Optimize data costs. Data spending with data priority. Data optimization should
include improvements to data management (tiering and retention), volume,
replication, backups, file formats, and storage solutions.

This guide describes the recommendations for optimizing data costs for a workload.
Optimizing data costs involves minimizing the expenses related to the storage and
management of data according to its significance and access frequency. Appropriate
data management can significantly reduce overhead costs and align spending with data
utility. Neglecting to optimize data costs can lead to inflated expenses, inefficient
resource allocation, and financial waste due to misaligned storage solutions and
unnecessary data retention.

Definitions

Term Definition

Data lifecycle
management

The process of managing data throughout its entire lifecycle, from creation to
deletion. This process involves organizing, storing, protecting, and archiving
data based on its value and usage patterns.

Data redundancy The practice of storing duplicate copies of data across multiple storage
systems or locations. The purpose of data redundancy is to improve data
availability and fault tolerance.

Data tiering A storage strategy that involves categorizing data based on its access
frequency and storing it on storage tiers accordingly.

Retention policy The duration for which data should be retained before it can be deleted. It
specifies the time period during which data must be preserved to meet legal,
regulatory, or business requirements.

Within a specific workload, you optimize data costs by reducing the expenses associated
with storing and managing data. There are various strategies and best practices to
minimize data storage and processing costs. The goal is to align data costs with data

Key design strategies

priority. You need to assign cost tiers to types of data based on their importance or
frequency of access.

The primary drivers for the cost of workload data are access frequency, access latency,
and storage amount. The following guidance contains strategies for optimizing costs
across these cost drivers.

Before you can optimize the cost of your data, you need to generate an inventory of
data. Examine data access and determine its importance within your workload and its
operations. Identify which data is accessed frequently and which data is accessed less
frequently. The following inventory actions can help you allocate storage resources
effectively:

Collect data access information: Conduct a data audit to identify and catalog all
data stores. Determine the value of data sets based on their importance to
business operations, return on investment, and frequency of use. Gather access
logs, usage metrics, or analytics from your data storage solutions.

Identify data types: Categorize data based on its type, such as personal data,
financial data, intellectual property, or operational data. Understand the sensitivity
and criticality of each data type.

Identify access patterns: Identify the patterns in data access, such as daily, weekly,
or monthly usage patterns. You should understand latency, file sizes, and data
freshness requirements for that data.

Data prioritization is the process of categorizing and assigning importance levels to
types of data based on sensitivity and criticality. Data priority should align with the
importance of the environment. For example, production data is more important than
preproduction data.

Assess the importance of various types of data to your workload by using these steps:

1. Define priority levels: Establish priority levels for data (such as high, medium, and
low) based on its value to the organization, regulatory requirements, and potential
effect of data loss. The goal is to align data priority to the appropriate data
solution.

Take an inventory of data

Prioritize data

2. Assign labels: Label each data set with its sensitivity and criticality. You can apply
labels at the row, column, or file level, depending on the data structure and usage.
For databases, you can use a special tool to label and relate the sensitivity and
criticality of data to specific rows and columns. This approach provides granular
control over the management and access of data.

Data management is the process of storing, moving, and securing workload data. By
optimizing data management, you can align spending to data priority and derive more
value from your data. Consider the following strategies for data management.

It's important to manage data throughout its lifecycle. Stages of the lifecycle include
data creation (or acquisition), storage, usage, sharing, retention, and disposal (deletion
or archiving). The goal of data lifecycle management is to optimize data storage
solutions while complying with relevant regulations and policies.

Data storage has three critical cost components:

Storage cost: The expense associated with storing data, such as per gigabyte.

Transaction cost: Costs linked to data operations, such as write operations, read
operations, and data retrieval (per gigabyte). Reading and writing data might have
different costs.

Latency cost: The expense associated with the speed or delay in accessing the data.

The following considerations are foundational to data lifecycle management:

Use data tiering: The goal of data tiering is to align access and retention with the
most cost-effective storage tier. Storage tiers range from frequent/immediate
access (hot) to infrequent/delayed access (cold).

It costs more to use a tier that doesn't align with data access and retention needs.
For example, data that your application accesses frequently should be in hot
storage. Data that your application accesses infrequently should be in cold storage.
Effectively managing these aspects helps ensure efficient data storage.

Consider compliance requirements: Implementing data tiering requires careful
consideration of compliance requirements and data governance policies.
Compliance and legal requirements often drive data access and retention. Establish

Optimize data management

Optimize data lifecycle management

data retention policies to ensure compliance with legal, regulatory, and business
requirements.

Define data lifecycle policies. Data lifecycle policies specify when and how data
should be moved between storage tiers based on predefined criteria. These
policies ensure that you keep data in the appropriate tier for the required duration.
For example, a policy can state that data must be retained in the hot tier for 30
days, in the cool tier for 90 days, and in the archive tier for one year. Set the
retention period based on factors such as legal requirements, industry regulations,
or internal policies.

Use automation: Retention policies can trigger the movement of data between
tiers. You should automate policies by using platform features before you build any
custom solution.

When the retention period for a particular tier expires, the policy can automatically
move the data to the next lower-cost tier. For example, when the retention period
for the hot tier ends, the policy can move the data to the cool tier. The policy
ensures that data is continuously optimized based on its access patterns and cost
requirements.

 Tradeoff: Managing data retention policies requires ongoing monitoring and
maintenance. It can introduce more overhead for data management processes. It
might also affect storage costs. Longer retention periods or the use of higher-cost
storage tiers can increase storage expenses.

 Risk: A poor implementation of data lifecycle management could lead to data
loss or limited access to critical data. You should have proper backup and recovery
mechanisms in place to mitigate the risk of data loss.

Optimizing data segmentation involves strategically organizing data into distinct
segments and consolidate similar data types to efficiently allocate storage resources. It
allows you to tailor allocation of storage resources to data priority.

To effectively optimize data segmentation, you categorize data by type and usage
pattern. Then you place the data segments on the most-effective solution depending on
their operational similarities and requirements. For example, you place data that
requires high-performance storage on resources with faster retrieval time. Archival data
uses a lower-cost resource with slower retrieval time.

Optimize data segmentation

This approach ensures that high-demand data uses faster storage for optimal
performance and less accessed data uses cheaper storage. Similarly, when data types
share usage patterns, you should group them together on a single resource to reduce
overhead, simplify management, and improve data handling.

Minimizing data transfer refers to the reduction of data movement across networks to
decrease data transfer costs. It reduces the volume of data that the workload moves and
lowers network usage fees. To minimize data transfer, consider the following
recommendations:

Use the right location. place data geographically closer to its users. Data proximity
reduces network travel, which speeds up access and optimizes costs.
Use caching. Consider the benefits of caching to minimize data transfer.
Use a content delivery network. A content delivery network can store frequently
read static data closer to users. It reduces data movement across the network and
helps offload bandwidth usage.

Certain production data demands higher security and compliance requirements. These
measures might impose extra costs related to data protection, encryption, backup,
retention, and auditing.

You must ensure that changes in data storage solutions adhere to these requirements.
Data that has lower security and compliance requirements often presents an
opportunity to optimize cost.

Finding strategies to decrease the amount of data that you store can help reduce costs.
By changing the accessibility of the data and implementing the following techniques,
you can effectively optimize the volume of your stored data:

Capture less data: Take a closer look at the data you're capturing. Determine if any
of it's unnecessary for your purposes. Modify your process, settings, or
configurations to capture only the essential data.

Compress data: Compression saves money by reducing the size of data. It's most
effective in write-once, read-never or read-rarely scenarios. It's more suitable for
colder storage.

Minimize data transfer

Optimize security and compliance

Optimize data volume

 Tradeoff: Both compression and decompression of data increase CPU time.

Delete unneeded data: Implement policies to streamline the process of storing
relevant information. Evaluate the retention period for backups and snapshots, and
delete data that you no longer need. You might want to have a process that leads
up to eventual data deletion, such as first archiving data and enabling a soft-delete
period. Always consider recoverability before deleting data.

Deduplicate data: Implement data deduplication techniques to eliminate redundant
data. Deduplication reduces storage requirements by ensuring that you store only
unique data blocks, so you save costs. Use hashing algorithms and comparison of
data chunks. Regularly run deduplication processes to identify and eliminate
duplicate data.

Optimize user behavior: In workloads that collect user-generated data, educate
users on the importance of efficient data storage. Encourage them to regularly
review and delete unnecessary files and data. Implement storage quotas or pricing
models that discourage excessive data storage.

Data replication involves creating multiple copies of data and storing them in other
geographic locations or zones for reliability. Replication ensures that if one location or
zone experiences a failure or outage, you can still access the data from the replicated
copies in other locations.

This redundancy helps improve the availability and resilience of data. It minimizes the
risk of data loss and downtime.

To optimize data replication for cost optimization, consider the following guidelines:

Evaluate data replication requirements: Assess the specific needs of your workload
and determine the level of data replication that it requires. Consider factors such as
data criticality, recovery time objectives (RTOs), and recovery point objectives
(RPOs).

Choose the right replication strategy: Select a replication technology that aligns
with your goals for cost optimization. Consider the service-level agreement (SLA)
requirements for your workload.

Evaluate options such as synchronous replication, asynchronous replication, or a
combination of both. Base the decision on factors like data consistency
requirements and network bandwidth considerations. Assess the level of

Optimize data replication

availability that you need for your workload, and evaluate the need for zonal
versus regional redundancy.

Optimize network bandwidth: Minimize the usage of network bandwidth by
implementing compression and data deduplication techniques. These techniques
can reduce the amount of data transferred during replication, which can save costs.

Monitor and optimize replication frequency: Regularly review and adjust the
replication frequency based on the changing needs of your workload. Fine-tuning
the replication frequency can help optimize costs by reducing unnecessary
replication overhead.

A backup is a periodic snapshot or copy of data that you can create and store separately
from the primary storage. If there's data corruption, accidental deletion, or system
failure, you can use backups to restore the data to its previous state.

Here are some techniques for optimizing backups:

Data classification: Classify your data based on its importance and prioritization for
backup. Classification helps you to focus resources on backing up critical data
while minimizing backup costs for data that's less important.

Incremental backups: Instead of performing full backups every time, consider
implementing incremental backups. Incremental backups capture only changes
made since the last backup, which can reduce storage and network bandwidth
requirements.

 Tradeoff: Incremental backups require more steps and time to restore
data. You need to restore the full backup first and then apply each incremental
backup in sequence until you reach the desired restore point.

Backup compression: Enable compression during the backup process to reduce the
size of backup files. Compressed backups require less storage space, so you can
save costs.

Backup storage tiers: Evaluate your backup retention policies and consider moving
older backups to lower-cost storage tiers, such as cold storage or archive storage.
Storing less frequently accessed backups in cost-effective storage options helps
optimize costs.

Optimize backups

Backup retention period: Review and adjust the retention periods for your backups
based on business requirements and compliance regulations. Maintaining backups
for longer durations might lead to extra storage costs.

Backup frequency: Analyze the backup frequency for various types of data. Adjust
the backup schedule based on the frequency of data changes and the importance
of the data. These practices help eliminate unnecessary backups and reduce
storage costs.

File formats influence cost optimization by optimizing input/output (I/O) patterns and
query patterns of your data. Some file formats cater to particular scenarios. Aligning the
file format with your workload requirements can improve the workload's performance.

Here are considerations for common formats:

Avro: The Avro file format is a good choice when you're dealing with write-heavy
I/O patterns or when query patterns necessitate fetching multiple rows of records
in their entirety. Avro's serialization and deserialization processes are efficient, so
it's compatible with message buses like Kafka that produce a series of events and
messages in quick succession.

Parquet and Optimized Row Columnar (ORC): The Parquet and ORC file formats
excel in scenarios of read-heavy I/O patterns or when the query patterns focus on
specific columns of the records.

Both formats are columnar storage, which means that data is stored column by
column rather than row by row. Columnar storage allows for improved
compression and efficient read operations. Only the required columns need to be
fetched, so you avoid unnecessary I/O for irrelevant data.

Evaluate and select the most appropriate storage methods and systems for your data.
This effort might include switching databases, using different storage types, or adding
caching mechanisms. Ease of management is another factor to consider when you're
choosing a storage solution.

By tailoring storage solutions to the specific needs and characteristics of the data, you
can achieve better cost-effectiveness while meeting performance and scalability
demands. There are costs associated with switching databases or swapping services, but
storing data in the wrong storage solution can cost you extra money.

Optimize file formats

Optimize storage solutions

Here are a few use cases:

Switching databases: You could consider switching to a database system that better
suits your needs. For instance, if you're using a relational database, you might
explore the option of moving to a NoSQL database if your data is more document
oriented or requires flexible schemas.

Moving from a relational database to a flat file store: In some cases, storing data in
flat files instead of a traditional relational database can provide advantages such as
simplicity and cost-effectiveness. Flat files are well suited for certain types of data,
such as log files or data that doesn't require complex querying. For example, you
can store binary images in a SQL database, but it's more cost-effective to store
them in a storage service that's specifically for handling binary data.

Moving from infrastructure as a service (IaaS) to platform as a service (PaaS): IaaS
database solutions can be time-consuming and resource-intensive properties that
divert a technical team's attention from core tasks. The growth in data volume and
the challenges of manual scaling, backups, and infrastructure maintenance can
make a PaaS solution more cost-effective and efficient.

Adding a cache: To reduce resource usage on the main database server, consider
using a cache solution for caching complex query results. Rightsizing the database
server might help in optimizing the cost. With applicable use cases, consider using
time to live (TTL) with the cached data to reduce the storage needs and reduce the
cost.

Query-optimized versus data storage stores: Query-optimized stores are designed
for fast data retrieval and analysis. They focus on quick data ingestion and reads
but not frequent updates. They're great for time-series data and rapid access to
recent data, but not for heavy transactional tasks.

Data storage stores handle large volumes of flexible data, especially unstructured
or semistructured data. Although data storage stores can support analytics,
complex tasks might need specialized databases. They're best for storing lots of
variable data like logs or user-generated content in scenarios like NoSQL use
cases.

Taking an inventory of data: Microsoft Purview is a family of data governance, risk, and
compliance solutions that can help your organization govern, protect, and manage your
entire data estate. Microsoft Purview solutions provide integrated coverage and help

Azure facilitation

https://learn.microsoft.com/en-us/purview/purview

address the recent increases in remote user connectivity, the fragmentation of data
across organizations, and the blurring of traditional IT management roles.

Optimizing data management: Azure Storage and Azure Data Lake Storage have
different data access tiers. They also offer data lifecycle management policies that
automate data tiering and retention.

You can use a rule-based policy to transition blob data to the appropriate access tiers or
to expire data at the end of its lifecycle. This policy allows you to transition blobs from
cool (or cold) to hot immediately when they're accessed, to optimize for performance.

Optimizing backups: The Azure Backup service provides multiple capabilities to
streamline your backups. It offers features such as native database backup and storage
backup through disk snapshots. It supports virtual machine backup, long-term retention,
and backup management.

Here are some of the service's features:

Monitoring: You can use Backup center as a single pane of glass to monitor your
jobs and backup inventory on a day-to-day basis. Backup center provides an
interface to Backup reports, which use Azure Monitor Logs and Azure workbooks.

Reports: Backup reports offer the following capabilities:
Allocate and forecast consumed cloud storage.
Audit backups and restores.
Identify key trends at various levels of granularity.
Gain visibility and insights into cost optimization opportunities for your
backups.

Reserved capacity: Azure Backup Storage reserved capacity offers you a discount
on capacity for backup data stored for the vault-standard tier when you commit to
a reservation for either one year or three years. A reservation provides a fixed
amount of backup storage capacity for the term of the reservation.

Archive tier: You can use Azure Backup to store backup data, including long-term
retention (LTR) backup data, according to the retention needs that your
organization's compliance rules define. In most cases, the older backup data is
rarely accessed and is stored only for compliance needs. Azure Backup supports
the backup of LTR points in the archive tier, in addition to snapshots and the
standard tier.

Optimizing storage solutions: Azure has many storage solutions. They offer various
features and capabilities to help optimize costs based on your specific requirements.
Azure has guidance to help you choose the right data store.

https://learn.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/lifecycle-management-overview
https://learn.microsoft.com/en-us/azure/backup/backup-overview
https://learn.microsoft.com/en-us/azure/backup/backup-azure-reserved-pricing-optimize-cost
https://learn.microsoft.com/en-us/azure/backup/archive-tier-support
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-decision-tree

To choose the most suitable storage solution and configuration, it's important to assess
your data access patterns, retention needs, and performance requirements. Regularly
monitoring and optimizing your storage usage by using tools like Azure Advisor can
help you further optimize costs.

The Cloud Adoption Framework provides guidance for optimizing data costs for
organizational analytics platforms.

For more information, see Data lifecycle management.

Recommendations for consolidation
Microsoft Purview
Data access tiers
Data lifecycle management policies
Azure Backup Storage
Archive tier
Choose the right data store
Data lifecycle management

Refer to the complete set of recommendations.

Organizational alignment

Related links

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/govern-lifecycle
https://learn.microsoft.com/en-us/purview/purview
https://learn.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/lifecycle-management-overview
https://learn.microsoft.com/en-us/azure/backup/backup-azure-reserved-pricing-optimize-cost
https://learn.microsoft.com/en-us/azure/backup/archive-tier-support
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-decision-tree
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/govern-lifecycle

Recommendations for optimizing code
costs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:11 Optimize code costs. Evaluate and modify code to meet functional and
nonfunctional requirements with fewer or cheaper resources.

This guide describes the recommendations for optimizing code costs. Code optimization
is the process of improving the efficiency, performance, and cost-effectiveness of
application code. Effective code optimization involves making changes to the code to
reduce resource consumption, minimize execution time, and improve overall
performance.

By optimizing code, you can identify and eliminate inefficiencies that might lead to
increased resource consumption and higher costs. You can reduce processing time,
memory usage, and network overhead, which can lead to applications that are faster
and more responsive. Improved performance enhances the user experience and enables
your system to handle larger workloads efficiently.

Definitions

Term Definition

Code
instrumentation

The practice of adding code snippets or libraries to code that collect data
and monitor code performance during runtime.

Concurrency The execution of multiple processes at the same time.

Data serialization The process of converting data objects into a format that can be stored or
transmitted and then reconstructing them back to their original form when
needed.

Hot paths Critical or frequently run sections of a program that require high
performance and low latency.

Cost optimizing code means improving code to achieve the same functionality with
fewer per-instance resources, such as CPU cycles, memory, and storage. By reducing

Key design strategies

resource consumption, you can save money when applications handle large volumes of
data or experience high traffic loads.

Code improvements are most effective when you're following other cost optimization
efforts around scaling, rightsizing, redundancy, and throttling. After you take care of
these foundational elements, you can consider code optimization.

You might not know if you have inefficient code. Serverless, autoscale, and reliability
features can mask code inefficiencies. The following strategies can help you identify and
fix application code that costs more than it should.

Instrumenting code is the practice of adding code snippets or libraries that collect data
and monitor code performance during runtime. It allows developers to gather
information about key metrics, such as resource consumption (CPU or memory usage)
and execution time. By instrumenting code, developers can gain insights into code hot
paths, identify performance bottlenecks, and optimize the code for better efficiency and
cost-effectiveness.

In an ideal environment, you should do code analysis early in the software development
lifecycle. The earlier you catch a code problem, the cheaper it's to fix.

Automate as much of this code analysis as possible. Use dynamic and static tools for
code analysis to reduce the manual effort. However, keep in mind that this testing is still
a simulation of production. Production provides the clearest understanding of code
optimization.

 Tradeoff: Code monitoring tools are likely to increase costs.

By instrumenting your code, you can measure the resource consumption of code paths.
These measurements help you identify hot paths. Hot paths have a significant effect on
performance and resource usage. They're critical or frequently run sections of a program
that require high performance and low latency.

To identify hot paths, consider these tasks:

Analyze runtime data: Collect and analyze runtime data to identify areas of the
code that consume significant resources, such as CPU, memory, or I/O operations.

Instrument your code

Identify and optimize hot paths

Look for patterns or sections of code that are frequently run or take a long time to
complete.

Measure performance: Use profiling tools or performance testing frameworks to
measure the execution time and resource consumption of code paths. This
measurement helps identify bottlenecks and areas for improvement.

Consider business logic and user effect: Evaluate the importance of code paths
based on their relevance to the application's functionality or critical business
operations. Determine which code paths are crucial for delivering value to users or
meeting performance requirements.

Review performance recommendations that are specific to the programming
language you're working with. Evaluate your code against these recommendations
to identify areas for improvement. Remove any unnecessary operations within the
code path that might affect performance.

Remove unnecessary function calls: Review your code. Identify any functions that
aren't essential for the desired functionality and might negatively affect
performance. For example, if a function call performs a validation that happened
earlier in the code, you can remove that unnecessary function call.

Minimize logging operations: Logging can be helpful for debugging and analysis,
but excessive logging can affect performance. Evaluate the necessity of each
logging operation and remove any unnecessary logging calls that aren't critical for
performance analysis.

Optimize loops and conditionals: Analyze loops and conditionals in your code.
Identify any unnecessary iterations or conditions that you can eliminate.
Simplifying and optimizing these structures can improve the performance of your
code.

Reduce unnecessary data processing: Review your code for any unnecessary data-
processing operations, such as redundant calculations or transformations.
Eliminate these unnecessary operations to improve the efficiency of your code.

Minimize network requests: If your code makes network requests, minimize the
number of requests and optimize their usage. Batch requests when possible and
avoid unnecessary round trips to improve performance.

Minimize allocations: Identify areas where excessive memory allocation occurs.
Optimize the code by reducing unnecessary allocations and reusing existing
resources when possible.

By minimizing allocations, you can improve memory efficiency and overall
performance. Use the appropriate memory management and garbage collection
strategies for your programming language.

Reduce data structure size: Assess the size of your data structures, such as classes,
and identify areas where reduction is possible. Review the data requirements and
eliminate any unnecessary fields or properties. Optimize memory usage by
selecting appropriate data types and packing data efficiently.

Assess cross-cutting implementations: Consider the effects of cross-cutting
implementations, such as middleware or token checks. Assess whether they're
negatively affecting performance.

 Tradeoff: Optimizing code and hot paths requires developer expertise in
identifying code inefficiencies. These highly skilled individuals might need to spend
time on other tasks.

Evaluating the use of concurrency involves assessing whether asynchronous processing,
multithreading, or multiprocessing can maximize resource utilization and reduce
expenses. By using asynchronous processing, multithreading, or multiprocessing, you
can handle more tasks with the same resources. However, it's crucial to ensure proper
implementation to avoid more overhead and to maintain cost-effectiveness.

To evaluate whether using concurrency is a good fit, you can follow these guidelines:

Asynchronous processing: Asynchronous processing allows nonblocking execution.
For example, you can start a process and then pause it to allow a second process
to finish.

Determine the code components or operations that you can run asynchronously.
Identify the programming language or framework that you're using and
understand the asynchronous programming model that it supports, such as
async / await in .NET or promises in JavaScript.

Restructure your code to use asynchronous programming constructs by enabling
nonblocking execution of tasks. Decouple long-running or I/O-intensive
operations from the main execution thread by using asynchronous methods or
callbacks. Use asynchronous APIs or libraries that your programming language or
framework provides to handle asynchronous workflows.

Evaluate the use of concurrency

Multithreading: In multithreading, you run multiple threads of a single process
concurrently.

Identify sections of your code that you can run concurrently and independently.
Read documentation or guidelines that are specific to the programming language
or framework you're using for multithreading best practices. Create multiple
threads or thread pools to handle parallel execution of tasks.

Implement synchronization mechanisms, such as locks, mutexes, or semaphores, to
ensure thread safety and prevent race conditions when code accesses shared
resources. Consider using higher-level abstractions, like thread pools or task-based
parallelism libraries, to streamline the management of multiple threads and
simplify concurrency control.

Multiprocessing: Multiprocessing can have processes run in parallel. It can provide
better utilization of multiple CPU cores than multithreading.

Determine whether the workload or operations in your code lend themselves to
parallel processing. Identify the programming language or framework that you're
using and explore its multiprocessing capabilities. For example, consider the
multiprocessing module in Python or parallel streams in Java. Design your code to
split the workload into multiple independent tasks that can be processed
concurrently.

Use multiprocessing APIs or libraries to create and manage parallel processes.
Distribute the workload among these APIs or libraries. To enable coordination and
data sharing among multiple processes, implement communication mechanisms
like interprocess communication (IPC), shared memory, or message passing,
depending on your programming language or framework.

For cost optimization, select SDKs that are designed to optimize resource usage and
improve performance. It's important to evaluate the features and capabilities of each
SDK. Consider its compatibility with your programming language and development
environment.

Here's guidance to help choose the best SDKs for your workload:

Conduct performance testing: Compare the resource usage and performance of
SDKs through performance testing. Choose the SDK that best meets your needs in
terms of resource optimization and performance improvement. Integrate the

Use the right SDKs

chosen SDK into your codebase by following the provided documentation and
guidelines.

Monitor resource usage and optimize code: Monitor resource usage with the
implemented SDK. Gather insights from monitoring and analysis to optimize your
code.

Most coding languages can run on various operating systems, so it's important to
evaluate your operating system against cheaper alternatives. If an alternative operating
system supports the same or similar functionality at less cost, it's worth considering. By
choosing a cheaper operating system, you can potentially reduce the cost of licensing
fees and infrastructure costs.

The right operating system can contribute to overall cost optimization for your
workload. To choose the right operating system for your workload, try these activities:

Evaluate your requirements: Understand the specific needs of your workload,
including the coding languages and frameworks that you're using. Consider any
dependencies or integrations with other systems.

Consider compatibility: Ensure the operating system you choose is compatible with
your coding languages, frameworks, and any third-party libraries or tools you use.
Check the documentation and community support for the operating system to
ensure that it has good compatibility with your technology stack.

Assess functionality: Determine if the alternative operating system supports the
same or similar functionality as your current operating system. Evaluate whether it
provides the necessary features and capabilities that your workload requires.

Compare costs: Compare the costs associated with operating systems. Consider
factors such as licensing fees, support costs, and infrastructure requirements. Look
for cheaper alternatives that can meet your workload's requirements without
compromising functionality.

Consider performance and optimization: Evaluate the performance and
optimization capabilities of the alternative operating system. Look for benchmarks,
case studies, or performance comparisons to understand how it performs in real-
world scenarios.

Review security and stability: Assess the security and stability of the alternative
operating system. Look for security updates, patches, and community support to

Choose the right operating system

ensure that the operating system is actively maintained and is secure and stable
overall.

Consider vendor support: Evaluate the level of vendor support that's available for
the alternative operating system. Check if there are official support channels,
documentation, and a community of users who can provide assistance if you need
it.

Optimizing network traversal is about minimizing network traffic between workload
components. Data transfer often has an associated cost. By minimizing network traffic,
you can reduce the amount of data that needs to be transferred while lowering costs.

Analyze your workload and identify any unnecessary data transfers between
components. Avoid transferring redundant or duplicate data, and transmit only essential
information. For example, if a component repeatedly requests the same data from
another component, it's a candidate for optimization. You can refactor your code to
reduce unnecessary calls or to batch requests, minimizing the data transferred.
Applications might send entire objects or data structures when only a few fields are
needed. By optimizing the code to send only the required data, you minimize the size of
each data transfer.

Network protocols play a crucial role in the efficiency of network communication. By
optimizing network protocols, you can improve the overall efficiency of data transfer
and reduce resource consumption.

Consider these suggestions:

Choose efficient protocols: Select protocols that are known for their efficiency in
terms of data transfer speed and minimizing overhead. For example, consider
using protocols like HTTP/2 over HTTP/1.1. These protocols are designed to
improve performance by reducing latency and optimizing data transfer. Use
libraries and frameworks in your application to use these protocols.

Support compression: Implement compression mechanisms in your network
protocols to reduce the size of data being transferred. Compression can
significantly reduce the amount of data transmitted over the network, leading to
improved performance and reduced bandwidth usage. Server-side compression is
typically enabled in the application code or server configuration.

Optimize network traversal

Optimize network protocols

Utilize connection pooling: Connection pooling allows for the reuse of established
network connections to reduce the overhead of establishing new connections for
each request. Connection pooling can improve the efficiency of network
communication by avoiding the overhead of connection setup and teardown.
Choose a connection pooling library or framework and configure to meet
workload needs.

Implement other optimizations: Explore other optimizations that are specific to your
workload and network environment. For example, you can use content caching,
load balancing, and traffic shaping to further optimize network traversal.

Minimize the amount of network traffic and data transfer between components of your
workload. By reducing network overhead, you can lower costs associated with data
egress and ingress and improve overall network performance.

Consider these techniques:

Reduce redundant requests: Analyze the code to identify any duplicate or
unnecessary requests. Instead of making multiple requests for the same data, you
can modify the code to retrieve the data once and reuse it as needed.

Optimize data size: Review the data being transmitted between components or
systems, and look for opportunities to minimize its size. Consider techniques such
as compressing the data before transmission or using more efficient data formats.
By reducing the data size, you can decrease network bandwidth usage and
improve overall efficiency.

Batch requests: If applicable, consider batching multiple smaller requests into a
single larger request. Batching reduces the overhead of establishing multiple
connections and decreases the overall data transmission.

Use data serialization: Data serialization is the process of converting complex data
structures or objects into a format that can be easily transmitted over a network or
stored in a persistent storage system. This strategy involves representing the data
in a standardized format, so the data can be efficiently transmitted, processed, and
reconstructed at the receiving end.

Select a serialization format that's compact, fast, and suitable for your workload's
requirements.

Minimize network overhead

Serialization
format

Description

Protocol Buffers
(protobuf)

A binary serialization format that offers efficient encoding and
decoding of structured data. It uses typed definition files to define
message structures.

MessagePack A binary serialization format for compact transmission over the wire.
It supports various data types and provides fast serialization and
deserialization performance.

JavaScript Object
Notation (JSON)

A widely used data serialization format that's human-readable and
easy to work with. JSON is text based and has broad cross-platform
support.

Binary JSON (BSON) A binary serialization format that's similar to JSON but designed for
efficient serialization and deserialization. BSON includes extra data
types that aren't available in JSON.

Depending on the serialization format, you need to implement logic to serialize
objects or data structures into the chosen format and deserialize them back into
their original form. You can implement this logic by using libraries or frameworks
that provide serialization capabilities for the format.

Optimizing data access refers to streamlining the patterns and techniques for retrieving
and storing data, to minimize unnecessary operations. When you optimize data access,
you can save costs by reducing resource usage, reducing data retrieval, and improving
the efficiency of data processing. Consider techniques such as data caching, efficient
data querying, and data compression.

Caching involves storing frequently accessed data closer to the components that require
it. This technique reduces the need for network traversal by serving the data from the
cache instead of fetching it over the network.

Consider these caching mechanisms:

Use an external cache: One popular caching solution is a content delivery network.
It helps minimize latency and reduce network traversal by caching static content
closer to consumers.

Optimize data access

Use caching mechanisms

Tune caching parameters: Configure caching parameters, such as time to live (TTL),
to optimize the benefit of caching while minimizing potential drawbacks. Setting
an appropriate TTL ensures that cached data remains fresh and relevant.

Use in-memory caching: In addition to external caching solutions, consider
implementing in-memory caching in your application. In-memory caching can help
utilize idle compute resources and increase the compute density of allocated
resources.

You can enhance the efficiency of application communication to the database. Here are
some key considerations and techniques for optimizing database traffic:

Create indexes: Indexing is the process of creating data structures that improve the
speed of data retrieval. By creating indexes on frequently queried columns, you
can significantly reduce the time it takes to run queries. For example, if you have a
table of users with a column for usernames, you can create an index on the
username column to speed up queries that search for specific usernames.

Identify the most frequently accessed columns and create indexes on those
columns to speed up data retrieval. Regularly analyze and optimize the existing
indexes to ensure that they're still effective. Avoid over-indexing because it can
negatively affect insert and update operations.

Optimize queries: Design efficient queries by considering the specific data
requirements and minimizing unnecessary data retrieval. Start by using appropriate
join types (for example, inner join and left join), based on the relationship between
tables. Use query optimization techniques such as query hints, query plan analysis,
and query rewriting to improve performance.

Cache query results: You can store the results of frequently run queries in memory
or a cache. Subsequent executions of the same query can then be served from the
cache, which eliminates the need for expensive database operations.

Use an object-relational mapping (ORM) framework: Use ORM features such as lazy
loading, caching, and batch processing to optimize data retrieval and minimize
database round trips. Use ORM frameworks such as Entity Framework for C# or
Hibernate for Java.

Optimize stored procedures: Analyze and optimize the logic and performance of
stored procedures. The goal is to avoid unnecessary computations or redundant

Optimize database traffic

queries in stored procedures. Optimize the use of temporary tables, variables, and
cursors to minimize resource consumption.

Organizing data for efficient access and retrieval involves structuring and storing data in
a way that maximizes performance and minimizes resource consumption. It can improve
query response times, reduce data transfer costs, and optimize storage utilization.

Here are some techniques for organizing data efficiently:

Partition: Partitioning involves dividing a large dataset into smaller, more
manageable subsets called partitions. You can store each partition separately to
allow for parallel processing and improved query performance. For example, you
can partition data based on a specific range of values or by distributing data across
servers. This technique can enhance scalability, reduce contention, and optimize
resource utilization.

Shard: Sharding is a technique of horizontally dividing data across multiple
database instances or servers. Each shard contains a subset of the data, and
queries can be processed in parallel across these shards. Sharding can improve
query performance by distributing the workload and reducing the amount of data
that each query accesses.

Compress: Data compression involves reducing the size of data to minimize
storage requirements and improve the efficiency of data transfer. Because
compressed data takes up less disk space, it allows for savings in storage costs.
Compressed data can also be transferred more quickly over networks and reduce
data transfer costs.

For example, consider a scenario where you have a large dataset of customer
information. By partitioning the data based on customer regions or demographics, you
can distribute the workload across multiple servers and improve query performance. You
can also compress the data to reduce storage costs and improve the efficiency of data
transfer.

Evaluate your workload architecture to identify opportunities for resource optimization.
The goal is to use the right services for the right job.

To reach this goal, you might need to redesign parts of the architecture to use fewer
resources. Consider serverless or managed services, and optimize resource allocation. By

Organize data

Optimize architecture

optimizing your architecture, you can meet the functional and nonfunctional
requirements while consuming fewer per-instance resources.

Design patterns are reusable solutions that help developers solve recurring design
problems. They provide a structured approach to designing code that's efficient,
maintainable, and scalable.

Design patterns help optimize the use of system resources by providing guidelines for
efficient resource allocation and management. For example, the Circuit Breaker pattern
helps prevent unnecessary resource consumption by providing a mechanism to handle
and recover from failures in a controlled manner.

Design patterns can help cost optimize code in the following ways:

Reduced development time: Design patterns provide proven solutions to common
design problems, which can save development time. By following established
patterns, developers can avoid repetitive work and focus on implementing the
specific requirements of their applications.

Improved maintainability: Design patterns promote modular and structured code
that's easier to understand, modify, and maintain. They can lead to cost savings in
terms of reduced debugging and maintenance efforts.

Scalability and performance: Design patterns help in designing scalable and
performant systems. Patterns like the Cache-Aside pattern can improve
performance by caching frequently accessed data to reduce the need for expensive
computations or external calls.

To implement design patterns, developers need to understand the principles and
guidelines of each pattern and apply them in the code. Consider identifying the
appropriate pattern for a problem, understanding its structure and components, and
integrating the pattern into the overall design.

Various resources are available, such as documentation, tutorials, and sample code.
These resources can help developers learn and implement design patterns effectively.

Regularly review and update your workload configuration to ensure that it aligns with
your current requirements. Consider adjusting resource sizing and configuration settings

Use design patterns

Change configurations

based on workload demands. By optimizing configurations, you can effectively allocate
resources and avoid overprovisioning to save costs.

Evaluate your workload architecture and identify opportunities for refactoring or
redesigning components to optimize resource consumption. Consider techniques such
as adopting a microservices architecture, implementing the Circuit Breaker pattern, and
using serverless computing. By optimizing your architecture, you can achieve better
resource utilization and cost efficiency.

Continuously monitor and analyze the resource utilization of your workload. Based on
the observed patterns and trends, adjust resource sizing and configuration settings to
optimize resource consumption.

Consider rightsizing virtual machines, adjusting memory allocation, and optimizing
storage capacity. By rightsizing resources, you can avoid unnecessary costs associated
with underutilization or overprovisioning.

 Tradeoff: Reworking code and architecture might not fit with current project
schedules and could lead to schedule and cost slippage.

Instrumenting code: Azure provides monitoring and logging tools like Azure Monitor,
Application Insights, and Log Analytics. You can use these tools to track and analyze the
performance and behavior of your code in real time.

Identifying hot and optimize paths: Application Insights and Application Insights
Profiler help identify and optimize the hot paths in your code by analyzing execution
times and resource usage. You can minimize unnecessary memory allocations and
optimize memory usage with Profiler.

Using the right SDKs: Azure offers SDKs in multiple programming languages,
optimized for performance and ease of use. These SDKs provide prebuilt functions and
libraries that interact with Azure services to reduce the need for custom implementation.

Optimizing network traversal: Various Azure services support high-speed network
protocols like HTTP/2 and QUIC for efficient communication between services and

Refactor architecture

Modify resource sizes

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/profiler/profiler-overview
https://azure.microsoft.com/downloads/
https://learn.microsoft.com/en-us/azure/application-gateway/features#websocket-and-http2-traffic
https://learn.microsoft.com/en-us/azure/storage/files/storage-files-networking-overview#smb-over-quic

applications.

Azure services, such as Azure Database for PostgreSQL - Flexible Server, support
connection pooling.

Azure supports batch processing in various services, so you can group multiple
operations together and run them in a single request. Batch processing can significantly
improve efficiency and reduce network overhead.

Regarding data serialization, Azure supports various serialization formats, including
JSON and XML. Choose the appropriate serialization format based on data size,
performance requirements, and interoperability needs.

Optimizing data access: Azure provides caching services like Azure Cache for Redis. You
can use caching to store frequently accessed data closer to the application, which results
in faster retrieval and reduced back-end load.

Indexing and query optimization: Azure services like Azure SQL Database and Azure
Cosmos DB provide indexing capabilities to optimize query performance. By
choosing the right indexing strategy and optimizing queries, you can improve the
overall efficiency of data retrieval.

Object-relational mapping (ORM): Azure supports ORM frameworks like Entity
Framework. These frameworks simplify data access and mapping between object-
oriented code and relational or NoSQL databases.

Optimizing stored procedures: You can use Azure services like Azure SQL Database
to create and optimize stored procedures. Stored procedures can enhance
performance by reducing network round trips and precompiling SQL statements.

Partitioning and sharding: Azure offers partitioning and sharding capabilities in
services like Azure Cosmos DB and Azure SQL Database. You can use partitioning
to distribute data across multiple nodes for scalability and performance
optimization.

Compressing data: Azure services support data compression techniques like GZIP
and DEFLATE.

Optimizing architecture: Azure provides architectural guidance and design patterns for
designing scalable, resilient, and performant applications. For more information, see
Design patterns.

Related links

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-connection-pooling-best-practices
https://learn.microsoft.com/en-us/azure/app-service/troubleshoot-intermittent-outbound-connection-errors#modify-the-application-to-use-connection-pooling
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://learn.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://learn.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes
https://learn.microsoft.com/en-us/azure/architecture/patterns/

Azure Monitor
Application Insights
Log Analytics
Application Insights Profiler
Connection pooling
Azure Database for PostgreSQL - Flexible Server connection pooling
Azure SQL Database index tuning
Azure Cosmos DB indexing policies
Azure Cosmos DB partitioning
Azure SQL Database partitioning

Refer to the complete set of recommendations.

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/profiler/profiler-overview
https://learn.microsoft.com/en-us/azure/app-service/troubleshoot-intermittent-outbound-connection-errors#modify-the-application-to-use-connection-pooling
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-connection-pooling-best-practices
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://learn.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes

Recommendations for optimizing
scaling costs
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:12 Optimize scaling costs. Evaluate alternative scaling within your scale units. Consider
alternative scaling configurations, and align with the cost model. Considerations
should include utilization against the inherit limits of every instance, resource, and
scale unit boundary. Use strategies for controlling demand and supply.

This guide provides recommendations for optimizing scaling costs. Cost optimizing
scaling is the process of removing inefficiencies in workload scaling. The goal is to
reduce scaling costs while still meeting all nonfunctional requirements. Spending less to
get the same result. Optimizing scaling allows you to avoid unnecessary expenses,
overprovisioning, and waste. It also helps prevent unexpected spikes in costs by
controlling demand and capping supply. Inefficient scaling practices can lead to
increased workload and operational costs and negatively affect the overall financial
health of the workload.

Definitions

Term Definition

Autoscaling A scaling approach that automatically adds or removes resources when a set
of conditions is met.

Cost metrics Numeric data related to workload cost.

Scale down A vertical scaling strategy that shifts to a lower SKU to provide less resources
to the workload.

Scale in A horizontal scaling strategy that removes instances to provide less resources
to the workload.

Scale out A horizontal scaling strategy that adds instances to provide more resources to
the workload.

Scale unit A group of resources that scale proportionately together.

Scale up A vertical scaling strategy that shifts to a higher SKU to provide more
resources to the workload.

Term Definition

Stock keeping
unit (SKU)

A service tier for an Azure service.

Usage data Usage data is either direct information (real) or indirect/representative
information (proxy) about how much a task, service, or application is being
used.

The goal of cost optimizing scaling is to scale up and out at the last responsible
moment and to scale down and in as soon as it’s practical. To optimize scaling for your
workload, you can evaluate alternative scaling options within the scale units and align
them with the cost model. A scale unit represents a specific grouping of resources that
can be scaled independently or together. You should design scale units to handle a
specific amount of load, and they can comprise multiple instances, servers, or other
resources. You need to evaluate the cost effectiveness of your workload scale units and
model alternates.

If you don't use scaling, see guidance on scaling the workload. You need to figure out if
your application can scale. Stateless applications are easier to scale because they can
handle multiple requests at the same time. Also, evaluate if the application is built using
distributed systems principles. Distributed systems can handle increased load by
distributing the workload across multiple nodes. However, a singleton application is
designed to have only one instance running at any given time. So scaling might not be
appropriate for all workloads.

Evaluating scale out versus scale up involves determining the most cost-effective
approach between increasing resources in an existing system (scale up) or adding more
instances of that system (scale out) based on various factors like pricing, workload
requirements, and acceptable downtime. Choosing the right scaling approach can lead
to significant savings, ensuring you pay for only what you need while still meeting
performance and reliability standards.

The goal is to determine the most cost-efficient choice based on service-tier pricing,
workload traits, acceptable downtime, and the cost model. For some, it might be more
economical to opt for more expensive instances in fewer numbers. Conversely, for
others, a cheaper tier with more instances might be better. To make an informed
decision, you need to analyze real or representative data from your setup and evaluate

Key design strategies

Evaluate scale out versus scale up

the relative cost merits of each strategy. To evaluate the most cost efficient approach,
consider these recommendations:

Gather usage data: Collect actual production data or proxy data that represents the
workload usage patterns and resource utilization. This data should include metrics
such as CPU usage, memory usage, network traffic, and any other relevant metrics
that affect the cost of scaling.

Define cost metrics: Identify the cost metrics that are relevant to your workload,
such as the cost per hour, cost per transaction, or cost per unit of resource usage.
These metrics help you compare the cost effectiveness of different scaling options.

Gather usage data: Collect actual production data or proxy data that represents the
workload usage patterns and resource utilization. This data should include metrics
such as CPU usage, memory usage, network traffic, and any other relevant metrics
that affect the cost of scaling

Define cost metrics: Identify the cost metrics that are relevant to your workload,
such as the cost per hour, cost per transaction, or cost per unit of resource usage.
These metrics help you compare the cost-effectiveness of different scaling options.

Refer to requirements: When deciding between scale-out and scale-up strategies,
consider the reliability, performance, and scaling requirements of your workload.
Scaling out can improve reliability through redundancy. Scaling up increases the
capacity of a resource, but there might be limits to how much you can scale up.

Consider resource limits: When evaluating scaling options, it's important to
consider the inherent limits of every instance, resource, and scale unit boundary.
Be aware of the upper scaling limits for each resource and plan accordingly.
Additionally, keep in mind the limits of your subscription and other resources.

Test scaling: Create tests for different scaling scenarios, including scale out and
scale up options. Applying the usage data, simulate the workload behavior under
different scaling configurations. Conduct real-world testing using the modeled
scaling scenarios.

Calculate costs: Use the gathered data and cost metrics to calculate the costs
associated with each scaling configuration. Consider factors such as instance
pricing, resource utilization, and any extra costs related to scaling.

Optimize autoscaling

Optimizing the autoscaling policy involves refining autoscaling to react to load changes
based on the workload’s nonfunctional requirements. You can limit excessive scaling
activities by adjusting thresholds and using the right cooldown period. To optimize
autoscaling, consider the following recommendations:

Analyze the current autoscaling policy: Understand the existing policy and its
behavior in response to varying load levels.

Refer to nonfunctional requirements: Identify the specific nonfunctional
requirements that you need to consider, such as response time, resource
utilization, or cost.

Adjust scaling thresholds: Adjust the scaling thresholds based on the workload
characteristics and nonfunctional requirements. Set thresholds for scaling up or
down based on factors like CPU utilization over time, network traffic, or queue
length.

Adjust a cooldown period: Adjust the cooldown period to prevent excessive scaling
activities triggered by temporary load spikes. A cooldown period introduces a
delay between scaling events, allowing the system to stabilize before further
scaling actions.

Monitor and fine-tune: Continuously monitor the system's behavior and
performance. Analyze the scaling activities and adjust the policy as needed to
optimize cost and meet the desired nonfunctional requirements.

 Tradeoff: Reducing the number of scaling events raises the chances of
encountering issues related to scaling. It means you're eliminating the extra cushion
or buffer that could help manage potential problems or delays from scaling.

Event-driven autoscaling allows the application to dynamically adjust resources based
on specific events or triggers rather than traditional metrics like CPU or memory
utilization. For example, Kubernetes event-driven autoscaling (KEDA) can scale
applications based on scalers such as the length of a Kafka topic. Precision helps prevent
unnecessary scaling fluctuations and resource waste. A high level of precision ultimately
optimizes costs. To use event-based scaling, follow these steps:

Choose an event source: Determine the event source that triggers the scaling of
your scale unit. A source can be a message queue, a streaming platform, or any
other event-driven system.

Consider event-based scaling

Set up event ingestion: Configure your application to consume events from the
chosen event source. It typically involves establishing a connection, subscribing to
the relevant topics or queues, and processing the incoming events.

Implement scaling logic: Write the logic that determines when and how your scale
unit should scale based on the incoming events. This logic should consider factors
such as the number of events, the rate of incoming events, or any other relevant
metrics.

Integrate with scaling mechanisms: Depending on your application's runtime
environment, you can use different scaling mechanisms to adjust the resources
allocated to the application.

Configure scaling rules: Define the scaling rules that specify how your scale unit
should scale in response to events. These rules can be based on thresholds,
patterns, or any other criteria that align with your application's requirements.
Scaling thresholds should relate to business metrics. For example, if you add two
more instances, you can support 50 more users in shopping cart processing.

Test and monitor: Validate the behavior of your event-based scaling
implementation by testing it with different event scenarios. Monitor the scaling
actions and ensure that the actions align with your expectations.

 Tradeoff Configuring and fine-tuning event-based autoscaling can be complex,
and improper configuration might lead to over-provisioning or under-provisioning
of resources.

Control demand against your supply. On workloads where usage determines scaling,
cost correlates with the scaling. To optimize the costs of scaling, you can minimize
scaling spend. You can offload demand by distributing demand to other resources, or
you can reduce demand by implementing priority queues, gateway offloading,
buffering, and rate limiting. Both strategies can prevent undesired costs due to scaling
and resource consumption. You can also control supply by capping the scaling limits. To
optimize workload demand and supply, consider the following recommendations.

Offloading demand refers to the practice of distributing or transferring resource
demand to other resources or services. You can use various technologies or strategies:

Optimize demand and supply

Offload demand

Caching: Use caching to store frequently accessed data or content, reducing the
load on your backend infrastructure. For example, use content delivery networks
(CDNs) to cache and serve static content, reducing the need for scaling the
backend. However, not every workload can cache data. Workloads that require up-
to-date and real-time data, like trading or gaming workloads, shouldn’t use a
cache. The cached data would be old and irrelevant to the user.

 Tradeoff. Caching might introduce challenges in terms of cache
invalidation, consistency, and managing cache expiration. It's important to
carefully design and implement caching strategies to avoid potential tradeoffs.

Content offloading: Offload content to external services or platforms to reduce the
workload on your infrastructure. For example, rather than store video files on your
primary server, you can host these files in a separate storage service that's
independent from your primary server. You can load these large files directly from
the storage service. This approach frees up resources on your servers, allowing you
to use a smaller server. It can be cheaper to store large files in a separate data
store. You can use a CDN to improve performance.

Load balancing: Distribute incoming requests across multiple servers using load
balancing. Load balancing evenly distributes the workload and prevents any single
server from becoming overwhelmed. Load balancers optimize resource utilization
and improve the efficiency of your infrastructure.

Database offloading: Reduce the load on your main application server by
offloading database operations to a separate database server or a specialized
service. For example, use a CDN for static content caching and a Redis cache for
dynamic content (data from database) caching. Techniques like database sharding,
read replicas, or using managed database services can also reduce the load.

 Tradeoff: Offloading specific tasks to alternate resources helps reduce or
avoid extra scaling and costs associated with scaling. However, it's important
to consider the operational and maintenance challenges that might arise from
offloading. Conducting a comprehensive cost-benefit analysis is crucial when
selecting the most appropriate offloading techniques for your workload. This
analysis ensures that the chosen method is both efficient and feasible in
relation to the anticipated savings and operational complexities.

Reduce demand

Reducing resource demand means implementing strategies that help minimize resource
utilization in a workload. Offloading demand shifts demand to other resources.
Reducing demand decreases demand on the workload. Reducing demand allows you to
avoid overprovisioning resources and paying for unused or underutilized capacity. You
should use code-level design patterns to reduce the demand on workload resources. To
reduce demand through design patterns, follow these steps:

Understand design patterns: Familiarize yourself with various design patterns that
promote resource optimization.

Analyze workload requirements: Assess the specific requirements of your workload,
including its expected demand patterns, peak loads, and resource needs.

Select appropriate design patterns: Choose the design patterns that align with your
workload's requirements and objectives. For example, if your workload experiences
fluctuating demand, event-driven scaling and throttling patterns can help manage
the workload by dynamically allocating resources. Apply the selected design
patterns to your workload architecture. You might need to separate workload
components, containerize applications, optimize storage utilization, and more.

Continuously monitor and optimize: Regularly evaluate the effectiveness of the
implemented design patterns and adjust as needed. Monitor resource usage,
performance metrics, and cost optimization opportunities.

By following these steps and using appropriate design patterns, you can reduce
resource demand, optimize costs, and ensure the efficient operation of their workloads.

Use these design patterns to reduce demand:

Cache aside: The pattern checks the cache to see if the data is already stored in
memory. If the data is found in the cache, the application can quickly retrieve and
return the data, reducing the need to query the persistent data store.

Claim check: By separating data from the messaging flow, this pattern reduces the
size of messages and supports a more cost-effective messaging solution.

Competing consumers: This pattern efficiently handles items in a queue by applying
distributed and concurrent processing. This design pattern optimizes costs by
scaling that is based on queue depth and setting limits on maximum concurrent
consumer instances.

Compute resource consolidation: This pattern increases density and consolidates
compute resources by combining multiple applications or components on shared

infrastructure. It maximizes resource utilization, avoiding unused provisioned
capacity and reducing costs.

Deployment stamps: The use of deployment stamps provides several advantages,
such as geo-distributing groups of devices, deploying new features to specific
stamps, and observing cost per device. Deployment stamps allow for better
scalability, fault tolerance, and efficient resource utilization.

Gateway offloading: This pattern offloads request processing in a gateway device,
redirecting costs from per-node resources to the gateway implementation. Using
this design pattern can result in a lower cost of ownership in a centralized
processing model.

Publisher/subscriber: This pattern decouples components in an architecture,
replacing direct communication with an intermediate message broker or event bus.
It enables an event-driven approach and consumption-based billing, avoiding
overprovisioning.

Queue-based load leveling: The pattern buffers incoming requests or tasks in a
queue. The buffering smooths out the workload and reduces the need for
overprovisioning of resources to handle peak load. Incoming requests are
processed asynchronously to reduce costs.

Sharding: This pattern directs specific requests to a logical destination, allowing
optimizations with data colocation. Sharding can lead to cost savings by using
multiple instances of lower-spec compute or storage resources.

Static content hosting: This pattern delivers static content efficiently by using a
hosting platform designed for this purpose. It avoids the use of more expensive
dynamic application hosts, optimizing resource utilization.

Throttling: This pattern puts limits on the rate (rate limiting) or throughput of
incoming requests to a resource or component. It helps inform cost modeling and
can be tied directly to the business model of the application.

Valet key: This pattern grants secure and exclusive access to a resource without
involving more components, reducing the need for intermediary resources and
improving efficiency.

Defining an upper limit on the amount that you're willing to spend on a particular
resource or service is one way to control supply. It's an important strategy for

Control supply

controlling costs and ensuring that expenses don't exceed a certain level. Establish a
budget and monitor the spending to ensure it stays within the defined amount. You can
use cost management platforms, budget alerts, or tracking usage and spending
patterns. Some services allow you to throttle supply and limit rates, and you should use
those features where helpful.

Controlling supply refers to defining an upper limit on the amount that you're willing to
spend on a particular resource or service. It's an important strategy because it helps
control costs and ensures that expenses don't exceed a certain level. Establish a budget
and monitor the spending to ensure it stays within the defined threshold. You can use
cost management platforms, budget alerts, or tracking usage and spending patterns.
Some services allow you to throttle supply and limit rates, and you should use those
features where helpful.

 Tradeoff: Stricter limits might result in missed opportunities to scale when
demand increases, potentially impacting user experience. It could cause shutdowns
or unable to respond to load. It's important to strike a balance between cost
optimization and ensuring that you have sufficient resources to meet your business
needs.

Evaluating scale-out versus scale-up: Azure provides a test environment where you can
deploy and test different scaling configurations. By using the actual workload data or
proxy data, you can simulate real-world scenarios and measure the effects on costs.
Azure offers tools and services for performance testing, load testing, and monitoring,
which can help you evaluate the cost effectiveness of scale out versus scale up options.

Azure provides cost management recommendations through various tools and services,
such as the Azure Advisor. These recommendations analyze your usage patterns,
resource utilization, and scaling configurations to provide insights and suggestions for
optimizing costs.

Azure Load Testing is a fully managed load-testing service that generates high-scale
load. The service simulates traffic for your applications, regardless of where they're
hosted. Developers, testers, and quality assurance (QA) engineers can use load testing to
optimize application performance, scalability, or capacity.

Optimizing autoscaling: Many Azure compute services support deploying multiple
identical instances, and rapidly tuning the scaling thresholds and policies. Azure
provides autoscaling capabilities that allow you to automatically adjust the number of

Azure facilitation

https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-cost-recommendations
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing

instances or resources based on workload demand. You can define scaling rules and
thresholds to trigger scale-out or scale-in actions. By using autoscaling, you can
optimize resource allocation and cost efficiency by dynamically scaling resources based
on actual demand.

Azure maintains a list of subscription and service limits. There’s a general limit to the
number of instances of a resource you can deploy in each resource group with some
exceptions. For more information, see Resource instance limits per resource group.

Optimizing demand and supply: Azure Monitor provides insights into the performance
and health of your applications and infrastructure. You can use Azure Monitor to
monitor the load on your resources and analyze trends over time. By using metrics and
logs collected by Azure Monitor, you can identify areas where scaling adjustments might
be needed. This information can guide the refinement of your autoscaling policy to
ensure it aligns with the nonfunctional requirements and cost optimization goals.

Offloading supply: Azure has a modern cloud Content Delivery Network (CDN)
called Azure Front Door and caching services (Azure Cache for Redis and Azure
HPC Cache). The CDN caches content closer to the end-users, reducing network
latency and improving response times. Caching stores a copy of the data in front
of the main data store, reducing the need for repeated requests to the backend. By
using CDN and caching services, you can optimize performance and reduce the
load on servers for potential cost savings.

Controlling supply: Azure also allows you to set resource limits for your cloud
workload. By defining resource limits, you can ensure that your workload stays
within the allocated resources and avoid unnecessary costs. Azure provides various
mechanisms for setting resource limits such as quotas, policies, and budget alerts.
These mechanisms help you monitor and control resource usage.

API Management can rate limit and throttle requests. Being able to throttle
incoming requests is a key role of Azure API Management. Either by controlling the
rate of requests or the total requests/data transferred, API Management allows API
providers to protect their APIs from abuse and create value for different API
product tiers.

Scale the workload
Azure Advisor Cost recommendations
What is Azure Load Testing?
Azure subscription and service limits, quotas, and constraints

Related links

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resources-without-resource-group-limit
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://learn.microsoft.com/en-us/azure/hpc-cache/hpc-cache-overview
https://learn.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-cost-recommendations
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits

Resources not limited to 800 instances per resource group
What is Azure Front Door?
What is Azure Cache for Redis?
What is Azure HPC Cache?
Advanced request throttling with Azure API Management

Refer to the complete set of recommendations.

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resources-without-resource-group-limit
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://learn.microsoft.com/en-us/azure/hpc-cache/hpc-cache-overview
https://learn.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling

Recommendations for optimizing
personnel time
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:13 Optimize personnel time. Align the time personnel spends on tasks with the
priority of the task. The goal is to reduce the time spent on tasks without
degrading the outcome. Optimization efforts should include minimizing noise,
reducing build times, high fidelity debugging, and production mocking.

This guide describes the recommendations for optimizing personnel time. This
optimization is a strategic process of maximizing the productivity and efficiency of
employees that design, implement, and operate the workload during their working
hours. It involves aligning their skills, strengths, and tasks in a manner that ensures that
every hour they spend at work is used most effectively. The goal is to eliminate wasted
personnel potential and capabilities. Failure to optimize personnel time can lead to
employee burnout, reduced competitive edge, and reduced productivity.

Definitions

Term Definition

Noise Irrelevant or misleading information that can distract from actual issues or trends.

Signal Meaningful and relevant information that provides insights into the behavior and
performance of a system or application.

Technical
debt

The accumulated inefficiencies, suboptimal design choices, or shortcuts
intentionally taken during the development process to deliver code faster.

Personnel typically create the most significant expense in a workload. Personnel cost
and value underscore the importance of efficient time management. This guide is about
maximizing the potential of every hour worked. Given that employees can't work all day
and night, the emphasis is on ensuring that each person is more effective within their
designated hours or equally effective in a reduced timeframe. The goal is to achieve
better utilization of their time for the benefit of the individual and the workload.

Key design strategies

Setting personnel time optimization targets is a process of establishing clear,
measurable goals. These targets serve as guidelines for desired improvements in tasks
and functions. You can use these benchmarks to evaluate outcomes against the targets.
First, define the metrics for measuring the success of personnel time optimization
efforts. Determine the specific objectives that you want to achieve through optimization.
Example objectives might be to reduce time spent on administrative tasks or to reduce
the time it takes to respond to customer inquiries. To set targets for personnel time
optimization, consider the following strategies:

Select quantitative metrics: Choose metrics that align with your objectives and can
be measured accurately. Consider metrics like time saved, productivity increases,
efficiency improvements, and task completion time.

Gather qualitative metrics: In addition to quantitative metrics, gather feedback
from personnel to measure their satisfaction with their roles. This feedback can
provide valuable insights into the effects of personnel time optimization efforts on
employee morale and engagement.

Set targets: Set realistic and achievable targets for each selected metric. These
targets should be based on the current performance levels and the desired level of
improvement.

Optimizing development involves refining the software development processes to
achieve greater efficiency. As a result, developers can invest more time in refining
features, innovating within the constraints of a particular workload, and addressing any
unique challenges that the workload presents.

When you design and customize features, keep them lean and simple. Avoid
unnecessary complexity and configuration options that can increase the time required
to develop, test, and maintain the workload. Keeping the workload simple and focused
leads to easier adaptability and optimization over time.

Set optimization targets

Optimize development time

Keep features lean

Reduce build times

Reducing build times is the process of minimizing the time it takes to compile and
generate a deployment. Shorter build times enable developers to spend less time
waiting for builds to finish and allows them to focus on writing code and delivering
features. Reducing build times also helps ensure that developers receive feedback on
their code changes more quickly. Quicker feedback allows them to iterate and fix issues
faster, which supports the Agile development model. Faster build times facilitate more
frequent builds, enabling teams to adopt Agile development practices like continuous
integration and continuous delivery (CI/CD). Here are some strategies for reducing build
times:

Optimize build configurations: Review the build configuration settings and
eliminate unnecessary steps or processes that add overhead to the build process.
Checkpointing builds and combining partial builds with prebuilt builds can help
reduce build times and improve efficiency. This approach enables you to reuse
previously built components and build only the necessary parts, which leads to
faster build times and reduced time investment.

Parallelize build tasks: Identify tasks that can be run simultaneously and configure
the build system to run them in parallel. Take advantage of available computing
resources.

Use caching: Cache dependencies, intermediate build artifacts, and other reusable
components to avoid redundant work during subsequent builds.

Use incremental builds: To avoid unnecessary recompilation, implement techniques
that allow the build system to rebuild only the parts of the deployment that
changed since the previous build.

Distribute the build process: If applicable, distribute the build process across
multiple machines or build agents to use parallelism and reduce overall build time.

Optimize infrastructure: Ensure that the build environment has sufficient resources,
like CPU, memory, and disk I/O, to handle the build.

By mocking components or services, developers can isolate their code for focused
testing by simulating dependencies. Mocking enables developers to create specific
scenarios and edge cases that are difficult or impractical to reproduce in a real
production environment. It can speed up testing cycles, facilitate parallel work, and
eliminate troubleshooting dependencies. Here are some approaches to implementing
production mocking:

Use production mocking

Mocking frameworks: Use specialized mocking frameworks or libraries that enable
you to create mock objects, stubs, or fakes to replace dependencies.

Dependency injection: Design your application to use dependency injection, which
enables easy substitution of real dependencies with mock objects during testing or
debugging.

Service virtualization: Use service virtualization tools or techniques to simulate the
behavior of external services or APIs. Doing so enables developers to test
integrations without accessing the real services.

Configuration-driven mocking: Implement a configuration-driven approach in
which the application's behavior can be modified via configuration settings or flags
to enable mocking as needed.

Dynamic and conditional mocking: Design the application to support dynamic and
conditional mocking, which enable developers to switch between real and mock
components depending on specific conditions or scenarios.

The goal is for developers to get fast feedback on changes. Make necessary technology
changes to improve the development experience.

Containerization: Consider containerizing the workload to run locally. Containers help
developers replicate the production environment locally and test their changes quickly.
They enable faster iteration and debugging, which leads to a more efficient
development process. Containers also provide a consistent and isolated environment for
running the application. Finally, they enable easy scaling and deployment of the
application.

Developer workstations: An optimal developer workstation should have a suitable
integrated development environment (IDE). A good developer workstation boosts
developer efficiency, reducing the time and resources needed for various tasks. A good
IDE provides code completion and syntax highlighting tailored to the programming
language. It should also support version control like Git. A well-equipped IDE enables
developers to pinpoint and fix issues quickly during development, which reduces
debugging time.

Developer environments: Developers' environments shouldn't be too constrained.
Developers should have the permissions necessary to complete tasks without undue
restrictions so they can work efficiently and effectively.

Optimize the development environment

In general, the closer preproduction environments are to production environments, the
more time you save. This increased consistency also helps to minimize risk. The closer
the two environments are, the better you can test and validate the functionality and
performance of your releases before deploying them to the production environment.
This similarity in environments helps you identify and address any issues or bottlenecks
early on, which reduces the risk of problems occurring in the production environment.

 Tradeoff: You need to balance personnel time against resource costs. The
closer an environment is to the production environment, the more it costs.

Reusable components and libraries can save developers substantial amounts of time.
Instead of writing, testing, and debugging code, developers can reuse validated
components and libraries and develop or fix application features faster. Be sure to
provide documentation for each component or library. Store the code and
documentation in a central repository that has version control like GitHub.

Additionally, use open-source software or libraries from trusted publishers that are
available in package managers, like NuGet or Maven. These package managers provide
a centralized and reliable source for accessing and managing libraries. Using trusted
libraries from package managers can further enhance productivity and reduce the time
spent on developing and maintaining code.

Removing technical debt is essential for maintaining a healthy and efficient codebase. By
following specific standards and implementing mechanisms like quality gates, you can
effectively address technical debt and improve the overall quality of your code. Here's
how you can incorporate this guidance into your approach:

Allocate time to resolve technical debt: Dedicate a portion of your development
team's time to resolving technical debt. A good starting point is to allocate about
20% of the team's time specifically to addressing technical debt. The dedicated
time enables developers to focus on refactoring, code cleanup, and improving the
overall quality of the codebase.

Empower the development team: Allow the development team to own the
prioritization of technical debt resolution. The development team is in the best
position to identify areas of the codebase that require attention and understand

Optimize preproduction environments

Reuse components and libraries

Remove technical debt

the effects of technical debt on workload functionality. Encourage open
communication and collaboration within the team to ensure that technical debt is
addressed effectively.

Prioritize: Prioritize technical debt items based on their effects on workload
functionality. Focus on addressing the issues that have the most significant effect
on the performance, maintainability, and scalability of the workload. By prioritizing
effectively, you can maximize the effects of your efforts to remove technical debt.

Removing technical debt is an ongoing process. It requires a proactive approach and
continuous effort from the development team. By setting and adhering to specific
standards in the codebase and implementing mechanisms like quality gates, you can
effectively address technical debt and create a cleaner, more maintainable codebase:

Set coding standards: Establish clear and specific coding standards that define the
desired structure, style, and best practices for your codebase. These standards
should cover areas like naming conventions, code formatting, documentation, and
error handling. By adhering to these standards, you ensure consistency and
readability throughout the codebase.

Implement quality gates: Quality gates are mechanisms that enforce the defined
coding standards and catch potential issues early in the development process.
They can include automated code reviews, static code analysis tools, and
continuous integration pipelines. By integrating quality gates into your
development workflow, you can identify and address code quality issues before
they become technical debt.

Optimizing personnel collaboration is a process of enhancing team dynamics,
communication, and knowledge-sharing. The goal is to prevent misunderstandings,
duplicated efforts, and wasted time. It involves breaking down silos, revising
unnecessary standards, creating shared knowledge repositories, and investing in
relevant training. Effective collaboration reduces repeated errors and maximizes the
collective expertise of a team. To optimize personnel collaboration, consider the
following strategies:

Eliminate silos: Silos can lead to a lack of shared knowledge and unnecessary
replication of tasks. Cross-functional collaboration can save time and improve
results. Break down barriers between departments or teams to promote inter-
departmental cooperation. Foster cross-departmental meetings, workshops, and
joint projects. Encourage open communication channels across teams.

Optimize personnel collaboration

Optimize standards: Unnecessary standards can lead to wasted time and resources
without contributing to better outcomes. Assess, improve, or eliminate standards
or protocols that don't add value but increase the workload. Periodically review
standards and protocols. Get feedback from ground-level employees. If a standard
doesn't add value, consider eliminating or revising it.

Create a shared knowledge repository: A shared knowledge base prevents repeated
mistakes, aids training, and reduces the time spent searching for information.
Develop a centralized place where all members can access and contribute to
collective knowledge. Employ knowledge management tools, regularly update the
repository, and incentivize contributions from team members.

Invest in training: Make a substantial investment in training for the processes, tools,
and project. Doing so ensures that a baseline requirement is met before people
start contributing to the project. Ensure that teams are trained on the established
standards and processes to enable them to work efficiently and effectively within
the defined guidelines. Team members should be trained on those standards and
processes so that they don't waste effort identifying them on their own.

Optimizing processes involves refining workflows to eliminate unnecessary steps, reduce
manual effort, and streamline roles and change management. This enhancement
ensures that tasks are more efficient. Streamlined processes reduce the time and
resources needed for tasks. The time reduction leads to improved productivity and saves
money. To optimize processes, consider these recommendations:

Refine the software development lifecycle (SDLC) approach: Adopting an optimal
SDLC can help you achieve high quality with less overhead. Assess your current
SDLC method and consider more efficient alternatives. Explore and adopt
methodologies like Scrum, Kanban, or Waterfall. Periodically reassess chosen
frameworks for better efficiency, recognizing that SDLC is inherently collaborative.

Optimize per role: Defined roles ensure clear responsibilities and expectations and
increased efficiency. Understand and define the requirements of each role,
including, for example, developers and solution architects. When you want to
expand the team, you should know what each role needs in terms of hardware,
licenses, and access.

Streamline change management: Positive receptiveness to change ensures
smoother transitions and better outcomes. Make the process of implementing
change smooth and accepted. Cultivate a culture of active participation rather than

Optimize processes

resistance. Promote change adoption via coaching and continuous learning. Adapt
to change constructively.

Optimizing workload operational tasks is a process of making job tasks faster and more
straightforward. The goal is to streamline activities to enhance efficiency and ensure the
most effective use of resources. This streamlining ensures that tasks are completed with
fewer errors, distractions, and delays. It conserves personnel time, which leads to faster
decision-making, reduced troubleshooting durations, and overall improved efficiency
and cost savings. To optimize operational tasks, consider the following strategies.

Distinguishing signal from noise is crucial to observability because it enables teams to
focus on the most critical aspects of their systems and applications. Filtering out noise
can help teams make informed decisions, troubleshoot problems, and optimize the
workload faster. Identifying and addressing issues more efficiently and quickly leads to a
reduction in personnel costs.

To differentiate signal from noise, you need to define clear objectives and metrics.
Identify the key performance indicators (KPIs) and metrics that are relevant to your
workload. Establish thresholds or ranges for each metric to specify normal behavior and
what should be flagged as an anomaly. Use monitoring tools to collect data and track
the defined metrics in real time and identify patterns that indicate potential issues or
areas of improvement.

Prioritize actionable insights. Focus on insights that point to degradations in the
workload and prioritize them for further investigation or action. Regularly review and
update your monitoring strategy based on feedback.

High fidelity debugging refers to the ability to accurately diagnose and fix issues in
software applications. You gain detailed insights into the application's behavior and
state during runtime. High fidelity debugging is crucial for effective software
development and troubleshooting. With high fidelity debugging, developers can
reproduce and analyze issues with greater precision, which reduces the time and effort
required to fix bugs. An understanding of the application's behavior enables developers
to make informed decisions faster to improve code quality.

Optimize operational tasks

Reduce the noise-to-signal ratio

Use high fidelity debugging

Use a debugging tool: Use a feature-rich debugger that provides comprehensive
insights into the application's execution flow, variables, and memory state.

Enable detailed logging and tracing: Instrument code with logging and tracing
statements to capture relevant information during runtime. Doing so helps you
diagnose issues.

Analyze error messages and stack traces: Carefully examine error messages and
stack traces to understand the context and sequence of events leading to an issue.

Improve the efficiency and efficacy of technical support operations. Reducing recurring
issues saves time and improves user satisfaction. Identify recurring support issues,
integrate engineering and support teams via support shadowing, and adopt IT classic
deployment model processes to reduce overall support load.

Analyzing incidents can prevent recurrence and improve reaction times. Use past
incidents as learning opportunities for future improvement. Conduct retrospectives to
analyze incidents, identify improved actions and contact protocols, and enhance system
observability through comprehensive logs and metrics.

Standardization reduces errors and rework to ensure consistent quality and cost
optimization. Strengthen compliance and standardization within your organization.
Automate compliance checks, and advocate for standardized solutions, architectures,
and blueprints. To streamline decision-making, minimize choices that don't align with
organizational constraints or SLAs.

Better skills lead to increased efficiency and fewer mistakes. Invest in the development
and improvement of your team's skills. To optimize personnel skills, here are some
recommendations to consider:

Upskilling: Ensure that team members have essential cost optimization and
monitoring skills. Provide sandbox environments for hands-on learning and skill

Enhance technical support

Learn from incidents

Implement robust governance

Optimize personnel skills

development. Encourage team members to obtain certifications, and promote
shadowing with experienced colleagues.

Tools: Proficiency with tools is a key skill for optimizing tasks and gaining valuable
insights for cost management. Ensure that personnel are proficient with essential
tools and can adapt to new ones. Prioritize familiarity with key tools, especially
tools that are related to monitoring. Train personnel to extract meaningful insights
from data across various layers of the system, emphasizing the link between
effective monitoring and cost management.

Aligned expertise: Match employees to tasks based on their skills and expertise.
Utilize their strengths and allocate tasks accordingly to maximize efficiency.

Setting optimization targets: Azure DevOps provides a suite of tools for defining
objectives, selecting metrics, and setting targets. It offers features like work item
tracking, dashboards and reporting capabilities. It also provides source code
management, continuous integration, continuous delivery, and project management
features. By using Azure DevOps, teams can automate processes, collaborate effectively,
and reduce manual effort.

Optimizing development time: Azure provides various tools and features to optimize
developer time, including:

Development environments: Azure offers development environments in multiple
forms, like Microsoft Dev Box, which provides Windows and Linux VMs on which
developer tools are installed. Microsoft also provides Docker VMs for containerized
development and Azure Container Registry, which enables Docker builds.

Integration with Azure DevOps: Azure integrates with Azure DevOps to enhance
productivity and streamline development processes.

IDE integration: Azure provides IDE integration with popular development tools like
Visual Studio and Visual Studio Code. This integration enables developers to
seamlessly work with Azure services.

Standard SDKs and libraries: Azure provides standard SDKs and libraries for all
Azure services. These SDKs and libraries enable developers to reuse code and
reduce the time it takes to integrate and implement Azure services.

Quickstart templates and samples: Azure provides quickstart templates and
samples that can accelerate the development process.

Azure facilitation

https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops

Package managers and standard libraries: Azure supports package managers and
provides standard libraries, like the NuGet package manager. They can simplify
development and help developers reduce the time they spend on implementing
common functionalities.

Open-source support: Azure has a strong ecosystem that supports open-source
technologies, so developers can use existing open-source tools and frameworks to
optimize their time.

These features and tools provided by Azure help developers save time and increase
productivity in their development workflows.

Optimizing operational tasks: Azure supports infrastructure as code (IaC) capabilities,
which enable you to define and manage your infrastructure by using code. Doing so
helps reduce complexity and improves the adaptability of your systems.

Azure Monitor is a comprehensive monitoring service that provides visibility into the
performance and health of applications and infrastructure on Azure. You can use it to
collect telemetry, set up alerts, and gain real-time insights. By using Azure Monitor, you
can proactively identify and resolve issues. It enables you to reduce the time you spend
on troubleshooting.

Azure Automation provides a way to automate manual, repetitive tasks on Azure. You
can use it to create and manage runbooks, which are sets of instructions for performing
specific tasks. By automating routine tasks, you can save time and free up personnel to
focus on more critical activities.

Optimizing personnel skills: Microsoft provides a comprehensive suite of training
materials and activities. Training is available for developers, architects, and business
stakeholders.

Azure DevOps
Azure Automation
Microsoft training

McKinsey & Company: Measure software developer productivity

Related links

Community link

https://learn.microsoft.com/en-us/azure/automation/
https://learn.microsoft.com/en-us/training/
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://learn.microsoft.com/en-us/azure/automation/
https://learn.microsoft.com/en-us/training/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/yes-you-can-measure-software-developer-productivity

Refer to the complete set of recommendations.

Cost Optimization checklist

Cost Optimization checklist

Recommendations for consolidation
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Cost Optimization checklist
recommendation:

CO:14 Consolidate resources and responsibility. In a workload, determine ways to
consolidate resources and increase density. Outside a workload, use existing
centralized resources and services, so you can consolidate workload
responsibilities.

This guide describes the recommendations for consolidating resources and
responsibilities to optimize workload costs. Consolidating resources is a nuanced task
that differs from simply eliminating waste. Consolidation involves combining
components of a workload, such as servers, databases, applications, and responsibilities.

Consolidation can reduce redundant resources and licenses, and increase density. Look
for opportunities to consolidate your workload responsibilities. Use centralized
resources or teams to optimize costs. If you don't consolidate resources and
responsibilities by using shared resources and optimizing economies of scale, you might
miss opportunities for cost savings.

Definitions

Term Definition

Centralized
resource

A shared resource that multiple components use, rather than each component
having its own dedicated resource.

Change
control

A structured methodology for managing and implementing changes.

Consolidate The act of combining components to optimally meet workload requirements.

Resource
density

A measure of logical separation within a resource. Increased density typically
equates to higher utilization due to the collocation of disparate components,
consumers, or environments.

The primary objective of consolidation is optimization, not reduction. Consolidation
involves restructuring workloads, resources, and team roles to achieve maximum cost

Key design strategies

efficiency. Unlike optimizing component costs, consolidation is a process that requires
careful consideration.

Almost every consolidation effort has tradeoffs and potential risks but can significantly
reduce costs. It's important to analyze the potential benefits and associated tradeoffs.
All consolidation strategies follow these steps:

1. Assessment: Perform a thorough evaluation to identify areas where consolidation
might be advantageous.

2. Identification and evaluation: Pinpoint and assess potential consolidation targets to
determine whether potential cost benefits and tradeoffs justify the effort of
consolidating.

3. Communication and implementation: If you determine that consolidation is
beneficial, announce the impending changes and apply them.

Consolidating resources involves combining resources within a workload. You can
collocate functionalities or consumers. For example, you might consolidate three web
servers into a single server or three databases into a single database server. You might
consolidate multiple firewalls into a single firewall that serves multiple environments.

The aim is to increase resource density, so you can maximize the cost efficiency of each
resource. Expand the use of a resource and minimize resource redundancy.

Common types of services that you can consolidate include application platforms,
databases, network appliances, gateways, and distributed denial-of-service (DDoS)
protection. To consolidate resources within a workload, consider the following
recommendations:

Assess the workload resources. Assess the existing workload and its resource utilization.
Analyze factors such as CPU usage, memory usage, storage capacity, and network
bandwidth. Identify areas in which consolidation might be beneficial. Consolidation
might involve optimizing resource allocation, eliminating redundant or underutilized
resources, or reconfiguring the workload to run more efficiently. Consider factors such
as workload dependencies, performance requirements, and scalability.

Identify a consolidation target. Choose a resource to consolidate. It can be an existing
resource or a new resource created within the workload. Identify existing resources that
you might use for consolidation. For example, you might have servers that can
accommodate some of the workload components. If no existing resources meet the

Consolidate resources

consolidation requirements or if it's more beneficial to consolidate a new resource,
consider creating a new resource.

Evaluate the consolidation viability. Ensure functional and technical requirements, such
as CPU, memory, and growth, support consolidation. Avoid compromising requirements
like performance, reliability, and security. For example, don't create an undesired cross-
regional dependency or consolidate resources across preproduction and production
environments.

Estimate the cost. Determine the effort and potential complications of consolidation.
You should calculate costs, including resource, licensing, and operational expenses.
Consider the implications, such as potential challenges in resource monitoring due to
consolidation.

Communicate and coordinate with your team. Ensure that you inform all stakeholders
about upcoming changes and necessary actions that they need to take. Coordinate with
teams to avoid conflicts and ensure a smooth implementation.

 Risk: Consider the effects of resource density, such as noisy neighbors, scale-
unit effects, and reduced redundancy. Resource consolidation is often too risky for
mission-critical and business-critical workload flows.

 Tradeoffs:

Resource consolidation reduces isolation and can create a noisy neighbor
scenario in a workload. Find other ways to implement logical isolation and
increased capacity for the hosting environment. For example, increase firewall
capacity if it supports multiple workloads.

Consolidation eliminates segmentation and can increase security risk, which
makes it easier for attackers to move horizontally. It also makes some
compliance standards hard to achieve. Prioritize compliance over
consolidation.

Resource consolidation results in less redundancy. Carefully plan to ensure that
you have the proper amount of reliability in the workload.

The goal of consolidating workload responsibilities is to reduce the workload team's
responsibilities. It’s a strategic cost optimization effort that requires organizational
awareness and collaboration outside the workload team.

Consolidate responsibilities

There are two principal ways to consolidate your workload team's responsibilities. You
can use external shared or centralized resources and not run that resource in the
workload environment. You can also offload workload responsibilities to other teams in
your organization, so your team isn't directly responsible for those tasks or personnel.

External centralized resources refer to shared resources outside the workload
environment. For example, an organization might have a centralized gateway that serves
multiple workloads. The goal of external centralized resources is to minimize duplication
and overhead. Instead of having a dedicated resource for your workload, you can use a
shared resource to optimize costs. Consider the following recommendations:

Assess the workload resources. Evaluate the current state of the workload, and
identify areas in which consolidation might be beneficial.

Find external opportunities. Survey your organization for pre-existing centralized
resources. These resources might be potential solutions for your workload. For
example, you can use a shared security information and event management (SIEM)
instead of setting up an independent SIEM tool.

Consider change control. Understand the process of managing changes to the
centralized resource. Consider the approval workflow, testing protocols, and
deployment methods. Analyze potential challenges if you reduced control of
resource modifications.

Estimate the cost. Before you implement centralized resources, clearly quantify the
expected savings against the costs that are associated with a transition. Weigh the
cost-saving benefits against risks to make an informed decision.

Communicate and coordinate with your team. Establish a mechanism for
continuous feedback among teams to address concerns, improve collaboration,
and refine processes.

Document and track changes. Maintain detailed documentation of all approved
changes, including their scope, implementation steps, and associated risks or
issues. Use a centralized system or change-management tool to track and monitor
the status of changes throughout their lifecycle.

 Tradeoff: Over-consolidation can result in resource contention, which can lead
to performance issues. Consolidation might limit the flexibility and agility of

Use external centralized resources

individual teams and workloads because they must adhere to centralized standards
that can inhibit customization.

Offloading workload responsibilities to external teams refers to using expert centralized
teams that perform specialized services such as a security operations team. You can
offload responsibilities to existing teams to help optimize costs and delegate expertise
for specific functions.

Evaluate team skills. Assess the current skill set of your team. Identify skill gaps or
areas in which a centralized team optimizes costs.

Find available opportunities. Explore your organization for available services, such
as the services of a security operations team. Ensure that the centralized team can
accommodate the added responsibilities without compromising quality.

Consider change control. Familiarize yourself with how the centralized team handles
changes, like approval workflows, testing protocols, and deployment strategies.
Determine potential challenges that might arise if you have less direct control of
these functions.

Communicate and coordinate with your team. Ensure that teams are familiar with
each other's processes, tools, and expectations. Consider a phased transition or
pilot period to ease the shift and identify potential challenges early.

Document and track changes. Maintain detailed documentation of all approved
changes, including their scope, implementation steps, and associated risks or
issues. Use a centralized system or change-management tool to track and monitor
the status of changes throughout their lifecycle.

Density support: Many Azure services support increased resource density. The following
table shows a sampling of these services.

Azure service Segmentation control

Azure Front Door Customer domains and URL paths

Azure Firewall Network and application rules

Azure Application Gateway Listeners, URL path-based routing

Offload responsibilities to external teams

Azure facilitation

Azure service Segmentation control

API Management API policies

Azure Kubernetes Service (AKS) Namespaces, node pools

Azure App Service Multiple web apps and APIs on an App Service plan

Azure SQL Database Multiple databases on a server

Resource observability: Azure Monitor provides a centralized platform for monitoring
and managing the performance and health of your Azure resources. You can collect and
analyze telemetry data, set up alerts, and gain insight into resource utilization and
opportunities for consolidation.

Log Analytics provides centralized log management and analysis. You can collect,
analyze, and visualize log data from various Azure resources, which helps to identify
issues, troubleshoot problems, and gain operational insight.

Azure Monitor
Recommendations for optimizing component costs

Refer to the complete set of recommendations.

Related links

Cost Optimization checklist

Cost Optimization checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/overview

Operational excellence quick links
Apply operational excellence guidance to your workload to ensure workload quality
through standardized processes and team cohesion.

Learn key points

ｆ QUICKSTART

Design principles

Checklist

Tradeoffs

Operational excellence patterns

Azure Well-Architected Review assessment

ｄ TRAINING

Operational excellence

ｑ VIDEO

Achieve Operational Excellence

Review design principles

ｐ CONCEPT

Embrace DevOps culture

Establish development standards

Evolve operations with observability

Deploy with confidence

Automate for efficiency

Adopt safe deployment practices

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-operational-excellence/
https://learn.microsoft.com/en-us/shows/azure-enablement/achieve-operational-excellence-with-azure-well-architected-framework

Start with the fundamentals

ｃ HOW-TO GUIDE

Start with a DevOps culture

Formalize operational tasks

Formalize software development and management

Standardize tools and processes

Use safe deployment practices (SPD)

Use automation

ｃ HOW-TO GUIDE

Automate pragmatically

Design for automation

Ship safely and support what you ship

ｃ HOW-TO GUIDE

Design for observability

Use infrastructure as code

Design a reliable workload supply chain

Handle deployment failures

Design an emergency response strategy

Explore related resources

ｉ REFERENCE

Azure Advisor: Operational excellence recommendations

DevOps resource center

https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations
https://learn.microsoft.com/en-us/devops/

Azure DevOps

GitHub

Azure Resource Manager

Terraform on Azure

https://learn.microsoft.com/en-us/azure/devops/
https://github.com/features
https://learn.microsoft.com/en-us/azure/azure-resource-manager/
https://learn.microsoft.com/en-us/azure/developer/terraform/

Operational Excellence design principles
Article • 11/14/2023

At the core of the Operational Excellence pillar are DevOps practices that ensure
workload quality through standardized workflows and team cohesion. This pillar
defines operating procedures for development practices, observability, and release
management. The goal is to minimize process variance, chances of human error, and
disruption to customers. To assess your operational health, start with these questions:

Do you execute operations with discipline?
Are customers using the workload with maximum predictability?
How do you learn from experience and collected data to drive continuous
improvement?

Workload operations can devolve into chaotic practices when there's no clear ownership
or leadership. In this type of environment, teams often resort to methods that are
executed with high effort and produce low outcomes, which leads to poor user
experience. These approaches meet only short-term goals. Long-term benefits are
realized through continuous evaluation and strategic investments.

The design principles provide guidelines for operational strategies that must be
considered to address the underlying causes and not just treat symptoms. Start with
the recommended approaches, and then observe what works and what doesn't to
identify areas of improvement. After you set your strategy, continue to drive action by
using the Operational Excellence checklist.

The operational requirements of a workload are as important as its business
requirements. Efficient processes ensure the workload achieves business outcomes
within the constraints of compliance, whether that compliance is organizational or
external. The key is to find repeatability with consistency.

The goals of the Operational Excellence pillar are to do the right thing, to do it the
right way, and to solve the right problems as a team.

If you meet these goals, workloads will run reliably and predictably even during times of
change. Inability to fulfill operational requirements can lead to failed deployments,
inconsistent user experience, and added costs that could have been avoided through
proper planning and streamlined execution.

Embrace DevOps culture

 Empower development and operations teams to continuously improve their system
design and processes by working together with a mindset of collaboration, shared
responsibility, and ownership.

DevOps is a community of practice where diversity of perspective and skills drives
toward one mission. Teams must foster a collaborative environment of shared
knowledge instead of siloed learning. Use shared functions to strive to overcome
resource constraints.

A good DevOps culture thrives on shared responsibility. Development and operations
teams should align their goals and priorities with the expectations of their customers
and keep business focus in mind. The development team should involve the operations
team in the feedback loop so the improvements are driven upstream and other teams
benefit equally. Conversely, operations teams are responsible for making the
development team successful in their business outcomes by sharing resources and
feedback that are relevant to the workload.

At the same time, DevOps practices apply clear lines of ownership and accountability
to each team. Regardless of where the application runs, the workload team is
responsible for that application.

DevOps optimizes operational tasks so that they're effective but not burdensome. To
reap the full benefit of DevOps, the culture should optimize processes through
technology and have processes for people in the organization to promote transparent
communication.

Approach Benefits

Use common systems and tools that promote
a collaborative environment for
communication and tracking progress.

Common tools and processes enable
transparent communication. Both development
and operations teams benefit from situational
awareness across various environments,
common support issues, and overall challenges
and wins.

Teams will already be familiar with existing
escalation paths if there's an incident.

A shared backlog makes priorities, such as
working on new features or fixing bugs, clear.

Build a continuous learning and
experimentation mindset throughout the
development cycle.

Through experimentation mechanisms, such as
A/B testing and developing proofs of concept,
you can encourage innovation while keeping
costs low.

Approach Benefits

Support knowledge sharing across teams and
maintain documentation for reuse.

Conduct blameless analysis and debrief post-
release and/or post-incident reviews.

Share knowledge through collaboration that
makes the team proficient in design
approaches, tooling, and processes.

Doing retrospectives after a project helps
identify areas for improvement and celebrate
success.

Adopt proven industry agile practices that
focus on action optimization.

Look for opportunities to "shift left" in
operations for manual and automated
processes, deployment and quality assurance
practices, and observability.

Agile development practices lead to shorter
release lifecycles, which are an indicator of
business value.

Detecting, resolving, and thereby preventing
issues earlier is often less intrusive to the
process.

Set standards for all development and
operational procedures and review and
validate them at a regular cadence.

These procedures include routine tasks, out-of-
band processes, emergency drills and
situations, choice of tooling, monitoring
procedures, skilling plans, and even
communication with stakeholders and
customer disclosures.

Be intentional and explicit about your
decisions.

Standards add predictability to operations and
make processes and practices scalable.
Validating standards is a great way to draw
points of improvement.

Be prepared for emergency and recovery
situations by conducting regular drills.

Execute with precision and enable governance
to prevent anomalies that lead to risks.

Take advantage of centralized operations
teams with specialized skills and breadth of
experience.

There's a cost benefit to using shared resources
both for operations and resources.

Although you own your workload, the
centralized team helps you with cross-
functional skills, such as incident management,
a proactive perspective on monitoring, and
outsourcing expertise with trust.

 Optimize productivity by standardizing development practices, enforcing quality
gates, and tracking progress and success through systematic change management.

Establish development standards

The development team is responsible for addressing workload issues prior to release
with minimal friction. Be mindful of developer efficiency and optimize for fast
turnaround cycles, from coding to testing results. Implement effective and right-sized
processes that plan and standardize technical activities and also drive consensus within
the team and the stakeholders.

Approach Benefits

Document workload features and capture
customer benefits.

Derive scope and detailed functional and
nonfunctional requirements of the architecture.

Create sizing estimation models to report on
scope and cost of the tasks involved.

Good specifications cut operational costs and
chances of failure by supporting more
productive and streamlined development
cycles.

Developers understand the technical design,
goals, and completion criteria before they
start the coding cycle.

Good documentation facilitates repeatable
communication and onboarding of new team
members.

Use an industry standard software
development methodology that's
appropriately tuned for the needs of your
workload and team size.

Maintain a backlog that's shared among all
roles.

Adoption of a well-known methodology sets
the rhythm of the project. It removes process
ambiguities by giving team members clear
expectations and accountability.

By tracking against a common list, tasks can
be refined and prioritized with standard
practices. The project will have better chances
of being delivered on time.

Standard methodologies help with risk
management. With granular milestone
reviews, developers can address potential
issues before they become showstoppers.

Use unified source control for all code, scripts,
deployment templates, pipeline definitions, and
related documentation.

The branching strategy must support friction-
free release of independent and interdependent
features, bug fixes, and hotfixes.

Use shared knowledge across the organization
to build your branching strategy and
deployment processes.

Proper use of source control is crucial in
supporting concurrent changes and
versioning.

Maintain a repeatable workflow for releasing
changes of various sizes and risks, conduct
peer reviews as part of the process, and keep
an audit trail.

Approach Benefits

Have quality assurance processes that
emphasize testing early in the development
lifecycle.

Include all artifacts for planned test
procedures, including application components,
infrastructure, and data plane operations that
are part of a feature release or update.

Treat artifacts as immutable when they're
promoted through environments, gaining
confidence each time they pass through a
quality gate.

Where practical, automate routine checks.

Quality assurance ensures that functional and
nonfunctional requirements were met with
confidence, which leads to positive customer
impact.

Having test plans ensures quality and
completeness and takes possible failure cases
into consideration.

With quality gates, you can enforce best
practices to reduce risks.

Immutability brings confidence because it
ensures the system that you test is exactly
what you release.

Testing cycles efficiently block progress unless
quality criteria are met.

Drive consistency by using style guides and
tools, which enforce conventions, and adopt a
common tool chain for development, testing,
and communication with stakeholders.

Technology standards for developers should
necessitate implementation of patterns, API
design, logging, exception handling, and other
processes.

Consistency in code drives readability and
easier maintenance. It also reduces complexity
and enables code reuse.

Common tooling and conventions also help
teams optimize processes without the need to
address one-off choices.

Consistently and deliberately insist on developer
documentation of code as its written.

Clear code documentation ensures that logic
and functionality are easily understood when
old code needs to be revisited or when
development teams rotate.

Report progress and trends to measure
efficiency.

Trends in bugs, failed updates, time to deploy,
feedback loops, and other metrics are
published, and that drives improvements.

 Gain visibility into the system, derive insight, and make data-driven decisions.

Build a culture that continuously improves quality by monitoring the workload and
taking all the pillars of the Azure Well-Architected Framework into consideration. Enable

Evolve operations with observability

the team and stakeholders to make both short-term and long-term decisions across
many facets by providing the necessary data, statistics, and trends. Learn from your data
and drive improvements.

Operations built for the purposes of observability are key in proactive maintenance of
the application, quality and security assurance, capacity planning, and product
management.

A crucial aspect of monitoring is application using health modeling to help you
anticipate issues before they become incidents and affect customer experience.
Efficient monitoring reduces reactive cycles spent on incident management.

Approach Benefits

Build a monitoring system with its own stack
and flows.

Treat the monitoring system as a dimension of
the workload that's decoupled from its utility.
The stack must cover all layers, including
infrastructure, application health, and build and
release processes.

Capturing or sampling business data is out of
scope for observability implementations.

Decouple monitoring and workload stacks to
separate functional requirements and
observability requirements and make
independent evolution possible. Changes in
code shouldn't affect monitoring, and vice
versa.

Because observability requirements are
separate from functional requirements,
business data won't be disrupted by
monitoring configuration changes or outages.

Drive consistency in the collection process for
each type of data source.

Standardize instrumentation in code by using
industry standards for telemetry, collection of
infrastructure metrics, and tooling.

Consistency prevents variance in sensing and
measurement because familiarity across similar
resources reduces time spent correlating and
analyzing data. You have a holistic perspective
to anticipate issues.

Emit telemetry from application code that
correlates the key points of the execution flow
and gives an end-to-end view at different levels
of granularity.

Prioritize actions based on the severity level,
and understand the context given its verbosity.
This information is crucial for troubleshooting
purposes.

Own the responsibility of emitting and
collecting data, even when data sinks are
shared by multiple teams and managed by
central teams.

By localizing monitoring data to the workload
environment, the team can access logs and
metrics to address workload concerns.

Collect just enough data and retain it for just
enough time.

Consider the cost tradeoffs associated with
logging and storing data.

Intentional data collection helps you optimize
financial and operational costs associated with
collecting more data than you need.

Minimize the noise and avoid intensive

Approach Benefits

computation during analysis, and reduce the
cost of storing data that you no longer need.

Make a distinction between the different
monitoring signals: profiles, logs, metrics, and
traces. Use each signal for the right purpose.

Prioritize the use of metrics to trigger actions
that rely on numeric measurements.

Use profiles to get lower-level visibility, such
as memory allocation, into the system.

Reserve the use of logs and traces to provide
context for flows and dependencies.

By using the signals for the right purposes, you
can prevent inefficient implementation of the
monitoring system.

For example, using logs for actions requires
parsing. You might be able to achieve the same
goals faster with metrics.

Aggregate and visualize data in dashboards to
present monitoring data that's catered to
audiences and keeps the business context in
mind.

Use situational dashboards for surfacing data
to drive awareness among the stakeholders.

Use operational dashboards and workbooks
with drill-down capabilities for operator
activities like incident response. Frequently
refresh the dashboards and provide granular
data.

With visualizations, you can analyze trends,
track against business targets, and manage
incidents.

Dashboards that are tailored to the interest of
the customer make interpretation relevant and
accelerate time to detection and action.

Make alerts actionable by notifying the
accountable roles with standardized
descriptions and severity levels. Provide
information that's collated from various
sources and track deviations from business
targets.

Trigger alerts only for incidents that require
action.

Strive for proactive and thought-provoking
alerts that initiate actions before a degraded
state becomes a failure.

Alerts bring attention to significant events as
defined by the organization.

A good alert system identifies actions and
severity and provides just enough data to drive
clarity and purpose. Operators can start on
remediation without delay.

Deploy with confidence

 Reach the desired state of deployment with predictability.

Build a workload supply chain that enables you to consistently reach the goal of
predictability in all of your environments, across the workload's hosting platforms,
applications, data, and configuration resources. The deployment mechanism must be
capable of automation, testing, monitoring, and versioning. It should be modularized
and ready to execute on demand. It shouldn't be represented as a monolithic end-to-
end process. The supply chain isn't necessarily for faster execution, but to achieve
consistency and self-documentation over multiple iterations.

The workload team is accountable for the supply chain as it relates to their own
workload.

Approach Benefits

Use Infrastructure as Code (IaC) to define the
repeatable aspects of the supply chain that are
production ready.

Prefer declarative approaches over imperative
methods.

Declarative IaC technologies are designed with
automation and reusability in mind. You can
offload infrastructure deployments from
individuals into tooling and achieve consistent
quality.

From an infrastructure perspective, having fewer
technology choices removes variance in tooling
and makes configuration drift easy to detect.
Maintenance will also be easier. If you align
choices with the team's existing skill set, the
team can easily adopt them.

Prepare the team to use the chosen IaC
technology. Learn about its extensibility
model, capabilities, and limitations.

Take advantage of specialization within the
team and shared knowledge within the
organization.

Upskilling increases productivity and fosters an
environment of collaboration through shared
learning.

You can fill gaps with training instead of hiring.

Follow software recommendations for IaC
development and maintenance.

Modularize in moderation. Avoid custom or
low-value abstractions.

Follow a layered approach to reflect different
lifecycles. Form foundational layers where the
lower layers stay constant and the upper
layers change as needed.

Artifacts experience the same level of
engineering rigor as application code. Quality
controls through peer reviews and testing give
you confidence in deployment.

A layered approach makes maintenance easier
and creates boundaries that establish clear lines
of responsibility.

Adding security controls to artifacts helps

Approach Benefits

Deployment artifacts, such as application
binaries, IaC templates, and parameters, are
part of the attack surface. Apply assurances,
such as secret management, access control,
and other principles of the Security pillar.

harden the system during the deployment
process.

Develop a common deployment manifest
that's used across all environments. Use that
manifest as the default mechanism for
greenfield projects, incremental workload
updates, or disaster recovery.

Remove the overhead of maintaining multiple
assets.

If there's a disaster, recovery will be quick and
reliable because you can deploy a tried and
tested manifest instead of creating an
improvised environment.

Strive for immutable and ephemeral
infrastructure that's deployed through IaC
automation.

Prohibit configuration drift and make the
deployment idempotent.

This kind of infrastructure removes significant
operational burdens, such as patching. It also
benefits core validation scenarios, such as blue-
green infrastructure deployments.

 Replace repetitive manual tasks with software automation that completes them quicker,
with greater consistency and accuracy, and reduces risks.

The workload might have workflows with processes that involve team members doing
mundane, repetitive, and time-consuming tasks that don't actually need human intellect.
Depending on the frequency, you might spend considerable time on these efforts,
investing more time as the workload grows. Also, these processes are often error-prone
due to human input.

Through automation, you save time, effort, and money, and you avoid mistakes.

７ Note

Reduce the scope of portal usage to only non-repeating investigatory tasks.

Automate for efficiency

Approach Benefits

Evaluate all workflows against criteria that's at
the right level of complexity, effort, frequency,
accuracy, timeliness, and lifespan.

Automate workflows based on that evaluation
and prioritize the workflows with the highest
expected returns.

Remove redundant workflows or add value to
justify human effort.

You can reinvest team capacity in higher value
work and increase productivity and
consistency.

Building an inventory of workflows ensures
that you automate the right tasks. Removing
redundant tasks reduces complexity and
errors.

Be explicit about your decision when you
evaluate whether to build custom tooling or
buy software.

Reserve building automation for highly
specialized and high-value work.

By buying off-the-shelf software and taking
advantage of the support contract, you save
on maintenance costs.

By building software, you have more control
and can cater to use cases that are unique to
your team and workload. However, there's a
cost impact.

Choice of tooling brings a level of
standardization to your operations. With
training, you can achieve a uniform level of
readiness for adoption.

Design your workload components to support
automation capabilities.

Avoid the situation where lack of automation
in your system design promotes the anti-
pattern of repetitive tasks, slows down growth,
and starts accumulating technical debt.

Treat all automation as a critical dependency of
your workload. Adapt to the workload's
expected growth.

Your automation tooling is an integral part of
your workload, and it should adhere to the five
Well-Architected Framework pillars.

Design your automation component to
withstand risks, such as security threats. With
applied best practices, you can avoid
implementation sprawl.

The workload will continue to operate with a
high-level guarantee if this dependency is kept
functional and safe.

Automate at-scale by exploring options beyond
your workload.

Favor a "design once, run everywhere" model
by providing templates and frameworks to
onboard new projects and promote reuse of
existing designs and implementations.

Employ tried and tested methods and reduce
chances of failure.

 Implement guardrails in the deployment process to minimize the effect of errors or
unexpected conditions.

During the development cycle, workload artifacts go through many changes as they get
implemented and tested and as bugs are fixed.

The deployment process must follow a standard operating procedure. Any change must
be deployed with the same level of rigor. This principle applies equally to code,
configuration, and all related artifacts. The key is to apply safe practices as early as
possible so that you have predictability in production. Even if errors reach the
customers, you should be able to roll out recovery changes as soon as possible.

Approach Benefits

Standardize the process to deploy any
change by using automated deployment
processes, such as pipelines.

All environments must use pipelines.

Classify assets and versions per environment
to make them easily traceable and
identifiable.

Consistent deployment methods reduce issues
caused by process errors and variance and allow
you to focus your effort on the workload
concerns.

Standardization ensures that the deployment is
completed safely, reliably, and with repeatability.

Classification makes it easy to view logs of
previous deployments and issues that have
occurred. You might be able to use that
information to expedite rollback and roll-forward
operations.

Deploy small incremental updates at a
regular cadence.

Frequent, well-tested, small updates make
validation of the release easier.

Troubleshoot faster with minimal customer
impact due to a smaller footprint.

Test updates rigorously by using different
mechanisms throughout the development
lifecycle.

Catch issues in the early stages of development.
Iterative fixes and consistent deployment
practices cause issues to taper off by the time the
update is ready for production.

Roll out updates gradually, with due
diligence.

Use deployment models that give you the
control to progressively increase the

Test each update in a controlled manner so that
issues are fixed early in production. Avoid rolling
out a faulty update that impacts your entire
customer base.

Adopt safe deployment practices

Approach Benefits

number of instances and customers until
the update is safely adopted by all.

Test whether the update is backward and forward
compatible.

Have a mitigation strategy to quickly recover
from deployment failures.

The strategy should cover decision making
on rolling back or forward based on the
criticality of the issue.

Have well-defined processes and
automated systems that can rapidly roll out
fixes by using the standard deployment
pipelines.

Reduce the duration of potential impact.

Restore the system back to the previous working
version or roll forward to a version that has fixes
that have been thoroughly tested.

Have a fallback plan that resets the system
to a working state in case of emergency and
to recover from unexpected failures. Use this
strategy only when necessary and with
approval.

Strive to improve the plan over time.

You can fast-track high-priority fixes, such as
security remediation.

The accelerated pipeline might not have all the
checks of your standard operating procedures,
but you'll get customers to a safe version in the
fastest way possible, which outweighs lower-
impact faults.

We recommend that you review the Operational Excellence checklist to explore other
concepts.

Next steps

Operational Excellence checklist

Design review checklist for Operational
Excellence
Article • 11/14/2023

This checklist presents a set of recommendations to help you build a culture of
operational excellence. Start with a DevOps approach to integrate specializations from
multiple disciplines. This approach creates a rigorous design and development practice.
This approach leads to repeatable, reliable, and safe deployments of infrastructure and
code.

Prioritize human intervention in areas that benefit from it, and incorporate automation
in other areas. Observability serves operational excellence by monitoring health events
and also for validating the current workload design and implementation to inform future
product development.

If you don't consider tradeoffs and recommendations for operational excellence, your
workload might be at risk. Carefully consider the points covered in the following
checklist to instill confidence in your design's success.

 Code Recommendation

☐ OE:01 Determine workload team members' specializations, and integrate them into a
robust set of practices to design, develop, deploy, and operate your workload to
specification. Team members must have clarity in decision-making and
responsibilities, value continuous improvement and optimization, and adopt a
blameless culture that incorporates continuous learning.

☐ OE:02 Formalize the way you run routine, as needed, and emergency operational tasks by
using documentation, checklists, or automation. Strive for consistency and
predictability for team processes and deliverables by adopting industry-leading
practices and approaches, such as a shift left approach.

☐ OE:03 Formalize software ideation and planning processes. Draw from established
industry and organizational standards. Use a common, prioritized backlog and
sufficiently detailed specifications. Based on outcomes, drive continuous
improvements in your planning process.

☐ OE:04
OE:04
OE:04

Optimize software development and quality assurance processes by following
industry-proven practices for development and testing. For unambiguous role
designation, standardize practices across components such as tooling, source
control, application design patterns, documentation, and style guides.

Checklist

 Code Recommendation

☐ OE:05 Prepare resources and their configurations by using a standardized infrastructure as
code (IaC) approach. Like other code, design IaC with consistent styles, appropriate
modularization, and quality assurance. Prefer a declarative approach when possible.

☐ OE:06 Build a workload supply chain that drives proposed changes through predictable,
automated pipelines. The pipelines test and promote those changes across
environments. Optimize a supply chain to make your workload reliable, secure, cost
effective, and performant.

☐ OE:07
OE:07

Design and implement a monitoring system to validate design choices and inform
future design and business decisions. This system captures and exposes operational
telemetry, metrics, and logs that emit from the workload's infrastructure and code.

☐ OE:08 Develop an effective emergency operations practice. Ensure that your workload
emits meaningful health signals across infrastructure and code. Collect the resulting
data and use it to generate actionable alerts that enact emergency responses via
dashboards and queries. Clearly define human responsibilities, such as on-call
rotations, incident management, emergency resource access, and running
postmortems.

☐ OE:09 Automate all tasks that don't benefit from the insight and adaptability of human
intervention, are highly procedural, and have a shelf-life that yields a return on
automation investment. When possible, choose off-the-shelf software for
automation versus custom implementations. Treat all automation the same as
workload components, and apply the Well-Architected Framework pillars to its
design and implementation.

☐ OE:10 Design and implement automation upfront for operations such as lifecycle
concerns, bootstrapping, and applying governance and compliance guardrails. Don't
try to retrofit automation later. Choose automation features that your platform
provides.

☐ OE:11 Clearly define your workload's safe deployment practices. Emphasize the ideals of
small, incremental, quality-gated release methods. Use modern deployment patterns
and progressive exposure techniques to control risk. Account for routine
deployments and emergency, or hotfix, deployments.

☐ OE:12 Implement a deployment failure mitigation strategy that addresses unexpected
mid-rollout issues with rapid recovery. Combine multiple approaches, such as
rollback, feature disablement, or using your deployment pattern's native capabilities.

We recommend that you review the Operational Excellence tradeoffs to explore other
concepts.

Next steps

Operational Excellence tradeoffs

Operational Excellence tradeoffs
Article • 11/14/2023

Operational Excellence provides workload quality through the implementation of clear
team standards, understood responsibility and accountability, attention to customer
outcomes, and team cohesion. The implementation of these goals is rooted in DevOps,
which recommends minimizing process variance, reducing human error, and ultimately
increasing the return of value for the workload. That value isn't just measured against
the functional requirements served by the components of the workload. It's also
measured by the value that the team delivers in striving for improvement.

During the design phase of a workload and over its lifecycle, as continuous
improvement steps are taken, it's important to consider how decisions based on the
Operational Excellence design principles and the recommendations in the Design review
checklist for Operational Excellence might influence the goals and optimizations of
other pillars. Certain decisions might benefit some pillars but constitute tradeoffs for
others. This article describes example tradeoffs that a workload team might encounter
when designing workload architecture and operations.

 Tradeoff: Increased complexity. Reliability prioritizes simplicity, because simple
design minimizes misconfiguration and reduces unexpected interactions.

Safe deployment strategies often require some amount of forward and backward
compatibility between application logic and data in the workload. This added
complexity increases the testing burden and can lead to complexities or integrity
issues with the workload's data.

Highly layered, modularized, or parameterized infrastructure as code can increase
the chance of accidental misconfiguration because of the complexity of the
interaction between the code components.

Cloud design patterns that benefit operations sometimes necessitate the
introduction of additional components, for example, the use of an external
configuration store or the coordination of sidecar deployments in a containerized
application platform. The additional components increase the points of interaction
in the system, increasing the surface area for malfunction or misconfiguration.

Operational Excellence tradeoffs with Reliability

Workload components that are designed to independently evolve to support agile
development and hosting introduce dependencies on service discovery, or even
DNS as a layer of indirection. Service discovery might lack responsiveness to
change, and malfunction can be hard to diagnose.

 Tradeoff: Increased potentially destabilizing activities. The Reliability pillar
encourages the avoidance of activities or design choices that can destabilize a
system and lead to disruptions, outages, or malfunctions.

Deploying small, incremental changes is a technique for mitigating risk, but those
small changes are also expected to be delivered to production more frequently.
Deployments can destabilize a system, so as the rate of deployment increases, so
does this risk.

A culture that measures itself with velocity metrics like deployments per week and
uses automation that can facilitate introducing changes at a faster pace is also
likely to perform more deployments in a shorter period.

Increasing density to simplify operations by reducing the number of control and
observability surfaces can also lead to an increased availability risk because
malfunction or misconfiguration increases the impact radius of a destabilizing
event.

 Tradeoff: Increased surface area. The Security pillar recommends a reduced
workload surface area in terms of components and exposure to operations. This
reduction minimizes attack vectors and produces a smaller scope for security
control and testing.

Components that surround the workload and support its operations, like
automation or a custom control plane, must also be in scope for regular security
hardening and testing.

Routine, ad hoc, and emergency operations increase the points of contact with the
workload. A zero trust approach requires that these processes are considered
attack vectors and must be included in the security controls and validation for the
workload.

Operational Excellence tradeoffs with Security

The observability platform of the system collects logs and metrics about the
workload, which can be a valuable source of information disclosure. Therefore, the
workload's security needs to extend to protect data sinks from internal and
external threats.

Build agents, externalized configuration and feature toggle stores, and side-by-
side deployment approaches all increase the application surface area that requires
security.

A higher deployment frequency caused by small, incremental changes or by "get
current, stay current" efforts results in more security testing in the software
development lifecycle.

 Tradeoff: Increased desire for transparency. A secure workload is based on
designs that protect the confidentiality of data that flows through the components
of the system.

Observability platforms ingest data of all types to gain insights into a workload's health
and behavior. As teams try to attain higher fidelity in observability data, there's an
increased risk that data classification controls, like data masking, of the source systems
don't extend to the logs and log sinks of the observability platform.

 Tradeoff: Reduced segmentation. A key security approach for isolating access
and function is to design a strong segmentation strategy. This design is
implemented through resource isolation and identity controls.

Co-locating disparate application components in shared compute, network, and
data resources to make management easier reverses segmentation or makes role-
based segmentation harder to achieve. Co-located components might also need to
share a workload identity, which can lead to over-assignment of permissions or a
lack of traceability.

Collecting all logs from across the system in a unified log sink can make querying
and building alerts easier. However, doing so can also make it harder or impossible
to provide row-based security in order to treat sensitive data with the required
audit controls.

Simplifying the management of attribute-based or role-based security by reducing
the granularity of roles and their assignments can lead to inappropriately broad
permissions.

The Operational Excellence pillar never recommends activities that reduce productivity
or jeopardize a workload's return on investment. Recommendations that seem to shift
focus from delivery activities take into account long-term best interests for the workload
and team. If your workload is nearing its sunset date, it probably doesn't make sense to
invest highly in recommendations that trigger these tradeoffs.

 Tradeoff: Increased resource spending. A major cost driver for a workload is
the cost of its resources. Deploying fewer resources, right-sizing resources, and
reducing consumption generally helps keep costs low.

Implementing safe deployment practices, even if the changes are relatively small,
can lead to an increase in the number of resources that are concurrently deployed.
These patterns require the deployment of multiple concurrent instances of the
application or infrastructure component so that traffic can be shifted in a
controlled way. This increase is more pronounced in a workload that uses an
immutable infrastructure approach.

The team might need to introduce additional workload components in order to
implement operationally aligned cloud design patterns or workload automation.
For example, to support deployment agility, they might add a gateway routing
component. To support better configuration management, they might add an
external configuration store. To support tenant lifecycle events, they might build a
control plane. These resources also influence the costs of preproduction
environments.

Increasing the number of preproduction environments to improve the
development and testing experience through isolation also increases the number
of resources. These resources, which aren't used to deliver supply against
production demand, increase the cost of the solution.

Increasing the parity of preproduction environments with the production
environment, in terms of resource count, SKUs, and data volumes, improves the
quality assurance process. The cost increases as parity increases.

Although telemetry data isn't directly a resource, to enable the effectiveness of
observability platforms, this data needs to be persisted. Most operational data
stores have pricing that's based on a combination of ingestion rates and volume.
Generally, as the amount of low-latency, high-diversity telemetry increases, costs

Operational Excellence tradeoffs with Cost
Optimization

also increase. For multi-region deployments, these operational data sinks are
expected to be deployed per region, so any per-resource costs become a factor.

 Tradeoff: Decreased focus on delivery activities. Workload team members
deliver increased workload value by efficiently performing tasks that are aligned to
their capabilities.

Workload teams that spend time creating and refining a healthy and responsible
support structure and incident response are providing a valuable service to the
workload's users. As the support effort increases (for example, formal on-call
rotations), usually because of a change in business criticality, the costs of these
activities increase. This cost increase can be the result of an increase in staff or can
be incurred indirectly in the form of attention that's shifted from delivery activities
to supporting functions.

Training is a critical part of a workload team's personal continuous improvement
process. This training can be formal or self-directed during personal enrichment
time. As the amount of training time increases, the amount of time available for
direct development of the workload decreases. Investment in training is diminished
when the training isn't role-based or specifically relevant to the workload or its
future.

Standardized routine operational tasks for protecting the reliability, security, and
performance efficiency of a workload take time to define, refine, and perform. This
time isn't directly spent on delivery. Some examples of these tasks are
comprehensive change impact analysis, change control processes, thorough
testing, and increased patch management. As the frequency, comprehensiveness,
or operational burden of these tasks increases, the time invested also increases.

 Tradeoff: Increased tooling demands and diversity. The Cost Optimization
pillar recommends the reduction of tooling sprawl, consolidation of vendors, and a
right-sized approach to all tooling purchases.

A workload team purchases tools and hardware to support activities that are performed
during the entire software development lifecycle (SDLC), including planning and design,
development and testing, and monitoring. The marketplace for tooling in this space is
growing. Tools are offered at various price points that usually correspond to the tools'
features and capabilities. With the exception of free offerings, these tools incur initial
licensing costs, which might be per-seat or site-wide. They often also require ongoing
maintenance contracts. New vendor relationships might need to be established. Here

are some examples of expected tooling or hardware spending that's associated with the
principles of operational excellence:

Requirements and backlog management
Architecture design tools
UI/UX design tools
Code and asset hosting
Code and low-code development environments
Automation tools
Development and quality assurance workstations
Development and deployment pipelines
Test execution and tracking
Observability tools

 Tradeoff: Increased resource utilization. The Performance Efficiency pillar
recommends the allocation of as much of the available compute and network as
possible to the requirements of the workload.

A workload's observability framework requires that the components in the
architecture allocate time and resources to create, collect, and stream logs and
metrics. These data points help ensure that effective alerting and monitoring is
possible for reliability, security, and performance. As the level of instrumentation
increases, the strain on system resources might also increase.

Some deployment models, like blue/green deployment, which a workload might
use for safe deployment, might introduce side-by-side deployments on the
production application platform. These deployments require preemptive scaling to
provide enough supply to meet future demand, or leave a mostly dormant
deployment in place for a period of time to support rollback.

 Tradeoff: Increased latency. To create performant workloads, teams look for
ways to reduce the time and resources that workloads consume to perform their
tasks.

Many deployment models require the use of gateway routing access patterns,
which can introduce latency. This latency draws against the performance target

Operational Excellence tradeoffs with
Performance Efficiency

budget for the related flows.

Some cloud design patterns that support "independent change over time"
approaches to support the ideals of incremental improvement can introduce
latency due to the traversal of additional components. This latency can be
introduced by gateways, messaging brokers, or anti-corruption layers.

Explore the tradeoffs for the other pillars:

Reliability tradeoffs
Security tradeoffs
Cost Optimization tradeoffs
Performance Efficiency tradeoffs

Related links

Cloud design patterns that support
operational excellence
Article • 11/14/2023

When you design workload architectures, you should use industry patterns that address
common challenges. Patterns can help you make intentional tradeoffs within workloads
and optimize for your desired outcome. They can also help mitigate risks that originate
from specific problems, which can affect reliability, security, performance, and cost.
Because operations cut across all those areas, risks will eventually affect workload
operations. These patterns are backed by real-world experience, are designed for cloud
scale and operating models, and are inherently vendor agnostic. Using well-known
patterns as a way to standardize your workload design is itself a component of
operational excellence.

Many design patterns directly support one or more architecture pillars. Design patterns
that support the Operational Excellence pillar use topologies that provide a solid
foundation for safe deployment practices and facilitate architecture evolution over time,
migration scenarios, and observability.

The following table summarizes cloud design patterns that support the goals of
operational excellence.

Pattern Summary

Anti-Corruption Layer Protects new system components from the behavior or implementation
choices of legacy systems by adding a mediator layer to proxy
interactions between legacy and new components. This pattern helps
ensure that new component design remains uninfluenced by legacy
implementations that might have different data models or business rules
when you integrate with these legacy systems. The pattern is especially
useful in gradual system migrations. It reduces technical debt in new
components while still supporting existing components.

Choreography Coordinates the behavior of autonomous distributed components in a
workload by using decentralized, event-driven communication. This
pattern can be useful when you expect to update or replace services
frequently during the lifecycle of a workload. Because the distributed
components are autonomous, you can modify the workload with less
overall change to the system.

Design patterns for operational excellence

https://learn.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography

Pattern Summary

Compute Resource
Consolidation

Optimizes and consolidates compute resources by increasing density.
This pattern combines multiple applications or components of a
workload on a shared infrastructure. The consolidation leads to a more
homogenous compute platform, which can simplify management and
observability, reduce disparate approaches to operational tasks, and
reduce the amount of tooling that's required.

Deployment Stamps Provides an approach for releasing a specific version of an application
and its infrastructure as a controlled unit of deployment, based on the
assumption that the same or different versions will be deployed
concurrently. This pattern aligns with immutable infrastructure goals,
supports advanced deployment models, and can facilitate safe
deployment practices.

External
Configuration Store

Extracts configuration to a service that's externalized to the application to
support dynamic updates to configuration values without requiring code
changes or application redeployment. This separation of application
configuration from application code supports environment-specific
configuration and applies versioning to configuration values. External
configuration stores are also a common place to manage feature flags to
enable safe deployment practices.

Gateway Aggregation Simplifies client interactions with your workload by aggregating calls to
multiple backend services in a single request. This topology enables
backend logic to evolve independently from clients, allowing you to
change the chained service implementations, or even data sources,
without needing to change client touchpoints.

Gateway Offloading Offloads request processing to a gateway device before and after
forwarding the request to a backend node. Adding an offloading gateway
to the request process enables you to manage the configuration and
upkeep of the offloaded functionality from single point instead of
managing it from multiple nodes.

Gateway Routing Routes incoming network requests to various backend systems based on
request intents, business logic, and backend availability. Gateway routing
enables you to decouple requests from backends, which in turn enables
your backends to support advanced deployment models, platform
transitions, and a single point of management for domain name
resolution and encryption in transit.

Health Endpoint
Monitoring

Provides a way to monitor the health or status of a system by exposing
an endpoint that's specifically designed for that purpose. Standardizing
which health endpoints to expose, and the level of analysis in the results,
across your workload can help you triage issues.

Messaging Bridge Provides an intermediary to enable communication between messaging
systems that are otherwise incompatible because of protocol or format.
This decoupling provides flexibility when you transition messaging and

https://learn.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation
https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/architecture/patterns/external-configuration-store
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://learn.microsoft.com/en-us/azure/architecture/patterns/messaging-bridge

Pattern Summary

eventing technology within your workload or when you have
heterogeneous requirements from external dependencies.

Publisher/Subscriber Decouples components of an architecture by replacing direct client-to-
service or client-to-services communication with communication via an
intermediate message broker or event bus. This layer of indirection can
enable you to safely change the implementation on either the publisher
or subscriber side without needing to coordinate changes to both
components.

Sidecar Extends the functionality of an application by encapsulating nonprimary
or cross-cutting tasks in a companion process that exists alongside the
main application. This pattern provides an approach to implementing
flexibility in tool integration that might enhance the application's
observability without requiring the application to take direct
implementation dependencies. It enables the sidecar functionality to
evolve independently and be maintained independently of the
application's lifecycle.

Strangler Fig Provides an approach for systematically replacing the components of a
running system with new components, often during a migration or
modernization of the system. This pattern provides a continuous
improvement approach, in which incremental replacement with small
changes over time is preferred rather than large systemic changes that
are riskier to implement.

Review the cloud design patterns that support the other Azure Well-Architected
Framework pillars:

Cloud design patterns that support reliability
Cloud design patterns that support security
Cloud design patterns that support cost optimization
Cloud design patterns that support performance efficiency

Next steps

https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig

Recommendations for fostering DevOps
culture
Article • 04/30/2024

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:01 Determine workload team members' specializations, and integrate them into a
robust set of practices to design, develop, deploy, and operate your workload to
specification. Team members must have clarity in decision-making and
responsibilities, value continuous improvement and optimization, and adopt a
blameless culture that incorporates continuous learning.

This guide describes the recommendations for implementing DevOps principles and
practices in your workload. Fostering DevOps culture can help build a foundation of
shared ownership, mutual respect, and appreciation of high quality work in your
workload team. Devops culture provides a template for high-performing teams to thrive
in the system that they're in.

A workload that operates according to the Well-Architected Framework recommended
practices starts with the adoption of the DevOps culture of cohesiveness, responsibility,
continuous learning, and improvement. Team members bring their own expertise and
might focus on specific areas of workload operation. However, your team as a whole
should be able to independently manage day-to-day, as-needed, and emergency tasks,
with support from outside teams when necessary. Your team must work within the
overall organizational requirements and collaborate with other teams by using a
mindset that values shared knowledge.

The following recommendations can help you adopt and implement DevOps practices in
your team to optimize the operation of your workload and add value to your
organization.

A team should operate by using a code of ethics based on mutual respect. Everyone
on the team has expertise that brings value to the team. Recognizing individual ability as

ﾉ Expand table

Key design strategies

Foster mutual respect

a core tenet of the team culture allows conversation to start from a safe place.
Individuals should feel that they can offer honest opinions about workload operations
and be treated respectfully.

Mutual respect fosters a blameless culture. When issues occur, the workload team
should take collaborative ownership and find ways to improve instead of assigning
blame and affecting the team's cohesiveness.

Teams take ownership and responsibility for the workload when they value their work.
The workload team ultimately has end-to-end responsibility for the operation of their
workload. Although there might be outside services required for certain aspects of the
workload operation, your team is responsible for collaborating with other teams and
ensuring that all functions are successfully completed. Regardless of how involved they
are in supporting services, workload team members must consider every function that
supports the workload as their responsibility. This mindset helps reinforce a common
sense of ownership.

Clearly define team roles and decision-making responsibilities. Team decision-making
should be as democratic as possible, but structured so that decisions are made
efficiently. When there are differing opinions about a situation, someone must be
responsible for making the final decision based on the evidence that's presented. Team
decisions can affect the entire workload, so it's important that individuals feel heard and
valued throughout the decision-making process even if they don't agree with the final
decision.

Use enablement teams to the workload teams' advantage. Some organizations have
enablement teams, such as platform teams, architecture review boards, or cloud centers
of excellence. These teams provide standards that all workload teams must follow to
ensure that there's consistency in design and process. Empower your workload team to
have open lines of communication with enablement teams and to work collaboratively
to improve processes and share knowledge. Support a mindset of continuous learning
and improvement in your team via open communication.

Learn from each other to develop a cross-functional team. Establish a team structure in
which everyone is a specialist in their function and a generalist in all other functions so
that team members can support each other when needed. Cross-functionality helps

Team roles and responsibilities

Continuous learning and improvement

team members to develop appreciation for each other's expertise and can help them
understand the complexity of the entire workload.

Understand business, regulatory and other requirements and integrate them into
your practices. Workload teams don't operate in a vacuum. Your team is subject to
requirements enforced by the business, industry, and geographic regions you operate
in. Ensure that your workload team members understand the requirements that they
must follow and the consequences of a failure to meet those requirements.

Proactively adapt your practices to ensure that you're compliant with requirements by
integrating testing mechanisms that specifically target required functions. Your
organization might impose some degree of governance over your workload. Use the
requirements your business standardizes as guardrails to ensure that you're operating
appropriately.

Regularly review your standard operating procedures with the team to foster
discussions about areas of improvement. Avoid complacency and encourage innovative
thinking by fostering a philosophy that all standard operating procedures should be
continuously reviewed and improved throughout the workload lifecycle. Team members
should feel empowered to offer opinions on improvements at any time. However,
ensure that you dedicate time to review procedures together so that everyone has space
to think about areas for improvement and conduct focused discussions about their
ideas.

Embrace safe experimentation. Give team members access to sandbox environments
and ensure that time is built into sprints to allow for experimentation. Document
standards that define how new functionality is integrated into the workload when a
team member discovers a function or component that would offer tangible benefits. Be
careful to ensure that new functionality is aligned with your safe deployment practices.

Strictly defined roles and responsibilities could result in a level of discomfort for some
team members when they're performing functions outside their responsibility. Conduct
open and honest discussions with the team about team structure, and be open to
making adjustments when needed.

Commitment to optimization

Considerations

Azure facilitation

Feedback

Was this page helpful?

Microsoft publishes extensive documentation about DevOps culture in a dedicated
DevOps resource center.

DevOps resource center
Safe deployment practices

Refer to the complete set of recommendations.

Related links

Operational Excellence checklist

Operational Excellence checklist

 Yes No

https://learn.microsoft.com/en-us/devops/what-is-devops
https://learn.microsoft.com/en-us/devops/what-is-devops

Recommendations for formalizing
routine and nonroutine tasks
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:02 Formalize the way you run routine, as needed, and emergency operational tasks by
using documentation, checklists, or automation. Strive for consistency and
predictability for team processes and deliverables by adopting industry-leading
practices and approaches, such as a shift left approach.

This guide describes the recommendations for formalizing routine and nonroutine tasks.
Efficient and successful workload teams have consistent and predictable workload
management practices. Optimize efficiency and consistency by adopting industry-
proven tools and practices and by automating processes when it's practical. By being
consistent about how routine, improvised, and emergency tasks are handled, you
minimize the risk of being unprepared when issues arise. By taking a continuous
improvement approach to workload management, you increase your team's consistency
and efficiency throughout the workload's lifecycle.

Consistent processes make your work quality predictable, and predictable work quality
makes workload support smoother. To achieve consistency in your processes, you need
to be intentional and explicit about how you run processes in standard patterns. Use
strategies like automation and shift-left approaches to minimize potential areas of
unpredictability.

Process standardization takes many shapes. Describing every way that you might
approach standardization is out of scope for this guide, but some general
recommendations include:

The processes that you standardize should cover all aspects of workload
management: reliability, security, cost optimization, performance, and operational
processes. The workload team should have as much ownership of the processes as
they need to maintain and continuously improve the workload under the overall
governance of the organization.

Key design strategies

The documentation that you produce captures your standard operating
procedures and dictates how things are done, but the documentation is never
final. Procedures should evolve as your workload and your team evolve. Regularly
review and challenge standards to ensure that they're the right standards for your
team right now. Your documentation should be templatized and version controlled
to ensure consistency in the documentation formats and that there's a record of
reviews and updates. Versioning also helps to reinforce requirements that the team
conducts reviews of the documentation at regularly scheduled intervals.

Break down routine, improvised, and emergency tasks into checklist items that are
easy to understand. An example of a routine task is the process of applying an
update to an open-source dependency. The workload might need to use an open-
source library like an SDK to use a third-party message service. This SDK should be
updated regularly for security patches, bug fixes, and functionality improvements.

When you determine that you need an update, the workload team might have a
checklist that includes items like testing the update in lower environments,
creating a change management request to deploy the update in production, and
updating documentation, such as a wiki or knowledge base, to ensure that they
reflect the correct version. Focus each checklist item on a discrete task that's clearly
defined.

Improvised and emergency tasks are scenario-specific, but operators should still
clearly understand their roles and responsibilities. They need to know how to
interact with the workload team and with other teams in the organization to
efficiently work through those types of tasks.

For example, an improvised task might deploy a new type of resource, such as a
machine learning service, that has been approved for enhancing the workload
functionality. There might not be a fully realized checklist for the deployment and
testing of this type of resource. However, there should be general checklists for
adding new resources to your infrastructure as code templates and standards that
cover infrastructure testing for performance, security, and reliability at each stage
of your promotion chain.

Likewise, your emergency response plan should clearly define roles and
responsibilities and general processes and procedures. You must adhere to this
plan in emergency situations to ensure that you handle them efficiently.

Improvised and emergency operations are also good opportunities to learn how to
improve your standard operating procedures. Ask the workload team to reflect on
ways that the operations could have gone smoother, and determine whether an
update to existing processes could be beneficial going forward.

Adopt industry-proven practices to minimize the time your team spends on
inventing processes and standards. Following Agile practices with Scrum,
organizing your work through Kanban boards, and adopting a shift-left ethos are
all examples of practices that have been developed over many years and have
been proven effective for organizations of any size. Many mature organizations use
version-controlled standard operating procedures, wikis, new employee manuals,
and operations manuals to enforce consistency.

Rely on your team's experience to decide which practices fit your workload
lifecycle management. Learn from other teams about the standards that they've
successfully implemented to understand how particular practices fit into your
organizational structure.

In this context, a shift-left ethos means that workload teams should be empowered
to look for measures that can improve the security, reliability, and cost efficiency of
the workload. Then, they add those improvement measures to their own backlog,
rather than shifting the responsibility to outside teams.

For example, an exploratory test might uncover an area for improvement in
security that might not have been discovered until it was exposed by security
scans, which happen monthly or even less frequently. Encourage the workload
team to take ownership of the workload in all aspects of its lifecycle and to
contribute to its continuous improvement proactively, rather than relying on other
teams.

Incorporate organizational requirements and cross-cutting functions into your
standard operating procedures. Your organization might have standards for some
processes that you should adopt. However, you might also be empowered to
develop your own standards for other processes, so look for ways to incorporate
required standards into your processes. The processes that you own are likely to
intersect with other teams' processes, so strive to align standards to a practicable
extent.

Document where the workload team's and other team's processes diverge to
ensure that the workload team can work better with other teams when there are
intersection points. Central security teams might use different tools and
procedures than the workload team, and the teams can collaborate more easily if
they're aware of those differences.

Incorporate compliance requirements into your standard operating procedures.
Depending on your industry and the regions in which you operate, there might be
strict requirements about how to perform and document tasks. Make sure that you

understand and incorporate those requirements while you build your standards.
Regularly train the workload team on those requirements.

Use automation to help achieve consistency. Automate tasks that are repetitive
and prone to human error to relieve management burden from your team. Look
for opportunities to automate processes, like generating ITSM tickets, for example.
For more information, see the Recommendations for implementing automation.

Be intentional about your approach to open-source adoption. Standardize the
rules about when the use of open-source tools is allowed, and ensure that you
align with organizational and compliance requirements. You might want to create
standards about workload team members' contributions to open-source projects
and decide whether to open your in-house code to other development teams in
the organization.

Although there are no Azure products that directly facilitate the formalization of
processes and procedures, Microsoft publishes lots of guidance on this topic. Use this
guidance to understand industry-proven and recommended practices and to consider
how to apply them to your workload.

The Well-Architected Framework also provides detailed guidance on the processes and
procedures that should be codified to ensure that your workload and workload team
run according to industry standards.

Cloud Adoption Framework provides guidance for central teams on many areas of
standardizing processes and procedures across an organization.

For more information, see the Azure landing zone design areas and DevOps
considerations.

Codifying standard operating procedures can carry the risk of leading to stagnation or
complacency. Standards should be followed, but they shouldn't be rigid or static. Strive
to find a balance between strict adherence and allowance for innovation so that your
processes can evolve safely over time.

Azure facilitation

Organizational alignment

Tradeoffs

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-areas
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/considerations/devops-principles-and-practices

Recommendations for implementing automation
Recommendations for enabling automation in your workload
Recommendations for formalizing software development management practices

Refer to the complete set of recommendations.

Related links

Operational Excellence checklist

Operational Excellence checklist

Recommendations for formalizing
software development and
management
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:03 Formalize software ideation and planning processes. Draw from established
industry and organizational standards. Use a common, prioritized backlog and
sufficiently detailed specifications. Based on outcomes, drive continuous
improvements in your planning process.

This guide describes the recommendations for managing software development
practices in accordance with established standards. Your team's ability to produce high
quality software relies on a structured, collaborative approach to development planning.
Product owners and managers must be able to clearly understand and articulate to
stakeholders the work that developers are doing at any time in a development cycle.
Conversely, developers must understand the goals of the development cycle via well-
written features, user stories, and acceptance criteria. Established standards define how
development practices should be performed and allow the workload team to
collaborate effectively, reducing the risk of confusion on goals and expectations.

Formalize your software development practices to help ensure that product owners,
project managers, and developers understand the goals of each sprint and deliver
consistent quality to stakeholders. To review guidance on development practices, see
the continuous integration guide.

Collaboration: The process of defining proposed changes to the workload should
be a collaborative effort. Most changes to the workload will impact multiple
functions and/or components, so involving as many workload team members as
possible will help ensure that important considerations are not missed and that
everyone is aware of the impact on their particular domain. Collaboration also
helps clearly define the scope of a change and how to divide the necessary tasks

Key design strategies

Standards for development planning

needed to accomplish the change into well-defined work items, as a larger group
with expertise across domains will be able to provide experience-backed estimates
for the required effort.

Tools: Use established, industry-proven tools and processes, like Agile, Scrum, and
Kanban boards. Developing your own tools and processes is a significant
undertaking, taking time and development cycles that could otherwise be spent on
your workload. Most experienced DevOps engineers and product owners are
familiar with these types of tools and processes, so the learning curve in adopting
them should be minimal. Likewise, the onboarding process for new hires will also
benefit from using standard tools and processes as they are likely to have a degree
of exposure to the same tools and processes already.

Deployment: Plan to use frequent small, iterative deployments instead of large
infrequent deployments. Using this approach will help keep user stories and work
items manageable from a project management standpoint and reduce the risk of
large-scale issues when deployments fail.

Terms: Standardize your definition of finished development cycles to help ensure
that supporting functions, including testing, documentation, and accessibility
features, are successfully completed.

Communication: Define the standard protocols for product owners and project
managers to promote upcoming releases internally and externally. For example,
you might establish a standard for communications to external parties about
upcoming releases. The standard might dictate that communication should be sent
two weeks before the release and a reminder should be sent 24 hours before the
release.

User stories: Standardize a template for user stories. Ensure that each user story is
a discrete unit of work, written from the perspective of the end user. Well-written
user stories should have the following characteristics:

Each user story should be wholly independent from each other. Keeping user
stories independent of each other avoids any confusion with overlapping work
and helps the team understand whether work on a given user story relies on the
work on any others, which helps with scheduling and prioritization.

Each user story is negotiable. The end user and workload team members'
perspectives are both essential to capture realistic user stories that can be
accomplished over a short amount of time.

https://learn.microsoft.com/en-us/devops/plan/what-is-agile-development
https://learn.microsoft.com/en-us/devops/plan/what-is-scrum
https://learn.microsoft.com/en-us/devops/plan/what-is-kanban

User stories are valuable to the end user. When you write user stories from the
perspective of the end user, you capture the changes that they are interested in
seeing and that will add value to their experience. Keeping this focus as the user
story is broken down into work items helps ensure that each deployment
provides an improved experience.

The effort required for a user story is estimable with a high degree of
confidence. Without being able to have a close approximation of the hours
required for a given user story, planning will be difficult and the potential for
missing deadlines increases, potentially causing cascading effects on other
planned work.

Well-written user stories are small, so that they can be completed within a few
weeks. Smaller scoped stories help keep them estimable and manageable and
help keep work items accomplishable.

User stories should be testable. Without being able to test that a feature has
been delivered, the end user can't have confidence that the goal has been
accomplished. Even if a test hasn't been written already for a given user story,
there should be a clear understanding of how a test can be developed to prove
the delivery of the feature.

Acceptance criteria: Standardize a template for acceptance criteria. Ensure that
acceptance criteria relates specifically to the user story and can be unambiguously
proven using one or more acceptance tests.

Tracing: Ensure that the development process is traceable. You should clearly trace
the state of your production workload and the associated code back to quality
assurance testing, acceptance criteria, user stories, and features. Detailed tracing
might also be a regulatory requirement in some cases, like healthcare, for example.

Review: Regularly perform internal audits of your development practices via
development cycle retrospectives and postmortems. Process reflection should be
blameless and should focus on learning that can be applied as improvements.
Ensure that the team reflects on how effective the user story and tasks were in
defining the necessary tasks and on the accuracy of time estimates.

Reports: Standardize reports for stakeholders that provide useful metrics focusing
on change. Focusing on change allows you to track product acceleration and
deceleration. Helpful metrics can include changes in:

The monthly growth rate of adoption.

Performance.

Training time.

The frequency of incidents.

Reporting shouldn't be used as a tool to evaluate the work of individuals, so avoid
metrics like story points or lines of code for each engineer.

Azure Boards is a web-based service that enables teams to plan, track, and discuss work
across the entire development process. It's well suited for Agile-based development
practices.

GitHub Projects is a customizable project management tool that can organize projects
and integrates by using issues and pull requests in GitHub.

Agile methodology can become too strict if it's overly prescriptive. Strive for a balance
between well-defined standards and innovation.

Best practices for Agile project management
Azure Boards

GitHub Projects

Refer to the complete set of recommendations.

Azure facilitation

Tradeoffs

Related links

Community links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://learn.microsoft.com/en-us/azure/devops/boards/best-practices-agile-project-management
https://learn.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards
https://docs.github.com/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

Recommendations for improving build
velocity
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:04 Optimize software development and quality assurance processes by following
industry-proven practices for development and testing. For unambiguous role
designation, standardize practices across components such as tooling, source
control, application design patterns, documentation, and style guides.

Related guides: Recommendations for standardizing tools and processes |
Recommendations for using continuous integration

This guide describes the recommendations for improving the performance of your
deployment infrastructure. It's important to have a build process up and running the
first day of your product development. Builds are the heartbeat of your continuous
delivery system because the build status shows when your product is deployable. Builds
provide crucial information about the status of your product, so you should always strive
for fast builds.

It's difficult to fix a build problem if it takes longer to build. When delays happen and
become normalized, teams tend to become less motivated to fix the problem.

To perform faster builds, you can:

Choose agents that meet your performance requirements: Speed up your builds
by selecting the right build machines. Fast machines can make the difference
between hours and minutes. If your pipelines are in Azure Pipelines, you can run
your jobs by using a Microsoft-hosted agent. When you use Microsoft-hosted
agents, maintenance and upgrades are taken care of for you. For more
information, see Microsoft-hosted agents.

Optimize the build server location: When you're building your code, data is sent
across the wire. Inputs to the builds are fetched from a source control repository

Key design strategies

Build times

https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted?view=azure-devops&preserve-view=true

and the artifact repository. The output from the build process needs to be copied,
including the compiled artifacts, test reports, code coverage results, and debug
symbols. It's important that these copy actions are run quickly. If you use your own
build server, ensure that the build server is located near the sources and a target
location. Fast uploads and downloads can reduce the overall build time.

Scale out build servers: A single build server might be sufficient for a small
product. As the size and scope of the product and the number of teams working
on the product increases, a single server might not be enough. Scale your
infrastructure horizontally over multiple machines when you reach the limit. For
more information, see Create and manage agent pools.

Optimize the build:

Add parallel jobs to speed up the build process. For more information, see
Configure and pay for parallel jobs.

Enable parallel test suite runs, which often save a large amount of time,
especially when running integration and UI tests. For more information, see Run
tests in parallel for any test runner.

Use the notion of a multiplier, where you can scale out your builds over multiple
build agents. For more information, see Specify jobs in your pipeline.

Consider moving integration, UI, and smoke tests to a release pipeline. Moving
to a release pipeline improves the build speed and the speed of the build
feedback loop.

Publish the build artifacts to a package management solution, such as NuGet or
Maven. Publishing to a package management solution lets you reuse your build
artifact more easily.

Your organization might choose to create several different kinds of builds to optimize
build times. Possible builds include:

Continuous integration (CI) build: The purpose of this build is to ensure code is
compiled and unit tests are run. This build gets triggered at each commit. It serves
as the heartbeat of the project and provides quality feedback to the team
immediately. For more information, see Specify events that trigger pipelines.

Nightly build: The purpose of a nightly build isn't only to compile the code, but
also to ensure any larger test suites that are inefficient run on a regular cadence for

Human intervention

https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/pools-queues?tabs=yaml&view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/licensing/concurrent-jobs?view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/parallel-testing-any-test-runner?view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/phases?tabs=yaml&view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/build/triggers?tabs=yaml&view=azure-devops&preserve-view=true

each build. Usually, these tests include integration, UI, or smoke tests. For more
information, see Configure schedules for pipelines.

Release build: In addition to compiling and running tests, this build also compiles
the API documentation, compliance reports, code signing, and other steps that
aren't required every time the code is built. This build provides the golden copy
that's pushed to the release pipeline to finally deploy in the production
environment.

The types of builds needed by your organization depend on factors including your
team's and organization's maturity, the kind of product you're working on, and your
deployment strategy.

Azure DevOps is a collection of services that help you build a collaborative, efficient, and
consistent development practice.

Use Azure Pipelines to build and release services to support continuous integration
and continuous delivery (CI/CD) of your applications.

Use GitHub Actions for Azure to automate CI/CD processes and integrate directly with
Azure to simplify deployments. You can also create workflows that build and test every
pull request to your repository, or deploy merged pull requests to production by using
GitHub Actions for Azure.

Microsoft-hosted agents are available natively in Azure Pipelines. These agents are
single-use virtual machines that are only used for one job and then discarded, which
provides an easy-to-manage option for your builds.

Azure DevOps
Azure Pipelines
Configure and pay for parallel jobs
Configure schedules for pipelines
Create and manage agent pools
GitHub for Actions for Azure
Microsoft-hosted agents
Run tests in parallel for any test runner
Specify events that trigger pipelines
Specify jobs in your pipeline

Azure facilitation

Related links

https://learn.microsoft.com/en-us/azure/devops/pipelines/process/scheduled-triggers
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://azure.microsoft.com/services/devops/pipelines/
https://azure.github.io/actions/
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted?view=azure-devops&preserve-view=true&tabs=yaml
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://azure.microsoft.com/services/devops/pipelines/
https://learn.microsoft.com/en-us/azure/devops/pipelines/licensing/concurrent-jobs?view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/scheduled-triggers
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/pools-queues?tabs=yaml&view=azure-devops&preserve-view=true
https://azure.github.io/actions/
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted?view=azure-devops&preserve-view=true&tabs=yaml
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/parallel-testing-any-test-runner?view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/build/triggers?tabs=yaml&view=azure-devops&preserve-view=true
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/phases?tabs=yaml&view=azure-devops&preserve-view=true

Refer to the complete set of recommendations.

Operational Excellence checklist

Operational Excellence checklist

Recommendations for standardizing
tools and processes
Article • 03/07/2024

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:04 Optimize software development and quality assurance processes by following
industry-proven practices for development and testing. For unambiguous role
designation, standardize practices across components such as tooling, source
control, application design patterns, documentation, and style guides.

Related guide: Improve build velocity | Use continuous integration

This guide describes the recommendations for defining standards for software
development tools and processes. Defining consistent practices leads to an efficient
workload team and high-quality work. High-performing teams use industry-proven
tools and processes to minimize wasted effort and potential code errors.

The first step of optimizing development practices is standardizing tools and processes.
When possible, use industry-proven solutions rather than developing in-house
solutions. To further optimize your practices, adopt low-code and no-code tools. These
tools enable you to focus efforts on your application and help you save time. For all
tools and processes that you standardize, implement training so your teams understand
and use them efficiently. To define standards that help optimize your development
practices, consider the following recommendations.

Use well-known and mature off-the-shelf tools and standardize their use. Highly
effective engineering teams adopt the best-in-class tools. This approach minimizes the
need to develop solutions for planning, development, testing, collaboration, and
continuous integration and continuous delivery (CI/CD). Many enterprises give
developers a choice between a few tools, but all options are standard tools for the
organization and are validated internally. Most importantly, choose tools that meet the

ﾉ Expand table

Key design strategies

Use well-known and mature off-the-shelf tools

requirements for your workload. Off-the-shelf tools should provide the following
functions:

Work planning and backlog management

Version control and repositories

CI/CD pipelines

Testing, such as integration, smoke, synthetic user, simulation, chaos, and other
quality tests

Code development

In some cases, one tool or a suite of tools might provide several functions. Ensure that
you understand the capabilities of your tools and their limitations so they meet your
requirements across functions.

Determine if you should invest in expensive tools or premium versions of tools. Consider
the time and effort of developing your own solutions compared to features that the
premium tools provide. Consider one-time costs versus recurring costs. In most cases,
off-the-shelf tools provide higher value to your team.

Use low-code, no-code, and AI tools when practical. Low-code and no-code tools save
experienced developers time by allowing them to easily plug in functionality rather than
performing the entire code development process. These tools also allow workload team
members that might not be trained developers to contribute to the operation of the
workload. AI tools can help with code development, reviews, and optimization.

Choose a trunk-based model when possible. Trunk-based branching keeps the workload
development team in sync and encourages continuous delivery. Define branch policies
to protect important branches, like the main branch. For more information, see Adopt a
Git branching strategy and Branch policies and settings.

Software development and quality assurance teams can improve only if they can
quantify their effectiveness. To quantify effectiveness, they must identify the metrics that
measure developer velocity and define KPIs. Examples of these metrics include:

Deployment frequency: The number of deployments that each developer deploys
each day.

Standardize your branching strategy

Evaluate metrics to quantify development effectiveness

https://learn.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance
https://learn.microsoft.com/en-us/azure/devops/repos/git/branch-policies
https://azure.microsoft.com/solutions/developer-velocity

Lead time: The time that it takes for a task or user story to go from the backlog to a
production deployment.

Mean time to resolution: The average time that's spent fixing bugs or defects in
code.

Change failure rate: The percentage of changes that result in a failure.

To help stakeholders and the workload team easily track velocity, visualize KPIs by using
dashboards or other reporting tools.

Standardize how your workload team writes, reviews, and documents code by using a
style guide. A standard style makes collaboration easy and helps with on-boarding new
developers. To work effectively, new developers need to know how the workload team
operates. A style guide with clearly defined standards can ease their training process. In
the style guide, define standards for development languages, libraries, frameworks, and
other conventions.

When it's practical, use tooling to enforce code-formatting standards. For example,
Visual Studio offers several tools that scan code for style, quality, maintainability, design,
and other issues. For infrastructure as code (IaC), you can use Checkov or Terrascan for
Terraform.

To ensure consistency and avoid potential confusion, the style guide should include
standard naming conventions for artifacts, environments, branches, builds, and runs.

You should also set guidelines and standards for the allowable degree of variance in
your environments. If there are new languages, frameworks, or other technologies that
workload team members want to add to the standard list, implement a process for using
those tools in a sandbox or lower environment. Test their viability, and replace existing
technologies when appropriate.

Use architecture decision records (ADRs) to keep a historical record of your workload
team's design decisions. ADRs help your teams maintain a fresh understanding of the
workload. They also help new team members learn about the design decisions that are
made during the workload's lifecycle. Ensure that ADRs are version controlled.

In your ADR, include:

Specific tools and technologies, for example using SQL or NoSQL, that your team
chooses.

Standardize how your workload team writes, reviews, and
documents code

https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview

The reasons for your team's decisions.

Other options that were considered, which helps contextualize the final decision.

Functional and nonfunctional requirements that are factored into decisions.

The context of the decision-making process, like the problem that was addressed.

Adopt a mindset that technical debt is intentional and necessary for your workload
team's deliverables. This mindset motivates your team to consider and address technical
debt regularly to avoid accumulation. Address technical debt as a regularly recurring
task in the backlog.

For example, suppose your team standardized on a library. Over time, you need to
switch to a different library for new functionality in the workload. That transition might
result in technical debt. Frequently, transitions like this can leave the workload team
supporting two technologies because they can't fully transition smoothly. The workload
team must prioritize completing the transition because when the workload achieves the
new functionality, stakeholders are satisfied and are less likely to consider the technical
debt.

Standardize how you apply versioning to your artifacts and how versioning is exposed
internally and externally. For example, client-facing systems should expose their running
version in the user interface. This technique is helpful when the workload team
troubleshoots issues because the customer can easily communicate which version they
use. REST interfaces can expose versions for certain components or databases. You
might use a specific table in the metadata for a schema to expose the schema version.

Use industry-proven application design patterns to ensure that your application is
reliable, performant, and secure. Use these patterns to save time and effort compared to
developing your own solutions for your application. Choose the patterns that benefit
your workload. Regularly review design patterns to ensure that you use the right
patterns as your workload evolves.

Implement a shift-left approach to testing by performing unit testing early and often
throughout the development process. Frequent testing in each development

Implement standards for addressing technical debt

Standardize how you apply versioning to your artifacts

Implement a shift-left approach to testing

https://learn.microsoft.com/en-us/azure/architecture/patterns

environment helps developers gain confidence in their applications. To help create your
testing strategy with a shift-left approach, consider the following principles:

Write tests at the lowest level possible. Favor tests with the fewest external
dependencies, and run tests as part of the build.

Write tests once, and run tests everywhere, including production. Write tests that
you can run in every development environment without accounting for factors that
are specific to one environment, like encrypted secrets or configurations.

Design your workload for testing. When you develop your application, make
testability a requirement.

Treat test code as application code. Apply the same quality and development
standards to application code and test code. Store test code alongside application
code. Develop and maintain test code with application code. To ensure the quality
of tests, discard tests that aren't reliable.

Consider test ownership, which is based on workload ownership. Your workload team
owns their testing and shouldn't rely on other teams to test their code.

Automate tests as much as possible. Automated code relieves the burden on your
workload team and enforces consistent quality.

For detailed guidance about implementing a DevOps test strategy, see Shift testing left
with unit tests.

Require DevSecOps practices as part of your standard operating procedures. Your
workload team should understand the security practices related to software
development and quality assurance. They must follow these practices without exception.
For more information, see Security development lifecycle guide.

Implementing tagging and naming conventions is a best practice for managing and
organizing Azure resources. Tagging and naming conventions help to identify, classify,
and group resources based on common attributes, such as environment, application,
owner, or cost center. They also enable security, automation, reporting, and governance
of resources across subscriptions and resource groups.

Some of the benefits of using standardized tagging and naming conventions are:

They provide consistency and clarity for resource identification and management,
facilitating discovery and search across the Azure portal, PowerShell, CLI, and APIs.

Implement standards for naming and tagging resources

https://learn.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable
https://learn.microsoft.com/en-us/devops/operate/security-in-devops

They enable filtering and grouping of resources for billing, monitoring, security,
and compliance purposes.
They support resource lifecycle management, such as provisioning,
decommissioning, backup, and recovery.
They're essential for security purposes. If you come upon a security incident, it's
critical to quickly identify affected systems, the functions that those systems
support, and the potential business impact.

The Cloud Adoption Framework (CAF) provides general guidelines and
recommendations for tagging and naming Azure resources, as well as specific rules and
examples for different resource types.

Azure DevOps is a collection of services that you can use to build a collaborative,
efficient, and consistent development practice. Azure DevOps bundles the
following solutions:

Azure Pipelines provides build and release services to support the CI/CD of your
applications.

Azure Boards is a web-based work-management tool that supports Agile
practices like Scrum and Kanban.

Azure Repos is a version control tool that supports the Git distributed version
control system and the Team Foundation Version Control system.

Azure Test Plans is a browser-based test management solution that provides
capabilities that are required for planned manual testing, user acceptance
testing, exploratory testing, and gathering feedback from stakeholders.

Azure Artifacts is used to enable developers to efficiently share their code and
manage their packages.

GitHub Actions for Azure is a tool that you can use to automate CI/CD
processes. It integrates directly with Azure to simplify deployments. You can create
workflows that build and test every pull request to your repository, or deploy
merged pull requests to production.

GitHub Projects is a work-management tool that you can use to create Kanban
boards, reports, dashboards, and other functions.

Low-code and no-code tools include:

Azure facilitation

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://learn.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards
https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos#git
https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos#tfvc
https://learn.microsoft.com/en-us/azure/devops/test/overview
https://learn.microsoft.com/en-us/azure/devops/artifacts/start-using-azure-artifacts
https://azure.github.io/actions
https://docs.github.com/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

Azure Logic Apps

Azure Functions

Microsoft Power Platform

Azure Resource Manager templates and Bicep are Azure-native tools that you can
use to deploy IaC. Terraform is another Azure-supported IaC tool that you can use
to deploy and manage infrastructure.

Visual Studio is a robust development tool that integrates with Azure and supports
many languages.

GitHub Copilot is an AI service that acts as a pair programmer and provides
autocomplete style suggestions as you code. Copilot is available as an extension in
Visual Studio and several other development tools.

Azure Load Testing is a fully managed load testing service that you can use to
generate high-scale load by simulating traffic for your applications, regardless of
where they're hosted.

Adopt a Git branching strategy
Branch policies and settings
Cloud design patterns
Developer velocity
DevOps resource center
Enable DevSecOps with Azure and GitHub
Overview of source code analysis
Security development lifecycle guide
Security in DevOps (DevSecOps)
Shift testing left with unit tests
Video series: Introduction to GitHub CoPilot

Refer to the complete set of recommendations.

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://powerapps.microsoft.com/low-code-platform
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/developer/terraform/overview
https://learn.microsoft.com/en-us/visualstudio/windows
https://docs.github.com/copilot/overview-of-github-copilot/about-github-copilot-for-individuals
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://learn.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance
https://learn.microsoft.com/en-us/azure/devops/repos/git/branch-policies
https://learn.microsoft.com/en-us/azure/architecture/patterns
https://azure.microsoft.com/solutions/developer-velocity
https://learn.microsoft.com/en-us/devops
https://learn.microsoft.com/en-us/devops/devsecops/enable-devsecops-azure-github
https://learn.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview
https://learn.microsoft.com/en-us/devops/operate/security-in-devops
https://learn.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable
https://learn.microsoft.com/en-us/shows/introduction-to-github-copilot/what-is-github-copilot-1-of-6

Feedback

Was this page helpful? Yes No

Recommendations for using continuous
integration
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:04 Optimize software development and quality assurance processes by following
industry-proven practices for development and testing. For clear role designation,
standardize practices across components such as tooling, source control,
application design patterns, documentation, and style guides.

Related guide: Improve build velocity | Standardize tools and processes

As code is developed, updated, or even removed, having an intuitive and safe method
to integrate these changes into the main code branch enables developers to provide
value.

As a developer, you can make small code changes, push these changes to a code
repository, and get almost instantaneous feedback on the quality, test coverage, and
introduced bugs. This process lets you work faster and with more confidence and less
risk.

Continuous integration (CI) is a practice where source control systems and software
deployment pipelines are integrated to provide automated build, test, and feedback
mechanisms for software development teams.

Continuous integration is a software development practice that developers use to
integrate software updates into a source control system on a regular cadence.

The continuous integration process starts when an engineer creates a GitHub pull
request to signal to the CI system that code changes are ready to be integrated. Ideally,
the integration process validates the code against several baselines and tests. It then
provides feedback to the requesting engineer on the status of these tests.

If baseline checks and testing go well, the integration process produces and stages
assets that will deploy the updated software. These assets include compiled code and
container images.

Key design strategies

Continuous integration can help you deliver high-quality software more quickly by
performing the following actions:

Run automated tests against the code to provide early detection of breaking
changes.
Run code analysis to ensure code standards, quality, and configuration.
Run compliance and security checks to ensure that the software has no known
vulnerabilities.
Run acceptance or functional tests to ensure that the software operates as
expected.
Provide quick feedback on detected problems.
Where applicable, produce deployable assets or packages that include the
updated code.

To achieve continuous integration, use software solutions to manage, integrate, and
automate the process. A common practice is to use a continuous integration pipeline.

A continuous integration pipeline involves a piece of software (often cloud hosted) that
provides:

A platform for running automated tests.
Compliance scans.
Reporting.
All other components that make up the continuous integration process.

In most cases, the pipeline software is attached to source control such that when pull
requests are created or software is merged into a specific branch, the continuous
integration pipeline is run. Source control integration also provides the opportunity to
give CI feedback directly on pull requests.

Many solutions, like Azure Pipelines or GitHub Actions, provide the capabilities of
continuous integration pipelines.

The integration of your continuous integration pipeline with your source control system
is key to enabling fast, self-service code contributions.

The CI pipeline runs on a newly created pull request. The pipeline includes all tests,
security assessments, and other checks. CI test results appear directly in the pull request
to allow for almost real-time feedback on quality.

Continuous integration pipelines

Source control integration

Another popular practice is building small reports or badges that can be presented in
source control to make the current build states visible.

The following image shows the integration between GitHub and an Azure DevOps
pipeline. In this example, the creation of a pull request triggers an Azure DevOps
pipeline. The pipeline status appears in the pull request.

A key element of continuous integration is the continual building and testing of code as
developers make code contributions. Testing pull requests as they're created gives quick
feedback that the commit hasn't introduced breaking changes. The advantage is that
the tests in the continuous integration pipeline can be the same tests that run during
test-driven development.

The following code snippet shows a test step from an Azure DevOps pipeline. The step
has two tasks:

The first task uses a popular Python testing framework to run CI tests. These tests
reside in source control alongside the Python code. The test results go to a file
named test-results.xml.
The second task consumes the test results and publishes them to the Azure
DevOps pipeline as an integrated report.

YAML

Test integration

- script: |
 pip3 install pytest
 pytest azure-vote/azure-vote/tests/ --junitxml=junit/test-results.xml
 continueOnError: true

- task: PublishTestResults@2
 displayName: 'Publish Test Results'
 inputs:
 testResultsFormat: 'JUnit'
 testResultsFiles: '**/test-results.xml'

The following image shows test results that appear in the Azure DevOps portal.

Failed tests should temporarily block a deployment and lead to a deeper analysis of
what happened. Failed tests should also lead to either a refinement of the tests or an
improvement in the change that caused the tests to fail.

Many developers show that their code quality is high by displaying a status badge in
their repository. The following image shows an Azure Pipelines badge displayed on the
readme file for an open-source project in GitHub.

Azure DevOps is a collection of services that help you build a collaborative, efficient, and
consistent development practice.

 failTaskOnFailedTests: true
 testRunTitle: 'Python $(python.version)'

Failed tests

CI result badges

Azure facilitation

https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops

Azure Pipelines provides build and release services to support continuous integration
and continuous delivery (CI/CD) of your applications.

GitHub for Actions for Azure enables the automation of CI/CD processes. It integrates
directly with Azure to simplify deployments. You can create workflows that build and
test every pull request in your repository, or that deploy merged pull requests to
production.

Learn how to create a continuous integration pipeline by using either GitHub or Azure
DevOps:

Create your first pipeline
Use starter workflows

Learn how to display badges in your repositories:

Add an Azure Pipelines status badge to your repository
Add a GitHub workflow status badge to your repository

Related links

Operational Excellence checklist
Design review checklist for Operational Excellence

https://azure.microsoft.com/services/devops/pipelines/
https://azure.github.io/actions/
https://learn.microsoft.com/en-us/azure/devops/pipelines/create-first-pipeline?preserve-view=true&view=azure-devops
https://docs.github.com/free-pro-team@latest/actions/guides/setting-up-continuous-integration-using-workflow-templates
https://learn.microsoft.com/en-us/azure/devops/pipelines/create-first-pipeline?preserve-view=true&tabs=java%2ctfs-2018-2%2cbrowser&view=azure-devops#add-a-status-badge-to-your-repository
https://docs.github.com/free-pro-team@latest/actions/managing-workflow-runs/adding-a-workflow-status-badge

Recommendations for using
infrastructure as code
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:05 Prepare resources and their configurations by using a standardized infrastructure as
code (IaC) approach. Like other code, design IaC with consistent styles, appropriate
modularization, and quality assurance. Prefer a declarative approach when possible.

This guide describes the recommendations for using IaC as the standard for your
infrastructure deployments. Using IaC enables you to integrate your infrastructure
deployments and management into your existing software development practices. It
provides a consistent, standard methodology for development and deployment for all
components of your workload. Relying on manual deployments puts your workload at
risk of inconsistent configurations and potentially insecure design.

Definitions

Term Definition

Declarative tools A category of tools that define the end-state of a deployment and rely on the
system to determine how to deploy the resources to match the defined end-
state.

Immutable
infrastructure

An infrastructure that's intended to be replaced with new infrastructure that
runs the new configuration with each deployment. It must not be changed in
place.

Imperative tools A category of tools that list the execution steps that result in the desired
end-state.

Module A unit of abstraction for dividing groups of resources to simplify complex
deployments.

Mutable
infrastructure

An infrastructure that's intended to be changed in place. Deployments
change the configuration of the infrastructure rather than replacing it with
new infrastructure.

Key design strategies

As discussed in the supply chain and standardizing tools and processes guides, you
should have a strict policy of deploying infrastructure changes (including configuration
changes) only through code. You should deploy IaC through your continuous
integration and continuous delivery (CI/CD) pipelines. Adopting these policies enforces
consistency in processes for all IaC deployments, minimizes the risk of configuration
drift across your environments, and ensures infrastructure consistency across your
environments. Additionally, you should standardize your IaC development and
deployment tools and processes in a style guide. Recommendations for your style guide
include:

Prefer declarative over imperative tools. Declarative tools and their associated files are
a better overall choice for deploying and managing IaC than imperative tools.
Declarative tools use a simpler syntax for their definition files, defining only the desired
state of the environment after the deployment finishes. Imperative tools depend on you
defining the steps required to get to the desired end-state, so the files can be much
more complex than declarative files. Declarative definition files also help reduce the
technical debt of maintaining imperative code, like deployment scripts, that can accrue
over time.

Use your cloud platform's native tools and other industry-proven tools that natively
integrate into the platform. Your cloud platform provides tools to make deploying IaC
easy and straightforward. Take advantage of these tools and other third-party tools that
have native integration, like Terraform, rather than developing your own solutions.
Native tools are supported by the platform and include built-in functionality for most of
your needs. They're continuously updated by the platform provider, making them more
useful as the platform evolves.

Use the right tools for specific tasks and infrastructure types. Multiple tasks, beyond
deployments, are involved in an infrastructure lifecycle. Configuration needs to be
applied and maintained, for example, and the tool you use to script deployments, like
Bicep, might not be the best tool for every management operation.

７ Note

Be mindful that as cloud providers and third-party developers update their tools
and APIs, you can run the risk of unanticipated issues when using the latest version
in your workload. Ensure that you thoroughly test new versions of tools and APIs
before adopting them. Likewise, avoid using the 'latest' flag when calling on a tool
or API in your deployment code. Be intentional about calling the latest known good
version for your workload.

Likewise, applying desired state configuration (DSC) for different infrastructure types
might require different tools. For example, there are specific tools like Ansible for
managing DSC for VMs, whereas Flux is a good tool for managing DSC on Kubernetes
clusters. Platform as a service (PaaS) services might provide different tools for
configuration management (like Azure App Configuration) that can be handled through
IaC. Software as a service (SaaS) services might be more limited because they're more
tightly controlled by the platform.

Think about all the tasks and types of infrastructure that are in scope for your IaC
practices and standardize on tools that do the jobs that you need them to do and can
be integrated into your development and management practices.

Your scripts and templates should be flexible enough to easily deploy a variety of
environments. Use parameters, variables, and configuration files to deploy a standard
set of resources that can be modified to deploy any environment in your code
promotion stack. Abstract settings like resource size, count, name, locations to deploy
into, and some configuration settings. Be careful not to abstract too much, however.
There are settings that can be abstracted with a parameter or variable that might not
actually change over the course of the workload lifecycle, or that might change rarely.
They shouldn't be abstracted.

Strategize and standardize on the use of modules. Like parameters and variables,
modules can make your infrastructure deployments repeatable. Be thoughtful, however,
about how you use them. A standardized abstraction strategy helps ensure that
modules are built to meet specific, agreed-upon goals. Use modules to encapsulate
complex configurations or combinations of resources. Avoid modules if you're using
only the default configuration of the resource. Additionally, be judicious in developing
new modules. Use maintained open-source modules when appropriate, in, for example,
nonsensitive scenarios.

Document standards for manual steps. There might be steps related to deploying and
maintaining infrastructure that are particular to your environment and that require
manual intervention. Ensure that these steps are minimized as much as possible and

７ Note

Avoid using different IaC assets for different environments. You shouldn't have
different Terraform files for production and test environments, for example. All
environments should use one file. You can manipulate that file to deploy into
different environments as needed.

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/considerations/infrastructure-as-code

clearly documented. In your style guide and standard operating procedures, standardize
manual steps to ensure that tasks are performed safely and consistently.

Document standards to handle orphaned resources. Depending on the tools you use
for configuration management and their limitations, there might be times when a
particular resource is no longer needed by your workload and your IaC tools can't
automatically remove the resource. For example, say you're moving from VMs to a PaaS
service for some function, and the IaC tooling doesn't have logic to remove the retired
resources. Those resources can become orphaned if the workload team doesn't
remember to manually delete them. To handle these scenarios, standardize a strategy to
scan for orphaned resources and delete them. You also need to consider how to ensure
that your templates are up to date. Research the limitations of your IaC tooling to
understand what you might need to plan for in these situations.

Consider the following recommendations that apply to using IaC for your workload:

Use a layered approach to align your IaC pipelines within the workload stack.
Separating your IaC pipelines into layers helps you manage complex environments.
Deploying dozens or hundreds of resources as a monolithic package is inefficient and
can introduce multiple issues, like broken dependencies. The use of multiple pipelines
that are aligned with layers composed of resources whose deployment lifecycles or
factors like functionality closely match makes managing IaC deployments easier.

Core infrastructure like networking resources rarely need changes more complex than
configuration updates, so those resources should make up a low-touch IaC pipeline. You
might have one or more medium-touch and high-touch IaC pipelines for resources,
depending on the complexity of your workload. Using a Kubernetes-based application
stack as an example, one medium-touch layer might be composed of the clusters,
storage resources, and database services. High-touch layers would be composed of the
application containers that are updated very frequently in a continuous delivery mode.

Treat your IaC and application code the same. Treating your IaC artifacts the same as
your application code artifacts helps you apply the same rigor for managing code across
all pipelines. Moreover, IaC development and deployment practices should mirror
application practices. Standards for version control, branching, code promotion, and
quality should all be identical. Also consider collocating your IaC assets together with
your application code assets. Doing so helps ensure that the same processes are
followed with every deployment and helps you avoid issues like inadvertently deploying
infrastructure before the necessary application code, or vice versa.

Other IaC strategies

Collaborate with other teams in your organization for standardization and reusability.
Large organizations can sometimes have multiple teams developing and supporting
workloads. Collaboration across teams to agree on standards helps you reuse libraries,
templates, and modules to gain efficiency and consistency across workload
environments. Likewise, IaC tools should be standardized across the organization to the
extent that doing so is practical.

Apply the principle of "security as code" to ensure that security is part of the
deployment pipeline. Include vulnerability scanning and configuration hardening as
part of the IaC development process. Scan your IaC repos for keys and secrets that are
exposed. One advantage of using IaC is that security-focused team members can review
code before deployment to ensure that the configuration that's approved for release by
security is actually what's deployed to production. For detailed guidance, see
Recommendations for securing a development lifecycle.

Test routine and non-routine activities. Test deployments, configuration updates, and
recovery processes, including deployment-rollback processes.

The choice between deploying mutable versus immutable infrastructure depends on a
few factors. If your workload is business critical, it's best to use immutable infrastructure.
Likewise, if you have a mature infrastructure design that's based on deployment stamps,
using immutable infrastructure can make sense, because you can deploy application
code and new infrastructure reliably. Conversely, using mutable infrastructure can be a
better choice if your safe deployment practices dictate that rolling forward with
deployments when mitigable deployment issues arise is the preferred option. In this
case, you would probably update the infrastructure in place.

Azure Resource Manager templates (ARM templates) and Bicep are Azure-native tools
for deploying infrastructure by using declarative syntax. ARM templates are written in
JSON, whereas Bicep is a domain-specific language. Both can easily be integrated into
Azure DevOps pipelines or GitHub Actions CI/CD pipelines.

Terraform is another declarative IaC tool that's fully supported in Azure. It can be used
to deploy and manage infrastructure, and can be integrated into your CI/CD pipeline.

You can use Microsoft Defender for Cloud to discover misconfigurations in IaC.

Mutable vs. immutable infrastructure

Azure facilitation

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/add-template-to-azure-pipelines
https://learn.microsoft.com/en-us/devops/deliver/iac-github-actions
https://learn.microsoft.com/en-us/azure/developer/terraform/overview
https://learn.microsoft.com/en-us/azure/defender-for-cloud/iac-vulnerabilities

Cloud Adoption Framework provides guidance for central teams on how to standardized
infrastructure as code across the organization's workload teams.

For more information, see Infrastructure as Code in the Cloud Adoption Framework.

Increased specialization: In some cases, introducing new languages in your workload
team comes with a learning curve, and vendor lock-in can make it a poor choice.
Training your team members and analyzing the right tool based on your cloud
providers' tooling support is required.

Increased maintenance effort: Code base and tooling maintenance are required to keep
your IaC implementation current and secure. Properly track your technical debt and
foster a culture where reducing debt is rewarded.

Increased time for configuration changes: Deploying infrastructure by using command-
line instructions or directly from a portal requires no coding time and/or testing
artifacts. Minimize deployment time by following recommended practices like code
reviews and quality assurance practices.

Increased complexity of modularization: Using more modules and parameterization
increases the time it takes to debug and document the system and adds a layer of
abstraction. Balance the use of modularization to reduce complexity and avoid over-
engineering.

See the Azure Virtual Desktop landing zone accelerator architecture and the associated
reference implementation for an example of a Virtual Desktop implementation that
can be deployed via provided Resource Manager, Bicep, or Terraform files.

What is infrastructure as code (IaC)?
Enterprise infrastructure as code using Bicep and Azure Container Registry
Discover misconfigurations in IaC
Recommendations for designing a workload development supply chain
Recommendations for standardizing tools and processes

Organizational alignment

Tradeoffs

Example

Related links

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/considerations/infrastructure-as-code
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/wvd/enterprise-scale-landing-zone
https://github.com/Azure/avdaccelerator/
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/azure/architecture/guide/azure-resource-manager/advanced-templates/enterprise-infrastructure-bicep-container-registry
https://learn.microsoft.com/en-us/azure/defender-for-cloud/iac-vulnerabilities

Recommendations for securing a development lifecycle
Recommendations for using safe deployment practices
Deployment Stamps pattern
Azure Resource Manager templates (ARM templates)
Bicep
Azure DevOps pipelines
GitHub Actions
Terraform

Refer to the complete set of recommendations.

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/add-template-to-azure-pipelines
https://learn.microsoft.com/en-us/devops/deliver/iac-github-actions
https://learn.microsoft.com/en-us/azure/developer/terraform/overview

Recommendations for designing a
workload development supply chain
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:06 Build a workload supply chain that drives proposed changes through predictable,
automated pipelines. The pipelines test and promote those changes across
environments. Optimize a supply chain to make your workload reliable, secure, cost
effective, and performant.

This guide describes the recommendations for designing a workload development
supply chain that's based on continuous integration and continuous delivery (CI/CD)
pipelines. Develop a supply chain to ensure that you have a predictable, standardized
method of maintaining your workload. CI/CD pipelines are the manifestation of the
supply chain, but you should have a single supply chain. And you might have several
pipelines that follow the same processes and use the same tools.

Incorporate a supply chain to protect your workload from damage that can occur when
you don't properly manage workload changes. Always be aware of the state of your
workload, so you're not at risk of experiencing unpredictable behavior. This risk
compounds if you need to spend critical time retracing unaccounted for changes when
issues arise. To minimize these risks, standardize the processes and tools that define
your supply chain, and ensure that your workload team fully commits to their use.

Definition

Term Definition

Supply
chain

In cloud workloads, a supply chain is a standardized suite of tools and processes that
you use to affect infrastructure and application change across environments.

Key design strategies

７ Note

The recommendations in this guide refer to workload environments in a code
promotion chain. Sandbox or other exploratory and proof-of-concept
environments require less rigor and structure.

The following recommendations can help you define the core tenets of your supply
chain.

Make proposed workload changes through supply chain processes and tools. Enforce
a strict policy of automated template-based deployments. This method helps ensure
that your workload's configuration across all environments is standardized, well-defined,
and tightly controlled. For environments in a code promotion chain, don't perform
updates by using manual processes or human interaction with the cloud platform's
control plane, for example the portal or an API. Incorporate all changes to the
environment through a pipeline by following deployment practices that you define. To
help enforce this policy, consider limiting access to read-only as a default and using an
access authorization gate to allow write access.

An important aspect of this tenet is that all changes are proposed changes until they're
deployed into production. Through automated testing, like integration and smoke
testing, you enable your supply chain to automatically reject changes.

Deploy repeatable and immutable infrastructure as code (IaC). IaC is the management
of infrastructure in a descriptive model that uses a versioning system that mirrors source
code. When you create an application, the same source code should generate the same
binary every time it's compiled. In a similar manner, an IaC model generates the same
environment every time it's applied.

Incorporate IaC to ensure that your team follows a standard, well-established process.
Some organizations designate a single individual or small group of individuals to deploy
and configure infrastructure. When you implement a fully automated process,
infrastructure deployments require less management from individuals. The responsibility
is transferred to the automation process and tooling. Team members can initiate
infrastructure deployments to maintain consistency and quality.

Design your workload as a logical group of components that you can bundle into one
template to make deployments easy and repeatable. You can think of these bundles as
stamps or units of scale. For more information, see Deployment Stamps pattern. When
you need to deploy your workload to scale out into another region or zone within the
same region, deploy a stamp by using a pipeline. Depending on how you design your
stamps, you might deploy a subset of your workload instead of the entire workload.
Include networking components in your IaC pipelines to ensure that your deployment
stamps automatically connect to existing resources.

To optimize your IaC pipeline for consistency and efficiency, design an immutable
infrastructure rather than a mutable infrastructure. Implement an immutable

Core tenets

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

infrastructure to ensure that all systems in scope are replaced with the updated
configuration simultaneously and identically with each deployment.

Use one set of code assets and artifacts across all environments and pipelines. A
common pain point for organizations is when nonproduction environments are different
from production environments. Building production and nonproduction environments
manually can result in mismatched configurations between the environments. This
mismatch slows down testing and makes it more likely that changes might harm a
production system. An IaC approach minimizes these problems. When you use IaC
automation, you can use the same infrastructure configuration files for all environments
to produce almost identical environments. You can add parameters to the infrastructure
configuration files and adjust them to meet the requirements for each environment.

To control costs, there's typically a variance between production and nonproduction
environments. You often don't need the same degree of redundancy and performance
in nonproduction environments as you do in production. The number and SKU of your
resources might differ between environments. Ensure that you control and understand
the variance by using standardized parameters to help you maintain predictability as
you make changes.

Reflect your organizational structure in your supply chain and pipeline designs. Your
organization might be siloed among teams. Each team might manage a part of the
supply chain. For example, many organizations have teams that manage infrastructure
domains, like networking, data, and compute resources. These teams are separate from
development teams that manage application development, testing, and deployments. In
some organizations, development and infrastructure teams are incorporated into
DevOps teams that collectively manage all infrastructure and application deployments.
There are many ways to organize the teams that are involved in a supply chain. Your
supply chain relies on all the teams seamlessly working together. Ensure that all teams
follow standard processes and use standard tools to make the supply chain as efficient
as possible.

Your supply chain might rely on third-party vendors if you outsource parts of the
workload lifecycle. These vendors are just as critical to the success of your supply chain
as internal resources. Ensure that there's a mutual agreement across all teams about the
processes and tools that you use.

Standardize your deployment method. Talk to the product owner about the acceptable
amount of production downtime for your workload. Depending on how much, if any,
downtime is acceptable, you can choose the deployment method that's right for your
requirements. Ideally, you should perform deployments during a maintenance window

to reduce complexity and risk. If no downtime is acceptable, employ a blue-green
deployment method.

Use a progressive-exposure approach to reduce the risk of introducing undetected bugs
to your customers at large. Also known as canary deployments, this method deploys to
controlled groups of users in a gradual sequence. It catches issues before they affect
more users. The initial rollout group might be a subsection of your customers that are
aware of the rollout strategy. This subsection of customers can tolerate some amount of
unexpected behavior and provide feedback. Or it might be a group of internal users,
which helps contain the blast radius of bugs during the rollout.

When you define your deployment method, adopt a standard policy of only deploying
the smallest viable change in each deployment. Depending on factors like the criticality
of the workload and complexity of the components, determine the smallest viable
change. If you use an immutable infrastructure, the smallest viable change is typically
the deployment of resources with the latest configuration to replace resources that run
the previous version. If you use a mutable infrastructure, you might decide that the
smallest viable change is only a single update on the group of resources in scope.

Follow a layered approach to reflect different lifecycles. Foundational layers should
remain static throughout most of the workload lifecycle, and application layers change
frequently. To account for these differences, you should have different pipelines to effect
changes at each layer.

A landing zone is at the lowest layer. A landing zone is a logical grouping of
foundational elements, like subscriptions, management groups, resource groups,
governance functions, and networking topology. A landing zone enables you to easily
deploy and manage your workload, and provides central operations teams, or platform
teams, with a repeatable approach to an environmental configuration. To deliver
consistent environments, all Azure landing zones provide a set of common design areas,
a reference architecture, a reference implementation, and a process to modify a
deployment to fit your design requirements. The Azure landing zone design principles
provide recommended practices based on policy-driven governance alongside
subscription democratization. A landing zone should require minimal changes over the
course of your workload lifecycle.

Your core infrastructure and functions, like ingress and egress network controllers, load
balancing, network routing solutions, DNS management, and core servers, should also
require infrequent major changes. But they might require frequent configuration
updates.

Your application and data layer requires frequent configuration updates and frequent
infrastructure changes. These components should have the most dynamic pipelines.

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-principles

Plan for a holistic testing strategy. A core tenet of system reliability is the shift left
principle. Developing and deploying an application is a process that's depicted as a
series of steps going from left to right. You shouldn't limit testing to the end of the
process. As much as possible, shift testing to the beginning, or to the left. Errors are
cheaper to repair when you catch them early. They can be expensive or impossible to fix
later in the application lifecycle.

Test all code, including application code, infrastructure templates, and configuration
scripts. The environment that runs applications should be version-controlled and
deployed through the same mechanisms as application code. You can test and validate
the environment by using the same testing paradigms that your teams already use for
application code.

When possible, use automated testing to ensure consistency. Include the following
types of testing in your supply chain design.

Unit testing: Unit tests are typically run as part of a continuous integration routine.
Unit tests should be extensive and quick. They should ideally cover 100 percent of
the code and run in under 30 seconds.

Implement unit testing to verify that the syntax and functionality of individual
modules of code work the way that they should, for example producing a defined
output for a known input. You can also use unit tests to verify that IaC assets are
valid.

Apply unit tests to all code assets, including templates and scripts.

Smoke testing: Smoke tests verify that a workload can be stood up in a test
environment and performs as expected. Smoke tests don't verify the
interoperability of components.

Smoke tests verify that the deployment methodology for the infrastructure and the
application works, and that the system responds as intended after the process
finishes.

Integration testing: Integration tests ensure that the application components
operate individually, and then determine whether components can interact with
each other as they should.

It can take a considerable amount of time to run a large integration test suite.
That's why it's best to incorporate the shift left principle and perform testing early
in the software development lifecycle. Reserve integration tests for scenarios that
you can't test with a smoke test or unit test.

You can run long-running test processes on a regular interval if needed. A regular
interval offers a good compromise and detects interoperability issues between
application components no later than one day after they're introduced.

Some testing scenarios benefit from manual runs. Use manual testing when you
need to introduce human interactivity elements into tests.

Acceptance testing: Depending on the context, you can manually perform
acceptance testing. It can be partially or fully automated. Acceptance testing
determines whether the software system meets the requirement specifications.

The main purpose of this test is to evaluate the system's compliance with the
business requirements and determine whether the system meets the required
criteria for delivery to end users.

Implement quality gates throughout your code promotion process via testing. Deploy
your code into lower environments, like development and testing, and up through
higher environments, like staging and production. As your deployment passes through
quality gates, ensure that it meets your quality targets before changes go to production.
Your business requirements determine what the focus of your quality gates are. Also
consider the fundamental Well-Architected Framework principles: Security, Reliability,
and Performance Efficiency.

Also integrate approval workflows into your quality gates. Clearly define and automate
approval workflows when appropriate. Define quality acceptance criteria into your
automation, so you can move through your gates efficiently and safely.

Azure DevOps is a collection of services that help you build a collaborative, efficient,
and consistent development practice.

Azure Pipelines provides build and release services to support CI/CD in your
applications.

GitHub Actions for Azure integrates with Azure to simplify deployments. Use GitHub
Actions to automate CI/CD processes. You can create workflows that build and test
every pull request to your repository, or deploy merged pull requests to production.

You can use Terraform, Bicep, and Azure Resource Manager for IaC deployments.
Depending on your requirements and your team's familiarity with the tools, you might
use one or more of these tools for your deployments and management of the resources.

Azure facilitation

https://azure.microsoft.com/products/devops
https://azure.microsoft.com/services/devops/pipelines
https://azure.github.io/actions

Cloud Adoption Framework provides guidance for central teams to provide workload
landing zones. The workload landing zones are where the workload's custom supply
chain will deploy applications into.

For more information, see Landing zones and the Azure landing zone design principles.

In your lower environments, there's a tradeoff between cost and infrastructure parity
with production. Each successively higher environment should be closer in parity to
production to ensure that your quality gates are as effective as possible.

For an example that shows how to use Azure Pipelines to build a CI/CD pipeline, see
Azure Pipelines baseline architecture.

Azure DevOps
Azure Pipelines
Deployment Stamps pattern
GitHub Actions for Azure
Landing zones
Performance Efficiency pillar
Reliability pillar
Security pillar

Refer to the complete set of recommendations.

Organizational alignment

Tradeoffs

Example

Related links

Operation Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-principles
https://learn.microsoft.com/en-us/azure/devops/pipelines/architectures/devops-pipelines-baseline-architecture
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://azure.microsoft.com/services/devops/pipelines
https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://azure.github.io/actions
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone

Recommendations for designing and
creating a monitoring system
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:07 Design and implement a monitoring system to validate design choices and inform
future design and business decisions. This system captures and exposes operational
telemetry, metrics, and logs that emit from the workload's infrastructure and code.

Related guide: Recommendations for instrumenting an application

This guide describes the recommendations for designing and creating a monitoring
system. To effectively monitor your workload for security, performance, and reliability,
you need a comprehensive system with its own stack that provides the foundation for all
monitoring, detection, and alerting functions.

Definitions

Term Definition

Logs Recorded system events. Logs can contain different types of data in a structured or free-
form text format. They contain a timestamp.

Metrics Numerical values that are collected at regular intervals. Metrics describe some aspects
of a system at a particular time.

To implement a comprehensive monitoring system design for your workload, follow
these core tenets:

Whenever practical, take advantage of platform-provided monitoring tools, which
typically require very little configuration and can provide deep insights into your
workload that might otherwise be difficult to accomplish.

Collect logs and metrics from the entire workload stack. All infrastructure resources
and application functions should be configured to produce standardized,
meaningful data, and that data needs to be collected.

Store the collected data in a standardized, reliable, and secure storage solution.

Key design strategies

Process stored data so that it can be handled by analysis and visualization
solutions.

Analyze processed data to accurately determine the state of the workload.

Visualize the state of the workload in meaningful dashboards or reports for
workload teams and other stakeholders.

Configure actionable alerts and other automatic responses to intelligently defined
thresholds to notify workload teams when issues arise.

Include monitoring and alerting systems in your overall workload testing practices.

Ensure that monitoring and alerting systems are in scope for continuous
improvement. Application and infrastructure behavior in production provides
continuous learning opportunities. Incorporate those lessons into monitoring and
alerting designs.

Tie the monitoring data that you gather and analyze back to your system and user
flows to correlate the health of the flows with the data in addition to the overall
health of the workload. Analyzing that data in terms of the flows will help align
your observability strategy with your health model.

You should automate all functions of the monitoring system as much as possible, and
they should all run continuously, all day, every day.

This workflow pipeline illustrates the monitoring system:

Collection

７ Note

You need to instrument your application to enable logging. For more information,
see the instrumentation guide.

https://learn.microsoft.com/en-us/azure/well-architected/operational-excellence/media/observability/monitor-pipeline.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/devops/monitor-instrument

You should configure all workload components, whether they're infrastructure resources
or application functions, to capture telemetry and/or events like logs and metrics.

Logs are primarily useful for detecting and investigating anomalies. Typically, logs are
produced by the workload component and then sent to the monitoring platform or
pulled by the monitoring platform via automation.

Metrics are primarily useful for building a health model and identifying trends in
workload performance and reliability. Metrics are also useful for identifying trends in the
usage behavior of your customers. These trends can help guide decisions about
improvements from the customer perspective. Typically, metrics are defined in the
monitoring platform, and the monitoring platform and other tools poll the workload to
capture metrics.

For applications, the collecting service can be an application performance management
(APM) tool that can run autonomously from the application that generates the
instrumentation data. After APM is enabled, you have clear visibility into important
metrics, in real time and historically. Use an appropriate level of logging. Verbose
logging can incur significant costs. Set log levels according to the environment. Lower
environments don't need the same level of verbosity as production, for example.

Application logs support the end-to-end application lifecycle. Logging is essential to
understanding how the application operates in various environments, which events
occur, and the conditions under which they occur.

We recommend that you collect application logs and events across all major
environments. Separate the data between environments as much as possible by using
different data stores for each environment, if doing so is practical. Use filters to ensure
that noncritical environments don't complicate the interpretation of production logs.
Finally, corresponding log entries across the application should capture a correlation ID
for their respective transactions.

You should capture application events in structured data types with machine-readable
data points rather than unstructured string types. A structured format that uses a well-
known schema can make parsing and analyzing logs easier. Also, structured data can
easily be indexed and searched, and reporting can be greatly simplified.

Data should be in an agnostic format that's independent of the machine, operating
system, or network protocol. For example, emit information in a self-describing format
like JSON, MessagePack, or Protobuf rather than ETL/ETW. A standard format enables

Application data

the system to construct processing pipelines. Components that read, transform, and
send data in the standard format can be easily integrated.

For infrastructure resources in your workload, ensure that you collect both logs and
metrics. For infrastructure as a service (IaaS) systems, capture OS, application-layer, and
diagnostic logs in addition to metrics related to workload health. For platform as a
service (PaaS) resources, you might be limited in your ability to capture logs that are
related to underlying infrastructure, but be sure that you can capture diagnostic logs in
addition to metrics related to workload health.

As much as possible, collect logs from your cloud platform. You might be able to collect
activity logs for your subscription and diagnostic logs for the management plane.

Avoid retrieving telemetry data manually from every component. Move data to a central
location and consolidate it there. For a multi-region solution, we recommend that you
first collect, consolidate, and store data on a region-by-region basis, and then aggregate
the regional data into a single central system.

 Tradeoff: Be aware that there are cost implications to having regional and
centralized data stores.

To optimize the use of bandwidth, prioritize based on the importance of data. You can
transfer less urgent data in batches. However, this data must not be delayed indefinitely,
especially if it contains time-sensitive information.

There are two primary models that the collection service can use to collect
instrumentation data:

Pull model: Actively retrieves data from the various logs and other sources for
each instance of the application.

Push model: Passively waits for the data to be sent from the components that
constitute each instance of the application.

Monitoring agents

You can use monitoring agents in the pull model. Agents run locally in a separate
process with each instance of the application, periodically pulling data and writing the

Infrastructure data

Collection strategies

information directly to common storage that's shared by all instances of the application.

Performance considerations

A complex and highly scalable application might generate huge volumes of data. The
amount of data can easily overwhelm the I/O bandwidth available for a single, central
location. The telemetry solution must not act as bottleneck and must be scalable as the
system expands. Ideally, the solution should incorporate a degree of redundancy to
reduce the risks of losing important monitoring information (like auditing or billing
data) if part of the system fails.

One way to buffer instrumentation data is to use queuing:

７ Note

Using a monitoring agent is ideally suited to capturing instrumentation data that's
naturally pulled from a data source. It's appropriate for a small-scale application
that runs on a limited number of nodes in a single location. Examples include
information from SQL Server dynamic management views or the length of an Azure
Service Bus queue.

https://learn.microsoft.com/en-us/azure/well-architected/operational-excellence/media/observability/monitor-write-shared-storage.png#lightbox

In this architecture, the data-collection service posts data to a queue. A message queue
is suitable because it provides "at least once" semantics that helps ensure that queued
data won't be lost after it's posted. You can implement the storage-writing service by
using a separate worker role. You can use the Priority Queue pattern to implement this
architecture.

For scalability, you can run multiple instances of the storage-writing service. If a high
volume of events or a high number of data points is being monitored, you can use
Azure Event Hubs to dispatch the data to a different compute instance for processing
and storage.

Consolidation strategies

The data collected from a single instance of an application provides a localized view of
the health and performance of that instance. To assess the overall health of the system,
you need to consolidate some aspects of the data from the local views. You can do that
after the data is stored, but, in some cases, you can do it as the data is collected.

The instrumentation data can pass through a separate data consolidation service that
combines data and acts as a filter and cleanup process. For example, you can
amalgamate instrumentation data that includes the same correlation information, like an
activity ID. (A user might start a business operation on one node and then get
transferred to another node if the first node fails, or because of how load balancing is
configured.) This process can also detect and remove any duplicated data. (Duplication

https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/well-architected/operational-excellence/media/observability/queue-buffer-data.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/operational-excellence/media/observability/service-instrumentation-data.png#lightbox

can occur if the telemetry service uses message queues to push instrumentation data
out to storage.)

When you choose a storage solution, consider the type of data, how it's used, and how
urgently it's required.

Consider a polyglot persistence approach, where different types of information are
stored in technologies that are most appropriate to the way each type is likely to be
used.

For example, Azure Blob Storage and Azure Table Storage are accessed in similar ways.
But the operations that you can perform on them differ, as does the granularity of the
data that they hold. If you need to perform more analytical operations or require full-
text search capabilities on the data, it might be more appropriate to use data storage
that provides capabilities that are optimized for specific types of queries and data
access. For example:

Performance counter data can be stored in a SQL database to enable ad hoc
analysis.

It might be better to store trace logs in Azure Monitor Logs or Azure Data Explorer.

You might store security information in an HDFS solution.

The same instrumentation data might be required for more than one purpose. For
example, you can use performance counters to provide a historical view of system
performance over time. This information might be combined with other usage data to
generate customer billing information. In these situations, the same data might be sent
to more than one destination, like to a document database that can be a long-term
store for holding billing information, and to a multidimensional store for handling
complex performance analytics.

Storage

７ Note

Use separate storage solutions for non-production and production environments to
ensure that data from each environment is easy to identify and manage.

Storage technologies

Be sure to enable functionality to protect the data from accidental deletion, like resource
locks and soft delete.

Also, be sure that you secure access to storage by using role-based access control to
help ensure that only individuals who need to access the data can do so.

You can implement another service that periodically retrieves the data from shared
storage, partitions and filters it according to its purpose, and then writes it to an
appropriate set of data stores.

An alternative approach is to include this functionality in the consolidation and cleanup
process and write the data directly to these stores as it's retrieved rather than saving it
in an intermediate shared storage area.

Each approach has its advantages and disadvantages. Implementing a separate
partitioning service reduces the load on the consolidation and cleanup service, and it
enables at least some of the partitioned data to be regenerated if necessary (depending
on how much data is retained in shared storage). However, this approach consumes
additional resources. Also, there might be a delay between the receipt of
instrumentation data from each application instance and the conversion of this data into
actionable information.

Consider how urgently the data is required. Data that generates alerts must be accessed
quickly, so it should be held in fast data storage and indexed or structured to optimize
the queries that the alerting system performs. In some cases, it might be necessary for
the collection service to format and save data locally so that a local instance of the
alerting system can send notifications quickly. The same data can be dispatched to the
storage writing service shown in the previous diagrams and stored centrally if it's also
required for other purposes.

Consolidation service

Querying considerations

https://learn.microsoft.com/en-us/azure/well-architected/operational-excellence/media/observability/partition-move-data.png#lightbox

In some cases, after data is processed and transferred, you can remove the original raw
source data that was stored locally. In other cases, it might be necessary or useful to
save the raw information. For example, you might want to keep data that's generated
for debugging available in its raw form but then discard it quickly after any bugs are
resolved.

Performance data often has a longer life so that you can use it for spotting performance
trends and for capacity planning. The consolidated view of this data is usually kept
online for a finite period to enable fast access. After that, it can be archived or discarded.

It's useful to store historical data so you can spot long-term trends. Rather than saving
old data in its entirety, you might be able to down-sample the data to reduce its
resolution and save storage costs. For example, rather than saving minute-by-minute
performance indicators, you can consolidate data that's more than a month old to form
an hour-by-hour view.

Data gathered for metering and billing customers might need to be saved indefinitely.
Additionally, regulatory requirements might dictate that information collected for
auditing and security needs to be archived and saved. This data is also sensitive and
might need to be encrypted or otherwise protected to prevent tampering. You should
never record user passwords or other information that might be used to commit identity
fraud. You should scrub these details from the data before it's stored.

To ensure that you comply with laws and regulations, minimize the storage of any
identifiable information. If you do need to store identifiable information, be sure, when
you design your solution, to take into account requirements that allow individuals to
request that their information be deleted.

After you collect data from various data sources, analyze it to assess the overall well-
being of the system. For this analysis, have a clear understanding of:

How to structure data based on KPIs and performance metrics that you've defined.

How to correlate the data captured in different metrics and log files. This
correlation is important when you're tracking a sequence of events and can help
you diagnose problems.

In most cases, data for each component of the architecture is captured locally and then
accurately combined with data that's generated by other components.

Data retention considerations

Analysis

For example, a three-tier application might have:

A presentation tier that allows a user to connect to a website.

A middle tier that hosts a set of microservices that processes business logic.

A database tier that stores data associated with the operation.

The usage data for a single business operation might span all three tiers. This
information needs to be correlated to provide an overall view of the resource and
processing usage for the operation. The correlation might involve some preprocessing
and filtering of data on the database tier. On the middle tier, aggregation and
formatting are common tasks.

Correlate application-level and resource-level logs. Evaluate data at both levels to
optimize the detection of issues and the troubleshooting of those issues. You can
aggregate the data in a single data sink or take advantage of methods that query
events across both levels. We recommend a unified solution, like Azure Log
Analytics, to aggregate and query application-level and resource-level logs.

Define clear retention times on storage for cold analysis. We recommend this
practice to enable historic analysis over a specific period. It can also help you
control storage costs. Implement processes that ensure data is archived to cheaper
storage and aggregate data for long-term trend analysis.

Analyze long-term trends to predict operational issues. Evaluate long-term data
to form operational strategies and also to predict what operational issues are likely
to occur, and when. For example, you might note that average response times are
slowly increasing over time and approaching the maximum target.

For detailed guidance about these recommendations, see Analyze monitoring data for
cloud applications.

The most common way to visualize data is to use dashboards that can display
information as a series of chart or graphs, or in some other visual form. These items can
be parameterized, and an analyst can select the important parameters, like the time
period, for any specific situation.

Recommendations

Visualization

Dashboards

https://learn.microsoft.com/en-us/azure/well-architected/devops/monitor-analysis

Align your dashboards with your health model so that they indicate when the workload
or components of the workload are healthy, degraded, or unhealthy.

For a dashboard system to work effectively, it must be meaningful to the workload
team. Visualize information that relates to workload health and that's also actionable.
When the workload or a component is degraded or unhealthy, members of the
workload team should be able to easily identify where in the workload the issue
originates and begin their corrective actions or investigations. Conversely, including
information that isn't actionable or that's not related to workload health can make the
dashboard needlessly complex and frustrating to team members who are trying to
discern background noise from actionable data.

You might have dashboards for stakeholders or developers that are customized to only
show data about the workload that they find relevant. Ensure that the workload team
understands the types of data points that other teams are interested in seeing and
previews the dashboards before sharing them to check for clarity. Providing dashboards
about your workload for stakeholders is a good way to keep them apprised of the
workload health, but carries a risk of being counterproductive if the stakeholders don't
clearly understand the data they see.

A good dashboard doesn't just display information. It also enables an analyst to pose
improvised questions about that information. Some systems provide management tools
that an operator can use to complete these tasks and explore the underlying data.
Instead, depending on the repository that's used to hold the information, it might be
possible to query the data directly or import it into tools like Excel for further analysis
and reporting.

Reporting is used to generate an overall view of the system. It might incorporate
historical data and current information. Reporting requirements fall into two broad
categories: operational reporting and security reporting.

Operational reporting typically includes the following:

７ Note

Restrict dashboard access to authorized personnel. Information on dashboards
might be commercially sensitive. You should also protect the underlying data to
prevent users from changing it.

Reporting

Aggregating statistics that you can use to understand resource utilization of the
overall system or specified subsystems during a specified time window.

Identifying trends in resource usage for the overall system or specified subsystems
during a specified period.

Monitoring exceptions that have occurred throughout the system or in specified
subsystems during a specified period.

Determining the efficiency of the application for the deployed resources, and
understanding whether the volume of resources, and their associated costs, can be
reduced without affecting performance unnecessarily.

Security reporting tracks customer use of the system. It can include:

Auditing user operations. This task requires recording the individual requests that
each user completes, together with dates and times. The data should be structured
to enable an administrator to quickly reconstruct the sequence of operations that a
user completes during a specified period.

Tracking resource use by user. This task requires recording how each request from
a user accesses the various resources that compose the system, and for how long.
An administrator can use this data to generate a utilization report, by user, for a
specified period, possibly for billing.

In many cases, batch processes can generate reports according to a defined schedule.
Latency isn't normally an issue. You should also have batch processes that can generate
reports on a spontaneous basis, as needed. For example, if you store data in a relational
database like Azure SQL Database, you can use a tool like SQL Server Reporting Services
to extract and format data and present it as a set of reports.

To help ensure that the system remains healthy, responsive, and secure, set alerts so that
operators can respond to them in a timely manner. An alert can contain enough
contextual information to help them quickly get started on diagnostic activities. Alerting
can be used to invoke remediation functions like autoscaling or other self-healing
mechanisms. Alerts can also enable cost-awareness by providing visibility into budgets
and limits.

Alerts

Recommendations

Define a process for alert response that identifies the accountable owners and
actions.

Configure alerts for a well-defined scope (resource types and resource groups) and
adjust the verbosity to minimize noise.

Use an automated alerting solution, like Splunk or Azure Monitor, instead of
requiring people to actively look for issues.

Use alerts to operationalize remediation processes. For example, automatically
create tickets to track issues and resolutions.

Track the health of your cloud platform services in regions, communication about
outages, planned maintenance activities, and other health advisories.

Alerts are generated when thresholds are crossed, as detected by your monitoring
system. Ensure that the thresholds you set generally give you enough time to implement
the necessary changes to your workload to avoid degradation or outages. For example,
set your automatic scaling threshold to initiate scaling before any of the running
systems become overwhelmed to the point of a degraded user experience. Base the
threshold values that you assign on your past experience in managing infrastructure and
validate them through the testing that you perform as part of your testing practices.

For detailed guidance on alerting use cases and other considerations, see Designing a
reliable monitoring and alerting strategy.

Azure Monitor is a comprehensive monitoring solution for collecting, analyzing,
and responding to monitoring data from your cloud and on-premises
environments.

Log Analytics is a tool in the Azure portal that you can use to edit and run log
queries against data in the Log Analytics workspace.

If you're using multiple workspaces, see the Log Analytics workspace architecture
guide for best practices.

Application Insights is an extension of Azure Monitor. It provides APM features.

Thresholds

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

Azure Monitor Insights are advanced analytics tools for specific Azure technologies
(like VMs, app services, and containers). These tools are part of Azure Monitor and
Log Analytics.

Azure Monitor for SAP solutions is an Azure monitoring tool for SAP landscapes
that run on Azure.

Azure Policy can help you enforce organizational standards and assess compliance
at scale.

Storing logs and telemetry data, running queries against that data, and other factors like
replication all have cost implications that you need to consider when you plan your
strategy. Consider options like archive storage and selective replication when they're
practical.

Instrumentation guide
Recommendations for designing a reliable monitoring and alerting strategy
Recommendations for monitoring and threat detection
Recommendations for collecting performance data

Refer to the complete set of recommendations.

Tradeoffs

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/insights/insights-overview
https://learn.microsoft.com/en-us/azure/sap/monitor/about-azure-monitor-sap-solutions
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/well-architected/devops/monitor-instrument

Recommendations for instrumenting an
application
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:07 Design and implement a monitoring system to validate design choices and inform
future design and business decisions. This system captures and exposes operational
telemetry, metrics, and logs that emit from the workload's infrastructure and code.

Related guide: Recommendations for designing and creating a monitoring system

This guide describes the recommendations for enabling observability of your application
by using instrumentation. Generate meaningful telemetry that can be ingested and
integrated into your monitoring system. By using instrumentation, you can gather
information without signing in to a remote production server to manually perform
tracing or debugging. Instrumentation data includes metrics and logs that you can use
to assess performance, diagnose problems, and make workload decisions.

To optimize telemetry for your workload, instrument your application to generate the
following data:

Logs are timestamped records of discrete events. There are three forms of logs:
plain text, structured, and binary.

Distributed tracing logs allow you to see the path of a request as it travels through
different services and components.

Metrics are numerical values that describe an aspect of a system at a particular
point in time.

Key design strategies

７ Note

You can use tools like Application Insights, Dynatrace, and Elastic Application
Performance Monitoring to automatically instrument your application. These tools
make instrumentation easier, but they can also be limiting. If you use an automatic

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-platform-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/app/distributed-trace-data
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-platform-metrics

Use structured logging to easily integrate logs into monitoring and analysis platforms.
Instrument your application so the levels of verbosity can be changed. Constant verbose
logging can waste storage resources, so it should be switched on and off as needed for
troubleshooting.

Trace logs contain textual data or binary data that's created from a trace event, if the
application uses Event Tracing for Windows (ETW). System logs generate trace log
content from events in the infrastructure, such as the web server. Textual log content is
designed to be readable by humans, but you should ensure that it's written in a format
that an automated system can parse as well.

Categorize logs and use separate logs to record the trace output from each operational
aspect of the system. If you categorize your logs, you can quickly filter log messages
instead of processing a single lengthy file. Never write information that has different
security requirements, such as audit information and debugging data, to the same log.

Metrics, or samples, are a count of some aspect or resource in the system at a specific
time, with one or more associated tags or dimensions. A single instance of a metric isn't
useful in isolation, metrics should be captured over time. Consider which metrics you
should record and how frequently. Data that's generated too often can impose a heavy
load on the system, but infrequent data capture can cause you to miss the
circumstances that lead to a significant event. The appropriate frequency for capturing
data might vary from metric to metric. For example, CPU usage on a server might vary
significantly from second to second, but high usage only becomes an issue if it's
consistent over many minutes.

instrumentation tool, you can add more capabilities through manual
instrumentation as needed.

Logs and distributed tracing logs

７ Note

A log might be implemented as a file in the file system, or it might be held in some
other format, such as a blob in blob storage. Log information might also be held in
structured storage, such as rows in a table.

Metrics

https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-event-tracing-windows

You can easily monitor individual and system-level performance counters, capture
metrics for resources, and obtain application trace information from various log files.
Some monitoring requires data correlation during the analysis and diagnostics stage in
the monitoring pipeline. This data can take several forms and the analysis process must
be provided with sufficient instrumentation data to map these different forms. For
example, at the application framework level, a thread ID might identify a task. Within an
application, the same work might be associated with the user ID for the user who
completes that task.

It's unlikely to be a 1:1 map between threads and user requests, because asynchronous
operations might reuse the same threads for more than one user. To complicate matters
further, a single request can correlate to more than one thread as it flows through the
system. If possible, associate each request with a unique activity ID that's propagated
through the system as part of the request context. The technique for generating and
including activity IDs in trace information depends on the technology that's used to
capture the trace data.

All monitoring data should be timestamped in the same way. For consistency, record all
dates and times by using Coordinated Universal Time.

Consider the following points when you decide which instrumentation data you need to
collect.

Ensure that information captured by trace events is both machine and human readable.
Adopt well-defined schemas for this information to help implement automated
processing of log data across systems, and to provide consistency for operations and
engineering staff reading the logs.

Include the following environmental information in your data:

Information for correlating data

７ Note

Computers that operate in different time zones and networks might not be
synchronized. Don't depend on timestamps alone for correlating instrumentation
data that spans multiple machines.

Information to include in the instrumentation data

Human-readable data

Deployment environment
Processing machine
Details of the process
Call stack

Provide sufficient context, such as an activity ID that's associated with a specific instance
of a request, so that the developer or administrator can determine the source of each
request.

Data context might also include information that's used to correlate an activity with the
computational work performed and the resources used. This work might cross process
and machine boundaries.

For metering, the context should directly or indirectly include a reference to the
customer who caused the request. This context provides valuable information about the
application state at the time that the monitoring data was captured.

Record all requests and the locations or regions where they're made. You can use this
information to help identify location-specific hotspots. This information can also be
useful to determine whether to repartition an application or the data that it uses.

Record and capture the details of exceptions carefully. Critical debug information is
often lost because of poor exception handling. Capture all exception details that the
application throws, including any inner exceptions or other contextual information, such
as the call stack, if possible.

Consistent data can help you analyze events and correlate them with user requests.
Consider using a comprehensive and configurable logging package to gather
information. Logging packages can help you avoid dependence on developers to adopt
your approach as they implement different parts of the system.

Gather data, such as input/output volume, number of requests, and memory, network,
and CPU usage, from key performance counters. Some infrastructure services provide
their own performance counters, such as:

The number of connections to a database.

Invest in traceability and correlation

Capture all relevant data

Strive for data consistency

The transaction rate.
The number of transactions that succeed or fail.

Applications might also define their own performance counters.

Log all external service calls. Externals calls might be made to:

Database systems.
Web services.
Other system-level services that are part of the infrastructure.

Record information about the duration of each call and the success or failure of the call.
If possible, capture information about all retry attempts and failures for any transient
errors that occur.

In many cases, the instrumentation information is generated as a series of events and
passed to a separate telemetry system for processing and analysis. A telemetry system is
typically independent of any specific application or technology.

Telemetry systems use defined schemas to parse information. The schema specifies a
contract that defines the data fields and types that the telemetry system can ingest.
Generalize the schema to allow for data arriving from various platforms and devices. A
common schema should include fields relevant to all instrumentation events, such as:

Event name.
Event time.
IP address of the sender.
Details required for event correlation, including:

User ID
Device ID
Application ID

Remember that many devices can raise events for the same application, so the schema
shouldn't depend on the device type. The application should support roaming or cross-
device distribution. The schema can also include relevant domain fields for a particular
scenario that's common across applications, such as:

Information about exceptions.
Application start and end events.

Consider external dependencies

Ensure telemetry system compatibility

Success or failure of web service API calls.

Establish domain fields that produce the same set of events to build a set of common
reports and analytics across applications. You might need to configure a schema to
contain custom fields for capturing the details of application-specific events.

OpenTelemetry is a vendor-neutral collection of APIs, SDKs, and other tools. You can
use OpenTelemetry to instrument applications and generate meaningful telemetry
consistently across languages. OpenTelemetry is tool-agnostic, so it's compatible with
many observability platforms including open-source and commercial offerings.
Microsoft is adopting OpenTelemetry as the standard tool for instrumentation.

The following list summarizes best practices for instrumenting a distributed application
running in the cloud:

Make logs easy to read and easy to parse. Use structured logging where possible.

Be concise and descriptive in log messages.

Identify the source of the log.

Add timestamp information as each log record is written.

Use the same time zone and format for all timestamps.

Categorize logs and write messages in the appropriate place.

Don't reveal sensitive information about the system or personal information about
users. Scrub this information before it's logged, but keep any relevant details.

Log all critical exceptions but enable the administrator to turn logging on and off
as needed for fewer exceptions and warnings.

Capture and log all retry logic information. This data is useful in monitoring the
transient health of the system.

Trace out process calls, such as requests to external web services or databases.

Don't mix log messages with different security requirements in the same log file.

Ensure that all logging calls are fire-and-forget operations that don't block the
progress of business operations. Exclude auditing events from this rule because
they're critical to the business.

Best practices for instrumenting applications

https://opentelemetry.io/
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-overview?tabs=aspnetcore#opentelemetry

Ensure that logging is extensible and doesn't have any direct dependencies on a
concrete target.

Ensure that all logging is fail-safe and doesn't trigger cascading errors.

Treat instrumentation as an ongoing iterative process and review logs regularly.

Autoinstrumentation is available for many types of Azure and on-premises applications
monitored with Application Insights. The autoinstrumentation function automatically
configures your application to provide rich telemetry to Application Insights and
provides easy access to experiences such as the application dashboard and application
map. For supported hosting platforms and development languages, see Supported
environments, languages, and resource providers.

Implement profiling only when necessary because it can impose a significant overhead
on the system. By using instrumentation, profiling records an event, such as a method
call, every time it occurs. However, sampling records only selected events.

Profiling selections can be time-based, such as once every n seconds, or frequency-
based, such as once every n requests. If events occur frequently, profiling might cause
too much of a burden on the system and affect overall performance. In this case, the
sampling approach is preferable. However, if the frequency of events is low, sampling
might miss them. In this case, profiling might be the better approach.

Application Insights overview
What is autoinstrumentation for Application Insights?
Azure Monitor logs overview
Azure Monitor metrics overview
Collecting ETW events for analysis Azure Monitor logs
Recommendations for designing and creating an observability framework
What is distributed tracing and telemetry correlation?

Azure facilitation

Tradeoffs

Related links

Community links

https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/overview-dashboard
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-map
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview#supported-environments-languages-and-resource-providers
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-platform-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-platform-metrics
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-event-tracing-windows
https://learn.microsoft.com/en-us/azure/azure-monitor/app/distributed-trace-data

OpenTelemetry

Refer to the complete set of recommendations.

Operational Excellence checklist

Operational Excellence checklist

https://opentelemetry.io/

Recommendations for designing an
emergency response strategy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:08 Develop an effective emergency operations practice. Ensure that your workload
emits meaningful health signals across infrastructure and code. Collect the resulting
data and use it to generate actionable alerts that enact emergency responses via
dashboards and queries. Clearly define human responsibilities, such as on-call
rotations, incident management, emergency resource access, and running
postmortems.

This guide describes the recommendations for designing an emergency response
strategy. Some issues that arise over the course of a workload's lifecycle are critical
enough to warrant declaring them emergencies. You can implement tightly controlled
and focused processes and procedures that your team can follow to ensure that an issue
is handled in a calm, orderly manner. Emergencies naturally raise everyone's stress levels
and can lead to a chaotic environment if your team isn't well-prepared. To help minimize
stress and confusion, design a response strategy, share the response strategy with your
organization, and perform regular emergency response training.

An emergency response strategy should be an orderly, well-defined set of processes
and procedures. Each process and procedure should have scripts to ensure that each
step progresses your team towards quickly and safely resolving an issue. To develop an
emergency response strategy, consider the following overview:

Prerequisites
Develop an observability platform
Create an incident response plan

Incident phases
Detection
Containment
Triage

Post-incident phases
Root cause analysis (RCA)
Postmortem

Key design strategies

Ongoing activity
Emergency response drills

The following sections provide recommendations for each of these phases.

To have a robust emergency response strategy, you need to have a robust observability
platform in place. Your observability platform should have the following characteristics:

Holistic monitoring: Ensure that you thoroughly monitor your workload from an
infrastructure and application perspective.

Verbose logging: Enable verbose logging for your components to assist with
investigations when you triage an issue. Structure logs so that they're easy to
manage. Automatically send logs to data sinks to be prepared for analysis.

Useful dashboards: Create health model-based dashboards that are tailored to
each team across your organization. Different teams are responsible for different
aspects of workload health.

Actionable alerts: Create alerts that are useful for your workload teams. Avoid
alerts that don't require action from your teams. Too many alerts of this kind can
lead to people ignoring or blocking alert notifications.

Automatic notifications: Ensure that appropriate teams automatically receive
alerts that require action from them. For example, your tier-1 support team should
get notifications for all alerts, whereas your security engineers should only get
alerts for security events.

For more information, see Recommendations for designing and creating an
observability framework.

The foundation of an emergency response strategy is an incident response plan. Like a
disaster recovery plan, clearly and thoroughly define roles, responsibilities, and
procedures for an incident response plan. The plan should be a version-controlled
document that's subject to regular reviews that ensure it's up to date.

Clearly define the following components in your plan.

Observability

Incident response plan

Roles

Identify an incident response manager. This person owns the incident from initiation to
remediation to the root cause analysis. An incident response manager ensures that
processes are followed and the appropriate parties are informed as the response team
performs their work.

Identify a postmortem leader. This individual ensures that postmortems are performed
soon after the incident is resolved. They produce a report, which helps you apply the
findings that come out of the incident.

Your workload team should define and understand emergency criteria. When your team
determines that a case is severe, you can declare a disaster and initiate the disaster
recovery plan. In less severe cases, the issue might not meet the criteria of a disaster. But
you should still consider the issue an emergency, which necessitates initiating the
emergency response plan. Emergencies can be issues that are internal to your workload,
or they can be a result of an issue with a dependency of your workload. The support
team must be able to determine whether an issue that's reported by external users
meets the emergency criteria, even if they have no visibility into the underlying issue.

Precisely define communication and escalation plans. Based on the type of alert
notification that they receive, ensure that your tier-1 support can easily contact the
appropriate teams to escalate issues to. Ensure that they know which type of
communication is appropriate for internal and external parties. In communication and
escalation plans, include a list of the on-call schedule and staff.

In the overall plan, include containment and triage scripts. Teams follow these step-by-
step procedures when they perform their containment and triage functions. Include a
description of what defines an incident closure.

Document all standard tools that will be used during incidents for internal
communication, like Microsoft Teams, and for tracking the activities over the course of
the incident, like ticketing tools or backlog planning tools.

Document your emergency credentials, otherwise known as break-glass accounts.
Include a step-by-step guide that describes how they should be used.

Create emergency response drill instructions, and keep a record of when drills have
been performed.

Processes and procedures

Other items to include

Document any legal or regulatory measures necessary, for example communicating data
breaches.

When you have a well-designed observability platform that monitors for anomalies and
automatically alerts on them, you can quickly detect issues and determine their severity.
If the issue is deemed an emergency, the plan can be initiated. In some cases, the
support team isn't notified via the observability platform. Customers might report issues
to support by using support team communication avenues. Or they might reach out to
people that they regularly work with, like account executives or VPs. No matter how the
support team is notified, they should always follow the same steps to validate the issue
and determine the severity. Deviation from the response plan can add stress and
confusion.

The first step in issue remediation is to contain the issue to protect the rest of your
workload. A containment strategy depends on the type of issue, but it usually involves
removing the affected component from the workload flow paths. For example, you
might shut down a resource or remove it from network routing paths. System
administrators, engineers, and senior developers should work together to design
containment strategies. The containment should limit the blast radius of issues and
maintain workload functionality in a degraded state until the issue is resolved. If an
affected component needs to be accessible to perform triage, it's vital that its access to
the rest of the workload is blocked. As much as possible, you should only access the
component via a path that's separated from the workload and the rest of the systems.

After you successfully contain the issue, you can begin triage work. The steps that you
follow during triage depend on the type of issue. The team for a certain area of
workload support should create procedures for incidents that are related to their team.
For example, security teams should triage security issues, and they should follow scripts
that they develop. It's important that teams follow well-defined scripts as they work
through their triage efforts. These scripts should be step-by-step processes that include
rollback processes to undo changes that are ineffective or can cause other issues. Use
off-the-shelf log aggregation and analysis tools to efficiently investigate issues that
require deep analysis. After the issue is resolved, follow well-defined processes to safely
bring the affected component back into the workload flow paths.

Incident detection

Containment

Triage

The service-level agreements (SLAs) to your customers might dictate that you have to
issue RCA reports within a certain time period after the incident is resolved. The incident
owner should create the RCA reports. If that's not possible, another person who worked
closely with the incident owner can create the RCA reports. This strategy ensures an
accurate accounting of the incident. Typically, organizations have a defined RCA
template with guidelines about how information is presented and what kinds of
information can or can't be shared. If you need to create your own template and
guidelines, ensure that they are reviewed and approved by stakeholders.

An impartial individual should lead blameless postmortems. In postmortem sessions,
everyone shares their findings from an incident. Each team that was involved in the
incident response should be represented by individuals that worked on the incident.
Those individuals should come to the session prepared with examples of the areas that
were successful and areas that can be improved. The session isn't a forum for assigning
blame for the incident or issues that might have come up during the response. The
postmortem leader should leave the session with a clear list of action items that focus
on improvement, such as:

Improvements to the response plan. Processes or procedures might need to be
reevaluated and rewritten to better capture appropriate actions.

Improvements to the observability platform. Thresholds might need to be
reevaluated to catch the specific type of incident earlier, or new monitoring might
need to be implemented to catch behavior that wasn't accounted for.

Improvements to the workload. The incident might expose a vulnerability in the
workload that must be addressed as a permanent remediation.

Azure Monitor is a comprehensive solution for collecting, analyzing, and responding to
monitoring data from cloud and on-premises environments. It includes a robust alerting
platform that you can configure for automatic notifications and other actions, like
automatic scaling and other self-healing mechanisms.

Use Monitor to integrate machine learning. Automate and optimize incident triage and
proactive measures. For more information, see AIOps and machine learning in Monitor.

RCA reporting

Incident postmortems

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/aiops-machine-learning

Log Analytics is a robust analytics tool that's built into Monitor. You can use Log
Analytics to run queries against aggregated logs and gain insights about your workload.

Microsoft offers Azure-related incident readiness training. For more information, see
Introduction to Azure incident readiness and Incident readiness.

An overly aggressive response strategy can lead to false alarms or unnecessary
escalations.

Similarly, aggressively implementing automatic scaling or other self-healing actions to
respond to threshold breaches can lead to unnecessary expenditures and management
burden. You might not know the exact thresholds to set for alerting and automatic
actions like scaling. Perform testing in lower environments and in production to help
you determine the right thresholds for your requirements.

Recommendations for designing and creating an observability framework
Recommendations for designing a reliable monitoring and alerting strategy
Recommendations for self-healing and self-preservation

Refer to the complete set of recommendations.

Tradeoffs

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/training/technical-support/intro-to-azure-incident-readiness/
https://learn.microsoft.com/en-us/services-hub/unified/health/incident-readiness

Recommendations for implementing
automation
Article • 01/22/2024

Applies to this Well-Architected Framework Operational Excellence checklist
recommendation:

OE:09 Automate all tasks that don't benefit from the insight and adaptability of human
intervention, are highly procedural, and have a shelf-life that yields a return on
automation investment. When possible, choose off-the-shelf software for
automation versus custom implementations. Treat all automation the same as
workload components, and apply the Well-Architected Framework pillars to their
design and implementation.

This guide describes the recommendations for adopting automation in your workload.
You can automate tasks that are repetitive and prone to human error to help your teams
gain efficiency and adhere to standards. Automate tasks to make your workload
streamlined and consistent. Automation enables your operations and engineering teams
to be more efficient because it gives them more time to work on other improvements.
Automation is a powerful tool in all aspects of workload management. Thoughtfully
implement automation to empower your organization.

As you develop your workload, look for opportunities to take advantage of automation
in order to reduce management burden and minimize human error. Evaluate these
opportunities, and consider the value that they bring to your organization. To maximize
the value of your investment in automation, prioritize tasks that are straightforward,
procedural, and have a long shelf life. Applying automation isn't an all-or-nothing tactic.
There are workstreams that might have operations that require human intervention, like
decision-making points. These workstreams can still benefit from automation to perform
other tasks.

Consider the following recommendations to ensure that you prioritize tasks that benefit
the most from automation:

ﾉ Expand table

Key design strategies

Target tasks to automate

Aim for easy wins. Focus on tasks that are highly procedural and susceptible to
human error. These tasks are highly automatable. They're clearly defined, they're
free from variables that add complexity, and they're performed as part of normal
operations. Conversely, don't prioritize automating tasks that require writing
complex scripts to account for variable phenomena, or tasks that rarely occur.

Examples of highly automatable tasks include rebooting servers, creating accounts,
and transferring logs to a data store. These tasks might occur on a schedule, as a
response to an event or monitoring alert, or as needed based on external factors.

Look for ways to empower operators and free up your SMEs. You might have
experts in your organization that are relied upon for escalations that might be
unnecessary. For example, your database administrators might routinely get
requests to create new databases when you onboard new customers to your
multitenant solution. If you build a self-service portal for your help desk team, you
can enable them to safely create an empty database themselves. Or as an
intermediary step, you can automate the requests and the steps for the SME to
perform by creating scripts to run.

Focus on your return on investment. High-value automation requires minimal
management overhead and adds a demonstrable degree of efficiency. If you can
save your operations team an hour each day by automating database entries, for
example, you give them time to find other areas for improvement.

Adopt automation throughout your entire workload lifecycle, from development to day-
to-day management. Use the following list of examples to help you consider the broad
areas of your workload lifecycle that can benefit from automation. You can automate:

Pipeline definition, execution, and management: Use continuous integration and
continuous delivery (CI/CD) tools, like Azure DevOps and other DevOps tools, to
automatically define a pipeline and how it runs. These tools can help you automate
CI/CD tasks or other tasks, like creating reports.

Deployments: Use tools like Azure Resource Manager templates, Bicep, Terraform,
and Ansible to automate your workload development and release processes.
Deploy and update your infrastructure with the same automation platforms by
using an infrastructure as code (IaC) approach.

Testing: Many tools are available for automating your testing processes. These
tools can relieve a significant burden from your quality assurance team and ensure
that tests are standardized and reliable.

Areas to implement automation

Scaling: Use platform-provided functionality and other tools, like orchestration
tools, to automatically scale your infrastructure when load increases or decreases.

Monitoring and alerting: Use tooling that's available in your monitoring solution
to automatically enroll newly deployed resources and configure alert-triggered
actions to help hasten remediation when issues arise.

Self-healing: Use alerts that are generated by your monitoring system to automate
actions and recover malfunctioning components or jobs. For more information, see
Recommendations for self-healing and self-preservation.

Configuration management: Use orchestration and policy tooling to ensure that
all of your resources run the same configuration and that compliance requirements
are enforced across your workload.

Other administrative tasks: Use scripts to automate repetitive tasks like updating
database records or DNS records.

Approvals: Enable systems to automatically make approval decisions based on
predefined rules to improve efficiency for workflows that have approval gates. This
method encourages the use of standardized forms and templates, which increases
the efficiency of the processes. Automatic approval in high environments can be
risky. Tightly focus and test your automated approvals to ensure that specific
criteria are defined to grant approval.

New user and new employee onboarding: You can automate many tasks
associated with onboarding new application users or new employees, like database
updates and credential creation.

Monitoring and alerting: Take advantage of the automation functionality that your
observability platform provides. Automatically enroll new devices to monitor and
alert on anomalies.

Developing your own automation in-house is time intensive and can introduce
management burden to your development team. They need to maintain an in-house
automation tool like they do any other in-house software. It's recommended that you
use off-the-shelf tools whenever they can meet your needs. Between commercial, open
source, and cloud platform provided tools, there are many options available. It's likely
that you'll use a variety of tools to build the automation that you need. Rely on your in-
house expertise to help guide your decisions when evaluating tools. Your team might be
more familiar with certain development languages and frameworks. You can initially

Choose an appropriate automation tool

focus on off-the-shelf tools that they can use without a high learning curve. Reflect on
the tasks that you plan to address with automation, and invest in the tools that can
specifically address those tasks. Don't procure tools that you generally prefer and then
consider the tasks afterward.

Be mindful of factors that can complicate your operations when you build your
automation, like version lock-in and plugin overuse. Plugins, like Jenkins or Azure
DevOps plugins, are a great way to add functionality. You should adopt plugins when it
benefits your automation goals. But when you use multiple plugins to perform a single
task, it can make automation updates and troubleshooting difficult. Be judicious in your
use of plugins. Also avoid solutions that have framework version dependencies because
they're a burden to maintain over time. To help minimize the risk of these types of
issues, standardize your selection of automation tools and plugins, and use source
control for all automation projects.

For any tool that you use to build your automation, make it easily accessible and
manageable for your operators. Provide clear and easy-to-use interfaces for your
workload team. You can provide access to CI/CD pipelines, APIs, and libraries. Like the
workload that the automation supports, you need to manage the automation
holistically. Secure automation to the same degree as other workload components.
Monitor automation and subject it to the same testing protocols as other workload
components.

Sometimes the efficiencies you gain from automation outweigh the management
burden of developing your own solution if no off-the-shelf solutions fit your
requirements. In these cases, be judicious in your development efforts. Narrowly
focus on developing only what you need to cover gaps that you can't solve with
off-the-shelf solutions, and minimize complexities like dependencies.

Complex automation that requires a high degree of maintenance can be difficult
for operations teams to manage and troubleshoot. Keep automated tasks tightly
focused on only performing discrete jobs. Try to minimize dependencies on other
tools or components.

Be thoughtful about using manual processes. If you decide not to automate an
operation, thoroughly document the manual process by creating a step-by-step
checklist for operators. This practice reduces the chances of human error, like an

Integrate automation into your workload

Considerations

operator mistakenly running the wrong process. This documentation also helps
you design automation for that process in the future.

When you use a hybrid manual and automated approach, you need to be
especially careful. If a script runs most of a process but then defers to a human for
a specific part or decision, it's important that you give the person the necessary
context and information to make an informed decision.

Azure offers many tools to help you automate tasks for your workload.

IaC tools: You can use Terraform, Bicep, and Azure Resource Manager for IaC
deployments. Depending on your requirements and your team's familiarity with the
tools, you might use one or more of these tools for your deployments and management
of resources.

Azure Functions: Azure Functions is a serverless tool that you can use to automate tasks
by using your preferred development language. Functions provides a comprehensive set
of event-driven triggers and bindings that connect your functions to other services. You
don't have to write extra code.

GitHub Actions for Azure: You can use GitHub Actions for Azure to automate CI/CD
processes. GitHub Actions integrates with Azure to simplify deployments. You can create
workflows that build and test every pull request in your repository, or deploy merged
pull requests to production.

GitHub Actions goes beyond just DevOps and enables you to run workflows when other
events occur in your repository. For example, you can run a workflow to automatically
add appropriate labels when someone creates a new issue in your repository.

Azure Automation: PowerShell and Python are popular programming languages for
automating operational tasks. Use these languages to perform operations like restarting
services, transferring logs between data stores, and scaling infrastructure to meet
demand. You can express these operations in code and run them on demand. Alone,
these languages don't offer a platform for centralized management, version control, or
run history. The languages also lack a native mechanism for responding to events like
monitoring-driven alerts. To provide these capabilities, you need an automation
platform.

Automation provides an Azure-hosted platform for hosting and running PowerShell and
Python code across cloud and on-premises environments, both Azure and non-Azure.
PowerShell and Python code is stored in an Automation runbook. Use Automation to:

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://azure.github.io/actions/#automate
https://learn.microsoft.com/en-us/azure/automation/overview

Trigger runbooks on demand, on a schedule, or through a webhook.

Run history and logging.

Integrate a secrets store.

Integrate source control.

Azure Update Manager: Update Manager is a unified service to help manage and
govern updates for virtual machines. You can monitor Windows and Linux update
compliance across your workload. You can also use Update Manager to make real-time
updates or schedule them within a defined maintenance window. Use Update Manager
to:

Oversee compliance on your entire fleet of machines.
Schedule recurring updates
Deploy critical updates

Azure Deployment Environments: Deployment Environments enables development
teams to quickly create consistent app infrastructure by using project-based templates.
These templates minimize setup time and maximize security, compliance, and cost
efficiency. A deployment environment is a collection of Azure resources that are
deployed in predefined subscriptions. Development infrastructure administrators can
enforce enterprise security policies and provide a curated set of predefined IaC
templates.

Development infrastructure administrators define deployment environments as catalog
items. Catalog items are hosted in a GitHub or Azure DevOps repository, called a
catalog. A catalog item consists of an IaC template and a manifest.yaml file.

You can script the creation of deployment environments and programmatically manage
the environments.

Azure Logic Apps and Microsoft Power Automate: When you build custom digital
process automation (DPA) to handle workload tasks like approval flows or building
ChatOps integrations, consider using Logic Apps or Power Automate . You can
construct workflows from built-in connectors and templates. Logic Apps and Power
Automate are built on the same underlying technology and are both well-suited for
trigger-based or time-based tasks.

Automatic scaling: Many Azure technologies have built-in automatic scaling capabilities.
You can also program other services to automatically scale by using APIs. For more
information, see Recommendations for designing a reliable scaling strategy.

https://learn.microsoft.com/en-us/azure/update-manager/overview
https://learn.microsoft.com/en-us/azure/deployment-environments/overview-what-is-azure-deployment-environments
https://learn.microsoft.com/en-us/azure/logic-apps/
https://azure.microsoft.com/products/power-automate/

Azure Monitor action groups: To automatically run self-healing operations when an
alert is triggered, use Azure Monitor action groups. You can define these operations by
using a runbook, an Azure function, or a webhook.

For an example of using Automation in tandem with other Azure services, see Ops
automation by using Azure Event Grid. This example uses Logic Apps and Event Grid to
automate operational tasks.

Automation
Azure Update Manager
Azure Functions
Azure Monitor action groups
Deployment Environments
GitHub Actions for Azure
Logic Apps
Ops automation by using Event Grid
Power Automate
Recommendations for designing a reliability testing strategy
Recommendations for designing a reliable scaling strategy
Recommendations for self-healing and self-preservation

Refer to the complete set of recommendations.

Example

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/ops-automation-using-event-grid
https://learn.microsoft.com/en-us/azure/automation/overview
https://learn.microsoft.com/en-us/azure/update-manager/overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://learn.microsoft.com/en-us/azure/deployment-environments/overview-what-is-azure-deployment-environments
https://azure.github.io/actions/#automate
https://learn.microsoft.com/en-us/azure/logic-apps/
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/ops-automation-using-event-grid
https://azure.microsoft.com/products/power-automate/

Recommendations for enabling
automation
Article • 03/28/2024

Applies to this Azure Well-Architected Framework Operation Excellence checklist
recommendation:

OE:10 Design and implement automation upfront for operations such as lifecycle
concerns, bootstrapping, and applying governance and compliance guardrails.
Don't try to retrofit automation later. Choose automation features that your
platform provides.

This guide describes the recommendations for designing and implementing your
workload to enable automation. Design your workload with automation in mind to
ensure that routine tasks such as provisioning resources, scaling, and deployments are
performed quickly and reliably. Automation simplifies maintenance tasks and allows you
to update, patch, and upgrade your systems more efficiently.

You can design your workload to support automation from the ideation phase to the
on-going improvement phase. First, consider how you want to apply automation in your
workload to help ensure that you're putting the necessary pieces in place. Think about
your workload in terms of the Well-Architected Framework pillars to help plan for the
types of automation you'll use. You can automate many functions of security, reliability,
performance, operations, and cost control.

Design with automation in mind to minimize refactoring after your workload is running.
Consider your workload requirements when deciding which automation tools to use.
There might be off-the-shelf automation tools that your team is already familiar with.
Adopting those tools can make the path towards automating your workload easier but
be mindful of their limitations and compatibility with your cloud platform. For example,
some automation tools might integrate well with Azure CLI tooling, while others might
require REST interfaces. Always investigate the tools that your cloud platform provides

ﾉ Expand table

Key design strategies

Workload design

to ensure they're compatible and provide the functionality you require. Examples of
ways that you can proactively plan for automation include:

Deployment: Automate your application and infrastructure deployments to ensure
a predictable standard. Plan for automated deployment by developing deployment
standards, training your team on the tools that you'll use, and implementing the
necessary infrastructure.

Validation: Automatically validate compliance requirements against your workload
using orchestration or policy tools. Identify the appropriate validation tool for your
workload and plan to implement the required systems, for example, orchestration
servers.

Automatic scaling: Use automatic scaling throughout your infrastructure to help
you achieve your reliability and performance requirements. You should allocate IP
address space and subnets in your workload ahead of time to account for scaling
operations, in addition to planning for redundancy and natural growth.

 Tradeoff: When designing your workload to enable automation, consider the
degree of control that you want to maintain versus the efficiency you can gain
through automation. In some cases, your workload might not be mature enough to
automate some functions or you might need a level of flexibility that automation
doesn't provide.

Also consider the skill set of your team when designing your workload. If a high
degree of automation requires tools that your team isn’t equipped to support, then
you might need to use a less comprehensive design as an intermediate step.

After your workload is running in the cloud, it's important to prioritize continuous
improvement. Observe your workload in action, analyze usage patterns, and review
customer behavior related to your workload to identify areas where you can improve
automation. Look for ways to enhance existing automation or introduce new
automation to improve your customer experience. For example, you might have
automated scaling enabled, but the workload increase is short-lived. You can integrate
scale-in automation to decrease CPU usage when the load drops below the threshold.

The following sections of this guide offer recommendations on specific areas of
automation that can help you in your workload design and implementation.

Continuous workload improvements

Bootstrapping refers to the configuration updates to a resource that must be made after
it's provisioned, but before it's available as part of the workload pool. Bootstrapping is
often associated with virtual machines (VMs), but many other resources must be set up
as part of the deployment process including platform as a service (PaaS) technologies
and container hosting technologies like Azure Kubernetes Service (AKS).

Your cloud platform might provide bootstrapping solutions for you, which you should
use where possible. For example, you can use VM extensions in Azure to make
predefined configuration changes during the deployment process and customize your
configuration changes by injecting PowerShell scripts.

Take automation into account when designing your authentication and authorization
strategy. It's important to maintain the highest level of security in production workloads,
but this can affect automation. For example, the use of biometric or multifactor
authentication adds complexity that must be accounted for in your automation design.
Use nonhuman, secure accounts for automated authentication, such as managed
identities, workload identities, or certificates. Ensure that you have included secret and
key management in your automation for increased authentication security.

Avoid unnecessarily deploying new infrastructure when small changes are made by
building flexibility into your artifacts. For example, rather than redeploying your
infrastructure when a feature flag changes, you can use parameters that are set to
update components like app configurations. Be sure to clearly define and document
how variability is used to avoid overuse and configuration drift.

A control plane is the back-end system or suite of tools that you use to manage the
application and its dependencies through a unified interface. Build your control plane
like a REST interface, CLI, or webhook to support automation by external tools.

Expose maintenance operations through the control plane that allow you to coordinate
workload components, for example orderly backup and restore, bootstrapping,
configuration, import/export, and batching operations. Be careful to choose the right
level of granularity when deciding the operations to expose through the control plane.

Bootstrapping

Authentication and authorization

Design variability into your workload

Build a control plane

Develop a monitoring strategy to capture metrics that drive the type of automation you
require. Use structured logging and custom metrics to provide the information required
by automation in a format that's easy to recognize with automation tools. The metrics
that you capture should be paired with thresholds defined in the monitoring system that
trigger alerts and automated actions, like notifications or self-healing mechanisms, when
appropriate. For more information, see Recommendations for self-healing and self-
preservation.

Design your application and infrastructure to allow for automated user onboarding and
offboarding, for individuals or multitenant customers. Plan for automated database
updates via scripts, infrastructure provisioning and deprovisioning, and credential and
secret management.

As part of your continuous workload management, you can automate Desired State
Configuration (DSC) in your resources to help ensure that they meet compliance and
business requirements. DSC automation helps ensure that configuration drift is caught
and remediated quickly. You can automate DSC using orchestration tools or policy
management tools. Think of orchestration tools, like Azure DevOps services or Jenkins,
as push-based mechanisms. Orchestration tools allow configuration updates to be
pushed out through a workflow event, like a manual or automated deployment. These
updates are run as part of a task sequence defined in your deployment script. Policy
management tools use pull-based mechanisms, meaning that a system runs at the
foundational level of your workload that periodically polls the workload to check its
state against your defined DSC. If the poll identifies a misalignment or configuration
drift, the tool takes corrective action. Consider the following factors when deciding
between orchestration and policy management tools:

Orchestration tools don't have built-in capabilities to proactively poll your
workload for configuration drift. Orchestration tools should be integrated into your
continuous integration and continuous delivery (CI/CD) pipeline to maintain a
standard for infrastructure as code (IaC) deployment and management. An
advantage of using orchestration tools is that resources are always fully configured
when deployed.

Monitor and log

User lifecycle

Orchestration and policy use

Policy management tools allow you to define policies that affect one or more
groups of resources. These policies are enforced when the resource checks in with
the policy management system. An advantage of using policy management is that
these systems aren't code driven, so they might be easier for operators on your
team to adopt.

When deciding between orchestration or policy tools, consider whether the
configuration updates you're planning to make on new resources must be made at the
time of deployment. Also consider if defining updates in code fits your operational
practices and how many resource types you plan to deploy. If there are many different
configurations across resource types, policy tools might be an easier way to manage
updates.

Azure Policy: Using Azure Policy, you can enforce standards and assess compliance at
scale. Azure Policy provides an aggregated view to evaluate the overall state of the
workload environment in the compliance dashboard. Or you can use Azure Policy to
evaluate each resource and policy on a granular level. You can also use Azure Policy to
remediate new resources automatically or remediate existing resources in bulk.

 Tradeoff: Offloading automation from your CI/CD pipeline to platform tools or
services, like Azure Policy, can simplify your pipeline, but has drawbacks like the
additional management burden of using multiple systems. For example, execution
failures in a platform service will not be caught in your pipeline logs and will have to
fed into your observability platform intelligently so the appropriate parties are
notified.

Azure Virtual Machines extensions: Virtual Machines extensions are small packages that
run post-deployment configuration and automation on VMs. Several extensions are
available for different configuration tasks, such as running scripts, configuring anti-
malware solutions, and configuring logging solutions. Install and run these extensions
on VMs by using an Azure Resource Manager template, Azure CLI, Azure PowerShell
module, or the Azure portal. Each VM has a VM agent installed that manages the
lifecycle of the extension.

Azure facilitation

Policy management

Bootstrap automation

https://learn.microsoft.com/en-us/azure/governance/policy/overview

Typically, VM extensions use a custom script extension to install software, run
commands, and perform configurations on a VM or Azure Virtual Machine Scale Sets.
You can set these extensions up to run as part of IaC deployments so that they run on
new VMs using the Azure VM Agent. Extensions can also be run outside of an Azure
deployment by using the Azure CLI, PowerShell module, or the Azure portal.

Cloud-init: Cloud-init is an industry tool for configuring Linux VMs on first boot. Much
like Azure custom script extensions, cloud-init lets you install packages and run
commands on Linux VMs. You can use cloud-init for software installation, system
configuration, and content staging. Azure includes many cloud-init-enabled VM images
across well-known Linux distributions. For a full list, see cloud-init support for VMs in
Azure.

Azure deployment script resource: When you deploy using Azure, you might need to
run arbitrary code for bootstrapping the management of user accounts, Kubernetes
pods, or querying data from a non-Azure system. Because none of these operations are
accessible through the Azure control plane, a separate mechanism is required. For more
information, see Microsoft.Resources deploymentScripts. Like any other Azure resource,
the deployment script resource:

Can be used in an Azure Resource Manager template.

Contains Azure Resource Manager template dependencies in other resources.

Consumes input and produces output.

Uses a user-assigned managed identity for authentication.

When deployed, the deployment script runs PowerShell or Azure CLI commands and
scripts. Script runs and logging can be observed in the Azure portal or with the Azure
CLI and PowerShell module. You can customize the variables for the run environment,
timeout options, and resource management after a script failure.

Bootstrap AKS clusters with GitOps: You can bootstrap a newly provisioned AKS cluster
using GitOps and the Flux v2 cluster extension by declaring your configuration settings
in GitHub repositories. Because AKS cluster files are stored in a GitHub repository,
they're versioned, and changes between versions are easily tracked. Kubernetes
controllers run in the clusters and continually reconcile the cluster state with the desired
state declared in the Git repository by pulling the files from the repository. For more
information, see AKS baseline reference architecture.

Configuration management

https://learn.microsoft.com/en-us/azure/virtual-machines/linux/using-cloud-init
https://learn.microsoft.com/en-us/azure/templates/microsoft.resources/deploymentscripts?pivots=deployment-language-bicep
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks#cluster-bootstrapping

Azure Automation State Configuration is a DSC management tool managed by the
Azure Policy guest configuration feature that you can use to write, manage, and compile
PowerShell DSC configurations for nodes in any cloud or on-premises datacenter. You
can also use this tool to import DSC resources and assign configurations to target
nodes.

Azure App Configuration is a service that you can use to centrally manage your
application settings and feature flags. It works with Azure Key Vault so you can securely
manage a wide variety of application configurations across your environment.

Change tracking and inventory using Azure Monitoring Agent tracks OS configuration
drift in virtual machines. This automates detection of drift, the inventory running
services, and installed packages on the virtual machines in your workload. Items that are
tracked by change tracking and inventory include:

Installed Windows and Linux software
Key Windows and Linux files
Windows registry keys
Windows services and Linux daemons

AKS baseline reference architecture
Azure App Configuration
Azure Automanage State Configuration
Azure Policy
Cloud-init support for VMs in Azure
GitOps Flux v2 configurations with AKS and Azure Arc-enabled Kubernetes
Microsoft.Resources deploymentScripts
Recommendations for self-healing and self-preservation

Refer to the complete set of recommendations.

Change tracking and inventory

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://learn.microsoft.com/en-us/azure/governance/machine-configuration/overview
https://learn.microsoft.com/en-us/azure/azure-app-configuration/overview
https://learn.microsoft.com/en-us/azure/automation/change-tracking/overview-monitoring-agent
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks#cluster-bootstrapping
https://learn.microsoft.com/en-us/azure/azure-app-configuration/overview
https://learn.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/using-cloud-init
https://learn.microsoft.com/en-us/azure/azure-arc/kubernetes/conceptual-gitops-flux2
https://learn.microsoft.com/en-us/azure/templates/microsoft.resources/deploymentscripts?pivots=deployment-language-bicep

Feedback

Was this page helpful? Yes No

Recommendations for safe deployment
practices
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:11 Clearly define your workload's safe deployment practices. Emphasize the ideals of
small, incremental, quality-gated release methods. Use modern deployment
patterns and progressive exposure techniques to control risk. Account for routine
deployments and emergency, or hotfix, deployments.

This guide describes the recommendations for using safe deployment practices (SDP).
Safe deployment processes and procedures define how to safely make and deploy
changes to your workload. Implementing SDP requires you to think about deployments
through the lens of managing risk. You can minimize the risk of human error in your
deployments and limit the effects of problematic deployments on your users by
implementing SDP.

There are four important guidelines to keep in mind when implementing safe
deployment practices:

Safety and consistency: All changes to the production workload are inherently
risky and must be made with a focus on safety and consistency.

Progressive exposure: You can minimize the potential blast radius of deployment-
caused issues by adopting a progressive exposure deployment model.

Health models: Deployments must pass health checks before each phase of
progressive exposure can begin.

Issue detection: When issues are detected, the deployment should be immediately
halted and recovery initiated.

The following sections provide detailed recommendations on each of these points.

Key design strategies

Safety and consistency

Whether you're deploying an update to your application code, infrastructure as code
(IaC), feature flag, or a configuration update, you're introducing risk to the workload.
There are no low-risk deployments to production. Every deployment must follow a
standard pattern and should be automated to enforce consistency and minimize the risk
of human error. It's critical that your workload supply chain and deployment pipelines
are reliable, secure, and have clearly defined deployment standards. Treat every
deployment as a possible risk and subject every deployment to the same level of risk
management. Despite the risks, you should continue to deploy regular changes to your
workload. Failing to deploy regular updates introduces other risks, like security
vulnerabilities that must be addressed through deployments. For more information, see
Recommendations for designing a workload development supply chain.

Frequent small deployments are preferable to infrequent large deployments. Small
changes are easier to resolve when issues arise and frequent deployments help your
team build confidence in the deployment process. It's also important that you learn
from production by reviewing your workload processes when you encounter an anomaly
during deployment. You might find weaknesses in the design of your infrastructure or
rollout. When issues occur during deployments, ensure that blameless postmortems are
part of your SDP process to capture lessons about the incident.

When deployment issues occur, the goal is to catch them as early as possible to
minimize the effect on end users. Implement a gradual rollout deployment model, also
known as a progressive exposure model, to accomplish this goal. Canary deployments are
a common example of progressive exposure. In this deployment model, a small group of
internal or external users receive the new feature first. After the first group runs the new
version without issue, the feature is deployed to successively larger groups until the
entire user population is running the new version. Feature flags are typically used to
enable the new version for the target users in canary deployments.

Another common deployment model is a blue-green approach. In this model, two
identical sets, or pools, of workload infrastructure are deployed. Both pools are able to
handle a full production load. The first (blue) pool runs the current version of the
deployment where all users land. The second (green) pool is updated with the new
feature and internally tested. After internal testing, a subset of the production traffic is
routed from the blue pool to the green pool. Like canary deployments, the rollout is
progressive as you shift more of the traffic over to the green pool in successively larger
rollout waves. After you finish the rollout, the update pool becomes the blue pool and
the green pool is ready for the next deployment. The two pools are logically separated
from each other to protect from malfunctions. You can deploy a variation of the blue-

Progressive exposure deployment

green model in a workload that uses the Deployment Stamps design pattern by
deploying on one stamp at a time.

In both of these models, the time between each phase of the rollout should be long
enough to enable you to monitor the health metrics of the workload. You should
provide ample bake time, time between rollout groups, to help ensure that users from
different regions or users who perform different tasks have time to use the workload in
their normal capacity. Bake times should be measured in hours and days rather than
minutes. Bake times should also increase for each rollout group so that you can account
for different time zones and usage patterns over the course of the day.

Develop a robust health model as part of your observability platform and reliability
strategies. Your health model should provide in-depth visibility into the components and
overall health of the workload. During a rollout, if you receive an alert about a health
change relating to an end user, the rollout should immediately halt and an investigation
into the cause of the alert should be performed to help determine the next course of
action. If there are no issues reported by end users and all health indicators stay green
throughout the bake time, the rollout should continue. Be sure to include usage metrics
in your health model to help ensure that a lack of user-reported issues and negative
health signals aren't hiding an issue. For more information, see Building a health model.

When your deployment causes an issue in one of the rollout groups, the rollout must
stop immediately. An investigation into the cause of the issue and the severity of the
effects must be performed as soon as the alert is received. Recovery from the issue can
include:

Rolling back the deployment by undoing the changes made in the deployment
and reverting back to the last known working configuration.

Rolling forward the deployment by addressing the issue in the midst of the
rollout. You can address issues mid-rollout by applying a hotfix or otherwise
minimizing the issue.

Deploying new infrastructure by using the last known working configuration.

Rolling back changes, especially database, schema, or other stateful component
changes, can be complex. Your SDP guidelines should provide clear instructions on how
to deal with data changes according to the data estate design for your workload.

Health models

Issue detection

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

Similarly, rolling forward must be handled carefully to ensure that SDP isn't neglected
and that the hotfix or other minimizing efforts are performed safely.

Implement versioning across your build artifacts to help ensure that you can roll
back and roll forward when necessary.

Use a release flow or trunk-based branching structure, which enforces tightly
synced collaboration across the development team, instead of a Gitflow or
environment-based branching structure.

Automate as much of your SDP as possible. For detailed guidance on automating
IaC and application continuous integration and continuous delivery (CI/CD)
processes, see Recommendations for implementing automation.

Use CI practices to regularly integrate code changes into repositories. CI practices
can help you identify integration conflicts and reduce the likelihood of large, risky
merges. For more information, see the Continuous integration guide.

Use feature flags to selectively enable or disable new features or changes in
production. Feature flags can help you control the exposure of new code and
quickly roll back deployment if issues arise.

Deploy changes to staging environments that mirror your production environment.
Practice environments allow you to test changes in a controlled setting before
deploying to the live environment.

Establish predeployment checks, including code review, security scans, and
compliance checks, to help ensure that changes are safe to deploy.

Implement circuit breakers to automatically halt traffic to a service that's
experiencing issues. Doing so can help to prevent further degradation of the
system.

Establish prescriptive protocols that define how your SDP can be adjusted for a hotfix or
for emergency issues like a security breach or vulnerability exposure. For example, your
emergency SDP protocols might include:

Promotion and approval stage acceleration.

Smoke testing and integration testing acceleration.

General SDP recommendations

Emergency SDP protocols

https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-ci

Bake time reduction.

In some cases, the emergency might limit quality and testing gates, but gates should
still be run as quickly as possible as an out-of-band exercise. Make sure that you define
who can approve SDP acceleration in an emergency and the criteria that must be met
for acceleration to be approved. Align your emergency SDP protocols with your
emergency response plan to help ensure that all emergencies are handled according to
the same protocols.

Azure Pipelines and GitHub Actions support multi-stage deployments by using
approval gates, which can help you design your progressive exposure rollout for
deployments.

Use Azure App Service staging slots to easily swap between versions of code.
Staging slots are helpful for testing in staging environments and can be used for
blue-green deployments.

Store and manage your web app feature flags in Azure App Configuration. By
using this service, you can create, change, and deploy features in a unified
management plane.

Deploy workload applications in your virtual machine by using VM Applications.

Use Azure load balancers to implement deployment strategies and expose the
health of your workload applications by using native resources.

Use Application Health extension to report on application health from inside a
Virtual Machine Scale Set instance. The extension probes on a local application
endpoint and updates the health status based on TCP/HTTP(S) responses received
from the application.

Use Azure Logic Apps to create a new version of the application whenever an
update is made to it. Azure maintains a history of application versions and can
revert or promote to any previous version.

Many Azure Database services provide point-in-time restore functionality that can
help you roll back. Services that support point-in-time restore include:

Azure SQL Database
Azure SQL Managed Instance
Azure Cosmos DB
Azure Database for MySQL

Azure facilitation

https://learn.microsoft.com/en-us/azure/devops/pipelines/process/stages
https://docs.github.com/actions/deployment/targeting-different-environments/using-environments-for-deployment
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://learn.microsoft.com/en-us/azure/azure-app-configuration/manage-feature-flags
https://learn.microsoft.com/en-us/azure/virtual-machines/vm-applications-how-to
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-health-extension
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview#more-about-azure-logic-apps
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/point-in-time-restore
https://learn.microsoft.com/en-us/azure/cosmos-db/continuous-backup-restore-introduction
https://learn.microsoft.com/en-us/azure/mysql/flexible-server/concepts-backup-restore

Azure Database for PostgreSQL

Building and maintaining safe deployment practices is complex. Your success in fully
implementing robust standards depends on the maturity of your practices across many
areas of software development. Use of automation, IaC-only for infrastructure changes,
consistency in branching strategies, use of feature flags, and many other practices can
help to ensure safe deployment. Use this guide to optimize your workload and inform
your plans for improvement as your practices evolve.

There are tradeoffs for each deployment model discussed in this guide. For example,
during canary deployments, two versions of an application are supported on the same
infrastructure, which increases the management burden on the workload and support
teams. Conversely, during blue-green deployment, two sets of production infrastructure
are run at the same time, which might result in extra cost and increased management
workload.

See the blue-green deployment of Azure Kubernetes Service (AKS) clusters architecture
guide for an example of how to use this deployment model.

Application Health extension
Azure App Configuration
Azure App Service staging slots
Azure Cosmos DB
Azure Database for MySQL
Azure Database for PostgreSQL
Azure load balancers
Azure Logic Apps
Azure Pipelines
Azure SQL Database
Azure SQL Managed Instance
Building a health model
Continuous integration guide
Deployment Stamps
Performance considerations for your deployment infrastructure

Tradeoffs

Example

Related links

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-backup-restore
https://learn.microsoft.com/en-us/azure/architecture/guide/aks/blue-green-deployment-for-aks
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-health-extension
https://learn.microsoft.com/en-us/azure/azure-app-configuration/manage-feature-flags
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://learn.microsoft.com/en-us/azure/cosmos-db/continuous-backup-restore-introduction
https://learn.microsoft.com/en-us/azure/mysql/flexible-server/concepts-backup-restore
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-backup-restore
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview#more-about-azure-logic-apps
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/stages
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/point-in-time-restore
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-ci
https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-performance

Release engineering: Application development
Release engineering: Continuous integration
Release engineering: Deployment
Release engineering: Rollback
Testing your application and Azure environment
VM Applications

Advancing safe deployment practices
GitHub Actions

Refer to the complete set of recommendations.

Community links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-app-dev
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-ci
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-cd
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-rollback
https://learn.microsoft.com/en-us/azure/well-architected/devops/release-engineering-testing
https://learn.microsoft.com/en-us/azure/virtual-machines/vm-applications-how-to
https://azure.microsoft.com/blog/advancing-safe-deployment-practices/
https://docs.github.com/actions/deployment/targeting-different-environments/using-environments-for-deployment

Recommendations for designing a
deployment failure mitigation strategy
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Operational Excellence checklist
recommendation:

OE:12 Implement a deployment failure mitigation strategy that addresses unexpected
mid-rollout issues with rapid recovery. Combine multiple approaches, such as
rollback, feature disablement, or using your deployment pattern's native
capabilities.

This guide describes the recommendations for designing a standardized strategy to
effectively handle deployment failures. Like other workload issues, deployment failures
are an inevitable part of a workload lifecycle. With this mindset, you can be proactive by
having a well-designed, intentional strategy for dealing with deployment failures. Such a
strategy enables your workload team to efficiently mitigate failures with as little impact
as possible on your end users.

The absence of such a plan can lead to chaotic and potentially detrimental responses to
issues, which can significantly affect team and organizational cohesion, customer trust,
and finances.

Occasionally, despite the maturity of your development practices, deployment issues
occur. Using safe deployment practices and operating a robust workload supply chain
can help you minimize the frequency of failed deployments. But you also need to design
a standardized strategy to handle failed deployments when they happen.

When you use a progressive exposure deployment model as your standard practice:

You have the right foundation for minimizing the effects on your customers or
internal users when deployments fail.
You can mitigate issues efficiently.

A deployment failure mitigation strategy is composed of five broad phases:

1. Detection: To respond to a failed deployment, you must first detect the failure.
Detection can take several forms, like failed smoke tests, user reported issues, or
alerts that your monitoring platform generates.

Key design strategies

2. Decision: You must decide what the best mitigation strategy is for the specific
failure type.

3. Mitigation: You perform the identified mitigation action. The mitigation can take
the form of a fallback, rollback, roll forward, or the use of a runtime configuration
to bypass the offending function.

4. Communication: Stakeholders and affected end users must be made aware of the
status as you detect and work through the issue as required by your emergency
response plan.

5. Postmortem: Blameless postmortems provide opportunities for the workload team
to identify areas for improvement and create plans to apply learnings.

The following sections provide detailed recommendations for these phases. These
sections assume that you detect an issue after you deploy your changes to one or more
groups of users or systems but before you update all groups in your rollout plan.

To quickly identify issues with deployments, you need robust testing and observability
practices as they relate to deployments. To help detect anomalies quickly, you can
complement your workload monitoring and alerting by taking the following steps:

Use an application performance management tool.
Enable logging through instrumentation.

Smoke testing and other quality testing should happen at each phase of your rollout.
Successful tests in one deployment group shouldn't influence decisions to test in
subsequent groups.

You can implement telemetry that correlates user issues with a deployment phase. Then
you can quickly identify which rollout group a particular user is associated with. This
approach is especially important for progressive exposure deployments, because you
might have multiple configurations running across your user base at any given point in
the deployment.

You should be ready to respond to user-reported issues immediately. Whenever
practical, deploy your rollout phase during working hours, when you have a full support
team available. Ensure support staff is trained on how to escalate deployment issues for
proper routing. Escalations should align with your workload emergency response plan.

Detection

Decision

Deciding on an appropriate mitigation strategy for a given deployment issue involves
considering many factors, including:

The type of progressive exposure model that you use. For example, you might use
a blue-green model or a canary model.

If you use a blue-green model, falling back is more practical than rolling back. You
can easily shift traffic back to the stack that runs the configuration that's not
updated. You can then fix the issue in the problematic environment and try your
deployment again at an appropriate time.

The methods that you have at your disposal for bypassing the issue. Examples
include the use of feature flags, environmental variables, or any other type of
runtime configuration property that you can toggle on and off.

Sometimes you can easily bypass an issue by turning off a feature flag or toggling
a setting. In this case, you might be able to:

Proceed with the rollout.
Avoid falling back.
Roll back while you fix the offending code.

The level of effort that's required to implement a fix in the code.

If the level of effort to fix the code is low, rolling forward by implementing a hot fix
is the right choice for certain scenarios.

The level of criticality for the affected workload.

Business-critical workloads should always be deployed in a side-by-side manner,
like in a blue-green model, to achieve zero-downtime deployments. As a result,
falling back is the preferable mitigation strategy for these types of workloads.

The type of infrastructure that the workload uses—mutable or immutable.

If your workload is designed to use mutable infrastructure, rolling forward can
make sense, because it involves updating infrastructure in place. Conversely, rolling
back or falling back can make sense when you use immutable infrastructure.

No matter which choices you make, you should include appropriate approvals in your
decision-making process and codify them in your decision tree.

Rollback: In a rollback scenario, you revert updated systems to the last-known-
good configuration state.

Mitigation

It's important for the entire workload team to agree about the meaning of last
known good. This expression refers to the last state of the workload that was
healthy before the deployment began, which isn't necessarily the prior application
version.

Rolling back can be complex, especially as it relates to data changes. Schema
changes can make rolling back risky. Implementing them safely can require
considerable planning. As a general recommendation, schema updates should be
additive. They shouldn't be replacement changes—records shouldn't be replaced
with new records. Instead, older records should be deprecated and should coexist
with new records until it's safe to remove the deprecated records.

Fallback: In a fallback scenario, the updated systems are removed from the
production traffic routing. All traffic is directed to the stack that isn't updated. This
low-risk strategy provides a way for you to address the issues in your code without
introducing further disruptions.

With canary deployments, falling back might not be straightforward or even
possible, depending on your infrastructure and app design. If you need to perform
scaling to handle load on systems that aren't updated, perform that scaling before
you fall back.

Bypass the offending function: If you can bypass the issue by using feature flags
or another type of runtime configuration property, you might decide that
continuing with the rollout is the right strategy for a given issue.

You should clearly understand the tradeoff of bypassing the function, and you
should be able to communicate that tradeoff to stakeholders. Stakeholders should
approve the go-forward plan. Stakeholders need to determine the length of time
that's tolerable for operating in a degraded state. They also need to weigh that
determination against your estimate of the time that's needed to fix the offending
code and deploy it.

Emergency deployment (hot fix): If you can address the issue mid-rollout, a hot fix
might be the most practical mitigation strategy.

Like any other code, hot fixes need to go through your safe deployment practices.
But with a hot fix, the timeline is considerably accelerated. You need to use a code
promotion strategy throughout your environments. You also need to check hot fix
code at all quality gates. But you might need to dramatically shorten bake times,
and you might need to modify tests to accelerate them. Ensure that you can run
full tests on the updated code as soon as possible after deployment. Automating

quality assurance testing to a high degree helps make testing efficient in these
scenarios.

It's important to have clearly defined communication responsibilities to help minimize
chaos during incidents. These responsibilities should establish how the workload team
engages with support teams, stakeholders, and emergency response team personnel,
like the emergency response manager.

Standardize the cadence that the workload team follows for providing status updates.
Ensure that stakeholders are aware of this standard so that they know when to expect
updates.

If the workload team needs to communicate directly with end users, clarify the type of
information and level of detail that are appropriate for sharing with users. Also
communicate to the workload team any other requirements that apply to these cases.

Postmortems should follow all failed deployments, without exception. Every failed
deployment is an opportunity for learning. Postmortems can help you identify
weaknesses in your deployment and development processes. You also might identify
misconfigurations in your infrastructure, among many other possibilities.

Postmortems should always be blameless so that individuals who are involved in the
incident feel safe when they share their perspectives on what can be improved.
Postmortem leaders should follow up with plans for implementing the improvements
that have been identified and adding these plans to the workload backlog.

Test deployments thoroughly when you deploy to lower development environments.
This practice helps you detect bugs and misconfigurations before they get to
production.

Ensure that your deployment pipeline can accept distinct versions as parameters so that
you can easily deploy last-known-good configurations.

Maintain consistency with the management and data planes as you roll back or roll
forward. Keys, secrets, database state data, and configurations that are specific to
resources and policies all need to be in scope and accounted for. For example, pay

Communication

Postmortem

Considerations and general recommendations

attention to the design of your infrastructure scaling in your last-known-good
deployment. Determine whether you need to adjust that configuration when you
redeploy your code.

Prefer small, frequent changes over infrequent, large changes so that the delta between
your new and last-known-good deployments is small.

Perform a failure mode analysis (FMA) on your continuous integration and continuous
delivery (CI/CD) pipelines to help identify issues that can complicate mitigations. Like
your workload as a whole, your pipelines can be analyzed to identify areas that might be
problematic when you attempt a given mitigation type.

Use automated rollback functionality judiciously:

Some CI/CD tools like Azure DevOps have automatic rollback functionality that's
built in. Consider using this functionality if it provides tangible value to you.
You should adopt automatic rollback functionality only after you test your pipeline
thoroughly and regularly. Ensure that your pipeline is mature enough to introduce
extra issues if an automatic rollback is triggered.
You need to trust that the automation deploys only necessary changes and that it's
triggered only when necessary. Design your triggers carefully to meet these
requirements.

Use platform-provided capabilities during rollbacks. For example, backups and point-in-
time restores can help with storage and data rollbacks. Or if you use virtual machines
(VMs) to host your application, it can be helpful to restore your environment to a
checkpoint that's immediately before an incident.

Test your entire deployment failure mitigation strategy frequently. Like emergency
response plans and disaster recovery plans, your deployment failure plan is only
successful if your team is trained on it and practices it regularly. Chaos engineering and
fault injection testing can be effective techniques for testing your deployment
mitigation strategy.

Azure Pipelines provides build and release services to support CI/CD of your
applications.

Azure Test Plans is a browser-based test management solution that's easy to use.
This solution offers capabilities that are required for planned manual testing, user
acceptance testing, and exploratory testing. Azure Test Plans also provides a way
for you to gather feedback from stakeholders.

Azure facilitation

https://azure.microsoft.com/services/devops/pipelines/
https://learn.microsoft.com/en-us/azure/devops/test/overview

Azure Monitor is a comprehensive monitoring solution for collecting, analyzing,
and responding to monitoring data from your cloud and on-premises
environments. Monitor includes a robust alerting platform. You can configure that
system for automatic notifications and other actions, like autoscaling and other
self-healing mechanisms.

Application Insights is an extension of Monitor that provides application
performance monitoring (APM) features.

Azure Logic Apps is a cloud-based platform for running automated workflows that
integrate apps, data, services, and systems. You can use Logic Apps to create a new
version of your application whenever an update is made to it. Azure maintains a
history of the versions and can revert or promote any previous version.

Many Azure database services provide point-in-time restore functionality that can
help you when you need to roll back:

Azure SQL Database

Azure SQL Managed Instance

Azure Cosmos DB

Azure Database for MySQL

Azure Database for PostgreSQL

Azure Chaos Studio Preview is a managed service that uses chaos engineering to
help you measure, understand, and improve your cloud application and service
resilience.

Support team members need to be able to perform their normal duties and also
support emergencies. You might need to increase head count to help ensure that the
support team is properly staffed and able to carry out all required duties.

Also consider these other potential tradeoffs that are associated with mitigation
strategies:

Being able to fall back typically means that you need sufficient infrastructure
capacity to handle two versions of your workload configuration at the same time.
Your workload teams also need to be able to support two versions in production at
the same time.

Tradeoffs

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/logic-apps/manage-logic-apps-with-azure-portal
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/point-in-time-restore
https://learn.microsoft.com/en-us/azure/cosmos-db/continuous-backup-restore-introduction
https://learn.microsoft.com/en-us/azure/mysql/flexible-server/concepts-backup-restore
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-backup-restore
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-overview

Being able to roll back effectively might involve refactoring elements of your
workload. For example, you might need to decouple functions or change your data
model.

Progressive experimentation with feature flags
Recommendations for designing and creating an observability framework
Recommendations for designing an emergency response strategy
Recommendations for designing a reliability testing strategy
Recommendations for designing a workload development supply chain
Recommendations for performing failure mode analysis
Recommendations for safe deployment practices

Refer to the complete set of recommendations.

Related links

Operational Excellence checklist

Operational Excellence checklist

https://learn.microsoft.com/en-us/devops/operate/progressive-experimentation-feature-flags

Performance efficiency quick links
Apply performance efficiency guidance to your architecture to efficiently meet workload
demands.

Learn key points

ｆ QUICKSTART

Design principles

Checklist

Tradeoffs

Performance efficiency patterns

Azure Well-Architected Review assessment

ｄ TRAINING

Performance efficiency

ｑ VIDEO

Performance efficiency: Fast & furious

Design principles

ｐ CONCEPT

Negotiate realistic performance targets

Design to meet capacity requirements

Achieve and sustain performance

Improve efficiency through optimization

Achieve performance targets

ｃ HOW-TO GUIDE

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/training/modules/azure-well-architected-performance-efficiency/
https://learn.microsoft.com/en-us/events/all-around-azure-well-architected-the-backstage-tour/performance-efficiency

Set performance targets

Select the right services

Conduct capacity planning

Collect performance data

Improve efficiency

ｃ HOW-TO GUIDE

Scaling and partitioning

Code and infrastructure

Data

Critical flows

Operational tasks

Continuous optimization

Implement testing and incident response

ｃ HOW-TO GUIDE

Run performance testing

Address performance incidents

Explore related resources

ｉ REFERENCE

Azure Advisor: Performance recommendations

Application Insights

Azure Load Testing

https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-performance-recommendations
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing

Performance Efficiency design principles
Article • 11/14/2023

Performance efficiency is the ability of your workload to adjust to changes in demands.
A workload must be able to handle an increase in load without compromising user
experience. Conversely, when there's a decrease in load, the workload must conserve
its resources. Capacity, which indicates resource availability (CPU and memory), is a
significant factor.

The workload design shouldn't just rely on pre-provisioned capacity, which guarantees
performance up to a certain limit. If that limit is exceeded, the workload might have
performance issues or even experience outages. When load is under that limit, resources
continue to run unnecessarily, incurring costs.

You need a comprehensive strategy to sustain performance targets over time.
Performance considerations shouldn't be an afterthought in the design process, only to
be addressed when issues arise in production. Instead, adopt a mindset where
performance is a key consideration from the early stages of design. Initially, build the
system without any specific performance targets. But from there, test and measure
performance at each stage of development to ensure progress and effectiveness.
Continual optimization of these targets throughout the process and incorporating
lessons learned from production can significantly mitigate potential issues in advance.

These design principles can help build your strategy for managing capacity of
resources to sufficiently meet your business requirements for expected usage. Also,
reduce wastage during off-peak hours. After you've decided on a strategy, solidify your
design by using the Performance Efficiency checklist.

Performance efficiency is about effective use of workload resources. Without a good
strategy, you might not be able to anticipate and meet user demands. You might have
to resort to an approach of long-term forecasting and pre-provisioned capacity, which
doesn't let you take full advantage of your cloud platform.

 The intended user experience is defined, and there's a strategy to develop a
benchmark and measure targets against the pre-established business requirements.

From a performance perspective, it's ideal to have well-defined performance targets to
start your design process. To set those targets, you need to have a good understanding

Negotiate realistic performance targets

of the business requirements and the anticipated quality of service that the workload is
expected to deliver. Define the expectations in collaboration with the business
stakeholders. Instead of only focusing on technical metrics, determine the acceptable
effects on the user experience for the key flows.

There's a circular dependency. You can't measure what you haven't defined, and you
can't define without measurement. So, it's also important to measure the workload
performance until you achieve a satisfactory definition of acceptable threshold with
collective agreement.

There's a strong correlation between performance and reliability targets, which help
determine the quality of service in terms of performance, availability, and resilience.
Without a clear definition, it's challenging to measure, alert for, and test performance.
After you establish the targets and identify actual numbers through testing over time,
you can implement automation for continuous testing against these targets.

Adhere to best practices in defining targets at the macro level, even if they're
approximate or within a range.

Approach Benefits

Prepare for effective negotiation by
understanding technical concepts, exploring
design possibilities with the available
infrastructure, and using results from concrete
experimentation, if available.

Use historical data to get visibility into usage
patterns and bottlenecks.

Bring insight from external factors, such as input
from market analysis, experts, and industry
standards.

You can make informed decisions based on
practical insights.

The performance targets are focused on user
experience that's based on what's feasible,
industry best practices, and current market
trends.

Collaborate with the business owners to
understand user promises, in terms of quality and
regulatory compliance, if applicable.

Maintain a broad perspective and avoid diving
into granular details at this stage.

Be explicit about what represents acceptable
performance, based on the investments.

Understand the business context and anticipated
growth.

You'll avoid making assumptions that might
not align with the business goals. It also
drives clarity and motivation within the
workload team.

Having a business context on functional and
nonfunctional requirements might uncover
design changes in other Azure Well-
Architected pillars and help you make
informed tradeoffs.

Defining parameters early on helps avoid
costs associated with potential solution

Approach Benefits

redesigns later.

It enables you to ensure that performance
targets cover future projections, so you can
align current efforts with long-term goals.

Identify the workload flows and prioritize the
flows in the architectural diagram.

Define each flow's performance tolerance as a
range from aspirational to unacceptable
performance.

Evaluate the entry and exit points for each flow,
considering the path's criticality, usage
frequency, and architectural intensity.

By prioritizing flows, you can focus your
resources on critical areas that have the most
effect on user and business outcomes.

By breaking down the system into its parts
and dependencies, you understand each
component's function and influence on
performance. You also become aware of
potential issues.

It helps establish a performance baseline and
drive optimization.

Start building a performance model Consider
whether usage patterns show seasonal or daily
variations. Factor in the cost, operations, and
criticality to the business.

Use industry standards to quantify metrics and
aggregation methods, such as using percentiles.

Evaluate the demand and supply expectations
and limitations that business constraints impose.

Incorporate growth prospects.

A performance model provides insight into
optimal use of resources and helps with
strategic planning.

Industry standards help with benchmarking.

Future proofing ensures that the performance
goals remain relevant and can adapt to
changes.

 Provide enough supply to address anticipated demand.

It's important to proactively measure performance. Measuring performance involves
measuring baselines and having a preliminary understanding of which components of
the system are likely to pose challenges. You can achieve it without conducting a full
performance test or through granular optimization. By taking these initial steps, you
establish a foundation for effective performance management early in the development
lifecycle.

Design to meet capacity requirements

Examine the system as a whole, rather than focusing on individual components. Avoid
fine-tuning at this stage. Making granular performance improvements results in
tradeoffs in other areas. As you progress through the lifecycle and begin user
acceptance testing or move toward production, you can quickly identify which areas
require further optimization.

Approach Benefit

Evaluate the elasticity demands for
the identified flows.

Explore design patterns that can be
implemented across the technology
stack, considering the application and
the underlying compute and data
layers.

You're able to define scalability requirements on existing
components that need more capacity and the areas
where you need extra components to distribute load.

You're aware of potential bottlenecks in the system and
design compensating controls, such as adding caching
capabilities to decrease latency and system load.

Choose the right resources across
the technology stack, which enables
you to meet performance goals and
integrate with the system.

Consider features that can fulfill the
scalability requirements.

Find the right balance between
resource allocation and system
requirements, to handle unexpected
surges efficiently.

By analyzing the varying capabilities of the resources, you
ensure that each component contributes to the overall
functionality and performance of the system.

You can take advantage of the built-in capabilities that
automatically trigger scaling operations.

Right-sizing resources can meet changes in demand
without overprovisioning, which leads to cost savings.

Do capacity planning based on
demand and the capability of
selected resources to enrich your
performance model.

Use predictive modeling techniques
to forecast anticipated changes in
capacity that can occur with
predictable and unexpected changes.

Define performance targets that can
be translated into technical
requirements.

You can efficiently use resources and meet the demand
without overprovisioning, thereby avoiding unnecessary
costs.

You understand how the design choices affect
performance.

Implement a proof of concept that
validates the technical requirements
and design choices.

A proof of concept is instrumental in validating the
design to determine if the system can meet the
performance targets and if those targets are realistic.
Based on the anticipated load, you can validate whether
anticipated capacity can meet the performance targets.

Approach Benefit

Also, verify the cost implications of the design choices.

Document your performance testing
strategy.

Include use cases, different
methodologies, and cadence of your
test plans.

Define a process for operation
outlined by the performance test
plan.

Triage and prioritize the test cases in
the plan. Focus on cases that offer
valuable insights into performance
targets and align capacity planning.

You ensure that the right aspects of the system are
tested.

You can allocate resources effectively and conduct tests
in a manner that aligns with the business priorities and
requirements.

Document your performance
monitoring strategy.

Assess metrics at different abstraction
levels for each identified flow.

You can track progress towards attainment of
performance targets throughout the development cycle.

 Protect against performance degradation while the system is in use and as it evolves.

Development isn't a one-time effort. It's an ongoing process. Expect changes in
performance as features change. There's variance in user patterns and profiles, even
changes from optimizations in other Azure Well-Architected pillars. Any change can
strain workload resources.

Safeguard the system from changes so that it doesn't slide back on performance
targets. Integrate testing and monitoring in the development process. Test the
system's performance in production with real load and simulate that load with
automated testing prior to production. In both cases, you should have monitoring
practices in place for verification purposes.

Throughout the development lifecycle, conduct various types of tests at different
stages. In the initial stages, test the proof of concept to make sure performance results
aren't entirely unexpected. As development progresses, conduct manual, low-effort

Achieve and sustain performance

tests to establish benchmarks. In the build stage, start developing automated routine
performance tests that evaluate latency, stress levels, load capacity, and other
characteristics defined in the test plans.

Monitoring must be an integral part of that effort, rather than being an isolated exercise.
You can see how the system and its resources perform over time. You can then fine-
tune them to maximize their value, and ensure they continue to meet performance
standards.

Keep in mind that performance targets vary over time, in response to changes. Update
the performance model based on tested and monitored metrics. Clearly indicate
increased, reduced, or no effect on the performance of the flows.

Always be ready to renegotiate and reset expectations with business stakeholders.

Approach Benefit

Integrate routine performance tests in
Azure Pipelines.

Choose pipelines that can integrate
tests. Conversely, choose test tools that
can be integrated into the pipelines.

Automated tests save time and provide consistency that
makes it easier to detect regressions or improvements.

These artifacts allow for continuous monitoring of any
deviations or drift over time, so you can maintain
consistent performance and quality.

Formalize performance tests as
quality gates that can approve or deny
release promotion and the final
deployment to production.

These checkpoints ensure that each stage of
deployment meets the required performance
standards before you proceed to the next. The
checkpoints help prevent unintended performance
regression.

For instance, if the performance is significantly below
expectations, you might block a release until
improvements are made.

Set up a repeatable process for
monitoring real transactions in
production and deviations against your
performance targets.

Use synthetic transactions in
production.

Set up monitoring alerts on
performance regressions.

You want insight into the actual performance of your
system under real-world load that couldn't be
simulated through tests.

Then you can proactively identify issues and areas of
improvement such as potential bottlenecks,
underutilized resources, and other concerns.

Review performance test results and
monitoring data meticulously and
optimize until you meet the

Based on test results, you can capture and compare
data and start analyzing trends.

Approach Benefit

performance targets.

Prioritize actions derived from those
reviews and add them to the backlog
for planned execution.

Your optimization efforts are data driven.

Build coding skills that focus on
performance.

Have coding standards that exemplify
performance-driven coding patterns.

Code that doesn't have performance issues can make
testing cycles more efficient because tests can be
focused on more significant issues.

Coding patterns helps avoid rework and keeps your
coding style consistent.

Address performance erosion as
usage increases, features change, and
data accumulates over time to sustain
performance.

Reset expectations and establish new
targets, if fine-tuning brings only
short-term benefits.

You can preserve the performance state before
degradation develops into problems that negatively
affect user experience beyond the acceptable range.

Changing targets resets the performance model, and
you don't waste time in optimizing the system that has
already reached its capacity.

 Improve system efficiency within the defined performance targets to increase
workload value.

The targets set during the initial phase are based on a reasonable level of user
experience, considering various constraints. You should reassess and adjust targets to
further enhance the experience. To further enhance the experience, it requires a clear
understanding of how the system is used, how it has evolved, and how the platform or
technology has changed over time. The cycle of monitoring, optimizing, testing, and
deploying is a continuous process.

Efficiency optimization efforts allow a workload to work with lower resource
consumption. They can cause the workload to be in an overprovisioned state with spare
capacity. Use that capacity to improve reliability of the system. Eliminate capacity to
improve the cost of the system. Or repurpose the capacity to support new product
features on existing resources.

When the system gains efficiencies, take the opportunity to set and maintain new
performance targets.

Improve efficiency through optimization

Approach Benefit

Allocate dedicated cycles for performance
optimization to address nonfunctional requirements
and optimizations in functional areas. Targets for this
optimization are resources, code, data retention,
database queries, and others.

You can build a culture of
performance-driven optimization. You
keep the team accountable for
proactively monitoring performance
patterns and also fine-tune the
application.

Enhance the architecture with new design patterns
and components, which can boost performance, in
ways that you previously didn't consider because of
limited time or budget.

New design and components can
optimize the system, leading to better
user experience. For example, you can
use caching or adding a content
delivery network component.

It can also lead to long-term cost
benefits.

Use monitoring tools to analyze historical trends and
to identify the flows and code implementation paths
that would benefit the most from a performance
optimization effort. We recommend application
performance monitoring (APM) tools and profilers for
this purpose.

Identify operation hot paths and other potential
bottlenecks in the system.

When you identify the recurring
problematic areas, the team can focus
where gains are the highest.

Get current and stay current with technology
innovations that can improve performance.

Take advantage of the new versions released for the
dependent frameworks and libraries.

Similarly, use the new features for platform resources as
they're updated and patched.

Adopting new technology can often be
the motivating factor to look for
opportunities to improve.

Code that might have been slow in the
past can become faster with these
updates. You also want to be aware of
how certain updates negatively affect
performance.

Next steps
Performance Efficiency checklist

Design review checklist for Performance
Efficiency
Article • 11/14/2023

This checklist presents a set of recommendations for you to scale your system so it can
grow and meet your workload usage demand. The goal of performance is to maintain
the efficiency of every interaction with a healthy system as demand increases. When you
design and implement for performance, focus on the efficiency and effectiveness of
cost, complexity, supporting new requirements, technical debt, reporting, and toil.

For every system, there's a limit to how much you can scale it without redesigning,
introducing a workaround, or incorporating human involvement. If you don't include
performance efficiency practices and consider the tradeoffs, your design is potentially at
risk. Carefully consider all the points covered in the checklist to instill confidence in your
system's success.

 Code Recommendation

☐ PE:01 Define performance targets. Performance targets should be numerical values that
are tied to workload requirements. You should implement performance targets for all
workload flows.

☐ PE:02 Conduct capacity planning. Capacity planning should be done before there are
predicted changes in usage patterns, such as seasonal variations, product updates,
marketing campaigns, special events, or regulatory changes.

☐ PE:03 Select the right services. The services, infrastructure, and tier selections must support
your ability to reach the workload's performance targets and accommodate expected
capacity changes. The selections should also weigh the benefits of using platform
features or building a custom implementation.

☐ PE:04 Collect performance data. Workload components and flows should provide
automatic, continuous, and meaningful metrics and logs. Collect data at different
levels of the workload, such as the application, platform, data, and operating system
levels.

☐ PE:05 Optimize scaling and partitioning. Incorporate reliable and controlled scaling and
partitioning. The scale unit design of the workload is the basis of the scaling and
partitioning strategy.

☐ PE:06 Test performance. Perform regular testing in an environment that matches the
production environment. Compare results against the performance targets and the

Checklist

 Code Recommendation

performance benchmark.

☐ PE:07 Optimize code and infrastructure. Use code that's performant, and ensure that it
offloads responsibilities to the platform. Use code and infrastructure only for their
core purpose and only when necessary.

☐ PE:08 Optimize data usage. Optimize data stores, partitions, and indexes for their intended
and actual use in the workload.

☐ PE:09 Prioritize critical flows. The allocation of workload resources and performance
optimization efforts should prioritize the flows that support the most important
business processes, users, and operations.

☐ PE:10 Optimize operational tasks. Monitor and minimize the effects of the software
development lifecycle and other routine operations on workload performance. These
operations include virus scans, secret rotations, backups, reindexing databases, and
deployments.

☐ PE:11 Respond to live performance issues. Plan how to address performance problems by
incorporating clear lines of communication and responsibilities. When a problematic
situation occurs, use what you learn to identify preventive measures and incorporate
them in your workload. Implement methods to return to normal operations faster
when similar situations occur.

☐ PE:12 Continuously optimize performance. Focus on components that show deteriorating
performance over time, such as databases and networking features.

We recommend that you review the Performance Efficiency tradeoffs to explore other
concepts.

Next steps

Performance Efficiency tradeoffs

Performance Efficiency tradeoffs
Article • 11/14/2023

A workload that meets its performance targets without overprovisioning is efficient. The
goal of performance efficiency is to have just enough supply to handle demand at all
times. Key strategies for performance efficiency include proper use of code
optimizations, design patterns, capacity planning, and scaling. Clear performance targets
and testing underpin this pillar.

During the process of negotiating a workload's performance targets and designing a
workload for performance efficiency, it's important to be aware of how the Performance
Efficiency design principles and the recommendations in the Design review checklist for
Performance Efficiency might affect the optimization goals of other pillars. Certain
performance efficiency decisions might benefit some pillars but constitute tradeoffs for
others. This article lists example tradeoffs that a workload team might encounter when
designing workload architecture and operations for performance efficiency.

 Tradeoff: Reduced replication and increased density. A cornerstone of
reliability is ensuring resilience by using replication and limiting the blast radius of
malfunctions.

A workload that achieves efficiency by delaying scaling until the last responsible
moment closely meets demand but is vulnerable to unforeseen node failures and
scaling delays.

Consolidating workload resources can use excess capacity and improve efficiency.
However, it increases the blast radius of a malfunction in the co-located
component or application platform.

Scaling in or scaling down to minimize surplus capacity can leave a workload
underprovisioned during usage spikes, which leads to service disruptions due to
insufficient supply.

 Tradeoff: Increased complexity. Reliability prioritizes simplicity.

Performance Efficiency tradeoffs with
Reliability

Using autoscaling to balance workload supply against demand introduces
variability in the workload's topology and adds a component that must work
correctly for the system to be reliable. Autoscaling leads to triggering more
application lifecycle events, like starting and stopping.

Data partitioning and sharding help avoid performance issues in large or
frequently accessed datasets. However, the implementation of these patterns
increases complexity because (eventual) consistency needs to be maintained
across additional resources.

Denormalizing data for optimized access patterns can improve performance, but it
introduces complexity because multiple representations of data need to be kept
synchronized.

Performance-centric cloud design patterns sometimes necessitate the introduction
of additional components. The use of these components increases the surface area
of the workload. The components then must themselves be made reliable to keep
the whole workload reliable. Examples include:

A message bus for load leveling, which introduces a critical, stateful component.
A load balancer for autoscaled replicas, which requires reliable operation and
the enlistment of replicas.
Offloading data to caches, which requires reliable cache invalidation
approaches.

 Tradeoff: Testing and observation on active environments. Avoiding the
unnecessary use of production systems is a self-preservation approach for reliability.

Performance testing in active environments, like the use of synthetic transactions,
carries the risk of causing malfunctions due to the test actions or configurations.

Workloads should be instrumented with an application performance monitoring
(APM) system that enables teams to learn from active environments. The APM
tooling is installed and configured in application code or in the hosting
environment. Improper use, exceeding limitations, or misconfiguration of the tool
can compromise its functionality and maintenance, potentially undermining
reliability.

 Tradeoff: Reduction of security controls. Security controls are established
across multiple layers, sometimes redundantly, to provide defense in depth.

Performance Efficiency tradeoffs with Security

One performance optimization strategy is to remove or bypass components or
processes that contribute to delays in a flow, especially when their processing time isn't
justified. However, this strategy can compromise security and should be accompanied
by a thorough risk analysis. Consider the following examples:

Removing encryption in transit or at rest to improve transfer speeds exposes the
data to potential integrity or confidentiality breaches.

Removing or reducing security scanning or inspecting tools to reduce processing
times can compromise the confidentiality, integrity, or availability that those tools
protect.

Decreasing the frequency of security patching to limit the performance impact can
leave a workload more vulnerable to emerging threats.

Removing firewall rules from network flows to improve network latency can allow
undesirable communication.

Minimizing data validation for quicker data processing might compromise data
integrity, especially if inputs are malicious.

Using less entropy in encryption or hashing algorithms, for example, on the
initialization vector (IV), is more efficient but makes the encryption easier to crack.

 Tradeoff: Increased workload surface area. Security prioritizes a reduced and
contained surface area to minimize attack vectors and reduce the management of
security controls.

Performance-centric cloud design patterns sometimes necessitate the introduction of
additional components. These components increase the surface area of the workload.
The new components must be secured, possibly in ways that aren't already used in the
system, and they often increase the compliance scope. Consider these commonly added
components:

A message bus for load leveling

A load balancer for autoscaled replicas

Offloading data to caches, application delivery networks, or content delivery
networks

Offloading processing to background jobs or even client compute

 Tradeoff: Removing segmentation. The Security pillar prioritizes strong
segmentation to enable fine-grained security controls and reduce blast radius.

Sharing resources is an approach for improving efficiency. It increases density to
optimize capacity usage. Examples include multitenancy scenarios or combining
disparate applications in an architecture on a common application platform. The
increased density can lead to the following security concerns:

Increased risk of unauthorized lateral movement from one tenant to another.

A shared workload identity that violates the principle of least privilege and
obscures individual audit trails in access logs.

Perimeter security controls, for example network rules, that are reduced to cover all
co-located components, giving individual components more access than
necessary.

A compromise of the application platform host or an individual component due to
a larger blast radius. This increase is caused by easier access to co-located
components.

Co-locating disparate components leading to more components in scope for
compliance because of their shared host.

 Tradeoff: Too much supply for demand. Both Cost Optimization and
Performance Efficiency prioritize having just enough supply to serve demand.

Overprovisioning is a risk when teams try to mitigate performance issues in a
workload. Some common causes of overprovisioning include:

Initial capacity planning was misjudged because the team focused only on peak
load estimates, neglecting strategies for peak smoothing in the workload
design.
Scaling a resource up or out during a troubleshooting step of an incident
response.

Autoscaling can be misconfigured. Some examples of misconfigured autoscaling
include:

Performance Efficiency tradeoffs with Cost
Optimization

Scaling up with minimal changes in demand or an extended cooldown period
can incur more cost than demand requires.
Using autoscaling without a set upper limit can lead to uncontrolled growth due
to system malfunctions or abuse and exceed the expected workload
requirements.

Expanding into multiple regions can enhance performance by bringing workloads
closer to the user, but it also adds complexity and resource duplication.

 Tradeoff: More components. One cost optimization technique is to
consolidate with a smaller number of resources by increasing density, removing
duplication, and co-locating functionality.

Performance-centric cloud design patterns sometimes necessitate the introduction
of extra components. These extra components usually lead to an overall cost
increase for the workload. For example, you might include a message bus for load
leveling or offload tasks to an application or content delivery network for improved
response times.

Resource segmentation allows different parts of a workload to have distinct
performance characteristics, enabling independent tuning for each segment.
However, it can increase the total ownership costs because it requires multiple
optimized segments rather than a single, generalized component.

 Tradeoff: Increased investment on items that aren't aligned with functional
requirements. One approach to cost optimization is evaluating the value provided
by any solution that's deployed.

Premium services and SKUs can help a workload meet performance targets. These
services usually cost more and can provide extra features. They might be
underutilized if many of the premium features aren't used specifically for meeting
performance targets.

A performant workload requires telemetry data for observability that must be
transferred and stored. An increase in the performance telemetry being collected
can increase the cost of telemetry data transfer and storage.

Performance testing activities add costs that aren't associated with the value of the
production system. Examples of performance testing costs include:

Instantiating environments that are dedicated to performance-centric tests.
Using specialized performance tooling.

Spending time to run the tests.

Training team members for specialized performance optimization tasks or paying
for performance tuning services adds to the cost of a workload.

 Tradeoff: Reduced observability. Observability is necessary to provide a
workload with meaningful alerting and help ensure successful incident response.

Reducing log and metric volume to reduce the processing time spent on collecting
telemetry instead of other tasks reduces the overall observability of the system.
Some examples of the resulting reduced observability include:

It limits the data points that are used to build meaningful alerts.
It leads to gaps in coverage for incident response activities.
It limits observability in security-sensitive or compliance-sensitive interactions
and boundaries.

When performance design patterns are implemented, the complexity of the
workload often increases. Components are added to critical flows. The workload
monitoring strategy and performance monitoring must include those components.
When a flow spans multiple components or application boundaries, the complexity
of monitoring the performance of that flow increases. Flow performance needs to
be correlated across all the interconnected components.

 Tradeoff: Increased complexity in operations. A complex environment has
more complex interactions and a higher likelihood of a negative impact from
routine, ad hoc, and emergency operations.

Improving performance efficiency by increasing density elevates the risk in
operational tasks. An error in a single process can have a large blast radius.

As performance design patterns are implemented, they influence operational
procedures like backups, key rotations, and recovery strategies. For example, data
partitioning and sharding can complicate routine tasks when teams try to ensure
that those tasks don't affect data consistency.

Performance Efficiency tradeoffs with
Operational Excellence

 Tradeoff: Culture stress. Operational Excellence is rooted in a culture of
blamelessness, respect, and continuous improvement.

Conducting root cause analysis of performance issues identifies deficiencies in
processes or implementations that require correction. The team should consider
the exercise a learning opportunity. If team members are blamed for issues, morale
can be affected.

Routine and ad hoc processes can affect workload performance. It's often
considered preferable to perform these activities during off-peak hours. However,
off-peak hours can be inconvenient or outside of regular hours for the team
members who are responsible for or skilled in these tasks.

Explore the tradeoffs for the other pillars:

Reliability tradeoffs
Security tradeoffs
Cost Optimization tradeoffs
Operational Excellence tradeoffs

Related links

Cloud design patterns that support
performance efficiency
Article • 11/14/2023

When you design workload architectures, you should use industry patterns that address
common challenges. Patterns can help you make intentional tradeoffs within workloads
and optimize for your desired outcome. They can also help mitigate risks that originate
from specific problems, which can impact reliability, security, cost, and operations. If not
mitigated, risks will eventually lead to performance inefficiencies. These patterns are
backed by real-world experience, are designed for cloud scale and operating models,
and are inherently vendor agnostic. Using well-known patterns as a way to standardize
your workload design is a component of operational excellence.

Many design patterns directly support one or more architecture pillars. Design patterns
that support the Performance Efficiency pillar address scalability, performance tuning,
task prioritization, and the removal of bottlenecks.

The following table summarizes cloud design patterns that support the goals of
performance efficiency.

Pattern Summary

Asynchronous Request-
Reply

Improves the responsiveness and scalability of systems by decoupling
the request and reply phases of interactions for processes that don't
need immediate answers. By using an asynchronous pattern, you can
maximize concurrency on the server side. You can use this pattern to
schedule work to be completed as capacity allows.

Backends for Frontends Individualizes the service layer of a workload by creating separate
services that are exclusive to a specific frontend interface. This
separation enables you to optimize in ways that might not be possible
with a shared service layer. When you handle individual clients
differently, you can optimize performance for a specific client's
constraints and functionality.

Bulkhead Introduces segmentation between components to isolate the blast
radius of malfunctions. This design enables each bulkhead to be
individually scalable to meet the needs of the task that's encapsulated
in the bulkhead.

Design patterns for performance efficiency

https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead

Pattern Summary

Cache-Aside Optimizes access to frequently read data by introducing a cache that's
populated on demand. The cache is then used on subsequent requests
for the same data. This pattern is especially useful with read-heavy
data that doesn't change often and can tolerate a certain amount of
staleness. The goal of this implementation is to provide better
performance in the system overall by offloading this type of data to a
cache instead of sourcing it from its data store.

Choreography Coordinates the behavior of autonomous distributed components in a
workload by using decentralized, event-driven communication. This
pattern can provide an alternative when performance bottlenecks
occur in a centralized orchestration topology.

Circuit Breaker Prevents continuous requests to a malfunctioning or unavailable
dependency. A retry-on-error approach can lead to excessive resource
utilization during dependency recovery and can also overload
performance on a dependency that's attempting recovery.

Claim Check Separates data from the messaging flow, providing a way to
separately retrieve the data related to a message. This pattern
improves the efficiency and performance of message publishers,
subscribers, and the message bus itself when the system handles large
data payloads. It works by decreasing the size of messages and
ensuring that consumers retrieve payload data only if necessary and at
an opportune time.

Competing Consumers Applies distributed and concurrent processing to efficiently handle
items in a queue. This model supports distributing load across all
consumer nodes and dynamic scaling that's based on queue depth.

Compute Resource
Consolidation

Optimizes and consolidates compute resources by increasing density.
This pattern combines multiple applications or components of a
workload on a shared infrastructure. This consolidation maximizes the
utilization of computing resources by using spare node capacity to
reduce overprovisioning. Container orchestrators are a common
example. Large (vertically scaled) compute instances are often used in
the resource pool for these infrastructures.

Command and Query
Responsibility
Segregation (CQRS)

Separates the read and write operations of an application's data
model. This separation enables targeted performance and scaling
optimizations for each operation's specific purpose. This design is
most helpful in applications that have a high read-to-write ratio.

Deployment Stamps Provides an approach for releasing a specific version of an application
and its infrastructure as a controlled unit of deployment, based on the
assumption that the same or different versions will be deployed
concurrently. This pattern often aligns to the defined scale units in
your workload: as additional capacity is needed beyond what a single

https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside
https://learn.microsoft.com/en-us/azure/architecture/patterns/choreography
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/patterns/claim-check
https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://learn.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

Pattern Summary

scale unit provides, an additional deployment stamp is deployed for
scaling out.

Event Sourcing Treats state change as series of events, capturing them in an
immutable, append-only log. Depending on your workload, this
pattern, usually combined with CQRS, an appropriate domain design,
and strategic snapshotting, can improve performance. Performance
improvements are due to the atomic append-only operations and the
avoidance of database locking for writes and reads.

Federated Identity Delegates trust to an identity provider that's external to the workload
for managing users and providing authentication for your application.
When you offload user management and authentication, you can
devote application resources to other priorities.

Gatekeeper Offloads request processing that's specifically for security and access
control enforcement before and after forwarding the request to a
backend node. This pattern is often used to implement throttling at a
gateway level rather than implementing rate checks at the node level.
Coordinating rate state among all nodes isn't inherently performant.

Gateway Aggregation Simplifies client interactions with your workload by aggregating calls
to multiple backend services in a single request. This design can incur
less latency than a design in which the client establishes multiple
connections. Caching is also common in aggregation implementations
because it minimizes calls to backend systems.

Gateway Offloading Offloads request processing to a gateway device before and after
forwarding the request to a backend node. Adding an offloading
gateway to the request process enables you to use less resources per-
node because functionality is centralized at the gateway. You can
optimize the implementation of the offloaded functionality
independently of the application code. Offloaded platform-provided
functionality is already likely to be highly performant.

Gateway Routing Routes incoming network requests to various backend systems based
on request intents, business logic, and backend availability. Gateway
routing enables you to distribute traffic across nodes in your system to
balance load.

Geode Deploys systems that operate in active-active availability modes across
multiple geographies. This pattern uses data replication to support the
ideal that any client can connect to any geographical instance. You can
use it to serve your application from a region that's closest to your
distributed user base. Doing so reduces latency by eliminating long-
distance traffic and because you share infrastructure only among users
that are currently using the same geode.

https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/federated-identity
https://learn.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://learn.microsoft.com/en-us/azure/architecture/patterns/geodes

Pattern Summary

Health Endpoint
Monitoring

Provides a way to monitor the health or status of a system by
exposing an endpoint that's specifically designed for that purpose. You
can use these endpoints to improve load balancing by routing traffic
to only nodes that are verified as healthy. With additional
configuration, you can also get metrics on available node capacity.

Index Table Optimizes data retrieval in distributed data stores by enabling clients
to look up metadata so that data can be directly retrieved, avoiding
the need to do full data store scans. Clients are pointed to their shard,
partition, or endpoint, which can enable dynamic data partitioning for
performance optimization.

Materialized View Uses precomputed views of data to optimize data retrieval. The
materialized views store the results of complex computations or
queries without requiring the database engine or client to recompute
for every request. This design reduces overall resource consumption.

Priority Queue Ensures that higher-priority items are processed and completed
before lower-priority items. Separating items based on business
priority enables you to focus performance efforts on the most time-
sensitive work.

Publisher/Subscriber Decouples components of an architecture by replacing direct client-
to-service or client-to-services communication with communication
via an intermediate message broker or event bus. The decoupling of
publishers from consumers enables you to optimize the compute and
code specifically for the task that the consumer needs to perform for
the specific message.

Queue-Based Load
Leveling

Controls the level of incoming requests or tasks by buffering them in a
queue and letting the queue processor handle them at a controlled
pace. This approach enables intentional design on throughput
performance because the intake of requests doesn't need to correlate
to the rate in which they're processed.

Scheduler Agent
Supervisor

Efficiently distributes and redistributes tasks across a system based on
factors that are observable in the system. This pattern uses
performance and capacity metrics to detect current utilization and
route tasks to an agent that has capacity. You can also use it to
prioritize the execution of higher priority work over lower priority
work.

Sharding Directs load to a specific logical destination to handle a specific
request, enabling colocation for optimization. When you use sharding
in your scaling strategy, the data or processing is isolated to a shard,
so it competes for resources only with other requests that are directed
to that shard. You can also use sharding to optimize based on
geography.

https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://learn.microsoft.com/en-us/azure/architecture/patterns/index-table
https://learn.microsoft.com/en-us/azure/architecture/patterns/materialized-view
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/architecture/patterns/scheduler-agent-supervisor
https://learn.microsoft.com/en-us/azure/architecture/patterns/sharding

Pattern Summary

Sidecar Extends the functionality of an application by encapsulating non-
primary or cross-cutting tasks in a companion process that exists
alongside the main application. You can move cross-cutting tasks to a
single process that can scale across multiple instances of the main
process, which reduces the need to deploy duplicate functionality for
each instance of the application.

Static Content Hosting Optimizes the delivery of static content to workload clients by using a
hosting platform that's designed for that purpose. Offloading
responsibility to an externalized host helps mitigate congestion and
enables you to use your application platform only to deliver business
logic.

Throttling Imposes limits on the rate or throughput of incoming requests to a
resource or component. When the system is under high demand, this
pattern helps mitigate congestion that can lead to performance
bottlenecks. You can also use it to proactively avoid noisy neighbor
scenarios.

Valet Key Grants security-restricted access to a resource without using an
intermediary resource to proxy the access. Doing so offloads
processing as an exclusive relationship between the client and the
resource without requiring an ambassador component that needs to
handle all client requests in a performant way. The benefit of using
this pattern is most significant when the proxy doesn't add value to
the transaction.

Review the cloud design patterns that support the other Azure Well-Architected
Framework pillars:

Cloud design patterns that support reliability
Cloud design patterns that support security
Cloud design patterns that support operational excellence
Cloud design patterns that support cost optimization

Next steps

https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://learn.microsoft.com/en-us/azure/architecture/patterns/static-content-hosting
https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://learn.microsoft.com/en-us/azure/architecture/patterns/valet-key

Recommendations for defining
performance targets
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:01 Define performance targets. Performance targets should be numerical values that
are tied to workload requirements. You should implement performance targets for
all workload flows.

This guide describes the recommendations for establishing and exposing performance
targets. Performance targets are metrics that define performance objectives. These
metrics are expressed as a single numerical value or a numerical range. They're clear and
specific metrics that drive continuous improvement. Performance targets are a
numerical foundation for improvements, and they help teams align their efforts toward
specific goals. Without clear performance targets, teams might lack focus and lack of
accountability for performance issues. By setting performance targets, teams can work
toward specific objectives and drive continuous improvement.

Definitions

Term Definition

Data flow The movement of data within a system or between systems.

Dependency A component that a workload relies on.

Flow In a workload, a sequence of operations that performs a specific function. It
involves the movement of data and the running of processes between
components of the workload.

Metrics Numerical values that are collected at regular intervals. Metrics describe some
aspects of a system at a particular time.

Performance
targets

Metrics that define performance objectives. These metrics are expressed as a
single numerical value or a numerical range.

User flow The paths or sequences of actions that users take within an application or
system.

Workflow The sequence of steps that a workload runs to accomplish a task.

Establishing performance targets is an essential step for achieving workload
performance efficiency. Performance targets define the desired level of performance for
your workload and help you gauge its effectiveness in meeting those objectives.
Performance targets provide a benchmark to measure and compare a workload's
efficiency. This benchmark can help you highlight improvement areas. The targets also
align tasks with your organization's objectives and enhance business outcomes.
Additionally, performance targets offer guidance in resource allocation, helping you
ensure that workloads can adapt to varying demands while maintaining optimal
performance.

Set performance targets before you deploy your workload. For a workload in a design,
performance targets require research. Conduct market research, competitive analysis,
and surveys to generate your performance target ranges. For a production workload
that has no performance targets, use production data and customer feedback to
establish performance targets.

Determining performance requirements is about identifying essential performance
metrics like response time, throughput, and latency that are critical for your application.
Aligning these performance targets with your organization's business goals ensures the
workload meets the desired standards, whether for a best-in-class or average product.
For example, you might aim to reduce response times, increase throughput rates, or
optimize resource use.

When setting performance goals, it's important to align the organization's objectives
with the distinct needs of the user base. Users ultimately determine the success of
performance, emphasizing the need to align performance targets with their
expectations. This balance ensures that performance targets capture the intended user
experience and the overall efficiency of the workload. To comprehensively gauge and
optimize workload performance, you should consider setting performance targets for
the following list:

Individual components: Individual components are the separate units or segments
of the workload, each potentially having distinct performance attributes and
demands.

Key design strategies

Set performance targets early

Determine performance requirements

User flows: These pathways chart how users maneuver through the workload, and
ensuring their fluidity directly enhances user experience.

Workflows: Workflows defined internal processes are crafted to achieve particular
results and often dictate operational efficiency.

Data flows: Data flows refer to the movement and interaction of data within the
workload, helping identify potential inefficiencies or bottlenecks.

External dependencies: External dependencies are elements outside the primary
workload (integrated third-party services or tools) that can significantly affect
performance.

Scale units: Scale units relate to the workload's scalable segments. Ensuring robust
performance under increased loads is pivotal, especially in growth scenarios.

Technology levels: Technology levels are direct performance indicators such as the
speed of API access, database operation latencies, and potential network delays.

Business transactions: Business transactions represent end-to-end user operations
like completing a purchase or booking a service, their seamless execution is
directly tied to user satisfaction.

Workload all up: This holistic metric gives an overview of the collective
performance encompassing all components and aspects of the workload.

Identifying key performance metrics involves determining the essential measurements
that track the progress towards achieving workload performance goals. This
identification provides a quantifiable way to measure and improve performance
efficiency. When you identify key metrics to focus on, consider metrics related to
availability, capacity, and response time:

Availability: Error rate is an availability performance metric. Error rate represents
the percentage of failed requests over a period. A common target for error rate is
0.1% percent of requests.

Capacity: Throughput and concurrency are sample capacity metrics. Throughput
refers to the ability to handle a specific number of transactions within a given time
period. For instance, an application might need to sustain 100 million transactions
per month. Concurrency is a measure of simultaneous users or actions.

Identify key metrics

Response time: Latency and load time are common response time metrics. Latency
is the time it takes to respond to a request (200 milliseconds). Load time is the
time it takes for an application or web page to be interactive. A common target is
99% of sign-in requests completing less than 1 second.

After you identify the key metrics, you need to specify performance targets or
thresholds for each metric. Performance targets should be measurable, realistic, and
aligned with your workload objectives. For example, you might set a target response
time of less than 500 milliseconds (ms) or a target error rate of less than 1 percent.
Avoid qualitative assessments of performance like fast or slow. By using numerical
targets, you can objectively assess performance over time. As you set specific
performance targets, consider these recommendations:

Consider the customer: When you set performance targets, adopt a customer-
centric perspective. Recognizing the customer as the ultimate judge of
performance helps ensure that performance targets align with customer
expectations. This alignment involves considering both organizational objectives
and the distinct requirements of the customer base. When you integrate these two
aspects, you can tailor performance targets to reflect the desired customer
experience and overall workload effectiveness. By defining performance objectives
that consider customer expectations, you can strive to provide a high-quality
customer experience and meet the needs of your customers.

Use percentiles: Percentiles, such as P99, P95, and P50, are the industry standard to
represent the result of performance assessments. Percentiles are measures that
indicate how much data the number includes. For example, P99 covers 99% of the
data. Use percentiles, rather than simple averages, to provide a more
comprehensive understanding of workload performance. To measure percentiles,
collect performance data over a period of time, typically using monitoring tools or
logging mechanisms. Then analyze this data to determine the response time values
at different percentiles.

Documenting and exposing performance targets is about recording all performance
targets in a centralized location. Meeting performance targets is a shared responsibility
between development and operations teams. To ensure that the workload consistently
meets or exceeds these targets, provide teams with the information and access to take
action. To document and expose performance targets, consider these recommendations:

Set specific targets

Document and expose performance target

Document performance targets: Document all performance targets. Ensure that all
performance targets are documented in a centralized location, easily accessible by
both development and operations teams. It promotes alignment and aids in real-
time decision-making.

Expose performance targets: All responsible teams should be able to review and
create actionable tasks from the performance targets. Use information radiators,
such as dashboards and reports, to make the performance targets accessible.

Make it actionable: The documentation and information radiators should suggest
clear next steps. For example, a rise in errors might prompt an immediate check, or
meeting a target consistently might suggest a reevaluation of that benchmark.

Evaluating customer feedback involves actively seeking out and analyzing the responses
and suggestions of your customers. Actively collecting and analyzing customer feedback
offers valuable insights into their needs and expectations. Regular communication helps
in adjusting performance targets in line with changing preferences and tech trends. A
focus on customer needs means that the workload not only aligns with technical
benchmarks but also undergoes continuous refinement. This approach, emphasizing
customer satisfaction, ensures that the workload remains relevant and successful in the
long run.

Setting performance targets: Azure Advisor provides performance recommendations
that can inform your performance targets.

Azure Monitor is a full-stack monitoring service that provides a complete set of features
to monitor your Azure resources and measure performance targets. It collects platform
metrics and provides ready-to-use dashboards. It allows you to configure alerts based
on metrics. It also stores and correlates metrics to ensure a single source of truth.

Azure Advisor performance recommendations
Azure Monitor

Evaluate customer feedback

Azure facilitation

Related links

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/advisor/advisor-performance-recommendations
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/advisor/advisor-performance-recommendations
https://learn.microsoft.com/en-us/azure/azure-monitor/overview

Refer to the complete set of recommendations.

Performance Efficiency checklist

Recommendations for capacity planning
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:02 Conduct capacity planning. Capacity planning should be done before there are
predicted changes in usage patterns. Predicted changes include as seasonal
variations, product updates, marketing campaigns, special events, or regulatory
changes.

This guide describes the recommendations for capacity planning. Capacity planning
refers to the process of determining the resources required to meet workload
performance targets. It involves estimating the amount of computing resources such as
CPU, memory, storage, and network bandwidth needed to support the workload's
performance requirements. Capacity planning helps avoid underprovisioning and
ensures the workload has sufficient resources to handle the expected workload
demands without experiencing performance degradation or bottlenecks. It also helps
prevent overprovisioning and unnecessary costs. A lack of capacity planning can lead to
performance issues, resource bottlenecks, increased costs, inefficient allocation,
scalability challenges, and unpredictable workload performance.

Definitions

Term Definition

Capacity planning The process of predicting the resources a workload needs to meet its
performance targets.

Functional
requirements

The features and capabilities a workload must have to fulfill its intended
purpose.

Technical
requirements

The code and infrastructure needed to meet functional requirements.

Trend analysis Historical data analysis to forecast future demand.

Capacity planning is a forward-looking process that involves making decisions based on
anticipated workload demands and patterns. Its goal is to optimize workload
performance across both continuous and peak load scenarios. By understanding
changes in usage, such as seasonal shifts or product releases, you can allocate resources

Key design strategies

strategically, preventing system strain during high demand periods. This proactive
strategy reduces disruptions and bolsters performance efficiency. By analyzing past
usage trends and growth data, you can forecast short and long-term needs. You can
pinpoint potential bottlenecks and scaling issues, ensuring consistent and efficient
workload performance.

Gathering workload utilization data entails collecting and analyzing information on how
a workload uses resources. You should collect data on historical patterns for existing
workloads and predictive measures for new workloads. This process helps translate
business objectives into technical requirements and is essential for forecasting capacity.
Consider the following recommendations:

Understanding an existing workload for capacity planning involves analyzing historical
data related to how the workload utilizes resources. It encompasses metrics like
resource utilization, performance data, and workload patterns. This understanding
ensures efficient resource allocation, translates business goals into technical
requirements, and helps identify potential bottlenecks.

Understand the data: Review the available historical data and understand its
structure, format, and relevance to capacity planning. The review might include
resource utilization metrics, workload patterns, performance metrics, and other
relevant data points. Understand the business processes and the criticality of the
applications. Identify the peak usage times, user load, transaction rates, and other
relevant metrics.

Clean and preprocess the data: Prepare the data for analysis by removing any
inconsistencies, errors, or outliers. Preparing the data might involve data cleaning
techniques like data imputation, the handling of missing values, or normalization.

Identify key metrics: Identify the metrics that are relevant for capacity planning.
Metrics can include CPU utilization, memory usage, network throughput, and
response times.

Identify bottlenecks: Measure throughput and response times to identify the
specific components of your system that might become bottlenecks as the
workload grows. Requests per second and database CPU usage can be good
indicators of capacity.

Gather capacity data

Understand an existing workload

Visualize the data: Create visualizations, like charts or plots, to gain better insights
into historical data. Visualizations can help you identify patterns, trends, and
anomalies in data to give you a clearer understanding of workload behavior.

Understanding a new workload for capacity planning refers to predicting the resource
requirements of a future task without historical data. Predicting the future needs of new
a workload without historical data can be more challenging. This process ensures you
allocate resources efficiently and align allocations with workload objectives when the
workload is introduced. Consider the following recommendations:

Market research: Conducting market research to understand the demand for similar
products or services can provide valuable insights into the potential demand for a
new workload. The research can involve analyzing market trends, conducting
surveys, or studying competitor offerings.

Expert judgment: Input from subject matter experts or professionals who have
experience in the industry can help you estimate the demand for a new workload.
Their expertise and insights can provide valuable inputs for forecasting.

Pilot projects or prototypes: Small-scale pilot projects or prototypes can help you
gather real-time data and feedback. You can then use this data to inform the
capacity planning process and adjust the forecasted demand.

External data sources: External data sources like industry reports, market studies, or
customer surveys can provide additional information for estimating demand for a
new workload. These sources can offer valuable insights into customer preferences,
market trends, and potential demand drivers.

Forecasting demand involves using workload data to predict future needs for a service
or product. It's essential for capacity planning to ensure efficient resource allocation,
anticipate growth patterns, and prepare for potential surges in demand. When you
forecast future demand, you use data to get a sense of future needs. You apply
statistical analysis, trend analysis, or predictive modeling techniques to the data you
have to forecast future demand. These methods take into account historical or
anticipated patterns and project them into the future to provide estimates of the
expected workload demand. To forecast demand, consider these strategies:

Understand a new workload

Forecast demand

When you perform capacity planning, you need to plan for different scenarios that
might occur. This planning should include both predictable growth patterns and
unexpected surges in demand. Usage patterns can grow or shrink. They can be organic
(more or less users) or inorganic (an event or security incident). You need to conduct
capacity planning before usage changes, at key times:

Design (prediction)
Regular spikes (8:00 AM sign-in rush)
Launch (prediction validation)
Business model change
Acquisition or merger
Marketing push
Seasonal change
Feature launch
Periodically

Forecasting future demand for a service or product involves using techniques like
statistical analysis, trend analysis, and predictive modeling. Here's an overview of how
you can use these techniques:

Statistical analysis: Statistical methods can you help uncover patterns and
relationships within historical data. You can use these patterns to forecast future
demand. You can use techniques like time series analysis, regression analysis, and
moving averages to identify trends, seasonality, and other patterns in the data.

Trend analysis: Trend analysis involves examining historical data to identify
consistent patterns and extrapolating those patterns into the future. For example, if
workload demand increased by 10 percent during the past year, you might
forecast a continuation of this trend. When you analyze historical demand data
over a period of time, you can identify growth or reduction trends. Use these
trends as a basis for forecasting future demand. Trend analysis can also identify the
effects of one-time events that cause rapid shifts in traffic (inorganic). For example,
feature releases might consistently increase demand by 5 percent. If you have four
major releases a year, you should plan for 5 percent growth each time.

Predictive modeling: Predictive modeling is the process of building mathematical
models that use historical data and other relevant variables to make predictions
about future demand. You can use techniques like machine learning algorithms,

Account for various scenarios

Use prediction techniques

neural networks, or decision trees. These models can take into account multiple
factors and variables to provide more accurate forecasts.

Aligning forecasts with workload objectives involves adjusting predictive capacity
models to ensure they meet the specific goals and demands of a given workload. This
alignment ensures resources are adequately provisioned, preventing both
underutilization and potential workload overloads. For example, if you aim to support an
API for 1 million users to upload 1-MB files in a second, but current data shows slow
write speeds, you need to adjust your system. It's essential to talk with stakeholders to
grasp the workload's requirements. Make sure your plans align with the promises (SLAs)
of your service providers. This alignment ensures your capacity meets the expected
demand and helps pinpoint areas of the system that might need changes.

Determining resource requirements for capacity planning involves assessing the
resources that you need to meet forecasted demand. For example, if an application
anticipates a 50% increase in users during a promotional campaign, it might need to
allocate more cloud instances or adjust its autoscaling parameters to handle the
increased load.

A workload can have many resources, so there's no one metric to observe to determine
resource requirements. You need to measure capacity at the resource level to get
meaningful results. Estimate the expected demand for your resources based on
historical data, market trends, and business projections. Consider the number of
transactions, concurrent users, or any other relevant metrics.

Based on the forecasted demand, calculate the resources needed to meet that demand.
Consider factors such as server capacity, network bandwidth, storage capacity, and
personnel:

Server capacity: Determine the required server capacity based on the estimated
number of concurrent users or transactions. Consider factors like CPU, memory,
and disk space requirements to ensure that your servers can handle the expected
workload.

Network bandwidth: Evaluate the network bandwidth that you need to support the
anticipated level of traffic. You should include both inbound and outbound data
transfer rates to ensure smooth and efficient communication between servers and
clients.

Align forecasts with workload objectives

Determine resource requirements

Storage capacity: Estimate the amount of data that the workload generates or
processes during the forecasted demand. Consider factors like database size, file
storage requirements, and any other data storage needs that are specific to your
application.

Personnel: Assess the human resources that are required to manage and maintain
the infrastructure, handle customer support, perform system maintenance, and
ensure smooth operations. Take into account factors like workload distribution,
skill set, and required expertise.

Resources in your workload have performance limitations. Performance limitations apply
to services and SKUs within each service. You need to understand the limitations of the
resources in your workload and factor those limitations into your design decisions. For
example, you should know whether resource limitations require you to change SKUs or
to change resources altogether.

You also need to identify reachable limits. It refers to pinpointing the maximum
thresholds or boundaries of a workload. These limits usually apply to infrastructure
(compute, memory, storage, network), application (concurrent database connections,
response times, availability), service (requests per second), and scaling. When capacity
planning identifies reachable limits, you need to modify the workload before the limit
creates a performance problem. Performance baselines, continuous monitoring, and
testing are essential to validating the limits and the solution.

 Tradeoff: Misjudged capacity planning can lead to over-provisioning or under-
provisioning of resources. Over-provisioning leads to higher costs. Under-
provisioning can result in poor performance. Try to find the right balance.

Gathering capacity data and forecasting demand: Azure Monitor enables you to collect
and analyze telemetry data from your applications and infrastructure. It supports the
monitoring of various Azure resources, including virtual machines, containers, and
storage accounts. Key tools include Application Insights and Log Analytics. By
configuring data collection and defining metrics and logs that you want to monitor, you
can gather valuable workload data for analysis. For network monitoring, combine Azure
Monitor with Azure Network Watcher, Azure Monitor network insights, and Azure
ExpressRoute monitoring.

Understand resource limitations

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/networking/fundamentals/networking-overview#monitor

Azure Monitor allows you to analyze historical data and apply forecasting techniques to
predict future workload trends and capacity requirements. You can generate forecasts
that can help you with capacity planning. These forecasts help estimate server capacity,
network bandwidth, storage capacity, and other resource needs by using predicted
demand patterns.

Determining resource requirements: Because they provide a wide range of
configurations, Azure tools and services can help you define technical requirements. You
can align your workload requirements with available Azure resources, ensuring that you
select the appropriate components and settings to meet your functional needs.

Understanding resource limitations: Azure provides documentation and resources to
help you understand the performance limitations of various Azure services and SKUs.
Taking into consideration these limitations can help you make informed design
decisions and optimize your workload architecture for performance and cost-
effectiveness.

Azure provides scalability options like autoscaling, which can automatically adjust
resources based on workload demand. You can scale vertically by increasing the capacity
of a resource by using a larger virtual machine size, or you can scale horizontally by
adding new instances of a resource. Azure services that have autoscaling capabilities can
automatically scale out to ensure capacity during workload peaks and return to normal
when the load decreases. There are scaling limits within your configuration and services
that you should be aware of. You can read the documentation or run tests. Azure
provides tools like Azure Load Testing, which can simulate load and different usage
patterns to help you gather relevant data about your workload.

Azure Monitor
Application Insights
Log Analytics
Network monitoring services

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-overview
https://learn.microsoft.com/en-us/azure/networking/fundamentals/networking-overview#monitor

Recommendations for selecting the
right services
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:03 Select the right services. The services, infrastructure, and tier selections must
support your ability to reach the workload's performance targets and accommodate
expected capacity changes. The selections should also weigh the benefits of using
platform features or building a custom implementation.

This guide describes the recommendations for selecting appropriate services for your
workload. The following recommendations help you choose services that best meet the
requirements and demands of your workload. When you use services that are designed
to handle your workload's requirements, you can ensure that your workload meets your
performance targets. If you choose inappropriate services for your workload, the
services might not be capable of handling your workload's demands. Insufficient
services can lead to slow response times, bottlenecks, or workload failures.

Definitions

Term Definition

Availability zone A separated group of datacenters within a region. Each availability zone is
independent of the others, with its own power, cooling, and networking
infrastructure. Many regions support availability zones.

Compute service A service that provides the infrastructure that you need to run an
application.

Database service A service that provides relational and nonrelational databases for your
application.

Infrastructure The physical components of cloud computing, and the geographic location
of the components.

Infrastructure as a
service (IaaS)

A service in which the customer is responsible for the operating system,
identity, applications, and networking.

Platform as a
service (PaaS)

A service in which the cloud service provider is responsible for the operating
system. The cloud service provider shares responsibility with the customer
for managing identity, applications, and networking.

Region A geographic perimeter that contains a set of datacenters.

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support

Term Definition

Resource A single entity or component that you can create, configure, and utilize
within a cloud service provider.

Service A product or offering from a cloud service provider.

Stock keeping unit
(SKU)

A service tier for an Azure service.

Storage service A service that provides storage for objects, blocks, and files.

The services you choose should align with your workload's performance targets and be
adaptable to future capacity needs. As the workload expands or evolves, the services
you use should match your performance standards without requiring major
adjustments. Consider the balance between platform features and custom
implementations. Platform features provide immediate solutions, but custom-built
options offer precise tailoring. Your service selections should be both forward-thinking
and tailored to your specific needs, taking into account the trade-offs between
convenience and customization.

Understanding workload requirements refers to grasping the technical and functional
demands of a workload. This analysis helps determine the resources, storage, compute,
network, and other specifications needed to run the workload. Aligning services with the
specific needs of a workload helps prevent overprovisioning or underutilizing resources.

Evaluate the needs and characteristics of your workload to determine the requirements,
and align your workload requirements to your performance targets at every tier. You
must account for constraints or dependencies. When you understand your workload
requirements, you can make informed decisions. You can determine the right
infrastructure and implement strategies to handle peak loads or variations in demand.

Meet performance targets. Select services that enable you to meet the performance
targets for your workload. Ensure that a service can support the performance
needs and that you can monitor its performance. Collect performance data for
critical components.

Consider organizational restrictions. Be familiar with restrictions that your
organization might have on services that you deploy. Consider these restrictions

Key design strategies

Understand workload requirements

when you design your solution.

Consider compliance and security requirements. Compliance and security
requirements can affect services and configurations that you select. Ensure that a
service you choose meets the requirements that are related to storage, encryption,
access controls, audit logs, and data locations.

Consider team skills. Your team builds and maintains workloads. Different services
require different skills. Choose services that your team knows how to use, or
commit to training them before you choose a service. Ensure that team members
possess the expertise and knowledge to effectively use services and to optimize
their performance.

 Tradeoff: Specialized services offer specific functionalities but might limit
customization. Flexible resources require more management and configuration
compared to specialized services. Managed services offer ease of management, but
you might have less control over the underlying infrastructure compared to self-
managed resources.

Understanding services is about knowing the capabilities, limits, and functionalities of a
vendor's tools and offerings. An understanding of services helps you use built-in
features, reducing the need for complex custom solutions and improving performance
efficiency.

Consider various factors and gain a comprehensive understanding of a service before
you choose it. Research and assess services and tools that the provider offers. Determine
which services and tools best align with your workload requirements. Consider factors
like managed services, serverless options, and specialized services.

Service limits are the predefined thresholds or boundaries that service providers set.
Service limits define the maximum usage of resources or capabilities within that service.
When you're familiar with service limits, you can avoid issues such as resource
contention, performance degradation, or unexpected service interruptions. You can plan
and scale the infrastructure appropriately. Your planning takes into account factors such
as data volume, processing capacity, and data residency requirements.

Understand services

Understand service limits

Prefer platform features

Preferring platform features is about using built-in functionalities provided by a provider
to handle specific tasks without custom code. Vendors design platform features to
handle specific tasks efficiently at scale, and they regularly maintain these features.
Platform features allow you to better take advantage of cloud infrastructure capabilities.
Choose services that allow you to offload functionality to the platform instead of writing
and maintaining your own custom code. In many cases, platform-as-a-service (PaaS)
solutions provide better performance efficiency than custom code. Custom code adds
complexity and makes the workload prone to performance issues. Only develop custom
code when service features aren't sufficient.

 Tradeoff: The best service for your workload might be a technology that your
team isn't skilled at, can't afford, or it might require extra security layers. For
example, a public load balancer might fit your performance needs. But if you don't
have a web application firewall, you might have to deploy a firewall to secure the
workload.

The performance efficiency of resources is tied to the infrastructure they reside on. It
makes the selection of the right infrastructure critical to service performance efficiency.
Evaluating infrastructure requirements means to identify the geographical region and
availability zones best suited to support your workload. Key considerations in this
decision-making include:

Understand regions and availability zones. Every region corresponds to a distinct
geographic location. Availability zones represent individual physical datacenters
within a given region.

Understand available features. Different regions have different available features,
such as the number of services and availability zones. Understand the features that
are available in a region before you select it. Ensure that a region meets your
workload performance needs.

Consider latency. Latency, the time data takes to travel from source to destination,
increases the further services are from each other. Services communicating across
regions or availability zones can face increased latency. Identifying services that
frequently communicate and positioning them within the same region is
recommended. Additionally, selecting a region proximate to your primary user
base can minimize latency, offering a better user experience.

Understand datacenter mapping. Availability zones might not map consistently to
the same datacenters across different subscriptions. For instance, 'Zone 1' in

Evaluate infrastructure requirements

'Subscription A' might be different from 'Zone 1' in 'Subscription B'. When
operating with multiple subscriptions, you should know these mappings to select
zones that bolster performance optimally.

Assess your network needs to determine the appropriate workload services and
configurations. Ensure that the network can support your workload. To evaluate
networking requirements, consider:

Understand network traffic. Assess the expected network traffic for the workload.
Understand the data transfer needs and the frequency of network requests.

Understand bandwidth requirements. Determine the bandwidth requirements for
the workload. Consider the amount of data transmitted and received over the
network.

Understand network Latency. Evaluate the desired latency for the workload. Use
private virtual networks and backbone networks instead of traversing the public
internet. This technique decreases the latency of the workload.

Understand throughput. Consider the required throughput for the workload.
Throughput refers to the amount of data that can be transmitted over a network in
a given time. Configure the network routing options to take advantage of network
throughput benefits.

 Tradeoff: Private virtual networking limits public access and makes it difficult to
deploy and manage resources.

Evaluating compute requirements involves assessing the specific compute needs of a
workload, including factors such as instance type, scalability, and containerization.
Different compute services have varying capabilities and characteristics that can affect
the performance of your workload. Select the optimal compute service to ensure that
your workload runs efficiently. Consider the following strategies:

Understand instance types. Different instance types are optimized for different
workloads, such as CPU-optimized, memory-optimized, and GPU instances.
Choose the instance type that aligns with your needs.

Evaluate networking requirements

Evaluate compute requirements

Consider automatic scaling. If your workload has variable demand, consider a
compute service with an autoscale feature that can automatically adjust the
compute capacity based on demand. Automatically scaling helps ensure that you
have enough resources during peak times and prevents overprovisioning during
low demand periods.

Consider containerization. Containers provide performance advantages compared
to a noncontainerized workload. Consider using containerization if it suits your
architectural needs. Containers improve compute performance through isolation,
resource efficiency, fast startup time, and portability.

When you use containers, consider design factors such as containerizing all
application components. Use Linux-based container runtimes for lightweight
images. Give containers short lifecycles to make them immutable and replaceable.
Gather relevant logs and metrics from containers, container hosts, and the
underlying cluster. Use this data to monitor and analyze performance. Containers
are just one component of an overall architecture. Choose an appropriate
container orchestrator, like Kubernetes, to further enhance performance and
scalability.

Container
benefit

Description

Isolation Containers provide isolated environments for applications. Containers ensure
that application resources don't interfere with each other. This isolation
ensures compute resources assigned to a container are dedicated to running
a specific application, resulting in better performance.

Resource
efficiency

Containers are lightweight and share the host operating system's kernel,
which allows for efficient resource utilization. Multiple containers can run on
the same virtualized infrastructure, which maximizes the use of compute
resources.

Fast startup
time

Container images are prebuilt and are quickly started when needed. This fast
startup time enables rapid scalability. It allows applications to scale up or
down based on demand and avoid performance bottlenecks.

Portability Containers encapsulate all the required dependencies and libraries within the
image. With containers, it's easier to move applications across different
operating systems or environments. This portability enables flexibility in
deploying applications and allows for easy migration between cloud
providers or on-premises environments.

Choose the appropriate tier. Within each compute service, you can set the compute
capacity, select features, and enable capabilities. Based on your performance
targets, choose the appropriate service tier for your compute service.

Determine the instance count. Determine the minimum instance count that your
workload requires. Some workloads, even at minimal load, might require more
than one instance of a compute resource. Set the minimum instance count
accordingly.

Load balancing ensures that network traffic is distributed evenly and prevents any single
server from being overwhelmed with requests. Load balancing helps prevent
bottlenecks and reduce response times. Evaluate the different load balancing services
that your cloud provider offers. Review the cloud provider's documentation and
comparison tools to understand the features. Select the most suitable service for your
workload. To select a load balancing service, consider:

Understand traffic type: Determine whether the load balancing service needs to
handle web traffic, like HTTP and HTTPS, or other protocols, such as Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP).

Know global or regional routing: Determine whether your workload requires load
balancing within a specific region or across multiple regions.

Know service-level objectives (SLOs): Consider the service-level agreement (SLA).
Different load balancing services offer different levels of performance.

Understand features: Consider load balancing services that provide site
acceleration, optimal traffic distribution, and low-latency layer-4 load balancing.

Evaluating data store requirements is about assessing the specific needs and conditions
for storing, retrieving, and managing data. This assessment considers factors like data
volume, access speed, consistency, and durability. A workload might require multiple
types of data stores based on varying business and technical requirements. Identifying
the right data store services and proper implementation helps prevent bottlenecks and
ensures quick data access.

The database can affect factors such as data storage and retrieval, transaction
processing, consistency guarantees, and handling of large or rapidly changing data.
Assess the needs and criteria for your database. Select a database system that can meet
those requirements. Evaluate the database requirements before you choose a database.

Evaluate load balancing requirements

Evaluate data store requirements

Evaluate database requirements

To evaluate the database requirements and choose the appropriate database, follow
these steps:

Identify the workload needs. Understand the specific requirements of your
workload, such as data volume, expected transaction rates, concurrency, data
types, and expected growth. Evaluate different database systems based on your
workload needs. For example, if your workload requires high-performance real-
time data processing, you might choose a database system optimized for fast data
ingestion and low latency.

Consider the data model. Determine the data model that best suits your workload.
Evaluate the database requirements to ensure that the chosen database supports
the required data structures, relationships, and integrity constraints. For example, if
your data has a highly relational structure, you might opt for a relational database
management system (RDBMS) that provides robust support for transactions and
referential integrity. The data model might be hierarchical, network, relational,
object-oriented, or NoSQL. Assess the complexity of your data model. Ensure that
the chosen database supports the required data structures and relationships.

Evaluate the capabilities. Consider factors such as read/write patterns, query
complexity, latency requirements, and scalability needs. Evaluate the performance
capabilities of different database systems accordingly. Some databases excel in
read-heavy workloads, while others are optimized for write-intensive or analytical
workloads.

Assess the load. Consider factors such as data volume, transaction rates, read/write
ratios, and expected growth. Choose a database that can handle the anticipated
workload to ensure smooth operation and prevent performance bottlenecks as
your workload is scaled. Consider the scalability requirements of your workload.
These requirements include anticipated data growth, concurrent user access, and
the need for horizontal or vertical scaling. Evaluate the scalability options and
availability features that different database systems provide.

Choose storage services that align with your data access patterns, durability
requirements, and performance needs. Most cloud workloads use a combination of
storage technologies. This technique is known as the polyglot persistence approach.
Determine the appropriate combination of storage services for your workload. You
might also want to separate data to avoid contamination. For example, you might have
separate storage accounts for monitoring data and business data. Choosing the right
mix and correct implementation is important for optimizing application performance.

Evaluate storage requirements

A cache stores frequently accessed data. Caching reduces data access latency and
lowers the load on data storage components. It allows the workload to handle more
requests without scaling. It's common to cache workload data and static content. A
Redis cache can store session data, database results, API responses, and reference data,
such as configuration settings. A content delivery network or static web app can cache
and serve static content. Consider caching data to improve your workload performance.
Choose the right caching option for your workload, preferring the platform caching
services, such as Azure Redis Cache, over custom or self-hosted ones.

Understanding requirements: Use Azure Monitor to collect and analyze data from your
workload. Monitor provides insights into the performance and health of your workloads,
allowing you to identify and troubleshoot issues.

Understanding and evaluating services: Review Azure services and products to
determine if they meet your performance requirements. Azure offers several services
that accomplish the same outcome. You have the flexibility to align your choice of
service to your performance needs, team skill set, and cost requirements.

For a list of the most common Azure limits, see Azure subscription and service limits,
quotas, and constraints.

 The Query limits and quotas sample shows how to query the limits and quotas
for commonly used resources.

Azure has many services that can accommodate any workload. Review the selection
guidance for each service type to help you streamline your selection based on your
requirements. See the following guides to choose:

A region
Compute services
Container services
Data store services
Load balancing services
Storage services

Evaluate cache requirements

Azure facilitation

Related links

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://github.com/mspnp/samples/tree/main/OperationalExcellence/ResourceLimits
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/technology-choices-overview
https://azure.microsoft.com/explore/global-infrastructure/geographies/#choose-your-region
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://learn.microsoft.com/en-us/azure/container-apps/compare-options
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/storage-options

Azure regions with availability zone support
Recommendations for defining performance targets
Recommendations for using availability zones and regions
What are availability zones?

Refer to the complete set of recommendations.

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-service-support#azure-regions-with-availability-zone-support
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview

Recommendations for collecting
performance data
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:04 Collect performance data. Workload components and flows should provide
automatic, continuous, and meaningful metrics and logs. Collect data at different
levels of the workload, such as the application, platform, data, and operating
system levels.

Collecting performance data is the process of gathering metrics and logs that provide
information about the performance of a workload. This data includes numerical values,
which are known as metrics. Metrics describe the state of the system at a particular point
in time. It also includes logs that contain different types of data organized into records.

By collecting performance data, you can monitor and analyze the performance of a
workload. You can use this information to identify performance bottlenecks, to
troubleshoot issues, to optimize resource allocation, and to make data-driven decisions
to improve the overall performance efficiency of the workload.

Without data-driven insights, you might be unaware of underlying performance issues
or opportunities for optimization. Potential results include slower response times,
decreased throughput, increased resource usage, and ultimately, a suboptimal user
experience. Additionally, the lack of performance data makes it difficult to diagnose and
troubleshoot issues in a timely manner, leading to prolonged downtime and reduced
productivity.

Definitions

Term Definition

Activity logs Logs that track management operations on resources, such as
deleting a resource.

Application logs Logs that track information about application events, errors, and
other activities, such use sign-ins and database connection failures.

Application performance
monitoring (APM) tool

A tool that monitors and reports the performance of an application.

Code instrumentation The direct or indirect capture of performance metrics from the
perspective of the application code. Captured metrics include flow

Term Definition

metrics, resource use, and metrics specific to the language or runtime.

Distributed tracing Gathering and correlating metrics across distributed workload
components.

Metrics sink A storage destination for your metrics that correlates time series data
for analysis.

Platform logs Diagnostic and auditing data that includes resource logs, activity logs,
and audit logs.

Platform metrics Numerical values that record workload performance at a particular
time.

Resource logs Data that a system generates. It provides information about the state
of the system.

Rx/Tx errors The number of receive errors and transmit errors on a network
interface.

Structured logging Defining a meaningful format to log messages, typically as key-value
pairs.

Performance optimization requires data to measure the current performance of a
workload or a flow against its performance targets. You need to collect the right amount
and diversity of data to measure the performance of the code and the infrastructure
against performance targets. Ensure that every component and flow within the workload
automatically generates continuous and meaningful metrics and logs. You need to
source this data from diverse levels like the application, platform, storage, and operating
system. Comprehensive performance data collection allows for a holistic understanding
of performance, enabling precise identification of inefficiencies and avenues for
improvement.

Centralizing performance metrics and logs is the process of collecting performance
metrics and logs from various sources and storing them in a central location. Create a
central metrics sink and a central log sink. This centralization allows for easy access,
analysis, and monitoring of performance metrics and logs across different systems and
components. By centralizing metrics and logs, you gain visibility into the performance of

Key design strategies

Centralize performance data

your workload. Choose a suitable platform or tool that can aggregate and store
workload performance metrics and logs.

 Tradeoff: Understand the cost of collecting metrics and logs. In general, the
more metrics and logs you collect, the higher the cost.

Segmenting performance data involves organizing and categorizing metrics and logs
based on their origin, purpose, or environment. For example, you should separate
production data from nonproduction data or distinguish between performance targets
and business metrics. Segmenting data helps with optimizing specific environments,
facilitates troubleshooting, and limits inaccuracies in performance monitoring. By
maintaining a clear distinction between different data types, you can capture, analyze,
and respond to relevant metrics more efficiently and better align workload health with
workload objectives. To segment performance data, consider the following
recommendations:

Keep production data and nonproduction data separate. By separating data by
environment, you can ensure focused monitoring and optimization of each
environment. In production environments, you can better identify and address
performance issues that directly affect users and business operations. In
nonproduction environments, the data separation facilitates effective
troubleshooting and fine-tuning during the testing phase before you deploy to
production.

Use one set of data within each environment. Don't use one set of data for
performance targets and another set of data for alerts related to the performance
targets. Using different sets of data leads to inaccurate alerts that undermine the
effectiveness of performance monitoring.

Separate performance targets and business metrics. The operations and
development teams use performance targets to monitor workload health and meet
business targets. Business metrics relate to business goals or customer reporting.
Capture business metrics in a separate data stream, even if the data directly
overlaps. The separation gives you flexibility to capture the right data and
independently analyze the data.

Segment performance data

Define retention policies

Retention policies dictate how long performance data should be kept. Establishing these
policies helps manage storage efficiently and ensures only necessary data is accessible
for analysis. Such policies support better performance and meet compliance standards.
You should configure retention policies for the log and metrics data to enable effective
troubleshooting and monitoring in all environments. For example, the logs and metrics
might need to be kept for longer time in a production environment than in the testing
environment. The retention period should match your organization's requirements and
compliance regulations. Decide how long to retain the data for analysis and audit
purposes. Archive the data that you don't need for immediate analysis.

Collecting application data involves monitoring and analyzing an application's
performance metrics, such as throughput, latency, and completion times, primarily
gathered through instrumenting code. Application performance data provides valuable
insights into the health and performance of an application. By monitoring and analyzing
performance data, you can identify and troubleshoot issues, optimize application
performance, and make informed decisions for your application.

Instrumentation refers to the process of embedding code snippets or integrating tools
into an application code. The purpose of instrumentation is to capture performance data
while the application runs. It's essential to gather metrics that highlight the application's
critical operations. Focus on metrics like throughput, latency, and completion time. It's
important to differentiate between business-related operations and operations that
aren't. For data pertaining to business operations, make sure its metadata is structured
in a way that allows distinct tracking and storage. The primary reason for code
instrumentation is to collect data on how the application handles its workload. It
provides the following benefits:

Identifying performance bottlenecks: By tracking metrics such as CPU use and
memory use, you can identify bottlenecks and optimize the code accordingly.

Evaluating system behavior under a load: You can see how the application performs
under different workloads and stress scenarios. This data can help you identify
issues related to scalability, concurrency, and resource use.

Tracking application health and availability: Because key performance indicators
are monitored in real time, you can get alerts about potential issues that affect the
application's performance and availability.

Collect application performance data

Instrument code

Improve user experience: You can gain insights into how users interact with the
application. Use this information to optimize the user experience and identify areas
for improvement.

Plan capacity and allocate resources: The performance data that instrumentation
gathers can provide valuable insights into the resource requirements of an
application. This information can inform your decisions about planning capacity
and allocating resources.

When you instrument code for performance monitoring, consider the following
strategies:

Use APM tools: APM tools can collect and analyze performance data, including
metrics, traces, and logs. APM tools offer features like code-level instrumentation,
transaction tracing, and performance profiling.

Use logging and tracing frameworks: Logging and tracing frameworks are tools or
libraries that developers integrate into their applications to facilitate logging and
tracing. These frameworks provide functions to generate logs, trace requests, and
sometimes even format or transport the generated data. By incorporating logging
and tracing frameworks into the code base, developers can capture relevant data
during runtime. The data can include information about the running path, I/O, and
performance.

Custom instrumentation: Developers can add custom code to collect performance
metrics that are unique to their application and workload. The custom
instrumentation can measure runtimes, track resource usage, or capture specific
events. Write custom code instrumentation only when platform metrics are
insufficient. In some situations, the platform resource can measure aggregate or
even granular perspectives of your application. Weigh the question of whether to
duplicate that effort by using custom code against excess code tradeoffs or
dependency on a platform feature.

Capture transaction times. Capturing transaction times relates to measuring the
end-to-end times for key technical functions as a part of performance monitoring.
Application-level metrics should include end-to-end transaction times. These
transaction times should cover key technical functions such as database queries,
response times for external API calls, and failure rates of processing steps.

Use telemetry standards. Consider using APM tool instrumentation libraries and
tools that are built around a telemetry standard, such as OpenTelemetry.

Enable distributed tracing

Distributed tracing is a technique used to track and monitor requests as they flow
through a distributed system. It allows you to trace the path of a request as it travels
across multiple services and components, providing valuable insights into the
performance and efficiency of your workload. Distributed tracing is important for
performance efficiency because it helps identify bottlenecks, latency issues, and areas
for optimization within a distributed system. You can pinpoint where delays or
inefficiencies occur and take appropriate actions to improve performance by visualizing
the flow of a request. Follow these steps to enable distributed tracing:

1. Start by instrumenting your applications and services to generate trace data. Use
libraries or frameworks that support distributed tracing, such as OpenTelemetry.

2. Ensure that trace information is propagated across service boundaries. You should
typically pass a unique trace ID and other contextual information with each
request.

3. Set up a centralized trace collection system. This system collects and stores the
trace data generated by your applications and services.

4. Use the trace data collected to visualize the end-to-end flow of requests and
analyze the performance characteristics of your distributed system.

When you instrument code, one of the primary outputs should be application logs.
Logging helps you understand how the application runs in various environments.
Application logs record the conditions that produce application events. Collect
application logs across all application environments. Corresponding log entries across
the application should capture a correlation ID for their respective transactions. The
correlation ID should correlate application log events across critical application flows
such as user sign-in. Use this correlation to assess the health of key scenarios in the
context of targets and nonfunctional requirements.

You should use structured logging. Structured logging speeds up log parsing and
analysis. It makes the logs easier to index, query, and report without complexity. Add
and use a structured logging library in your application code. Sometimes log entries can
help you correlate data that you couldn't correlate by other means.

By collecting resource performance data, you can gain insights into the health and
behavior of your workload. Resource performance data provides information about

Collect application logs

Collect resource performance data

resource use, which is key for capacity planning. This data also provides insights into the
health of a workload and can help you detect issues and troubleshoot. Consider the
following recommendations:

Collect metrics and logs for every resource. Each Azure service has a set of metrics
that's unique to the functionality of the resource. These metrics help you
understand the resource's health and performance. Add a diagnostic setting for
each resource to send metrics to a location that your workload team can access as
they build alerts and dashboards. Metric data is available for short-term access. For
long-term access or for access from a system that's outside of Azure Monitor, send
the metric data to your unified sink to the access location.

Use platform tooling. Gather inspiration from built-in and integrated monitoring
solutions, such as Azure Monitor Insights. This tooling streamlines performance
operations. Consider platform tooling as you select a platform and invest in
custom tooling or reporting.

Monitor network traffic. Monitoring network traffic means to track and analyze the
flow and patterns of data as it moves across network pathways. Collect traffic
analytics and monitor the traffic that traverses subnet boundaries. Your goal is to
analyze and optimize network performance.

Many database and storage systems provide their own monitoring tools. These tools
collect performance data specific to those systems. Database and storage systems often
generate logs that contain performance-related events and indicators. Collect database
data and storage performance data so you can identify bottlenecks, diagnose issues,
and make informed decisions to improve the overall performance and reliability of your
workload. Consider collecting the following types of performance data:

Throughput: Throughput measure the amount of data read from or written to the
storage system over a period of time. Throughput data indicates the data transfer
capabilities.

Latency: Latency measures how long storage operations last. Latency data indicates
the responsiveness of the storage system.

IOPS (I/O operations per second): Data about the number of read operations or
write operations that the storage system can perform in a second. IOPS data
indicates the storage system's throughput and responsiveness.

Collect database and storage data

https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/monitor-azure-resource#monitoring-data-from-azure-resources

Capacity use: Capacity use is the amount of storage capacity used and the amount
that's available. Capacity-use data helps organizations plan for future storage
needs.

For databases, you should also collect database-specific metrics:

Query performance: Data about the execution time, resource usage, and efficiency
of database queries. Slow or inefficient database queries can significantly slow
down a workload. Look for queries that are slow and that run frequently.

Transaction performance: Data about the performance of database transactions,
such as transaction duration, concurrency, and lock contention.

Index performance: Data about the performance of database indexes, such as index
fragmentation, usage statistics, and query optimization.

Resource use: Data that includes CPU, memory, disk space, I/O, and network
bandwidth.

Connection metrics: Metrics that track the number of active, aborted, and failed
connections. High failure rates could indicate network issues or could indicate that
the database reached its maximum number of connections.

Transaction rates: The number of transactions that a database runs per second. A
change in transaction rates can indicate performance issues.

Error rates: Data that indicates a database performance. High error rates might
indicate a performance issue. Collect and analyze database errors.

A platform as a service (PaaS) solution eliminates the need to collect operating system
performance data. However, if your workload runs on virtual machines (infrastructure as
a service), you need to collect performance data about the operating system. You need
to understand the demand on your operating system and virtual machine. Frequently
sample operating system performance counters. For example, you could sample the
performance counters every minute.

At a minimum, collect data about the following performance areas.

Performance area Process or function

CPU - CPU usage (user mode or privileged mode)
- CPU queue length (number of processes that are waiting for CPU time)

Collect operating system data (if applicable)

Performance area Process or function

Process - Process thread count
- Process handle count

Memory - Committed memory
- Available memory
- Pages per second
- Swap space usage

Disk - Disk read
- Disk writes
- Disk throughput
- Disk space usage

Network - Network interface throughput
- Network interface Rx/Tx errors

Your performance data should align with the performance targets. The data needs to
represent workload or flow performance completely and accurately as it relates to
performance targets. For example, the response time for a web service has a
performance target of 500 ms. Make it a routine to analyze the data, as frequent
evaluations allow for early detection and mitigation of performance issues.

Create alerts. It's beneficial to have alerts that are actionable, enabling prompt
identification and rectification of performance problems. These alerts should
clearly indicate the breached performance threshold, the potential business effect,
and the involved components. Start by setting common and recommended alert.
Over time, you can modify these criteria based on your specific needs. The primary
objective of these alerts should be to forecast potential performance drops before
they escalate into significant issues. If you can't set an alert for an external
dependency, consider devising a method to gather indirect measurements, like the
duration of a dependency call.

Set data collection limits. Determine and set logical limits on the volume of data
you collect and its retention duration. Telemetry can sometimes produce
overwhelming amounts of data. It's essential to focus on capturing only the most
vital performance indicators or have an efficient system in place to extract
meaningful insights from your performance data.

Validate and analyze data

Azure facilitation

Centralizing, segmenting, and retaining performance data: Azure Monitor collects and
aggregates data from every layer and component of your workload across multiple
Azure and non-Azure subscriptions and tenants. It stores the data in a common data
platform for consumption by a common set of tools that can correlate, analyze,
visualize, and/or respond to the data.

You need at least one Log Analytics workspace to enable Azure Monitor Logs. You can
use a single workspace for all your data collection. You can also create multiple
workspaces based on requirements to segment performance data. It also allows you to
define retention policies.

Collecting application performance data: Application Insights is a feature of Azure
Monitor that helps you monitor the performance and availability of your application. It
provides application-level insights by collecting telemetry data such as request rates,
response times, and exception details. You can enable Application Insights for your
application and configure it to collect the necessary performance data. Application
Insights also supports distributed tracing. Configure distributed tracing for all flows. To
build end-to-end transaction flows, correlate events that come from different
application components or tiers.

Performance counters are a powerful way to monitor the performance of your
application. Azure provides various performance counters that you can use to collect
data about CPU usage, memory usage, disk I/O, network traffic, and more. If you
configure your application to emit performance counter data, Azure Monitor collects
and stores the data for analysis.

Collecting resource performance data: Most Azure services generate platform logs and
metrics that provide diagnostic and auditing information. By enabling diagnostic
settings, you can specify the platform logs and metrics to collect and store. For
correlation purposes, enable diagnostics for all supported services and then send the
logs to the same destination as your application logs.

Collecting database and storage performance data: Azure Monitor allows you to
collect performance data for databases in Azure. You can enable monitoring for Azure
SQL Database, Azure Database for MySQL, Azure Database for PostgreSQL, and other
database services. Azure Monitor provides metrics and logs for monitoring database
performance, including CPU use, memory use, and query performance. To be notified of
issues, you can set up alerts based on performance thresholds.

Azure offers performance recommendations for databases, such as SQL Server on Azure
Virtual Machines. These recommendations help you optimize the performance of your
database workloads. They include suggestions for collecting performance counters,
capturing wait statistics, and gathering performance data during peak hours.

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-retention-archive
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing-telemetry-correlation

Azure Storage Analytics allows you to collect performance data for Azure Storage
services like Blob Storage, Table Storage, and Queue Storage. You can enable logging
and metrics for your storage accounts to monitor key performance indicators, such as
the number of read/write operations, throughput, and latency.

Collecting operating system performance data: The Azure Diagnostics extension
enables you to collect detailed performance data from your virtual machines (VMs),
including CPU, memory, disk I/O, and network traffic. This data can be sent to Azure
Monitor or other storage services for analysis and alerting.

Validating and analyzing performance data: Within Azure Monitor, you can use Azure
Monitor Logs to collect, analyze, and visualize log data from your applications and
systems. You can configure Azure Monitor Logs to ingest logs from your application,
including application-level logs and infrastructure logs. By aggregating logs, you can
cross-query events and gain insights into the performance of your application. For more
information, see Azure Monitor Logs cost calculations and options and Pricing for Azure
Monitor .

In Azure Monitor, you can define alert rules to monitor specific performance metrics and
trigger alerts based on predefined conditions. For example, you can create an alert rule
to notify you when CPU usage exceeds a certain threshold or when response time goes
above a specified limit. Configure the alert rule to send notifications to the desired
recipients.

When you create an alert rule, you can define the criteria that determine when an alert
should be triggered. You can set thresholds, aggregation methods, time windows, and
the frequency of evaluation. Define the criteria based on your performance monitoring
requirements. In addition to sending notifications, you can specify actions to be taken
when an alert is triggered. Actions can include sending emails, calling webhooks, or
running Azure functions. Choose the appropriate actions to respond to the specific alert
scenario.

Baseline highly available zone-redundant app services web application
Monitor a microservices application in Azure Kubernetes Service (AKS)
Enterprise monitoring with Azure Monitor

Platform metrics

Examples

Related links

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/cost-logs
https://azure.microsoft.com/pricing/details/monitor/
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/app-service-web-app/baseline-zone-redundant
https://learn.microsoft.com/en-us/azure/architecture/microservices/logging-monitoring
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/monitoring/enterprise-monitoring
https://learn.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-metrics#what-can-you-do-with-azure-monitor-metrics

Diagnostic settings
Audit logs

Refer to the complete set of recommendations.

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/azure-monitor/platform/diagnostic-settings
https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/concept-audit-logs

Recommendations for optimizing
scaling and partitioning
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:05 Optimize scaling and partitioning. Incorporate reliable and controlled scaling and
partitioning. The scale unit design of the workload is the basis of the scaling and
partitioning strategy.

This guide describes the recommendations for scaling and partitioning a workload.
Scaling is the ability to increase or decrease the resources allocated to a workload based
on demand. Partitioning involves dividing the workload into smaller, manageable units
to distribute data and processing across multiple resources. A workload that doesn't
scale or partition might experience poor performance in high-demand periods and
underutilized capacity in low-demand periods.

Definitions

Term Definition

Autoscale A feature that automatically adjusts the capacity limits of a service based
on predefined configurations, allowing it to scale up or down as needed.

Capacity The upper limit or maximum capacity of a given service or feature.

Client affinity
(session affinity)

The intentional routing of requests from a single client to a single server
instance to help ensure consistent session management.

Consistency
(distributed
database)

The uniformity of data across multiple nodes in a distributed database,
ensuring that all replicas have the same data at a given point in time.

Consistency
(relational database)

The property of a transaction bringing a database from one valid state to
another, maintaining data integrity.

Consistency level A configuration that defines how and when data is replicated in a
distributed database system, determining the tradeoff between
consistency and performance.

Data locking A mechanism used to prevent simultaneous updates to the same data.

Horizontal scaling A scaling approach that adds instances of a given type of resource.

Term Definition

Optimistic
concurrency

An approach for updating databases that uses snapshots to make updates
instead of traditional locking mechanisms.

Partitioning The process of physically dividing data into separate data stores.

Scalability The ability of a workload to dynamically change its capacity limits to
accommodate varying levels of demand.

Scale unit A group of resources that scale proportionately together.

State affinity The storage of client session data on a single server so that the same
server handles subsequent requests from the same client.

Vertical scaling A scaling approach that adds compute capacity to existing resources.

Both scaling and partitioning contribute to performance efficiency by ensuring that
resources are used effectively and the workload can handle varying loads. These
practices are especially important in cloud environments where applications need to be
flexible and adaptable to changing demands. Scaling ensures you can expand workload
capacity to meet increasing demands. Partitioning allows you to divide tasks or data
efficiently to handle these growing needs. The foundation of both these processes is the
scale unit design of the workload. It dictates how your workload should grow and
distribute tasks. By incorporating a reliable and controlled approach to scaling and
partitioning, you can sidestep potential workload inefficiencies.

Optimize scaling is the process of adjusting the number of servers, instances, or
resources to meet the fluctuating demands of a workload. It ensures that the workload
can handle increased traffic or demands without experiencing performance degradation
or downtime.

Choosing a scaling strategy involves deciding between vertical or horizontal methods to
enhance the capacity of a workload based on its specific requirements. Selecting the
right strategy ensures that resources are adjusted efficiently to meet workload demands
without overuse or waste. To choose the right scaling strategy, you need to understand

Key design strategies

Optimize scaling

Choose a scaling strategy

the uses cases for vertical and horizontal scaling and how they meet the needs of your
workload.

Understand vertical scaling. Using vertical scaling, you can increase the capacity of a
single resource, such as upgrading to a larger server or instance size. Vertical scaling is
useful when the workload can benefit from increased processing power, memory, or
other resources within a single instance. Vertical scaling is appropriate for workloads
that aren't easily divided into smaller parts or when the application architecture doesn't
support horizontal scaling.

Understand horizontal scaling. Using horizontal scaling, you can add more instances or
resources to distribute the workload across multiple servers. Horizontal scaling offers
benefits such as improved resiliency, increased capacity, and the ability to handle
increased traffic or workload demands. It's effective for cloud-native applications
designed to run on multiple nodes. Horizontal scaling is appropriate for workloads that
can be divided into smaller parts that run independently.

Understand the workload. The suitability of vertical or horizontal scaling depends on the
specific characteristics and requirements of the workload. Regular performance
monitoring and testing in the following areas can help optimize the scaling strategy
over time:

Requirements: Understand the specific requirements of the workload by
considering factors such as resource demands, scalability needs, and the
limitations of the workload.

Scale units: Create a scale unit design for components expected to be scaled
together. For example, 100 virtual machines might require two queues and three
storage accounts to handle the extra workload. The scale unit would be 100 virtual
machines, two queues, and three storage accounts. You should independently
scale all the components that experience capacity-use fluctuation.

Architecture: Assess the design of the application architecture. Some applications
might be inherently designed to scale horizontally, with stateless components that
can be easily distributed across multiple instances. Other applications might have
stateful components or dependencies that make vertical scaling more appropriate.
Evaluate the scalability and elasticity requirements of the workload.

Designing infrastructure to scale is the process of creating an architecture that can
handle increasing demands and workload by adding or adjusting resources as needed. It
involves planning and implementing solutions that can scale horizontally or vertically to

Design infrastructure to scale

accommodate growth. Strategies include avoiding singletons that can become
bottlenecks and decoupling application components to ensure independent scalability.
When you design a workload to be scalable, it can effectively distribute the workload
across multiple resources, which prevents bottlenecks and maximizes resource
utilization.

Avoid singletons. You should avoid the use of a single, centralized resource for the
entire workload. Instead, distribute your workload across multiple resources for better
scalability, fault tolerance, and performance. Explore some specific examples and design
considerations to avoid singletons in workload resources:

Queue-based load leveling: Instead of relying on a single queue to process
messages, consider partitioning the workload across multiple queues to distribute
the processing load. It provides better scalability and parallel processing.

Data processing: Singleton patterns often appear in data processing scenarios
where the processing doesn't fan out. Break long-running tasks into smaller tasks
that can scale better to distribute the workload across multiple resources and take
advantage of parallelism.

Design patterns: Design patterns such as Fan-out/Fan-in or Pipes and Filters can
help avoid singletons in workflows. These patterns enable the distribution of
processing tasks across multiple resources and promote scalability and flexibility.

Decouple components. Decoupling application components is an important aspect of
designing for scalability. It involves breaking down the application into smaller,
independent components that can operate and scale independently based on specific
workload requirements. For example, if one component requires more resources due to
increased demand, you can scale that component without affecting the others. This
flexibility ensures efficient resource allocation and prevents bottlenecks. By decoupling
components, you can isolate failures and minimize the effect on the overall application.
If one component fails, the other components can continue to function independently.

Decoupled components are easier to maintain and update. Changes or updates to one
component can be made without affecting the others because they're independent.
Follow these guidelines to decouple application components for scalability:

Separation of concerns: Identify the responsibilities and functionalities of your
application. Divide the responsibilities into separate components based on their
specific tasks. For example, you might have separate components for user
authentication, data processing, and UI.

https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview#fan-in-out
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters

Loose coupling: Design the components to communicate with each other through
well-defined interfaces and protocols. This design reduces dependencies between
components and allows for easier replacement or scaling of individual
components.

Asynchronous communication: Use asynchronous communication patterns such as
message queues or event-driven architectures to decouple components further.
These patterns allow components to process tasks independently at their own
pace, improving overall scalability.

Microservices: Consider implementing microservices, which are small, independent
services that focus on specific business functionalities. Each microservice can be
developed, deployed, and scaled independently, providing greater flexibility and
scalability.

As you scale a workload, you should design the application to distribute the load. Just
because you can add more replicas at the infrastructure level doesn't mean your
application can use the replicas. Designing an application to scale is about structuring
an application so it can handle increased demands by distributing its workload across
resources. Avoid solutions that require client affinity, data locking, or state affinity for a
single instance if possible. You want to route a client or process to a resource that has
available capacity. To design for application scalability, consider the following strategies:

Eliminate server-side session state. You should design applications to be stateless where
possible. For stateful applications, you should use a state store that's external to your
server. Externalizing session state is the practice of storing session data outside of the
application server or container. You can externalize session state to distribute session
data across multiple servers or services, enabling seamless session management in a
distributed environment. Consider the following when externalizing session state:

Evaluate your session requirements. Understand the session data that needs to be
stored and managed. Consider session attributes, session timeouts, and any
specific requirements for session replication or persistence. Determine the size of
your session state and the frequency of read and write operations.

Choose a solution. Select a storage solution that aligns with your performance and
scalability needs. Options include using a distributed cache, a database, or a
session state service. Consider factors such as data consistency, latency, and
scalability when making your choice.

Design application to scale

Set up your application. Update your application to use the chosen session state
storage solution. You might need to change your application's configuration files
or code to connect to the external storage service.

Update your logic. Change your application's session management logic to store
and retrieve session data from the external storage solution. You might need to
use APIs or libraries provided by the storage solution to manage session state.

Eliminate client affinity. Client affinity is also known as session affinity or sticky sessions.
When you eliminate client affinity, you distribute client requests evenly across multiple
replicas or servers, without routing all requests from a client to the same replica. This
configuration can improve the scalability and performance of applications by allowing
any available replica to process the requests.

Review your load balancing algorithm. A load balancing algorithm can cause
unintentional and artificial client pinning where too many requests are sent to one back-
end instance. Pinning can happen if the algorithm is set up to always send requests from
the same user to the same instance. It can also happen if the requests are too similar to
each other.

Eliminate data locking. Data locking ensures consistency but has performance
disadvantages. It can cause lock escalations and negatively affect concurrency, latency,
and availability. To eliminate data locking, you should implement optimistic concurrency.
Nonrelational databases should use optimistic concurrency control and have the right
consistency level. Your data partitioning strategy should also support your concurrency
needs.

Use dynamic service discovery. Dynamic service discovery is the process of automatically
detecting and registering services in a distributed system. It allows clients to discover
available services without being tightly coupled to specific instances. Clients shouldn't
be able to take a direct dependency on a specific instance in the workload. To avoid
these dependencies, you should use a proxy to distribute and redistribute client
connections. The proxy acts as an intermediary between clients and services, providing a
layer of abstraction that allows services to be added or removed without affecting
clients.

Use background tasks. When an application is scaled, it can handle an increasing
workload or a higher number of concurrent requests. Offloading intensive tasks as
background tasks allows the main application to handle user requests without resource-
intensive operations overwhelming it. Follow these steps to offload tasks as background
tasks:

https://learn.microsoft.com/en-us/sql/connect/ado-net/optimistic-concurrency
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/database-transactions-optimistic-concurrency#optimistic-concurrency-control
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels

1. Find the CPU-intensive and I/O-intensive tasks in your application that you can
offload. These tasks typically involve heavy computations or interactions with
external resources such as databases or network operations.

2. Design your application to support background tasks. Decouple the intensive tasks
from the main application logic and provide a mechanism to start and manage
background tasks.

3. Implement background task processing with appropriate technologies or
frameworks. Include features provided by your programming language or
platform, such as asynchronous programming, threading, or task queues. Contain
intensive operations in separate tasks or threads, these tasks can be run
concurrently or scheduled to run at specific intervals.

4. Distribute background tasks if there are many of them, or if the tasks require
substantial time or resources. For one possible solution, see the Competing
Consumers pattern.

Configuring scaling is the process of setting up and adjusting parameters to dynamically
allocate resources based on workload demands. It encompasses strategies such as using
autoscaling features, understanding service scaling boundaries, and implementing
meaningful load metrics. Proper configuration ensures that an application can respond
to varying demands while maximizing efficiency. When you configure scaling, consider
the following strategies:

Use services with autoscaling. The autoscale feature automatically scales infrastructure to
meet demand. Use platform as a service (PaaS) offerings with built-in autoscale features.
The ease of scaling on PaaS is a major advantage. For example, scaling out virtual
machines requires a separate load balancer, client-request handling, and externally
stored state. PaaS offerings handle most of these tasks.

Constrain autoscaling. Set automatic scaling limits to minimize over-scaling that could
result in unnecessary costs. Sometimes you can't set scaling limits. In these cases, you
should set alerts to notify you when the component reaches the maximum scale limit
and over-scaled.

Understand service scaling boundaries. When you understand service scaling limits,
increments, and restrictions, you can make informed decisions when selecting a service.
Scaling boundaries determine whether or not your chosen service can handle the
expected workload, scale efficiently, and meet the performance requirements of your
application. Scaling boundaries to consider include:

Configure scaling

https://learn.microsoft.com/en-us/azure/architecture/patterns/competing-consumers

Scaling limits: Scaling limits are the maximum capacity that a location or service
can handle. It's important to know these limits to help ensure that the service can
accommodate the expected workload and handle peak usage without
performance degradation. Every resource has an upper scale limit. If you need to
go beyond scale limits, you should partition your workload.

Scaling increments: Services scale at defined increments. For example, compute
services might scale by instances and pods while databases might scale by
instances, transaction units, and virtual cores. It's important to understand these
increments to optimize resource allocation and prevent resource flapping.

Scaling restrictions: Some services allow you to scale up or out but limit your ability
to automatically reverse scaling. You're forced to scale in manually, or you might
have to redeploy a new resource. These limitations are often to protect the
workload. Scaling down or scaling in can have implications on the availability and
performance of the workload. A service might enforce certain limitations or
constraints to help ensure that the workload has sufficient resources to operate
effectively. These limitations can affect data consistency and synchronization,
especially in distributed systems. The service might have mechanisms in place to
handle data replication and consistency during scaling up or out but might not
provide the same level of support for scaling down or in.

Use meaningful load metrics. Scaling should use meaningful load metrics as scaling
triggers. Meaningful load metrics include simple metrics, like CPU or memory. They also
include more advanced metrics, such as queue depth, SQL queries, custom metrics
queries, and HTTP queue length. Consider using a combination of simple and advanced
load metrics as your scaling trigger.

Use a buffer. A buffer is unused capacity that can be used to handle spikes in demand. A
well-designed workload plans for unexpected spikes in workload. You should add a
buffer to handle spikes for horizontal and vertical scaling.

Prevent flapping. Flapping is a looping condition that occurs when one scale event
triggers an opposite scale event, creating a continuous back-and-forth scaling action.
For example, if scaling in reduces the number of instances, it might cause the CPU usage
to rise in the remaining instances, triggering a scale-out event. The scale-out event, in
turn, causes the CPU usage to drop, repeating the process.

It's important to choose an adequate margin between the scale-out and scale-in
thresholds to avoid flapping. You can prevent frequent and unnecessary scale-in and
scale-out actions by setting thresholds that provide a significant difference in CPU
usage.

Use Deployment Stamps. There are techniques that make it easier to scale a workload.
You can use the Deployment Stamps pattern to easily scale a workload by adding one or
more scale units.

 Risk: While scaling helps optimize costs by adjusting capacity to meet demand,
it can result in overall increased cost during long periods of high demand.

Testing scaling involves simulating various workload scenarios in a controlled
environment to evaluate how a workload responds to different levels of demand. It
helps ensure the workload scales efficiently, maximizing performance efficiency during
varied loads.

You need to ensure that your workload scales efficiently under real-world conditions. It's
essential to perform load and stress tests in an environment that mirrors your
production setup. These tests, conducted in nonproduction environments, enable you to
evaluate both vertical and horizontal scaling strategies and determine which one
optimizes performance most effectively. Here's a recommended approach to testing
scaling:

Define workload scenarios. Identify the key workload scenarios that you need to
test, such as increasing user traffic, concurrent requests, data volume, or resource
use.

Use production-like test environment. Create a separate testing environment that
closely resembles the production environment in terms of infrastructure,
configuration, and data.

Set performance metrics. Define the performance metrics to measure, such as
response time, throughput, CPU and memory utilization, and error rates.

Develop test cases. Develop test cases that simulate different workload scenarios,
gradually increasing the load to assess the performance at various levels.

Execute and monitor tests. Run the tests using the defined test cases and collect
performance data at each load level. Monitor workload behavior, resource
consumption, and performance degradation.

Analyze and optimize scaling. Analyze the test results to identify performance
bottlenecks, scalability limitations, or areas for improvement. Optimize the
configuration, infrastructure, or code to enhance scalability and performance. It
takes time for scaling to complete, so test the effects of scaling delays.

Test scaling

https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp

Address dependencies. Find potential dependency issues. Scaling or partitioning in
one area of a workload might cause performance issues on a dependency. The
stateful parts of a workload, such as databases, are the most common cause of
dependency performance issues. Databases require careful design to scale
horizontally. You should consider measures, such as optimistic concurrency or data
partitioning, to enable more throughput to the database.

Retest after adjustments. Repeat the scalability tests after implementing
optimizations to validate the improvements and help ensure the workload can
handle the expected workloads efficiently.

 Tradeoff: Consider the budget constraints and cost-efficiency goals of your
workload. Vertical scaling might involve higher costs due to the need for larger and
more powerful resources. Horizontal scaling offers cost savings by using smaller
instances that can be added or removed based on demand.

Partitioning is the process of dividing a large dataset or workload into smaller, more
manageable parts called partitions. Each partition contains a subset of the data or
workload and is typically stored or processed separately. Partitioning enables parallel
processing and reduces contention. Dividing the workload into smaller units allows the
application to process each unit independently. The result is better use of resources and
faster processing times. Partitioning also helps distribute the data across multiple
storage devices, reducing the load on individual devices and improving overall
performance.

The specific partitioning approach you use depends on the type of data or workload you
have and the technology you're using. Some common strategies for partitioning include:

Horizontal partitioning: In this approach, the dataset or workload is divided based
on specific criteria, such as ranges of values or specific attributes. Each partition
contains a subset of the data that meets the defined criteria.

Vertical partitioning: In this approach, the dataset or workload is divided based on
specific attributes or columns. Each partition contains a subset of the columns or
attributes, allowing for more efficient access to the required data.

Functional partitioning: In this approach, the data or workload is divided based on
the specific functions or operations that need to be performed. Each partition

Partition workload

Understand partitioning

https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/optimistic-concurrency-overview

contains the data or components necessary for a specific function, enabling
optimized processing and performance.

It's important to consider factors such as data distribution, query patterns, data growth,
and workload requirements when partitioning. Proper planning and design are essential
to help ensure the effectiveness of partitioning and maximize performance efficiency. If
you address partitioning as an afterthought, it's more challenging because you already
have a live workload to maintain. You might need to change data access logic, distribute
large quantities of data across partitions, and support continued usage during data
distribution.

It's important to analyze the characteristics of your data, access patterns, concurrency
requirements, and scalability goals when deciding which type of partitioning to use.
Each type of partitioning has its own advantages and considerations. Here are some
factors to consider for each type of partitioning:

Horizontal partitioning is appropriate when you want to distribute the data across
multiple resources or servers for better scalability and performance. It's effective
when the workload can be parallelized and processed independently on each
partition. Consider horizontal partitioning when multiple users or processes need
to be able to access or update the dataset concurrently.

Vertical partitioning is appropriate when certain attributes or columns are
frequently accessed, while others are accessed less frequently. Vertical partitioning
allows for efficient access to the required data by minimizing unnecessary data
retrieval.

Functional partitioning is appropriate when different functions require different
subsets of the data and can be processed independently. Functional partitioning
can optimize performance by allowing each partition to focus specific operations.

Test the partitioning scheme to verify the effectiveness and efficiency of the strategy so
you can make adjustments to improve performance. Measure factors such as response
time, throughput, and scalability. Compare the results against performance goals and
identify any bottlenecks or issues. Based on the analysis, identify potential optimization

Plan partitioning

Implement partitioning

Test and optimize partitioning

opportunities. You might need to redistribute data across partitions, adjust partition
sizes, or change the partitioning criteria.

 Tradeoff: Partitioning adds complexity to the design and development of a
workload. Partitioning requires conversations and planning between developers and
database administrators.

 Risk: Partitioning introduces some potential problems that need to be
considered and addressed, including:

Data skew: Partitioning can lead to data skew, where certain partitions receive
a disproportionate amount of data or workload compared to others. Data skew
can result in performance imbalances and increased contention on specific
partitions.

Query performance: Poorly designed partitioning schemes can negatively affect
query performance. If queries need to access data across multiple partitions, it
might require extra coordination and communication between partitions,
leading to increased latency.

Optimizing scaling. Azure has the infrastructure capacity to support vertical and
horizontal scaling. Azure services have different performance tiers known as SKUs. SKUs
allow you to scale vertically. Many of Azure's resources support automatic scaling or
other in-place scale options. Some resources support advanced metrics or custom input
to support fine-tuning scaling behavior. Most scaling implementations in Azure can set
limits and support the necessary observability to be alerted to change.

Azure Monitor allows you to monitor various metrics and conditions in your applications
and infrastructure. You can use Monitor to trigger automated scaling actions based on
predefined rules. For example, in Azure Kubernetes Service (AKS), you can use Monitor
to enable horizontal pod automatic scaling (HPA) and cluster automatic scaling. Using
Monitor's monitoring and alerting capabilities, you can effectively facilitate scaling in
Azure and help ensure that your applications and infrastructure can dynamically adjust
to meet demand.

You can also build custom automatic scaling in Azure. You can use alerts in Monitor for
resources that don't have an autoscale feature. These alerts can be set up to be query-
based or metric-based and can perform actions using Azure Automation. Automation
provides a platform for hosting and running PowerShell and Python code across Azure,

Azure facilitation

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/automation/overview

the cloud, and on-premises environments. It offers features such as deploying runbooks
on demand or on a schedule, run history and logging, integrated secrets store, and
source control integration.

Designing application to scale: Here are some ways Azure facilitates application scaling
design;

Eliminating data locking: In Azure SQL Database, you can enable optimized locking
to improve performance on databases that require strict consistency.

Using background tasks: Azure offer services and guidance for implementing
background jobs. For more information, see Background jobs.

Implementing load balancing: Azure provides load balancers that don't require
client affinity. These load balancers include Azure Front Door, Azure Application
Gateway, and Azure Load Balancer.

Partitioning a workload: Azure offers various partitioning strategies for different data
stores. These strategies help improve performance and scalability by distributing the
data across multiple partitions. For more information, see Data partition strategies.

Why partition data?
Best practices for automatic scaling
Overview of the autoscale feature in Azure
Horizontal, vertical, and functional data partitioning
Application design considerations

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/sql/relational-databases/performance/optimized-locking
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#session-affinity
https://learn.microsoft.com/en-us/azure/application-gateway/features#session-affinity
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-distribution-mode?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning#why-partition-data
https://learn.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-best-practices#choose-the-thresholds-carefully-for-all-metric-types
https://learn.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning#application-design-considerations

Recommendations for performance
testing
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:06 Test performance. Perform regular testing in an environment that matches the
production environment. Compare results against the performance targets and the
performance benchmark.

This guide describes the recommendations for testing. Performance testing helps you
evaluate the functionality of a workload in various scenarios. It involves testing the
workload's response time, throughput, resource utilization, and stability to help ensure
that the workload meets its performance requirements.

Testing helps to prevent performance issues. It also helps ensure that your workload
meets its service-level agreements. Without performance testing, a workload can
experience performance degradations that are often preventable. Workload
performance can drift from performance targets and established baselines.

Definitions

Term Definition

Chaos testing A performance test that aims to test the resilience and stability of a system by
deliberately introducing random and unpredictable failures or disruptions.

Load test A performance test that measures system performance under typical and
heavy load.

Performance
baseline

A set of metrics that represent the behavior of a workload under normal
conditions as validated by testing.

Stress test A performance test that overloads a system until it breaks.

Synthetic test A performance test that simulates user requests in an application.

Performance testing helps you gather measurable data on a workload. When you run
tests early enough, they also help you build workloads to the right specifications. You
should conduct performance tests as early as possible in the software development

Key design strategies

lifecycle. Early testing allows you to catch and fix performance issues earlier in
development. You can use a proof of concept (POC) if production code isn't ready.

Preparing performance tests refers to setting up and arranging the resources,
configurations, and test scenarios that you need to conduct performance testing
effectively.

Acceptance criteria specify the performance requirements that a workload needs to
meet to be considered acceptable or successful. Define criteria that align with the
performance targets.

Review performance targets. Performance targets define your desired level of
performance for your workload. Review the performance targets that are established for
the workload. Performance targets are metrics that can involve response time,
throughput, resource utilization, or any other relevant performance indicators. For
example, you might have a target for your response time to be under a certain
threshold, such as less than 2 seconds.

Define acceptance criteria. Translate the performance targets into specific acceptance
criteria that you can use to evaluate the performance of your workload. For example,
suppose your performance target for response time is 2 seconds or less. Your
acceptance criterion could be The average response time of the workload should be less
than 2 seconds. Use these acceptance criteria to determine whether the workload meets
the desired level of performance.

When you define acceptance criteria, it's important to focus on users and their
expectations. Acceptance criteria help ensure that the delivered work meets user needs
and requirements. Keep in mind the following considerations for incorporating the user
perspective into acceptance criteria:

User requirements: Understand the user needs and goals for the workload.
Consider how the workload should perform to satisfy these requirements.

User experience: Define acceptance criteria that capture the desired user
experience. Include factors such as response time, usability, accessibility, and
overall satisfaction.

Functional requirements: Address the specific functionality that the user expects to
see in the workload. Define acceptance criteria around these functional

Prepare the test

Define acceptance criteria

requirements to help ensure that they're met.

Use cases: Consider different scenarios or use cases that the user might encounter.
Define acceptance criteria based on these use cases to validate the workload's
performance in real-world situations.

Set acceptance thresholds. Determine the thresholds within the acceptance criteria that
indicate whether the workload meets the performance targets. These thresholds define
the acceptable range of performance for each metric. For example, suppose the
acceptance criterion for response time is less than 2 seconds. You can set the threshold
at 2.5 seconds. This level indicates that any response time over 2.5 seconds is
considered a performance issue.

Define passing criteria. Establish the criteria for determining whether the workload
passed or failed the performance test. You might define passing as meeting all the
acceptance criteria or achieving a certain percentage of them.

To select the right type of performance test, it's important to align the test with your
acceptance criteria. The acceptance criteria define the conditions that need to be met
for a requirement or bug fix to be considered done. Performance tests should aim to
verify whether a workload meets these acceptance criteria and performs as expected
under specified conditions. Aligning the performance test type with the acceptance
criteria helps ensure that the test focuses on meeting the performance expectations that
the criteria define.

Understand acceptance criteria. Review the acceptance criteria for the requirement
or bug fix. The criteria outline the specific conditions and functionalities to be met.

Identify relevant performance metrics. Based on the acceptance criteria, determine
the performance metrics that are critical to achieving the desired outcomes. For
example, if the acceptance criteria focus on response time, prioritizing load testing
might be appropriate.

Select an appropriate test type. Evaluate the available test types and choose the one
that best aligns with the identified performance metrics and acceptance criteria.

The following table provides a sample of test types and their use cases.

Test type Description Use case

Load testing Simulate realistic user loads to measure how
your workload performs under expected

Determines load tolerance.

Select the test type

Test type Description Use case

peak workloads.

Stress testing Push your workload beyond its normal limits
to identify its breaking points and measure
its ability to recover.

Determines resilience and
robustness.

Soak testing
(endurance
testing)

Run your workload under sustained high
loads for an extended period to identify
performance degradation, memory leaks, or
resource issues.

Evaluates stability and
reliability over time.

Spike testing Simulate sudden increases in user load to
assess how your workload handles abrupt
changes in demand.

Measures the ability to scale
and maintain performance
during peak periods.

Compatibility
testing

Test your workload's performance across
various platforms, browsers, or devices.

Helps ensure consistent
performance across various
environments.

Prioritize your selected test types based on the characteristics and requirements of your
workload. Consider factors such as the criticality of performance metrics, user
expectations, business priorities, and known issues or vulnerabilities.

Choose appropriate tools based on the type of performance testing that you want to
run. Evaluate the testing environment's infrastructure, resources, and constraints.
Choose testing tools that support the desired test types and provide the necessary
features for monitoring, measurement, analysis, and reporting.

An application performance monitoring (APM) tool provides deep insights into
applications and is an essential testing tool. It helps you trace individual transactions
and map their paths through various workload services. After testing, you should use
the APM tool to analyze and compare testing data against your performance baseline.

Use profiling tools to identify performance bottlenecks in your code. Profiling helps
identify areas of the code that consume the most resources and need optimization. It
provides insights into the execution time and memory usage of different parts of the
code.

The following steps can help you select the appropriate testing tools:

Identify testing requirements. Begin by understanding the specific requirements of
your performance testing. Consider various factors:

Select testing tools

The type of workload
Performance metrics to measure, such as response time and throughput
The complexity of the workload architecture
The testing environment, such as cloud-based, on-premises, or hybrid

Research testing tools. Conduct research to identify performance testing tools that
align with your requirements. Consider commercial and open-source tools that are
available in the market. Look for tools that support your desired types of
performance testing, such as load testing or stress testing, and that provide
features for measuring performance metrics.

Evaluate tool features. Assess the features that each testing tool provides. Look for
capabilities such as simulation of realistic user behavior and scalability to handle
large user loads. Consider support for various protocols and technologies,
integration with other testing tools or frameworks, and reporting and analysis
capabilities.

Consider compatibility and integration. Determine the compatibility of the testing
tools with your existing infrastructure and technologies. Ensure that the tools can
be easily integrated into your testing environment and can communicate with the
necessary workload for monitoring and analysis.

Evaluate cost and licensing. Assess the cost structure and licensing terms that are
associated with the testing tools. Consider factors such as the initial investment,
maintenance costs, and support costs. Also consider other licensing requirements
that depend on the number of users or virtual users.

Conduct a POC. Select a few tools that appear to be the most suitable based on
your evaluation. Conduct a small-scale POC to validate the usability, features, and
effectiveness of the tools in your specific testing scenario.

Consider support and training. Evaluate the level of support and training that the
tool's vendor or community provides. Determine the availability of documentation,
tutorials, and technical support channels to assist with any challenges or issues that
might arise during the testing process.

Creating test scenarios refers to the process of designing specific situations or
conditions that are suitable for testing the performance of a workload. Test scenarios are
created to emulate realistic user behavior and workload patterns. These scenarios
provide a way for performance testers to evaluate how the workload performs under
various conditions.

Create test scenarios

Test scenarios make it possible to replicate various workload patterns, such as
concurrent user access, peak load periods, or specific transaction sequences. By testing
the workload under different workload patterns, you can identify performance
bottlenecks and optimize resource allocation.

Define user behavior. Emulate realistic user behavior and workload patterns by
identifying the steps and actions that users perform when they interact with the
workload. Consider activities such as signing in, performing searches, submitting
forms, or accessing specific features. Break down each scenario into specific steps
and actions that represent the user's interaction with the workload. You can include
navigating through pages, performing transactions, or interacting with various
elements of the workload.

Determine data involvement. Identify the test data required to run the test
scenarios. You might include creating or generating realistic data sets that
represent various scenarios, user profiles, or data volumes. Ensure that the test
data is diverse and covers different use cases to provide a comprehensive
performance evaluation.

Design test scripts. Create test scripts that automate the execution of the defined
test scenarios. Test scripts typically consist of a sequence of actions, HTTP requests,
or interactions with workload APIs or user interfaces. Use performance testing
tools or programming languages to write the scripts, considering factors such as
parameterization, correlation, and dynamic data handling. Validate the test scripts
for correctness and functionality. Debug any issues, such as script errors, missing
or incorrect actions, or data-related problems. Test script validation is crucial to
help ensure accurate and reliable performance test execution.

Configure test variables and parameters. Configure variables and parameters within
test scripts to introduce variability and simulate real-world scenarios. Include
parameters such as user credentials, input data, or randomization to mimic
different user behaviors and workload responses.

Iteratively refine scripts. Continuously refine and enhance test scripts based on
feedback, test results, or changing requirements. Consider optimizing script logic,
parameterization, and error handling, or adding extra validation and checkpoints.

Configuring a test environment refers to the process of setting up the infrastructure,
software, and network configurations that you need to create an environment that
closely resembles your production environment.

Configure the test environment

To set up your testing environment in a way that boosts performance efficiency, include
the following steps in your configuration process:

Mirror your production environment. Set up your test environment to closely
resemble your production environment. Consider factors such as infrastructure
configuration, network settings, and software configurations. The goal is to ensure
that the performance test results are representative of real-world conditions.

Provision sufficient resources. Allocate adequate resources such as CPU, memory,
and disk space to the test environment. Ensure that the available resources can
handle the expected workload and provide accurate performance measurements.

Replicate network conditions. Configure the network settings in the test
environment to replicate the expected network conditions during the actual
workload deployment. You need to include bandwidth, latency, and network
protocols.

Install and configure dependencies. Install the software, libraries, databases, and
other dependencies that are required for the workload to run correctly. Configure
these dependencies to match the expected production environment.

 Tradeoff: There are costs associated with maintaining separate test
environments, storing data, using tooling, and running tests. Know the cost of
performance testing, and find a way to optimize spending.

 Risk: Production data can contain sensitive information. Without a robust
scrubbing and masking strategy, you risk leaking sensitive data when you use
production data for testing.

Run the performance tests by using the chosen testing tool. Testing involves measuring
and recording performance metrics, monitoring health, and capturing any performance
issues that arise.

Monitor and collect performance metrics such as response time, throughput, CPU and
memory utilization, and other relevant indicators.

Use the defined test scenarios to put the workload under expected loads. Conduct tests
under these varying load conditions. For example, use levels, such as normal, peak, and
stress levels, to analyze the behavior of the workload in various scenarios.

Perform the tests

Analyzing the test results involves examining the collected data and metrics from the
performance tests to gain insights into the performance of the workload. The goal is to
identify performance issues and use the feedback to adjust priorities in application
development. The following actions are key steps for analyzing test results.

Review performance metrics. Look at the performance metrics that you collect during
performance testing, such as response times, throughput, error rates, CPU and memory
utilization, and network latency. Analyze these metrics to understand the overall
performance of the workload.

Identify bottlenecks. Evaluate the performance metrics to identify any bottlenecks
or areas of inefficient performance. The evaluation can include high response
times, resource constraints, database issues, network latency, and scalability
limitations. Pinpointing the root causes of these bottlenecks helps you prioritize
performance improvements.

Correlate metrics. Assess the relationships and correlations between various
performance metrics. For example, analyze how increased load or resource
utilization affects response times. Understanding these correlations can provide
valuable insights into workload behavior under different conditions. Look for
patterns and trends in the performance data over time. Analyze performance
under different load levels or during specific periods. Detecting trends can help
identify seasonal variations, peak usage times, or recurring performance issues.

Evaluate acceptance criteria. Compare the retest results against the predefined
acceptance criteria and performance goals. Assess whether the workload meets the
desired performance standards. If the workload doesn't meet the acceptance criteria,
further investigate and refine the optimizations.

Iterate and refine the analysis. Make other adjustments and improvements as needed.
Use the collected data and metrics to diagnose specific performance issues. The
diagnosis might involve tracing through the workload components, examining log files,
monitoring resource usage, or analyzing error messages. Dig deeper into the data to
understand the underlying causes of performance problems.

Based on the analysis of the test results, prioritize identified performance issues and
implement necessary improvements. The improvements can involve optimizing code,
tuning database queries, improving caching mechanisms, and optimizing network
configurations.

Analyze the results

Baselines provide a reference point for comparing performance results over time.
Baselines should be meaningful snapshots of workload performance—you don't need to
use every test as a baseline.

Consider the workload objectives, and document performance snapshots that allow you
to learn over time and optimize. Use these baseline measurements as a benchmark for
future performance tests, and use them to identify any degradation or improvement.

To establish baselines for performance testing and use them as a benchmark for future
performance tests, follow these steps:

Identify performance metrics. Determine the specific performance metrics that you
want to measure and track. Examples include:

Response time, or how quickly the workload responds to requests.
Throughput, or the number of requests that are processed per unit of time.
Resource utilization, such as CPU, memory, and disk usage.

Record meaningful measurements. Record the performance metrics that you obtain
during the test as the baseline measurements. These measurements represent the
starting point against which you compare future performance tests.

Compare future tests. In subsequent performance tests, compare the performance
metrics against the established baselines and thresholds. The comparison allows
you to identify any improvements or degradation in performance.

Continuous testing involves the ongoing monitoring and refinement of your tests.
Continuous testing helps you maintain consistent and acceptable levels of performance.
A workload should provide a consistent and acceptable level of performance relative to
the baseline. You should tune the workload over time to produce consistent
performance that's within the acceptable limits of performance. Here are some key
practices:

Set degradation limits. Define numeric thresholds that specify the level of
performance degradation that's acceptable over time. By setting these limits, you
can monitor performance fluctuations and receive alerts when the performance
falls below the defined threshold.

Include quality assurance. Incorporate performance requirements, such as CPU
utilization and maximum requests per second, into the quality assurance process.

Establish baselines

Test continuously

Treat performance requirements with the same level of importance as functional
requirements. This process helps ensure that the workload meets the defined
performance requirements before you deploy it to production.

Automate alerting. In live environments, rapid detection and response are crucial.
Set up automated alerting systems that use the performance baseline as their
reference. If there's a significant deviation in performance, the necessary teams are
alerted immediately to act.

Test changes. Some performance issues might only manifest in a live setting. Apply
thorough testing practices for proposed code and infrastructure changes. Use
code instrumentation to gain insights into the application's performance
characteristics, such as hot paths, memory allocations, and garbage collection. This
testing ensures that any change introduced doesn't degrade performance beyond
the acceptable limits.

Perform the tests: Azure Pipelines makes it possible for you to integrate performance
testing into your CI/CD pipeline. You can incorporate load testing as a step in your
pipeline to validate the performance and scalability of your applications.

Azure Chaos Studio provides a way for you to inject real-world faults into your
application so that you can run controlled fault injection experiments. The experiments
help you measure, understand, and improve your cloud application and service
resilience.

Azure Load Testing is a load testing service that generates high-scale load on any
application. Load Testing provides capabilities for automating load tests and integrating
them into your continuous integration and continuous delivery (CI/CD) workflow. You
can define test criteria, such as average response time or error thresholds, and
automatically stop load tests based on specific error conditions. Load Testing offers a
dashboard that provides live updates and detailed resource metrics of Azure application
components during a load test. You can analyze the test results, identify performance
bottlenecks, and compare multiple test runs to understand performance regressions
over time.

Analyzing the results: Azure Monitor is a comprehensive monitoring solution for
collecting, analyzing, and responding to telemetry from your cloud and on-premises
environments. Application Insights is an extension of Monitor that provides APM
features. You can use Application Insights to monitor applications during development
and testing and also in production.

Azure facilitation

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-overview
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

 Tradeoff: Testing takes time and skill to perform and can affect operational
efficiency.

Recommendations for security testing
Recommendations for designing a reliability testing strategy

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

Recommendations for optimizing code
and infrastructure
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:07 Optimize code and infrastructure. Use code that's performant, and ensure that it
offloads responsibilities to the platform. Use code and infrastructure only for their
core purpose and only when necessary.

This guide describes the recommendations for optimizing code and infrastructure
performance. To optimize your code and infrastructure, you should use your
components only for their core purpose and only when necessary. When you overuse
code and infrastructure, it creates unnecessary resource consumption, bottlenecks, and
slow responses. To compensate for those inefficiencies, you must add more resources to
accomplish the same tasks.

Definitions

Term Definition

Concurrency When multiple tasks or processes are performed at once but not necessarily at
the exact same time.

CPU architecture The components and principles that affect how the computer works.

Data
compression

The action of reducing the size of files by minimizing redundant data.

Heap An area in memory used for runtime memory allocations.

Memory leak When a workload fails to release allocated memory after the memory is no
longer needed.

Parallelism When multiple tasks or processes are performed at the same time.

Optimizing code and infrastructure entails fine-tuning the code and the supporting
infrastructure to improve performance efficiency. It requires performant code that
executes tasks quickly and doesn’t waste resources. It requires a well-designed
infrastructure that is streamlined to avoid unnecessary complexity. A workload should

Key design strategies

use the inherent capabilities of the platform. It's an approach that helps ensure both
code and infrastructure are used primarily for their core purposes and only when
necessary.

To optimize code performance, modify code to reduce resource usage, minimize
runtime, and enhance performance. You can modify code to improve the efficiency and
speed of a software program. Don't mask performance issues with brute force. Brute
force means adding compute resources to compensate for code performance, like
adding extra capacity instead of addressing the source. You need to fix performance
issues with optimization. When you optimize code performance, it helps maximize the
utilization of system resources, improves response time, reduces latency, and enhances
the user experience.

Instrumenting code refers to the practice of adding code snippets or libraries to code
that collect data and monitor code performance during runtime. Code instrumentation
allows developers to gather information about key metrics such as resource
consumption (CPU, memory usage) and execution time. By instrumenting code,
developers can gain insights into code hot paths, identify performance bottlenecks, and
optimize the code for better performance efficiency.

In an ideal environment, you should do code analysis early in the software development
lifecycle. The earlier you catch a code issue, the cheaper it's to fix it. You want to
automate as much of this code analysis as possible. Use dynamic and static code
analysis tools to reduce the manual effort. However, keep in mind that this testing is still
a simulation of production. Production provides the clearest understanding of code
optimization.

 Tradeoff: Code monitoring tools are likely to increase costs.

By instrumenting your code, you can measure the resource consumption for different
code paths. These measurements help you identify hot paths. Hot paths have a
significant effect on performance and resource usage. They're critical or frequently
executed sections of a program that require high performance and low latency. To
identify code hot paths, consider these steps:

Optimize code performance

Instrument your code

Identify hot paths

Analyze runtime data: Collect runtime data and analyze it to identify areas of the
code that consume significant resources, such as CPU, memory, or I/O operations.
Look for patterns or sections of code that are frequently executed or take a long
time to complete.

Measure performance: Use profiling tools or performance testing frameworks to
measure the execution time and resource consumption of different code paths. It
helps identify bottlenecks and areas for improvement.

Consider business logic and user effect: Evaluate the importance of different code
paths based on their relevance to the application's functionality or critical business
operations. Determine which code paths are crucial for delivering value to users or
meeting performance requirements.

Optimizing code logic is about refining the structure and design of code to perform
tasks with fewer resources. Improved logic reduces unnecessary operations. It creates
faster execution with less resource consumption. You should remove any unnecessary
operations within the code path that might affect performance. Prioritize optimizing hot
paths to see the greatest performance efficiency gains. To optimize code logic, consider
the following strategies:

Remove unnecessary function calls: Review your code and identify any functions
that aren't essential for the desired functionality and might affect performance
negatively. For example, if a function call performs a validation completed earlier in
the code, you can remove the unnecessary validation function call.

Minimize logging operations: Logging can be helpful for debugging and analysis,
but excessive logging can affect performance. Evaluate the necessity of each
logging operation and remove any unnecessary logging calls that aren't critical for
performance analysis.

Optimize loops and conditionals: Analyze loops and conditionals in your code and
identify any unnecessary iterations or conditions that can be eliminated.
Simplifying and optimizing these structures can improve the performance of your
code. Minimize function calls within loops, and eliminate redundant calculations.
Consider moving computations outside the loop or using loop unrolling.

Reduce unnecessary data processing: Review your code for any unnecessary data
processing operations, such as redundant calculations or transformations.
Eliminate these unnecessary operations to improve the efficiency of your code.

Optimize code logic

Optimize data structures. To efficiently store and retrieve data, select appropriate
data structures, such as arrays, linked lists, trees, and hash tables. Choose the best
data structure for a specific problem. A suitable data structure improves
application performance.

Minimize network requests: If your code involves making network requests,
minimize the number of requests and optimize their usage. Batch requests when
possible and avoid unnecessary round trips to improve performance.

Minimize allocations: Identify areas where excessive memory allocation occurs.
Optimize the code by reducing unnecessary allocations and reusing existing
resources when possible. By minimizing allocations, you can improve memory
efficiency and overall performance. Use the appropriate memory management and
garbage collection strategies for your programming language.

Reduce data structure size: Assess the size of your data structures, such as classes,
and identify areas where reduction is possible. Review the data requirements and
eliminate any unnecessary fields or properties. Optimize memory usage by
selecting appropriate data types and packing data efficiently.

Use performance-optimized SDKs and libraries. Use native SDKs or performance-
optimized libraries. Native SDKs are designed to interact with the services and
resources on a platform or within a framework. For example, cloud-native SDKs
work better with cloud service data planes than with custom API access. SDKs excel
at handling network requests and optimizing interactions. Performance-optimized
libraries, such as Math.NET, contain performance-optimized functions. When you
apply the functions appropriately, you can improve your workload's performance.

Cross-cutting implementation: Consider the effects of cross-cutting
implementations, such as middleware or token checks, and assess whether they
negatively affect performance.

Review the performance recommendations specific to the programming language
you're working with. Evaluate your code against these recommendations to identify
areas for improvement.

 Tradeoffs:

Optimizing code and hot paths requires developer expertise in identifying
code inefficiencies is subjective and might be highly skilled individual required
for other tasks.
SDKs provide convenience and eliminate the complexities of interacting with
APIs. But SDKs might limit your control and customization options for custom

code.

Optimizing memory management involves refining the way a workload uses, allocates,
and releases memory resources to improve efficiency. Proper memory management
improves code performance because it reduces the overhead of memory operations.
Efficient memory usage reduces latency, prevents system slowdowns or crashes, and
maximizes the throughput of computational tasks. Consider the following strategies to
optimize memory management.

Debug memory issues. Memory dumps are application memory snapshots. They
capture the memory state of an application at a specific point in time. Memory dumps
enable retrospective analysis of memory-related issues. Select the appropriate type of
memory dump based on the nature of the problem you're trying to diagnose and the
resources available. You should use miniature dumps for routine debugging and full
dumps for complex, critical issues. This strategy provides a balance between resource
usage and diagnostic capabilities. Many code hosting services support memory
debugging. You should prefer services that support memory analysis over those services
that don't. Here are the basic steps to debugging memory issues:

1. Capture memory dumps: Begin by setting up a mechanism to capture memory
dumps during your application's runtime. The capture can be triggered manually,
automatically, or when specific conditions (like excessive memory consumption)
are met. Some cloud services might already offer this process.

2. Analyze memory dumps: After you collect the memory dumps, analyze them.
Numerous tools can assist you in inspecting these dumps, such as WinDbg for
Windows applications or GDB for Unix-based systems.

3. Identify memory leaks: Focus on identifying memory leaks during the analysis.
Memory leaks arise when your application allocates memory but fails to release it
when the memory is no longer required. Search for objects or data structures that
remain in memory even when they should be deallocated.

4. Fix and test: Upon identifying the problematic code, concentrate on resolving the
memory issues. Resolutions might involve releasing memory correctly, optimizing
data structures, or reevaluating memory management practices. Confirm that your
solutions undergo rigorous testing to ensure their efficacy.

5. Iterate and monitor: Memory management is a continuous process. Routinely
monitor your application's memory usage and persist in collecting memory dumps

Optimize memory management

in production. Regularly revisit the analysis and optimization stages to make sure
memory issues don't reappear with subsequent code modifications.

By incorporating memory dump analysis into your software development lifecycle, you
can amplify the reliability and efficiency of your applications. It helps to reduce the
likelihood of memory-related issues in production.

Reduce memory allocations. Minimize memory allocations to reduce the overall
memory footprint of the code. Your workload can utilize the available memory
efficiently. There's less need for the garbage collector to reclaim unused memory, and it
reduces the frequency and duration of garbage collection cycles. Memory allocations
can be costly, especially if you perform them frequently. Minimize memory allocations,
so the code can run quickly and efficiently.

Caches store frequently accessed data close to the processor, which improves
performance. When you minimize memory allocations, there's less contention for cache
space, so you can effectively utilize the cache. A high number of memory allocations can
degrade application performance and generate errors. Other ways to minimize memory
allocations include:

Local variables: Use local variables instead of global variables to minimize memory
consumption.

Lazy initialization: Implement lazy initialization to defer the creation of objects or
resources until they're needed.

Buffers: Manage buffers effectively to avoid allocating large memory buffers.

Object pooling: Consider object pooling to reuse large objects instead of allocating
and deallocating them.

For more information, see Reduce memory allocations and The large object heap on
Windows systems.

Using concurrency and parallelism involves executing multiple tasks or processes either
simultaneously or in an overlapping manner to make efficient use of computing
resources. These techniques increase the overall throughput and the number of tasks
that a workload can process. When you run tasks concurrently or in parallel, it reduces
the runtime of the application and decreases latency and increases response times.
Concurrency and parallelism enable efficient utilization of computing resources, such as

Use concurrency and parallelism

https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/performance
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap

CPU cores or distributed systems. Concurrency and parallelism effectively distribute the
workload among the computing resources.

Use parallelism. Parallelism is the ability of a system to simultaneously trigger multiple
tasks or processes on multiple computing resources. Parallelism divides a workload into
smaller tasks that are run in parallel. You can achieve parallelism by using techniques like
multiprocessing or distributed computing. Distribute tasks across multicore processors
to optimize workload management. Optimize code to take advantage of the CPU
architecture, threading models, and multicore processors. When you run code in
parallel, performance improves because the workload is distributed across multiple
cores.

Use concurrency. Concurrency is the ability of a system to run multiple tasks or
processes. Concurrency enables different parts of a program to make progress
independently, which can improve overall performance. You can implement concurrency
by using techniques like multithreading, in which multiple threads run concurrently
within a single process. You can also use asynchronous programming, in which tasks are
triggered concurrently.

Asynchronous programming: Asynchronous programming is an approach to trigger
tasks without blocking the main thread. Asynchronous programming enables a
program to trigger tasks while waiting for long-running operations to finish. With
asynchronous programming, the program can initiate multiple tasks and wait for
them to complete asynchronously. The program doesn't have to wait for each task
to finish before moving on to the next one.

There are many asynchronous programming techniques and patterns, depending
on the programming language and platform. One common approach is to use
asynchronous keywords and constructs, such as async and await , in languages
like C#. With these keywords, you can define asynchronous methods. For HTTP
traffic, consider using the Asynchronous Request-Reply pattern.

Many frameworks and libraries provide built-in support for asynchronous
programming. For example, in the .NET platform, you can implement asynchronous
operations by using patterns like Task-Based Asynchronous pattern and Event-
Based Asynchronous pattern. The specific implementation of asynchronous
programming varies depending on the programming language, platform, and
requirements of the application.

Queues: A queue is a storage buffer located between a requesting component
(producer) and the processing component (consumer) of the workload. There can
be multiple consumers for a single queue. As the tasks increase, you should scale
the consumers to meet the demand. The producer places tasks in a queue. The

https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/event-based-asynchronous-pattern-eap

queue stores the tasks until a consumer has capacity. A queue is often the best
way to hand off work to a processing service that experiences peaks in demand.
For more information, see Queue-Based Load Leveling pattern and Storage queues
and Service Bus queues.

Connection pooling is the practice of reusing established database connections instead
of creating a new connection for every request. It can be expensive to establish a
connection to a database. You have to create an authenticated network connection to
the remote database server. Database connections are especially expensive for
applications that frequently open new connections. Connection pooling reuses existing
connections and eliminates the expense of opening a new connection for each request.
Connection pooling reduces connection latency and enables high database throughput
(transactions per second) on the server. You should choose a pool size that can handle
more connections than you currently have. The goal is to have the connection pool
quickly handle new incoming requests.

Understand connection pooling limits. Some services limit the number of network
connections. When you exceed this limit, connections might slow down or terminate.
You can use connection pooling to establish a fixed set of connections at startup time
and then maintain those connections. In many cases, a default pool size might consist of
only a few connections that perform quickly in basic test scenarios. Your application
might exhaust the default pool size under scale and create a bottleneck. You should
establish a pool size that maps to the number of concurrent transactions that are
supported on each application instance.

Test the connection pool. Each database and application platform has slightly different
requirements for setting up and using a pool. Test your connection pool to ensure it
works efficiently under load.

 Risk: Connection pooling can create pool fragmentation and degrade
performance.

Many applications require background tasks that run independently of the UI. The
application can start the job and continue to process interactive requests from users.
Examples of background jobs include batch jobs, processor-intensive tasks, and long-
running processes, such as workflows. Background tasks shouldn't block the application
or cause inconsistencies due to delayed operation when the system is under load. To

Use connection pooling

Optimize background jobs

https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql-server-connection-pooling#pool-fragmentation

improve performance, you can scale compute instances that host background tasks. For
more information, see Background jobs and Scaling and performance considerations.

Optimizing infrastructure performance means enhancing and adjusting infrastructure
elements to ensure peak operation and the best use of resources for a workload. By
fine-tuning infrastructure, you can minimize waste, reduce lags, and achieve more with
the available resources. It ensures that workloads run reliably and swiftly, leading to
improved user experiences and cost savings. To optimize infrastructure performance,
consider the following strategies:

Add usage limits. You can implement usage limits on some workload components. For
example, to remove unstable pods, you can define pod CPU and memory limits in Azure
Kubernetes Service (AKS). To optimize performance, you can define memory limits in
Java virtual machines (VMs).

Streamline infrastructure. Simplify your workload to reduce the potential for interaction,
dependency, and compatibility issues. When you simplify your workload, you optimize
resource utilization of memory, processing power, and storage.

Reduce load. To reduce load on a workload, minimize the demand placed on an
application and enable resources to perform their primary tasks. For example, it's
common practice to avoid running security solutions within your code or on individual
compute instances. Instead, web servers should serve HTTP requests. Web application
firewalls and gateway resources can handle security checks. The following strategies
help reduce the load on your workload:

Eventual consistency: Adopt an eventual consistency model to enhance
performance by allowing data to be slightly dated. Eventual consistency reduces
the immediate demand on CPU cycles and network bandwidth for constant data
updates.

Delegate tasks: Delegate server tasks to clients or intermediaries, such as search
indexes and caches. Delegate tasks like sorting data, filtering data, or rendering
views. When you offload these tasks, you reduce the workload on your servers and
improve performance.

Optimize the network. To optimize a workload network for performance, configure and
fine-tune the network infrastructure. Ensure that the workload can operate at its highest
level of efficiency.

Optimize infrastructure performance

https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs#scaling-and-performance-considerations
https://learn.microsoft.com/en-us/azure/aks/developer-best-practices-resource-management#define-pod-resource-requests-and-limits
https://learn.microsoft.com/en-us/azure/spring-apps/concepts-for-java-memory-management

Network protocols: Upgrade to modern protocols like HTTP/2, which enable
multiple requests to be sent over a single connection. Modern protocols reduce
the overhead of establishing new connections.

 Tradeoff: Modern protocols might exclude older clients.

Network chattiness: Batch network requests together to reduce the number of
requests. Instead of making multiple small requests, combine them into larger
requests to reduce network overhead.

Database queries: Ensure that database queries retrieve only the necessary
information. Avoid retrieving large amounts of unnecessary data, which can lead to
increased network traffic and slow performance.

Static data: Utilize a content delivery network to cache frequently accessed static
content that's close to the users. When you cache data, it doesn't have to travel
over long distances. Caching improves response times and reduces network traffic.

Log collection: Collect and retain only the log data that's necessary to support your
requirements. Configure data collection rules and implement design
considerations to optimize your Log Analytics costs.

Data compression: Compress and bundle HTTP content and file data to allow fast
transmission between clients and servers. Compression shrinks the data that a
page or API returns and sends back to the browser or client app. Compression
optimizes network traffic, which can accelerate application communication.

 Tradeoff: Compression adds server-side and client-side processing. The
application must compress, send, and decompress data. Multicast
communication, or communication to multiple recipients, can create
decompression overhead. You need to test and measure the performance
variations before and after implementing data compression to determine if it's
a good fit for your workload. For more information, see Response compression
in ASP.NET Core.

Instrumenting code: Azure Monitor Application Insights supports automatic
instrumentation (autoinstrumentation) and manual instrumentation of application code.
Autoinstrumentation enables telemetry collection without touching the application's
code. Manual instrumentation requires code changes to implement the Application

Azure facilitation

https://learn.microsoft.com/en-us/iis/configuration/system.webserver/httpcompression
https://learn.microsoft.com/en-us/windows/win32/fileio/file-compression-and-decompression
https://learn.microsoft.com/en-us/aspnet/core/performance/response-compression

Insights or OpenTelemetry API. You can use Application Insights Profiler to help optimize
hot paths.

Optimizing code logic: Azure offers SDKs and libraries for various programming
languages to interact with Azure services. Use SDKs to simplify interactions between
applications and Azure resources. SDKs provide optimal interaction with Azure services,
which reduces latency and enhances efficiency.

Optimizing memory management: Use the smart detection feature of Application
Insights to analyze memory consumption and help to identify and address memory
leaks.

Azure App Service has a profiler and memory dump collection and analysis feature. The
App Service autohealing feature can automatically take memory dumps and profile
traces of .NET and Java apps.

Using concurrency and parallelism: Different Azure services provide unique support for
concurrency, such as Azure Cosmos DB, Azure Functions and Blob storage. For
parallelism, services AKS supports deploying containerized applications, which improves
parallel processing.

Azure Batch is a cloud-based job scheduling service that you can use to enable parallel
and high-performance computing without the need for infrastructure setup. For more
information, see Background jobs.

Optimizing infrastructure performance: Implement Azure Resource Manager templates
to define and deploy infrastructure by using code. Use these templates to implement
efficient, repeatable, and consistent resource deployments. Azure Policy provides
governance capabilities to ensure that resource deployments adhere to organizational
best practices and standards.

For asynchronous programming, use scalable queuing services, like Azure Queue
Storage and Azure Service Bus, to facilitate asynchronous programming. You can queue
tasks and independently process them. To support asynchronous operations, Azure
Marketplace offers third-party queues and tools that you can integrate with Azure
services.

AKS
Application Insights smart detection feature
Asynchronous Request-Reply pattern
Avoid memory allocations

Related links

https://learn.microsoft.com/en-us/azure/azure-monitor/profiler/profiler-overview
https://azure.microsoft.com/downloads
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/proactive-diagnostics
https://learn.microsoft.com/en-us/troubleshoot/azure/app-service/capture-memory-dumps-app-service
https://learn.microsoft.com/en-us/azure/app-service/overview-diagnostics#auto-healing
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/database-transactions-optimistic-concurrency
https://learn.microsoft.com/en-us/azure/azure-functions/functions-concurrency
https://learn.microsoft.com/en-us/azure/storage/blobs/concurrency-manage
https://learn.microsoft.com/en-us/azure/aks
https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://learn.microsoft.com/en-us/azure/templates
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/aks
https://learn.microsoft.com/en-us/azure/azure-monitor/alerts/proactive-diagnostics
https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/performance

Azure Batch
Azure Policy
Azure Resource Manager templates
Azure SDKs
Background jobs
Background jobs scaling and performance considerations
Compress file data
Compress HTTP content
Define pod CPU and memory limits
Event-Based Asynchronous pattern
Java virtual machines (VMs)
Large object heap
Pool fragmentation
Queue-Based Load Leveling pattern
Response compression in ASP.NET Core
Storage queues and Service Bus queues
Task-Based Asynchronous pattern

Refer to the complete set of recommendations.

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/templates
https://azure.microsoft.com/downloads
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://learn.microsoft.com/en-us/azure/architecture/best-practices/background-jobs#scaling-and-performance-considerations
https://learn.microsoft.com/en-us/windows/win32/fileio/file-compression-and-decompression
https://learn.microsoft.com/en-us/iis/configuration/system.webserver/httpcompression
https://learn.microsoft.com/en-us/azure/aks/developer-best-practices-resource-management
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/event-based-asynchronous-pattern-eap
https://learn.microsoft.com/en-us/azure/spring-apps/concepts-for-java-memory-management
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql-server-connection-pooling#pool-fragmentation
https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://learn.microsoft.com/en-us/aspnet/core/performance/response-compression
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://learn.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

Recommendations for optimizing data
performance
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:08 Optimize data performance. Optimize data stores, partitions, and indexes for their
intended and actual use in the workload.

This guide describes the recommendations for optimizing data performance. Optimizing
data performance is about refining the efficiency with which the workload processes and
stores data. Every workload operation, transaction, or computation typically relies on the
quick and accurate retrieval, processing, and storage of data. When data performance is
optimized, the workload runs smoothly. Compromised data performance creates a
domino effect of poor performance efficiency. Failure to optimize data performance
results in response delays, heightened latency, and curtailed scalability. It jeopardizes
the efficiency of the entire workload.

Definitions

Term Definition

CAP theorem A framework used to consider consistency, availability, and partition
tolerance to help explain the tradeoffs in data consistency.

Database index
rebuilding

A maintenance activity that drops and recreates an index.

Database index
reorganization

A maintenance activity that optimizes the current database index.

Data store A resource that stores data such as a database, object store, or file share.

Eventual consistency A data synchronization model that allows for temporary inconsistency in
data replicas before they eventually sync.

Index A database structure that provides quick access to items.

Online analytical
processing (OLAP)

A technology that organizes large business databases, supports complex
analysis, and performs complex analytical queries without negatively
affecting transactional systems.

Online transaction
processing (OLTP)

A technology that records business interactions as they occur in day-to-
day operations of an organization.

Term Definition

Optimistic
concurrency

An approach for updating databases that uses snapshots to make
updates instead of traditional locking mechanisms, improving
performance and scalability.

PACELC theorem A framework used to consider partition tolerance, availability,
consistency, and latency to help explain the tradeoffs in data
consistency.

Partitioning The process of physically dividing data into separate data stores.

Query tuning A process that optimizes the speed of a database query.

Read replica A live copy of a primary database that enables you to offload read traffic
from a write database.

To optimize data usage, ensure that data stores, partitions, and indexes are optimized
for their intended use and for their actual use in a workload. Optimized data usage can
improve query performance, reduce resource consumption, and enhance overall system
efficiency. Consider the following strategies:

Profile data. Understand your data and ensure that your data model is well-suited
for your workload. Consider factors such as data normalization, indexing strategies,
and partitioning techniques. For efficient data retrieval, ensure that you select
appropriate data types, define relationships between entities, and determine an
optimal indexing strategy.

Fine-tune your data storage configuration. Configure your data storage
infrastructure to align with your workload requirements. Select an appropriate
storage technology, for example relational databases, NoSQL databases, and data
warehouses. Optimize storage settings, such as buffer size, caching mechanisms,
and compression.

Optimize query performance. Analyze and optimize queries that run in the
workload. Use techniques such as query optimization, indexing, and caching. To
identify bottlenecks, use query plans and performance monitoring tools, and then
make necessary improvements.

Regularly monitor and tune the system. Continuously monitor the performance of
your workload and iterate on the data storage configuration and query
optimizations. Based on performance tuning best practices, analyze system
metrics, identify areas of improvement, and implement changes.

Key design strategies

Data profiling involves examining the data from a source and gathering information
about it. The objective is to understand the quality, structure, and characteristics of
workload data. This process allows for the identification of issues such as missing values,
duplicates, inconsistent formats, and other anomalies. For effective data profiling,
consider the following strategies:

Understand the data structure. Examine the structure of your data, including tables,
columns, and relationships. Determine the data types, lengths, and constraints that
are applied to each column. Data structure evaluation helps you understand how
the data is organized and how it relates to other data elements.

Analyze the data volume. Assess the volume of your data to understand the overall
size and growth patterns. Determine the number of records or documents and the
size of individual tables or collections. This information helps you estimate storage
requirements and identify scalability issues.

Identify data relationships. Explore the relationships between data elements, such
as primary and foreign key relationships. Understand how data is connected, so
you can determine how changes in one table or document might affect related
data.

Assess data quality. Evaluate the quality of your data by examining factors such as
completeness, accuracy, consistency, and uniqueness. Identify data anomalies,
missing values, or duplicate records that might affect data integrity and query
performance. This step helps you identify areas for data cleansing and
improvement.

Capture data distribution. Analyze the distribution of values within each column to
determine data patterns. Identify frequent and rare values, outliers, and data
skews. To optimize query performance, choose appropriate indexing strategies and
query optimization techniques based on the distribution.

Data performance monitoring is the practice of consistently tracking the efficiency of
data stores, partitions, and indexes in real-time. It involves collecting and analyzing
performance metrics specific to data operations, using tools tailored for system-level,
database-specific, or third-party monitoring solutions. Effective data performance
monitoring allows you to proactively identify and mitigate potential bottlenecks,

Profile data

Monitor data performance

ensuring that data-related processes and tasks are efficient. To monitor data
performance, consider the following strategies:

Collect data-specific metrics. Gather key metrics that directly relate to data
performance. These metrics include query response times, data throughput, disk
I/O related to data access, and the load times of specific data partitions.

Set up data alerts. Set up alerts specifically for data metrics. Use predefined
thresholds or anomalies in these metrics to trigger alerts. Alerts enable you to
receive notifications when performance metrics exceed acceptable ranges or show
abnormal behavior. For instance, if a database query takes longer than expected or
if data throughput drops significantly, it would trigger an alert. You can set up
these alerts using specialized monitoring tools or custom scripts.

Diagnose data performance issues. Regularly review the collected data metrics to
pinpoint potential performance bottlenecks or degradation in data operations.
Visualization tools or dashboards can be invaluable in this process, helping to
highlight trends, bottlenecks, and outliers in data performance. Once identified,
delve into the root causes of these issues and strategize appropriate remediation
steps.

Partitioning involves dividing large datasets or high-volume workloads into smaller,
manageable subsets. Partitioning enhances data performance efficiency by distributing
the workload and improving parallel processing. It also ensures more effective data
access based on specific needs and query patterns. You can partition data vertically or
horizontally (also called sharding).

Strategy Definition Example Use cases

Vertical
partitioning

Divide a table into smaller
tables by selecting specific
columns or fields for each
partition. Each partition
represents a subset of the
complete data.

If you have a table with
columns A, B, C, and D,
you could create one
table with columns A
and B and another with
columns C and D.

- A table contains
many columns, but
queries don't access
all columns together.
- Some columns are
larger than others and
separating them can
boost I/O
performance.
- Different data parts
have diverse access
patterns.

Partition data

Strategy Definition Example Use cases

Horizontal
partitioning

Split data based on rows or
ranges of values (also known
as sharding). Each partition
contains a subset of rows with
similar characteristics.

If you have a table with
rows 1 to 1000, you
might create one
partition with rows 1 to
500 and another with
rows 501 to 1000.

- A dataset is too large
for a single location or
server.
- Data is accessed
based on specific
ranges or filters.
- Need to distribute
the workload across
physical nodes or
servers for enhanced
performance.

To partition your data, consider the following steps:

Analyze data and queries. Analyze data and query patterns to identify suitable
partitioning or sharding strategies. Understand the nature of the data, access
patterns, and distribution requirements.

Determine a key. Choose a partitioning or sharding key to distribute data across
partitions or shards. Carefully select the key based on data characteristics and
query requirements.

Determine logic. Determine a partitioning or sharding logic based on the chosen
key. Consider dividing the data into ranges, applying hashing algorithms, or using
other partitioning techniques.

Configure the infrastructure. Configure the database system to support partitioning
or sharding. Consider creating the necessary infrastructure, defining the partitions
or shards, and configuring the data distribution.

For more information, see Data partitioning guidance.

Optimizing database queries refines queries using techniques such index hints and
caching. These adjustments increase efficiency and speed of data retrieval. As a result,
the database has a lighter workload, resources work more effectively, and users enjoy
smoother interactions. To optimize database queries, consider the following strategies:

Rewrite queries. Review and analyze complex queries to identify opportunities to
rewrite them. Consider restructuring query logic, eliminating redundant operations,
or simplifying query syntax.

Optimize database queries

https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

Avoid the N+1 query problem. Minimize the number of roundtrips to the database
by using joins and batch fetching to retrieve related data efficiently.

Reorder joins. Evaluate the query plan and consider rearranging the join order to
minimize the number of rows in each join operation. The order in which you join
tables can affect query performance.

Use index hints. Use index hints so a database engine can specify the use of
indexes when it runs a query. Index hints guide the optimizer to select the most
appropriate indexes.

Cache queries. Store the results of frequently run queries in memory. Query
caching eliminates the need for repeatedly running the same query, and it reduces
query processing overhead.

Optimize locking. Avoid unnecessary or restrictive lock hints in queries. Efficient
locking strategies can enhance query performance and concurrency. Apply
optimized locking mechanisms that the database system provides. Analyze and
adjust isolation levels to balance data consistency and query performance.

Monitor and tune. Monitor query performance metrics, such as runtime, resource
utilization, and query throughput. Use database profiling tools and monitoring
functionalities to identify poorly performing queries. Evaluate and fine-tune query
plans based on collected performance data. Analyze query plans and wait statistics
to identify bottlenecks. Use that information to optimize query performance.

Indexes enhance data retrieval speed by allowing databases to swiftly find data using
specific columns or fields. When you optimize these indexes, sorting and join operations
become more efficient, leading to faster queries. Well-optimized indexes cut down on
the disk I/O operations required for queries. Removing unneeded or redundant indexes
also frees up valuable storage space. To optimize index performance, consider the
following strategies:

Analyze query patterns. Understand the query patterns that run on your database.
Identify the queries that run frequently and might degrade performance. Analyze
query patterns to determine which indexes are beneficial for optimizing
performance.

Evaluate existing indexes. Review the existing indexes in your database. Evaluate
their usage, performance effects, and relevance to the query patterns. Identify

Optimize index performance

redundant or unused indexes that you can remove to improve write performance
and reduce storage overhead.

Identify columns for indexing. Identify columns that are frequently used in the
where, join, and order by clauses of your queries. These columns are potential
candidates for indexing because they can enable fast data retrieval.

Choose an appropriate index type. Select an appropriate index type based on your
database system. Common options include b-tree indexes for equality and range
queries, hash indexes for exact match queries, and full-text indexes for text search
operations. Choose an index type that best matches your query requirements.

Consider index column order. When you create composite indexes, or indexes with
multiple columns, consider the order of the columns. Place the columns that are
most frequently used in queries at the beginning of the index. Column order helps
ensure that your workload is effectively using indexes for a wide range of queries.

Balance index size. Avoid creating indexes on columns with low cardinality, or
columns that have a low number of distinct values. Such indexes can be inefficient
and increase the size of your database. Instead, index columns that have a high
selectivity.

Maintain index usage. Continuously monitor the usage and performance of your
indexes. Look for opportunities to create new indexes or modify existing indexes
based on changes in query patterns or performance requirements. Remove or
update indexes that are no longer beneficial. Indexes have maintenance overhead.
As data changes, indexes can fragment and affect performance. Regularly perform
index maintenance tasks, such as rebuilding or reorganizing indexes, to ensure
optimal performance.

Test and validate. Before you revise indexes in a production environment, perform
thorough testing and validation. Measure the performance effect of index revisions
by using representative workloads. Verify the improvements against predefined
benchmarks.

 Tradeoff: B-tree indexes might have high storage overhead, and exact-match
queries might be slow. Hash indexes aren't suitable for range queries or comparison
operators. Full-text indexes might have high storage requirements, and nontextual
data queries might be slow.

Consider data compression

Data compression is the process of reducing the size of data to optimize storage space
and improve workload performance efficiency. Compressed data requires less storage
space and less bandwidth for transmitting, which results in fast data transfer. You would
compress data to reduce your storage footprint and improve data access times. When
you compress data, it reduces I/O operations and network bandwidth requirements.

Lossless compression and lossy compression are data compression algorithms. Lossless
compression algorithms reduce the size of data without losing any information. Lossy
compression algorithms achieve high compression ratios by removing less important or
redundant information.

 Tradeoff: To compress and decompress data, you need computational
resources, like CPU and memory. The more data that you compress, the more
resources you need.

Archiving and purging are strategies that streamline data storage. Archiving relocates
older, less-frequently accessed data to a more cost-effective storage. Purging data
permanently removes redundant data. They contribute to performance efficiency by
reducing data volume, increases data access speed, and reducing backup and recovery
times:

Reducing data volume: Less data means faster processing times, ensuring quick
responses to user requests.

Increasing data access speed: A trimmed dataset allows for swifter queries and data
retrieval, optimizing system responsiveness.

Reducing backup and recovery times: Smaller datasets expedite backup and
restoration processes, minimizing downtime and ensuring consistent performance.

Archiving and purging are instrumental in maintaining peak performance efficiency in
data-driven systems.

Optimizing storage load means streamlining requests to the storage system. It helps
eliminate unnecessary requests. It also enhances data retrieval and prevents
overwhelming the storage. Optimizing the storage load ensures the storage system
remains responsive to legitimate requests and maintains peak performance. Implement

Archive and purge data

Optimize storage load

strategies to reduce the processing burden on the data store. To optimize data store
load, consider the following strategies:

Caching stores commonly accessed data in a fast-access storage area, making data
retrieval quicker than pulling it from the main source. This technique boosts data
performance by cutting down on access times and avoiding repetitive data fetches.
Caching improves read speeds and user response times, especially for frequently
accessed data This method is most effective on static data or data that rarely changes.

To ensure optimal caching efficiency, consider factors like expiration policies, eviction
strategies, and managing cache size. Adjust settings, such as the time to live (TTL), for
optimal performance. To use a cache to optimize storage load, consider the following
strategies:

In-memory caching: Perform in-memory caching to store frequently accessed data
in memory for fast retrieval. You can use this technique for application data that's
expensive to compute or retrieve from a database. In-memory caching is useful for
data that you read frequently but don't change frequently.

Database query caching: Use this technique to cache the results of database
queries to avoid running the same query multiple times. Database query caching is
useful for complex and time-consuming database queries. When you cache the
results of a query, subsequent requests for the same query are returned quickly.

Content delivery network caching: Use this technique to cache web content on
distributed network servers to reduce latency and improve content delivery.
Content delivery network caching is effective for static content, like images, CSS
files, and JavaScript files. Content delivery networks store copies of content in
multiple locations worldwide, so users can access the content from a server that's
near them geographically.

Many databases support multiple read replicas. Distribute read queries across replicas to
minimize the demand on the write database. Each read replica can serve a subset of
traffic, which can improve performance.

When you have a workload with multiple data replicas that you expect to stay in sync,
it's helpful to model this distributed system by using the PACELC theorem. The PACELC
theorem helps you understand latency versus constancy tradeoff choices in the

Use caching

Use read replicas

nonpartitioned state of the system. Use this information to help you choose a database
engine and data sync strategy that best addresses the system in a partitioned and
nonpartitioned state. For more information, see Command and Query Responsibility
Segregation (CQRS) pattern.

In a distributed workload, where data resides across multiple nodes or locations, the
level of consistency you select determines how quickly changes in one location reflect in
others. Opting for stricter consistency consumes more compute resources and can
negatively affect performance efficiency. On the other hand, a less strict consistency
level, like eventual consistency introduces temporary inconsistencies among nodes but
can boost performance efficiency.

Eventual consistency strikes a balance between data accuracy and workload
performance. Changes spread gradually instead of instantly, boosting workload
responsiveness and data processing speed. Although it introduces short-lived
inconsistencies, the workload eventually presents consistent data across all nodes.
Choosing eventual consistency can elevate a workload's performance and further
enhance its availability and scalability.

You can use optimistic concurrency to handle concurrent updates to the same data.
Instead of locking data and preventing other updates, optimistic concurrency allows
multiple users or processes to work concurrently and assumes that conflicts are rare.

With optimistic concurrency, each update operation includes a version or timestamp
that represents the state of the data at the time of the update. When a conflicting
update is detected, the system resolves the conflict by rejecting the update or merging
the changes.

Optimistic concurrency minimizes contention and allows concurrent updates to proceed
without unnecessary locking. It reduces wait time for resources and provides high
throughput.

Optimizing data movement and processing involves improving the efficiency and
performance of operations related to data extraction, transformation, loading, and

Optimize data consistency

Optimize data updates

Optimize data movement and processing

https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs

processing. Consider the following key aspects of optimizing data movement and
processing:

Extract, transform, and load (ETL) optimization: Optimize ETL processes to minimize
processing time. You can streamline the extraction process, implement efficient
transformation algorithms, and optimize the loading process. When you make
each step efficient, you can optimize the overall workflow.

Parallel processing: Utilize parallel processing techniques to improve performance.
When you distribute data processing tasks across multiple threads or nodes, you
can divide and process the workload concurrently, which results in fast processing.

Batch processing: Group similar tasks together to reduce overhead caused by
repeated operations. Process multiple tasks in a batch to reduce overall processing
time.

Optimizing storage design entails crafting a precise data storage architecture and
selecting appropriate storage technologies. A streamlined storage design enhances data
access, retrieval, and manipulation. Through strategic storage design, a workload
achieves improved response times and overall functionality.

Data proximity refers to the strategic placement of data closer to the users or services
that access it most frequently. By reducing the physical or logical distance between data
and its users, data proximity ensures faster data access and improved responsiveness. To
optimize design for close proximity, consider these strategies:

Evaluate data access patterns: Assess your workload's access patterns and
frequently accessed data. This analysis can help determine where to place data for
maximum benefit.

Choose solutions that support data relocation: Consider solutions that offer dynamic
data relocation based on changing access patterns, ensuring optimal data
positioning.

Choose solutions that support data synchronization: If catering to a distributed user
base, opt for solutions that facilitate data synchronization across various regions,
ensuring that data replicas are available in proximity to users.

Optimize storage design

Design for data proximity

 Tradeoff: If underlying data changes frequently, implement a cache invalidation
mechanism to ensure that the cached data remains up to date.

Polyglot persistence is the practice of using multiple data storage technologies to store
and manage different types of data within an application or system. Different types of
databases or storage solutions serve different data requirements.

Polyglot persistence takes advantage of the benefits of each data storage technology to
ensure optimal performance and scalability for each type of data. For example, you
might use a relational database to store structured, transactional data. And you might
use a NoSQL database to store unstructured or semi-structured data.

Design a schema for each data storage technology based on the requirements of the
data. For relational databases, you might create normalized tables with appropriate
relationships. For NoSQL databases, you might define document structures or key-value
pairs. Develop the necessary components to interact with each data storage technology,
such as APIs, data access layers, or data integration pipelines. Ensure that the application
can read and write data to the appropriate data stores.

 Tradeoff: A data structure that has low normalization can improve performance
but introduce complexities.

To separate OLTP and OLAP systems, design and deploy distinct systems for
transactional processing and analytical processing tasks. This separation allows you to
optimize each system for its specific workload and characteristics.

OLTP systems are used for real-time transactional processing. They efficiently and
reliably handle individual transactions. OLTP systems are typically used to perform day-
to-day operational tasks, such as online order processing, inventory management, and
customer data management. OLTP systems prioritize responsiveness, consistency, and
concurrency.

OLAP systems are used for complex analytical processing and reporting. They handle
large volumes of data and perform intensive calculations and aggregations. OLAP
systems are used for tasks such as business intelligence, data mining, and decision
support. OLAP systems prioritize query performance, data aggregation, and
multidimensional analysis.

Use polyglot persistence

Separate OLTP and OLAP systems

https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-transaction-processing
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing

When you separate OLTP and OLAP systems, you can allocate appropriate resources and
optimize each system for its specific workload. Separation allows you to apply different
data modeling techniques to each system. OLTP systems typically use normalized
schemas for efficient transactional processing. OLAP systems might use denormalized
schemas or data warehousing techniques to optimize query performance.

Profiling data: Azure offers tools and services that you can use to profile data, such as
Azure Data Catalog, Azure Purview, and Azure Synapse Analytics. These tools enable you
to extract, transform, and load data from various sources, perform data quality checks,
and gain insights into the data.

Monitoring data performance: To monitor data performance, you can use Azure
Monitor to collect and analyze infrastructure metrics, logs, and application data. You can
integrate Monitor with other services like Application Insights. Application Insights
provides application performance monitoring and supports many platforms.

Application Insights collects usage and performance data. You can use Log Analytics to
correlate that data with configuration and performance data across Azure resources.

You can use the insights feature of Azure SQL and Azure Cosmos DB to monitor your
database. This feature enables you to diagnose and tune database performance issues.

Partitioning data: Azure offers various partitioning strategies for different data stores.
Each data store might have different considerations and configuration options for data
partitioning. For more information, see Data partitioning strategies.

Optimizing database queries and index performance: Use the query performance
insight feature of Azure SQL Database to optimize queries, tables, and databases. You
can use this feature to identify and troubleshoot query performance issues.

For relational databases, you should follow the index design guidelines, SQL Server
index guidance, and Azure Cosmos DB index guidance. Use SQL Database to perform
automatic tuning for queries to improve their performance.

In SQL databases, you should regularly reorganize or rebuild indexes. Identify slow
queries and tune them to improve performance. Many database engines have query-
tuning features. For more information, see Best practices for query performance.

Azure Cosmos DB has a default indexing policy that indexes every property of every
item and enforces range indexes for any string or number. This policy provides you with
efficient query performance, and you don't have to manage indexes upfront.

Azure facilitation

https://learn.microsoft.com/en-us/azure/data-catalog/data-catalog-how-to-data-profile
https://learn.microsoft.com/en-us/purview/governance-solutions-overview
https://learn.microsoft.com/en-us/azure/synapse-analytics/overview-what-is
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-insights-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/insights-overview
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide#General_Design
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes
https://learn.microsoft.com/en-us/azure/cosmos-db/index-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query-metrics#best-practices-for-query-performance
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy

Optimizing storage load: Many Azure database services support read replicas. The
availability and configuration of read replicas vary depending on the Azure database
service. Refer to the official documentation for each service to understand the details
and options.

Optimizing storage design: Azure offers many different data stores to fit your workload
needs. Understand data store types and select an Azure data store for your application.

Automatic tuning in SQL Database
Azure Cosmos DB
Azure Cosmos DB index guidance
Azure SQL
Best practices for query performance
CQRS pattern
Data partitioning guidance
Data partitioning strategies
Default indexing policy
Index design guidance
OLAP overview
OLTP overview
Partitioning best practices
Reorganize or rebuild indexes
Select an Azure data store for your application
SQL Server index guidance
Understand data store types

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-decision-tree
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/insights-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/index-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-insights-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query-metrics#best-practices-for-query-performance
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide#General_Design
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-transaction-processing
https://learn.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-decision-tree
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-overview

Recommendations for prioritizing the
performance of critical flows
Article • 11/30/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:09 Prioritize the performance of critical flows. The allocation of workload resources
and performance optimization efforts should prioritize the flows that support the
most important business processes, users, and operations.

This guide describes the recommendations for prioritizing the performance of critical
flows in a workload. Critical flows represent crucial business processes that generate
revenue or drive high-priority operations. When you prioritize the performance of
critical flows, you ensure the flows that have the most impact get the resources they
need before lower priority flows. Failure to do this prioritization can have
disproportionate negative effects on workload priorities and the user experience.

Definitions

Term Definition

Flow In a workload, the sequence of actions that performs a specific function. A flow
involves the movement of data and the running of processes between
components of the workload.

Priority queue
processing

The act of processing high-priority tasks before low-priority tasks.

Rate limiting The act of limiting how many requests can access a resource.

System flow The flow of information and processes within a system. The system
automatically follows this flow to enable user flows or workload functionality.

User flow The sequence that a user follows to accomplish a task.

ﾉ Expand table

ﾉ Expand table

Key design strategies

Critical flows refer to the key user flows for customers or the system and data flows for
operations that are crucial to the workload functionality. These flows can include actions
such as user registrations, sign-ins, product purchases, accessing pages behind a
paywall, or any other key path or process within your workload.

Critical flows significantly affect the user experience or business operations. Critical flows
have higher performance targets and service-level agreements than noncritical flows.
Where resources are limited, noncritical flows should yield resource usage to critical
flows. You need to identify, monitor, and prioritize all flows before isolating and
optimizing critical flows.

The first step in prioritizing the performance of critical flows is identifying all the flows
within your workload. Flow identification involves systematically mapping and
understanding every user paths and component communication. The focus is on
understanding the performance metrics and potential impact of flows on workload
performance.

By dissecting the workload into discrete flows, you can find performance bottlenecks,
inefficient resource utilization, and opportunities for performance optimization. This
knowledge exposes areas of needed improvement and is the first step to identifying
critical flows. For more information, see Identify and rate user and system flows.

After you identify all flows within your workload, you need to collect performance
metrics on each flow and monitor those metrics. Flow metrics provide insights into
response times, error rates, and throughput. The goal is to consistently observe and
record performance-related metrics to further refine your understanding of each flow's
impact on workload performance. To monitor flow metrics, you can use the following
tools to collect data:

Analytic and tracking tools: These tools provide insights into user behavior and
interactions within your application. By analyzing user data, you can identify the
most common flows, bottlenecks, or potential issues.

Application performance monitoring (APM) tools: Use APM tools to monitor the
performance of your application and track how flows run. These tools provide
visibility into response times, errors, and other performance metrics, allowing you
to identify critical flows and optimize their performance.

Identify all flows

Monitor flow performance metrics

Logging and debugging tools: Use these tools to capture and analyze logs and
debug information while your application runs. Review logs and debugging
information to trace how flows are running and identify issues or errors.

With the performance data available, you can begin ranking all the flows and identifying
the critical flows. The identification of critical flows involves evaluating the performance
impact and criticality of each flow. Effective flow prioritization ensures that the most
important flows receive the resources needed before less critical flows. To prioritize
flows in your application, consider these steps:

Identify business impact: Start by assessing the importance of each flow within your
operations. Focus on how each flow aligns with your business objectives, its impact
on users, and the potential negative effects of poor performance. For instance,
while a free service tier might attract more users, a paid tier could be more vital for
your business goals.

Additionally, consider the performance impacts of a flow across one or more
business processes. Multiple flows might support a single business process, but
often, one flow has a significant effect on the performance of that process. You
want to identify the flows that the greatest performance impact. Conversely, a
single flow might underpin several processes. In such cases, the performance of
this flow directly influences the efficacy of all related processes, and it's likely a
critical flow.

Analyze performance data: Analyze the performance metrics associated with each
flow. Look for patterns, anomalies, or standout metrics that can provide insights
into the flow's efficiency and importance. For example, system flows with
significant usage are likely important flows.

Assign criticality rating: Based on the business impact and performance indicators,
you should prioritize the flows. Use criticality ratings of High, Medium, and Low.
Flows with a significant business impact or high performance demand should
receive a "High" criticality rating. These flows are your critical flows. Focus on flows
with high user traffic or have a direct effect on revenue generation. The following
table provides characteristics of critical (High) and noncritical flows (Medium to
Low).

Identify critical flows

ﾉ Expand table

Critical flows Noncritical flows

High usage Low usage

Business critical Not business critical

Expensive operations Small operations

Time-sensitive Not time-sensitive

Production Preproduction

Real-time processing Batch processing

Latency sensitive Not latency sensitive

Paying user Nonpaying user

Premium tier Basic tier

Important tasks Nonessential tasks

High-revenue accounts Low-revenue accounts

The process of isolating critical flows is about providing dedicated resources or capacity
to support critical flows. You want to allocate resources and attention to those flows that
are essential for optimal user experience or significant business outcomes. The goal is to
ensure critical flows receive enough computing power, network bandwidth, and
resources to operate efficiently and effectively. By isolating critical flows, you can more
easily manage the resources that support critical flows. Here are recommendations for
isolating critical flows:

Resource segmentation: Create separate resources for critical flows, allowing them
to operate independently without interference from other processes. For example,
you can isolate critical flows on dedicated network segments or by using dedicated
servers to handle the processing needs of these flows. This approach helps
minimize how noncritical flows can negatively affect critical flows.

Logical segmentation: Use virtualization and containerization tools like Docker or
Kubernetes to isolate flows at the software level. You can separate critical flows
into virtual machines (VMs). By doing so, you create an isolated environment,
reducing dependencies and potential interference from other flows.

Capacity allocation: For critical flows, explicitly allocate a fixed set of capacity such
as CPU, memory, and disk I/O. This allocation ensures that critical flows always

Isolate critical flows

have enough resources to operate efficiently. Set resource quotas or limits by
using orchestration platforms. By explicitly allocating resources to critical flows,
you prevent resource contention and prioritize how they run.

 Tradeoff: Resource segmentation affects costs. When you dedicate resources
to a flow, you often increase the cost and leave some resources underutilized. To
justify the performance enhancements to critical flows, the increase in business
impact must outweigh the increase in cost.

When you can't isolate critical flows, the next best option is to prioritize critical flows in
accessing available capacity. The optimization of capacity allocation is about
strategically distributing available capacity to different flows based on their criticality.
Capacity includes CPU, memory, storage, and network bandwidth. The goal is to ensure
that the most critical flows (highest priority) receive the necessary capacity to operate
effectively. To decide how to allocate capacity, consider these strategies:

Assess resource capacity: Evaluate how much resource capacity can be allocated to
the flows. Capacity might include resources such as CPU, memory, storage, and
network bandwidth. Understand the limitations and constraints of your
infrastructure or environment.

Analyze flow requirements: Analyze the resource requirements of each flow.
Understand the resources the flow needs to operate efficiently. For each flow,
identify the resource demands, such as CPU utilization, memory requirements, and
network bandwidth.

Prioritize allocations: Match the available resource capacity to the resource
requirements of the flows. Allocate resources based on flow priorities, ensuring
that higher-priority flows receive the necessary resources to meet their
requirements. Understand where your tightest constraints are and optimize
capacity allocations where they're needed. For example, queues can process only
some messages per minute, but some storage limits are hard to reach.

Use rate limiting: To ensure that critical flows can consume the resources they need
to meet their performance targets, apply rate limits to noncritical flows and tasks.
Rate limits cap the number of requests lower-priority flows and users can make to
constrained resources. For example, you might rate-limit nonpriority requests to an
API. For more information, see the Rate Limiting pattern and Rate limiting an HTTP
handler in .NET.

Optimize capacity allocation

https://learn.microsoft.com/en-us/azure/architecture/patterns/rate-limiting-pattern
https://learn.microsoft.com/en-us/dotnet/core/extensions/http-ratelimiter

Use priority queue processing: Priority queue processing gives high priority to
certain requests. Queues usually have a first in, first out (FIFO) structure, but you
can update your application to assign a priority to messages it adds to the queue.
Use this capability to prioritize critical flows and users. For more information, see
the Priority Queue pattern.

 Risk: It can be a challenge to balance the needs of critical flows with the overall
performance of a workload. Although you should prioritize critical flows, you
shouldn't neglect noncritical flows. The overall performance efficiency of a workload
depends on all flows. Neglected noncritical flows could create issues that affect all
users. Too much noise from nonessential items steals attention from critical items.
But too little noise could harm the entire workload. The amount of data and the
number of alerts should reflect these balanced priorities.

Identifying and monitoring flows: Azure provides different solutions to help you
monitor the performance of critical flows in your workload. Azure Monitor, Azure
Monitor Logs, and Azure Application Insights are some of the services that offer
comprehensive monitoring capabilities for several types of applications and workloads.

Optimizing capacity allocations: Some Azure services support resource segmentation,
logical segmentation, and capacity allocation techniques to allocate capacity and
resources to critical flows. You can isolate critical flows through techniques such as
creating separate resources, increasing density, using virtualization and containerization,
and explicitly allocating resources to critical flows.

Some Azure services, such as Azure API Management, provide built-in policies for rate
limiting. Azure provides detailed guidance and a sample implementation of the Rate
Limiting design pattern.

Azure supports priority queue processing. Azure Functions provides event-driven
functions that you can trigger in various ways, including by a new message in a queue or
topic. Combine Azure Functions with Azure Queue Storage or Azure Service Bus to
process messages based on their priority.

Priority Queue pattern
Rate Limiting pattern
Rate limiting an HTTP handler in .NET

Azure facilitation

Related links

https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/api-management/rate-limit-by-key-policy
https://learn.microsoft.com/en-us/azure/architecture/patterns/rate-limiting-pattern
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://learn.microsoft.com/en-us/azure/architecture/patterns/rate-limiting-pattern
https://learn.microsoft.com/en-us/dotnet/core/extensions/http-ratelimiter

Azure API Management
Azure Service Bus

Refer to the complete set of recommendations.

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/api-management/rate-limit-by-key-policy
https://learn.microsoft.com/en-us/azure/architecture/patterns/priority-queue

Recommendations for optimizing
operational tasks
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:10 Optimize operational tasks. Monitor and minimize the effects of the software
development lifecycle and other routine operations on workload performance.
These operations include virus scans, secret rotations, backups, reindexing
databases, and deployments.

This guide describes the recommendations for optimizing operational tasks. Optimizing
operational tasks is the process of minimizing the effects of tasks that you perform as
part of routing workload operations. Operations activities use the same compute
resources as the workload itself. Failure to consider the effects of operations tasks can
cause the workload to miss its performance targets. It can also negatively affect the
performance of the workload for your customers.

Definitions

Term Definition

Blue-green
deployment

A deployment strategy that uses two identical environments and controls
the direction of traffic to new deployments (green deployments).

Database index
rebuilding

A maintenance activity that drops and recreates an index.

Database index
reorganization

A maintenance activity that optimizes the current database index.

Database schema The general structure of a database and its relationships to other data.

Deployment slot A feature of Azure App Service that enables you to deploy live apps with
their own host names.

In-place upgrades The process of upgrading a component or an application without
replacing it or migrating it to a new environment.

Infrastructure as code
(IaC)

A descriptive model for defining and deploying infrastructure, including
networks, virtual machines, load balancers, and connection topologies.

Key design strategies

You need to take measures to reduce the effects of the software development lifecycle
and other routine operations on workload performance. The goal is to ensure that
routine operations, like virus scans, secret rotations, backups, index optimization
(reorganization or rebuilding), and deployments, don't significantly degrade the
performance of the workload.

It's important to consider operational tasks when you set performance targets. By
incorporating routine, regular, and ad-hoc tasks into performance targets, you can
ensure that the workload operates efficiently. To account for operational tasks in
performance targets, here are some key points to consider:

Identify operational tasks. Identify and include relevant operational tasks in
performance targets. Examples of routine tasks can include virus scanning,
database index reorganization, database index rebuilding, disk or database
backups, certificate rotations, patching an operating system, rotating passwords,
rotating API keys, penetration testing, and audit reviews in production.

Evaluate performance targets. Evaluate current performance targets and adjust
them to account for operational tasks that are specific to the workload. Doing so
ensures that performance targets align with the workload's operational
requirements.

Optimizing deployments refers to refining the process of releasing resources and code
to guarantee seamless performance and minimal interruptions. It involves planning,
effective resource distribution, and thorough testing of both the infrastructure-as-code
(IaC) and the application code before they are introduced to a live environment.
Deployment inadequacies can lead to reduced speed and efficiency of a workload,
potential resource constraints, and a compromised user experience in the operational
setting. To optimize deployments, consider these strategies:

Assess acceptable downtime. If downtime is acceptable, you can implement
deployment strategies that prioritize speed and efficiency. However, it's important to
carefully assess the effect of downtime on business requirements before you make that
decision. On the other hand, if downtime isn't acceptable, you need to implement
deployment strategies that ensure continuous availability of the workload. Consider
using techniques like blue-green deployments or canary deployments, where you

Account for operational tasks

Optimize deployments

gradually roll out new versions of the workload while you monitor for issues. These
strategies help minimize the effect of downtime and ensure a seamless user experience.

Deploy at current instance count. You should also avoid deployments that cause
immediate scale operations. You shouldn't deploy resources into a live system with an
instance count so low that it forces the system to immediately perform a scale
operation. For example, your infrastructure-as-code (IaC) template might not match the
number of instances that you need at the time of deployment. It might have an instance
count of two, even though the current deployed environment is running eight instances.
The deployment would remove six instances and negatively affect performance.

Use a blue-green deployment strategy. Deployments can cause service interruptions
and downtime. To mitigate these issues, select a deployment strategy that minimizes
performance impact, like a blue-green deployment. These approaches allow for
seamless transitions between environments and reduce the risk of service disruptions.
When you use the blue-green deployment approach, you have two separate
environments: the blue and green environments. If any issues or performance
degradation is detected in the green environment, you can easily roll back to the stable
blue environment. This strategy helps you ensure minimal downtime and allows you to
maintain a high level of performance for your workload. To deploy by using the blue-
green approach, follow these general steps:

Deploy the new environment. Set up the new environment (green) alongside the
existing environment (blue) with the updated version of your application.

Validate the new environment. Deployments can introduce latency and increase
response times. Consider prewarming instances before cutover. Prewarming
involves preparing the new environment by simulating production-like traffic and
workload to ensure that the environment is ready to handle the expected load. It
helps minimize the effects on latency and response times. Thoroughly test and
validate the new environment to ensure that it functions correctly and meets
performance expectations. Testing helps warm up caches, establish database
connections, and ensure that the environment is ready to handle the expected
load.

Gradually shift traffic. After the new environment is prewarmed and validated,
gradually shift production traffic from the old environment (blue) to the new
environment (green). Initially, direct a small percentage of traffic to the green
environment and gradually increase it after verifying its stability and expected
application health. You can use a global load balancer or traffic management
mechanism. The controlled traffic shifting allows you to identify any performance

issues early and take corrective actions before fully transitioning the workload to
the new environment.

Monitor and optimize. Deployments might use shared computing resources.
Continuously monitor the performance and health of the new environment after
you shift traffic. Make any necessary optimizations or adjustments to ensure the
desired performance and user experience.

Remove the old environment. After you successfully transition all traffic to the green
environment, remove the blue environment from existing connections. This step
helps optimize the cost of maintaining the old environment and ensures that new
environments are free of configuration drift.

Repeat the process. For future deployments, reverse the roles of the blue and green
environments. Deploy changes to the new blue environment, validate them,
orchestrate traffic transition, and decommission the old green environment.

Use multiple builds. Different types of builds can help you optimize build times and
ensure the quality of deployments. For example, you can have continuous integration
(CI) builds that trigger with every code commit. You could have nightly builds that run
automated tests regularly, and release builds that are used for deploying to production.
Each type of build should have a specific purpose, like continuous integration,
automated testing, or production deployment. Testing and validation of the workload
before deployment help identify and address issues or bugs early in the development
process.

Consider feature flags. Feature flags are used in software development to control the
visibility and behavior of certain features in an application. By using feature flags,
developers can enable or disable specific features without needing to redeploy the
application. Feature flags work by introducing conditional logic in the code that
determines whether a feature should be enabled or disabled. This logic can be based on
various factors, like user roles, user preferences, or specific conditions that are defined
by the development team. By using feature flags, developers can gradually roll out new
features to a subset of users or enable features for specific groups for testing (canary
testing).

An in-place upgrade is an upgrade to an existing resource or application. In-place
upgrades can temporarily slow down or interrupt a workload. It's important to ensure
that upgrades are compatible with the workload. Before you apply an upgrade, we
recommend that you test it in a separate environment to identify any potential issues.

Optimize upgrades

Provide a rollback plan in case any issues arise during the upgrade process. It's crucial to
take a complete backup of critical data and configurations before you apply the
upgrade. Monitor the upgraded system closely after the upgrade to ensure that
everything functions as expected. The backup allows you to restore to a good state if
you need to. You should prioritize scheduling the upgrade during off-peak hours to
minimize the effect on users and workload performance. Notify users in advance about
the planned upgrade, including the expected downtime and any necessary actions they
need to take.

 Tradeoff: Waiting to perform operations activities during off-peak hours can
affect operational efficiency. It might be less convenient to have the personnel with
the right skill set work during off-peak hours.

Essential tools for file integrity monitoring, virus scanning, intrusion detection, and other
operational tasks can affect workload performance. They consume compute resources
and can add latency and performance overhead. You need to test and understand the
effects your tools have on workload performance. Based on the test results, you should
fine-tune tool configurations, adjust scan frequency, and reallocate compute resources.
For virus scanning, you could create a relevant exclusion list to minimize the duration of
scans.

Optimizing database operations refers to the process of refining and fine-tuning
database tasks to ensure maximum efficiency and minimal resource utilization. These
operations include tasks like backups, schema changes, performance tuning, and
monitoring. Efficient database operations lead to faster query responses, reduced
system overhead, and an overall smoother user experience.

Schema changes involve modifying the structure of a database, such as adding or
altering tables, columns, or indexes. These changes might require extra processing and
resource utilization during the deployment process, potentially affecting the overall
performance of the workload. Schema changes can disrupt performance to active
queries, indexes, or transactions or cause data to be unavailable.

To minimize these effects, you should plan and test schema changes in a nonproduction
environment. You can use various deployment techniques to implement schema
updates. You should also use available schema changing tools to optimize the process.
Archiving data and partitioning can help reduce the effects of schema changes.

Optimize tooling

Optimize database operations

Backups consume workload resources like processing power, network bandwidth, and
disk I/O. You need to test and select a backup strategy that minimizes these effects. You
should perform backups during off-peak hours when you can. Your strategy should
include incremental backups instead of full backups each time. Snapshots can be less
resource intensive than backups. You should consider built-in platform backup and
restore features rather than building a custom solution. You need to test these options
and use a combination that provides the best performance for your workload.

Excessive or poorly implemented logging, telemetry, instrumentation, and distributed
tracing capture and collection can affect performance. Likewise, convenience features
like remote debugging can also affect performance. You need to measure and know
their performance effects on the environment. You don't want these processes to
degrade performance. You should configure or disable any processes whose
performance effects outweigh their benefits.

Accounting for operational tasks: Azure DevOps is a set of development tools and
services that enable teams to plan, develop, test, and deliver software efficiently. It
includes features like version control, continuous integration and delivery, project
management, and more.

Azure provides service-to-service integration that minimizes the effects of many
operational tasks. For example, services that integrate with Azure Key Vault often
support seamless certificate rotation or secret rotation that minimizes effects on
performance.

Optimizing deployments: App Service provides deployment slots. You can use
deployment slots to deploy code to a nonproduction environment. You can swap app
content and configuration elements between two deployment slots. For example, you
can switch app content from a nonproduction slot to the production slot.

Azure Front Door and Azure Traffic Manager enable you to implement a blue-green
deployment strategy. Some Azure compute services also support advanced deployment
strategies like blue-green deployments. You can combine those services with your traffic
shifting or instance warming strategy to mitigate the performance effects of
deployment.

Optimize backups

Optimize monitoring and debugging

Azure facilitation

https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://learn.microsoft.com/en-us/azure/architecture/guide/aks/blue-green-deployment-for-aks

Optimizing database operations: Azure SQL Database automatically takes full backups,
differential backups, and transaction log backups. Azure Cosmos DB automatically takes
backups of your data at regular intervals. The automatic backups are taken without
affecting the performance or availability of database operations. Azure Cosmos DB
stores the backups in a separate storage service.

Optimizing backups: Some Azure data services support low-to-no performance impact
for point-in-time recovery and indexing. Azure Backup is a reliable and scalable cloud-
based backup solution that enables you to protect your data and applications. It
provides features like incremental backups, compression, and encryption to minimize
the effects on performance during backup operations. Azure Site Recovery helps you
protect your applications by replicating them to a secondary location. It provides
continuous replication and automated failover capabilities to minimize the downtime
and performance impacts during backup and disaster recovery operations.

Deployment slots
Blue-green deployment strategy
Azure SQL Database
Azure Cosmos DB

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/online-backup-and-restore
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://learn.microsoft.com/en-us/azure/architecture/guide/aks/blue-green-deployment-for-aks
https://learn.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/online-backup-and-restore

Recommendations for responding to
live performance issues
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:11 Respond to live performance issues. Plan how to address performance problems by
incorporating clear lines of communication and responsibilities. When a
problematic situation occurs, use what you learn to identify preventive measures
and incorporate them in your workload. Implement methods to return to normal
operations faster when similar situations occur.

This guide describes the best practices for responding to live performance issues. Live
performance issues refer to real-time challenges and bottlenecks that can hinder the
optimal functioning of a workload. Addressing these issues promptly not only facilitates
the immediate detection and rectification of performance hiccups but also ensures that
the workload consistently meets its performance benchmarks. Failing to address them
can lead to complications, including slowdowns, crashes, and system unresponsiveness,
and degrade the user experience. They can also prevent users from completing their
tasks efficiently, and, in turn, tarnish the reputation of the organization.

Definitions

Term Definition

Data correlation Aligning logs, metrics, and events from various parts of your workload to
pinpoint underlying causes.

Root cause
analysis

A process for identifying the underlying factors that are responsible for a
problem.

Self-healing The ability to automatically repair issues without human intervention.

Self-prevention Implementations within a workload to prevent potential issues and failures.

When you experience a live performance issue, you need to be prepared with the right
data and a plan to respond to the issue. This plan should include clear lines of
communication and responsibilities. The primary objective is to implement solutions
that facilitate a quick return to regular operations and provide insights from the

Key design strategies

incident. Integrating preventive measures into your workflow is a pivotal strategy. The
goal is to either prevent the same issue from happening again or lessen its effects on
performance if it isn't preventable.

The ideal response to live-site performance issues is precise and fast. Precision and
speed in performance remediation require preparation. To effectively respond to live
performance issues, it's crucial to monitor key performance metrics, identify the root
cause of the issues, and implement appropriate solutions or optimizations. To take these
steps, you might need to analyze workload logs, conduct performance testing, optimize
code or configurations, and scale resources. The following examples outline a few critical
areas of preparation:

Have accurate architecture diagrams. Your architecture diagrams should include all
components and show how they interact. Visual representation can help identify
bottlenecks and single points of failure that can lead to performance degradation
or unavailability. Ideally, you catch and remove these issues before they cause
problems, but having an up-to-date diagram can help you pinpoint issues in high-
stress moments.

Check data access. Data and logs from monitoring processes are critical for
responding to performance issues in real time and conducting root cause analyses.
But it's important to maintain the integrity and confidentiality of the data.
Responding to live-site performance issues often requires access to underlying
data that might not be normally accessible. You need to ensure that personnel
have access to the data that they need when issues arise. But you should only
grant time-restricted, least-privilege access, and you should limit that access to
authorized personnel.

Set automatic alerts. Alerts can help you identify and address issues as soon as
they occur. Alerts should generate notifications when workload performance
deviates from performance baselines. Over time, you should tweak alert
configurations to avoid generating too many or too few notifications. The
monitoring solutions that you use need to collect enough data to generate alerts.
These alerts should align with performance targets and established baselines. You
should avoid generating alerts on issues that are relevant to your goals. Examples
of alerts include degradations in CPU usage, memory, response times, and
database performance.

Prepare for issues

Create a triage plan

Creating a triage plan involves devising a structured approach to identify, escalate,
analyze, prioritize, and communicate live-site performance issues. A triage plan is a
strategy for responding to live performance issues. It ensures that performance
disruptions are addressed promptly and effectively, with clear roles and procedures.
Most performance issues don't merit disaster recovery protocols, but they can affect
workload functionality enough to require triage planning. A well-documented triage
plan ensures all team members are aligned and can act swiftly, minimizing the impact
on users and workloads. A triage plan should include the following components:

Identification and monitoring: Implement a system to identify and monitor
performance issues in real time. You should have a list of the contact information
of people who are capable of making decisions or escalating issues to higher
levels. The plan should also identify roles and responsibilities. It needs to
document which accounts gain access to protected information and for how long.

Escalation process: Define a clear escalation process to ensure that performance
issues are escalated to the appropriate teams or individuals in a timely manner.
The process definition should include contact information and guidelines for
escalating issues.

Root cause analysis: Develop a process for conducting a root cause analysis to
identify the underlying cause of each performance issue. The process should
involve analyzing logs and performance metrics and conducting diagnostic tests to
pinpoint the source of each problem.

Prioritization: Establish a prioritization framework to determine the severity of
performance issues and prioritize them based on their effect on the workload and
users.

Communication: Create a communication plan to keep stakeholders informed
about the status of performance issues and the progress of their resolution.
Consider regular updates, status reports, and clear communication channels.

Documentation: Document the triage plan, including all its steps, processes, and
best practices. This documentation should be easily accessible to the team
members who are involved in responding to performance issues.

Resolving live performance issues involves identifying and addressing any factors that
can cause performance degradation or inefficiencies in a live workload. Data that you
collect during monitoring is invaluable when you investigate and resolve performance-
related incidents. This data provides a historical record of performance metrics. When

Develop methods to identify and resolve issues

you have monitoring data available, you can analyze root causes and identify
contributing factors. You should use all relevant monitoring data to understand and fix
each performance issue.

Root cause analysis requires hypothesis testing. After you review monitoring data, you
should list potential causes of the performance issue and test them. To conduct a root
cause analysis on a live performance issue, you can follow these steps:

1. Gather information. Collect as much information as possible about the
performance issue. Examples include error messages, logs, performance metrics,
and any other relevant data.

2. Define the problem. Clearly define the problem by identifying the symptoms and
the effect that the problem has on the workload or users.

3. Investigate potential causes. Narrow down the scope of the analysis by identifying
the specific component or area of the workload where the performance issue is
occurring. Identify potential causes of the performance issue based on the
gathered information. This process can involve analyzing code, configuration
settings, infrastructure, or external dependencies.

4. Correlate data. Dive deeper into the collected data to identify patterns, anomalies,
or correlations that might contribute to the performance issue. Data correlation is
key to identifying performance issues and causes. It can involve reviewing logs,
analyzing performance metrics, and conducting tests.

5. Test hypotheses. Formulate hypotheses based on the potential causes that you
identify. Conduct tests to validate or refute your hypotheses. You should use a test
environment to see whether you can replicate the error.

6. Implement solutions. Once you identify a root cause, develop and implement
solutions to address the performance issue.

7. Monitor and validate. After you implement the solutions, continuously monitor the
workload to ensure that the performance issue is resolved. Validate the
effectiveness of the solutions by monitoring performance metrics and user
feedback.

 Tradeoff: The steps of a root cause analysis, such as identifying possible causes,
testing hypotheses, and documenting the analysis, can be time consuming. To
correlate performance issues, you also need to collect and store data. The required

Use root cause analysis

time and infrastructure can add significant work to the operations teams and cost to
the workload.

 Risk: If you perform a root cause analysis without proper security guardrails,
there's a risk that you expose sensitive information when you provide access to logs
and data.

Vendor support can be an essential step when you deal with ongoing performance
issues. Vendors have the expertise, tools, resources, and experience to help fix issues
with their products. Your support agreement with your supplier determines the level of
support a vendor provides.

It's often best to work in parallel with vendors. You should create a plan to have some
team members collaborate with vendor support while others continue to triage and fix
performance issues. Vendor support teams can also make suggestions on how to help
prevent and automate responses to similar events.

You need to have contact information available for your personnel. Vendors might also
need access to data to effectively engage in problem-solving. You need to have a plan in
place for authenticating and authorizing external or guest accounts to access
monitoring data.

After you fix a live-site performance issue, you need to review what happened. The goal
is to learn from performance issues, not just identify problems. The best way to learn is
through documentation. Document each issue and explain how to fix it. If a vendor
helped, work with the vendor to enhance your documentation, train your team, and
modify your workload accordingly.

The documentation should indicate how to prevent each problem from happening
again. One way to avoid recurring problems is to introduce automation to respond to
common issues. Automation should add self-healing and self-prevention qualities to a
workload. Along with the automation, you can create refined alerts that help you
respond early to performance issue indicators.

Engage vendor support

Learn from findings

Azure facilitation

Developing methods to identify and resolve issues: Azure provides several tools to
help you respond to live performance issues:

Azure Monitor is a comprehensive monitoring solution that provides insights into
the performance and health of your applications and infrastructure. Monitor offers
features such as metrics, logs, alerts, and dashboards to help you monitor and
diagnose performance issues.

Application Insights is an application performance management (APM) service that
helps developers and DevOps professionals monitor live applications. It
automatically detects performance anomalies, collects application-level logs and
events, and provides analytics tools to diagnose issues.

Log Analytics is a service that collects and analyzes log data from various sources,
including applications, virtual machines, and Azure resources. When you use Log
Analytics, you can query and analyze log data to gain insights into the
performance and behavior of your applications.

Recommendations for self-healing and self-preservation

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

Recommendations for continuous
performance optimization
Article • 11/14/2023

Applies to this Azure Well-Architected Framework Performance Efficiency checklist
recommendation:

PE:12 Continuously optimize performance. Focus on components that show deteriorating
performance over time, such as databases and networking features.

This guide describes the recommendations for continuous performance optimization.
Continuous performance optimization is the process of constantly monitoring,
analyzing, and improving performance efficiency. Performance efficiency adapts to
increases and decreases in demand. Performance optimization needs to be an ongoing
activity throughout the life of the workload. Workload performance often degrades or
becomes excessive over time, and factors to consider include changes in usage patterns,
demand, features, and technical debt.

Definitions

Term Definition

Data tiering A storage strategy that involves categorizing data based on its access frequency
and storing it on storage tiers accordingly.

Technical
debt

The accumulated inefficiencies, suboptimal design choices, or shortcuts
intentionally taken during the development process to deliver code faster.

Time-to-
live

A mechanism that sets an expiration time for data.

Performance efficiency is when workload capacity aligns to actual usage. A workload
that overperforms is as problematic as one that underperforms. The tradeoffs differ.
Overperformance affects cost optimization. Poor performance affects users. The key to
performance efficiency is monitoring, adjusting, and testing over time. You need to
regularly review performance metrics and make adjustments as necessary to ensure that
the workload is efficient. Testing all changes pre- and post-implementation is required
to reach performance targets.

Key design strategies

A performance culture is an environment in which continuous improvement is expected
and the team learns from production. Performance optimization requires specialized
skills. Workload teams need the right skills and mindset to optimize their performance
to meet increases and decreases in demand. You also need to allocate their time to
support the required monitoring and remediation of performance issues as they arise.
These teams need clear expectations. For example, performance targets, baselines, and
deviation thresholds (how far from baseline is acceptable) need to be highly visible and
socialized.

 Tradeoff: Continuous performance optimizations require a team that has the
right skills and time to find and fix performance issues. Dedicating personnel to
performance adds operational cost. If you have limited personnel resources,
continuous performance optimization could take time away from other operational
tasks.

Evaluating new platform features involves examining the new functionalities and tools of
a platform that can improve performance efficiency, such as optimized storage
solutions, caching mechanisms, or resource management tools. New platform features
can open avenues for enhancing performance efficiency. Keep your platform and tools
up-to-date to ensure you're using the latest innovations and best practices. Consistently
monitor feedback and performance metrics from these new additions to refine your
approach.

Proactively optimizing performance means taking proactive measures to improve and
enhance the performance of the workload before any performance issues arise. Using
proactive measures involves identifying potential bottlenecks, monitoring performance
metrics, and implementing optimizations to ensure that the workload operates
efficiently and meets the desired performance goals. Based on the analysis of
deteriorating components, critical flows, and technical debt, you can implement
performance optimizations specific to each area. Improvements might involve code
changes, infrastructure adjustments, or configuration updates.

Develop a performance culture

Evaluate new platform features

Prioritize optimization efforts

Prioritize deteriorating components

A workload often has components such as databases and networking components that
are prone to performance degradations over time. As the workload evolves and usage
patterns change, these changes often affect the performance of individual components
in the workload. Increased data in databases can lead to longer query run times and
slower data retrieval. Changes in usage patterns might result in suboptimal query
design. Queries that were once efficient can become inefficient as the workload evolves.
Inefficient queries can consume excessive resources and degrade database performance.
Increased workload usage can lead to higher network traffic, causing congestion and
latency issues.

It's important to make continuous efforts to optimize the performance of these
components. Proactively identify and address performance issues in your workload. By
prioritizing known deteriorating components, you can proactively address potential
performance issues and ensure the smooth operation of your workload. It might involve
implementing performance tuning techniques, optimizing resource allocation, or
upgrading hardware or software components as needed.

Critical flows are the most important and high-priority processes or workflows in the
workload. By prioritizing these critical flows, you ensure that the most essential parts of
the workload are optimized for performance. Knowing which flows are critical helps
prioritize optimization efforts. Optimizing the performance efficiency of the most
important areas of your application provides the highest return on investment. You
should monitor critical flows and the most popular pages. Look for ways to make them
more efficient.

Automation can eliminate repetitive and time-consuming manual processes, allowing
them to be performed efficiently. Automation reduces the chances of human error and
ensures consistency in running optimization tasks. By automating these tasks, you can
also free up people to focus on more complex activities and activities that add value.
You can apply automation to various tasks, such as performance testing, deployment,
and monitoring:

Automated performance testing: Use automated performance testing tools like
JMeter, K6, or Selenium to simulate different workloads and scenarios.

Automated deployment: Implement automated deployment processes to ensure
consistent and error-free deployments. Use CI/CD tools to automate the

Prioritize critical flows

Automate performance optimization

deployment process. These tools can help you identify performance bottlenecks as
you use them to test against endpoints, check HTTP statuses, and even validate
data quality and variations.

Monitoring and alerting: Set up automated monitoring and alerting systems to
continuously monitor performance metrics and detect any deviations or anomalies.
When performance issues are detected, automated alerts can be triggered to
notify the appropriate teams or individuals.

Incident management: Implement an automated incident management system that
can receive alerts, create tickets, and assign tickets to the appropriate teams for
resolution. These steps help ensure that performance issues are promptly
addressed and assigned to the right resources.

Automated diagnostics: Develop automated diagnostic tools or scripts that can
analyze performance data and identify the root causes of performance issues.
These tools can help pinpoint specific areas or components of the system that are
causing performance problems.

Automated remediation actions: Define and implement automated remediation
actions that can be triggered when specific performance issues are detected. These
actions can include restarting services, adjusting resource allocation, clearing
caches, or implementing other performance optimization techniques.

Self-healing systems: Build self-healing capabilities into your system by automating
the recovery process for known performance issues. This capability can involve
automatically fixing or adjusting the system configuration to restore optimal
performance.

Technical debt refers to the accumulated inefficiencies, suboptimal design choices, or
shortcuts taken during the development process that can affect performance. Technical
debt, unclear code, and overly complex implementations can make performance
efficiency more difficult to attain. Addressing technical debt involves identifying and
resolving these issues to improve the overall performance and maintainability of the
workload. This work might include refactoring code, optimizing database queries,
improving architectural design, or implementing best practices. Perhaps you introduced
technical debt to meet a deadline, but you need to address the technical debt as you
optimize performance efficiency over time.

Address technical debt

Optimize databases

Continuously optimizing databases involves identifying and implementing optimizations
to ensure that databases can handle loads, deliver fast response times, and minimize
resource utilization. By regularly optimizing databases, you can improve application
performance, reduce downtime, and enhance the overall user experience.

Optimize database queries: Poorly written SQL statements can degrade database
performance. Inefficient JOIN conditions can cause unneeded data processing.
Complex subqueries, nested queries, and excessive functions can reduce running
speed. Queries that retrieve too much data should be rewritten. You should
identify your most common or critical database queries and optimize them. The
optimization helps ensure faster queries.

Maintain indexes: Evaluate your indexing strategy to ensure that indexes are
properly designed and maintained. Index maintenance includes identifying unused
or redundant indexes and creating indexes that align with the query patterns.
Database indexes help accelerate data retrieval operations. For relational
databases, you need to monitor index fragmentation. You should rebuild or
reorganize indexes regularly. For nonrelational databases, you need to pick the
correct indexing policy for your workload. Use automatic tuning on databases
where available. These features include automatically creating missing indexes,
dropping unused indexes, and plan correction. For more information, see
Maintaining indexes to improve performance.

Review model design: Review the data model to ensure you optimize it for the
specific requirements of the application. Improving query performance and data
retrieval might involve denormalization, partitioning, or other techniques.

Optimize database configuration: Optimize database configuration settings such as
memory allocation, disk I/O, and concurrency settings to maximize performance
and resource utilization.

Optimizing data efficiency is the process of ensuring that data is stored, processed, and
accessed in the most efficient way possible. Data tiering and using time-to-live (TTL) are
techniques that can be used to optimize data efficiency. You can apply these techniques
in various data storage scenarios, such as databases, file systems, or object storage.

Use data tiering: Data tiering involves categorizing data based on its importance or
frequency of access and storing data in different tiers accordingly. Setting up data
tiering allows for more efficient use of storage resources and improves
performance. Frequently accessed or critical data can be stored in high-

Optimize data efficiency

https://learn.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes

performance tiers, while less frequently accessed or less critical data can be stored
in lower-cost tiers. The goal is to review data usage over time to ensure data is in
the correct tier. As data priorities change, data should move from one tier to
another.

Implement time-to-live: Time-to-live is a mechanism that sets an expiration time
for data. Time-to-live allows data to be automatically deleted or archived after a
certain period, reducing storage requirements and improving data management.
By setting an appropriate time-to-live, you allow unnecessary data to be removed,
freeing up storage space and improving overall efficiency. Session data, temporary
files, and cache data are frequent targets for the time-to-live. Database entries can
also have a time-to-live.

 Risk: A time-to-live that's too short can create performance issues.

Automating performance optimization: Azure Advisor provides automatic performance
recommendations based on workload telemetry. You should review and address these
recommendations regularly. Azure Monitor provides real-time insights into the
performance of your system and allows you to set up alerts based on specific
performance metrics. Azure Log Analytics provides automated diagnostics and analysis
on collected logs and metrics. Tools like Azure Application Insights provide insights and
recommendations for optimizing performance.

To automate remediation, use automation tools or scripts to execute remediation
actions automatically when the alerts are triggered. You can use Azure Automation,
Azure Functions, or custom automation solutions.

Azure lets performance testing to simulate different user scenarios and workloads.
Automated testing can help you identify performance bottlenecks and optimize your
system accordingly. Tools like Azure DevOps can automate performance testing.

Optimizing databases: The SQL family of products has many built-in features that allow
you to monitor and remediate SQL database performance. You should use these
features to maintain database performance. Azure SQL Database has an automatic
tuning feature that continuously monitors and improves queries. You should use this
feature to improve SQL queries automatically.

You can customize your indexing policies by using the features of Azure Cosmos DB.
Customize the policies to meet the performance needs of your workload.

Azure facilitation

https://learn.microsoft.com/en-us/azure/advisor/advisor-performance-recommendations
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy

Optimizing data efficiency: Data tiering allows you to store data in different tiers based
on its access frequency and importance. It helps optimize storage costs and
performance. Azure provides different storage tiers, such as hot, cool, and archive tiers
for blob data. Hot tiers are optimized for frequently accessed data, cool tiers are for
infrequently accessed data, and archive tiers are for rarely accessed data. By using the
storage access tier best suited to your data, you can ensure efficient data storage and
retrieval.

Optimize index maintenance to improve query performance and reduce resource
consumption
Improve the performance of Azure applications by using Azure Advisor
Automatic tuning in Azure SQL Database and Azure SQL Managed Instance
Indexing policies in Azure Cosmos DB

Refer to the complete set of recommendations.

Related links

Performance Efficiency checklist

Performance Efficiency checklist

https://learn.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes
https://learn.microsoft.com/en-us/azure/advisor/advisor-performance-recommendations
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy

Azure Well-Architected Framework
workloads
Article • 11/14/2023

In the context of the Azure Well-Architected Framework, the term workload refers to a
collection of application resources, data, and supporting infrastructure that function
together to achieve defined business outcomes. A workload consists of components and
also development and operational procedures.

Architects design workloads, and a workload team implements them. A workload is
designed and implemented to achieve functional and nonfunctional business
requirements. Workloads can be classified into many types.

Typical criteria for workload classification include:

Utility, characteristics, and usage patterns of a workload, such as web applications,
batch processing, and real-time analytics.

Key influential drivers, such as technology platforms or alignment with an industry.

Intended target audience. Examples of solutions with various audiences are
internal line-of-business applications within enterprises, a purchased independent
software vendor (ISV) solution, or a multitenant software as a service (SaaS)
solution for public use.

Workloads that are in the same class can share similarities, including their target
audience, compliance requirements, and technology stacks. The five pillars of the Well-
Architected Framework, their principles, checklists, and tradeoffs are relevant for all
workload classes.

The workload guidance of the Well-Architected Framework describes common priorities
and tradeoffs as they pertain to specific workload classes. In the workload guidance, the
pillar guidance applies to technical design principles and design areas that represent the
priorities of a workload. Follow the recommendations to help set up a successful
workload and to align it with the Well-Architected Framework.

The design and operations of any workload have to contend with the five architectural
pillars: Reliability, Security, Cost Optimization, Operational Excellence, and Performance

What is a Well-Architected Framework
workload?

Efficiency.

 To create a successful workload, develop it in accordance with the Well-Architected
Framework principles, which are based on the following ideals.

A Well-Architected Framework workload:

Has functional and nonfunctional requirements that are defined and prioritized to
achieve a goal.
Is designed so you can achieve those requirements by using resources and
incorporating design patterns and tradeoffs.
Is built and operated to the specifications of a design and purpose.
Is measured by how adequately it achieves its purpose.
Can adapt as its purpose is refined or changed.
Is just as reliable as it needs to be.
Is just as secure as it needs to be.
Delivers a sufficient return on investment.
Is developed and operated responsibly.
Accomplishes its purpose within an acceptable time period.

A collaboration between the workload team and central teams of an organization must
create a workload with the preceding characteristics. The following sections describe
these teams and their functions.

Create a workload team that has team members with a wide range of technical and
business disciplines. The primary focus of all team members should be the success of
the workload.

Examples of workload team members

Application security engineers
Business stakeholders
Cloud developer or software engineers
Cloud solution architects
Data scientists or analysts
Database administrators

DevOps engineers
Infrastructure engineers
Product managers or owners
Quality assurance (QA) engineers
Support team members

Workload team

Centralized teams and stakeholders

Centralized teams often support the workload team. They provide support functions and
apply governance for many or all cloud workloads within an organization. Centralized
teams focus on organizational success, which is achieved in part by the success of the
organization's workloads. They provide services, guidance, and guardrails for workloads.

Examples of centralized teams and team members

Business intelligence analysts
Business stakeholders
Cloud center of excellence (CCoE) board
Cloud platform team
Cybersecurity analysts
Database administrators
Enterprise architects

Finance analysts
Infrastructure engineers
Legal and compliance officers
Network engineers
Procurement specialists
Project managers

A Well-Architected Framework workload team focuses on workload outcomes. They
coordinate with and benefit from the specialized support from centralized team
members.

A workload needs to be deployed and used in order to deliver value. As part of the
workload team, you have a responsibility to design, implement, and deploy your
workload in a way that creates value to your organization.

Workloads exist within the context of your organization. An organization often has
regulated governing and authority roles. Your workload team has the responsibility to
design, implement, and deploy a workload within the foundation of your organization.

In accordance with the Cloud Adoption Framework for Azure, standardize your
workload's cloud resources. Rigorously apply standardization to provide a governed
platform to help with onboarding workload teams. Apply this governance in accordance
with your organization's cloud operating model.

You can use Azure landing zones to help you perform standardization. Platform landing
zones and application landing zones are available in Azure. Deploy your workload in an
application landing zone.

Your organization might have a cloud platform offering that's rigorously formalized and
fully aligns with Azure landing zones. Or your organization might have a different
adoption strategy or no implementation. If there's no implementation, workload teams
are nearly fully autonomous entities.

Shared responsibility model

For any platform and governance that your organization uses, you must apply the
principles of the Well-Architected Framework to your workloads. The Well-Architected
Framework often references Azure landing zones, but it isn't dependent on a specific
platform implementation. The Well-Architected Framework pillars, principles, checklists,
and guides are for all cloud platforms and most workload types.

Throughout the Well-Architected Framework, such as the core pillars and the workload
guidance, recommendations coincide with the obligation of the workload.
Recommendations don't usually imply what team member or team facilitates those
obligations. You can determine who should perform each action. Perform workload-level
mapping to determine your team's roles and responsibilities related to the topology,
workload type, and criticality.

The direct workload team handles most workload requirements. Some requirements are
handled as a joint effort with centralized teams. For example, the implementation
choices might be based on guardrails that a centralized team sets. Or a centralized team
might exclusively handle the implementation choices.

Your workload team must build a working relationship with other teams to help
codeliver on workload goals. If you outsource components or responsibilities, you must
successfully deliver on those obligations.

A centralized team supports diverse workloads based on the team's core capabilities
and core infrastructure. To provide this support on an organizational scale, the
centralized team might implement uniformity and constraints on the service offered or
the infrastructure. As you design your workload, it's critical that you understand those
constraints and, where possible, partner with enterprise architects who know those
constraints. Learn from prior implementations as much as possible.

Every platform governance implementation is different, but the following constraints are
common for many workloads:

Allowlists for cloud resources
Configuration mandates for cloud resources
Regional allowlists for cloud resources and cross-premises connectivity availability
Limited or no platform support outside of business hours
Patching requirements

Fulfill requirements

Learn the constraints

Specific hub-spoke implementation, which drives Domain Name System (DNS) and
private endpoint implementations
Supply chain control requirements

If your workload requirement is faced with a constraint or a service-level agreement
(SLA) that doesn't clearly define a core capability or infrastructure offering, treat that
situation as a risk. To address this risk, your workload team must provide clarity to the
other teams about how the concern affects the workload. You might have to change the
workload requirements, design, or implementation, or change the infrastructure
offering.

When you understand the platform team's obligations related to organizational
directives and your workload team's obligations, you can communicate workload
requirements with realistic expectations and recommendations.

Every platform partnership is different, but the following areas are common topics in
shared responsibility conversations:

Compliance and legal requirements
Networking specifics, such as the need for static ingress or egress IP addresses
Observability requirements to provide live site triage that's effective
Performance requirements, such as network throughput, availability of cloud
resources, or regional availability
Expectations for public internet access from an egress and ingress perspective
Service-level objectives (SLOs) or SLAs that are offered to the workload's users
The availability of technical support

Shared responsibility isn't just about tradeoffs, constraints, and compromise. Platform
teams often have highly specialized skills and dedicated budgets that can augment
beyond what an individual workload team can sustain. Consider the following examples.

Security specialists. Your workload might have a secure development lifecycle. As a
centralized security team performs secure development tasks at scale across your
organization, it might perform routine penetration testing that's above and beyond your
efforts. It might also help with planning and performing an incident response strategy.

Explicitly communicate requirements

Communicate common workload requirements

Look for unified wins

Enterprise architecture guidance. You can save time and effort if you align with an
enterprise architecture team's patterns and practices because the team has already
streamlined the processes. You can also prevent rework if a solution isn't possible within
the partnership without negotiation.

Big-ticket expenditures. Platform teams often host components or services that are too
expensive or too extensively managed for an individual workload team. Platform teams
can afford these components and services because they divide the cost across
workloads.

Often these services or centralized platforms are offered as mere showback, so they help
keep the workload cost optimized. And when they're offered as chargeback, they're
often cheaper because of economies of scale and centralization.

Platform teams often provide self-service options to workload teams for various
activities. For example:

Providing a documentation repository for self-guided education
Onboarding to cost management via specific resource tagging
Offering subscriptions via a formal subscription-vending process

Explore self-service options that might be suitable for your workload.

Shared responsibility with other teams also means sharing successes and challenges of a
workload. When your workload meets its obligations and obtains the intended value,
share that with your partnering teams. Tell them how they contributed to the workload's
success. When your workload isn't meeting its obligations, share what isn't working and
collaborate and recalibrate to get back on track.

Platform teams also have obligations and success criteria. You should expect your
partners to tell you whether your workload works well with an offering or if it's at risk of
being a noisy neighbor.

A theme across all Well-Architected Framework pillars is continuous improvement.
Adopt a progressive mindset. You might deal with new approaches to existing problems,
adopt new technology, address new requirements, or operate under new constraints. As
your workload improves over time, expect the same mindset from your partnering

Share successes and challenges

Strive for continuous improvement

teams. However, every improvement opportunity also means changes and should be
supported by a proper management process.

Workload teams have an obligation to communicate with platform teams about
proposed changes to workload requirements that might have an effect on the platform
team's services. Likewise, platform teams have an obligation to include their workload
partners in change control processes and clearly communicate the impactful platform
changes. Establish a regular communication cadence with partners to learn about and
share how a product evolves.

Workloads have many expectations from users, shareholders, regulatory bodies,
employees, the center of excellence, and chief experience officers. Expectations can set
the directional compass spinning. The Well-Architected Framework provides clarity
related to the design and implementation by offering explicit rationalizations for
architectural decisions to achieve a successful outcome. Develop a successful workload,
and share in that success with your organization.

Achieve a successful outcome

Azure Virtual Desktop workload
documentation
Run Windows desktops and applications on Azure from any device and location.

Get started

ｅ OVERVIEW

What is an Azure Virtual Desktop workload?

ｐ CONCEPT

Design principles

Integration with Azure landing zones

Design areas

ｐ CONCEPT

Application delivery

Networking and connectivity

Monitoring

Security and identity and access management (IAM)

Operational procedures

Business continuity

Storage

Reference examples

Ｙ ARCHITECTURE

Migrate end-user desktops to Azure Virtual Desktop

https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/overview
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/design-principles
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/landing-zone-integration
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/application-delivery
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/networking
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/monitoring
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/security
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/operations
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/business-continuity
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/storage
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/azure-virtual-desktop/

Azure Virtual Desktop for the enterprise

Reference implementations

｀ DEPLOY

Enterprise-scale support for Microsoft Azure Virtual Desktop

Learn

ｄ TRAINING

Deliver remote desktops and apps with Azure Virtual Desktop

Plan an Azure Virtual Desktop implementation

Implement an Azure Virtual Desktop infrastructure

Assessment

ｃ HOW-TO GUIDE

Azure Virtual Desktop assessment tool

https://learn.microsoft.com/en-us/azure/architecture/example-scenario/azure-virtual-desktop/azure-virtual-desktop
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/azure-virtual-desktop/enterprise-scale-landing-zone
https://learn.microsoft.com/en-us/training/paths/m365-wvd/
https://learn.microsoft.com/en-us/training/paths/plan-azure-virtual-desktop-implementation/
https://learn.microsoft.com/en-us/training/paths/implement-azure-virtual-infrastructure/
https://learn.microsoft.com/en-us/azure/well-architected/azure-virtual-desktop/assessment

Azure VMware Solution workload
documentation
Relocate legacy application virtual machines to Azure VMware Solution as a staging area
for the first phase of your migration and modernization strategy.

Get started

ｅ OVERVIEW

What is an Azure VMware Solution workload?

ｐ CONCEPT

Design principles

Integration with Azure landing zones

Design areas

ｐ CONCEPT

Infrastructure

Applications

Networking

Monitoring

Security

Operations

Reference examples

Ｙ ARCHITECTURE

Baseline Azure VMware Solution reference architecture

https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/overview
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/design-principles
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/landing-zone-integration
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/infrastructure
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/application-platform
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/networking
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/monitoring
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/security
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/operations
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/azure-vmware/example-architectures

Azure VMware Solution landing zone accelerator

Reference implementations

｀ DEPLOY

Azure VMware Solution implementation options

Learn

ｄ TRAINING

Introduction to Azure VMware Solution

Migrate VMware resources on-premises to Azure VMware Solution

Run VMware resources on Azure VMware Solution

Assessment

ｃ HOW-TO GUIDE

Azure VMware Solution assessment tool

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/azure-vmware/enterprise-scale-landing-zone
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/azure-vmware/enterprise-scale-landing-zone#automated-VMware-solution-implementation-options
https://learn.microsoft.com/en-us/training/modules/intro-azure-vmware-solution/
https://learn.microsoft.com/en-us/training/modules/migrate-vmware-workloads-on-premises-azure-vmware-solution/
https://learn.microsoft.com/en-us/training/paths/run-vmware-workloads-azure-vmware-solution/
https://learn.microsoft.com/en-us/azure/well-architected/azure-vmware/assessment

Carrier-grade workload documentation
In this series, learn about building highly reliable applications for carrier-grade
workloads on Microsoft Azure. Mission-critical systems primarily focus on maximizing
uptime and they exist in many industries. Within the telecommunications industry,
they're referred to as carrier-grade systems.

Get started

ｅ OVERVIEW

What is carrier-grade?

Design principles

Design areas

ｐ CONCEPT

Fault tolerance

Data model

Health modeling

Testing and validation

Reference architecture

Ｙ ARCHITECTURE

Carrier-grade voicemail solution

https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-get-started
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-area-fault-tolerance
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-area-data-model
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-area-health-modeling
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-design-area-testing
https://learn.microsoft.com/en-us/azure/architecture/industries/telecommunications/carrier-grade

Overview of a hybrid workload
Article • 03/20/2023

Customer workloads are becoming increasingly complex, with many applications often
running on different hardware across on-premises, multicloud, and the edge. Managing
these disparate workload architectures, ensuring uncompromised security, and enabling
developer agility are critical to success.

Azure uniquely helps you meet these challenges, giving you the flexibility to innovate
anywhere in your hybrid environment while operating seamlessly and securely. The
Well-Architected Framework includes a hybrid description for each of the five pillars:
cost optimization, operational excellence, performance efficiency, reliability, and
security. These descriptions create clarity on the considerations needed for your
workloads to operate effectively across hybrid environments.

Adopting a hybrid model offers multiple solutions that enable you to confidently deliver
hybrid workloads: run Azure data services anywhere, modernize applications anywhere,
and manage your workloads anywhere.

Use Azure Arc enabled infrastructure to extend Azure management to any infrastructure
in a hybrid environment. Key features of Azure Arc enabled infrastructure are:

Unified Operations
Organize resources such as virtual machines, Kubernetes clusters and Azure
services deployed across your entire IT environment.
Manage and govern resources with a single pane of glass from Azure.

Extend Azure management to any
infrastructure

 Tip

Applying the principles in this article series to each of your workloads will better
prepare you for hybrid adoption. For larger or centrally managed organizations,
hybrid and multicloud are commonly part of a broader strategic objective. If you
need to scale these principle across a portfolio of workloads using hybrid and
multicloud environments, you may want to start with the Cloud Adoption
Framework's hybrid and multicloud scenario and best practices. Then return to
this series to refine each of your workload architectures.

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/hybrid/unified-operations

Integrate with Azure Lighthouse for managed service provider support.

Adopt cloud practices
Easily adopt DevOps techniques such as infrastructure as code.
Empower developers with self-service and choice of tools.
Standardize change control with configuration management systems, such as
GitOps and DSC.

Azure Arc allows you to run Azure Services anywhere. This allows you to build consistent
hybrid and multicloud application architectures by using Azure services that can run in
Azure, on-premises, at the edge, or at other cloud providers.

Use Azure Arc enabled data services to run Azure data services anywhere to support your
hybrid workloads. Key features of Azure Arc enabled data services are:

Run Azure data services on any Kubernetes cluster deployed on any hardware.
Gain cloud automation benefits, always up-to-date innovation in Azure data
services, unified management of your on-premises and cloud data assets with a
cloud billing model across both environments.
Azure SQL Database and Azure PostgreSQL Hyperscale are the first set of Azure
data services that are Azure Arc enabled.

Use Azure Arc enabled Application services to run Azure App Service, Functions, Logic
Apps, Event Grid, and API Management anywhere to support your hybrid workloads. Key
features of Azure Arc enabled application services are as follows:

Web Apps - Azure App Service makes building and managing web applications
and APIs easy, with a fully managed platform and features like autoscaling,
deployment slots, and integrated web authentication.
Functions - Azure Functions makes event-driven programming simple, with state-
of-the-art autoscaling, and with triggers and bindings to integrate with other
Azure services.
Logic Apps - Azure Logic Apps produces automated workflows for integrating
apps, data, services, and backend systems, with a library of more than 400
connectors.

Run Azure services anywhere

Run Azure data services anywhere

Run Azure Application services anywhere

https://learn.microsoft.com/en-us/azure/app-service/overview-arc-integration?toc=/azure/cloud-adoption-framework/toc.json&bc=/azure/cloud-adoption-/_bread/toc.json
https://learn.microsoft.com/en-us/azure/app-service/overview-arc-integration?toc=/azure/cloud-adoption-framework/toc.json&bc=/azure/cloud-adoption-framework/_bread/toc.json
https://learn.microsoft.com/en-us/azure/app-service/overview-arc-integration?toc=/azure/cloud-adoption-framework/toc.json&bc=/azure/cloud-adoption-framework/_bread/toc.json

Event Grid - Azure Event Grid simplifies event-based applications, with a single
service for managing the routing of events from any source to any destination.
Azure API Management gateway - Azure API Management provides a unified
management experience and full observability across all internal and external APIs.

Use the Azure Stack family to modernize applications without ever leaving the
datacenter. Key features of the Azure Stack family are:

Extend Azure to your on-premises workloads with Azure Stack Hub. Build and run
cloud apps on premises, in connected or disconnected scenarios, to meet
regulatory or technical requirements.
Use Azure Stack HCI to run virtualized workloads on premises and easily connect
to Azure to access cloud management and security services.
Build and run your intelligent edge solutions on Azure Stack Edge, an Azure
managed appliance to run machine learning models and compute at the edge to
get results quickly—and close to where data is being generated. Easily transfer the
full data set to Azure for further analysis or archive.

Use Azure Arc management to extend Azure management to all assets in your
workloads, regardless of where they are hosted. Key features of Azure Arc management
are:

Adopt cloud practices
Easily adopt DevOps techniques such as infrastructure as code.
Empower developers with self-service and choice of tools.
Standardize change control with configuration management systems, such as
GitOps and DSC.

Scale across workloads with Unified Operations
Organize resources such as virtual machines, Kubernetes clusters and Azure
services deployed across your entire IT environment.
Manage and govern resources with a single pane of glass from Azure.
Integrate with Azure Lighthouse for managed service provider support.

Modernize applications anywhere

Manage workloads anywhere

Next steps

https://learn.microsoft.com/en-us/azure/event-grid/kubernetes/?toc=/azure/cloud-adoption-framework/toc.json&bc=/azure/cloud-adoption-framework/_bread/toc.json
https://learn.microsoft.com/en-us/azure/api-management/how-to-deploy-self-hosted-gateway-azure-arc?toc=/azure/cloud-adoption-framework/toc.json&bc=/azure/cloud-adoption-framework/_bread/toc.json
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/hybrid/unified-operations

Cost optimization

https://learn.microsoft.com/en-us/azure/well-architected/hybrid/hybrid-cost

Overview of IoT workloads
Article • 04/27/2023

This section of the Microsoft Azure Well-Architected Framework aims to address the
challenges of building IoT workloads on Azure. This article describes the IoT design
areas, architecture patterns, and architecture layers in the IoT workload.

Five pillars of architectural excellence underpin the IoT workload design methodology.
These pillars serve as a compass for subsequent design decisions across the design
areas described in this article. The remaining articles in this series delve into how to
evaluate the design areas using IoT-specific design principles in the reliability, security,
cost optimization, operational excellence, and performance efficiency pillars.

The term workload refers to the collection of application resources that support a
common business goal or the execution of a common business process. These goals or
processes use multiple services, such as APIs and data stores. The services work together
to deliver specific end-to-end functionality.

Internet of Things (IoT) is a collection of managed and platform services across edge
and cloud environments that connect, monitor, and control physical assets.

An IoT workload therefore describes the practice of designing, building, and operating
IoT solutions to help meet architectural challenges according to your requirements and
constraints.

The IoT workload addresses the three components of IoT systems:

Things, or the physical objects, industrial equipment, devices, and sensors that
connect to the cloud persistently or intermittently.
Insights, information that the things collect that humans or AI analyze and turn into
actionable knowledge.

 Tip

To assess your IoT workload through the lenses of reliability, security, cost
optimization, operational excellence, and performance efficiency, see the Azure
Well-Architected Review.

What is an IoT workload?

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/

Actions, the responses of people or systems to insights, which connect to business
outcomes, systems, and tools.

Most IoT systems use either a connected products or connected operations architecture
pattern. Each pattern has specific requirements and constraints in the IoT design areas.

Connected products architectures focus on the hot path. End users manage and
interact with products by using real-time applications. This pattern applies to
manufacturers of smart devices for consumers and businesses in a wide range of
locations and settings. Examples include smart coffee machines, smart TVs, and
smart production machines. In these IoT solutions, the product builders provide
connected services to the product users.

Connected operations architectures focus on the warm or cold path with edge
devices, alerts, and cloud processing. These solutions analyze data from multiple
sources, gather operational insights, build machine learning models, and initiate
further device and cloud actions. The connected operations pattern applies to
enterprises and smart service providers that connect pre-existing machines and
devices. Examples include smart factories and smart buildings. In these IoT
solutions, service builders deliver smart services that provide insights and support
the effectiveness and efficiency of connected environments.

To learn more about the base solution architecture for IoT workloads, see Azure IoT
reference architecture and Industry specific Azure IoT reference architectures.

The Azure Well-Architected Framework consists of five pillars of architectural excellence,
which you can use to improve the quality of IoT workloads. The following articles
highlight how IoT-specific design principles influence decisions across IoT design areas:

Reliability ensures that applications meet availability commitments. Resiliency
ensures that workloads are available and can recover from failures at any scale.
Reliability in your IoT workload discusses how the IoT design areas of
heterogeneity, scalability, connectivity, and hybridity affect IoT reliability.

Security provides confidentiality, integrity, and availability assurances against
deliberate attacks and abuse of data and systems. Security in your IoT workload

IoT architecture patterns

Well-Architected Framework pillars in your IoT
workload

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/iot/industry-iot-hub-page
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-reliability
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-security

describes how heterogeneity and hybridity affect IoT security.

Cost optimization balances business goals with budget justification to create cost-
effective workloads while avoiding capital-intensive solutions. Cost optimization in
your IoT workload looks at ways to reduce expenses and improve operational
efficiency across IoT design areas.

Operational excellence covers the processes that build and run applications in
production. Operational excellence in your IoT workload discusses how
heterogeneity, scalability, connectivity, and hybridity affect IoT operations.

Performance efficiency is a workload's ability to scale efficiently to meet demands.
Performance efficiency in your IoT workload describes how heterogeneity,
scalability, connectivity, and hybridity affect IoT performance.

The key IoT design areas that facilitate a good IoT solution design are:

Heterogeneity
Security
Scalability
Flexibility
Serviceability
Connectivity
Hybridity

The design areas are interrelated and decisions made within one area can affect
decisions across the entire design. To evaluate the design areas, use the IoT-specific
design principles in the five pillars of architectural excellence. These principles help
clarify considerations to ensure your IoT workload meets requirements across
architecture layers.

The following sections describe the IoT design areas, and how they apply to the IoT
connected products and connected operations architecture patterns.

IoT solutions must accommodate various devices, hardware, software, scenarios,
environments, processing patterns, and standards. It's important to identify the
necessary level of heterogeneity for each architecture layer at design time.

IoT design areas

Heterogeneity

https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-cost-optimization
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-operational-excellence
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-performance

In connected products architectures, heterogeneity describes the varieties of machines
and devices that need to be supported. Heterogeneity also describes the variety of
environments where you can deploy smart product, such as networks and types of
users.

In connected operations architectures, heterogeneity focuses on support for different
operational technology (OT) protocols and connectivity.

IoT solutions must consider security and privacy measures across all layers. Security
measures include:

Device and user identity.
Authentication and authorization.
Data protection for data at rest and in transit.
Strategies for data attestation.

In connected products architectures, limited control over product use in heterogeneous
and widely distributed environments affects security. According to the Microsoft Threat
Modeling Tool STRIDE model, the highest risk to devices is from tampering, and the
threat to services is from denial of services from hijacked devices.

In connected operations architectures, the security requirements for the deployment
environment are important. Security focuses on specific OT environment requirements
and deployment models, such as ISA95 and Purdue, and integration with the cloud-
based IoT platform. Based on STRIDE, the highest security risks for connected operations
are spoofing, tampering, information disclosure, and elevation of privilege.

IoT solutions must be able to support hyper-scalability, with millions of connected
devices and events ingesting large amounts of data at high frequency. IoT solutions
must enable proof of concept and pilot projects that start with a few devices and events,
and then scale out to hyper-scale dimensions. Considering the scalability of each
architecture layer is essential to IoT solution success.

In connected products architectures, scale describes the number of devices. In most
cases, each device has a limited set of data and interactions, controlled by the device
builder, and scalability comes only from the number of devices deployed.

In connected operations architectures, scalability depends on the number of messages
and events to process. In general, the number of machines and devices is limited, but OT

Security

Scalability

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride

machines and devices send large numbers of messages and events.

IoT solutions build on the principle of composability, which enables combining various
first-party or third-party components as building blocks. A well-architected IoT solution
has extension points that enable integration with existing devices, systems, and
applications. A high-scale, event-driven architecture with brokered communication is
part of the backbone, with loosely coupled composition of services and processing
modules.

In connected products architectures, changing end-user requirements define flexibility.
Solutions should allow you to easily change device behavior and end-user services in
the cloud, and provide new services.

In connected operations architectures, the support for different types of devices defines
flexibility. Solutions should be able to easily connect legacy and proprietary protocols.

IoT solutions must consider ease of maintaining and repairing components, devices, and
other system elements. Early detection of potential problems is critical. Ideally, a well-
architected IoT solution should correct problems automatically before serious trouble
occurs. Maintenance and repair operations should cause as little downtime or disruption
as possible.

In connected products architectures, the wide distribution of devices affects
serviceability. The ability to monitor, manage, and update devices within end user
context and control, without direct access to that environment, is limited.

In connected operations architectures, serviceability depends on the given context,
controls, and procedures of the OT environment, which may include systems and
protocols already available or in use.

IoT solutions must be able to handle extended periods of offline, low-bandwidth, or
intermittent connectivity. To support connectivity, you can create metrics to track
devices that don't communicate regularly.

Connected products run in uncontrolled consumer environments, so connectivity is
unknown and hard to sustain. Connected products architectures must be able to

Flexibility

Serviceability

Connectivity

support unexpected extended periods of offline and low-bandwidth connectivity.

In connected operations architectures, the deployment model of the OT environment
affects connectivity. Typically, the degree of connectivity, including intermittent
connectivity, is known and managed in OT scenarios.

IoT solutions must address hybrid complexity, running on different hardware and
platforms across on-premises, edge, and multicloud environments. It's critical to
manage disparate IoT workload architectures, ensure uncompromised security, and
enable developer agility.

In connected products architectures, the wide distribution of devices defines hybridity.
The IoT solution builder controls the hardware and runtime platform, and hybridity
focuses on the diversity of the deployment environments.

In connected operations architectures, hybridity describes the data distribution and
processing logic. Scale and latency requirements determine where to process data and
how fast feedback must be.

An IoT architecture consists of a set of foundational layers. Specific technologies support
the different layers, and the IoT workload highlights options for designing and creating
each layer.

Core layers identify IoT-specific solutions.
Common layers aren't specific to IoT workloads.
Cross-cutting layers support all layers in designing, building, and running solutions.

The IoT workload addresses different layer-specific requirements and implementations.
The framework focuses on the core layers, and identifies the specific impact of the IoT
workload on the common layers.

Hybridity

IoT architecture layers

Transport layer

Device and
gateway

layerD
ev

O
ps Inges�on and

communica�on
layer

Event processing
and analy�cs

layer

Storage
layer

Interac�on
and

repor�ng
layer

Integra�on
layer

Device management and
modeling

layer

Core IoT layers Common layers

The following sections describe the IoT architecture layers and the Microsoft
technologies that support them.

The IoT core layers and services identify whether a solution is an IoT solution. The core
layers of an IoT workload are:

Device and gateway
Device management and modeling
Ingestion and communication

The IoT workload focuses primarily on these layers. To realize these layers, Microsoft
provides IoT technologies and services such as:

Azure IoT Hub
Azure IoT device SDKs

Core layers and services

https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

Azure IoT Edge
IoT Hub Device Provisioning Service (DPS)
Azure Digital Twins
Azure Sphere.

This layer represents the physical or virtual device and gateway hardware deployed at
the edge or on premises. Elements in this layer include the operating systems and the
device or gateway firmware. Operating systems manage the processes on the devices
and gateways. Firmware is the software and instructions programmed onto devices and
gateways. This layer is responsible for:

Sensing and acting on other peripheral devices and sensors.
Processing and transferring IoT data.
Communicating with the IoT cloud platform.
Base level device security, encryption, and trust root.
Device level software and processing management.

Common use cases include reading sensor values from a device, processing and
transferring data to the cloud, and enabling local communication.

Relevant Microsoft technologies include:

Azure IoT Edge
Azure IoT device SDKs
Azure RTOS
Microsoft Defender for IoT
Azure Sphere
Windows for IoT

 Tip

Azure IoT Central is a managed application platform that you can use to quickly
evaluate your IoT scenario and assess the opportunities for your business. After
you've used IoT Central to evaluate your IoT scenario, you can then build your
enterprise ready solution by using the power of Azure IoT platform.

Device and gateway layer

Ingestion and communication layer

https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge
https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://learn.microsoft.com/en-us/azure/digital-twins/overview
https://learn.microsoft.com/en-us/azure-sphere/product-overview/what-is-azure-sphere
https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://learn.microsoft.com/en-us/azure/rtos/overview-rtos
https://learn.microsoft.com/en-us/azure/defender-for-iot
https://learn.microsoft.com/en-us/azure-sphere/product-overview/what-is-azure-sphere
https://learn.microsoft.com/en-us/windows/iot
https://learn.microsoft.com/en-us/azure/iot-central/core/overview-iot-central

This layer aggregates and brokers communications between the device and gateway
layer and the IoT cloud solution. This layer enables:

Support for bi-directional communication with devices and gateways.
Aggregating and combining communications from different devices and gateways.
Routing communications to a specific device, gateway, or service.
Bridging and transforming between different protocols. For example, mediate
cloud or edge services into an MQTT message going to a device or gateway.

Relevant Microsoft technologies include:

Azure IoT Hub
Azure IoT Central

This layer maintains the list of devices and gateway identities, their state, and their
capabilities. This layer also enables the creation of device type models and relationships
between devices.

Relevant Microsoft technologies include:

IoT Hub device twins
IoT Hub Device Provisioning Service
Azure Digital Twins
IoT Plug and Play

Workloads other than IoT, such as Data & AI and modern applications, also use the
common layers. The top-level Azure Well-Architected Framework addresses the generic
elements of these common layers, and other workload frameworks address other
requirements. The following sections touch on the IoT-related influence on
requirements, and include links to other guidance.

This layer represents the way devices, gateways, and services connect and communicate,
the protocols they use, and how they move or route events, both on premises and in the
cloud.

Relevant Microsoft technologies include:

Device management and modeling layer

Common layers and services

Transport layer

https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub
https://learn.microsoft.com/en-us/azure/iot-central/core/overview-iot-central
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://learn.microsoft.com/en-us/azure/digital-twins/overview
https://learn.microsoft.com/en-us/azure/iot-develop/overview-iot-plug-and-play

OT and IoT protocols, such as MQTT(S), AMQP(S), HTTPS, OPC-UA, and Modbus
IoT Hub routing
IoT Edge routes

This layer processes and acts on the IoT events from the ingestion and communication
layer.

Hot path stream processing and analytics happen in near real-time to identify
immediate insights and actions. For example, stream processing generates alerts
when temperatures rise.
Warm path processing and analytics identify short-term insights and actions. For
example, analytics predict a trend of rising temperatures.
Cold path processing and analytics create intelligent data models for the hot or
warm paths to use.

Relevant Microsoft technologies include:

Azure Stream Analytics
Azure Functions
Azure Databricks
Azure Machine Learning
Azure Synapse Analytics

This layer persists IoT device event and state data for some period of time. The type of
storage depends on the required use for the data.

Streaming storage, such as message queues, decouple IoT services and
communication availability.
Time series-based storage enables warm-path analysis.
Long-term storage supports machine learning and AI model creation.

Relevant Microsoft technologies include:

Azure Event Hubs
Azure Data Explorer
Azure Cosmos DB
Azure SQL
Azure Data Lake Storage

Event processing and analytics layer

Storage layer

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c
https://learn.microsoft.com/en-us/azure/iot-edge/module-composition#declare-routes
https://learn.microsoft.com/en-us/azure/stream-analytics
https://learn.microsoft.com/en-us/azure/azure-functions
https://learn.microsoft.com/en-us/azure/databricks
https://learn.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-machine-learning
https://learn.microsoft.com/en-us/azure/synapse-analytics
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://learn.microsoft.com/en-us/azure/data-explorer
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/azure-sql
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction

This layer lets end users interact with the IoT platform and have a role-based view into
device state, analytics, and event processing.

Relevant Microsoft technologies include:

Azure App Service
Power Apps
Power BI
Dynamics 365 Connected Field Service

This layer enables interaction with systems outside the IoT solution by using machine-
to-machine or service-to-service communications APIs.

Relevant Microsoft technologies include:

Azure Logic Apps
Azure Functions
Azure API Management
Azure Event Grid
Power Automate

Cross-cutting activities like DevOps help you design, build, deploy, and monitor IoT
solutions. DevOps lets formerly siloed roles, like development, operations, quality
engineering, and security, coordinate and collaborate to produce better, more reliable,
and agile products.

DevOps is well-known in software development, but can apply to any product or
process development and operations. Teams who adopt a DevOps culture, practices,
and tools can better respond to customer needs, increase confidence in the applications
and products they build, and achieve business goals faster.

The following diagram shows the DevOps continuous planning, development, delivery,
and operations cycle:

Interaction and reporting layer

Integration layer

Cross-cutting activities

https://learn.microsoft.com/en-us/azure/app-service/overview
https://learn.microsoft.com/en-us/powerapps/powerapps-overview
https://learn.microsoft.com/en-us/power-bi/fundamentals/power-bi-overview
https://learn.microsoft.com/en-us/dynamics365/field-service/connected-field-service
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/api-management
https://learn.microsoft.com/en-us/azure/event-grid/overview
https://learn.microsoft.com/en-us/power-automate/getting-started

Development and deployment activities include the design, build, test, and
deployment of the IoT solution and its components. The activity covers all layers
and includes hardware, firmware, services, and reports.

Management and operations activities identify the current health state of the IoT
system across all layers.

Correctly executing DevOps and other cross-cutting activities can determine your
success in creating and running a well-architected IoT solution. Cross-cutting activities
help you meet the requirements set at design time and adjust for changing
requirements over time. It's important to clearly assess your expertise in these activities
and take measures to ensure execution at the required quality level.

Relevant Microsoft technologies include:

Visual Studio
Azure DevOps
Microsoft Security Development Lifecycle (SDL)
Azure Monitor
Azure Arc
Microsoft Defender for IoT
Microsoft Sentinel

Next steps
Reliability in your IoT workload

https://visualstudio.microsoft.com/
https://azure.microsoft.com/overview/what-is-devops
https://www.microsoft.com/securityengineering/sdl
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-arc/overview
https://learn.microsoft.com/en-us/azure/defender-for-iot
https://learn.microsoft.com/en-us/azure/sentinel/overview
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-reliability

Azure IoT reference architecture
Azure IoT documentation

Security in your IoT workload

Cost optimization in your IoT workload

Operational excellence in your IoT workload

Performance efficiency in your IoT workload

Related resources

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://learn.microsoft.com/en-us/azure/iot-fundamentals
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-security
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-cost-optimization
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-operational-excellence
https://learn.microsoft.com/en-us/azure/well-architected/iot/iot-performance

Mission-critical workload
documentation
Learn about building highly reliable workloads on Microsoft Azure. The articles provide
architectural guidance and a prescriptive approach for designing, building, and
operating mission-critical workloads. For a given set of business requirements, an
application should always be operational and available. While there are many
approaches to achieving high reliability, one of the goals is to accelerate adoption
toward cloud native solutions to derive maximum value from the Microsoft Cloud.

Get started

ｅ OVERVIEW

What is a mission-critical workload?

Design methodology

ｐ CONCEPT

Architecture pattern

Design principles

Cross-cutting concerns

Design areas

ｐ CONCEPT

Application design

Application platform

Data platform

Networking and connectivity

Health modeling

Deployment and testing

Security

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-overview
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-design-methodology
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-architecture-pattern
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-cross-cutting-issues
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-application-design
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-application-platform
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-data-platform
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-networking-connectivity
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-security

Operational procedures

Reference examples

Ｙ ARCHITECTURE

Baseline reference architecture

Baseline with network controls

Baseline in Azure landing zones

Baseline with App Services

Reference implementations

｀ DEPLOY

Mission-Critical Online

Mission-Critical Connected

Learn

ｄ TRAINING

Challenge Project - Design a mission-critical web application

Design a health model for your mission-critical workload

Continuously validate and test mission-critical workloads

Video library

ｑ VIDEO

What is a mission-critical workload?

Global distribution

Define a health model

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-operational-procedures
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-intro
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-network-architecture
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-landing-zone
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/mission-critical-app-service
https://github.com/azure/mission-critical-online
https://github.com/azure/mission-critical-connected
https://learn.microsoft.com/en-us/training/modules/azure-mission-critical/
https://learn.microsoft.com/en-us/training/modules/design-health-model-mission-critical-workload/
https://learn.microsoft.com/en-us/training/modules/continuous-validate-test-mission-critical-workloads/
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-overview#video-mission-critical-workloads-on-azure
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-application-design#global-distribution
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling#video-define-a-health-model-for-your-mission-critical-workload

Continuously validate your workload

Use multiple subscriptions

Development environments

Zero downtime deployments

Integration with Azure landing zones

ｑ VIDEO

Demo - Continuous validation with Azure Load Test and Azure Chaos Studio

Demo - Ephemeral dev environments and automated feature validation

Demo - Monitoring and health modeling

Assessment

ｃ HOW-TO GUIDE

Mission-critical assessment tool

Industry solutions

Ｙ ARCHITECTURE

Carrier-grade for telecommunications

Architect perspectives

ｑ VIDEO

Azure Friday - Health modeling for mission-critical workloads on Azure

Azure Friday - Continuously validate and test your mission-critical Azure workloads

Azure Friday - Deploy your mission-critical workload in an Azure landing zone

Azure Enablement Show - Designing a mission-critical workload on Azure

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#continuous-validation-and-testing
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#subscription-scoped-deployment
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#application-environments
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-design-methodology#4integrate-your-workload-in-azure-landing-zones
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#design-considerations-5
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#application-environments
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling#demo-video-monitoring-and-health-modeling-demo
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-assessment
https://learn.microsoft.com/en-us/azure/well-architected/carrier-grade/carrier-grade-get-started
https://www.youtube.com/watch?v=9B4oC2J3nXw
https://www.youtube.com/watch?v=NaQXjM0MLAc
https://www.youtube.com/watch?v=tHMHh5VU-kQ
https://www.youtube.com/watch?app=desktop&v=hgejBsROi4Y

Azure Enablement Show - Integrating a mission-critical workload with Azure landing zones

https://www.youtube.com/watch?v=WQVif9W3SQw

Oracle workload documentation
When you create an Oracle workload on Azure, follow Azure Well-Architected
Framework design principles and explore important design areas.

Get started

ｅ OVERVIEW

Create an Oracle workload on Azure

Design principles

Explore design areas

ｐ CONCEPT

Decouple workloads from Oracle Exadata

Choose compute and storage

Design Oracle applications

Optimize business continuity and disaster recovery

Optimize security

Monitor workloads

Take the assessment

ｃ HOW-TO GUIDE

Take the assessment for Oracle on Azure IaaS

https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/get-started
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/review-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/decouple-exadata
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/choose-compute-storage
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/design-applications
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/optimize-business-continuity-disaster-recovery
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/optimize-security
https://learn.microsoft.com/en-us/azure/well-architected/oracle-iaas/monitor-workloads
https://learn.microsoft.com/en-us/assessments/d3acb4d8-8045-4635-9a31-0bcb3b10724a

SAP workload documentation
Learn how to build an SAP workload on Azure

Get started

ｅ OVERVIEW

SAP workload

Design principles

Design areas

ｐ CONCEPT

Application design

Application platform

Data platform

Networking and connectivity

Security

Operational procedures

Reference examples

Ｙ ARCHITECTURE

SAP on Azure landing zone accelerator

Start small and expand with SAP HANA

Reference implementations

｀ DEPLOY

https://learn.microsoft.com/en-us/azure/well-architected/sap/get-started
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-principles
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/application-design
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/application-platform
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/data-platform
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/networking-and-connectivity
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/security
https://learn.microsoft.com/en-us/azure/well-architected/sap/design-areas/operational-procedures
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/sap/enterprise-scale-landing-zone
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/sap/run-sap-hana-for-linux-virtual-machines?bc=%2Fazure%2Fcloud-adoption-framework%2F_bread%2Ftoc.json&toc=%2Fazure%2Fcloud-adoption-framework%2Fscenarios%2Fsap%2Ftoc.json

SAP on Azure Deployment Automation Framework

Learn

ｄ TRAINING

How to use SAP on Azure Solutions

Assessment

ｃ HOW-TO GUIDE

Azure Well-Architected Review (SAP on Azure)

https://learn.microsoft.com/en-us/azure/virtual-machines/workloads/sap/automation-deployment-framework
https://learn.microsoft.com/en-us/training/topics/sap-on-azure
https://learn.microsoft.com/en-us/assessments/?mode=home

Sustainability workload documentation
In partnership with the Green Software Foundation, we've developed this set of
recommendations for optimizing Azure workloads. This documentation helps you plan
your path forward, improve your sustainability posture, and create new business value
while reducing your operational footprint.

Get started

ｅ OVERVIEW

What is sustainability?

Design methodology

Design principles

Design areas

ｐ CONCEPT

Application design

Application platform

Testing

Operational procedures

Networking and connectivity

Storage

Security

Reference examples

Ｙ ARCHITECTURE

Example scenario - Measure Azure app sustainability by using the SCI score

Learn

https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-get-started
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-design-methodology
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-design-principles
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-design
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-platform
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-testing
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-operational-procedures
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-networking
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-storage
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-security
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/apps/measure-azure-app-sustainability-sci-score

Learn

ｄ TRAINING

The Principles of Sustainable Software Engineering

Assessment

ｃ HOW-TO GUIDE

Sustainability assessment tool

https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/assessments/a24b1079-29a4-4d22-b678-376e84884f76/

Service guides are intended to help you in decision-making for individual Azure components within a
workload. Each guide highlights the core features and capabilities essential for achieving a state of
excellence. They aren't configuration guides or exhaustive lists of all features and capabilities, but rather
emphasize the usefulness of features from the perspective of the Well-Architected pillars.

Popular

G E T S T A R T E D
What is Well-Architected
Framework?

A R C H I T E C T U R E
Pillars

A R C H I T E C T U R E
Workloads

A R C H I T E C T U R E
Assessment tool

Browse the catalog of Azure services

Azure App Service
Quickly create powerful cloud
apps for web and mobile.

Azure Application
Gateway
Build highly secure, scalable,
and available web front ends in
Azure.

Azure Cosmos DB
Use a fast NoSQL database
with open APIs for any scale.

Well-Architected Framework perspective on
Azure services
Azure Well-Architected Framework is decision making tool to help solution architects build a
technical foundation for their workloads. Consider WAF perspectives on the Azure services that
are part of your solution.

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/

Azure ExpressRoute
Use dedicated private network
fiber connections to Azure.

Azure Firewall
Use native firewall capabilities
with built-in high availability,
unrestricted cloud scalability,
and zero maintenance.

Azure Front Door
Learn about the scalable,
security-enhanced delivery
point for global, microservice-
based web applications.

Azure Kubernetes Service
Simplify the deployment,
management, and operations
of Kubernetes.

Azure Machine Learning
Build, train, and deploy
machine learning models.

Azure OpenAI
Build intelligent apps with
large language models from
OpenAI with an enterprise-
ready service.

Other resources

What's new?
Learn about the updates for
the Azure Well-Architected
Framework.

What is the Well-
Architected Framework?
Learn how to use the Well-
Architected Framework and
audience profile.

API Management and reliability
Article • 11/14/2023

Learn how to use API Management to publish APIs to external, partner, and employee
developers securely and at scale. This networking service is a hybrid, multicloud
management platform for APIs across all environments.

Components include:

API gateway
Management plane
Developer portal

For more information, reference About API Management.

To understand how API Management can increase reliability for your workload,
reference the following topics:

Availability zone support for Azure API Management
How to deploy an Azure API Management service instance to multiple Azure
regions
How to implement disaster recovery using service backup and restore in Azure API
Management

Have you configured API Management with reliability in mind?

Consider the following recommendations to optimize reliability when configuring your
API Management service:

Checklist

Secure the communication between API Management and your backend.＂

Ensure that each party has its own credential when exposing APIs to third parties.＂

Ensure you set quotas and rate limits when exposing APIs to third parties.＂

Evaluate the need for response caching.＂

Plan a backup and restore process for your API Management instance.＂

Configure multiple Azure regions in your API Management service.＂

Implement a strategy to ensure availability during an outage or disaster affecting an
Azure region.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/api-management/
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#api-gateway
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#management-plane
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#developer-portal
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/api-management/zone-redundancy
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-deploy-multi-region
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-disaster-recovery-backup-restore
https://learn.microsoft.com/en-us/azure/api-management/api-management-faq#how-can-i-secure-the-connection-between-the-api-management-gateway-and-my-back-end-services

Recommendation Description

Ensure you set quotas and
rate limits when exposing
APIs to third parties.

Protect backend services and reduce the load placed on an API
Management scale unit. Rate limiting policies can be applied at
Global, Product, API, and Operation levels to provide rate limit
customization applied to API consumers.

Evaluate the need for
response caching.

Response caching can reduce API latency and bandwidth
consumption. Response caching reduces the load placed on the
backend APIs leading to improved performance, user experience,
and reduced solution cost.

Plan a backup and restore
process for your API
Management instance.

Consider taking regular backups of your API Management service
so that you can easily restore it in another region. Your recovery
time objective may require that a standby is deployed in a
secondary region. It is a good practice to take regular backups to
recreate the service due to unforeseen loss or misconfiguration of
the service. Regular backups allow you to replicate changes
between your primary and standby instances.

Configure multiple Azure
regions in your API
Management service.

Configure your API Management service with multiple regions to
provide high-availability support in case an Azure region
experiences downtime or a disaster scenario. Configuring multiple
regions also reduces API call latency because calls can be routed to
the nearest region.

Implement a strategy to
ensure availability during an
outage or disaster affecting
an Azure region.

Consider using Azure Traffic Manager, Azure Front Door, or Azure
DNS to enable access to multiple regional deployments of API
Management. Using these services ensures you can still serve
requests due to an outage or disaster. Requirements include
syncing configurations between these individual Standard
instances.

Next step
API Management and cost optimization

API Management and cost optimization
Article • 11/14/2023

Learn how to use API Management to publish APIs to external, partner, and employee
developers securely and at scale. This networking service is a hybrid, multicloud
management platform for APIs across all environments.

Components include:

API gateway
Management plane
Developer portal

For more information, reference About API Management.

To understand how API Management supports cost optimization for your workload,
reference the following topics:

Automatically scale an Azure API Management instance
Use a virtual network with Azure API Management

Have you configured API Management with cost optimization in mind?

Consider the following recommendations to optimize reliability when configuring your
API Management service:

Recommendation Description

Configure
autoscaling where
appropriate.

Consider scaling your API Management instance up or down to control
costs. You can configure API Management with Autoscale based on a
metric or a specific count. Costs depend upon the number of units, which
determines throughput in requests per seconds (RPS). An autoscaled API
Management instance switches between scale units appropriate for RPS
numbers during a specific time window. Autoscaling helps to achieve
balance between cost optimization and performance.

Checklist

Configure autoscaling where appropriate.＂

Consider which features you need all the time.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/api-management/
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#api-gateway
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#management-plane
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#developer-portal
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-autoscale
https://learn.microsoft.com/en-us/azure/api-management/virtual-network-concepts?tabs=stv2
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-autoscale

Recommendation Description

Consider which
features you need all
the time.

Consider switching between Basic, Standard, and Premium tiers. If a
workload does not need features available in higher tiers, then consider
switching to a lower tier. As an example, a workload may need just 1GB of
cache during off-peak periods compared to 5GB of cache during peak
periods. Costs associated with such a workload can be reduced by
switching from a Premium to Standard tier during off-peak periods and
back to a Premium tier during peak periods. This process can be
automated as a job using Set-AzApiManagement cmdlet. Refer to API
Management pricing about features available in different API
Management tiers.

Next step
API Management and operational excellence

https://learn.microsoft.com/en-us/powershell/module/az.apimanagement/set-azapimanagement?view=azps-7.1.0&viewFallbackFrom=azps-5.4.0&preserve-view=true
https://azure.microsoft.com/pricing/details/api-management/

API Management and operational
excellence
Article • 11/14/2023

Learn how to use API Management to publish APIs to external, partner, and employee
developers securely and at scale. This networking service is a hybrid, multicloud
management platform for APIs across all environments.

Components include:

API gateway
Management plane
Developer portal

For more information, reference About API Management.

To understand how API Management supports operational excellence, reference the
following topics:

Managing Azure API Management using Azure Automation
Observability in Azure API Management

Have you configured API Management with operational excellence in mind?

Checklist

Secure the communication between API Management and your backend.＂

Ensure that each party has its own credential when exposing APIs to third parties.＂

Ensure you set quotas and rate limits when exposing APIs to third parties.＂

Understand the Microsoft REST API design and architecture guidance.＂

Enable versioning of APIs to maintain backwards compatibility while adding other
features.

＂

Use the API Management Versioning and Revisions features to implement API
versioning.

＂

Understand the API import restrictions in API Management.＂

Understand the Event logging feature.＂

Trace calls in Azure API Management to help with debugging and testing.＂

Configure logging using Azure Monitor for the API Management service.＂

Choose the right modes to access private site connections.＂

Evaluate firewall rules and IP allowlists based on the API Management public IP
address.

＂

https://learn.microsoft.com/en-us/azure/api-management/
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#api-gateway
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#management-plane
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts#developer-portal
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/api-management/automation-manage-api-management
https://learn.microsoft.com/en-us/azure/api-management/observability
https://learn.microsoft.com/en-us/azure/api-management/api-management-faq#how-can-i-secure-the-connection-between-the-api-management-gateway-and-my-back-end-services

Consider the following recommendations for operational excellence when configuring
your API Management service:

Recommendation Description

Ensure you set quotas and
rate limits when exposing
APIs to third parties.

Protect backend services and reduce the load placed on an API
Management scale unit. Rate limiting policies can be applied at
Global, Product, API, and Operation levels to provide rate limit
customization applied to API consumers.

Understand the Microsoft
REST API design and
architecture guidance.

Follow standards and best practices when using the REST API.
Following best practices enables maximum compatibility across
platforms and implementations. Review the REST API Guidelines
and API Design guidance.

Understand the API import
restrictions in API
Management.

Every effort is made to ensure the API import process runs
smoothly, which includes requiring no customizations. Some
scenarios impose restrictions that will require modification to the
import source. Applies to both REST and SOAP services.
Reference Policy Restrictions for the current API Import
restrictions.

Understand the Event logging
feature.

Supports event logging to an Azure event hub to perform near
real-time analysis. This feature integrates with external logging,
security information and event management (SIEM) solutions, or
analyzing API usage in near real time.

Trace calls in Azure API
Management to help with
debugging and testing.

Tracing must be enabled on the subscription used to make the
request. Tracing is enabled on a request-by-request basis using
the Ocp-Apim-Trace header value. API Tracing is also built into
the admin portal and is enabled by default when testing APIs
from the portal.

Configure logging using
Azure Monitor for the API
Management service.

Logs can be sent to a Logs Analytics workspace to enable
complex querying and analysis. Metrics can be ingested for
longer term analysis. All data is then surfaced using Azure
Monitor. It is possible to integrate Application Insights for
Application Performance Management.

Choose the right modes to
access private site
connections.

Supports Virtual Network integration in internal and external
mode.

Evaluate firewall rules and IP
allowlists based on the API
Management public IP
address.

A fixed public IP address is available for the lifetime of the service
with the Basic, Developer, Standard, and Premium plans for API
Management.

Configuration recommendations

https://learn.microsoft.com/en-us/rest/api/policy/policy-restrictions
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-api-inspector

Next step
Reliability and Azure Firewall

Azure Well-Architected Framework
review - Azure Application Gateway v2
Article • 11/14/2023

This article provides architectural best practices for the Azure Application Gateway v2
family of SKUs. The guidance is based on the five pillars of architectural excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

We assume that you have a working knowledge of Azure Application Gateway and are
well-versed with v2 SKU features. For more information, see Azure Application Gateway
features.

Understanding the Well-Architected Framework pillars can help produce a high-
quality, stable, and efficient cloud architecture. We recommend that you review
your workload by using the Azure Well-Architected Framework Review assessment.
Use a reference architecture to review the considerations based on the guidance
provided in this article. We recommend that you start with Protect APIs with
Application Gateway and API Management and IaaS: Web application with
relational database.

In the cloud, we acknowledge that failures happen. Instead of trying to prevent failures
altogether, the goal is to minimize the effects of a single failing component. Use the
following information to minimize failed instances.

As you make design choices for Application Gateway, review the Reliability design
principles.

Prerequisites

Reliability

Design checklist

Deploy the instances in a zone-aware configuration, where available.＂

https://learn.microsoft.com/en-us/azure/application-gateway/features
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/apis/protect-apis
https://learn.microsoft.com/en-us/azure/architecture/high-availability/ref-arch-iaas-web-and-db
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-autoscaling-zone-redundant

Explore the following table of recommendations to optimize your Application Gateway
configuration for Reliability.

Recommendation Benefit

Plan for rule updates Plan enough time for updates before accessing Application
Gateway or making further changes. For example, removing
servers from backend pool might take some time because they
have to drain existing connections.

Use health probes to detect
backend unavailability

If Application Gateway is used to load balance incoming traffic
over multiple backend instances, we recommend the use of
health probes. These will ensure that traffic is not routed to
backends that are unable to handle the traffic.

Review the impact of the
interval and threshold settings
on health probes

The health probe sends requests to the configured endpoint at
a set interval. Also, there's a threshold of failed requests that
will be tolerated before the backend is marked unhealthy.
These numbers present a trade-off.

- Setting a higher interval puts a higher load on your service.
Each Application Gateway instance sends its own health
probes, so 100 instances every 30 seconds means 100 requests
per 30 seconds.
- Setting a lower interval leaves more time before an outage is
detected.
- Setting a low unhealthy threshold might mean that short,
transient failures might take down a backend.
- Setting a high threshold it can take longer to take a backend
out of rotation.

Verify downstream
dependencies through health
endpoints

Suppose each backend has its own dependencies to ensure
failures are isolated. For example, an application hosted
behind Application Gateway might have multiple backends,
each connected to a different database (replica). When such a
dependency fails, the application might be working but won't

Use Application Gateway with Web Application Firewall (WAF) within a virtual
network to protect inbound HTTP/S traffic from the Internet.

＂

In new deployments, use Azure Application Gateway v2 unless there is a compelling
reason to use Azure Application Gateway v1.

＂

Plan for rule updates＂

Use health probes to detect backend unavailability＂

Review the impact of the interval and threshold settings on health probes＂

Verify downstream dependencies through health endpoints＂

Recommendations

Recommendation Benefit

return valid results. For that reason, the health endpoint
should ideally validate all dependencies. Keep in mind that if
each call to the health endpoint has a direct dependency call,
that database would receive 100 queries every 30 seconds
instead of 1. To avoid this, the health endpoint should cache
the state of the dependencies for a short period of time.

When using Azure Front Door
and Application Gateway to
protect HTTP/S applications, use
WAF policies in Front Door and
lock down Application Gateway
to receive traffic only from
Azure Front Door.

Certain scenarios can force you to implement rules specifically
on Application Gateway. For example, if ModSec CRS 2.2.9,
CRS 3.0 or CRS 3.1 rules are required, these rules can be only
implemented on Application Gateway. Conversely, rate-
limiting and geo-filtering are available only on Azure Front
Door, not on AppGateway.

Azure Advisor helps you ensure and improve continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Security is one of the most important aspects of any architecture. Application Gateway
provides features to employ both the principle of least privilege and defense-in-defense.
We recommend you review the Security design principles.

Explore the following table of recommendations to optimize your Application Gateway
configuration for Security.

Security

Design checklist

Set up a TLS policy for enhanced security＂

Use AppGateway for TLS termination＂

Use Azure Key Vault to store TLS certificates＂

When re-encrypting backend traffic, ensure the backend server certificate contains
both the root and intermediate Certificate Authorities (CAs)

＂

Use an appropriate DNS server for backend pool resources＂

Comply with all NSG restrictions for Application Gateway＂

Refrain from using UDRs on the Application Gateway subnet＂

Be aware of Application Gateway capacity changes when enabling WAF＂

Recommendations

Recommendation Benefit

Set up a TLS policy for
enhanced security

Set up a TLS policy for extra security. Ensure you're using the latest
TLS policy version (AppGwSslPolicy20170401S). This enforces TLS
1.2 and stronger ciphers.

Use AppGateway for TLS
termination

There are advantages of using Application Gateway for TLS
termination:

- Performance improves because requests going to different
backends to have to re-authenticate to each backend.
- Better utilization of backend servers because they don't have to
perform TLS processing
- Intelligent routing by accessing the request content.
- Easier certificate management because the certificate only needs
to be installed on Application Gateway.

Use Azure Key Vault to store
TLS certificates

Application Gateway is integrated with Key Vault. This provides
stronger security, easier separation of roles and responsibilities,
support for managed certificates, and an easier certificate renewal
and rotation process.

When re-encrypting
backend traffic, ensure the
backend server certificate
contains both the root and
intermediate Certificate
Authorities (CAs)

A TLS certificate of the backend server must be issued by a well-
known CA. If the certificate was not issued by a trusted CA, the
Application Gateway checks if the certificate of the issuing CA was
issued by a trusted CA, and so on until either a trusted CA is found.
Only then a secure connection is established. Otherwise,
Application Gateway marks the backend as unhealthy.

Use an appropriate DNS
server for backend pool
resources

When the backend pool contains a resolvable FQDN, the DNS
resolution is based on a private DNS zone or custom DNS server (if
configured on the VNet), or it uses the default Azure-provided
DNS.

Comply with all NSG
restrictions for Application
Gateway

NSGs are supported on Application Gateway subnet, but there are
some restrictions. For instance, some communication with certain
port ranges is prohibited. Make sure you understand the
implications of those restrictions. For details, see Network security
groups.

Refrain from using UDRs on
the Application gateway
subnet

Using User Defined Routes (UDR) on the Application Gateway
subnet can cause some issues. Health status in the back-end might
be unknown. Application Gateway logs and metrics might not get
generated. We recommend that you don't use UDRs on the
Application Gateway subnet so that you can view the back-end
health, logs, and metrics. If your organizations require to use UDR
in the Application Gateway subnet, please ensure you review the
supported scenarios. For more information, see Supported user-
defined routes.

https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-ssl-policy-overview#appgwsslpolicy20170401s
https://learn.microsoft.com/en-us/azure/application-gateway/key-vault-certs
https://learn.microsoft.com/en-us/azure/application-gateway/configuration-infrastructure#network-security-groups
https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-diagnostics#back-end-health
https://learn.microsoft.com/en-us/azure/application-gateway/configuration-infrastructure#supported-user-defined-routes

Recommendation Benefit

Be aware of Application
Gateway capacity changes
when enabling WAF

When WAF is enabled, every request must be buffered by the
Application Gateway until it fully arrives and check if the request
matches with any rule violation in its core rule set and then forward
the packet to the backend instances. For large file uploads (30MB+
in size), this can result in a significant latency. Because Application
Gateway capacity requirements are different with WAF, we do not
recommend enabling WAF on Application Gateway without proper
testing and validation.

For more suggestions, see Principles of the security pillar.

Azure Advisor helps you ensure and improve continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Web Application Firewall (WAF) should be enabled for Application Gateway .
Deploy Azure Web Application Firewall (WAF) in front of public facing web
applications for additional inspection of incoming traffic. Web Application Firewall
(WAF) provides centralized protection of your web applications from common
exploits and vulnerabilities such as SQL injections, Cross-Site Scripting, local and
remote file executions. You can also restrict access to your web applications by
countries/regions, IP address ranges, and other http(s) parameters via custom
rules.
Web Application Firewall (WAF) should use the specified mode for Application
Gateway . Mandates the use of 'Detection' or 'Prevention' mode to be active on
all Web Application Firewall policies for Application Gateway.
Azure DDoS Protection should be enabled . DDoS protection should be enabled
for all virtual networks with a subnet that is part of an application gateway with a
public IP.

All built-in policy definitions related to Azure Networking are listed in Built-in policies -
Network.

Cost optimization is about looking at ways to reduce unnecessary expenses and
improve operational efficiencies. We recommend you review the Cost optimization
design principles.

Policy definitions

Cost optimization

https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://ms.portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F564feb30-bf6a-4854-b4bb-0d2d2d1e6c66
https://ms.portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F12430be1-6cc8-4527-a9a8-e3d38f250096
https://ms.portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fa7aca53f-2ed4-4466-a25e-0b45ade68efd
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#network

Explore the following table of recommendations to optimize your Application Gateway
configuration for Cost optimization.

Recommendation Benefit

Familiarize yourself with
Application Gateway
pricing

For information about Application Gateway pricing, see Understanding
Pricing for Azure Application Gateway and Web Application Firewall.
You can also leverage the Pricing calculator .

Ensure that the options are adequately sized to meet the capacity
demand and deliver expected performance without wasting resources.

Review underutilized
resources

Identify and delete Application Gateway instances with empty backend
pools to avoid unnecessary costs.

Stop Application
Gateway instances
when not in use

You aren't billed when Application Gateway is in the stopped state.
Continuously running Application Gateway instances can incur
extraneous costs. Evaluate usage patterns and stop instances when you
don't need them. For example, usage after business hours in Dev/Test
environments is expected to be low.

See these articles for information about how to stop and start
instances.
- Stop-AzApplicationGateway
- Start-AzApplicationGateway

Have a scale-in and
scale-out policy

A scale-out policy ensures that there will be enough instances to
handle incoming traffic and spikes. Also, have a scale-in policy that
makes sure the number of instances are reduced when demand drops.
Consider the choice of instance size. The size can significantly impact
the cost. Some considerations are described in the Estimate the
Application Gateway instance count.

For more information, see What is Azure Application Gateway v2?

Review consumption
metrics across different
parameters

You're billed based on metered instances of Application Gateway based
on the metrics tracked by Azure. Evaluate the various metrics and
capacity units and determine the cost drivers. For more information,

Design checklist

Familiarize yourself with Application Gateway pricing＂

Review underutilized resources＂

Stop Application Gateway instances that are not in use＂

Have a scale-in and scale-out policy＂

Review consumption metrics across different parameters＂

Recommendations

https://azure.microsoft.com/pricing/details/application-gateway/
https://azure.microsoft.com/pricing/calculator/
https://learn.microsoft.com/en-us/powershell/module/az.network/stop-azapplicationgateway?view=azps-6.0.0&viewFallbackFrom=azps-5.2.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/module/az.network/start-azapplicationgateway?view=azps-5.2.0&preserve-view=true
https://learn.microsoft.com/en-us/azure/application-gateway/overview-v2#pricing.

Recommendation Benefitsee Microsoft Cost Management and Billing .

The following metrics are key for Application Gateway. This information
can be used to validate that the provisioned instance count matches
the amount of incoming traffic.

- Estimated Billed Capacity Units
- Fixed Billable Capacity Units
- Current Capacity Units

For more information, see Application Gateway metrics.

Make sure you account for bandwidth costs.

For more suggestions, see Principles of the cost optimization pillar.

Azure Advisor helps you ensure and improve continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Monitoring and diagnostics are crucial for ensuring operational excellence of your
Application Gateway and the web applications or backends behind the gateway. You can
not only measure performance statistics but also use metrics to troubleshoot and
remediate issues quickly. We recommend you review the Operational Excellence design
principles.

Explore the following table of recommendations to optimize your Application Gateway
configuration for Operational excellence.

Operational excellence

Design checklist

Monitor capacity metrics＂

Enable diagnostics on Application Gateway and Web Application Firewall (WAF)＂

Use Azure Monitor Network Insights＂

Match timeout settings with the backend application＂

Monitor Key Vault configuration issues using Azure Advisor＂

Configure and monitor SNAT port limitations＂

Consider SNAT port limitations in your design＂

Recommendations

https://azure.microsoft.com/services/cost-management/#overview
https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-metrics#application-gateway-metrics

Recommendation Benefit

Monitor capacity
metrics

Use these metrics as indicators of utilization of the provisioned
Application Gateway capacity. We strongly recommend setting up
alerts on capacity. For details, see Application Gateway high traffic
support.

Troubleshoot using
metrics

There are other metrics that can indicate issues either at Application
Gateway or the backend. We recommend evaluating the following
alerts:

- Unhealthy Host Count
- Response Status (dimension 4xx and 5xx)
- Backend Response Status (dimension 4xx and 5xx)
- Backend Last Byte Response Time
- Application Gateway Total Time

For more information, see Metrics for Application Gateway.

Enable diagnostics on
Application Gateway
and Web Application
Firewall (WAF)

Diagnostic logs allow you to view firewall logs, performance logs, and
access logs. Use these logs to manage and troubleshoot issues with
Application Gateway instances. For more information, see Back-end
health and diagnostic logs for Application Gateway.

Use Azure Monitor
Network Insights

Azure Monitor Network Insights provides a comprehensive view of
health and metrics for network resources, including Application
Gateway. For additional details and supported capabilities for
Application Gateway, see Azure Monitor Network insights.

Match timeout settings
with the backend
application

Ensure you have configured the IdleTimeout settings to match the
listener and traffic characteristics of the backend application. The
default value is set to four minutes and can be configured to a
maximum of 30. For more information, see Load Balancer TCP Reset
and Idle Timeout.

For workload considerations, see Monitoring application health for
reliability.

Monitor Key Vault
configuration issues
using Azure Advisor

Application Gateway checks for the renewed certificate version in the
linked Key Vault at every 4-hour interval. If it is inaccessible due to any
incorrect Key Vault configuration, it logs that error and pushes a
corresponding Advisor recommendation. You must configure the
Advisor alerts to stay updated and fix such issues immediately to avoid
any Control or Data plane related problems. For more information, see
Investigating and resolving key vault errors. To set an alert for this
specific case, use the Recommendation Type as Resolve Azure Key
Vault issue for your Application Gateway.

Consider SNAT port
limitations in your

SNAT port limitations are important for backend connections on the
Application Gateway. There are separate factors that affect how

https://learn.microsoft.com/en-us/azure/application-gateway/high-traffic-support
https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-metrics
https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-diagnostics
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/network-insights-overview
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-tcp-reset
https://learn.microsoft.com/en-us/azure/architecture/framework/resiliency/monitoring
https://learn.microsoft.com/en-us/azure/application-gateway/key-vault-certs#investigating-and-resolving-key-vault-errors

Recommendation Benefit

design Application Gateway reaches the SNAT port limit. For example, if the
backend is a public IP address, it will require its own SNAT port. In
order to avoid SNAT port limitations, you can increase the number of
instances per Application Gateway, scale out the backends to have
more IP addresses, or move your backends into the same virtual
network and use private IP addresses for the backends.

Requests per second (RPS) on the Application Gateway will be affected
if the SNAT port limit is reached. For example, if an Application
Gateway reaches the SNAT port limit, then it won't be able to open a
new connection to the backend, and the request will fail.

For more suggestions, see Principles of the operational excellence pillar.

Azure Advisor helps you ensure and improve continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Performance efficiency is the ability of your workload to scale to meet the demands
placed on it by users in an efficient manner. We recommend you review the
Performance efficiency principles.

Explore the following table of recommendations to optimize your Application Gateway
configuration for Performance efficiency.

Recommendation Benefit

Estimate the Application
Gateway instance count

Application Gateway v2 scales out based on many aspects, such as
CPU, network throughput, current connections, and more. To
determine the approximate instance count, factor in these metrics:

Performance efficiency

Design checklist

Estimate the Application Gateway instance count＂

Define the maximum instance count＂

Define the minimum instance count＂

Define Application Gateway subnet size＂

Take advantage of Application Gateway V2 features for autoscaling and
performance benefits

＂

Recommendations

https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles

Recommendation Benefit

Current compute units — Indicates CPU utilization. 1 Application
Gateway instance is approximately 10 compute units.
Throughput — Application Gateway instance can serve ~500 Mbps of
throughput. This data depends on the type of payload.

Consider this equation when calculating instance counts.

Approximate instance count = max
Current compute units Throughput in Mbps

,
10 500

After you've estimated the instance count, compare that value to the
maximum instance count. This will indicate how close you are to the
maximum available capacity.

Define the minimum
instance count

For Application Gateway v2 SKU, autoscaling takes some time
(approximately six to seven minutes) before the additional set of
instances is ready to serve traffic. During that time, if there are short
spikes in traffic, expect transient latency or loss of traffic.

We recommend that you set your minimum instance count to an
optimal level. After you estimate the average instance count and
determine your Application Gateway autoscaling trends, define the
minimum instance count based on your application patterns. For
information, see Application Gateway high traffic support.

Check the Current Compute Units for the past one month. This metric
represents the gateway's CPU utilization. To define the minimum
instance count, divide the peak usage by 10. For example, if your
average Current Compute Units in the past month is 50, set the
minimum instance count to five.

Define the maximum
instance count

We recommend 125 as the maximum autoscale instance count. Make
sure the subnet that has the Application Gateway has sufficient
available IP addresses to support the scale-up set of instances.

Setting the maximum instance count to 125 has no cost implications
because you're billed only for the consumed capacity.

Define Application
Gateway subnet size

Application Gateway needs a dedicated subnet within a virtual
network. The subnet can have multiple instances of the deployed
Application Gateway resource. You can also deploy other Application
Gateway resources in that subnet, v1 or v2 SKU.

Here are some considerations for defining the subnet size:

- Application Gateway uses one private IP address per instance and
another private IP address if a private front-end IP is configured.

https://learn.microsoft.com/en-us/azure/application-gateway/high-traffic-support

Recommendation Benefit

- Azure reserves five IP addresses in each subnet for internal use.
- Application Gateway (Standard or WAF SKU) can support up to 32
instances. Taking 32 instance IP addresses + 1 private front-end IP + 5
Azure reserved, a minimum subnet size of /26 is recommended.
Because the Standard_v2 or WAF_v2 SKU can support up to 125
instances, using the same calculation, a subnet size of /24 is
recommended.
- If you want to deploy additional Application Gateway resources in
the same subnet, consider the additional IP addresses that will be
required for their maximum instance count for both, Standard and
Standard v2.

Take advantage of
features for autoscaling
and performance
benefits

The v2 SKU offers autoscaling to ensure that your Application
Gateway can scale up as traffic increases. When compared to v1 SKU,
v2 has capabilities that enhance the performance of the workload. For
example, better TLS offload performance, quicker deployment and
update times, zone redundancy, and more. For more information
about autoscaling features, see Scaling Application Gateway v2 and
WAF v2.

If you are running v1 SKU Application gateway, consider migrating to
the Application gateway v2 SKU. For more information, see Migrate
Azure Application Gateway and Web Application Firewall from v1 to
v2.

Azure Advisor helps you ensure and improve continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you
improve the reliability, security, cost-effectiveness, performance, and operational
excellence of your Application Gateway.

Ensure application gateway fault tolerance
Do not override hostname to ensure website integrity

Azure Advisor recommendations

Reliability

Additional resources

https://learn.microsoft.com/en-us/azure/application-gateway/application-gateway-autoscaling-zone-redundant
https://learn.microsoft.com/en-us/azure/application-gateway/migrate-v1-v2
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations#ensure-application-gateway-fault-tolerance
https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations#do-not-override-hostname-to-ensure-website-integrity

Using API gateways in microservices
Firewall and Application Gateway for virtual networks
Protect APIs with Application Gateway and API Management
IaaS: Web application with relational database
Securely managed web applications
Zero-trust network for web applications with Azure Firewall and Application
Gateway

Deploy an Application Gateway to see how it works: Quickstart: Direct web traffic
with Azure Application Gateway - Azure portal

Azure Architecture Center guidance

Next steps

https://learn.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/firewall-application-gateway
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/apis/protect-apis
https://learn.microsoft.com/en-us/azure/architecture/high-availability/ref-arch-iaas-web-and-db
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/apps/fully-managed-secure-apps
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/application-gateway-before-azure-firewall
https://learn.microsoft.com/en-us/azure/application-gateway/quick-create-portal

Security and Application Insights
Article • 11/14/2023

Application Insights is a feature of Azure Monitor. This feature provides extensible
application performance management (APM) and monitoring for live web apps.

Key features include:

Supports a wide variety of platforms, including .NET, Node.js, Java, and Python.
Works for apps hosted on-premises, hybrid, or on any public cloud.
Integrates with DevOps processes.
Has connection points to many development tools.
Can monitor and analyze customer data from mobile apps by integrating with
Visual Studio App Center.

For more information, reference Application Insights overview.

Have you configured Application Insights with security in mind?

Consider the following security recommendation when configuring Application Insights:

Recommendation Description

Review instances where
customer data is captured in
your application.

We don't recommend collecting customer data in Application
Insights, although it can be unavoidable. It's up to you and
your company to determine the strategy you'll use to handle
your private data.

Checklist

Review instances where customer data is captured in your application.＂

Configuration recommendations

Next step
Cost optimization and Application Insights

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

Cost optimization and Application
Insights
Article • 11/14/2023

Application Insights is a feature of Azure Monitor. This feature provides extensible
application performance management (APM) and monitoring for live web apps.

Key features include:

Supports a wide variety of platforms, including .NET, Node.js, Java, and Python.
Works for apps hosted on-premises, hybrid, or on any public cloud.
Integrates with DevOps processes.
Has connection points to many development tools.
Can monitor and analyze customer data from mobile apps by integrating with
Visual Studio App Center.

For more information, reference Application Insights overview.

Application Insights includes the following design considerations for cost optimization:

Consider using sampling to reduce the amount of data that's sent:

Sampling is a feature in Application Insights. It's a recommended way to reduce
data traffic, data, and storage costs. Refer to Sampling in Application Insights.

Consider turning off collection for unneeded modules:

On configuration files, you can enable or disable data modules and initializers for
tracking data from your applications. Refer to Application Insights for web pages.

Consider limiting Asynchronous JavaScript and XML (AJAX) call tracing:

AJAX calls can be limited to reduce costs. Refer to Application Insights for web
pages, which explains the fields and its configurations.

Have you configured Application Insights with cost optimization in mind?

Design considerations

Checklist

Evaluate usage of daily cap to limit the daily ingestion for your workspace.＂

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/sampling
https://learn.microsoft.com/en-us/azure/azure-monitor/app/javascript#configuration
https://learn.microsoft.com/en-us/azure/azure-monitor/app/javascript#configuration

Consider the following recommendations for cost optimization when configuring
Application Insights:

Recommendation Description

Evaluate daily cap
usage to limit the daily
ingestion for your
workspace.

Daily cap is used to manage an unexpected increase in data volume.
Use daily cap when you want to limit unplanned charges for your
workspace. Use care with this configuration as it can cause some data
to be unwritten on Log Analytics workspace if the daily cap is reached.
This configuration can impact services whose functionality may depend
on the availability of up-to-date data in the workspace. Refer to Set the
Daily Cap about how to set the daily cap in Application Insights. Note: If
you have a workspace-based Application Insights, use the daily cap in
workspace to limit ingestion and costs instead of using the cap in
Application Insights.

Use sampling in Azure Application Insights to reduce data traffic, data costs, and
storage costs, while preserving a statistically correct analysis of application data.

＂

Configuration recommendations

Next step
Operational excellence and Application Insights

https://learn.microsoft.com/en-us/azure/azure-monitor/app/pricing#set-the-daily-cap

Operational excellence and Application
Insights
Article • 11/14/2023

Application Insights is a feature of Azure Monitor. This feature provides extensible
application performance management (APM) and monitoring for live web apps.

Key features include:

Supports a wide variety of platforms, including .NET, Node.js, Java, and Python.
Works for apps hosted on-premises, hybrid, or on any public cloud.
Integrates with DevOps processes.
Has connection points to many development tools.
Can monitor and analyze customer data from mobile apps by integrating with
Visual Studio App Center.

For more information, reference Application Insights overview.

Have you configured Application Insights with operational excellence in mind?

Checklist

Configure Application Insights to monitor the availability and responsiveness of
your web application.

＂

Be aware that Application Insights can be used to monitor deployed sites and
services on-premises (or on an Azure Virtual Machine (VM)).

＂

Evaluate Java codeless application monitoring for your Java-based application
development stack.

＂

Configure sampling in Application Insights.＂

Record custom events and metrics from sites and services in Application Insights.＂

Use Application Insights to ingest existing log traces from common libraries, such
as ILogger , Nlog , and log4Net .

＂

Become familiar with the Application Insights quotas and limits.＂

Review the need for custom analysis. Use Application Insights data with tools such
as Azure Dashboards or Power BI.

＂

Separate data across Application Insights resources.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

Consider the following recommendations for operational excellence when configuring
Application Insights:

Recommendation Description

Configure Application
Insights to monitor the
availability and
responsiveness of your
web application.

After you've deployed your application, you can set up recurring
tests to monitor availability and responsiveness. Application Insights
sends web requests to your application at regular intervals from
points around the world. It can alert you if your application isn't
responding or if it responds too slowly.

Evaluate Java codeless
application monitoring for
your Java-based
application development
stack.

Java codeless application monitoring is all about simplicity. There are
no code changes. You can enable the Java agent through a couple of
configuration changes. The Java agent works in any environment
and allows you to monitor all your Java applications. No matter if
you're running your Java apps on Virtual Machines, on-premises, in
Azure Kubernetes Service (AKS), on Windows, or Linux, the Java 3.0
agent will monitor your app.

Configure sampling in
Application Insights.

Ingestion sampling operates at the point where the data from your
web servers, browsers, and devices reaches the Application Insights
service endpoints. Although it doesn't reduce the data sent from
your app, it does reduce the amount processed, retained, and
charged by Application Insights. Use this type of sampling if your
app often goes above its monthly quota. Use ingestion sampling if
you don't have access to the Software Development Kit (SDK)-based
types of sampling.

Record custom events and
metrics from sites and
services in Application
Insights.

Use Application Insights to record domain-specific custom events
and metrics from your site or service. For example: number-of-active-
baskets or product-lines-out-of-stock.

Use Application Insights
to ingest existing log
traces from common
libraries, such as ILogger ,
Nlog , and log4Net .

If you're already using a logging framework such as ILogger , Nlog ,
log4Net , or System.Diagnostics.Trace , we recommend sending your
diagnostic tracing logs to Application Insights. For Python
applications, send diagnostic tracing logs using AzureLogHandler in
OpenCensus Python for Azure Monitor. You can explore and search
these logs, which are merged with the other log files from your
application. Merging the log files allows you to identify traces
associated with each user request and correlate them with other
events and exception reports.

Become familiar with the
Application Insights
quotas and limits.

This information can influence your sampling model and your
strategy for separating Application Insights resources.

Review the need for
custom analysis. Use
Application Insights data

There are several available options to analyze your Application
Insights data. For example, you can create a dashboard in the Azure
portal that includes tiles visualizing data from multiple Azure

Recommendation Description

with tools such as Azure
Dashboards or Power BI.

resources across different resource groups and subscriptions.
Alternatively, you can use Power BI to analyze data combined with
data from other sources and share insights.

Separate data across
Application Insights
resources.

It's important to consider when to share a single Application Insights
resource and when to create a new one. For example, you should
use a single resource for application components that you deploy
together, a single Team develops, or that the same set of DevOps or
ITOps users manages. You should use a separate resource for
different environments.

Next step
Operational excellence and Application Insights

Azure Well-Architected Framework
review - Azure Firewall
Article • 11/14/2023

This article provides architectural recommendations for Azure Firewall. The guidance is
based on the five pillars of architecture excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

We assume that you have working knowledge of Azure Firewall and are well versed with
its features. For more information, see Azure Firewall Overview.

Understanding the Azure Well-Architected Framework pillars can help produce a
high-quality, stable, and efficient cloud architecture. Review your workload by
using the Well-Architected Framework review assessment.
Use a reference architecture to review the considerations based on the guidance
provided in this article. Start with Network-hardened web application with private
connectivity to PaaS datastores and Implement a secure hybrid network.

To learn how Azure Firewall supports workloads reliably, see the following articles:

Introduction to Azure Firewall
Quickstart: Deploy Azure Firewall with availability zones
Configure Azure Firewall in a Virtual WAN hub

As you make design choices for Azure Firewall, review the design principles for
reliability.

Prerequisites

Reliability

Design checklist

Deploy Azure Firewall in hub virtual networks or as part of Azure Virtual WAN hubs.＂

Leverage Availability Zones resiliency.＂

https://learn.microsoft.com/en-us/azure/firewall/overview
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/security/hardened-web-app
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/secure-vnet-dmz?tabs=portal
https://learn.microsoft.com/en-us/training/modules/introduction-azure-firewall/
https://learn.microsoft.com/en-us/azure/firewall/deploy-template
https://learn.microsoft.com/en-us/azure/virtual-wan/howto-firewall
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Explore the following table of recommendations to optimize your Azure Firewall
configuration for reliability.

Recommendation Benefit

Use Azure Firewall Manager with
traditional Hub & Spokes or
Azure Virtual WAN network
topologies to deploy and
manage instances of Azure
Firewall.

Easily create hub-and-spoke and transitive architectures with
native security services for traffic governance and protection.

For more information on network topologies, see the Azure
Cloud Adoption Framework documentation.

Create Azure Firewall Policies to
govern the security posture
across global network
environments. Assign policies to
all instances of Azure Firewall.

Azure Firewall Policies can be arranged in an hierarchical
structure to overlay a central base policy. Allow for granular
policies to meet the requirements of specific regions.
Delegate incremental firewall policies to local security teams
through role-based access control (RBAC). Some settings are
specific per instance, for example DNAT Rules and DNS
configuration, then multiple specialized policies might be
required.

Migrate Azure Firewall Classic
Rules to Azure Firewall Manager
Policies for existing deployments.

For existing deployments, migrate Azure Firewall rules to
Azure Firewall Manager policies. Use Azure Firewall Manager
to centrally manage your firewalls and policies.

For more information, see Migrate to Azure Firewall Premium.

Review the list of Azure Firewall
Known Issues.

Azure Firewall Product Group maintains an updated list of
known-issues at this location. This list contains important
information related to by-design behavior, fixes under

Create Azure Firewall Policy structure.＂

Review the Known Issue list.＂

Monitor Azure Firewall health state.＂

７ Note

There are differences in the availability of network services between the traditional
Hub & Spoke model and Virtual WAN managed secured hubs. For example, in a
Virtual WAN Hub the Azure Firewall Public IP cannot be taken from a Public IP
Prefix and cannot have DDoS Protection enabled. Selection of one or the other
model must consider requirements across all five pillars of the Well-Architected
Framework.

Recommendations

https://learn.microsoft.com/en-us/azure/firewall-manager/vhubs-and-vnets
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-area/network-topology-and-connectivity
https://learn.microsoft.com/en-us/azure/firewall-manager/policy-overview
https://learn.microsoft.com/en-us/azure/firewall-manager/rule-hierarchy
https://learn.microsoft.com/en-us/azure/firewall-manager/policy-overview#classic-rules-and-policies
https://learn.microsoft.com/en-us/azure/firewall/premium-migrate
https://learn.microsoft.com/en-us/azure/firewall/overview#known-issues

Recommendation Benefit

construction, platform limitations, along with possible
workarounds or mitigation.

Ensure your Azure Firewall Policy
adheres to Azure Firewall limits
and recommendations.

There are limits on the policy structure, including numbers of
Rules and Rule Collection Groups, total policy size,
source/target destinations. Be sure to compose your policy
and stay behind the documented thresholds.

Deploy Azure Firewall across
multiple availability zones for
higher service-level agreement
(SLA).

Azure Firewall provides different SLAs when it's deployed in a
single availability zone and when it's deployed in multiple
zones. For more information, see SLA for Azure Firewall . For
information about all Azure SLAs, see SLA summary for Azure
services .

In multi-region environments,
deploy an Azure Firewall instance
per region.

For traditional Hub & Spokes architectures, multi-region
details are explained in this article. For secured virtual hubs
(Azure Virtual WAN), Routing Intent and Policies must be
configured to secure inter-hub and branch-to-branch
communications. For workloads designed to be resistant to
failures and fault tolerant, remember to consider that
instances of Azure Firewall and Azure Virtual Network as
regional resources.

Monitor Azure Firewall Metrics
and Resource Health state.

Closely monitor key metrics indicator of Azure Firewall health
state such as Throughput, Firewall health state, SNAT port
utilization and AZFW Latency Probe metrics. Additionally,
Azure Firewall now integrates with Azure Resource Health.
With the Azure Firewall Resource Health check, you can now
view the health status of your Azure Firewall and address
service problems that might affect your Azure Firewall
resource.

Azure Advisor helps you ensure and improve the continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Security is one of the most important aspects of any architecture. Azure Firewall is an
intelligent firewall security service that provides threat protection for your cloud
workloads running in Azure.

As you make design choices for Azure Firewall, review the design principles for security.

Security

Design checklist

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#azure-firewall-limits
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview#availability-zones
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://azure.microsoft.com/support/legal/sla/summary
https://learn.microsoft.com/en-us/azure/firewall/firewall-multi-hub-spoke
https://learn.microsoft.com/en-us/azure/virtual-wan/how-to-routing-policies
https://learn.microsoft.com/en-us/azure/firewall/logs-and-metrics#metrics
https://learn.microsoft.com/en-us/azure/service-health/resource-health-overview
https://learn.microsoft.com/en-us/azure/firewall/

Explore the following table of recommendations to optimize your Azure Firewall
configuration for security.

Recommendation Benefit

If required to route all
internet-bound traffic to a
designated next hop instead
of going directly to the
internet, configure Azure
Firewall in forced tunneling
mode (does not apply to Azure
Virtual WAN).

Azure Firewall must have direct internet connectivity. If your
AzureFirewallSubnet learns a default route to your on-premises
network via the Border Gateway Protocol, you must configure
Azure Firewall in the forced tunneling mode. Using the forced
tunneling feature, you'll need another /26 address space for the
Azure Firewall Management subnet. You're required to name it
AzureFirewallManagementSubnet.

If this is an existing Azure Firewall instance that can't be
reconfigured in the forced tunneling mode, create a UDR with a
0.0.0.0/0 route. Set the NextHopType value as Internet.
Associate it with AzureFirewallSubnet to maintain internet
connectivity.

Set the public IP address to
None to deploy a fully private
data plane when you
configure Azure Firewall in the
forced tunneling mode (does
not apply to Azure Virtual
WAN).

When you deploy a new Azure Firewall instance, if you enable
the forced tunneling mode, you can set the public IP address to
None to deploy a fully private data plane. However, the
management plane still requires a public IP for management
purposes only. The internal traffic from virtual and on-premises
networks won't use that public IP. For more about forced
tunneling, see Azure Firewall forced tunneling.

Create rules for Firewall
Policies based on least
privilege access criteria.

Azure Firewall Policies can be arranged in an hierarchical
structure to overlay a central base policy. Allow for granular
policies to meet the requirements of specific regions. Each policy
can contains different sets of DNAT, Network and Application
rules with specific priority, action and processing order. Create
your rules based on least privilege access Zero Trust principle .
How rules are processed is explained in this article.

Enable Threat Intelligence on
Azure Firewall in Alert and

You can enable threat intelligence-based filtering for your
firewall to alert and deny traffic from or to unknown IP addresses

Determine if you need Forced Tunneling.＂

Create rules for Policies based on least privilege access criteria.＂

Leverage Threat Intelligence.＂

Enable Azure Firewall DNS proxy.＂

Direct network traffic through Azure Firewall.＂

Determine if you want to use third-party security as a service (SECaaS) providers.＂

Protect your Azure Firewall public IP addresses with DDoS.＂

Recommendations

https://learn.microsoft.com/en-us/azure/firewall/forced-tunneling
https://learn.microsoft.com/en-us/azure/firewall/forced-tunneling
https://learn.microsoft.com/en-us/azure/firewall-manager/rule-hierarchy
https://learn.microsoft.com/en-us/security/zero-trust/zero-trust-overview#guiding-principles-of-zero-trust
https://learn.microsoft.com/en-us/azure/firewall/rule-processing#rule-processing-using-firewall-policy
https://learn.microsoft.com/en-us/azure/firewall/threat-intel

Recommendation Benefit

deny mode. and domains. The IP addresses and domains are sourced from
the Microsoft Threat Intelligence Feed. Intelligent Security Graph
powers Microsoft threat intelligence and is used by multiple
services, including Microsoft Defender for Cloud.

Enable IDPS in Alert or Alert
and deny mode.

IDPS is one of the most powerful Azure Firewall (Premium)
security features and should be enabled. Based on security and
application requirements, and considering the performance
impact (see the Cost section below), Alert or Alert and deny
modes can be selected.

Enable Azure Firewall (DNS)
proxy configuration.

Enabling this feature points clients in the VNets to Azure Firewall
as a DNS server. It will protect internal DNS infrastructure that
will not be directly accessed and exposed. Azure Firewall must be
also configured to use custom DNS that will be used to forward
DNS queries.

Configure user-defined routes
(UDR) to force traffic through
Azure Firewall.

In a traditional Hub & Spokes architecture, configure UDRs to
force traffic through Azure Firewall for SpoketoSpoke ,
SpoketoInternet , and SpoketoHybrid connectivity. In Azure
Virtual WAN, instead, configure Routing Intent and Policies to
redirect private and/or Internet traffic through the Azure Firewall
instance integrated into the hub.

Restrict usage of Public IP
addresses directly tied to
Virtual Machines

In order to prevent traffic bypassing the firewall, the association
of Public IP addresses to VM network interfaces should be
restricted. In the Azure Cloud Adoption Framework (CAF) model,
a specific Azure Policy is assigned to the CORP Management
Group .

If not possible to apply UDR,
and only web traffic
redirection is required,
consider using Azure Firewall
as an Explicit Proxy

With explicit proxy feature enabled on the outbound path, you
can configure a proxy setting on the sending web application
(such as a web browser) with Azure Firewall configured as the
proxy. As a result, web traffic will reach the firewall's private IP
address and therefore egresses directly from the firewall without
using a UDR. This feature also facilitates the usage of multiple
firewalls without modifying existing network routes.

Configure supported third-
party software as a service
(SaaS) security providers
within Firewall Manager if you
want to use these solutions to
protect outbound
connections.

You can use your familiar, best-in-breed, third-party SECaaS
offerings to protect internet access for your users. This scenario
does require Azure Virtual WAN with a S2S VPN Gateway in the
Hub, as it uses an IPSec tunnel to connect to the provider's
infrastructure. SECaaS providers might charge additional license
fees and limit throughput on IPSec connections. Alternative
solutions such as ZScaler Cloud Connector exist and might be
more suitable.

Use Fully Qualified Domain
Name (FQDN) filtering in

You can use FQDN based on DNS resolution in Azure Firewall
and firewall policies. This capability allows you to filter outbound

https://learn.microsoft.com/en-us/azure/firewall/premium-features#idps
https://learn.microsoft.com/en-us/azure/firewall/dns-details
https://learn.microsoft.com/en-us/azure/virtual-wan/how-to-routing-policies
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/associate-public-ip-address-vm
https://github.com/Azure/Enterprise-Scale/wiki/ALZ-Policies#corp
https://learn.microsoft.com/en-us/azure/firewall/explicit-proxy
https://learn.microsoft.com/en-us/azure/firewall-manager/trusted-security-partners

Recommendation Benefit

network rules. traffic with any TCP/UDP protocol (including NTP, SSH, RDP, and
more). You must enable the Azure Firewall DNS Proxy
configuration to use FQDNs in your network rules. To learn how
it works, see Azure Firewall FQDN filtering in network rules.

Use Service Tags in Network
Rules to enable selective
access to specific Microsoft
services.

A service tag represents a group of IP address prefixes to help
minimize complexity for security rule creation. Using Service Tags
in Network Rules, it is possible to enable outbound access to
specific services in Azure, Dynamics and Office 365 without
opening wide ranges of IP addresses. Azure will maintain
automatically the mapping between these tags and underlying
IP addresses used by each service. The list of Service Tags
available to Azure Firewall are listed here: Az Firewall Service
Tags.

Use FQDN Tags in Application
Rules to enable selective
access to specific Microsoft
services.

An FQDN tag represents a group of fully qualified domain
names (FQDNs) associated with well known Microsoft services.
You can use an FQDN tag in application rules to allow the
required outbound network traffic through your firewall for
some specific Azure services, Office 365, Windows 365 and
Intune.

Use Azure Firewall Manager to
create and associate a DDoS
protection plan with your hub
virtual network (does not apply
to Azure Virtual WAN).

A DDoS protection plan provides enhanced mitigation features
to defend your firewall from DDoS attacks. Azure Firewall
Manager is an integrated tool to create your firewall
infrastructure and DDoS protection plans. For more information,
see Configure an Azure DDoS Protection Plan using Azure
Firewall Manager.

Use an Enterprise PKI to
generate certificates for TLS
Inspection.

With Azure Firewall Premium, if TLS Inspection feature is used, it
is recommended to leverage an internal Enterprise Certification
Authority (CA) for production environment. Self-signed
certificates should be used for testing/PoC purposes only.

Review Zero-Trust
configuration guide for Azure
Firewall and Application
Gateway

If your security requirements necessitate implementing a Zero-
Trust approach for web applications (inspection and encryption),
it is recommended to follow this guide. In this document, how to
integrate together Azure Firewall and Application Gateway will
be explained, in both traditional Hub & Spoke and Virtual WAN
scenarios.

Azure Advisor helps you ensure and improve the continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Policy definitions

https://learn.microsoft.com/en-us/azure/firewall/fqdn-filtering-network-rules#how-it-works
https://learn.microsoft.com/en-us/azure/firewall/service-tags
https://learn.microsoft.com/en-us/azure/virtual-network/service-tags-overview#available-service-tags
https://learn.microsoft.com/en-us/azure/firewall/fqdn-tags
https://learn.microsoft.com/en-us/azure/firewall/fqdn-tags#current-fqdn-tag
https://learn.microsoft.com/en-us/azure/firewall-manager/configure-ddos
https://learn.microsoft.com/en-us/azure/firewall/premium-features#tls-inspection
https://learn.microsoft.com/en-us/azure/firewall/premium-certificates
https://techcommunity.microsoft.com/t5/azure-network-security-blog/building-a-poc-for-tls-inspection-in-azure-firewall/ba-p/3676723
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/application-gateway-before-azure-firewall

Network interfaces should not have public IPs . This policy denies the network
interfaces which are configured with any public IP. Public IP addresses allow
internet resources to communicate inbound to Azure resources, and Azure
resources to communicate outbound to the internet.

All Internet traffic should be routed via your deployed Azure Firewall . Azure
Security Center has identified that some of your subnets aren't protected with a
next generation firewall. Protect your subnets from potential threats by restricting
access to them with Azure Firewall or a supported next generation firewall.

Azure firewall policy should enable TLS inspection within application rules .
Enabling TLS inspection is recommended for all application rules to detect, alert,
and mitigate malicious activity in HTTPS. To learn more about TLS inspection with
Azure Firewall, visit https://aka.ms/fw-tlsinspect .

Azure Firewall Premium should configure a valid intermediate certificate to enable
TLS inspection . Configure a valid intermediate certificate and enable Azure
Firewall Premium TLS inspection to detect, alert, and mitigate malicious activity in
HTTPS. To learn more about TLS inspection with Azure Firewall, visit
https://aka.ms/fw-tlsinspect .

Bypass list of Intrusion Detection and Prevention System (IDPS) should be empty in
Firewall Policy Premium . Intrusion Detection and Prevention System (IDPS)
Bypass List allows you to not filter traffic to any of the IP addresses, ranges, and
subnets specified in the bypass list. However, enabling IDPS is recommanded for
all traffic flows to better identify known threats. To learn more about the Intrusion
Detection and Prevention System (IDPS) signatures with Azure Firewall Premium,
visit https://aka.ms/fw-idps-signature .

Firewall Policy Premium should enable all IDPS signature rules to monitor all
inbound and outbound traffic flows . Enabling all Intrusion Detection and
Prevention System (IDPS) signature rules is recommanded to better identify known
threats in the traffic flows. To learn more about the Intrusion Detection and
Prevention System (IDPS) signatures with Azure Firewall Premium, visit
https://aka.ms/fw-idps .

Firewall Policy Premium should enable the Intrusion Detection and Prevention
System (IDPS) . Enabling the Intrusion Detection and Prevention System (IDPS)
allows you to monitor your network for malicious activity, log information about
this activity, report it, and optionally attempt to block it. To learn more about the
Intrusion Detection and Prevention System (IDPS) with Azure Firewall Premium,
visit https://aka.ms/fw-idps .

https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F83a86a26-fd1f-447c-b59d-e51f44264114
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ffc5e4038-4584-4632-8c85-c0448d374b2c
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fa58ac66d-92cb-409c-94b8-8e48d7a96596
https://aka.ms/fw-tlsinspect
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F711c24bb-7f18-4578-b192-81a6161e1f17
https://aka.ms/fw-tlsinspect
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ff516dc7a-4543-4d40-aad6-98f76a706b50
https://aka.ms/fw-idps-signature
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F610b6183-5f00-4d68-86d2-4ab4cb3a67a5
https://aka.ms/fw-idps
https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F6484db87-a62d-4327-9f07-80a2cbdf333a
https://aka.ms/fw-idps

Subscription should configure the Azure Firewall Premium to provide additional
layer of protection . Azure Firewall Premium provides advanced threat protection
that meets the needs of highly sensitive and regulated environments. Deploy
Azure Firewall Premium to your subscription and make sure all the service traffic
are protected by Azure Firewall Premium. To learn more about Azure Firewall
Premium, visit https://aka.ms/fw-premium .

All built-in policy definitions related to Azure networking are listed in Built-in policies -
Network.

Cost optimization is about looking at ways to reduce unnecessary expenses and
improve operational efficiencies.

As you make design choices for Azure Firewall, review the design principles for cost
optimization.

Explore the following table of recommendations to optimize your Azure Firewall
configuration for cost optimization.

Recommendation Benefit

Deploy the proper Azure
Firewall SKU.

Azure Firewall can be deployed in three different SKUs: Basic,
Standard and Premium. Azure Firewall Premium is recommended
to secure highly sensitive applications (such as payment
processing). Azure Firewall Standard is recommended for
customers looking for Layer 3–Layer 7 firewall and needs
autoscaling to handle peak traffic periods of up to 30 Gbps. Azure
Firewall Basic is recommended for SMB customers with
throughput needs of 250 Mbps. If required, downgrade or
upgrade is possible between Standard and Premium as

Cost optimization

Design checklist

Select the Azure Firewall SKU to deploy.＂

Determine if some instances don't need permanent 24x7 allocation.＂

Determine where you can optimize firewall use across workloads.＂

Monitor and optimize firewall instances usage to determine cost-effectiveness.＂

Review and optimize the number of public IP addresses required and Policies used.＂

Review logging requirements, estimate cost and control over time.＂

Recommendations

https://portal.azure.com/#blade/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ff2c2d0a6-e183-4fc8-bd8f-363c65d3bbbf
https://aka.ms/fw-premium
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#network
https://learn.microsoft.com/en-us/azure/firewall/basic-features
https://learn.microsoft.com/en-us/azure/firewall/features
https://learn.microsoft.com/en-us/azure/firewall/premium-features

Recommendation Benefit

documented here.

For more information, see Choose the right Azure Firewall SKU to
meet your needs.

Stop Azure Firewall
deployments that don't
need to run for 24x7.

You might have development or testing environments that are
used only during business hours. For more information, see
Deallocate and allocate Azure Firewall.

Share the same instance of
Azure Firewall across
multiple workloads and
Azure Virtual Networks.

You can use a central instance of Azure Firewall in the hub virtual
network or Virtual WAN secure hub and share the same firewall
across many spoke virtual networks that are connected to the
same hub from the same region. Ensure there's no unexpected
cross-region traffic as part of the hub-spoke topology.

Regularly review traffic
processed by Azure Firewall
and look for originating
workload optimizations

Top Flows log (known in the industry as Fat Flows), shows the top
connections that are contributing to the highest throughput
through the firewall. It is recommended to regularly review traffic
processed by the Azure Firewall and search for possible
optimizations to reduce the amount of traffic traversing the
firewall.

Review under-utilized Azure
Firewall instances. Identify
and delete unused Azure
Firewall deployments.

To identify unused Azure Firewall deployments, start by analyzing
the monitoring metrics and UDRs associated with subnets
pointing to the firewall's private IP. Combine that information with
other validations, such as if your instance of Azure Firewall has any
rules (classic) for NAT, Network and Application, or even if the
DNS Proxy setting is configured to Disabled, and with internal
documentation about your environment and deployments. You
can detect deployments that are cost-effective over time.

For more information about monitoring logs and metrics, see
Monitor Azure Firewall logs and metrics and SNAT port utilization.

Use Azure Firewall Manager
and its Policies to reduce
operational costs, increase
efficiency, and reduce
management overhead.

Review your Firewall Manager policies, associations, and
inheritance carefully. Policies are billed based on firewall
associations. A policy with zero or one firewall association is free
of charge. A policy with multiple firewall associations is billed at a
fixed rate.

For more information, see Pricing - Azure Firewall Manager .

Delete unused public IP
addresses.

Validate whether all the associated public IP addresses are in use.
If they aren't in use, disassociate and delete them. Evaluate SNAT
port utilization before removing any IP addresses.

You'll only use the number of public IPs your firewall needs. For

https://learn.microsoft.com/en-us/azure/firewall/easy-upgrade
https://learn.microsoft.com/en-us/azure/firewall/choose-firewall-sku
https://learn.microsoft.com/en-us/powershell/module/az.network/set-azfirewall?#4--deallocate-and-allocate-the-firewall
https://learn.microsoft.com/en-us/azure/firewall/enable-top-ten-and-flow-trace#top-flows
https://learn.microsoft.com/en-us/azure/firewall/firewall-diagnostics
https://learn.microsoft.com/en-us/azure/firewall/logs-and-metrics#metrics
https://azure.microsoft.com/pricing/details/firewall-manager

Recommendation Benefit

more information, see Monitor Azure Firewall logs and metrics and
SNAT port utilization.

Review logging
requirements.

Azure Firewall has the ability to comprehensively log metadata of
all traffic it sees, to Log Analytics Workspaces, Storage or third
party solutions through Event Hubs. However, all logging solutions
incur costs for data processing and storage. At very large volumes
these costs can be significant, a cost effective approach and
alternative to Log Analytics should be considered and cost
estimated. Consider whether it is required to log traffic metadata
for all logging categories and modify in Diagnostic Settings if
needed.

For more suggestions, see Design review checklist for Cost Optimization.

Azure Advisor helps you ensure and improve the continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Monitoring and diagnostics are crucial. You can measure performance statistics and
metrics to troubleshoot and remediate issues quickly.

As you make design choices for Azure Firewall, review the design principles for
operational excellence.

Explore the following table of recommendations to optimize your Azure Firewall
configuration for operational excellence.

Operational excellence

Design checklist

Maintain inventory and backup of Azure Firewall configuration and Policies.＂

Leverage diagnostic logs for firewall monitoring and troubleshooting.＂

Leverage Azure Firewall Monitoring workbook.＂

Regularly review your Policy insights and analytics.＂

Integrate Azure Firewall with Microsoft Defender for Cloud and Microsoft Sentinel.＂

Recommendations

https://learn.microsoft.com/en-us/azure/firewall/firewall-diagnostics
https://learn.microsoft.com/en-us/azure/firewall/logs-and-metrics#metrics
https://techcommunity.microsoft.com/t5/azure-data-explorer-blog/scale-your-azure-firewall-monitoring-with-azure-data-explorer/ba-p/3611826
https://learn.microsoft.com/en-us/azure/well-architected/devops/principles

Recommendation Benefit

Do not use Azure Firewall for
intra-VNet traffic control.

Azure Firewall should be used to control traffic across VNets,
between VNets and on-premises networks, outbound traffic to
the Internet and incoming non-HTTP/s traffic. For intra-VNet
traffic control, it is recommended to use Network Security
Groups.

Maintain regular backups of
Azure Policy artifacts.

If Infrastructure-as-Code (IaC) approach is used to maintain Azure
Firewall and all dependencies then backup and versioning of
Azure Firewall Policies should be already in place. If not, a
companion mechanism based on external Logic App can be
deployed to automate and provide an effective solution.

Enable Diagnostic Logs for
Azure Firewall.

Diagnostic Logs is a key component for many monitoring tools
and strategies for Azure Firewall and should be enabled. You can
monitor Azure Firewall by using firewall logs or workbooks. You
can also use activity logs for auditing operations on Azure Firewall
resources.

Use Structured Firewall Logs
format.

Structured Firewall Logs are a type of log data that are organized
in a specific new format. They use a predefined schema to
structure log data in a way that makes it easy to search, filter, and
analyze. The latest monitoring tools are based on this type of logs
hence it is often a pre-requisite. Use the previous Diagnostic Logs
format only if there is an existing tool with a pre-requisite on that.
Do not enable both logging formats at the same time.

Use the built-in Azure
Firewall Monitoring
Workbook.

Azure Firewall portal experience now includes a new workbook
under the Monitoring section UI, a separate installation is no more
required. With the Azure Firewall Workbook , you can extract
valuable insights from Azure Firewall events, delve into your
application and network rules, and examine statistics regarding
firewall activities across URLs, ports, and addresses.

Monitor key metrics and
create alerts for indicators of
the utilization of Azure
Firewall capacity.

Alerts should be created to monitor at least Throughput, Firewall
health state, SNAT port utilization and AZFW Latency Probe
metrics.
For information about monitoring logs and metrics, see Monitor
Azure Firewall logs and metrics.

Configure Azure Firewall
integration with Microsoft
Defender for Cloud and
Microsoft Sentinel.

If these tools are available in the environment, it is recommended
to leverage integration with Microsoft Defender for Cloud and
Microsoft Sentinel solutions. With Microsoft Defender for Cloud
integration, you can visualize the all-up status of network
infrastructure and network security in one place, including Azure
Network Security across all VNets and Virtual Hubs spread across
different regions in Azure. Integration with Microsoft Sentinel
provides threat detection and prevention capabilities.

https://learn.microsoft.com/en-us/azure/virtual-network/network-security-groups-overview
https://techcommunity.microsoft.com/t5/azure-network-security-blog/backup-azure-firewall-and-azure-firewall-policy-with-logic-apps/ba-p/3613928
https://learn.microsoft.com/en-us/azure/firewall/logs-and-metrics#diagnostic-logs
https://learn.microsoft.com/en-us/azure/firewall/firewall-structured-logs
https://learn.microsoft.com/en-us/azure/firewall/logs-and-metrics#diagnostic-logs
https://techcommunity.microsoft.com/t5/azure-network-security-blog/azure-firewall-new-monitoring-and-logging-updates/ba-p/3897897
https://learn.microsoft.com/en-us/azure/firewall/firewall-diagnostics
https://techcommunity.microsoft.com/t5/microsoft-defender-for-cloud/azure-network-security-using-microsoft-defender-for-cloud/ba-p/2228222
https://azuremarketplace.microsoft.com/marketplace/apps/sentinel4azurefirewall.sentinel4azurefirewall

Recommendation Benefit

Regularly review Policy
Analytics dashboard to
identify potential issues.

Policy Analytics is a new feature that provides insights into the
impact of your Azure Firewall policies. It helps you identify
potential issues (hitting policy limits, low utilization rules,
redundant rules, rules too generic, IP Groups usage
recommendation) in your policies and provides recommendations
to improve your security posture and rule processing
performance.

Become familiar with KQL
(Kusto Query Language)
queries to allow quick
analysis and troubleshooting
using Azure Firewall logs.

Sample queries are provided for Azure Firewall. Those will enable
you to quickly identify what's happening inside your firewall and
check to see which rule was triggered, or which rule is
allowing/blocking a request.

Azure Advisor helps you ensure and improve the continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Performance efficiency is the ability of your workload to scale to efficiently meet the
demands placed on it by users.

As you make design choices for Azure Firewall, review the design principles for
performance efficiency.

Explore the following table of recommendations to optimize your Azure Firewall
configuration for performance efficiency.

Performance efficiency

Design checklist

Regularly review and optimize firewall rules.＂

Review policy requirements and opportunities to summarize IP ranges and URLs list.＂

Assess your SNAT port requirements.＂

Plan load tests to test auto-scale performance in your environment.＂

Do not enable diagnostic tools and logging if not required.＂

Recommendations

https://learn.microsoft.com/en-us/azure/firewall/policy-analytics
https://learn.microsoft.com/en-us/azure/firewall/firewall-structured-logs#structured-log-queries
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles

Recommendation Benefit

Use Policy Analytics
dashboard to identify
potential optimizations for
Firewall Policies.

Policy Analytics is a new feature that provides insights into the
impact of your Azure Firewall policies. It helps you identify
potential issues (hitting policy limits, low utilization rules,
redundant rules, rules too generic, IP Groups usage
recommendation) in your policies and provides
recommendations to improve your security posture and rule
processing performance.

For Firewall Policies with large
rule sets, place the most
frequently used rules early in
the group to optimize latency.

Rules are processed based on rule type, inheritance, Rule
Collection Group priority and Rule Collection priority. Highest
priority Rule Collection Groups are processed first. Inside a rule
collection group, Rule Collections with highest priority are
processed first. Placing most used rules higher in rule set will
optimize processing latency. How rules are processed and
evaluated is explained in this article.

Use IP Groups to summarize
IP address ranges.

You can use IP Groups to summarize IP ranges, so you don't
exceed the limit of unique source/destination network rules. For
each rule, Azure multiplies ports by IP addresses. So, if you have
one rule with four IP address ranges and five ports, you'll
consume 20 network rules. The IP Group is treated as a single
address for the purpose of creating network rules.

Consider Web Categories to
allow or deny outbound
access in bulk.

Instead of explicitly building and maintaining a long list of public
Internet sites, consider the usage of Azure Firewall Web
Categories. This feature will dynamically categorize web content
and will permit the creation of compact Application Rules.

Evaluate the performance
impact of IDPS in Alert and
deny mode.

If Azure Firewall is required to operate in IDPS mode Alert and
deny, carefully consider the performance impact as documented
in this page.

Assess potential SNAT port
exhaustion problem.

Azure Firewall currently supports 2496 ports per Public IP
address per backend Virtual Machine Scale Set instance. By
default, there are two Virtual Machine Scale Set instances. So,
there are 4992 ports per flow destination IP, destination port and
protocol (TCP or UDP). The firewall scales up to a maximum of 20
instances. You can work around the limits by configuring Azure
Firewall deployments with a minimum of five public IP addresses
for deployments susceptible to SNAT exhaustion.

Properly warm up Azure
Firewall before any
performance test.

Create initial traffic that isn't part of your load tests 20 minutes
before the test. Use diagnostics settings to capture scale-up and
scale-down events. You can use the Azure Load Testing service to
generate the initial traffic. Allows the Azure Firewall instance to
scale up its instances to the maximum.

Configure an Azure Firewall
subnet (AzureFirewallSubnet)

Azure Firewall is a dedicated deployment in your virtual network.
Within your virtual network, a dedicated subnet is required for

https://learn.microsoft.com/en-us/azure/firewall/policy-analytics
https://learn.microsoft.com/en-us/azure/firewall/policy-rule-sets
https://learn.microsoft.com/en-us/azure/firewall/rule-processing#rule-processing-using-firewall-policy
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#azure-firewall-limits
https://learn.microsoft.com/en-us/azure/firewall/web-categories
https://learn.microsoft.com/en-us/azure/firewall/premium-features#idps
https://learn.microsoft.com/en-us/azure/firewall/firewall-performance
https://learn.microsoft.com/en-us/azure/firewall/overview#known-issues
https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing

Recommendation Benefit

with a /26 address space. the instance of Azure Firewall. Azure Firewall provisions more
capacity as it scales.
A /26 address space for its subnets ensures that the firewall has
enough IP addresses available to accommodate the scaling.
Azure Firewall doesn't need a subnet bigger than /26. The Azure
Firewall subnet name must be AzureFirewallSubnet.

Do not enable advanced
logging if not required

Azure Firewall provides some advanced logging capabilities that
can be expensive to maintain always active. Instead, they should
be used for troubleshooting purposes only, and limited in
duration, then disabled when no more necessary. For example,
Top flows and Flow trace logs are expensive can cause excessive
CPU and storage usage on the Azure Firewall infrastructure.

Azure Advisor helps you ensure and improve the continuity of your business-critical
applications. Review the Azure Advisor recommendations.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. There is no Azure Firewall specific Advisor
recommendation yet. Some general recommendations can be applied to help improving
the reliability, security, cost-effectiveness, performance, and operational excellence.

Create Azure Service Health alerts to be notified when Azure problems affect you
Ensure you have access to Azure cloud experts when you need it
Enable Traffic Analytics to view insights into traffic patterns across Azure resources
Follow just enough administration (least privilege principle)
Protect your network resources with Microsoft Defender for Cloud

Azure Firewall documentation
What is Azure Firewall Manager?
Azure Firewall service limits, quotas, and constraints
Azure security baseline for Azure Firewall

Azure Firewall architecture overview
Use Azure Firewall to help protect an Azure Kubernetes Service (AKS) cluster

Azure Advisor recommendations

Additional resources

Azure Architecture Center guidance

https://learn.microsoft.com/en-us/azure/firewall/enable-top-ten-and-flow-trace
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations#create-azure-service-health-alerts-to-be-notified-when-azure-problems-affect-you
https://learn.microsoft.com/en-us/azure/advisor/advisor-operational-excellence-recommendations#ensure-you-have-access-to-azure-cloud-experts-when-you-need-it
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations#enable-traffic-analytics-to-view-insights-into-traffic-patterns-across-azure-resources
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/advisor-security-baseline?toc=/azure/advisor/toc.json#pa-7-follow-just-enough-administration-least-privilege-principle
https://learn.microsoft.com/en-us/azure/defender-for-cloud/protect-network-resources
https://learn.microsoft.com/en-us/azure/firewall
https://learn.microsoft.com/en-us/azure/firewall-manager/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#azure-firewall-limits
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/firewall-security-baseline
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/firewalls
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/aks-firewall/aks-firewall

Use Azure Firewall to protect Azure Virtual Desktop (AVD) deployments
Use Azure Firewall to protect Office 365
Hub-spoke network topology in Azure
Zero-trust network for web applications with Azure Firewall and Application
Gateway
Implement a secure hybrid network
Network-hardened web application with private connectivity to PaaS datastores

Deploy an instance of Azure Firewall to see how it works:

Deploy and configure Azure Firewall and policy by using the Azure portal
Configure Azure Firewall in a Virtual WAN hub

Next step

https://learn.microsoft.com/en-us/azure/firewall/protect-azure-virtual-desktop
https://learn.microsoft.com/en-us/azure/firewall/protect-office-365
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/hub-spoke?tabs=cli
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/gateway/application-gateway-before-azure-firewall
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/secure-vnet-dmz
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/security/hardened-web-app
https://learn.microsoft.com/en-us/azure/firewall/tutorial-firewall-deploy-portal-policy
https://learn.microsoft.com/en-us/azure/virtual-wan/howto-firewall

Azure Well-Architected Framework
perspective of the Web Apps feature of
Azure App Service
Article • 05/09/2024

Azure App Service is a platform as a service (PaaS) compute solution that you can use to
host your workload on the Azure platform. It's a fully managed service that abstracts the
underlying compute and offloads the responsibility of building, deploying, and scaling
to the platform. An app service always runs in an App Service plan. The service plan that
you choose determines the region in which the workload runs, the compute
configurations, and the operating system. Multiple billing models are available for App
Service.

This article assumes that as an architect, you reviewed the compute decision tree and
chose App Service as the compute for your workload. The guidance in this article
provides architectural recommendations that are mapped to the principles of the Azure
Well-Architected Framework pillars.

This review focuses on the interrelated decisions for the following Azure resources:

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies localized to the technology scope.

Also included are recommendations on the technology capabilities that can help
materialize those strategies. The recommendations don't represent an exhaustive
list of all configurations available for the Web Apps feature of Azure App Service
and their dependencies. Instead, they list the key recommendations mapped to the
design perspectives. Use the recommendations to build your proof-of-concept or
optimize your existing environments.

Foundational architecture that demonstrates the key recommendations: App
Service baseline architecture.

Technology scope

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/baseline-zone-redundant
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/baseline-zone-redundant

App Service plans
Web Apps

Other Azure offerings are associated with App Service, such as Azure Functions, Azure
Logic Apps, and App Service Environment. Those offerings are out of scope for this
article. App Service Environment is referenced occasionally to help clarify features or
options of the core App Service offerings.

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

Start your design strategy based on the design review checklist for Reliability. Determine
its relevance to your business requirements while keeping in mind the tiers and features
of App Service and its dependencies. Extend the strategy to include more approaches as
needed.

Reliability

Design checklist

Prioritize user flows: Not all flows are equally critical. Assign priorities to each flow
to guide your design decisions. User flow design can influence which service tiers
and instances that you choose for an App Service plan and configuration.

For example, your application might include front-end and back-end tiers that
communicate through a message broker. You might choose to segment the tiers in
multiple web apps to allow for independent scaling, lifecycle management, and
maintenance. Placing a large application in a single plan can lead to memory or
CPU problems and affect reliability.

You might need more instances on the front end for optimal performance on the UI
side. However, the back end might not require the same number of instances.

＂

Anticipate potential failures: Plan mitigation strategies for potential failures. The
following table shows examples of failure mode analysis.

＂

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Failure Mitigation

Failure of underlying or
abstracted App Service
components

Have component redundancy in instances and
dependencies. Monitor the health of instances, network
performance, and storage performance.

Failure of external
dependencies

Use design patterns such as the Retry pattern and the
Circuit Breaker pattern. Monitor the external dependencies
and set appropriate timeouts.

Failure due to traffic getting
routed to unhealthy instances

Monitor instance health. Consider responsiveness, and
avoid sending requests to unhealthy instances.

For more information, see Failure mode analysis for Azure applications.

Build redundancy: Build redundancy in the application and supporting
infrastructure. Spread instances across availability zones to improve fault tolerance.
Route traffic to other zones if one zone fails. Deploy your application across
multiple regions to ensure that your app remains available, even if an entire region
experiences an outage.

Build similar levels of redundancy in dependent services. For instance, application
instances bind to blob storage. Consider configuring the associated storage
account with zone-redundant storage (ZRS) if an application uses a zone-redundant
deployment.

Have redundancy in networking components. For example, use zone-redundant IP
addresses and load balancers.

＂

Have a reliable scaling strategy: Unexpected load on an application can make it
unreliable. Consider the right scaling approach based on your workload
characteristics. You can sometimes scale up to handle the load. However, if the load
continues to increase, scale out to new instances. Prefer automatic scaling over
manual approaches. Always maintain a buffer of extra capacity during scaling
operations to prevent performance degradation.

The App Service plan tier that you choose affects scaling in terms of the number of
instances and the compute units.

Ensure proper app initialization so that new instances warm up quickly and can
receive requests.

Strive for stateless applications whenever possible. Reliably scaling state with new
instances can increase complexity. Consider an external data store that you can
scale independently if you need to store application state. Storing session state in

＂

https://learn.microsoft.com/en-us/azure/architecture/patterns/retry
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://learn.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans#how-does-my-app-run-and-scale

memory can result in losing session state when there's a problem with the
application or App Service. It also limits the possibility of spreading the load across
other instances.

Regularly test your autoscaling rules. Simulate load scenarios to verify that your app
scales as expected. You should log scaling events so that you can troubleshoot
problems that might arise and optimize your scaling strategy over time.

App Service has a limitation on the number of instances within a plan, which can
affect scaling reliability. One strategy is to use identical deployment stamps, each
running App Service plan instance with its own endpoint. It's essential that you
front all stamps with an external load balancer to distribute traffic across them. Use
Azure Application Gateway for single node deployments and Azure Front Door for
multi-regional deployments. This approach is ideal for mission-critical applications
where reliability is crucial. For more information, see Mission-critical baseline with
App Service.

An App Service plan distributes traffic across instances and monitors their health.
Note that the external load balancer might not immediately detect if one instance
fails.

Plan your recoverability: Redundancy is crucial for business continuity. Fail over to
another instance if one instance is unreachable. Explore automatic healing
capabilities in App Service, such as automatic repair of instances.

Implement design patterns to handle graceful degradation for both transient
failures, such as network connectivity problems, and large-scale events like regional
outages. Consider the following design patterns:

The Bulkhead pattern segments your application into isolated groups to prevent
a failure from affecting the entire system.

The Queue-Based Load Leveling pattern queues work items that serve as a buffer
to smooth out traffic spikes.

The Retry pattern handles transient failures due to network glitches, dropped
database connections, or busy services.

The Circuit Breaker pattern prevents an application from repeatedly trying to
perform an operation that's likely to fail.

You can use WebJobs to run background tasks in your web app. To run those tasks
reliably, ensure that the app that hosts your job runs continuously on a schedule or
based on event-driven triggers.

＂

https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/mission-critical-app-service
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/mission-critical-app-service

Service
or plan

Recommendation Benefit

App
Service
plan

Choose the Premium tier of an App
Service plan for production workloads.

Set the maximum and minimum number
of workers according to your capacity
planning. For more information, see App
Service plan overview.

A premium App Service plan offers
advanced scaling features and ensures
redundancy if failures occur.

App
Service
plan

Enable zone redundancy.

Consider provisioning more than three
instances to enhance fault tolerance.

Check regional support for zone
redundancy because not all regions offer
this feature.

Your application can withstand failures in a
single zone when multiple instances are
spread across zones. Traffic automatically
shifts to healthy instances in other zones
and maintains application reliability if one
zone is unavailable.

App
Service

Consider disabling the application
request routing (ARR) affinity feature.

Incoming requests are evenly distributed
across all available nodes when you disable

For more information, see Reliability patterns.

Conduct reliability testing: Conduct load testing to evaluate your application's
reliability and performance under load. Test plans should include scenarios that
validate your automated recovery operations.

Use fault injection to intentionally introduce failures and validate your self-healing
and self-preservation mechanisms. Explore the fault library provided by Azure
Chaos Studio.

App Service imposes resource limits on hosted apps. The App Service plan
determines these limits. Make sure that your tests confirm that the app runs within
those resource limits. For more information, see Azure subscription and service
limits, quotas, and constraints.

＂

Use health probes to identify unresponsive workers: App Service has built-in
capabilities that periodically ping a specific path of your web application.
Unresponsive instances are removed from the load balancer and replaced with a
new instance.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://learn.microsoft.com/en-us/azure/reliability/reliability-app-service#availability-zone-support
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-fault-library
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-fault-library
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#app-service-limits
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#app-service-limits

Service
or plan

Recommendation Benefit

ARR affinity creates sticky sessions that
redirect users to the node that handled
their previous requests.

ARR affinity. Evenly distributed requests
prevent traffic from overwhelming any
single node. Requests can be seamlessly
redirected to other healthy nodes if a node
is unavailable.

Avoid session affinity to ensure that your
App Service instance remains stateless. A
stateless App Service reduces complexity
and ensures consistent behavior across
nodes.

Remove sticky sessions so that App Service
can add or remove instances to scale
horizontally.

App
Service

Define automatic healing rules based on
request count, slow requests, memory
limits, and other indicators that are part
of your performance baseline. Consider
this configuration as part of your scaling
strategy.

Automatic healing rules help your
application recover automatically from
unexpected problems. The configured
rules trigger healing actions when
thresholds are breached.

Automatic healing enables automatic
proactive maintenance.

App
Service

Enable the health check feature and
provide a path that responds to the
health check requests.

Health checks can detect problems early.
Then the system can automatically take
corrective actions when a health check
request fails.

The load balancer routes traffic away from
unhealthy instances, which directs users to
healthy nodes.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design around hosting on App Service.

Security

Design checklist

https://learn.microsoft.com/en-us/azure/app-service/overview-diagnostics#auto-healing
https://learn.microsoft.com/en-us/azure/app-service/monitor-instances-health-check
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles

Start your design strategy based on the design review checklist for Security and
identify vulnerabilities and controls to improve the security posture. Extend the strategy
to include more approaches as needed.

Review security baselines: To enhance the security posture of your application
that's hosted on an App Service plan, review the security baseline for App Service.

＂

Use the latest runtime and libraries: Thoroughly test your application builds before
you do updates to catch problems early and ensure a smooth transition to the new
version. App Service supports the language runtime support policy for updating
existing stacks and retiring end-of-support stacks.

＂

Create segmentation through isolation boundaries to contain breach: Apply
identity segmentation. For example, implement role-based access control (RBAC) to
assign specific permissions based on roles. Follow the principle of least privilege to
limit access rights to only what's necessary. Also create segmentation at the
network level. Inject App Service apps in an Azure virtual network for isolation and
define network security groups (NSGs) to filter traffic.

App Service plans offer the App Service Environment tier that provides a high
degree of isolation. With App Service Environment, you get dedicated compute and
networking.

＂

Apply access controls on identities: Restrict both inward access to the web app and
outward access from the web app to other resources. This configuration applies
access controls on identities and helps maintain the workload's overall security
posture.

Use Microsoft Entra ID for all authentication and authorization needs. Use built-in
roles, such as a Web Plan Contributor, Website Contributor, and a generic
Contributor, Reader, and Owner.

＂

Control network traffic to and from the application: Don't expose application
endpoints to the public internet. Instead, add a private endpoint on the web app
that's placed in a dedicated subnet. Front your application with a reverse proxy that
communicates with that private endpoint. Consider using Application Gateway or
Azure Front Door for that purpose.

Deploy a web application firewall (WAF) to protect against common vulnerabilities.
Both Application Gateway and Azure Front Door have integrated WAF capabilities.

Configure the reverse proxy rules and network settings appropriately to achieve the
desired level of security and control. For example, add NSG rules on the private
endpoint subnet to only accept traffic from the reverse proxy.

＂

https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/app-service-security-baseline
https://learn.microsoft.com/en-us/azure/app-service/language-support-policy
https://learn.microsoft.com/en-us/azure/app-service/web-sites-integrate-with-vnet
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/web-and-mobile#web-plan-contributor
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/web-and-mobile#website-contributor
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#general
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#general

Egress traffic from the application to other PaaS services should be over private
endpoints. Consider placing a firewall component to restrict egress traffic to the
public internet. Both approaches prevent data exfiltration.

For a comprehensive view, see App Service networking features.

Encrypt data: Protect data in transit with end-to-end Transport Layer Security (TLS).
Use your customer-managed keys for full encryption of data at rest. For more
information, see Encryption at rest using customer-managed keys.

Don't use legacy protocols such as TLS 1.0 and 1.1. App Service enables 1.2 by
default. For more information, see App Service TLS overview.

All instances of your App Service have a default domain name. Use a custom
domain and secure that domain with certificates.

＂

Reduce the attack surface: Remove default configurations that you don't need. For
example, disable remote debugging, local authentication for Source Control
Manager (SCM) sites, and basic authentication. Disable unsecure protocols like
HTTP and File Transfer Protocol (FTP). Enforce configurations through Azure
policies. For more information, see Azure policies.

Implement restrictive cross-origin resource sharing (CORS) policies: Use restrictive
CORS policies in your web app to only accept requests from the allowed domains,
headers, and other criteria. Enforce CORS policies with built-in Azure policy
definitions.

＂

Protect application secrets: You need to handle sensitive information, like API keys
or authentication tokens. Instead of hardcoding these secrets directly into your
application code or configuration files, you can use Azure Key Vault references in
app settings. When the application starts, App Service automatically retrieves the
secret values from Key Vault by using the app's managed identity.

＂

Enable resource logs for your application: Enable resource logs for your
application to create comprehensive activity trails that provide valuable data during
investigations that follow security incidents.

Consider logging as part of your threat modeling process when you assess threats.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/app-service/networking-features
https://learn.microsoft.com/en-us/azure/app-service/configure-encrypt-at-rest-using-cmk
https://learn.microsoft.com/en-us/azure/app-service/overview-tls

Service
or plan

Recommendation Benefit

App
Service

Assign managed identities to the web app. To
maintain isolation boundaries, don't share or
reuse identities across applications.

Make sure that you securely connect to your
container registry if you use containers for your
deployment.

The application retrieves secrets
from Key Vault to authenticate
outward communication from the
application. Azure manages the
identity and doesn't require you
to provision or rotate any secrets.

You have distinct identities for
granularity of control. Distinct
identities make revocation easy if
an identity is compromised.

App
Service

Configure custom domains for applications.

Disable HTTP and only accept HTTPS requests.

Custom domains enable secure
communication through HTTPS
by using the Secure Sockets Layer
(SSL) or TLS protocol, which
ensures the protection of
sensitive data and builds user
trust.

App
Service

Evaluate whether App Service built-in
authentication is the right mechanism to
authenticate users that access your application.
App Service built-in authentication integrates with
Microsoft Entra ID. This feature handles token
validation and user identity management across
multiple sign-in providers and supports OpenID
Connect. With this feature, you don't have
authorization at a granular level, and you don't
have a mechanism to test authentication.

When you use this feature, you
don't have to use authentication
libraries in application code,
which reduces complexity. The
user is already authenticated
when a request reaches the
application.

App
Service

Configure the application for virtual network
integration.

Use private endpoints for App Service apps. Block
all public traffic.

Route the container image pull through the virtual
network integration. All outgoing traffic from the
application passes through the virtual network.

Get the security benefits of using
an Azure virtual network. For
example, the application can
securely access resources within
the network.

Add a private endpoint to help
protect your application. Private
endpoints limit direct exposure to
the public network and allow
controlled access through the
reverse proxy.

App
Service

To implement hardening:
- Disable basic authentication that uses a
username and password in favor of Microsoft

We don't recommend basic
authentication as a secure
deployment method. Microsoft

https://learn.microsoft.com/en-us/azure/app-service/overview-managed-identity
https://learn.microsoft.com/en-us/azure/app-service/tutorial-custom-container
https://learn.microsoft.com/en-us/azure/app-service/tutorial-custom-container
https://learn.microsoft.com/en-us/azure/app-service/configure-ssl-bindings
https://learn.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://learn.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://learn.microsoft.com/en-us/azure/app-service/overview-vnet-integration
https://learn.microsoft.com/en-us/azure/app-service/overview-vnet-integration
https://learn.microsoft.com/en-us/azure/app-service/overview-private-endpoint
https://learn.microsoft.com/en-us/azure/app-service/configure-vnet-integration-routing#container-image-pull
https://learn.microsoft.com/en-us/azure/app-service/configure-vnet-integration-routing#container-image-pull
https://learn.microsoft.com/en-us/azure/app-service/configure-vnet-integration-routing#configure-application-routing
https://learn.microsoft.com/en-us/azure/app-service/configure-vnet-integration-routing#configure-application-routing
https://learn.microsoft.com/en-us/azure/app-service/configure-basic-auth-disable

Service
or plan

Recommendation Benefit

Entra ID-based authentication.
- Turn off remote debugging so that inbound
ports aren't opened.
- Enable CORS policies to tighten incoming
requests.
- Disable protocols, such as FTP.

Entra ID employs OAuth 2.0
token-based authentication,
which offers numerous
advantages and enhancements
that address the limitations that
are associated with basic
authentication.

Policies restrict access to
application resources, only allow
requests from specific domains,
and secure cross-region requests.

App
Service

Always use Key Vault references as app settings. Secrets are kept separate from
your app's configuration. App
settings are encrypted at rest.
App Service also manages secret
rotations.

App
Service
plan

Enable Microsoft Defender for Cloud for App
Service.

Get real-time protection for
resources that run in an App
Service plan. Guard against
threats and enhance your overall
security posture.

App
Service
plan

Enable diagnostic logging and add
instrumentation to your app. The logs are sent to
Azure Storage accounts, Azure Event Hubs, and
Log Analytics. For more information about audit
log types, see Supported log types.

Logging captures access patterns.
It records relevant events that
provide valuable insights into
how users interact with an
application or platform. This
information is crucial for
accountability, compliance, and
security purposes.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

The Cost Optimization design principles provide a high-level design strategy for
achieving those goals and making tradeoffs as necessary in the technical design related
to your web apps and the environment in which they run.

Cost Optimization

https://learn.microsoft.com/en-us/azure/app-service/configure-basic-auth-disable
https://learn.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-rest-api
https://learn.microsoft.com/en-us/azure/app-service/configure-common
https://learn.microsoft.com/en-us/azure/app-service/app-service-key-vault-references
https://learn.microsoft.com/en-us/azure/defender-for-cloud/tutorial-enable-app-service-plan
https://learn.microsoft.com/en-us/azure/defender-for-cloud/tutorial-enable-app-service-plan
https://learn.microsoft.com/en-us/azure/app-service/troubleshoot-diagnostic-logs
https://learn.microsoft.com/en-us/azure/app-service/troubleshoot-diagnostic-logs#supported-log-types

Start your design strategy based on the design review checklist for Cost Optimization for
investments and fine tune the design so that the workload is aligned with the budget
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Design checklist

Estimate the initial cost: As part of your cost modeling exercise, use the Azure
pricing calculator to evaluate the approximate costs associated with various tiers
based on the number of instances that you plan to run. Each App Service tier offers
different compute options.

Continuously monitor the cost model to track expenditures.

＂

Evaluate the discounted options: Higher tiers include dedicated compute instances.
You can apply a reservation discount if your workload has a predictable and
consistent usage pattern. Make sure that you analyze usage data to determine the
type of reservation that suits your workload. For more information, see Save costs
with App Service reserved instances.

＂

Understand usage meters: Azure charges an hourly rate, prorated to the second,
based on your App Service plan's pricing tier. Charges apply to each scaled-out
instance in your plan, based on the time that you allocate the VM instance. Pay
attention to underused compute resources that might increase your costs as a
result of overallocation due to suboptimal SKU selection, or poorly configured
scale-in configuration.

Extra App Service features, like custom domain registration and custom certificates,
might add costs. Other resources, like virtual networks to isolate your solution or
key vaults to protect workload secrets, that integrate with your App Service
resources can also add costs. For more information, see App Services billing model.

＂

Consider the tradeoffs between density and isolation: You can use App Service
plans to host multiple applications on the same compute, which saves costs with
shared environments. For more information, see Tradeoffs.

＂

Evaluate the effect of your scaling strategy on cost: You must properly design, test,
and configure for scaling out and for scaling in when you implement autoscaling.
Establish precise maximum and minimum limits on autoscaling.

Proactively initialize the application for reliable scaling. For example, don't wait until
the CPU reaches 95% usage. Instead, trigger scaling at around 65% to allow
sufficient time for new instances to be allocated and initialized during the scaling
process. However, this strategy might lead to unused capacity.

＂

https://azure.microsoft.com/pricing/calculator
https://azure.microsoft.com/pricing/calculator
https://azure.microsoft.com/pricing/calculator
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/prepay-app-service
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/prepay-app-service
https://learn.microsoft.com/en-us/azure/app-service/overview-manage-costs#understand-the-full-billing-model-for-azure-app-service

We recommend that you combine and balance mechanisms for scaling up and
scaling out. For example, an app can scale up for some time and then scale out as
necessary. Explore high tiers that offer large capacity and efficient resource usage.
Based on usage patterns, higher Premium tiers are often more cost effective
because they're more capable.

Optimize environment costs: Consider the Basic or Free tier to run pre-production
environments. These tiers are low performance and low cost. If you use the Basic or
Free tier, use governance to enforce the tier, constrain the number of instances and
CPUs, restrict scaling, and limit log retention.

＂

Implement design patterns: This strategy reduces the volume of requests that your
workload generates. Consider using patterns like the Backends for Frontends
pattern and the Gateway Aggregation pattern, which can minimize the number of
requests and reduce costs.

＂

Regularly check data-related costs: Extended data retention periods or expensive
storage tiers can lead to high storage costs. More expenses can accumulate due to
both bandwidth usage and prolonged retention of logging data.

Consider implementing caching to minimize data transfer costs. Start with local in-
memory caching, and then explore distributed caching options to reduce the
number of requests to the back-end database. Consider the bandwidth traffic costs
that are associated with cross-region communication if your database is located in
a different region.

＂

Optimize deployment costs: Take advantage of deployment slots to optimize costs.
The slot runs in the same compute environment as the production instance. Use
them strategically for scenarios like blue-green deployments that switch between
slots. This approach minimizes downtime and ensures smooth transitions.

Use deployment slots with caution. You can introduce problems, such as exceptions
or memory leaks, that might affect both the existing instances and new instances.
Make sure that you thoroughly test changes. For operational guidance, see
Operational Excellence.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation

Service
or plan

Recommendation Benefit

App
Service
plan

Choose Free or Basic tiers for lower
environments. We recommend these
tiers for experimental use. Remove the
tiers when you no longer need them.

The Free and Basic tiers are budget-friendly
compared to higher tiers. They provide a
cost-effective solution for nonproduction
environments that don't need the full
features and performance of premium plans.

App
Service
plan

Take advantage of discounts and
explore preferred pricing for:
- Lower environments with dev/test
plans .
- Azure reservations and Azure savings
plans for dedicated compute that
you provision in the Premium V3 tier
and App Service Environment.

Use reserved instances for stable
workloads that have predictable usage
patterns.

Dev/test plans provide reduced rates for
Azure services, which makes them cost-
effective for nonproduction environments.

Use reserved instances to prepay for
compute resources and get significant
discounts.

App
Service

Monitor costs that App Service
resources incur. Run the cost analysis
tool in the Azure portal.

Create budgets and alerts to notify
stakeholders.

You can identify cost spikes, inefficiencies, or
unexpected expenses early on. This proactive
approach helps you to provide budgetary
controls to prevent overspending.

App
Service
plan

Scale in when demand decreases. To
scale in, define scale rules to reduce
the number of instances in Azure
Monitor.

Prevent wastage and reduce unnecessary
expenses.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals towards the operational requirements of the workload.

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to

Operational Excellence

Design checklist

https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://azure.microsoft.com/pricing/offers/dev-test/
https://azure.microsoft.com/pricing/offers/dev-test/
https://azure.microsoft.com/pricing/offers/dev-test/
https://learn.microsoft.com/en-us/azure/app-service/overview-manage-costs#azure-reservations
https://azure.microsoft.com/pricing/offers/savings-plan-compute/#Benefitsandfeatures
https://azure.microsoft.com/pricing/offers/savings-plan-compute/#Benefitsandfeatures
https://azure.microsoft.com/pricing/offers/savings-plan-compute/#Benefitsandfeatures
https://learn.microsoft.com/en-us/azure/app-service/overview-manage-costs#monitor-costs
https://learn.microsoft.com/en-us/azure/app-service/overview-manage-costs#create-budgets
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-understanding-settings
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-understanding-settings
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-understanding-settings

Web Apps.

Manage releases: Use deployment slots to manage releases effectively. You can
deploy your application to a slot, perform testing, and validate its functionality.
After verification, you can seamlessly move the app to production. This process
doesn't incur extra costs because the slot runs in the same virtual machine (VM)
environment as the production instance.

＂

Run automated tests: Before you promote a release of your web app, thoroughly
test its performance, functionality, and integration with other components. Use
Azure Load Testing, which integrates with Apache JMeter, a popular tool for
performance testing. Explore automated tools for other types of testing, such as
Phantom for functional testing.

＂

Deploy immutable units: Implement the Deployment Stamps pattern to
compartmentalize App Service into an immutable stamp. App Service supports the
use of containers, which are inherently immutable. Consider custom containers for
your App Service web app.

Each stamp represents a self-contained unit that you can quickly scale out or scale
in. Units that are based on this stamp are temporary and stateless. Stateless design
simplifies operations and maintenance. This approach is ideal for mission-critical
applications. For an example, see Mission-critical baseline with App Service.

Use an infrastructure as code (IaC) technology, such as Bicep, to stamp out units
with repeatability and consistency.

＂

Keep production environments safe: Create separate App Service plans to run
production and pre-production environments. Don't make changes directly in the
production environment to ensure stability and reliability. Separate instances allow
flexibility in development and testing before you promote changes to production.

Use low environments to explore new features and configurations in an isolated
manner. Keep development and test environments ephemeral.

＂

Manage certificates: For custom domains, you need to manage TLS certificates.

Have processes in place to procure, renew, and validate certificates. Offload these
processes to App Service if possible. If you use your own certificate, you must
manage its renewal. Choose an approach that best aligns with your security
requirements.

＂

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/load-testing/overview-what-is-azure-load-testing
https://learn.microsoft.com/en-us/azure/architecture/patterns/deployment-stamp
https://learn.microsoft.com/en-us/azure/app-service/configure-custom-container
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/mission-critical-app-service

Service
or plan

Recommendation Benefit

App
Service

Monitor the health of your instances
and activate instance health probes.

Set up a specific path for handling
health probe requests.

You can detect problems promptly and take
necessary actions to maintain availability and
performance.

App
Service

Enable diagnostics logs for the
application and the instance.

Frequent logging can slow down the
performance of the system, add to
storage costs, and introduce risk if
you have unsecure access to logs.
Follow these best practices:
- Log the right level of information.
- Set retention policies.
- Keep an audit trail of authorized
access and unauthorized attempts.
- Treat logs as data and apply data-
protection controls.

Diagnostic logs provide valuable insights into
your app's behavior. Monitor traffic patterns
and identify anomalies.

App
Service

Take advantage of App Service
managed certificates to offload
certification management to Azure.

App Service automatically handles processes
like certificate procurement, certificate
verification, certificate renewal, and importing
certificates from Key Vault. Alternatively,
upload your certificate to Key Vault and
authorize the App Service resource provider
to access it.

App
Service
plan

Validate app changes in the staging
slot before you swap it with the
production slot.

Avoid downtime and errors.

Quickly revert to the last-known good state if
you detect a problem after a swap.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Performance Efficiency

Design checklist

https://learn.microsoft.com/en-us/azure/app-service/monitor-instances-health-check
https://learn.microsoft.com/en-us/azure/app-service/troubleshoot-diagnostic-logs
https://learn.microsoft.com/en-us/azure/app-service/configure-ssl-certificate#create-a-free-managed-certificate
https://learn.microsoft.com/en-us/azure/app-service/configure-ssl-certificate#create-a-free-managed-certificate
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://learn.microsoft.com/en-us/azure/app-service/deploy-staging-slots

Start your design strategy based on the design review checklist for Performance
Efficiency for defining a baseline based on key performance indicators for Web Apps.

Identify and monitor performance indicators: Set targets for the key indicators for
the application, such as the volume of incoming requests, time that the application
takes to respond to requests, pending requests, and errors in HTTP responses.
Consider key indicators as part of the performance baseline for the workload.

Capture App Service metrics that form the basis of performance indicators. Collect
logs to gain insights into resource usage and activities. Use application
performance monitoring (APM) tools, such as Application Insights, to collect and
analyze performance data from the application. For more information, see App
Service monitoring data reference.

Include code-level instrumentation, transaction tracing, and performance profiling.

＂

Assess capacity: Simulate various user scenarios to determine the optimal capacity
that you need to handle expected traffic. Use Load Testing to understand how your
application behaves under different levels of load.

＂

Select the right tier: Use dedicated compute for production workloads. Premium
tiers offer larger SKUs with increased memory and CPU capacity, more instances,
and more features, such as zone redundancy. For more information, see Premium
V3 pricing tier.

＂

Optimize your scaling strategy: When possible, use autoscaling instead of manually
adjusting the number of instances as application load changes. With autoscaling,
App Service adjusts server capacity based on predefined rules or triggers. Make
sure you do adequate performance testing and set the right rules for the right
triggers.

If you prioritize simplicity during the initial setup, use an autoscaling option that
doesn't require you to define rules and you only have to set limits.

Have sufficient resources readily available to ensure optimal performance. Allocate
resources appropriately to maintain performance targets, such as response time or
throughput. Consider overallocation of resources when necessary.

When you define autoscale rules, account for the time that it takes for your
application to initialize. Consider this overhead when you make all scaling decisions.

＂

Use caching: Retrieving information from a resource that doesn't change frequently
and is expensive to access affects performance. Complex queries, including joins
and multiple lookups, contribute to runtime. Perform caching to minimize the

＂

https://learn.microsoft.com/en-us/azure/app-service/monitor-app-service-reference
https://learn.microsoft.com/en-us/azure/app-service/monitor-app-service-reference
https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans#premium-v3-pricing-tier
https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans#premium-v3-pricing-tier
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview

Recommendation Benefit

Enable the Always On setting when applications share
a single App Service plan. App Service apps
automatically unload when idle to save resources. The
next request triggers a cold start, which can cause
request timeouts.

The application is never unloaded with
Always On enabled.

Consider using HTTP/2 for applications to improve
protocol efficiency.

Choose HTTP/2 over HTTP/1.1 because
HTTP/2 fully multiplexes connections,
reuses connections to reduce overhead,
and compresses headers to minimize
data transfer.

processing time and latency. Cache query results to avoid repeated round trips to
the database or back end and reduce processing time for subsequent requests.

For more information about using local and distributed cache in the workload, see
Caching.

Review the performance antipatterns: To make sure the web application performs
and scales in accordance with your business requirements, avoid the typical
antipatterns. Here are some antipatterns that App Service corrects.

Antipattern Description

Busy Front
End

Resource-intensive tasks can increase the response times for user requests
and cause high latency.
Move processes that consume significant resources to a separate back end.
Use a message broker to queue resource-intensive tasks that the back end
picks up to asynchronously process.

No Caching Serve requests from an intermediate cache in front of the back-end database
to reduce latency.

Noisy
Neighbor

Multitenant systems share resources between tenants. The activity of one
tenant can have a negative effect on another tenant's use of the system. App
Service Environment provides a fully isolated and dedicated environment to
run App Service apps.

＂

ﾉ Expand table

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/app-service/configure-common
https://learn.microsoft.com/en-us/azure/app-service/configure-common
https://learn.microsoft.com/en-us/azure/app-service/configure-common
https://learn.microsoft.com/en-us/azure/app-service/configure-common
https://learn.microsoft.com/en-us/azure/architecture/best-practices/caching
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/busy-front-end/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/busy-front-end/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/no-caching/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor

You might have to make design tradeoffs if you use the approaches in the pillar
checklists. Here are some examples of advantages and drawbacks.

 Density

Colocate multiple apps within the same App Service plan to minimize resources. All apps
share resources like CPU and memory, which can save money and reduce operational
complexity. This approach also optimizes resource usage. Apps can use idle resources
from another app if load patterns change over time.

Also consider the disadvantages. For example, spikes in usage or instability of an app
can affect the performance of other apps. Incidents in one app can also permeate to
other apps within the shared environment, which can affect security.

 Isolation

Isolation helps to avoid interference. This strategy applies to security, performance, and
even segregation of development, testing, and production environments.

App Service Environment provides better control over security and data protection
because each app can have its own security settings. Your environment can contain
breaches because isolation limits the blast radius. Resource contention is minimized
from a performance perspective. Isolation allows for independent scaling based on
specific demand and individual capacity planning.

As a disadvantage, this approach is more expensive and requires operational rigor.

 Reliable scaling strategy

A well-defined scaling strategy ensures that your application can handle various loads
without compromising performance. However, there are tradeoffs on cost. Scaling
operations take time. When new resources are allocated, the application must be
properly initialized before it can effectively process requests. You can overprovision
resources (prewarm instances) to provide a safety net. Without that extra capacity,
during the initialization phase, there might be a delay in serving requests, which affects
user experience. Autoscaling operations might trigger early enough to enable proper
resource initialization by the time customers use the resources.

As a disadvantage, overprovisioned resources cost more. You're charged per second for
every instance, including prewarmed instances. Higher tiers include prewarmed

Tradeoffs

instances. Determine whether capabilities with more expensive tiers are worth the
investment.

 Building redundancy

Redundancy offers resiliency but also incurs costs. Service level objectives (SLOs) for
your workload determine acceptable performance thresholds. It becomes wasteful if
redundancy exceeds SLO requirements. Evaluate whether excess redundancy improves
SLOs or adds unnecessary complexity.

Also consider the disadvantages. For example, multi-region redundancy provides high
availability but adds complexity and cost due to data synchronization, failover
mechanisms, and inter-region communication. Determine if zone redundancy can meet
your SLOs.

Azure provides an extensive set of built-in policies related to App Service and its
dependencies. A set of Azure policies can audit some of the preceding
recommendations. For example, you can check whether:

Proper network controls are in place. For example, you can incorporate network
segmentation by placing App Service in Azure Virtual Network through virtual
network injection to have greater control over network configuration. The
application doesn't have public endpoints and connects to Azure services through
private endpoints.

Identity controls are in place. For example, the application uses managed identities
to authenticate itself against other resources. App Service built-in authentication
verifies incoming requests.

You can disable features, such as remote debugging and basic authentication, to
reduce the attack surface.

For comprehensive governance, review the Azure Policy built-in definitions and other
policies that might affect the security of the compute layer.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you

Azure policies

Azure Advisor recommendations

https://learn.microsoft.com/en-us/azure/app-service/policy-reference
https://learn.microsoft.com/en-us/azure/advisor/

Feedback

Was this page helpful?

improve the reliability, security, cost effectiveness, performance, and operational
excellence of your web application instances.

Reliability
Security
Cost Optimization
Performance
Operational Excellence

Consider the following articles as resources that demonstrate the recommendations
highlighted in this article.

Use these reference architectures as examples of how to apply these
recommendations to a workload.

If you've never deployed a web app, see Basic web application.

For a foundational architecture as your starting point for a production-grade
deployment, see Baseline highly available zone-redundant web application.

Use the following product documentation to build your implementation expertise:

App Service

App Service plan

Next steps

 Yes No

https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference#compute-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-performance-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/basic-web-app
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service/architectures/baseline-zone-redundant
https://learn.microsoft.com/en-us/azure/app-service/
https://learn.microsoft.com/en-us/azure/app-service/overview-hosting-plans

Azure Batch and reliability
Article • 03/11/2024

Azure Batch allows you to run large-scale parallel and high-performance computing
(HPC) batch jobs efficiently in Azure.

Use Azure Batch to:

Create and manage a pool of compute nodes (virtual machines).
Install applications you want to run.
Schedule jobs to run on the compute nodes.

The following sections include a design and configuration checklist, recommended
design, and configuration options specific to Azure Batch.

Have you designed your workload and configured Azure Batch with resiliency in
mind?

Explore the following table of recommendations to optimize your workload design and
Azure Batch configuration for service reliability:

Recommendation Description

Keep application binaries and
reference data up to date in all

Staying up to date will ensure the region can be brought
online quickly without waiting for file upload and

Design and configuration checklist

Keep application binaries and reference data up to date in all regions.＂

Use fewer jobs and more tasks.＂

Use multiple Batch accounts in various regions to allow your application to continue
running, if an Azure Batch account in one region becomes unavailable.

＂

Build durable tasks.＂

Pre-create all required services in each region, such as the Batch account and
storage account.

＂

Make sure the appropriate quotas are set on all subscriptions ahead of time, so you
can allocate the required number of cores using the Batch account.

＂

Design and configuration recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview

Feedback

Was this page helpful?

Recommendation Description

regions. deployment.

Use fewer jobs and more tasks. Using a job to run a single task is inefficient. For example,
it's more efficient to use a single job containing 1000 tasks
rather than creating 100 jobs that contain 10 tasks each.
Running 1000 jobs, each with a single task, would be the
least efficient, slowest, and most expensive approach.

Use multiple Batch accounts in
various regions to allow your
application to continue running, if
an Azure Batch account in one
region becomes unavailable.

It's crucial to have multiple accounts for a highly available
application.

Build durable tasks. Tasks should be designed to withstand failure and
accommodate retry, especially for long running tasks.
Ensure tasks generate the same, single result even if they're
run more than once. One way to achieve the same result is
to make your tasks goal seeking. Another way is to make
sure your tasks are idempotent (tasks will have the same
outcome no matter how many times they're run).

Pre-create all required services in
each region, such as the Batch
account and storage account.

There's often no charge for creating accounts and charges
accrue only when you use the account, or when you store
data.

 Tip

For more details on Reliability guidance for Load Balancer, see Reliability in Azure
Batch.

Next step
Azure Batch and operational excellence

 Yes No

https://learn.microsoft.com/en-us/azure/reliability/reliability-batch

Azure Batch and operational excellence
Article • 11/14/2023

Azure Batch allows you to run large-scale parallel and high-performance computing
(HPC) batch jobs efficiently in Azure.

Use Azure Batch to:

Create and manage a pool of compute nodes (virtual machines).
Install applications you want to run.
Schedule jobs to run on the compute nodes.

The following sections include a design and configuration checklist, recommended
design, and configuration options specific to Azure Batch.

Have you designed your workload and configured Azure Batch with operational
excellence in mind?

Explore the following table of recommendations to optimize your workload design and
Azure Batch configuration for operational excellence:

Recommendation Description

Keep application binaries and
reference data up to date in all
regions.

Staying up to date will ensure the region can be brought
online quickly without waiting for file upload and deployment.

Use fewer jobs and more tasks. Using a job to run a single task is inefficient. For example, it's
more efficient to use a single job containing 1000 tasks rather
than creating 100 jobs that contain 10 tasks each. Running

Design and configuration checklist

Keep application binaries and reference data up to date in all regions.＂

Use fewer jobs and more tasks.＂

Pre-create all required services in each region, such as the Batch account and
storage account.

＂

Make sure the appropriate quotas are set on all subscriptions ahead of time, so you
can allocate the required number of cores using the Batch account.

＂

Design and configuration recommendations

https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview

Recommendation Description

1000 jobs, each with a single task, would be the least efficient,
slowest, and most expensive approach.

Pre-create all required services
in each region, such as the Batch
account and storage account.

There's often no charge for creating accounts and charges
accrue only when you use the account, or when you store
data.

Next step
Azure Batch and performance efficiency

Azure Batch and performance efficiency
Article • 11/14/2023

Azure Batch allows you to run large-scale parallel and high-performance computing
(HPC) batch jobs efficiently in Azure.

Use Azure Batch to:

Create and manage a pool of compute nodes (virtual machines).
Install applications you want to run.
Schedule jobs to run on the compute nodes.

The following sections include a design checklist and recommended design options
specific to Azure Batch.

Have you designed your workload and configured Azure Batch with performance
efficiency in mind?

Consider the following recommendation to optimize your workload design and Azure
Batch configuration for performance efficiency:

Recommendation Description

Use fewer jobs and
more tasks.

Using a job to run a single task is inefficient. For example, it's more
efficient to use a single job containing 1000 tasks rather than creating
100 jobs that contain 10 tasks each. Running 1000 jobs, each with a
single task, would be the least efficient, slowest, and most expensive
approach.

Design checklist

Use fewer jobs and more tasks.＂

Design and configuration recommendations

Next step
AKS and reliability

https://learn.microsoft.com/en-us/azure/batch/batch-technical-overview

Azure Well-Architected Framework
perspective on Azure Blob Storage
Article • 04/22/2024

Azure Blob Storage is a Microsoft object storage solution for the cloud. Blob Storage is
optimized to store massive amounts of unstructured data. Unstructured data is data that
doesn't adhere to a specific data model or definition, such as text or binary data.

This article assumes that as an architect, you reviewed your storage options and chose
Blob Storage as the storage service on which to run your workloads. The guidance in
this article provides architectural recommendations that are mapped to the principles of
the Azure Well-Architected Framework pillars.

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

Start your design strategy based on the design review checklist for Reliability.

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies.

Also included are recommendations on the technology capabilities that can help
implement those strategies. The recommendations don't represent an exhaustive
list of all configurations available for Blob Storage and its dependencies. Instead,
they list the key recommendations mapped to the design perspectives. Use the
recommendations to build your proof-of-concept or optimize your existing
environments.

Reliability

Design checklist

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/storage-options
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Use failure mode analysis: Minimize points of failure by considering internal
dependencies such as the availability of virtual networks, Azure Key Vault, or Azure
Content Delivery Network or Azure Front Door endpoints. Failures can occur if
credentials required by workloads to access Blob Storage go missing from Key
Vault, or if workloads use an endpoint based on a content delivery network that's
removed. In these cases, workloads might need to use an alternative endpoint to
connect. For general information about failure mode analysis, see
Recommendations for performing failure mode analysis.

＂

Define reliability and recovery targets: Review the Azure service-level agreements
(SLAs) . Derive the service-level objective (SLO) for the storage account. For
example, the SLO might be affected by the redundancy configuration that you
chose. Consider the effect of a regional outage, the potential for data loss, and the
time required to restore access after an outage. Also consider the availability of any
internal dependencies that you identified as part of your failure mode analysis.

＂

Configure data redundancy: For maximum durability, choose a configuration that
copies data across availability zones or global regions. For maximum availability,
choose a configuration that allows clients to read data from the secondary region
during an outage of the primary region.

＂

Design applications: Design applications to seamlessly shift to reading data from
the secondary region if the primary region becomes unavailable for any reason. This
only applies to geo-redundant storage (GRS) and geo-zone-redundant storage
(GZRS) configurations. Designing applications to handle outages reduces downtime
for end users.

＂

Explore features to help you meet your recovery targets: Make blobs restorable so
that they can be recovered if they're corrupted, edited, or deleted by mistake.

＂

Create a recovery plan: Consider data protection features, backup and restore
operations, or failover procedures. Prepare for potential data loss and data
inconsistencies and the time and cost of failing over. For more information, see
Recommendations for designing a disaster recovery strategy.

＂

Monitor potential availability problems: Subscribe to the Azure Service Health
dashboard to monitor potential availability problems. Use storage metrics in
Azure Monitor and diagnostic logs to investigate alerts.

＂

Recommendations

ﾉ Expand table

https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://learn.microsoft.com/en-us/azure/storage/common/geo-redundant-design
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#anticipate-data-loss-and-inconsistencies
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#anticipate-data-loss-and-inconsistencies
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#the-time-and-cost-of-failing-over
https://azure.microsoft.com/status/
https://azure.microsoft.com/status/
https://azure.microsoft.com/status/

Recommendation Benefit

Configure your account for redundancy.

For maximum availability and durability,
configure your account by using zone-
redundant storage (ZRS) or GZRS.

Redundancy protects your data against unexpected
failures. The ZRS and GZRS configuration options
replicate across different availability zones and enable
applications to continue reading data during an
outage. For more information, see Durability and
availability by outage scenario and Durability and
availability parameters.

Before initiating a failover or failback,
evaluate the potential for data loss by
checking the value of the last
synchronization time property. This
recommendation applies only to GRS and
GZRS configurations.

This property helps you estimate how much data you
might lose by initiating an account failover.

All data and metadata written before the last
synchronization time is available on the secondary
region, but data and metadata written after the last
synchronization time might be lost because it's not
written to the secondary region.

As a part of your backup and recovery
strategy, enable the container soft delete,
blob soft delete, versioning, and point-
in-time restore options.

The soft delete option enables a storage account to
recover deleted containers and blobs.

The versioning option automatically tracks changes
made to blobs. This option lets you restore a blob to
a previous state.

The point-in-time restore option protects against
accidental blob deletion or corruption and lets you
restore block blob data to an earlier state.

For more information, see Data protection overview.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design of your Blob Storage
configuration.

Start your design strategy based on the design review checklist for Security. Identify
vulnerabilities and controls to improve the security posture. Extend the strategy to
include more approaches as needed.

Security

Design checklist

https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#geo-zone-redundant-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#durability-and-availability-by-outage-scenario
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#durability-and-availability-by-outage-scenario
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#durability-and-availability-parameters
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#durability-and-availability-parameters
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#anticipate-data-loss-and-inconsistencies
https://learn.microsoft.com/en-us/azure/storage/common/last-sync-time-get
https://learn.microsoft.com/en-us/azure/storage/common/last-sync-time-get
https://learn.microsoft.com/en-us/azure/storage/blobs/soft-delete-container-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/versioning-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/point-in-time-restore-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/point-in-time-restore-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/data-protection-overview
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles

Review the security baseline for Azure Storage: To get started, first review the
security baseline for Storage.

＂

Use network controls to restrict ingress and egress traffic: Disable all public traffic
to the storage account. Use account network controls to grant the minimal level of
access required by users and applications. For more information, see How to
approach network security for your storage account.

＂

Reduce the attack surface: Preventing anonymous access, account key access, or
access over non-secure (HTTP) connections can reduce the attack surface. Require
clients to send and receive data by using the latest version of the Transport Layer
Security (TLS) protocol.

＂

Authorize access without using passwords or keys: Microsoft Entra ID provides
superior security and ease of use compared to shared keys and shared access
signatures. Grant security principals only those permissions that are necessary for
them to do their tasks.

＂

Protect sensitive information: Protect sensitive information such as account keys
and shared access signature tokens. While these forms of authorization are
generally not recommended, you should make sure to rotate, expire, and store
them securely.

＂

Enable the secure transfer required option: Enabling this setting for all your
storage accounts ensures that all requests made against the storage account must
take place over secure connections. Any requests made over HTTP fail.

＂

Protect critical objects: Apply immutability policies to protect critical objects.
Policies protect blobs that are stored for legal, compliance, or other business
purposes from being modified or deleted. Configure holds for set time periods or
until restrictions are lifted by an administrator.

＂

Detect threats: Enable Microsoft Defender for Storage to detect threats. Security
alerts are triggered when anomalies in activity occur. The alerts notify subscription
administrators via email with details of suspicious activity and recommendations on
how to investigate and remediate threats.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/storage-security-baseline
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/storage-security-baseline
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security#how-to-approach-network-security-for-your-storage-account
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security#how-to-approach-network-security-for-your-storage-account
https://learn.microsoft.com/en-us/azure/storage/blobs/immutable-storage-overview
https://learn.microsoft.com/en-us/azure/storage/common/azure-defender-storage-configure

Recommendation Benefit

Disable anonymous read access to containers and
blob.

When anonymous access is allowed for a
storage account, a user that has the
appropriate permissions can modify a
container's anonymous access setting to
enable anonymous access to the data in that
container.

Apply an Azure Resource Manager lock on the
storage account.

Locking an account prevents it from being
deleted and causing data loss.

Disable traffic to the public endpoints of your
storage account. Create private endpoints for
clients that run in Azure. Enable the public
endpoint only if clients and services external to
Azure require direct access to your storage
account. Enable firewall rules that limit access to
specific virtual networks.

Start with zero access and then incrementally
authorize the lowest levels of access
required for clients and services to minimize
the risk of creating unnecessary openings for
attackers.

Authorize access by using Azure role-based access
control (RBAC).

With RBAC, there are no passwords or keys
that can be compromised. The security
principal (user, group, managed identity, or
service principal) is authenticated by
Microsoft Entra ID to return an OAuth 2.0
token. The token is used to authorize a
request against the Blob Storage service.

Disallow shared key authorization. This disables
not only account key access but also service and
account shared access signature tokens because
they're based on account keys.

Only secured requests that are authorized
with Microsoft Entra ID are permitted.

We recommend that you don't use an account
key. If you must use account keys, then store them
in Key Vault, and make sure that you regenerate
them periodically.

Key Vault lets you retrieve keys at runtime,
instead of saving them by using your
application. Key Vault also makes it easy to
rotate your keys without interruption to your
applications. Rotating the account keys
periodically reduces the risk of exposing
your data to malicious attacks.

We recommend that you don't use shared access
signature tokens. Evaluate whether you need
shared access signature tokens to secure access to
Blob Storage resources. If you must create one,
then review this list of shared access signature
best practices before you create and distribute it.

Best practices can help you prevent a shared
access signature token from being leaked
and quickly recover if a leak does occur.

Configure your storage account so clients can
send and receive data by using the minimum

TLS 1.2 is more secure and faster than TLS
1.0 and 1.1, which don't support modern

https://learn.microsoft.com/en-us/azure/storage/blobs/anonymous-read-access-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/anonymous-read-access-overview
https://learn.microsoft.com/en-us/azure/storage/common/lock-account-resource
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security#change-the-default-network-access-rule
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security#grant-access-from-a-virtual-network
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security#grant-access-from-a-virtual-network
https://learn.microsoft.com/en-us/azure/storage/common/shared-key-authorization-prevent
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage#protect-your-access-keys
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage#protect-your-access-keys
https://learn.microsoft.com/en-us/azure/storage/common/storage-sas-overview#best-practices-when-using-sas
https://learn.microsoft.com/en-us/azure/storage/common/storage-sas-overview#best-practices-when-using-sas
https://learn.microsoft.com/en-us/azure/storage/common/transport-layer-security-configure-minimum-version

Recommendation Benefit

version of TLS 1.2. cryptographic algorithms and cipher suites.

Consider using your own encryption key to
protect the data in your storage account. For
more information, see Customer-managed keys
for Azure Storage encryption.

Customer-managed keys provide greater
flexibility and control. For example, you can
store encryption keys in Key Vault and
automatically rotate them.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget and business
requirements.

The Cost Optimization design principles provide a high-level design strategy for
achieving those goals and making tradeoffs as necessary in the technical design related
to Blob Storage and its environment.

Start your design strategy based on the design review checklist for Cost Optimization for
investments. Fine-tune the design so that the workload is aligned with the budget that's
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Cost Optimization

Design checklist

Identify the meters that are used to calculate your bill: Meters are used to track
the amount of data stored in the account (data capacity) and the number and type
of operations that are performed to write and read data. There are also meters
associated with the use of optional features such as blob index tags, blob inventory,
change feed support, encryption scopes, and SSH File Transfer Protocol (SFTP)
support. For more information, see How you're charged for Blob Storage.

＂

Understand the price of each meter: Make sure to use the appropriate pricing
page and apply the appropriate settings in that page. For more information, see
Finding the unit price for each meter. Consider the number of operations associated
with each price. For example, the price associated with write and read operations
applies to 10,000 operations. To determine the price of an individual operation,
divide the listed price by 10,000.

＂

Estimate the cost of capacity and operations: You can model the costs associated
with data storage, ingress, and egress by using the Azure pricing calculator . Use
fields to compare the cost associated with various regions, account types,

＂

https://learn.microsoft.com/en-us/azure/storage/common/customer-managed-keys-overview
https://learn.microsoft.com/en-us/azure/storage/common/customer-managed-keys-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-plan-manage-costs#how-youre-charged-for-azure-blob-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-plan-manage-costs#finding-the-unit-price-for-each-meter
https://azure.microsoft.com/pricing/calculator/
https://azure.microsoft.com/pricing/calculator/

namespace types, and redundancy configurations. For certain scenarios, you can
use sample calculations and worksheets available in Microsoft documentation. For
example, you can estimate the cost of archiving data or estimate the cost of using
the AzCopy command to transfer blobs.

Choose a billing model for capacity: Evaluate whether using a commitment-based
model is more cost-efficient than using a consumption-based model. If you're
unsure about how much capacity you need, you can start with a consumption-
based model, monitor the capacity metrics, and then evaluate later.

＂

Choose an account type, a redundancy level, and a default access tier: You must
select a value for each of these settings when you create a storage account. All the
values affect transaction charges and capacity charges. All these settings except for
the account type can be changed after the account is created.

＂

Choose the most cost-effective default access tier: Unless a tier is specified with
each blob upload, blobs infer their access tier from the default access tier setting. A
change to the default access tier setting of a storage account applies to all blobs in
the account for which an access tier hasn't been explicitly set. This cost could be
significant if you've collected a large number of blobs. For more information about
how a tier change affects each existing blob, see Changing a blob's access tier.

＂

Upload data directly to the most cost-efficient access tier: For example, if the
default access tier setting of your account is hot, but you're uploading files for
archiving purposes, specify a cooler tier as the archive or a cold tier as part of your
upload operation. After uploading blobs, use lifecycle management policies to
move blobs to the most cost-efficient tiers based on usage metrics such as the last
accessed time. Choosing the most optimal tier up front can reduce costs. If you
change the tier of a block blob that you already uploaded, then you pay the cost of
writing to the initial tier when you first upload the blob, and then pay the cost of
writing to the desired tier.

＂

Have a plan for managing the data lifecycle: Optimize transaction and capacity
costs by taking advantage of access tiers and lifecycle management. Data used less
often should be placed in cooler access tiers while data that's accessed often should
be placed in warmer access tiers.

＂

Decide which features you need: Some features such as versioning and blob soft
delete incur additional transaction and capacity costs as well as other charges.
Make sure to review the pricing and billing sections in articles that describe those
capabilities when you choose which capabilities to add to your account.

＂

https://learn.microsoft.com/en-us/azure/storage/blobs/archive-cost-estimation
https://learn.microsoft.com/en-us/azure/storage/blobs/azcopy-cost-estimation
https://learn.microsoft.com/en-us/azure/storage/blobs/azcopy-cost-estimation
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-reserved-capacity
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-reserved-capacity
https://learn.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview#changing-a-blobs-access-tier

Recommendation Benefit

Pack small files into larger files before moving them to
cooler tiers. You can use file formats such as TAR or ZIP.

Cooler tiers have higher data transfer
costs. By having fewer large files, you
can reduce the number of operations
required to transfer data.

Use standard-priority rehydration when rehydrating
blobs from archive storage. Use high-priority
rehydration only for emergency data restoration
situations. For more information, see Rehydrate an
archived blob to an online tier

High-priority rehydration from the
archive tier can lead to higher-than-
normal bills.

Reduce the cost of using resource logs by choosing the
appropriate log storage location and by managing log-
retention periods. If you only plan to query logs

Storing resource logs in a storage
account for later analysis can be a
cheaper option. Using lifecycle

For example, if you enable the blob inventory feature, you're billed for the number
of objects scanned. If you use blob index tags, you're billed for the number of index
tags. If you enable SFTP support, you're billed an hourly charge, even if there are no
SFTP transfers. If you decide against using a feature, confirm that the feature is
disabled because some features are automatically enabled when you create the
account.

Create guardrails: Create budgets based on subscriptions and resource groups. Use
governance policies to restrict resource types, configurations, and locations.
Additionally, use RBAC to block actions that can lead to overspending.

＂

Monitor costs: Ensure costs stay within budgets, compare costs against forecasts,
and see where overspending occurs. You can use the cost analysis pane in the Azure
portal to monitor costs. You also can export cost data to a storage account and
analyze that data by using Excel or Power BI.

＂

Monitor usage: Continuously monitor usage patterns and detect unused or
underutilized accounts and containers. Use Storage insights to identity accounts
with no or low use. Enable blob inventory reports, and use tools such as Azure
Databricks or Azure Synapse Analytics and Power BI to analyze cost data. Watch out
for unexpected increases in capacity, which might indicate that you're collecting
numerous log files, blob versions, or soft-deleted blobs. Develop a strategy for
expiring or transitioning objects to more cost-effective access tiers.Have a plan for
expiring objects or moving objects to more affordable access tiers.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/storage/blobs/access-tiers-best-practices#pack-small-files-before-moving-data-to-cooler-tiers
https://learn.microsoft.com/en-us/azure/storage/blobs/archive-rehydrate-to-online-tier
https://learn.microsoft.com/en-us/azure/storage/blobs/archive-rehydrate-to-online-tier
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets
https://learn.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://learn.microsoft.com/en-us/azure/storage/blobs/blob-storage-monitoring-scenarios#identify-storage-accounts-with-no-or-low-use
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-calculate-container-statistics-databricks
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-calculate-container-statistics-databricks
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-inventory-report-analytics

Recommendation Benefit

occasionally (for example, querying logs for compliance
auditing), consider sending resource logs to a storage
account instead of sending them to an Azure Monitor
Logs workspace. You can use a serverless query
solution such as Azure Synapse Analytics to analyze
logs. For more information, see Optimize cost for
infrequent queries. Use lifecycle management policies
to delete or archive logs.

management policies to manage log
retention in a storage account prevents
large numbers of logs files building up
over time, which can lead to
unnecessary capacity charges.

If you enable versioning, use a lifecycle management
policy to automatically delete old blob versions.

Every write operation to a blob creates
a new version. This increases capacity
costs. You can keep costs in check by
removing versions that you no longer
need.

If you enable versioning, then place blobs that are
frequently overwritten into an account that doesn't
have versioning enabled.

Every time a blob is overwritten, a new
version is added which leads to
increased storage capacity charges. To
reduce capacity charges, store
frequently overwritten data in a
separate storage account with
versioning disabled.

If you enable soft delete, then place blobs that are
frequently overwritten into an account that doesn't
have soft delete enabled. Set retention periods.
Consider starting with a short retention period to
better understand how the feature affects your bill. The
minimum recommended retention period is seven
days.

Every time a blob is overwritten, a new
snapshot is created. The cause of
increased capacity charges might be
difficult to access because the creation
of these snapshots doesn't appear in
logs. To reduce capacity charges, store
frequently overwritten data in a
separate storage account with soft
delete disabled. A retention period
keeps soft-deleted blobs from piling up
and adding to the cost of capacity.

Enable SFTP support only when it's used to transfer
data.

Enabling the SFTP endpoint incurs an
hourly cost. By thoughtfully disabling
SFTP support, and then enabling it as
needed, you can avoid passive charges
from accruing in your account.

Disable any encryption scopes that aren't needed to
avoid unnecessary charges.

Encryptions scopes incur a per month
charge.

Operational Excellence

https://learn.microsoft.com/en-us/azure/storage/blobs/blob-storage-monitoring-scenarios#optimize-cost-for-infrequent-queries
https://learn.microsoft.com/en-us/azure/storage/blobs/blob-storage-monitoring-scenarios#optimize-cost-for-infrequent-queries

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals for the operational requirements of the workload.

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to
your Blob Storage configuration.

Recommendation Benefit

Use infrastructure as code (IaC) to define the details
of your storage accounts in Azure Resource

You can use your existing DevOps
processes to deploy new storage

Design checklist

Create maintenance and emergency recovery plans: Consider data protection
features, backup and restore operations, and failover procedures. Prepare for
potential data loss and data inconsistencies and the time and cost of failing over.

＂

Monitor the health of your storage account: Create Storage insights dashboards to
monitor availability, performance, and resilience metrics. Set up alerts to identify
and address problems in your system before your customers notice them. Use
diagnostic settings to route resource logs to an Azure Monitor Logs workspace.
Then you can query logs to investigate alerts more deeply.

＂

Enable blob inventory reports: Enable blob inventory reports to review the
retention, legal hold, or encryption status of your storage account contents. You can
also use blob inventory reports to understand the total data size, age, tier
distribution, or other attributes of your data. Use tools such as Azure Databricks or
Azure Synapse Analytics and Power BI to better visualize inventory data and to
create reports for stakeholders.

＂

Set up policies that delete blobs or move them to cost-efficient access tiers:
Create a lifecycle management policy with an initial set of conditions. Policy runs
automatically delete or set the access tier of blobs based on the conditions you
define. Periodically analyze container use by using Monitor metrics and blob
inventory reports so that you can refine conditions to optimize cost efficiency.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#anticipate-data-loss-and-inconsistencies
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance#the-time-and-cost-of-failing-over
https://learn.microsoft.com/en-us/azure/storage/common/storage-insights-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-calculate-container-statistics-databricks
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-inventory-report-analytics

Recommendation Benefit

Manager templates (ARM templates), Bicep, or
Terraform .

accounts, and use Azure Policy to enforce
their configuration.

Use Storage insights to track the health and
performance of your storage accounts. Storage
insights provides a unified view of the failures,
performance, availability, and capacity for all your
storage accounts.

You can track the health and operation of
each of your accounts. Easily create
dashboards and reports that stakeholders
can use to track the health of your storage
accounts.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency. Define a baseline that's based on key performance indicators for your Blob
Storage configuration.

Performance Efficiency

Design checklist

Plan for scale: Understand the scale targets for storage accounts.＂

Choose the optimal storage account type: If your workload requires high
transaction rates, smaller objects, and a consistently low transaction latency, then
consider using premium block blob storage accounts. A standard general-purpose
v2 account is most appropriate in most cases.

＂

Reduce travel distance between the client and server: Place data in regions
nearest to connecting clients (ideally in the same region). Optimize for clients in
regions far away by using object replication or a content delivery network. Default
network configurations provide the best performance. Modify network settings only
to improve security. In general, network settings don't decrease travel distance and
don't improve performance.

＂

Choose an efficient naming scheme: Decrease the latency of listing, list, query, and
read operations by using hash tag prefixes nearest the beginning of the blob
partition key (account, container, virtual directory, or blob name). This scheme
benefits mostly accounts that have a flat namespace.

＂

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/log_analytics_workspace.html
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/log_analytics_workspace.html
https://learn.microsoft.com/en-us/azure/governance/policy/overview

Recommendation Benefit

Provision storage accounts in the same region
where dependent resources are placed. For
applications that aren't hosted on Azure, such as
mobile device apps or on-premises enterprise
services, locate the storage account in a region
nearer to those clients. For more information, see
Azure geographies .

If clients from a different region don't require the
same data, then create a separate account in each
region.

If clients from a different region require only some
data, consider using an object-replication policy to
asynchronously copy relevant objects to a storage
account in the other region.

Reducing the physical distance between
the storage account and VMs, services, and
on-premises clients can improve
performance and reduce network latency.
Reducing the physical distance also
reduces cost for applications hosted in
Azure because bandwidth usage within a
single region is free.

Optimize the performance of data clients: Choose a data transfer tool that's most
appropriate for the data size, transfer frequency, and bandwidth of your workloads.
Some tools such as AzCopy are optimized for performance and require little
intervention. Consider the factors that influence latency, and fine-tune performance
by reviewing the performance optimization guidance that's published with each
tool.

＂

Optimize the performance of custom code: Consider using Storage SDKs instead
of creating your own wrappers for blob REST operations. Azure SDKs are optimized
for performance and provide mechanisms to fine-tune performance. Before
creating an application, review the performance and scalability checklist for Blob
Storage. Consider using query acceleration to filter out unwanted data during the
storage request and keep clients from needlessly transferring data across the
network.

＂

Collect performance data: Monitor your storage account to identify performance
bottlenecks that occur from throttling. For more information, see Monitoring your
storage service with Monitor Storage insights. Use both metrics and logs. Metrics
provide numbers such as throttling errors. Logs describe activity. If you see
throttling metrics, you can use logs to identity which clients are receiving throttling
errors. For more information, see Auditing data plane operations.

＂

Recommendations

ﾉ Expand table

https://azure.microsoft.com/explore/global-infrastructure/geographies/#overview
https://azure.microsoft.com/explore/global-infrastructure/geographies/#overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-choose-data-transfer-solution
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-latency#factors-influencing-latency
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-performance-checklist
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-performance-checklist
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-query-acceleration
https://learn.microsoft.com/en-us/azure/storage/common/storage-insights-overview#view-from-azure-monitor
https://learn.microsoft.com/en-us/azure/storage/common/storage-insights-overview#view-from-azure-monitor
https://learn.microsoft.com/en-us/azure/storage/blobs/blob-storage-monitoring-scenarios#auditing-data-plane-operations

Recommendation Benefit

For broad consumption by web clients (streaming
video, audio, or static website content), consider
using a content delivery network through Azure
Front Door.

Content is delivered to clients faster
because it uses the Microsoft global edge
network with hundreds of global and local
points of presence around the world.

Add a hash character sequence (such as three
digits) as early as possible in the partition key of a
blob. The partition key is the account name,
container name, virtual directory name, and blob
name. If you plan to use timestamps in names, then
consider adding a seconds value to the beginning
of that stamp. For more information, see
Partitioning.

Using a hash code or seconds value
nearest the beginning of a partition key
reduces the time required to list query and
read blobs.

When uploading blobs or blocks, use a blob or
block size that's greater than 256 KiB.

Blob or block sizes above 256 KiB takes
advantage of performance enhancements
in the platform made specifically for larger
blobs and block sizes.

Azure provides an extensive set of built-in policies related to Blob Storage and its
dependencies. Some of the preceding recommendations can be audited through Azure
policies. For example, you can check if:

Anonymous public read access to containers and blobs isn't enabled.
Diagnostic settings for Blob Storage are set to stream resource logs to an Azure
Monitor Logs workspace.
Only requests from secure connections (HTTPS) are accepted.
A shared access signature expiration policy is enabled.
Cross-tenant object replication is disabled.
Shared key authorization is disabled.
Network firewall rules are applied to the account.

For comprehensive governance, review the Azure Policy built-in definitions for Storage
and other policies that might affect the security of the compute layer.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you

Azure policies

Azure Advisor recommendations

https://learn.microsoft.com/en-us/azure/storage/blobs/storage-performance-checklist#partitioning
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#storage
https://learn.microsoft.com/en-us/azure/advisor/

Feedback

Was this page helpful?

improve the reliability, security, cost effectiveness, performance, and operational
excellence of Blob Storage.

Reliability
Security
Cost Optimization
Performance
Operational Excellence

For more information about Blob Storage, see Blob Storage documentation.

Next step

 Yes No

https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-performance-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations
https://learn.microsoft.com/en-us/azure/storage/blobs/

Azure Cache for Redis and reliability
Article • 11/14/2023

Azure Cache for Redis provides an in-memory data store based on the Redis (Remote
Dictionary Server) software. It's a secure data cache and messaging broker that
provides high throughput and low-latency access to data for applications.

Key concepts and best practices that support reliability include:

High availability
Failover and patching
Connection resilience

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Cache for Redis.

The Azure Cache for Redis Service Level Agreements (SLA) covers only Standard and
Premium tier caches. Basic tier isn't covered.

Redis is an in-memory cache for key value pairs and has High Availability (HA), by
default, except for Basic tier. There are three tiers for Azure Cache for Redis:

Basic: Not recommended for production workloads. Basic tier is ideal for:
Single node
Multiple sizes
Development
Test
Non-critical workloads

Standard: A replicated cache in a two-node primary and secondary configuration
managed by Microsoft, with a high availability SLA.

Premium: Includes all standard-tier features and includes the following other
features:

Faster hardware and performance compared to Basic or Standard tier.
Larger cache size, up to 120GB .
Data persistence , which includes Redis Database File (RDB) and Append Only
File (AOF).
VNET support.
Clustering

Design considerations

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://redis.io/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-high-availability
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-failover
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-best-practices-connection
https://azure.microsoft.com/support/legal/sla/cache/v1_0/
https://redis.io/topics/persistence
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-how-to-premium-clustering

Geo-Replication: A secondary cache is in another region and replicates data
from the primary for disaster recovery. To failover to the secondary, the caches
need to be unlinked manually and then the secondary is available for writes. The
application writing to Redis needs to be updated with the secondary's cache
connection string.
Availability Zones: Deploy the cache and replicas across availability zones.

Import and export.

Microsoft guarantees at least 99.9% of the time that customers will have connectivity
between the Cache Endpoints and Microsoft's Internet gateway.

Have you configured Azure Cache for Redis with resiliency in mind?

Explore the following table of recommendations to optimize your Azure Cache for Redis
configuration for service reliability:

７ Note

By default, each deployment will have one replica per shard. Persistence,
clustering, and geo-replication are all disabled at this time with
deployments that have more than one replica. Your nodes will be
distributed evenly across all zones. You should have a replica count >=
number of zones.

Checklist

Schedule updates.＂

Monitor the cache and set alerts.＂

Deploy the cache within a VNET.＂

Evaluate a partitioning strategy within Redis cache.＂

Configure Data Persistence to save a copy of the cache to Azure Storage or use
Geo-Replication, depending on the business requirement.

＂

Implement retry policies in the context of your Azure Redis Cache.＂

Use one static or singleton implementation of the connection multiplexer to Redis
and follow the best practices guide.

＂

Review How to administer Azure Cache for Redis.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-administration#reboot

Recommendation Description

Schedule updates. Schedule the days and times that Redis Server updates will be
applied to the cache, which doesn't include Azure updates, or
updates to the VM operating system.

Monitor the cache and set
alerts.

Set alerts for exceptions, high CPU, high memory usage, server load,
and evicted keys for insights about when to scale the cache. If the
cache needs to be scaled, understanding when to scale is important
because it will increase CPU during the scaling event to migrate
data.

Deploy the cache within a
VNET.

Gives the customer more control over the traffic that can connect to
the cache. Make sure that the subnet has sufficient address space
available to deploy the cache nodes and shards (cluster).

Evaluate a partitioning
strategy within Redis
cache.

Partitioning a Redis data store involves splitting the data across
instances of the Redis server. Each instance makes up a single
partition. Azure Redis Cache abstracts the Redis services behind a
facade and doesn't expose them directly. The simplest way to
implement partitioning is to create multiple Azure Redis Cache
instances and spread the data across them. You can associate each
data item with an identifier (a partition key) that specifies which
cache stores the data item. The client application logic can then use
this identifier to route requests to the appropriate partition. This
scheme is simple, but if the partitioning scheme changes (for
example, if extra Azure Redis Cache instances are created), client
applications may need to be reconfigured.

Configure Data Persistence
to save a copy of the cache
to Azure Storage or use
Geo-Replication,
depending on the business
requirement.

Data Persistence: if the master and replica reboot, the data will be
loaded automatically from the storage account. Geo-Replication:
The secondary cache needs to be unlinked from the primary. The
secondary will now become the primary and can receive writes.

Implement retry policies in
the context of your Azure
Redis Cache.

Most Azure services and client SDKs include a retry mechanism.
These mechanisms differ because each service has different
characteristics and requirements. Each retry mechanism is tuned to
a specific service.

Review How to administer
Azure Cache for Redis.

Understand how data loss can occur with cache reboots and how to
test the application for resiliency.

To identify Redis instances that aren't on the Premium tier, use the following query:

SQL

Source artifacts

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-administration#reboot

Resources
| where type == 'microsoft.cache/redis'
| where properties.sku.name != 'Premium'

Next step
Azure Cache for Redis and operational excellence

Azure Cache for Redis and operational
excellence
Article • 11/14/2023

Azure Cache for Redis provides an in-memory data store based on the Redis (Remote
Dictionary Server) software. It's a secure data cache and messaging broker that
provides high throughput and low-latency access to data for applications.

Best practices that support operational excellence include:

Server load management
Memory management
Performance testing

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Cache for Redis.

The Azure Cache for Redis Service Level Agreements (SLA) covers only Standard and
Premium tier caches. Basic tier isn't covered.

Redis is an in-memory cache for key value pairs and has High Availability (HA), by
default, except for Basic tier. There are three tiers for Azure Cache for Redis:

Basic: Not recommended for production workloads. Basic tier is ideal for:
Single node
Multiple sizes
Development
Test
Non-critical workloads

Standard: A replicated cache in a two-node primary and secondary configuration
managed by Microsoft, with a high availability SLA.

Premium: Includes all standard-tier features and includes the following other
features:

Faster hardware and performance compared to Basic or Standard tier.
Larger cache size, up to 120GB .
Data persistence , which includes Redis Database File (RDB) and Append Only
File (AOF).

Design considerations

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://redis.io/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-best-practices-server-load
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-best-practices-memory-management
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-best-practices-performance
https://azure.microsoft.com/support/legal/sla/cache/v1_0/
https://redis.io/topics/persistence

VNET support.
Clustering
Geo-Replication: A secondary cache is in another region and replicates data
from the primary for disaster recovery. To failover to the secondary, the caches
need to be unlinked manually and then the secondary is available for writes. The
application writing to Redis will need to be updated with the secondary's cache
connection string.
Availability Zones: Deploy the cache and replicas across availability zones.

Import and export.

Microsoft guarantees at least 99.9% of the time that customers will have connectivity
between the Cache Endpoints and Microsoft's Internet gateway.

Have you configured Azure Cache for Redis with operational excellence in mind?

Explore the following table of recommendations to optimize your Azure Cache for Redis
configuration for operational excellence:

７ Note

By default, each deployment will have one replica per shard. Persistence,
clustering, and geo-replication are all disabled at this time with
deployments that have more than one replica. Your nodes will be
distributed evenly across all zones. You should have a replica count >=
number of zones.

Checklist

Schedule updates.＂

Monitor the cache and set alerts.＂

Deploy the cache within a VNET.＂

Use the correct caching type (local, in role, managed, redis) within your solution.＂

Configure Data Persistence to save a copy of the cache to Azure Storage or use
Geo-Replication, depending on the business requirement.

＂

Use one static or singleton implementation of the connection multiplexer to Redis
and follow the best practices guide.

＂

Review How to administer Azure Cache for Redis.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-how-to-premium-clustering
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-administration#reboot

Recommendation Description

Schedule updates. Schedule the days and times that Redis Server updates will
be applied to the cache, which doesn't include Azure
updates, or updates to the VM operating system.

Monitor the cache and set alerts. Set alerts for exceptions, high CPU, high memory usage,
server load, and evicted keys for insights about when to
scale the cache. If the cache needs to be scaled,
understanding when to scale is important because it will
increase CPU during the scaling event to migrate data.

Deploy the cache within a VNET. Gives the customer more control over the traffic that can
connect to the cache. Make sure that the subnet has
sufficient address space available to deploy the cache
nodes and shards (cluster).

Use the correct caching type (local,
in role, managed, redis) within your
solution.

Distributed applications typically implement either or both
of the following strategies when caching data:
- Using a private cache, where data is held locally on the
machine that's running an instance of an application or
service.
- Using a shared cache, serving as a common source that
can be accessed by multiple processes and machines.
In both cases, caching can be performed client-side and
server-side. Client-side caching is done by the process that
provides the user interface for a system, such as a web
browser or desktop application. Server-side caching is
done by the process that provides the business services
that are running remotely.

Configure Data Persistence to save
a copy of the cache to Azure
Storage or use Geo-Replication,
depending on the business
requirement.

Data Persistence: If the master and replica reboot, the data
will be loaded automatically from the storage account.
Geo-Replication: The secondary cache needs to be
unlinked from the primary. The secondary will now
become the primary and can receive writes.

Review How to administer Azure
Cache for Redis.

Understand how data loss can occur with cache reboots
and how to test the application for resiliency.

To identify Redis instances that aren't on the Premium tier, use the following query:

SQL

Source artifacts

Resources
| where type == 'microsoft.cache/redis'

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-administration#reboot

| where properties.sku.name != 'Premium'

Next step
Azure Databricks and security

Azure Well-Architected Framework
review – Azure Cosmos DB for NoSQL
Article • 11/14/2023

This article describes the best practices for Azure Cosmos DB for NoSQL. These best
practices ensure that you can deploy solutions on Azure Cosmos DB that are efficient,
reliable, secure, optimized for cost, and operationally excellent. This guidance focuses on
the five pillars of architecture excellence in the Well-Architected Framework:

Reliability
Security
Cost Optimization
Operational Excellence
Performance Efficiency

This review guide assumes that you have a working knowledge of Azure Cosmos DB and
are well versed with its features. For more information, see Azure Cosmos DB for NoSQL.

Understanding the Well-Architected Framework pillars can help produce a high-quality,
stable, and efficient cloud architecture. We recommend that you start by reviewing your
workload using the Azure Well-Architected Framework Review assessment.

For more context, review various reference architectures that reflect the considerations
from this guide in their design. These architectures include, but aren't limited to:

Globally distributed mission-critical applications using Azure Cosmos DB
Serverless apps using Azure Cosmos DB
Multi-region web app with Azure Cosmos DB replication

As with any cloud service, failures can occur both on the service and the workload side.
It's impossible to prevent all potential failures, but it's a better goal to minimize the
effects a single failing component can have on your entire workload. This section
includes considerations and recommendations to minimize the consequences of a one-
off failure.

Prerequisites

Reliability

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/globally-distributed-mission-critical-applications-using-cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/serverless-apps-using-cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/multi-region-web-app-cosmos-db-replication

Recommendation Benefit

Distribute your Azure Cosmos
DB account across availability
zones (when available).

Availability zones provide distinct power, networking, and
cooling isolating hardware failures to a subset of your replicas.
Azure Cosmos DB has multiple replicas that span across a single
random availability zone when the availability zones feature
isn't used. If the availability zone feature is used, replicas span
across multiple availability zones.

Configure your Azure Cosmos
DB account to span at least
two regions.

Spanning multiple regions prevents your account from being
entirely unavailable if there's an isolated region outage.

Enable service-managed
failover for your account.

Service-managed failover allows Azure Cosmos DB to change
the write region of a multiple-region account to preserve
availability. This change occurs without user interaction.
Understand the tradeoffs with service-managed failover and

Design checklist

Consider how your selected consistency level and replication mode impacts the
Recovery point objective (RPO) in a region-wide outage.

＂

Design your database account deployment so it spans at least two regions in Azure.
Additionally, distribute your account across multiple availability zones when offered
within your Azure region.

＂

Evaluate the multi-region and single-region write strategies for your workload. For
single-region write, design your workload to have at least a second read region for
failover. Enable auto-failover for single-region write and multi-region read
scenarios. For multi-region write, compare the tradeoffs in complexity and
consistency against the advantages of writing to multiple regions. Review
expectations during a regional outage for single-region and multi-region write
accounts.

＂

Enable service-managed failover for your account.＂

Design an end-to-end test of high availability for your application.＂

Walk through common backup processes including, but not limited to; point-in-
time restore, recovering from accidental destructive operations, restoring deleted
resources, and restoring to another region at a point-in-time. Configure account
with continuous backup, choosing the appropriate retention period based on your
business requirements.

＂

Explore the designing resilient applications guide, review the default retry policy for
the SDKs, and plan for custom handling for specific transient errors. These guides
will give best practices to make application code resilient to transient errors.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#rto
https://learn.microsoft.com/en-us/azure/cosmos-db/high-availability#what-to-expect-during-a-region-outage
https://learn.microsoft.com/en-us/azure/cosmos-db/high-availability#availability
https://learn.microsoft.com/en-us/azure/cosmos-db/continuous-backup-restore-introduction
https://learn.microsoft.com/en-us/azure/cosmos-db/online-backup-and-restore
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/conceptual-resilient-sdk-applications
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-cosmos-db
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/conceptual-resilient-sdk-applications#should-my-application-retry-on-errors

Recommendation Benefit

plan for forced failover if necessary. For more information, see
building highly available applications.

Validate availability by testing
failover manually with service-
managed failover temporarily
disabled.

Temporarily disabling service-manage failover allows you to
validate the end-to-end high availability of your application
with a manual failover started using a script or the Azure portal.
Afterwards, you can reenable service-managed failover.

Policy: Require at least two regions
Policy: Enable service-managed failover
Policy: Require specific deployment regions

Security is a critical part of any architecture that can be easily overlooked for
convenience. Bolster the security of your final workload by considering various security
best practices up-front before the first resource or proof of concept is created. This
section includes considerations and recommendations to reduce the number of security
vulnerabilities for your final workload.

Azure Policy definitions

Security

Design checklist

Reduce surface attack area by designing to use private endpoints in accordance
with the security baseline for Azure Cosmos DB.

＂

Create roles, groups, and assignments for control-plane and data-plane access to
your account per the principle of least-privilege access. Consider disabling key-
based authentication.

＂

Assess service-level compliance and certifications in the context of current global
personal data requirements.

＂

Encrypt data at-rest or in-motion using service-managed keys or customer-
managed keys (CMKs).

＂

Audit user access, security breaches, and resource operations with control plane
logs..

＂

Monitor data egress, data changes, usage, and latency with data plane metrics.＂

Recommendations

https://learn.microsoft.com/en-us/azure/cosmos-db/high-availability#tips-for-building-highly-available-applications
https://github.com/Azure/Community-Policy/blob/main/policyDefinitions/Cosmos%20DB/audit-geo-replication-for-azure-cosmos-db/azurepolicy.json
https://github.com/Azure/Community-Policy/blob/main/policyDefinitions/Cosmos%20DB/audit-automatic-failover-for-azure-cosmos-db/azurepolicy.json
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Cosmos%20DB/Cosmos_Locations_Deny.json
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-cosmos-db-security-baseline#network-security
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-cosmos-db-security-baseline#privileged-access
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-setup-rbac#disable-local-auth
https://learn.microsoft.com/en-us/azure/cosmos-db/compliance
https://azure.microsoft.com/resources/microsoft-azure-compliance-offerings/
https://learn.microsoft.com/en-us/azure/cosmos-db/database-encryption-at-rest
https://learn.microsoft.com/en-us/azure/cosmos-db/audit-control-plane-logs
https://learn.microsoft.com/en-us/azure/cosmos-db/use-metrics

Recommendation Benefit

Implement, at a minimum, the
data protection and identity
management security baselines.

Go through the security baseline including identity
management and data protection. Implement the
recommendations to secure your Azure Cosmos DB account.

Disable public endpoints and
use private endpoints whenever
possible.

Avoid leaving unnecessary or unused public endpoints
available for surface area attacks to your account.

Use role-based access control to
limit control-plane access to
specific identities and groups
and within the scope of well-
defined assignments.

Use role-based access control to prevent unintended access to
your account. Assign appropriate roles and permissions to
users or applications accessing Azure Cosmos DB.

Create virtual network endpoints
and rules to limit access to the
account.

Implement virtual network service endpoints and firewall rules
to restrict access to your Azure Cosmos DB account. Use
network security groups (NSGs) to control inbound and
outbound traffic to and from the Azure Cosmos DB resources.
Limiting access to trusted networks and applying appropriate
network security measures helps protect your data from
unauthorized access.

Follow best software
development practices for
secure access to data.

Follow secure coding practices and perform secure code
reviews when developing applications that interact with Azure
Cosmos DB. Protect against common security vulnerabilities
like injection attacks, cross-site scripting (XSS), or insecure
direct object references (IDOR). Implement input validation,
parameterized queries, and appropriate error handling for
common HTTP status codes to prevent security risks.

Monitor control-plane logs for
breaches.

Monitoring helps you track access patterns and audit logs,
ensuring that your database remains secure and compliant
with relevant data protection regulations. Monitoring data-
plane metrics can also help identify unfamiliar patterns that
might reveal a security breach. For more information, see
security checklist for Azure databases.

Enable Microsoft Defender for
Azure Cosmos DB

Microsoft Defender detects attempts to exploit databases in
your Azure Cosmos DB for NoSQL account. Defender detects
potential SQL injections, suspicious access patterns, and other
potential exploitation.

Policy: Enable Microsoft Defender
Policy: Require a virtual network service endpoint
Policy: Disable local authentication

Azure Policy definitions

https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-cosmos-db-security-baseline
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-cosmos-db-security-baseline#identity-management
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-cosmos-db-security-baseline#data-protection
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query/parameterized-queries
https://learn.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://learn.microsoft.com/en-us/azure/security/fundamentals/database-security-checklist
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Security%20Center/MDC_Microsoft_Defender_Azure_Cosmos_DB_Audit.json
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Network/VirtualNetworkServiceEndpoint_CosmosDB_Audit.json
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Cosmos%20DB/Cosmos_DisableLocalAuth_AuditDeny.json

Policy: Require firewall rules

Your workload's characteristics and the implementation of your solution can influence
the final cost of running in Azure. Consider main drivers like your partitioning strategy,
consistency level, replication, and write type when designing your workload. When
sizing your workload, consider the read/write nature of your data, the size of average
items, normalization, and TTL. This section includes considerations and
recommendations to streamline costs for your workload.

Recommendation Benefit

Monitor RU/s utilization and
patterns.

Use metrics to monitor RU consumption from the very
beginning of your solution. Use queries and other data research
techniques to find antipatterns in your application code.

Cost optimization

Design an indexing policy that's considers the operations and queries you
commonly make in your workload.

＂

Determine a partition key or set of partition keys which have a value that has high
cardinality and does not change. Use the existing guidance and best practices to
help select an appropriate partition key. Also, consider your indexing policy when
determining a partition key.

＂

Select a throughput allocation schema that's appropriate for your workload. Review
the benefits of standard and autoscale throughput distributed at the database or
container level. Also, consider serverless when appropriate. Review your workload's
traffic patterns in the context of selecting a throughput allocation scheme.

＂

Consider consistency levels as they relate to your workload. Also, consider if client
sessions should alter the default consistency level.

＂

Calculate the expected overall data storage for your workload. The size of items and
indexes all influence your data storage cost. Calcuate the impact of replication and
backup on storage costs.

＂

Create a strategy to automatically remove older items that are no longer used or
necessary. If required, export these items to a lower-cost storage solution before
they are removed.

＂

Evaluate your most common queries that minimize cross-partition lookups. Use this
information to inform the process of selecting a partition key or customizing an
indexing policy.

＂

Recommendations

https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Cosmos%20DB/Cosmos_NetworkRulesExist_Audit.json
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://learn.microsoft.com/en-us/azure/cosmos-db/index-policy
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-choose-offer#understand-your-traffic-patterns

Recommendation Benefit

Customize your indexing policy
to map to your workload.

The default indexing policy indexes all paths in an item, and this
policy can have significant impacts to RU consumption and
costs. Use an indexing policy designed based on only the paths
that you need to index for your common queries. For write-
heavy workloads, disable automatic indexing of columns not
used in queries.

Select partition key[s] that are
ideal for your workload.

The partition key[s] should distribute throughput consumption
and data storage evenly across logical partitions. The selection
should also minimize the number of unbounded cross-partition
queries. Avoid hot partitions that receive a disproportionate
amount of traffic, as unbalance partitions can increase
throughput costs and transient errors. Use the most common
search queries to determine potential partition key[s] that likely
executes only single-partition or bounded cross-partition
queries.

Use serverless or provisioned
throughput, manual
provisioning or autoscale, at
the database or container level
when appropriate for your
workload.

Compare the provisioned throughput types and select the
appropriate option for your workload. Generally, smaller and
dev/test workloads might benefit from serverless throughput or
manual shared throughput at the database level. Larger,
mission-critical workloads might benefit from provisioned
throughput assigned at the container level.

Configure the default
consistency level for your
application. When appropriate,
downgrade the default
consistency level in client
sessions.

You might not always need to change the standard default
consistency level or override it in client sessions. Consider the
higher costs associated with reads at stronger consistency
levels.

For dev/test workloads, use the
Azure Cosmos DB emulator.

The Azure Cosmos DB emulator is an option for dev/test and
continuous integration that can save on the costs of these
common workloads for your development team. The emulator
is also available as a Docker container image.

Use transactional batch
operations

Design partitions to take advantage of transactional batch
operations within a logical partition key for inserting. Use batch
operations in client-side SDKS for inserting, updating, or
deleting multiple documents in a single transaction request.
This step can reduce the number of individual requests and can
eventually lead to better throughput efficiency.

Use projection to reduce
throughput costs of large
query result sets.

Author queries to only project the minimal number of fields
required from a result set. If calculations on fields are necessary,
evaluate the throughput cost of performing those calculations
server-side versus client-side.

https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-choose-offer
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#configure-the-default-consistency-level
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/how-to-manage-consistency#override-the-default-consistency-level
https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://learn.microsoft.com/en-us/azure/cosmos-db/docker-emulator-linux

Recommendation Benefit

Avoid using unbounded cross-
partition queries.

Evaluate and author queries to ensure they search within a
single logical partition whenever possible. Use query filters to
control which logical partitions the query targets. If a query
must search across logical partitions, bound the query to only
search a subset of logical partitions instead of a full scan.

Implement time-to-live (TTL) to
remove unused items.

Use TTL to automatically delete data that's no longer needed.
Manage storage costs by removing expired or obsolete data. If
necessary, export the expired data to a lower-cost storage
solution.

Consider an analytical store for
heavy aggregations.

Azure Cosmos DB analytical store automatically syncs your data
to a separate column store to optimize for large aggregations,
reporting, and analytical queries.

Policy: Restrict the maximum allowed throughput

Workloads must be monitored after they're deployed to make sure they perform as
intended. Further, monitoring of workloads can help unlock new efficiencies not
immediately obvious during the planning phase. In catastrophic scenarios, diagnostic
data is the key to uncovering why a high severity incident might have occurred. This
section includes considerations and recommendations to monitor events and
characteristics of your workloads.

Azure Policy definitions

Operational excellence

Design checklist

Draft a log and metrics monitoring strategy to differentiate between different
workloads, flag exceptional scenarios, track patterns in exceptions/errors, and track
host machine performance.

＂

Design large workloads to use bulk operations whenever possible.＂

Define multiple alerts to monitor throttling, analyze throughput allocation, and
track the size of your data.

＂

Design a monitoring strategy for availability of your solution across regions.＂

Create and enforce best practices for automating the deployment of your Azure
Cosmos DB for NoSQL account and resources.

＂

Plan expected metric thresholds based on partition and index design. Ensure that
there's a plan to monitor those metrics to determine how close they are to the

＂

https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Cosmos%20DB/Cosmos_MaxThroughput_Deny.json

Recommendation Benefit

Ensure application
developers are using the
latest version of the
developer SDK.

Each Azure Cosmos DB for NoSQL SDK has a minimum
recommended version. For more information, see .NET SDK and
Java SDK.

Create identifiers in the
client application to
differentiate workloads.

Consider flags, such as the user-agent suffix, to identify what
workload each log entry or metric should be associated with.

Capture supplemental
diagnostics using the
developer SDK.

Use the diagnostics injection techniques for each SDK to add
supplemental information about the workload alongside default
metrics and logs. For more information, see .NET SDK and Java SDK.

Create alerts associated
with host machine
resources.

Connectivity and availability issues might occur due to client-side
host machine issues. Monitor resources such as CPU, memory, and
storage on host machines with client applications using the Azure
Cosmos DB for NoSQL SDKs.

Use the bulk features of
client SDKs for large
operations.

Scenarios that require a high degree of throughput benefit from
using the bulk feature of the SDK. The bulk feature automatically
manages and batches operations to maximize throughput.

Create alerts for
throughput throttling.

Use alerts to track throughput throttling beyond expected
thresholds. Over time, review and adjust alerts as you learn more
about your workload in relation to Azure Cosmos DB. The
Normalized RU Consumption metric is a metric that measures the
percentage utilization of provisioned throughput on a database or
container. If this metric is consistently at 100%, requests likely return
a transient error.

Track query performance
using metrics.

Use metrics to track the performance of your top queries over time.
Evaluate if there are efficiencies to be found by updating th
indexing policy or changing queries. If query performance is poor,
troubleshoot performance and apply query best practices. For more
information, see query performance tips.

Use templates to
automatically deploy
account resources.

Consider Azure Resource Manager, Bicep, or Terraform templates to
automate the deployment of your account and subsequent
resources. Ensure that your team is using the same templates to
deploy to other nonproduction environments.

Track key metrics to
identify common problems
in your workload.

Use specific metrics to find common problems in your workload
including, but not limited to; RU utilization, RU utilization by

planned thresholds.

Recommendations

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/sdk-dotnet-v3#recommended-version
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/sdk-java-v4#recommended-version
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/best-practice-dotnet#capture-diagnostics
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/troubleshoot-java-sdk-v4#enable-client-sice-logging
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/tutorial-dotnet-bulk-import
https://learn.microsoft.com/en-us/azure/cosmos-db/monitor-normalized-request-units
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/performance-tips-query-sdk
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/quickstart-template-json
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/quickstart-template-bicep
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/quickstart-terraform

Recommendation Benefitpartition, throttling, and request volumes by type. For more
information, see monitor data reference.

Policy: Email notification for high severity alerts

Recommendation Benefit

Configure your
throughput based on
your performance
baseline.

Use tools like the capacity calculator to determine the amount of
throughput required for your performance baseline. Use features like
autoscale to scale your actual throughput to more closely match your
actual workload. Monitor your actual throughput consumption
afterwards and make adjustments.

Use optimization
techniques on the client
and server sides when
appropriate.

Take advantage of the built-in integrated cache. Configure the SDK to
manage how many items are prefetched (buffered) and returned for
each page.

Deploy Azure Cosmos
DB for NoSQL to regions

Reduce latency by deploying Azure Cosmos DB for NoSQL to the
regions closest to your end users as much as possible. Take advantage
of read replication to provide performant read performance regardless

Azure Policy definitions

Performance efficiency
Define a performance baseline for your application. Measure how many concurrent
users and transactions you might need to handle. Consider workload characteristics
such as your average user flow, common operations, and spikes in usage.

＂

Research your most common and most complex queries. Identify queries that use
multiple lookups, joins, or aggregates. Consider these queries in any design
considerations for the partition key or indexing policy.

＂

For the most common queries, determine the number of results you expect per
page. This number will help formalize a buffered item count for prefetched results.

＂

Research your target users. Determine which Azure regions are closest to them.＂

Identify queries that use one or more ordering fields. Also, identify operations that
impact multiple fields. Include these fields explicitly in the indexing policy design.

＂

Design items so their corresponding JSON documents are as small as possible.
Considering splitting data cross multiple items if necessary.

＂

Identify queries on child arrays and determine if they are candidates for more
efficient subqueries.

＂

Determine if your workload requires an analytical store. Consider analytical stores
and services like Azure Synapse Link for extremely complex queries.

＂

https://learn.microsoft.com/en-us/azure/cosmos-db/monitor-reference
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Security%20Center/ASC_Email_notification.json
https://cosmos.azure.com/capacitycalculator/
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/how-to-provision-autoscale-throughput
https://learn.microsoft.com/en-us/azure/cosmos-db/integrated-cache
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query/subquery
https://learn.microsoft.com/en-us/azure/cosmos-db/synapse-link

Recommendation Benefit

closest to your end
users.

of how you configure write (single or multiple regions). Configure the
(.NET/Java) SDK to prefer regions closer to your end user.

Configure the SDK for
Direct mode.

Direct mode is the preferred option for best performance. This mode
allows your client to open TCP connections directly to partitions in the
service and send requests directly with no intermediary gateway. This
mode offers better performance because there are fewer network
hops.

Disable indexing for bulk
operations.

If there are many insert/replace/upsert operations, disable indexing to
improve the speed of the operation while using the bulk support of
the corresponding SDK. Indexing can be immediately reenabled later.

Create composite
indexes for fields that
are used in complex
operations.

Composite indexes can increase the efficiency of operations on
multiple fields by orders of magnitude. In many cases, use composite
indexes for ORDER BY statements with multiple fields.

Optimize host client
machines for the SDKs.

For most common case, use at least 4-cores and 8-GB memory on 64-
bite host machines using the SDKs (.NET/Java). Also, enable
accelerated networking on host machines.

Use the singleton
pattern for the
CosmosClient class in
most SDKs.

Use the client class in most SDKs as a singleton. The client class
manages its own lifecycle and is designed to not be disposed.
Constantly creating and disposing of instances can result in reduced
performance.

Keep item sizes less than
100 KB in size.

Larger items consumer more throughput for common read and write
operations. Queries on larger items that project all fields can also have
a significant throughput cost.

Use subqueries
strategically to optimize
queries that join large
data sets.

Queries that join child arrays can increase in complexity if multiple
arrays are involved and not filtered. For example, a query that joins
more than two arrays of at least 10 items each can expand to 1,000+
tuples. Optimize self-join expressions by using subqueries to filter the
arrays before joining arrays within the item. For cross-partition
queries, optimize your query to include a filter on the partition key to
optimize the routing of your query to the least amount of partitions
possible.

Use analytical workloads
for the most complex
queries.

If you run frequent aggregations or join queries over large containers,
consider enabling the analytical store and doing queries in Azure
Synapse Analytics.

Policy: Enable auditing of Azure Synapse Analytics

Azure Policy definitions

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/best-practice-dotnet
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/best-practice-java
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/sdk-connection-modes
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/tutorial-dotnet-bulk-import
https://learn.microsoft.com/en-us/azure/cosmos-db/index-overview#composite-indexes
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/best-practice-dotnet#checklist
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/best-practice-java
https://learn.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query/subquery#optimize-self-join-expressions
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/query/join
https://github.com/Azure/azure-policy/blob/master/built-in-policies/policyDefinitions/Synapse/SynapseWorkspaceSqlAuditing_Audit.json

Consider more resources related to Azure Cosmos DB for NoSQL.

Multitenancy and Azure Cosmos DB
Visual search in retail with Azure Cosmos DB
Gaming using Azure Cosmos DB
Serverless apps using Azure Cosmos DB
Personalization using Azure Cosmos DB

Batch Data application with Azure Cosmos DB

Extra resources

Azure Architecture Center guidance

Cloud Adoption Framework guidance

Next steps
Deploy an Azure Cosmos DB for NoSQL account using the a Bicep template

https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/service/cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/industries/retail/visual-search-use-case-overview
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/gaming-using-cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/serverless-apps-using-cosmos-db
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/personalization-using-cosmos-db
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/architectures/data-landing-zone-data-products#batch-data-application
https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/quickstart-template-bicep

Azure Databricks and security
Article • 11/14/2023

Azure Databricks is a data analytics platform optimized for Azure cloud services. It offers
three environments for developing data intensive applications:

Databricks SQL
Databricks Data Science and Engineering
Databricks Machine Learning

To learn more about how Azure Databricks improves the security of big data analytics,
reference Azure Databricks concepts.

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Databricks.

All users' notebooks and notebook results are encrypted at rest, by default. If other
requirements are in place, consider using customer-managed keys for notebooks.

Have you configured Azure Databricks with security in mind?

Design considerations

Checklist

Use Microsoft Entra ID credential passthrough to avoid the need for service
principals when communicating with Azure Data Lake Storage.

＂

Isolate your workspaces, compute, and data from public access. Make sure that only
the right people have access and only through secure channels.

＂

Ensure that the cloud workspaces for your analytics are only accessible by properly
managed users.

＂

Implement Azure Private Link.＂

Restrict and monitor your virtual machines.＂

Use Dynamic IP access lists to allow admins to access workspaces only from their
corporate networks.

＂

Use the VNet injection functionality to enable more secure scenarios.＂

Use diagnostic logs to audit workspace access and permissions.＂

Consider using the Secure cluster connectivity feature and hub/spoke
architecture to prevent opening ports, and assigning public IP addresses on
cluster nodes.

＂

https://learn.microsoft.com/en-us/azure/databricks/scenarios/what-is-azure-databricks
https://learn.microsoft.com/en-us/azure/databricks/sql/
https://learn.microsoft.com/en-us/azure/databricks/scenarios/what-is-azure-databricks-ws
https://learn.microsoft.com/en-us/azure/databricks/scenarios/what-is-azure-databricks-ml
https://learn.microsoft.com/en-us/azure/databricks/getting-started/concepts
https://learn.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-key-managed-services-azure
https://learn.microsoft.com/en-us/azure/databricks/security/credential-passthrough/adls-passthrough
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/account-settings/azure-diagnostic-logs
https://learn.microsoft.com/en-us/azure/databricks/security/secure-cluster-connectivity
https://databricks.com/blog/2020/03/27/data-exfiltration-protection-with-azure-databricks.html

Explore the following table of recommendations to optimize your Azure Databricks
configuration for security:

Recommendation Description

Ensure that the cloud workspaces
for your analytics are only
accessible by properly managed
users.

Microsoft Entra ID can handle single sign-on for remote
access. For extra security, reference Conditional Access.

Implement Azure Private Link. Ensure all traffic between users of your platform, the
notebooks, and the compute clusters that process queries
are encrypted and transmitted over the cloud provider's
network backbone, inaccessible to the outside world.

Restrict and monitor your virtual
machines.

Clusters, which execute queries, should have SSH and
network access restricted to prevent installation of arbitrary
packages. Clusters should use only images that are
periodically scanned for vulnerabilities.

Use the VNet injection functionality
to enable more secure scenarios.

Such as:
- Connecting to other Azure services using service
endpoints.
- Connecting to on-premises data sources, taking
advantage of user-defined routes.
- Connecting to a network virtual appliance to inspect all
outbound traffic and take actions according to allow and
deny rules.
- Using custom DNS.
- Deploying Azure Databricks clusters in existing virtual
networks.

Use diagnostic logs to audit
workspace access and permissions.

Use audit logs to see privileged activity in a workspace,
cluster resizing, files, and folders shared on the cluster.

Azure Databricks source artifacts include the Databricks blog: Best practices to secure an
enterprise-scale data platform .

Configuration recommendations

Source artifacts

Next step
Azure Database for MySQL and cost optimization

https://learn.microsoft.com/en-us/azure/databricks/administration-guide/users-groups/
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/access-control/conditional-access
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject
https://learn.microsoft.com/en-us/azure/databricks/administration-guide/account-settings/azure-diagnostic-logs
https://databricks.com/blog/2020/03/16/security-that-unblocks.html

Azure Database for MySQL and cost
optimization
Article • 11/14/2023

Azure Database for MySQL is a relational database service in the Microsoft cloud based
on the MySQL Community Edition . You can use either Single Server or Flexible Server
to host a MySQL database in Azure. It's a fully managed database as a service offering
that can handle mission-critical workloads with predictable performance and dynamic
scalability.

For more information about how Azure Database for MySQL supports cost optimization
for your workload, reference Server concepts, specifically, Stop/Start an Azure Database
for MySQL.

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Database for MySQL.

Azure Database for MySQL includes the following design considerations:

Take advantage of the scaling capabilities of Azure Database for MySQL to lower
consumption cost whenever possible. To scale your database up and down, as
needed, reference the following Microsoft Support article, which covers the
automation process using runbooks: How to autoscale an Azure Database for
MySQL/PostgreSQL instance with Azure run books and Python .
Plan your Recovery Point Objective (RPO) according to your operation level
requirement. There's no extra charge for backup storage for up to 100% of your
total provisioned server storage. Extra consumption of backup storage will be
charged in GB/month .
The cloud native design of the Single-Server service allows it to support 99.99% of
availability, eliminating the cost of passive hot standby.
Consider using Flexible Server SKU for non-production workloads. Flexible servers
provide better cost optimization controls with ability to stop and start your server.
They provide a burstable compute tier that is ideal for workloads that don't need
continuous full compute capacity.

Design considerations

Checklist

https://learn.microsoft.com/en-us/azure/mysql/overview
https://www.mysql.com/products/community/
https://learn.microsoft.com/en-us/azure/mysql/single-server-overview
https://learn.microsoft.com/en-us/azure/mysql/flexible-server/overview
https://learn.microsoft.com/en-us/azure/mysql/concepts-servers
https://learn.microsoft.com/en-us/azure/mysql/concepts-servers#stopstart-an-azure-database-for-mysql
https://techcommunity.microsoft.com/t5/azure-database-support-blog/how-to-auto-scale-an-azure-database-for-mysql-postgresql/ba-p/369177

Have you configured Azure Database for MySQL with cost optimization in mind?

Explore the following table of recommendations to optimize your Azure Database for
MySQL configuration for cost optimization:

Recommendation Description

Choose the appropriate
server size for your
workload.

Configuration options: Single Server and Flexible Server.

Consider Reserved
Capacity for Azure
Database for MySQL
Single Server.

Compute costs associated with Azure Database For MySQL Single
Server Reservation Discount. Once you've determined the total
compute capacity and performance tier for Azure Database for
MySQL in a region, this information can be used to reserve the
capacity. The reservation can span one or three years. You can
realize significant cost optimization with this commitment.

Choose the appropriate server size for your workload.＂

Consider Reserved Capacity for Azure Database for MySQL Single Server.＂

Configuration recommendations

Azure Database for PostgreSQL and cost optimization

https://learn.microsoft.com/en-us/azure/mysql/concepts-pricing-tiers
https://learn.microsoft.com/en-us/azure/mysql/flexible-server/concepts-compute-storage
https://learn.microsoft.com/en-us/azure/mysql/concept-reserved-pricing

Azure Well-Architected Framework
review - Azure Database for PostgreSQL
Article • 11/14/2023

This article provides architectural best practices for Azure Database for PostgreSQL.

The guidance is based on the five pillars of architectural excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

Understanding the Well-Architected Framework pillars can help produce a high-quality,
stable, and efficient cloud architecture. We recommend you review your workload using
the Azure Well-Architected Framework Review assessment.

Azure Database for PostgreSQL is a relational database service in Azure based on the
PostgreSQL open-source relational database. It's a fully managed database as a service
offering that can handle mission-critical workloads with predictable performance,
security, high availability, and dynamic scalability. Azure Database for PostgreSQL is built
on the community edition of the PostgreSQL database engine. It's compatible with the
PostgreSQL server community edition and supports PostgreSQL extension features such
as PostGIS and TimescaleDB.

Azure Database for PostgreSQL - Flexible Server offers high availability support by
provisioning physically separate primary and standby replicas either within the same
availability zone (zonal) or across availability zones (zone-redundant). This high

Prerequisites

７ Note

To explore a light-weight solution idea that uses Azure Database for PostgreSQL to
store analytical results from the Cognitive Services API, see Intelligent apps using
Azure Database for PostgreSQL.

Reliability

https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/PostgreSQL/overview
https://learn.microsoft.com/en-us/azure/reliability/reliability-postgresql-flexible-server
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/intelligent-apps-using-azure-database-for-postgresql

availability model ensures that committed data is never lost if a failure happens. The
model is also designed so the database doesn't become a single point of failure in your
software architecture. Azure Database for PostgreSQL - Flexible Server provides features
that protect data and mitigate downtime for your mission-critical databases during
planned and unplanned downtime events. Built on top of the Azure infrastructure that
offers robust resiliency and availability, the flexible server has business continuity
features that provide fault protection, address recovery time requirements, and reduce
data loss exposure.

You should review the design principles to optimize the cost of your architecture.

Recommendation Benefit

Defined targets for RPO
(Recovery Point Objective) and
RTO (Recovery Time Objective)
for workloads.

Derive these values by conducting a risk assessment and
ensuring you understand the cost and risk of downtime and
data loss. These are nonfunctional requirements of a system
and should be dictated by business requirements.

Select the appropriate high
availability configuration.

Azure Database for PostgreSQL Server offers high availability
configurations, ensuring that the service remains available if
there's a zone outage and no data is lost. When high
availability is configured, the Azure Database for PostgreSQL
server automatically provisions and manages a standby replica.

Configure geo-redundancy
backup.

Cross-region read replicas can be deployed to protect your
databases from region-level failures. Geo Redundant backups
are enabled in selected regions and help with disaster recovery
if the primary server region is down.

Test your disaster recovery plan
to ensure rapid data restoration

Read replicas can be deployed on a different region and
promoted to a read-write server if disaster recovery is needed.

Reliability design checklist

Defined targets for RPO (Recovery Point Objective) and RTO (Recovery Time
Objective) for workloads.

＂

Select the appropriate high-availability configuration.＂

Configure geo-redundancy backup.＂

Test your disaster recovery plan to ensure rapid data restoration in case of a failure.＂

Test On-Demand Failover for your HA-enabled server to ensure our application
behaves as expected.

＂

Monitor your server to ensure it's healthy and performing as expected.＂

Reliability recommendations

https://learn.microsoft.com/en-us/azure/architecture/framework/cost/principles

Recommendation Benefit

if there's a failure.

Monitor your server to ensure
it's healthy and performing as
expected.

We have database monitoring in place to monitor and alert on
database-level failures.

Azure Policy definitions help you enforce specific rules and configurations for resources
within your Azure environment. To ensure reliability for Azure Database for PostgreSQL,
you can create custom Azure Policy definitions to implement specific configurations and
best practices. Here's an example of some custom Azure Policy definitions you can
create for reliability:

High availability (Reliability) in Azure Database for PostgreSQL - Flexible Server

Think about security throughout the entire lifecycle of an application, from design and
implementation to deployment and operations. The Azure platform protects against
various threats like network intrusion and DDoS attacks. You still need to build security
into your application and your DevOps processes.

You should review the design principles to optimize the cost of your architecture.

 Tip

For more details on Reliability guidance for VMs, see Reliability with Azure
Database for PostgreSQL.

Azure policy definitions

Security

Security design checklist

SSL and enforce encryption to secure data in transit.＂

Implement network security groups and firewalls to control access to your
database.

＂

Use Azure Active Directory for authentication and authorization to enhance identity
management.

＂

Configure row-level security.＂

https://learn.microsoft.com/en-us/azure/reliability/reliability-postgresql-flexible-server
https://learn.microsoft.com/en-us/azure/architecture/framework/cost/principles
https://learn.microsoft.com/en-us/azure/reliability/reliability-postgresql-flexible-server

Recommendation Benefit

SSL and enforce encryption to
secure data in transit.

Deploy the DigiCert Global Root certificate from a trusted
Certificate Authority (CA) certificate needed to communicate
over SSL with client applications.

Implement network security
groups and firewalls to control
access to your database.

As part of the Zero Trust Model for security, network
segmentation is recommended where communication paths
between components (in this case, application and database
server) are restricted to only what's needed. This can be
implemented using Network Security Group and Application
Security Groups.

Use Azure Active Directory for
authentication and
authorization to enhance
identity management.

Microsoft Azure Active Directory (Azure AD) authentication is a
mechanism of connecting to Azure Database for PostgreSQL
using identities defined in Azure AD.

Configure row-level security. Row level security (RLS) is a PostgreSQL security feature that
allows database administrators to define policies to control
how specific rows of data display and operate for one or more
roles. Row-level security is an additional filter you can apply to
a PostgreSQL database table.

Cost optimization is about understanding your configuration options and recommended
best practices to reduce unnecessary expenses and improve operational efficiencies. You
should review your workload to identify opportunities to reduce costs.

You should review the design principles to optimize the cost of your architecture.

Security recommendations

Cost optimization

Cost design checklist

Pick the right tier and SKU.＂

Understand high availability mode.＂

Scale compute and storage tiers.＂

Consider reserved instances.＂

Use your provisioned storage.＂

Understand geo-redundancy costs.＂

Evaluate storage scale-up decisions.＂

Deploy to the same region as an app.＂

High availability oriented cost description.＂

https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://learn.microsoft.com/en-us/azure/architecture/framework/cost/principles

Recommendations Benefits

Pick the right tier and
SKU.

Pick the pricing tier and compute SKUs that support the specific needs
of your workload. Azure Advisor gives you recommendations to
optimize and reduce your overall Azure spending. Recommendations
include server right-sizing that you should follow.

Understand high
availability mode.

High availability makes a standby server always available within the
same zone or region. Enabling high availability doubles your cost.

Adjust compute and
storage tier.s

You should manually adjust the compute and storage tiers to meet the
application's requirements over time.

Use the Start/Stop
feature.

The Flexible server has a Start/Stop feature that you can use to stop the
server from running when you don't need it.

Consider reserved
instances.

Consider a one or three-year reservation to receive significant discounts
on computing. Use these reservations for workloads with consistent
compute usage for a year or more.

Use your provisioned
storage.

There's no extra charge for backup storage up to 100% of your total
provisioned server storage.

Understand
redundancy costs.

Geo-redundant storage (GRS) costs twice as much as local redundant
storage (LRS). GRS requires double the storage capacity of LRS.

Evaluate storage scale-
up decisions.

You should evaluate your current and future storage needs before
scaling up your storage. After you scale up storage, you can't scale
down.

Deploy to the same
region as the app.

Deploy to the same region as the application(s) to minimize transfer
costs. When you use virtual network integration, applications in a
different virtual network don't have direct access to flexible servers. To
grant them access, you need to configure virtual network peering.
Virtual network peering has nominal inbound and outbound data
transfer costs.

High availability
oriented cost
description.

It's a trade-off of HA and costs. HA is double the cost for non-HA
configuration, but it's needed.

Consolidate databases
and servers.

You can consolidate multiple databases and servers into a single server
to reduce costs.

Consolidate databases and servers.＂

Cost recommendations

Azure policy definitions

Azure Policy definitions help you enforce specific rules and configurations for resources
within your Azure environment. To ensure cost optimization for Azure Database for
PostgreSQL, you can create custom Azure Policy definitions to enforce specific
configurations and best practices. Here's an example of some custom Azure Policy
definitions you can create for cost optimization:

Optimize costs

The principles of operational excellence are a series of considerations that can help
achieve superior operational practices.

To achieve a higher competency in operations, consider and improve how software is
developed, deployed, operated, and maintained.

You should review the design principles to optimize the cost of your architecture.

Recommendation Benefits

Set up automated backups and
retention policies to maintain data
availability and meet compliance
requirements.

Azure Database for PostgreSQL provides automated
backups and point-in-time restore for your database. You
can configure the retention period for backups up to 35
days.

Implement automated patching
and updates to keep your
PostgreSQL instance secure and
up-to-date.

Azure Database for PostgreSQL provides automated
patching and updates for your database. You can configure
the maintenance window for your server to minimize the
impact on your workload.

Monitor database health and
performance using Azure Monitor
and set up alerts for critical metrics.

Azure Database for PostgreSQL provides built-in
monitoring and alerting capabilities. You can monitor the
health and performance of your database using Azure

Operational excellence

Operational excellence design checklist

Set up automated backups and retention policies to maintain data availability and
meet compliance requirements.

＂

Implement automated patching and updates to keep your PostgreSQL instance
secure and up-to-date.

＂

Monitor database health and performance using Azure Monitor and set up alerts
for critical metrics.

＂

Operational excellence recommendations

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/how-to-cost-optimization
https://learn.microsoft.com/en-us/azure/architecture/framework/cost/principles

Recommendation Benefits

Monitor. You can also set up alerts for critical metrics to get
notified when your database isn't performing as expected.

Azure Policy definitions help you enforce specific rules and configurations for resources
within your Azure environment. To ensure Operational excellence for Azure Database for
PostgreSQL, you can create custom Azure Policy definitions to enforce specific
configurations and best practices. Here's an example of some custom Azure Policy
definitions you can create for Operational excellence:

Azure Policy Regulatory Compliance controls for Azure Database for PostgreSQL

Performance efficiency is the ability of your workload to scale to meet the demands
placed on it by users efficiently. We recommend you review the Performance efficiency
principles.

In the design checklist and list of recommendations below, call-outs indicate whether
each choice applies to cluster architecture, workload architecture, or both.

You should review the design principles to optimize the cost of your architecture.

Recommendation Benefits

Design your schema and queries for efficiency
to minimize resource consumption.

You should design your schema and queries for
efficiency to minimize resource consumption.

Implement read replicas to offload read traffic
and enhance overall performance.

You can use read replicas to offload read traffic
and enhance performance.

Operational excellence policy definitions

Performance efficiency

Performance efficiency design checklist

Design your schema and queries for efficiency to minimize resource consumption.＂

Implement read replicas to offload read traffic and enhance overall performance.＂

Performance efficiency recommendations

Performance efficiency policy definitions

https://learn.microsoft.com/en-us/azure/postgresql/single-server/security-controls-policy
https://learn.microsoft.com/en-us/azure/architecture/framework/cost/principles

Azure Policy definitions help you enforce specific rules and configurations for resources
within your Azure environment. To ensure Performance efficiency for Azure Database for
PostgreSQL, you can create custom Azure Policy definitions to enforce specific
configurations and best practices. Here's an example of some custom Azure Policy
definitions you can create for Performance efficiency:

Consider more resources related to Azure Database for PostgreSQL.

Multitenancy and Azure Database for PostgreSQL
Best practices
Optimize performance
Tuning

Batch Data application with Azure Database for PostgreSQL

Extra resources

Azure Architecture Center Guidance

Cloud Adoption Framework guidance

Next step
Azure pricing calculator to estimate and manage your costs effectively

https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/service/postgresql
https://azure.microsoft.com/blog/performance-best-practices-for-using-azure-database-for-postgresql/
https://azure.microsoft.com/blog/optimize-performance-using-azure-database-for-postgresql-recommendations/
https://azure.microsoft.com/blog/performance-updates-and-tuning-best-practices-for-using-azure-database-for-postgresql/
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/architectures/data-landing-zone-data-products#batch-data-application
https://azure.microsoft.com/pricing/calculator/

Azure Well-Architected Framework
perspective on Azure Front Door
Article • 02/21/2024

Azure Front Door is a global load balancer and content delivery network that routes
HTTP and HTTPS traffic. Azure Front Door delivers and distributes traffic that's closest to
the application users.

This article assumes that as an architect you've reviewed the load balancing options and
chosen Azure Front Door as the load balancer for your workload. It also assumes that
your application is deployed to multiple regions in an active-active or active-passive
model. The guidance in this article provides architectural recommendations that are
mapped to the principles of the Azure Well-Architected Framework pillars.

This review focuses on the interrelated decisions for the following Azure resources:

Azure Front Door

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern and
design strategies that are localized to the technology scope.

This article also includes recommendations on the technology capabilities that help
materialize those strategies. The recommendations don't represent an exhaustive
list of all configurations available for Azure Front Door and its dependencies.
Instead, they list the key recommendations mapped to the design perspectives. Use
the recommendations to build your proof-of-concept or optimize your existing
environments.

Foundational architecture that demonstrates the key recommendations: Mission-
critical baseline architecture with network controls.

Technology scope

Reliability

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-network-architecture

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components,system flows, and the system as a whole.

Start your design strategy based on the design review checklist for Reliability. Determine
its relevance to your business requirements while keeping in mind the tiers and Azure
Content Delivery Network capabilities. Extend the strategy to include more approaches
as needed.

Design checklist

Estimate the traffic pattern and volume. The number of requests from the client to
the Azure Front Door edge might influence your tier choice. If you need to support
a high volume of requests, consider the Azure Front Door Premium tier because
performance ultimately impacts availability. However, there's a cost tradeoff. These
tiers are described in Performance Efficiency.

＂

Choose your deployment strategy. The fundamental deployment approaches are
active-active and active-passive. Active-active deployment means that multiple
environments or stamps that run the workload serve traffic. Active-passive
deployment means that only the primary region handles all traffic, but it fails over
to the secondary region when necessary. In a multiregion deployment, stamps run
in different regions for higher availability with a global load balancer, like Azure
Front Door, that distributes traffic. Therefore, it's important to configure the load
balancer for the appropriate deployment approach.

Azure Front Door supports several routing methods, which you can configure to
distribute traffic in an active-active or active-passive model.

The preceding models have many variations. For example, you can deploy the
active-passive model with a warm spare. In this case, the secondary hosted service
deploys with the minimum possible compute and data sizing and runs without load.
Upon failover, the compute and data resources scale to handle the load from the
primary region. For more information, see Key design strategies for multiregion
design.

Some applications need the user connections to stay on the same origin server
during the user session. From a reliability perspective, we don't recommend
keeping user connections on the same origin server. Avoid session affinity as much
as possible.

＂

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Recommendation Benefit

Choose a routing method that supports your
deployment strategy.

The weighted method, which distributes traffic
based on the configured weight coefficient,
supports active-active models.

A priority-based value that configures the primary
region to receive all traffic and send traffic to the
secondary region as a backup supports active-
passive models.

You can select the best origin resource by
using a series of decision steps and your
design. The selected origin serves traffic
within the allowable latency range in the
specified ratio of weights.

Use the same host name on Azure Front Door and origin servers. To ensure that
cookies or redirect URLs work properly, preserve the original HTTP host name when
you use a reverse proxy, like a load balancer, in front of a web application.

＂

Implement the health endpoint monitoring pattern. Your application should
expose health endpoints, which aggregate the state of the critical services and
dependencies that your application needs to serve requests. Azure Front Door
health probes use the endpoint to detect origin servers' health. For more
information, see Health Endpoint Monitoring pattern.

＂

Take advantage of the built-in content delivery network functionality in Azure
Front Door. The content delivery network feature of Azure Front Door has hundreds
of edge locations and can help withstand distributed denial of service (DDoS)
attacks. These capabilities help improve reliability.

＂

Consider a redundant traffic management option. Azure Front Door is a globally
distributed service that runs as a singleton in an environment. Azure Front Door is a
potential single point of failure in the system. If the service fails, then clients can't
access your application during the downtime.

Redundant implementations can be complex and costly. Consider them only for
mission-critical workloads that have a very low tolerance to outage. Carefully
consider the tradeoffs.

If you absolutely need redundant routing, see Global routing redundancy.
If you need redundancy only to serve cached content, see Global content
delivery.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/overview#tradeoffs
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/overview
https://learn.microsoft.com/en-us/azure/architecture/guide/networking/global-web-applications/mission-critical-content-delivery

Recommendation Benefit

Combine the preceding methods with latency so
that the origin with the lowest latency receives
traffic.

Support redundancy by having multiple origins in
one or more back-end pools.

Always have redundant instances of your
application and make sure each instance exposes
an endpoint or origin. You can place those origins
in one or more back-end pools.

Multiple origins support redundancy by
distributing traffic across multiple instances
of the application. If one instance is
unavailable, then other back-end origins can
still receive traffic.

Set up health probes on the origin.

Configure Azure Front Door to conduct health
checks to determine if the back-end instance is
available and ready to continue receiving requests.

Enabled health probes are part of the health
monitoring pattern implementation. Health
probes make sure that Azure Front Door
only routes traffic to instances that are
healthy enough to handle requests.
For more information, see Best practices on
health probes.

Set a timeout on forwarding requests to the back
end.

Adjust the timeout setting according to your
endpoints' needs. If you don't, Azure Front Door
might close the connection before the origin
sends the response.
You can also lower the default timeout for Azure
Front Door if all of your origins have a shorter
timeout.
For more information, see Troubleshooting
unresponsive requests.

Timeouts help prevent performance issues
and availability issues by terminating
requests that take longer than expected to
complete.

Use the same host name on Azure Front Door and
your origin.

Azure Front Door can rewrite the host header of
incoming requests, which is useful when you have
multiple custom domain names that route to one
origin. However, rewriting the host header might
cause issues with request cookies and URL
redirection.

Set the same host name to prevent
malfunction with session affinity,
authentication, and authorization. For more
information, see Preserve the original HTTP
host name between a reverse proxy and its
back-end web application.

Decide if your application requires session affinity.
If you have high reliability requirements, we
recommend that you disable session affinity.

With session affinity, user connections stay
on the same origin during the user session.
If that origin becomes unavailable, the user
experience might be disrupted.

https://learn.microsoft.com/en-us/azure/frontdoor/quickstart-create-front-door
https://learn.microsoft.com/en-us/azure/frontdoor/health-probes
https://learn.microsoft.com/en-us/azure/frontdoor/health-probes
https://learn.microsoft.com/en-us/azure/frontdoor/troubleshoot-issues#troubleshooting-steps
https://learn.microsoft.com/en-us/azure/architecture/best-practices/host-name-preservation
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#23session-affinity

Recommendation Benefit

Take advantage of the rate-limiting rules that are
included with a web application firewall (WAF).

Limit requests to prevent clients from
sending too much traffic to your application.
Rate limiting can help you avoid problems
like a retry storm.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design in restricting traffic coming
through Azure Front Door.

Start your design strategy based on the design review checklist for Security. Identify
vulnerabilities and controls to improve the security posture. Extend the strategy to
include more approaches as needed.

Security

Design checklist

Review the security baseline for Azure Front Door.＂

Protect the back-end servers. The front end acts as the single point of ingress to
the application.

Azure Front Door uses Azure Private Link to access an application's origin. Private
Link creates segmentation so that the back ends don't need to expose public IP
addresses and endpoints. For more information, see Secure your origin with Private
Link in Azure Front Door Premium.

Configure your back-end services to accept only requests with the same host name
that Azure Front Door uses externally.

＂

Allow only authorized access to the control plane. Use Azure Front Door role-
based access control (RBAC) to restrict access to only the identities that need it.

＂

Block common threats at the edge. WAF is integrated with Azure Front Door.
Enable WAF rules on the front ends to protect applications from common exploits
and vulnerabilities at the network edge, closer to the attack source. Consider geo-
filtering to restrict access to your web application by countries or regions.

For more information, see Azure Web Application Firewall on Azure Front Door.

＂

https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-rate-limit
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-front-door-security-baseline
https://learn.microsoft.com/en-us/azure/frontdoor/private-link
https://learn.microsoft.com/en-us/azure/role-based-access-control/overview
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/afds-overview

Recommendation Benefit

Enable WAF rule sets that detect and block
potentially malicious traffic. This feature is
available on the Premium tier. We recommend
these rule sets:
- Default
- Bot protection
- IP restriction
- Geo-filtering
- Rate limiting

Default rule sets are updated frequently
based on OWASP top-10 attack types and
information from Microsoft Threat
Intelligence.
The specialized rule sets detect certain use
cases. For example, bot rules classify bots as
good, bad, or unknown based on the client
IP addresses. They also block bad bots and
known IP addresses and restrict traffic based
on geographical location of the callers.

By using a combination of rule sets, you can
detect and block attacks with various intents.

Create exclusions for managed rule sets.

Test a WAF policy in detection mode for a few
weeks and adjust any false positives before you
deploy it.

Reduce false positives and allow legitimate
requests for your application.

Protect Azure Front Door against unexpected traffic. Azure Front Door uses the
basic plan of Azure DDoS protection to protect application endpoints from DDoS
attacks. If you need to expose other public IP addresses from your application,
consider adding the DDoS Protection standard plan for those addresses for
advanced protection and detection capabilities.

There are also WAF rule sets that detect bot traffic or unexpectedly large volumes
of traffic that could potentially be malicious.

＂

Protect data in transit. Enable end-to-end Transport Layer Security (TLS), HTTP to
HTTPS redirection, and managed TLS certificates when applicable. For more
information, see TLS best practices for Azure Front Door.

＂

Monitor anomalous activity. Regularly review the logs to check for attacks and
false positives. Send WAF logs from Azure Front Door to your organization's
centralized security information and event management (SIEM), such as Microsoft
Sentinel, to detect threat patterns and incorporate preventative measures in the
workload design.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/afds-overview#azure-managed-rule-sets
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/afds-overview#bot-protection-rule-set
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-configure-ip-restriction
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-tutorial-geo-filtering
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-rate-limit
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-exclusion-configure
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-ddos
https://learn.microsoft.com/en-us/azure/frontdoor/best-practices#23tls-best-practices
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/waf-front-door-monitor

Recommendation Benefit

Send the host header to the back end. The back-end services should be aware of
the host name so that they can create rules
to accept traffic only from that host.

Enable end-to-end TLS, HTTP to HTTPS
redirection, and managed TLS certificates when
applicable.

Review the TLS best practices for Azure Front
Door.

Use TLS version 1.2 as the minimum allowed
version with ciphers that are relevant for your
application.

Azure Front Door managed certificates should be
your default choice for ease of operations.
However, if you want to manage the lifecycle of
the certificates, use your own certificates in Azure
Front Door custom domain endpoints and store
them in Key Vault.

TLS ensures that data exchanges between
the browser, Azure Front Door, and the back-
end origins are encrypted to prevent
tampering.

Key Vault offers managed certificate support
and simple certificate renewal and rotation.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

The Cost Optimization design principles provide a high-level design strategy for
achieving those goals and making tradeoffs as necessary in the technical design related
to Azure Front Door and its environment.

Start your design strategy based on the design review checklist for Cost Optimization for
investments. Fine-tune the design so that the workload is aligned with the budget that's
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Cost Optimization

Design checklist

Review Azure Front Door tiers and pricing. Use the pricing calculator to estimate
the realistic costs for each tier. Compare the features and suitability of each tier for
your scenario. For instance, only the Premium tier supports connecting to your
origin via Private Link.

＂

https://learn.microsoft.com/en-us/azure/frontdoor/origin?pivots=front-door-standard-premium#origin-host-header
https://learn.microsoft.com/en-us/azure/frontdoor/best-practices#23tls-best-practices
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-configure-https-custom-domain
https://azure.microsoft.com/pricing/calculator
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-cdn-comparison

The Standard SKU is more cost-effective and suitable for moderate traffic scenarios.
In the Premium SKU, you pay a higher unit rate, but you gain access to security
benefits and advanced features like managed rules in WAF and Private Link.
Consider the tradeoffs on reliability and security based on your business
requirements.

Consider bandwidth costs. The bandwidth costs of Azure Front Door depend on
the tier that you choose and the type of data transfer. Azure Front Door provides
built-in reports for billable metrics. To assess your costs related to bandwidth and
where you can focus your optimization efforts, see Azure Front Door reports.

＂

Optimize incoming requests. Azure Front Door bills the incoming requests. You can
set restrictions in your design configuration.

Reduce the number of requests by using design patterns like Backend for Frontends
and Gateway Aggregation. These patterns can improve the efficiency of your
operations.

WAF rules restrict incoming traffic, which can optimize costs. For example, use rate
limiting to prevent abnormally high levels of traffic, or use geo-filtering to allow
access only from specific regions or countries.

＂

Use resources efficiently. Azure Front Door uses a routing method that helps with
resource optimization. Unless the workload is extremely latency sensitive, distribute
traffic evenly across all environments to effectively use deployed resources.

Azure Front Door endpoints can serve many files. One way to reduce bandwidth
costs is to use compression.

Use caching in Azure Front Door for content that doesn't change often. Because
content is served from a cache, you save on bandwidth costs that are incurred when
the request is forwarded to the back ends.

＂

Consider using a shared instance that's provided by the organization. Costs
incurred from centralized services are shared between the workloads. However,
consider the tradeoff with reliability. For mission-critical applications that have high
availability requirements, we recommend an autonomous instance.

＂

Pay attention to the amount of data logged. Costs related to both bandwidth and
storage can accrue if certain requests aren't necessary or if logging data is retained
for a long period of time.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-reports
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation

Recommendation Benefit

Use caching for endpoints that support it. Caching optimizes data transfer costs because it
reduces the number of calls from your Azure
Front Door instance to the origin.

Consider enabling file compression.
For this configuration, the application must
support compression and caching must be
enabled.

Compression reduces bandwidth consumption
and improves performance.

Disable health checks in single back-end
pools.
If you have only one origin configured in your
Azure Front Door origin group, these calls are
unnecessary.

You can save on bandwidth costs by disabling
requests that aren't required to make routing
decisions.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals for the operational requirements of the workload.

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to
Azure Front Door.

ﾉ Expand table

Operational Excellence

Design checklist

Use infrastructure as code (IaC) technologies. Use IaC technologies like Bicep and
Azure Resource Manager templates to provision the Azure Front Door instance.
These declarative approaches provide consistency and straightforward
maintenance. For example, by using IaC technologies, you can easily adopt new
ruleset versions. Always use the latest API version.

＂

Simplify configurations. Use Azure Front Door to easily manage configurations. For
example, suppose your architecture supports microservices. Azure Front Door
supports redirection capabilities, so you can use path-based redirection to target
individual services. Another use case is the configuration of wildcard domains.

＂

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-compression
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-quickstart-template-samples
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-url-redirect

Recommendation Benefit

Use HTTP to HTTPS redirection
to support forward
compatibility.

When redirection is enabled, Azure Front Door automatically
redirects clients that are using older protocol to use HTTPS for
a secure experience.

Capture logs and metrics.

Include resource activity logs,
access logs, health probe logs,
and WAF logs.

Set up alerts.

Monitoring ingress flow is a crucial part of monitoring an
application. You want to track requests and make performance
and security improvements. You need data to debug your
Azure Front Door configuration.

With alerts in place, you can get instant notifications of any
critical operational issues.

Review the built-in analytics
reports.

A holistic view of your Azure Front Door profile helps drive
improvements based on traffic and security reports through
WAF metrics.

Use managed TLS certificates
when possible.

Azure Front Door can issue and manage certificates for you.
This feature eliminates the need for certificate renewals and
minimizes the risk of an outage due to an invalid or expired
TLS certificate.

Use wildcard TLS certificates. You don't need to modify the configuration to add or specify
each subdomain separately.

Handle progressive exposure by using Azure Front Door routing methods. For a
weighted load balancing approach you can use a canary deployment to send a
specific percentage of traffic to a back end. This approach helps you test new
features and releases in a controlled environment before you roll them out.

＂

Collect and analyze Azure Front Door operational data as part of your workload
monitoring. Capture relevant Azure Front Door logs and metrics with Azure
Monitor Logs. This data helps you troubleshoot, understand user behaviors, and
optimize operations.

＂

Offload certificate management to Azure. Ease the operational burden associated
with certification rotation and renewals.

＂

Recommendations

ﾉ Expand table

Performance Efficiency

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-url-redirect#redirection-protocol
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-diagnostics
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-monitor-metrics#configure-alerts-in-the-azure-portal
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-reports
https://learn.microsoft.com/en-us/azure/frontdoor/domain#azure-front-door-managed-tls-certificates
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-wildcard-domain
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#weighted-traffic-routing-method

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency. Define a baseline that's based on key performance indicators for Azure Front
Door.

Design checklist

Plan capacity by analyzing your expected traffic patterns. Conduct thorough
testing to understand how your application performs under different loads.
Consider factors like simultaneous transactions, request rates, and data transfer.

Base your SKU choices on that planning. The Standard SKU is more cost-effective
and suitable for moderate traffic scenarios. If you anticipate higher loads, we
recommend the Premium SKU.

＂

Analyze performance data by regularly reviewing Azure Front Door reports. These
reports provide insights into various metrics that serve as performance indicators at
the technology level.

Use Azure Front Door reports to set realistic performance targets for your workload.
Consider factors like response times, throughput, and error rates. Align the targets
with your business requirements and user expectations.

＂

Optimize data transfers.

Use caching to reduce latency in serving static content, such as images,
stylesheets, and JavaScript files, or content that doesn't change frequently.

Optimize your application for caching. Use cache expiration headers in the
application that control how long the content should be cached by clients and
proxies. Longer cache validity means less frequent requests to the origin server,
which results in reduced traffic and lower latency.

Reduce the size of files that are transmitted over the network. Smaller files lead
to faster load times and improved user experience.

Minimize the number of back-end requests in the application.

＂

https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-reports

Recommendation Benefit

Enable caching.

You can optimize query strings for caching. For
purely static content, ignore query strings to

Azure Front Door offers a robust content
delivery network solution that caches content
at the edge of the network. Caching reduces
the load on the back-end servers and reduces

For example, a web page displays user profiles, recent orders, balances, and
other related information. Instead of making separate requests for each set of
information, use design patterns to structure your application so that multiple
requests are aggregated into a single request.

By aggregating requests, you send less data between the front end and the back
end and establish fewer connections between the client and the back end, which
reduces overhead. Also, Azure Front Door handles fewer requests, which
prevents overload.

Optimize the use of health probes. Get health information from health probes only
when the state of the origins change. Strike a balance between monitoring accuracy
and minimizing unnecessary traffic.

Health probes are typically used to assess the health of multiple origins within a
group. If you have only one origin configured in your Azure Front Door origin
group, disable health probes to reduce unnecessary traffic on your origin server.
Because there's only one instance, the health probe status won't impact routing.

＂

Review the origin routing method. Azure Front Door provides various routing
methods, including latency-based, priority-based, weighted, and session affinity-
based routing, to the origin. These methods significantly affect your application's
performance. To learn more about the best traffic routing option for your scenario,
see Traffic routing methods to origin.

＂

Review the location of origin servers. Your origin servers' location impacts the
responsiveness of your application. Origin servers should be closer to the users.
Azure Front Door ensures that users from a specific location access the nearest
Azure Front Door entry point. The performance benefits include faster user
experience, better use of latency-based routing by Azure Front Door, and
minimized data transfer time by using caching, which stores content closer to users.

For more information, see Traffic by location report.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-reports#traffic-by-location-report

Recommendation Benefit

maximize your use of the cache.

If your application uses query strings, consider
including them in the cache key. Including the
query strings in the cache key allows Azure
Front Door to serve cached responses or other
responses, based on your configuration.

data movement across the network, which
helps offload bandwidth usage.

Use file compression when you're accessing
downloadable content.

Compression in Azure Front Door helps deliver
content in the optimal format, has a smaller
payload, and delivers content to the users
faster.

When you configure health probes in Azure
Front Door, consider using HEAD requests
instead of GET requests.
The health probe reads only the status code,
not the content.

HEAD requests let you query a state change
without fetching its entire content.

Evaluate whether you should enable session
affinity when requests from the same user
should be directed to the same back-end
server.

From a reliability perspective, we don't
recommend this approach. If you use this
option, the application should gracefully
recover without disrupting user sessions.

There's also a tradeoff on load balancing
because it restricts the flexibility of distributing
traffic across multiple back ends evenly.

Optimize performance and maintain continuity
for user sessions, especially when applications
rely on maintaining state information locally.

Azure provides an extensive set of built-in policies related to Azure Front Door and its
dependencies. Some of the preceding recommendations can be audited through Azure
Policies. For example, you can check whether:

You need the Premium tier to support managed WAF rules and Private Link in
Azure Front Door profiles.
You need to use the minimum TLS version, which is version 1.2.
You need secure, private connectivity between Azure Front Door Premium and
Azure PaaS services.

Azure policies

https://learn.microsoft.com/en-us/azure/frontdoor/front-door-caching
https://learn.microsoft.com/en-us/azure/frontdoor/standard-premium/how-to-compression
https://learn.microsoft.com/en-us/azure/frontdoor/routing-methods#23session-affinity

You need to enable resource logs. WAF should have request body inspection
enabled.
You need to use policies to enforce the WAF rule set. For example, you should
enable bot protection and turn on rate-limiting rules.

For comprehensive governance, review the built-in definitions for Azure Content
Delivery Network and other Azure Front Door policies that are listed in Azure Policy
built-in policy definitions.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you
improve the reliability, security, cost effectiveness, performance, and operational
excellence of Azure Front Door.

Reliability
Security
Cost Optimization
Performance
Operational Excellence

Consider the following articles as resources that demonstrate the recommendations
highlighted in this article.

Use the following reference architectures as examples of how you can apply this
article's guidance to a workload:

Mission-critical baseline with network controls
Build implementation expertise by using the following product documentation:

Azure Front Door and Azure content Delivery Network
Best practices for Azure Front Door

Azure Advisor recommendations

Next steps

https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#cdn
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference#compute-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-performance-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-network-architecture
https://learn.microsoft.com/en-us/azure/frontdoor/
https://learn.microsoft.com/en-us/azure/frontdoor/best-practices

Azure Well-Architected Framework
review - Azure Kubernetes Service (AKS)
Article • 11/14/2023

This article provides architectural best practices for Azure Kubernetes Service (AKS). The
guidance is based on the five pillars of architecture excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

We assume that you understand system design principles, have working knowledge of
Azure Kubernetes Service, and are well versed with its features. For more information,
see Azure Kubernetes Service.

Understanding the Well-Architected Framework pillars can help produce a high-quality,
stable, and efficient cloud architecture. We recommend that you review your workload
by using the Azure Well-Architected Framework Review assessment.

For context, consider reviewing a reference architecture that reflects these
considerations in its design. We recommend that you start with the baseline architecture
for an Azure Kubernetes Service (AKS) cluster and Microservices architecture on Azure
Kubernetes Service. Also review the AKS landing zone accelerator, which provides an
architectural approach and reference implementation to prepare landing zone
subscriptions for a scalable Azure Kubernetes Service (AKS) cluster.

In the cloud, we acknowledge that failures happen. Instead of trying to prevent failures
altogether, the goal is to minimize the effects of a single failing component. Use the
following information to minimize failed instances.

When discussing reliability with Azure Kubernetes Service, it's important to distinguish
between cluster reliability and workload reliability. Cluster reliability is a shared
responsibility between the cluster admin and their resource provider, while workload

Prerequisites

Reliability

https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/assessments/?id=azure-architecture-review&mode=pre-assessment
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-microservices/aks-microservices
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/aks/enterprise-scale-landing-zone

reliability is the domain of a developer. Azure Kubernetes Service has considerations and
recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

Explore the following table of recommendations to optimize your AKS configuration for
Reliability.

Recommendation Benefit

Cluster and workload
architectures: Control pod
scheduling using node selectors
and affinity.

Allows the Kubernetes scheduler to logically isolate
workloads by hardware in the node. Unlike tolerations ,
pods without a matching node selector can be scheduled
on labeled nodes, which allows unused resources on the
nodes to consume, but gives priority to pods that define
the matching node selector. Use node affinity for more
flexibility, which allows you to define what happens if the
pod can't be matched with a node.

Cluster architecture: Ensure proper
selection of network plugin based
on network requirements and
cluster sizing.

Azure CNI is required for specific scenarios, for example,
Windows-based node pools, specific networking
requirements and Kubernetes Network Policies. Reference
Kubenet versus Azure CNI for more information.

Design checklist

Cluster architecture: For critical workloads, use availability zones for your AKS
clusters.

＂

Cluster architecture: Plan the IP address space to ensure your cluster can reliably
scale, including handling of failover traffic in multi-cluster topologies.

＂

Cluster architecture: Enable Container insights to monitor your cluster and
configure alerts for reliability-impacting events.

＂

Workload architecture: Ensure workloads are built to support horizontal scaling
and report application readiness and health.

＂

Cluster and workload architectures: Ensure your workload is running on user node
pools and chose the right size SKU. At a minimum, include two nodes for user node
pools and three nodes for the system node pool.

＂

Cluster architecture: Use the AKS Uptime SLA to meet availability targets for
production workloads.

＂

AKS configuration recommendations

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://learn.microsoft.com/en-us/azure/aks/concepts-network#compare-network-models
https://learn.microsoft.com/en-us/azure/aks/availability-zones
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview

Recommendation Benefit

Cluster and workload
architectures: Use the AKS Uptime
SLA for production grade clusters.

The AKS Uptime SLA guarantees:
- 99.95% availability of the Kubernetes API server endpoint
for AKS Clusters that use Azure Availability Zones, or
- 99.9% availability for AKS Clusters that don't use Azure
Availability Zones.

Cluster and workload
architectures: Configure
monitoring of cluster with
Container insights.

Container insights help monitor the health and
performance of controllers, nodes, and containers that are
available in Kubernetes through the Metrics API. Integration
with Prometheus enables collection of application and
workload metrics.

Cluster architecture: Use
availability zones to maximize
resilience within an Azure region by
distributing AKS agent nodes
across physically separate data
centers.

By spreading node pools across multiple zones, nodes in
one node pool will continue running even if another zone
has gone down. If colocality requirements exist, either a
regular VMSS-based AKS deployment into a single zone or
proximity placement groups can be used to minimize
internode latency.

Cluster architecture: Adopt a
multiregion strategy by deploying
AKS clusters deployed across
different Azure regions to
maximize availability and provide
business continuity.

Internet facing workloads should leverage Azure Front Door
or Azure Traffic Manager to route traffic globally across AKS
clusters.

Cluster and workload
architectures: Define Pod resource
requests and limits in application
deployment manifests, and enforce
with Azure Policy.

Container CPU and memory resource limits are necessary to
prevent resource exhaustion in your Kubernetes cluster.

Cluster and workload
architectures: Keep the System
node pool isolated from
application workloads.

System node pools require a VM SKU of at least 2 vCPUs
and 4 GB memory, but 4 vCPU or more is recommended.
Reference System and user node pools for detailed
requirements.

Cluster and workload
architectures: Separate
applications to dedicated node
pools based on specific
requirements.

Applications may share the same configuration and need
GPU-enabled VMs, CPU or memory optimized VMs, or the
ability to scale-to-zero. Avoid large number of node pools
to reduce extra management overhead.

Cluster architecture: Use a NAT
gateway for clusters that run
workloads that make many
concurrent outbound connections.

To avoid reliability issues with Azure Load Balancer
limitations with high concurrent outbound traffic, us a NAT
Gateway instead to support reliable egress traffic at scale.

https://learn.microsoft.com/en-us/azure/aks/uptime-sla
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://learn.microsoft.com/en-us/azure/aks/availability-zones
https://learn.microsoft.com/en-us/azure/aks/reduce-latency-ppg
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-multi-region#plan-for-multiregion-deployment
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-multi-region#use-azure-traffic-manager-to-route-traffic
https://learn.microsoft.com/en-us/azure/aks/use-system-pools#system-and-user-node-pools
https://learn.microsoft.com/en-us/azure/aks/nat-gateway

For more suggestions, see Principles of the reliability pillar.

Azure Kubernetes Service offers a wide variety of built-in Azure Policies that apply to
both the Azure resource like typical Azure Policies and, using the Azure Policy add-on
for Kubernetes, also within the cluster. There are a numerous number of policies, and
key policies related to this pillar are summarized here. For a more detailed view, see
built-in policy definitions for Kubernetes.

Clusters have readiness or liveness health probes configured for your pod spec.

In addition to the built-in Azure Policy definitions, custom policies can be created for
both the AKS resource and for the Azure Policy add-on for Kubernetes. This allows you
to add additional reliability constraints you'd like to enforce in your cluster and
workload architecture.

Security is one of the most important aspects of any architecture. To explore how AKS
can bolster the security of your application workload, we recommend you review the
Security design principles. If your Azure Kubernetes Service cluster needs to be designed
to run a sensitive workload that meets the regulatory requirements of the Payment Card
Industry Data Security Standard (PCI-DSS 3.2.1), review AKS regulated cluster for PCI-
DSS 3.2.1.

To learn about DoD Impact Level 5 (IL5) support and requirements with AKS, review
Azure Government IL5 isolation requirements.

When discussing security with Azure Kubernetes Service, it's important to distinguish
between cluster security and workload security. Cluster security is a shared responsibility
between the cluster admin and their resource provider, while workload security is the
domain of a developer. Azure Kubernetes Service has considerations and
recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

Azure Policy

Cluster and workload architecture

Security

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#kubernetes
https://learn.microsoft.com/en-us/azure/application-gateway/ingress-controller-add-health-probes
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-pci/aks-pci-intro
https://learn.microsoft.com/en-us/azure/azure-government/documentation-government-impact-level-5#azure-kubernetes-service

Explore the following table of recommendations to optimize your AKS configuration for
security.

Recommendation Benefit

Cluster architecture: Use
Microsoft Entra integration.

Using Microsoft Entra ID centralizes the identity
management component. Any change in user account or
group status is automatically updated in access to the AKS
cluster. The developers and application owners of your
Kubernetes cluster need access to different resources.

Cluster architecture: Authenticate
with Microsoft Entra ID to Azure
Container Registry.

AKS and Microsoft Entra ID enables authentication with
Azure Container Registry without the use of
imagePullSecrets secrets. Review Authenticate with Azure
Container Registry from Azure Kubernetes Service for more
information.

Cluster architecture: Secure
network traffic to your API server
with private AKS cluster.

By default, network traffic between your node pools and the
API server travels the Microsoft backbone network; by using
a private cluster, you can ensure network traffic to your API
server remains on the private network only.

Cluster architecture: For non-
private AKS clusters, use API
server authorized IP ranges.

When using public clusters, you can still limit the traffic that
can reach your clusters API server by using the authorized IP
range feature. Include sources like the public IPs of your

Design checklist

Cluster architecture: Use Managed Identities to avoid managing and rotating
service principles.

＂

Cluster architecture: Use Kubernetes role-based access control (RBAC) with
Microsoft Entra ID for least privilege access and minimize granting administrator
privileges to protect configuration, and secrets access.

＂

Cluster architecture: Use Microsoft Defender for containers with Azure Sentinel to
detect and quickly respond to threats across your cluster and workloads running on
them.

＂

Cluster architecture: Deploy a private AKS cluster to ensure cluster management
traffic to your API server remains on your private network. Or use the API server
allow list for non-private clusters.

＂

Workload architecture: Use a Web Application Firewall to secure HTTP(S) traffic.＂

Workload architecture: Ensure your CI/CID pipeline is hardened with container-
aware scanning.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/aks/cluster-container-registry-integration?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/aks/private-clusters
https://learn.microsoft.com/en-us/azure/aks/use-managed-identity
https://learn.microsoft.com/en-us/azure/aks/azure-ad-rbac
https://learn.microsoft.com/en-us/azure/sentinel/overview

Recommendation Benefit

deployment build agents, operations management, and node
pools' egress point (such as Azure Firewall).

Cluster architecture: Protect the
API server with Microsoft Entra
RBAC.

Securing access to the Kubernetes API Server is one of the
most important things you can do to secure your cluster.
Integrate Kubernetes role-based access control (RBAC) with
Microsoft Entra ID to control access to the API server. Disable
local accounts to enforce all cluster access using Microsoft
Entra ID-based identities.

Cluster architecture: Use Azure
network policies or Calico.

Secure and control network traffic between pods in a cluster.

Cluster architecture: Secure
clusters and pods with Azure
Policy.

Azure Policy can help to apply at-scale enforcement and
safeguards on your clusters in a centralized, consistent
manner. It can also control what functions pods are granted
and if anything is running against company policy.

Cluster architecture: Secure
container access to resources.

Limit access to actions that containers can perform. Provide
the least number of permissions, and avoid the use of root or
privileged escalation.

Workload architecture: Use a
Web Application Firewall to
secure HTTP(S) traffic.

To scan incoming traffic for potential attacks, use a web
application firewall such as Azure Web Application Firewall
(WAF) on Azure Application Gateway or Azure Front Door.

Cluster architecture: Control
cluster egress traffic.

Ensure your cluster's outbound traffic is passing through a
network security point such as Azure Firewall or an HTTP
proxy.

Cluster architecture: Use the
open-source Microsoft Entra
Workload ID and Secrets Store
CSI Driver with Azure Key Vault.

Protect and rotate secrets, certificates, and connection strings
in Azure Key Vault with strong encryption. Provides an access
audit log, and keeps core secrets out of the deployment
pipeline.

Cluster architecture: Use
Microsoft Defender for
Containers.

Monitor and maintain the security of your clusters,
containers, and their applications.

For more suggestions, see Principles of the security pillar.

Azure Advisor helps ensure and improve Azure Kubernetes service. It makes
recommendations on a subset of the items listed in the policy section below, such as
clusters without RBAC configured, missing Microsoft Defender configuration,
unrestricted network access to the API Server. Likewise, it makes workload
recommendations for some of the pod security initiative items. Review the
recommendations.

https://learn.microsoft.com/en-us/azure/aks/managed-aad#disable-local-accounts
https://learn.microsoft.com/en-us/azure/aks/use-network-policies
https://learn.microsoft.com/en-us/azure/aks/use-azure-policy
https://learn.microsoft.com/en-us/azure/web-application-firewall/ag/ag-overview
https://learn.microsoft.com/en-us/azure/web-application-firewall/afds/afds-overview
https://learn.microsoft.com/en-us/azure/aks/limit-egress-traffic#restrict-egress-traffic-using-azure-firewall
https://learn.microsoft.com/en-us/azure/aks/http-proxy
https://github.com/Azure/azure-workload-identity
https://github.com/Azure/secrets-store-csi-driver-provider-azure#usage
https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-containers-introduction
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/azure/advisor/advisor-security-recommendations

Azure Policy offers various built-in policy definitions that apply to both the Azure
resource and AKS like standard policy definitions, and using the Azure Policy add-on for
Kubernetes, also within the cluster. Many of the Azure resource policies come in both
Audit/Deny, but also in a Deploy If Not Exists variant.

There are a numerous number of policies, and key policies related to this pillar are
summarized here. For a more detailed view, see built-in policy definitions for
Kubernetes.

Microsoft Defender for Cloud-based policies
Authentication mode and configuration policies (Microsoft Entra ID, RBAC, disable
local authentication)
API Server network access policies, including private cluster

Kubernetes cluster pod security initiatives Linux-based workloads
Include pod and container capability policies such as AppArmor, sysctl, security
caps, SELinux, seccomp, privileged containers, automount cluster API credentials
Mount, volume drivers, and filesystem policies
Pod/Container networking policies, such as host network, port, allowed external
IPs, HTTPs, and internal load balancers

Azure Kubernetes Service deployments often also use Azure Container Registry for Helm
charts and container images. Azure Container Registry also supports a wide variety of
Azure policies that spans network restrictions, access control, and Microsoft Defender
for Cloud, which complements a secure AKS architecture.

In addition to the built-in policies, custom policies can be created for both the AKS
resource and for the Azure Policy add-on for Kubernetes. This allows you to add
additional security constraints you'd like to enforce in your cluster and workload
architecture.

For more suggestions, see AKS security concepts and evaluate our security hardening
recommendations based on the CIS Kubernetes benchmark.

Policy definitions

Cluster architecture

Cluster and workload architecture

Cost optimization

https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#kubernetes
https://learn.microsoft.com/en-us/azure/aks/concepts-security
https://learn.microsoft.com/en-us/azure/aks/cis-kubernetes

Cost optimization is about understanding your different configuration options and
recommended best practices to reduce unnecessary expenses and improve operational
efficiencies. Before you follow the guidance in this article, we recommend you review
the following resources:

Cost optimization design principles.
How pricing and cost management work in Azure Kubernetes Service (AKS)
compared to Amazon Elastic Kubernetes Service (Amazon EKS).
If you are running AKS on-premises or at the edge, Azure Hybrid Benefit can also
be used to further reduce costs when running containerized applications in those
scenarios.

When discussing cost optimization with Azure Kubernetes Service, it's important to
distinguish between cost of cluster resources and cost of workload resources. Cluster
resources are a shared responsibility between the cluster admin and their resource
provider, while workload resources are the domain of a developer. Azure Kubernetes
Service has considerations and recommendations for both of these roles.

In the design checklist and list of recommendations, call-outs are made to indicate
whether each choice is applicable to cluster architecture, workload architecture, or both.

For cluster cost optimization, go to the Azure pricing calculator and select Azure
Kubernetes Service from the available products. You can test different configuration
and payment plans in the calculator.

Explore the following table of recommendations to optimize your AKS configuration for
cost.

Design checklist

Cluster architecture: Use appropriate VM SKU per node pool and reserved
instances where long-term capacity is expected.

＂

Cluster and workload architectures: Use appropriate managed disk tier and size.＂

Cluster architecture: Review performance metrics, starting with CPU, memory,
storage, and network, to identify cost optimization opportunities by cluster, nodes,
and namespace.

＂

Cluster architecture: Use cluster autoscaler to scale in when workloads are less
active.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/architecture/aws-professional/eks-to-aks/cost-management
https://learn.microsoft.com/en-us/windows-server/get-started/azure-hybrid-benefit
https://azure.microsoft.com/pricing/calculator/

Recommendation Benefit

Cluster and workload
architectures: Align SKU
selection and managed disk
size with workload
requirements.

Matching your selection to your workload demands ensures
you don't pay for unneeded resources.

Cluster architecture: Select the
right virtual machine instance
type.

Selecting the right virtual machine instance type is critical as it
directly impacts the cost of running applications on AKS.
Choosing a high-performance instance without proper
utilization can lead to wasteful spending, while choosing a
powerful instance can lead to performance issues and
increased downtime. To determine the right virtual machine
instance type, consider workload characteristics, resource
requirements, and availability needs.

Cluster architecture: Select
virtual machines based on the
Arm architecture.

AKS supports creating ARM64 Ubuntu agent nodes, as well as a
of mix Intel and ARM architecture nodes within a cluster that
can bring better performance at a lower cost.

Cluster architecture: Select the
appropriate region.

Due to many factors, cost of resources varies per region in
Azure. Evaluate the cost, latency, and compliance requirements
to ensure you are running your workload cost-effectively and it
doesn't affect your end-users or create extra networking
charges.

Workload architecture:
Maintain small and optimized
images.

Streamlining your images helps reduce costs since new nodes
need to download these images. Build images in a way that
allows the container start as soon as possible to help avoid user
request failures or timeouts while the application is starting up,
potentially leading to overprovisioning.

Cluster architecture: Enable
cluster autoscaler to
automatically reduce the
number of agent nodes in
response to excess resource
capacity.

Automatically scale down the number of nodes in your AKS
cluster lets you run an efficient cluster when demand is low,
scale up when demand returns.

Workload architecture: Use the
Horizontal Pod Autoscaler.

Adjust the number of pods in a deployment depending on CPU
utilization or other select metrics, which support cluster scale-in
operations.

Workload architecture: Use
Vertical Pod Autoscaler
(preview).

Rightsize your pods and dynamically set requests and limits
based on historic usage.

Workload architecture: Use
Kubernetes Event Driven

Scale based on the number of events being processed. Choose
from a rich catalogue of 50+ KEDA scalers.

https://learn.microsoft.com/en-us/azure/virtual-machines/dplsv5-dpldsv5-series
https://learn.microsoft.com/en-us/azure/aks/use-multiple-node-pools#add-an-arm64-node-pool
https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://learn.microsoft.com/en-us/azure/aks/concepts-scale#horizontal-pod-autoscaler
https://learn.microsoft.com/en-us/azure/aks/vertical-pod-autoscaler
https://learn.microsoft.com/en-us/azure/aks/developer-best-practices-resource-management#define-pod-resource-requests-and-limits
https://learn.microsoft.com/en-us/azure/aks/keda-about

Recommendation Benefit

Autoscaling (KEDA).

Cluster and workload
architectures: Adopt a cloud
financial discipline and cultural
practice to drive ownership of
cloud usage.

The foundation of enabling cost optimization is the spread of a
cost saving cluster. A financial operations approach (FinOps)
is often used to help organizations reduce cloud costs. It is a
practice involving collaboration between finance, operations,
and engineering teams to drive alignment on cost saving goals
and bring transparency to cloud costs.

Cluster architecture: Sign up
for Azure Reservations or Azure
Savings Plan.

If you properly planned for capacity, your workload is
predictable and exists for an extended period of time, sign up
for an Azure Reservation or a savings plan to further reduce
your resource costs.

Cluster architecture: Configure
monitoring of cluster with
Container insights.

Container insights help provides actionable insights into your
clusters idle and unallocated resources. Container insights also
supports collecting Prometheus metrics and integrates with
Azure Managed Grafana to get a holistic view of your
application and infrastructure.

Cluster architecture: Configure
the cost analysis cluster
extension.

The cost analysis cluster extension enables you to obtain
granular insight into costs associated with various Kubernetes
resources in your clusters or namespaces.

For more suggestions, see Principles of the cost optimization pillar.

While there are no built-in policies that are related to cost optimization, custom policies
can be created for both the AKS resource and for the Azure Policy add-on for
Kubernetes. This allows you to add additional cost optimization constraints you'd like to
enforce in your cluster and workload architecture.

Making workloads more sustainable and cloud efficient, requires combining efforts
around cost optimization, reducing carbon emissions, and optimizing energy
consumption. Optimizing the application's cost is the initial step in making workloads
more sustainable.

Learn how to build sustainable and efficient AKS workloads, in Sustainable software
engineering principles in Azure Kubernetes Service (AKS).

Policy definitions

Cloud efficiency

https://learn.microsoft.com/en-us/azure/aks/keda-about
https://www.finops.org/introduction/what-is-finops/
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/save-compute-costs-reservations
https://learn.microsoft.com/en-us/azure/cost-management-billing/savings-plan/savings-plan-compute-overview
https://learn.microsoft.com/en-us/azure/aks/faq#can-i-apply-azure-reservation-discounts-to-my-aks-agent-nodes
https://learn.microsoft.com/en-us/azure/cost-management-billing/savings-plan/savings-plan-compute-overview#determine-your-savings-plan-commitment
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://learn.microsoft.com/en-us/azure/aks/cost-analysis
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-get-started
https://learn.microsoft.com/en-us/azure/aks/concepts-sustainable-software-engineering

Monitoring and diagnostics are crucial. Not only can you measure performance
statistics, but also use metrics troubleshoot and remediate issues quickly. We
recommend you review the Operational excellence design principles and the Day-2
operations guide.

When discussing operational excellence with Azure Kubernetes Service, it's important to
distinguish between cluster operational excellence and workload operational excellence.
Cluster operations are a shared responsibility between the cluster admin and their
resource provider, while workload operations are the domain of a developer. Azure
Kubernetes Service has considerations and recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

Operational excellence

Design checklist

Cluster architecture: Use a template-based deployment using Bicep, Terraform, or
others. Make sure that all deployments are repeatable, traceable, and stored in a
source code repo.

＂

Cluster architecture: Build an automated process to ensure your clusters are
bootstrapped with the necessary cluster-wide configurations and deployments. This
is often performed using GitOps.

＂

Workload architecture: Use a repeatable and automated deployment processes for
your workload within your software development lifecycle.

＂

Cluster architecture: Enable diagnostics settings to ensure control plane or core API
server interactions are logged.

＂

Cluster and workload architectures: Enable Container insights to collect metrics,
logs, and diagnostics to monitor the availability and performance of the cluster and
workloads running on it.

＂

Workload architecture: The workload should be designed to emit telemetry that
can be collected, which should also include liveliness and readiness statuses.

＂

Cluster and workload architectures: Use chaos engineering practices that target
Kubernetes to identify application or platform reliability issues.

＂

Workload architecture: Optimize your workload to operate and deploy efficiently in
a container.

＂

Cluster and workload architectures: Enforce cluster and workload governance
using Azure Policy.

＂

https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/architecture/operator-guides/aks/day-2-operations-guide
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview

Explore the following table of recommendations to optimize your AKS configuration for
operations.

Recommendation Benefit

Cluster and workload architectures: Review
AKS best practices documentation.

To build and run applications successfully in AKS,
there are key considerations to understand and
implement. These areas include multi-tenancy and
scheduler features, cluster, and pod security, or
business continuity and disaster recovery.

Cluster and workload architectures: Review
Azure Chaos Studio.

Azure Chaos Studio can help simulate faults and
trigger disaster recovery situations.

Cluster and workload architectures:
Configure monitoring of cluster with
Container insights.

Container insights help monitor the performance
of containers by collecting memory and processor
metrics from controllers, nodes, and containers
that are available in Kubernetes through the
Metrics API and container logs.

Workload architecture: Monitor application
performance with Azure Monitor.

Configure Application Insights for code-based
monitoring of applications running in an AKS
cluster.

Workload architecture: Configure scraping
of Prometheus metrics with Container
insights.

Container insights, which are part of Azure
Monitor, provide a seamless onboarding
experience to collect Prometheus metrics.
Reference Configure scraping of Prometheus
metrics for more information.

Cluster architecture: Adopt a multiregion
strategy by deploying AKS clusters
deployed across different Azure regions to
maximize availability and provide business
continuity.

Internet facing workloads should leverage Azure
Front Door or Azure Traffic Manager to route traffic
globally across AKS clusters.

Cluster architecture: Operationalize clusters
and pods configuration standards with
Azure Policy.

Azure Policy can help to apply at-scale
enforcement and safeguards on your clusters in a
centralized, consistent manner. It can also control
what functions pods are granted and if anything is
running against company policy.

Workload architecture: Use platform
capabilities in your release engineering
process.

Kubernetes and ingress controllers support many
advanced deployment patterns for inclusion in
your release engineering process. Consider
patterns like blue-greem deployments or canary
releases.

Recommendations

https://learn.microsoft.com/en-us/azure/aks/best-practices
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-tutorial-aks-portal
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-prometheus-integration
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-multi-region#plan-for-multiregion-deployment
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-multi-region#use-azure-traffic-manager-to-route-traffic
https://learn.microsoft.com/en-us/azure/aks/use-azure-policy

Recommendation Benefit

Cluster and workload architectures: For
mission-critical workloads, use stamp-level
blue/green deployments.

Automate your mission-critical design areas,
including deployment and testing.

For more suggestions, see Principles of the operational excellence pillar.

Azure Advisor also makes recommendations on a subset of the items listed in the policy
section below, such unsupported AKS versions and unconfigured diagnostic settings.
Likewise, it makes workload recommendations around the use of the default
namespace.

Azure Policy offers various built-in policy definitions that apply to both the Azure
resource and AKS like standard policy definitions, and using the Azure Policy add-on for
Kubernetes, also within the cluster. Many of the Azure resource policies come in both
Audit/Deny, but also in a Deploy If Not Exists variant.

There are a numerous number of policies, and key policies related to this pillar are
summarized here. For a more detailed view, see built-in policy definitions for
Kubernetes.

Azure Policy add-on for Kubernetes
GitOps configuration policies
Diagnostics settings policies
AKS version restrictions
Prevent command invoke

Namespace deployment restrictions

In addition to the built-in policies, custom policies can be created for both the AKS
resource and for the Azure Policy add-on for Kubernetes. This allows you to add
additional security constraints you'd like to enforce in your cluster and workload
architecture.

Policy definitions

Cluster architecture

Cluster and workload architecture

https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-deployment-testing#ephemeral-blue-green-deployments
https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#kubernetes

Performance efficiency is the ability of your workload to scale to meet the demands
placed on it by users in an efficient manner. We recommend you review the
Performance efficiency principles.

When discussing performance with Azure Kubernetes Service, it's important to
distinguish between cluster performance and workload performance. Cluster
performance is a shared responsibility between the cluster admin and their resource
provider, while workload performance is the domain of a developer. Azure Kubernetes
Service has considerations and recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

As you make design choices for Azure Kubernetes Service, review the Performance
efficiency principles.

Explore the following table of recommendations to optimize your Azure Kubernetes
Service configuration for performance.

Recommendation Benefit

Cluster and workload architectures:
Develop a detailed capacity plan and

After formalizing your capacity plan, it should be
frequently updated by continuously observing the

Performance efficiency

Design checklist

Cluster and workload architectures: Perform and iterate on a detailed capacity plan
exercise that includes SKU, autoscale settings, IP addressing, and failover
considerations.

＂

Cluster architecture: Enable cluster autoscaler to automatically adjust the number
of agent nodes in response workload demands.

＂

Cluster architecture: Use the Horizontal pod autoscaler to adjust the number of
pods in a deployment depending on CPU utilization or other select metrics.

＂

Cluster and workload architectures: Perform ongoing load testing activities that
exercise both the pod and cluster autoscaler.

＂

Cluster and workload architectures: Separate workloads into different node pools
allowing independent scalling.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://learn.microsoft.com/en-us/azure/aks/concepts-scale#horizontal-pod-autoscaler

Recommendation Benefit

continually review and revise. resource utilization of the cluster.

Cluster architecture: Enable cluster
autoscaler to automatically adjust the
number of agent nodes in response to
resource constraints.

The ability to automatically scale up or down the
number of nodes in your AKS cluster lets you run an
efficient, cost-effective cluster.

Cluster and workload architectures:
Separate workloads into different
node pools and consider scaling user
node pools.

Unlike System node pools that always require running
nodes, user node pools allow you to scale up or down.

Workload architecture: Use AKS
advanced scheduler features.

Helps control balancing of resources for workloads that
require them.

Workload architecture: Use
meaningful workload scaling metrics.

Not all scale decisions can be derived from CPU or
memory metrics. Often scale considerations will come
from more complex or even external data points. Use
KEDA to build a meaningful auto scale ruleset based on
signals that are specific to your workload.

For more suggestions, see Principles of the performance efficiency pillar.

Azure Policy offers various built-in policy definitions that apply to both the Azure
resource and AKS like standard policy definitions, and using the Azure Policy add-on for
Kubernetes, also within the cluster. Many of the Azure resource policies come in both
Audit/Deny, but also in a Deploy If Not Exists variant.

There are a numerous number of policies, and key policies related to this pillar are
summarized here. For a more detailed view, see built-in policy definitions for
Kubernetes.

CPU and memory resource limits

In addition to the built-in policies, custom policies can be created for both the AKS
resource and for the Azure Policy add-on for Kubernetes. This allows you to add
additional security constraints you'd like to enforce in your cluster and workload
architecture.

Policy definitions

Cluster and workload architecture

https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://learn.microsoft.com/en-us/azure/aks/scale-cluster
https://learn.microsoft.com/en-us/azure/aks/operator-best-practices-advanced-scheduler
https://learn.microsoft.com/en-us/training/modules/aks-app-scale-keda/
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#kubernetes

AKS baseline architecture
Advanced AKS microservices architecture
AKS cluster for a PCI-DSS workload
AKS baseline for multiregion clusters

AKS Landing Zone Accelerator

Deploy an Azure Kubernetes Service (AKS) cluster using the Azure CLI Quickstart:
Deploy an Azure Kubernetes Service (AKS) cluster using the Azure CLI

Additional resources

Azure Architecture Center guidance

Cloud Adoption Framework guidance

Next steps

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/secure-baseline-aks
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-microservices/aks-microservices-advanced
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-pci/aks-pci-intro
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-multi-region/aks-multi-cluster
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/app-platform/aks/landing-zone-accelerator
https://learn.microsoft.com/en-us/azure/aks/kubernetes-walkthrough

Reliability and Azure Load Balancer
Article • 03/11/2024

Load balancing refers to efficiently distributing load (incoming network traffic) across a
group of backend resources or servers. With Azure Load Balancer, load-balance traffic to
and from virtual machines and cloud resources, and in cross-premises virtual networks.

You can scale your applications and create highly available services with Azure Load
Balancer. It supports both inbound and outbound scenarios. Load balancer provides low
latency and high throughput.

Key benefits include:

Load balance internal and external traffic to Azure virtual machines.
Increase availability by distributing resources within and across zones.
Configure outbound connectivity for Azure virtual machines.
Use health probes to monitor load-balanced resources.

For more information, reference Why use Azure Load Balancer?

To understand how Azure Load Balancer supports a reliable workload, reference the
following topics:

Improve application scalability and resiliency by using Azure Load Balancer
Load Balancer and Availability Zones
High availability ports overview

Have you configured Azure Load Balancer with reliability in mind?

Consider the following recommendation to optimize reliability when configuring an
Azure Load Balancer:

Checklist

For production workloads, use the Standard Stock Keeping Units (SKU).＂

Configuration recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/load-balancer/
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-overview#why-use-azure-load-balancer
https://learn.microsoft.com/en-us/training/modules/improve-app-scalability-resiliency-with-load-balancer/
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-standard-availability-zones
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-ha-ports-overview

Feedback

Was this page helpful?

Recommendation Description

For production workloads, use the
Standard Stock Keeping Units (SKU).

Basic load balancers don't have a Service Level
Agreement (SLA). The Standard SKU supports
Availability Zones.

 Tip

For more details on Reliability guidance for Load Balancer, see Reliability in Azure
Load Balancer.

Next step
Operational excellence and Azure Load Balancer

 Yes No

https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-standard-availability-zones
https://learn.microsoft.com/en-us/azure/reliability/reliability-load-balancer

Operational excellence and Azure Load
Balancer
Article • 11/14/2023

Load balancing refers to evenly distributing load (incoming network traffic) across a
group of backend resources or servers. With Azure Load Balancer, load-balance traffic to
and from virtual machines and cloud resources, and in cross-premises virtual networks.

You can scale your applications and create highly available services with Azure Load
Balancer. It supports both inbound and outbound scenarios. Load balancer provides low
latency and high throughput.

Key benefits include:

Load balance internal and external traffic to Azure virtual machines.
Increase availability by distributing resources within/across Azure regions and
zones.
Configure outbound connectivity for Azure virtual machines.
Use health probes to monitor load-balanced resources.

For more information, reference Why use Azure Load Balancer?

To understand how Azure Load Balancer supports operational excellence, reference the
following topics:

Load Balancer health probes
Standard load balancer diagnostics with metrics, alerts, and resource health
Using Insights to monitor and configure your Azure Load Balancer

Have you configured Azure Load Balancer with operational excellence in mind?

Consider the following recommendation for operational excellence when configuring an
Azure Load Balancer:

Checklist

For production workloads, use the Standard Stock Keeping Units (SKU).＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/load-balancer/
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-overview#why-use-azure-load-balancer
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-custom-probe-overview
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-standard-diagnostics
https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-insights

Recommendation Description

For production workloads, use the
Standard Stock Keeping Units (SKU).

Basic load balancers don't have a Service Level Agreement
(SLA). The Standard SKU supports Availability Zones and
multi-region load balancing.

Next step
Reliability and Traffic Manager

https://learn.microsoft.com/en-us/azure/load-balancer/load-balancer-standard-availability-zones
https://learn.microsoft.com/en-us/azure/load-balancer/cross-region-overview

Azure Well-Architected Framework
perspective on Azure Machine Learning
Article • 03/18/2024

Azure Machine Learning is a managed cloud service that you can use to train, deploy,
and manage machine learning models. There are a wide range of choices and
configurations for both training and deploying models, including compute SKUs and
configurations. You can deploy Machine learning models to Machine Learning compute
or to other Azure services such as Azure Kubernetes Service (AKS).

This article provides architectural recommendations for making informed decisions
when you use Machine Learning to train, deploy, and manage machine learning models.
The guidance is based on the Azure Well-Architected Framework pillars.

This review focuses on the interrelated decisions for these Azure resources:

Machine Learning
Machine Learning compute clusters
Machine Learning compute instances

The review doesn't address connected resources such as data stores or Azure Key Vault.

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies localized to the technology scope.

Also included are recommendations on the technology capabilities that can help
materialize those strategies. The recommendations don't represent an exhaustive
list of all configurations available for Machine Learning and its dependencies.
Instead, they list the key recommendations mapped to the design perspectives. Use
the recommendations to build your proof-of-concept or to optimize your existing
environments.

The foundational architecture baseline OpenAI end-to-end chat reference
architecture demonstrates many of the key recommendations.

Technology scope

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-openai-e2e-chat

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

Start your design strategy based on the design review checklist for Reliability and
determine its relevance to your business requirements. Extend the strategy to include
more approaches as needed.

Reliability

Design checklist

Resiliency: Deploy models to environments that support availability zones, such as
AKS. By ensuring deployments are distributed across availability zones, you're
ensuring a deployment is available even in the event of a datacenter failure. For
enhanced reliability and availability, consider a multi-region deployment topology.

＂

Resiliency: Ensure you have sufficient compute for both training and inferencing.
Through resource planning, make sure your compute SKU and scale settings meet
the requirements of your workload.

＂

Resiliency: Segregate Machine Learning workspaces used for exploratory work from
those used for production.

＂

Resiliency: When using managed online endpoints for inferencing, use a release
strategy such as blue-green deployments to minimize downtime and reduce the
risk associated with deploying new versions.

＂

Business requirements: Select your use of compute clusters, compute instances,
and externalized inference hosts based on reliability needs, considering service-
level agreements (SLAs) as a factor.

＂

Recovery: Ensure you have self-healing capabilities, such as checkpointing features
supported by Machine Learning, when training large models.

＂

Recovery: Ensure you have a recovery strategy defined. Machine Learning doesn't
have automatic failover. Therefore, you must design a strategy that encompasses
the workspace and all its dependencies, such as Key Vault, Azure Storage, and Azure
Container Registry.

＂

Recommendations

Recommendation Benefit

Multi-region model deployment: For
enhanced reliability and availability,
consider a multi-region deployment
environment when possible.

A multi-region deployment ensures that your
Machine Learning workloads continue to run even if
one region experiences an outage. Multi-region
deployment improves load distribution across
regions, potentially enhancing performance for users
located in different geographical areas. For more
information, see Failover for business continuity and
disaster recovery.

Model training resiliency: Use
checkpointing features supported by
Machine Learning including Azure
Container for PyTorch, the TensorFlow
Estimator class, or the Run object and the
FileDataset class that support model
checkpointing.

Model checkpointing periodically saves the state of
your machine learning model during training, so that
it can be restored in case of interruption, failure, or
termination. For more information, see Boost
checkpoint speed and reduce cost with Nebula.

Use the Dedicated virtual machine tier
for compute clusters: Use the Dedicated
virtual machine tier for compute clusters
for batch inferencing to ensure your batch
job isn't preempted.

Low-priority virtual machines come at a reduced
price but are preemptible. Clusters that use the
Dedicated virtual machine tier aren't preempted.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design around Machine Learning.

Start your design strategy based on the design review checklist for Security and identify
vulnerabilities and controls to improve the security posture. Extend the strategy to
include more approaches as needed.

ﾉ Expand table

Security

Design checklist

Availability: Reduce the attack surface of the Machine Learning workspace by
restricting access to the workspace to resources within the virtual network.

＂

Confidentiality: Guard against data exfiltration from the Machine Learning
workspace by implementing network isolation. Ensure access to all external

＂

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-high-availability-machine-learning
https://learn.microsoft.com/en-us/azure/machine-learning/reference-checkpoint-performance-for-large-models
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles

Recommendation Benefit

Security baseline: To enhance the security and compliance of
your Machine Learning Service, apply the Azure security
baseline for Machine Learning.

The security baseline provides
tailored guidance on crucial
security aspects such as network
security, identity management,
data protection, and privileged
access. For optimal security, use

resources is explicitly approved and access to all other external resources isn't
permitted.

Integrity: Implement access controls that authenticate and authorize the Machine
Learning workspace for external resources based on the least privilege principle.

＂

Integrity: Implement use case segregation for Machine Learning workspaces by
setting up workspaces based on specific use cases or projects. This approach
adheres to the principle of least privilege by ensuring that workspaces are only
accessible to individuals that require access to data and experimentation assets for
the use case or project.

＂

Integrity: Regulate access to foundational models. Ensure only approved registries
have access to models in the model registry.

＂

Integrity: Regulate access to approved container registries. Ensure Machine
Learning compute can only access approved registries.

＂

Integrity: Regulate the Python packages that can be run on Machine Learning
compute. Regulating the Python packages ensures only trusted packages are run.

＂

Integrity: Require code used for training in Machine Learning compute
environments to be signed. Requiring code signing ensures that the code running is
from a trusted source and hasn't been tampered with.

＂

Confidentiality: Adhere to the principle of least privilege for role-based access
control (RBAC) to the Machine Learning workspace and related resources, such as
the workspace storage account, to ensure individuals have only the necessary
permissions for their role, thereby minimizing potential security risks.

＂

Integrity: Establish trust and verified access by implementing encryption for data at
rest and data in transit.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/machine-learning-service-security-baseline

Recommendation Benefit

Microsoft Defender for Cloud to
monitor these aspects.

Managed virtual network isolation: Configure managed
virtual network isolation for Machine Learning. When you
enable managed virtual network isolation, a managed virtual
network is created for the workspace. Managed compute
resources you create for the workspace automatically use this
managed virtual network. If you can't implement managed
virtual network isolation, then you must follow the network
topology recommendations to separate compute into a
dedicated subnet away from the rest of the resources in the
solution, including the private endpoints for workspace
resources.

Managed virtual network
isolation enhances security by
isolating your workspace from
other networks, reducing the risk
of unauthorized access. In a
scenario in which a breach occurs
in another network within your
organization, the isolated
network of your Machine
Learning workspace remains
unaffected, protecting your
machine learning workloads.

Machine Learning network isolation: Configure a private
endpoint for your Machine Learning workspace and connect
to the workspace over that private endpoint.

Machine Learning network
isolation enhances security by
ensuring that access to your
workspace is secure and
controlled. With a private
endpoint configured for your
workspace, you can then limit
access to your workspace to only
occur over the private IP
addresses.

Allow only approved outbound access: Configure the
outbound mode on the Machine Learning workspace
managed outbound access to Allow only approved outbound
to minimize the risk of data exfiltration. Configure private
endpoints, service tags, or fully qualified domain names
(FQDNs) for resources that you need to access.

This configuration minimizes the
risk of data exfiltration,
improving data security. With this
configuration enabled, a
malicious actor who gains access
to your system can’t send your
data to an unapproved external
destination.

Virtual network isolation for dependent services: Configure
dependent services, such as Storage, Key Vault, and Container
Registry with private endpoints and disable public access.

Network isolation bolsters
security by restricting access to
Azure platform as a service (PaaS)
solutions to private IP addresses
only.

Managed identity: Use managed identities for authentication
between Machine Learning and other services.

Managed identities improve
security by eliminating the need
to store credentials and manually
manage and rotate service
principals.

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-managed-network
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-network-isolation-planning#recommended-architecture-use-your-azure-vnet
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-configure-private-link
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-access-azureml-behind-firewall
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-setup-authentication#configure-a-managed-identity

Recommendation Benefit

Disable local authentication: Disable local authentication for
Machine Learning compute clusters and instances.

Disabling local authentication
increases the security of your
Machine Learning compute and
provides centralized control and
management of identities and
resource credentials.

Disable the public SSH port: Ensure the public Secure Shell
(SSH) port is closed on the Machine Learning compute cluster
by setting remoteLoginPortPublicAccess to Disabled . Apply a
similar configuration if you use a different compute.

Disabling SSH access helps
prevent unauthorized individuals
from gaining access and
potentially causing harm to your
system and protects you against
brute force attacks.

Don't provision public IP addresses for Machine Learning
compute: Set enableNodePublicIp to false when
provisioning Machine Learning compute clusters or compute
instances. Apply a similar configuration if you use a different
compute.

Refrain from provisioning public
IP addresses to enhance security
by limiting the potential for
unauthorized access to your
compute instance or clusters.

Get the latest operating system image: Recreate compute
instances to get the latest operating system image.

Using the latest images ensures
you're maintaining a consistent,
stable, and secure environment,
including ensuring you have the
latest security patches.

Strict Machine Learning workspace access controls: Use
Microsoft Entra ID groups to manage workspace access and
adhere to the principle of least privilege for RBAC.

Strict workspace access controls
enhance security by ensuring that
individuals have only the
necessary permissions for their
role. A data scientist, for instance,
might have access to run
experiments but not to modify
security settings, minimizing
potential security risks.

Restrict model catalog deployments: Restrict model
deployments to specific registries.

Restricting the deployments from
the model catalog to specific
registries ensures you only
deploy models to approved
registries. This approach helps
regulate access to the open-
source foundational models.

Encrypt data at rest: Consider using customer-managed keys
with Machine Learning.

Encrypting data at rest enhances
data security by ensuring that
sensitive data is encrypted by
using keys directly managed by

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-integrate-azure-policy#disable-local-authentication
https://learn.microsoft.com/en-us/azure/templates/microsoft.machinelearningservices/workspaces/computes#amlcomputeproperties
https://learn.microsoft.com/en-us/azure/ai-studio/how-to/create-manage-compute
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-assign-roles
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-regulate-registry-deployments
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-setup-customer-managed-keys

Recommendation Benefit

you. If you have a regulatory
requirement to manage your own
encryption keys, use this feature
to comply with that requirement.

Minimize the risk of data exfiltration: Implement data
exfiltration prevention. For example, create a service endpoint
policy to filter egress virtual network traffic and permit data
exfiltration only to specific Azure Storage accounts.

Minimize the risk of data
exfiltration by limiting inbound
and outbound requirements.

The following are some examples of the Advisor security best practice
recommendations for Machine Learning:

Workspaces should be encrypted with a customer-managed key (CMK).
Workspaces should use Azure Private Link.
Workspaces should disable public network access.
Compute should be in a virtual network.
Compute instances should be recreated to get the latest software updates.

The following are examples of built-in Azure Policy definitions for Machine Learning
security:

Configure allowed registries for specified Machine Learning computes .
Configure allowed Python packages for specified Machine Learning computes .
Machine Learning Workspaces should disable public network access .
Machine Learning compute instances should be recreated to get the latest
software updates .
Machine Learning computes should be in a virtual network .
Machine Learning computes should have local authentication methods disabled .
Machine Learning workspaces should be encrypted with a CMK .
Machine Learning workspaces should use Private Link .
Machine Learning workspaces should use a user-assigned managed identity .
Require an approval endpoint called prior to jobs running for specified Machine
Learning computes .
Require code signing for training code for computes .
Restrict model deployment to specific registries .

Advisor

Azure Policy

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-prevent-data-loss-exfiltration
https://azure.microsoft.com/products/advisor
https://learn.microsoft.com/en-us/azure/machine-learning/policy-reference
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F5853517a-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F77eeea86-7e81-4a7d-9067-de844d096752
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F438c38d2-3772-465a-a9cc-7a6666a275ce
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ff110a506-2dcb-422e-bcea-d533fc8c35e2
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F7804b5c7-01dc-4723-969b-ae300cc07ff1
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fe96a9a5f-07ca-471b-9bc5-6a0f33cbd68f
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fba769a63-b8cc-4b2d-abf6-ac33c7204be8
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F45e05259-1eb5-4f70-9574-baf73e9d219b
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F5f0c7d88-c7de-45b8-ac49-db49e72eaa78
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F3948394e-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F6a6f7384-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F19539b54-c61e-4196-9a38-67598701be90

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

Read the Cost Optimization design principles to understand the approaches to achieve
those goals and the necessary tradeoffs in technical design choices related to training
and deploying models in their environments.

Start your design strategy based on the design review checklist for Cost Optimization for
investments and fine tune the design so that the workload is aligned with the budget
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Cost Optimization

Design checklist

Usage optimization: Choose the appropriate resources to ensure that they align
with your workload requirements. For example, choose between CPUs or GPUs,
various SKUs, or low versus regular-priority VMs.

＂

Usage optimization: Ensure compute resources that aren't being used are scaled
down or shut down when idle to reduce waste.

＂

Usage optimization: Apply policies and configure quotas to comply with the
design's upper and lower limits.

＂

Usage optimization: Test parallelizing training workloads to determine if training
requirements can be met on lower cost SKUs.

＂

Rate optimization: Purchase Azure Reserved Virtual Machine Instances if you have a
good estimate of usage over the next one to three years.

＂

Monitor and optimize: Monitor your resource usage such as CPU and GPU usage
when training models. If the resources aren't being fully used, modify your code to
better use resources or scale down to smaller or cheaper VM sizes.

＂

Recommendations

ﾉ Expand table

Recommendation Benefit

Optimize compute resources: Optimize your compute
resources based on the requirements of your workload.
Choose the SKU that best suits your workload:

General Purpose – Balanced CPU to memory ratio,
good for all purposes.
Compute Optimized – High CPU to memory ratio,
good for math-heavy computations.
Memory Optimized – High memory to CPU, good
for in-memory computations or database
applications.
M Series – Very large machines that have huge
amounts of memory and CPU.
GPU – Better for models with a high number of
variables that can benefit from higher parallelism
and specialized core instructions. Typical
applications are deep learning, image or video
processing, scientific simulations, data mining, and
taking advantage of GPU development frameworks.
Test with multiple families and document the
results as your baseline. As your model and data
evolve, the most adequate compute resource might
change. Monitor execution times and reevaluate as
needed.

Selecting the right compute is critical
as it directly impacts the cost of
running your workload. Choosing a
GPU or a high-performance SKU
without proper usage can lead to
wasteful spending, while choosing
undersized compute can lead to
prohibitively long training times and
performance problems.

Optimize compute scaling: Configure your compute
clusters for autoscaling to ensure you only use what you
need.

For training clusters, set the minimum number of nodes
to 0 and configure the amount of time the node is idle to
an appropriate time. For less iterative experimentation,
reduce the time to save costs. For more iterative
experimentation, use a higher time to prevent paying for
scaling up or down after each change.

Configure autoscaling for compute
clusters to scale down when their
usage is low.

Set the minimum number of nodes
to 0 for training clusters to scale
down to 0 when not in use.

Set training termination policies: Set early termination
policies to limit the duration of training runs or terminate
them early.

Setting termination policies can help
you save costs by stopping
nonperforming runs early.

Use low-priority virtual machines for batch workloads:
Consider using low-priority virtual machines for batch
workloads that aren't time-sensitive and in which
interruptions are recoverable.

Low-priority virtual machines enable
a large amount of compute power to
be used for a low cost. They take
advantage of surplus capacity in
Azure.

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-optimize-cost#configure-training-clusters-for-autoscaling
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#early-termination
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-low-priority-batch

Recommendation Benefit

Enable idle shutdown for compute instances: Enable idle
shutdown for compute instances or schedule a start and
stop time if usage time is known.

By default, compute instances are
available to you, accruing cost.
Configuring compute instances to
shut down when idle or configuring a
schedule for them saves cost when
they aren't in use.

Parallelize training workloads: Consider parallelizing
training workloads. Test running them with the help of the
parallel components in Machine Learning.

Parallel workloads can be run on
multiple smaller instances, potentially
yielding cost savings.

Azure Reserved VM Instances: Purchase Azure Reserved
VM Instances if you have a good estimate of usage over
the next one to three years. Take advantage of reserved
capacity options for services when you have good
estimates of usage.

Purchase Azure Reserved VM
Instances to prepay for virtual
machine usage and provide
discounts with pay-as-you-go
pricing. The discount is automatically
applied for virtual machine usage
that matches the reservation.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals towards the operational requirements of the workload.

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to
Machine Learning.

Operational Excellence

Design checklist

Development standards: Take advantage of Machine Learning model catalogs and
registries to store, version, and share machine learning assets.

＂

Automate for efficiency: Follow good machine learning operations (MLOps)
practices. When possible, build end-to-end automated pipelines for data
preparation, training, and scoring processes. In development, use scripts instead of
notebooks for training models, as scripts are easier to integrate into automated
pipelines.

＂

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-create-compute-instance#configure-idle-shutdown
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-create-compute-instance#schedule-automatic-start-and-stop
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-use-parallel-job-in-pipeline
https://azure.microsoft.com/products/machine-learning/mlops/

Recommendation Benefit

Minimize Machine Learning
workspace instances: Minimize the
number of workspaces, when
possible, to reduce maintenance.

Limiting the number of workspaces reduces the
maintenance effort and cost of operation. For
requirements, such as security, you might need multiple
separate workspaces. Minimize the number of
workspaces when possible.

Take advantage of model catalogs
and registries: Take advantage of
Machine Learning model catalogs and
registries to store, version, and share
machine learning assets.

Use Machine Learning model catalogs
to help you implement A/B testing
and deployment of models.

Use Machine Learning model registries to store and
version your machine learning models to track changes
and maintain lineage with the job and datasets used for
training.

With Machine Learning model catalogs, your data
science teams can discover, evaluate, and fine tune
pretrained foundational machine learning models.

Storing versioned models in Machine Learning model
registries supports deployment strategies such as A/B
releases, canary releases, and rollbacks.

Monitor model performance:
Monitor the performance of your
deployed models, and detect data
drift on datasets.

Monitoring deployed models ensures your models meet
the performance requirements.

Monitoring data drift helps you detect changes in the
input data that can lead to a decline in your model’s
performance. Managing data drift helps you ensure that
your model provides accurate results over time.

Deploy with confidence: Implement infrastructure as code (IaC) for Machine
Learning workspaces, compute clusters, compute instances, and other deployment
environments.

＂

Observability: Monitor the performance of your deployed models including data
drift.

＂

Observability: If your models are deployed to online endpoints, enable Application
Insights to monitor online endpoints and deployments. Monitor training
infrastructure to ensure you're meeting your baseline requirements.

＂

Simplicity: Use curated environments optimized for Machine Learning, when
available.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-model-performance
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-datasets
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints#using-application-insights
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints

Recommendation Benefit

Monitor infrastructure: If your
models are deployed to online
endpoints, enable Application
Insights to monitor online endpoints
and deployments.

Monitor training infrastructure to
ensure you're meeting your baseline
requirements.

Ensure you're collecting resource logs
for Machine Learning.

Monitoring endpoints gives you visibility into metrics
such as request latency and requests per minute. You can
compare your performance versus your baseline and use
this information to make changes to compute resources
accordingly. Monitoring metrics such as network bytes
can alert you if you're approaching quota limits and
prevent throttling.

Likewise, monitoring your training environment provides
you with the information to make changes to your
training environment. Use that information to decide to
scale in or out, scale up or down with different
performant SKUs, or choose between CPUs or GPUs.

Curate model training environments:
Use curated environments optimized
for Machine Learning, when available.

Curated environments are pre-created environments
provided by Machine Learning that speed up
deployment time and reduce deployment and training
latency. Using curated environments improves training
and deployment success rates and avoids unnecessary
image builds.

Curated environments, such as Azure Container for
PyTorch, can also be optimized for training large models
on Machine Learning.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency for defining a baseline based on key performance indicators for Machine
Learning workloads.

Performance Efficiency

Design checklist

Performance targets: Determine the acceptable training time and retrain frequency
for your model. Setting a clear target for training time, along with testing, helps you

＂

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints#using-application-insights
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints
https://learn.microsoft.com/en-us/azure/machine-learning/monitor-azure-machine-learning#collection-and-routing
https://learn.microsoft.com/en-us/azure/machine-learning/resource-curated-environments
https://learn.microsoft.com/en-us/azure/machine-learning/resource-azure-container-for-pytorch

Recommendation Benefit

Select appropriate compute services for
model training: Consider Machine Learning
compute clusters over compute instances for
model training if you require autoscaling.

Optimize your compute resources based on
the training requirements. First choose
between CPUs and GPUs. Default to CPUs, but
consider GPUs for workloads such as deep
learning, image or video processing, or large
amounts of data. Next, choose the image SKU
that best suits your workload.

Use testing to choose the compute option that

Selecting the right compute is critical as it
directly impacts the training time. Choosing the
right SKU and CPU versus GPU ensures your
model training can meet your requirements and
performance targets. Choosing a low-
performance SKU that's overused can lead to
prohibitively long training times and
performance problems.

Compute clusters provide the ability to improve
performance by scaling out workloads that
support horizontal scaling. This method
provides flexibility for handling workloads with

determine the compute resources, CPU versus GPU, and CPU SKUs required to
meet the training time goal.

Performance targets: Define the acceptable performance targets for your deployed
models including response time, requests per second, error rate, and uptime.
Performance targets act as a benchmark for your deployed model's efficiency.
Targets can help you make CPU versus GPU determinations, CPU SKU choices, and
scaling requirements.

＂

Meet capacity requirements: Choose the right compute resources for model
training.

＂

Meet capacity requirements: Choose the right compute resources for model
deployments.

＂

Meet capacity requirements: Choose deployment environments with autoscaling
capabilities to add and remove capacity as demand fluctuates.

＂

Achieve and sustain performance: Continuously monitor the performance of your
deployed models, review results, and take appropriate actions.

＂

Achieve and sustain performance: Continuously monitor the performance of your
infrastructure of deployed models, review results, and take appropriate actions.
Monitor training infrastructure to ensure you're meeting your requirements for
training time.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-model-performance

Recommendation Benefit

optimizes cost against training time when
determining your baseline.

different demands and lets you add or remove
machines as needed.

Model deployment environment scaling: Use
the deployment environment’s autoscale
capabilities. For AKS deployment
environments, use the cluster autoscaler to
scale to meet demand. For online endpoints,
automatically scale via integration with the
Azure Monitor autoscale feature.

Autoscaling adjusts the number of instances of
the deployed model to match demand.

Monitor model performance: Monitor the
performance of your deployed models.

Tracking the performance of models in
production alerts you to potential problems
such as data drift, prediction drift, data quality,
and feature attribution drift.

Monitoring data drift helps you detect changes
in the input data that can lead to a decline in
your model’s performance. Managing data drift
helps you ensure that your model provides
accurate results over time.

Monitor infrastructure: Monitor online
endpoints and integrate with Monitor to track
and monitor the appropriate metrics and logs.
Enable Application Insights when creating
online deployments.

Monitor training infrastructure and review
resource usage such as memory and CPU or
GPU usage when training models to ensure
you're meeting your baseline requirements.

Monitoring endpoints gives you visibility into
metrics such as request latency and requests
per minute. You can compare your performance
versus your baseline and use this information to
make changes to compute resources
accordingly. Monitoring metrics such as
network bytes can alert you if you're
approaching quota limits and prevent throttling.

Likewise, monitoring your training environment
provides you with the information to make
changes to your training environment. Use that
information to decide to scale in or out, scale
up or down with different performant SKUs, or
choose between CPUs or GPUs.

Azure provides an extensive set of built-in policies related to Machine Learning and its
dependencies. Some of the preceding recommendations can be audited through Azure
policies. Consider the following policies that are related to security:

Allowed registries for specified Machine Learning computes .
Configure allowed Python packages for specified Machine Learning computes .

Azure policies

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-autoscale-endpoints
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-model-performance
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-monitor-online-endpoints#using-application-insights
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F5853517a-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F77eeea86-7e81-4a7d-9067-de844d096752

Machine Learning computes should be in a virtual network .
Machine Learning computes should have local authentication methods disabled .
Machine Learning workspaces should disable public network access .
Machine Learning compute instances should be recreated to get the latest
software updates .
Machine Learning workspaces should be encrypted with a customer-managed
key .
Machine Learning workspaces should use private link .
Machine Learning workspaces should use user-assigned managed identity .
Require an approval endpoint called prior to jobs running for specified Machine
Learning computes .
Require code signing for training code for computes .
Restrict model deployment to specific registries .

Consider the following policy that's related to cost optimization:

Machine Learning Compute instance should have idle shutdown .

Consider the following policies that are related to operational excellence:

Require log filter expressions and datastore to be used for full logs for specified
Machine Learning computes .
Resource logs in Machine Learning workspaces should be enabled .

For comprehensive governance, review the Azure Policy built-in definitions for Machine
Learning.

Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Advisor recommendations can help you improve the
reliability, security, cost effectiveness, performance, and operational excellence of
Machine Learning.

Consider the following Advisor recommendations for security:

Workspaces should be encrypted with a customer-managed key (CMK).
Workspaces should use private link.
Workspaces should disable public network access.
Compute should be in a virtual network.
Compute instances should be recreated to get the latest software updates.

Consider the following Advisor recommendation for operational excellence:

Advisor recommendations

https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F7804b5c7-01dc-4723-969b-ae300cc07ff1
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fe96a9a5f-07ca-471b-9bc5-6a0f33cbd68f
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F438c38d2-3772-465a-a9cc-7a6666a275ce
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ff110a506-2dcb-422e-bcea-d533fc8c35e2
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fba769a63-b8cc-4b2d-abf6-ac33c7204be8
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F45e05259-1eb5-4f70-9574-baf73e9d219b
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F5f0c7d88-c7de-45b8-ac49-db49e72eaa78
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F3948394e-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F6a6f7384-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F19539b54-c61e-4196-9a38-67598701be90
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F679ddf89-ab8f-48a5-9029-e76054077449
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F1d413020-63de-11ea-bc55-0242ac130003
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fafe0c3be-ba3b-4544-ba52-0c99672a8ad6
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#machine-learning
https://azure.microsoft.com/products/advisor
https://azure.microsoft.com/products/advisor

Feedback

Was this page helpful?

Resource logs in Machine Learning workspaces should be enabled.

Consider these articles as resources that demonstrate the recommendations highlighted
in this article.

Use the baseline OpenAI end-to-end chat reference architecture as an example of
how these recommendations can be applied to a workload.
Use Machine Learning product documentation to build implementation expertise.

Next steps

 Yes No

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-openai-e2e-chat
https://learn.microsoft.com/en-us/azure/machine-learning

Azure Well-Architected Framework
perspective on Azure OpenAI Service
Article • 03/14/2024

Azure OpenAI Service provides REST API access to OpenAI large language models
(LLMs), adding Azure networking and security capabilities. This article provides
architectural recommendations to help you make informed decisions when you use
Azure OpenAI as part of your workload's architecture. The guidance is based on the
Azure Well-Architected Framework pillars.

This review focuses solely on Azure OpenAI.

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover quickly from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies localized to the technology scope.

Also included are recommendations on the technology capabilities that can help
materialize those strategies. The recommendations don't represent an exhaustive
list of all configurations available for Azure OpenAI and its dependencies. Instead,
they list the key recommendations mapped to the design perspectives. Use the
recommendations to build your proof-of-concept or optimize your existing
environments.

Foundational architecture that demonstrates the key recommendations: Baseline
OpenAI end-to-end chat reference architecture.

Technology scope

Reliability

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-openai-e2e-chat

Start your design strategy based on the design review checklist for Reliability. Determine
its relevance to your business requirements. Extend the strategy to include more
approaches as needed.

Design checklist

Resiliency: Choose the appropriate deployment option of either pay-as-you-go or
provisioned throughput based on your use case. Because reserved capacity
increases resiliency, choose provisioned throughput for production solutions. The
pay-as-you-go approach is ideal for dev/test environments.

＂

Redundancy: Add the appropriate gateways in front of your Azure OpenAI
deployments. The gateway must have the capability to withstand transient failures
like throttling and also route to multiple Azure OpenAI instances. Consider routing
to instances in different regions to build regional redundancy.

＂

Resiliency: If you're using provisioned throughput, consider also deploying a pay-
as-you-go instance to handle overflow. You can route calls to the pay-as-you-go
instance via your gateway when your provisioned throughput model is throttled.
You can also use monitoring to predict when the model will be throttled and
preemptively route calls to the pay-as-you-go instance.

＂

Resiliency: Monitor capacity usage to ensure you aren't exceeding throughput
limits. Regularly review capacity usage to achieve more accurate forecasting and
help prevent service interruptions due to capacity constraints.

＂

Resiliency: Follow the guidance for large data files and import the data from an
Azure blob store. Large files, 100 MB or larger, can become unstable when
uploaded through multipart forms because the requests are atomic and can't be
retried or resumed.

＂

Recovery: Define a recovery strategy that includes a recovery plan for models that
are fine-tuned and for training data uploaded to Azure OpenAI. Because Azure
OpenAI doesn't have automatic failover, you must design a strategy that
encompasses the entire service and all dependencies, such as storage that contains
training data.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning

Recommendation Benefit

Monitor rate limits for pay-as-you-go: If you're
using the pay-as-you-go approach, manage rate
limits for your model deployments and monitor
usage of tokens per minute (TPM) and requests
per minute (RPM).

This important throughput information
provides information required to ensure that
you assign enough TPM from your quota to
meet the demand for your deployments.

Assigning enough quota prevents throttling of
calls to your deployed models.

Monitor provision-managed utilization for
provisioned throughput: If you're using the
provisioned throughput payment model,
monitor provision-managed utilization.

It's important to monitor provision-managed
utilization to ensure it doesn't exceed 100%, to
prevent throttling of calls to your deployed
models.

Enable the dynamic quota feature: If your
workload budget supports it, perform
overprovisioning by enabling dynamic quota on
model deployments.

Dynamic quota allows your deployment to
consume more capacity than your quota
normally does, as long as there's available
capacity from an Azure perspective. Extra
quota capacity can potentially prevent
undesired throttling.

Tune content filters: Tune content filters to
minimize false positives from overly aggressive
filters.

Content filters block prompts or completions
based on an opaque risk analysis. Ensure
content filters are tuned to allow expected
usage for your workload.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design around Azure OpenAI.

Start your design strategy based on the design review checklist for Security and identify
vulnerabilities and controls to improve the security posture. Then, review the Azure
security baseline for Azure OpenAI. Finally, extend the strategy to include more
approaches as needed.

Security

Design checklist

Protect confidentiality: If you upload training data to Azure OpenAI, use customer-
managed keys for data encryption, implement a key-rotation strategy, and delete
training, validation, and training results data. If you use an external data store for

＂

https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/quota
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/quota?tabs=rest#view-and-request-quota
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/monitoring
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-openai-security-baseline
https://learn.microsoft.com/en-us/azure/ai-services/openai/encrypt-data-at-rest#customer-managed-keys-with-azure-key-vault
https://learn.microsoft.com/en-us/azure/ai-services/openai/encrypt-data-at-rest#delete-training-validation-and-training-results-data

Recommendation Benefit

Secure keys: If your architecture requires Azure OpenAI
key-based authentication, store those keys in Azure
Key Vault, not in application code.

Separating secrets from code by storing
them in Key Vault reduces the chance of
leaking secrets. Separation also
facilitates central management of
secrets, easing responsibilities like key
rotation.

Restrict access: Disable public access to Azure OpenAI
unless your workload requires it. Create private
endpoints if you're connecting from consumers in an
Azure virtual network.

Controlling access to Azure OpenAI
helps prevent attacks from
unauthorized users. Using private
endpoints ensures network traffic
remains private between the
application and the platform.

Microsoft Entra ID: Use Microsoft Entra ID for
authentication and to authorize access to Azure
OpenAI by using role-based access control (RBAC).
Disable local authentication in Azure AI Services and
set disableLocalAuth to true . Grant identities that
perform completions or image generation the

Using Microsoft Entra ID centralizes the
identity-management component and
eliminates the use of API keys. Using
RBAC with Microsoft Entra ID ensures
that users or groups have exactly the
permissions they need to do their job.

training data, follow security best practices for that store. For example, for Azure
Blob Storage, use customer-managed keys for encryption and implement a key-
rotation strategy. Use managed identity-based access, implement a network
perimeter by using private endpoints, and enable access logs.

Protect confidentiality: Guard against data exfiltration by limiting the outbound
URLs that Azure OpenAI resources can access.

＂

Protect integrity: Implement access controls to authenticate and authorize user
access to the system by using the least-privilege principle and by using individual
identities instead of keys.

＂

Protect integrity: Implement jailbreak risk detection to safeguard your language
model deployments against prompt injection attacks.

＂

Protect availability: Use security controls to prevent attacks that might exhaust
model usage quotas. You might configure controls to isolate the service on a
network. If the service must be accessible from the internet, consider using a
gateway to block suspected abuse by using routing or throttling.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/use-your-data-securely#disable-public-network-access
https://learn.microsoft.com/en-us/azure/ai-services/cognitive-services-virtual-networks#use-private-endpoints
https://learn.microsoft.com/en-us/azure/ai-services/disable-local-auth
https://learn.microsoft.com/en-us/azure/ai-services/content-safety/concepts/jailbreak-detection

Recommendation Benefit

Cognitive Services OpenAI User role. Grant model
automation pipelines and ad-hoc data-science access a
role like Cognitive Services OpenAI Contributor.

This kind of fine-grained access control
isn't possible with Azure OpenAI API
keys.

Use customer-managed keys: Use customer-managed
keys for fine-tuned models and training data that's
uploaded to Azure OpenAI.

Using customer-managed keys gives
you greater flexibility to create, rotate,
disable, and revoke access controls.

Protect against jailbreak attacks: Use Azure AI Content
Safety Studio to detect jailbreak risks.

Detect jailbreak attempts to identify
and block prompts that try to bypass
the safety mechanisms of your Azure
OpenAI deployments.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

Read the Cost Optimization design principles to learn about approaches for achieving
those goals and the tradeoffs necessary in technical design choices related to Azure
OpenAI.

Start your design strategy based on the design review checklist for Cost Optimization for
investments. Fine-tune the design so that the workload is aligned with its allocated
budget. Your design should use the appropriate Azure capabilities, monitor investments,
and find opportunities to optimize over time.

Cost Optimization

Design checklist

Cost management: Develop your cost model, considering prompt sizes.
Understanding prompt input and response sizes and how text translates into tokens
helps you create a viable cost model.

＂

Usage optimization: Start with pay-as-you-go pricing for Azure OpenAI until
your token usage is predictable.

＂

Rate optimization: When your token usage is sufficiently high and predictable over
a period of time, use the provisioned throughput pricing model for better cost
optimization.

＂

Usage optimization: Consider model pricing and capabilities when you choose
models. Start with less-costly models for less-complex tasks like text generation or

＂

https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-contributor
https://learn.microsoft.com/en-us/azure/ai-services/openai/encrypt-data-at-rest
https://contentsafety.cognitive.azure.com/
https://azure.microsoft.com/pricing/details/cognitive-services/openai-service/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput
https://azure.microsoft.com/pricing/details/cognitive-services/openai-service/

Recommendation Benefit

Design client code to set limits: Your custom clients
should use the limit features of the Azure OpenAI
completions API, such as maximum limit on the

Using API features to restrict usage aligns
service consumption with client needs.
This saves money by ensuring the model

completion tasks. For more complex tasks like language translation or content
understanding, consider using more advanced models. Consider different model
capabilities and maximum token usage limits when you choose a model that's
appropriate for use cases like text embedding, image generation, or transcription
scenarios. By carefully selecting the model that best fits your needs, you can
optimize costs while still achieving the desired application performance.

Usage optimization: Use the token-limiting constraints offered by the API calls,
such as max_tokens and n , which indicate the number of completions to generate.

＂

Usage optimization: Maximize Azure OpenAI price breakpoints, for example, fine-
tuning and model breakpoints like image generation. Because fine-tuning is
charged per hour, use as much time as you have available per hour to improve fine-
tuning results while avoiding slipping into the next billing period. Similarly, the cost
for generating 100 images is the same as the cost for 1 image. Maximize price
breakpoints to your advantage.

＂

Usage optimization: Remove unused fine-tuned models when they're no longer
being consumed to avoid incurring an ongoing hosting fee.

＂

Adjust usage: Optimize prompt input and response length. Longer prompts raise
costs by consuming more tokens. However, prompts that are missing sufficient
context don't help the models yield good results. Create concise prompts that
provide enough context for the model to generate a useful response. Also ensure
that you optimize the limit of the response length.

＂

Cost efficiency: Batch requests where possible to minimize the per-call overhead,
which can reduce overall costs. Ensure that you optimize batch size.

＂

Cost efficiency: Because models have different fine-tuning costs, consider these
costs if your solution requires fine-tuning.

＂

Monitor and optimize: Set up a cost-tracking system that monitors model usage.
Use that information to help inform model choices and prompt sizes.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models

Recommendation Benefit

number of tokens per model (max_tokens) or
number of completions to generation (n). Setting
limits ensures that the server doesn't produce more
than the client needs.

doesn't generate an overly long response
that consumes more tokens than
necessary.

Monitor pay-as-you-go usage: If you use the pay-
as-you-go approach, monitor usage of TPM and
RPM. Use that information to inform architectural
design decisions such as what models to use, and to
optimize prompt sizes.

Continuously monitoring TPM and RPM
gives you relevant metrics to optimize the
cost of Azure OpenAI models. You can
couple this monitoring with model
features and model pricing to optimize
model usage. You can also use this
monitoring to optimize prompt sizes.

Monitor provisioned throughput usage: If you use
provisioned throughput, monitor provision-
managed utilization to ensure you're not
underutilizing the provisioned throughput you
purchased.

Continuously monitoring provision-
managed utilization gives you the
information you need to understand if
you're underutilizing your provisioned
throughput.

Cost management: Use cost management features
with OpenAI to monitor costs, set budgets to
manage costs, and create alerts to notify
stakeholders of risks or anomalies.

Cost monitoring, setting budgets, and
setting alerts provides governance with
the appropriate accountability processes.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals toward the workload's operational requirements.

Start your design strategy based on the design review checklist for Operational
Excellence. This checklist defines processes for observability, testing, and deployment
related to Azure OpenAI.

Operational Excellence

Design checklist

Azure DevOps culture: Ensure deployment of Azure OpenAI instances across your
various environments, such as development, test, and production. Ensure that you
have environments to support continuous learning and experimentation
throughout the development cycle.

＂

Observability: Monitor, aggregate, and visualize appropriate metrics.＂

https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/quota?tabs=rest#view-and-request-quota
https://azure.microsoft.com/pricing/details/cognitive-services/openai-service/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/monitoring
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/manage-costs

Recommendation Benefit

Enable and configure Azure Diagnostics:
Enable and configure Diagnostics for the
Azure OpenAI Service.

Diagnostics collects and analyzes metrics and
logs, helping you monitor the availability,
performance, and operation of Azure OpenAI.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency for defining a baseline based on key performance indicators for Azure OpenAI
workloads.

Observability: If Azure OpenAI diagnostics are insufficient for your needs, consider
using a gateway like Azure API Management in front of Azure OpenAI to log both
incoming prompts and outgoing responses where permitted. This information can
help you understand the effectiveness of the model for incoming prompts.

＂

Deploy with confidence: Use infrastructure as code (IaC) to deploy Azure OpenAI,
model deployments, and other infrastructure required for fine-tuning models.

＂

Deploy with confidence: Follow large language model operations (LLMOps)
practices to operationalize the management of your Azure OpenAI LLMs, including
deployment, fine-tuning, and prompt engineering.

＂

Automate for efficiency: If you use key-based authentication, implement an
automated key-rotation strategy.

＂

Recommendations

ﾉ Expand table

Performance Efficiency

Design checklist

Capacity: Estimate consumers' elasticity demands. Identify high-priority traffic that
requires synchronous responses and low-priority traffic that can be asynchronous

＂

https://azure.microsoft.com/blog/the-new-ai-imperative-unlock-repeatable-value-for-your-organization-with-llmops/

and batched.

Capacity: Benchmark token consumption requirements based on estimated
demands from consumers. Consider using the Azure OpenAI benchmarking tool
to help you validate the throughput if you're using provisioned throughput unit
(PTU) deployments.

＂

Capacity: Use provisioned throughput for production workloads. Provisioned
throughput offers dedicated memory and compute, reserved capacity, and
consistent maximum latency for the specified model version. The pay-as-you-go
offering can suffer from noisy neighbor problems like increased latency and
throttling in regions under heavy use. Also, the pay-as-you-go approach doesn't
offer guaranteed capacity.

＂

Capacity: Add the appropriate gateways in front of your Azure OpenAI
deployments. Ensure that the gateway can route to multiple instances in the same
or different regions.

＂

Capacity: Allocate PTUs to cover your predicted usage, and complement these PTUs
with a TPM deployment to handle elasticity above that limit. This approach
combines base throughput with elastic throughput for efficiency. Like other
considerations, this approach requires a custom gateway implementation to route
requests to the TPM deployment when the PTU limits are reached.

＂

Capacity: Send high-priority requests synchronously. Queue low-priority requests
and send them through in batches when demand is low.

＂

Capacity: Select a model that aligns with your performance requirements,
considering the tradeoff between speed and output complexity. Model
performance can vary significantly based on the chosen model type. Models
designed for speed offer faster response times, which can be beneficial for
applications that require quick interactions. Conversely, more sophisticated models
might deliver higher-quality outputs at the expense of increased response time.

＂

Achieve performance: For applications like chatbots or conversational interfaces,
consider implementing streaming. Streaming can enhance the perceived
performance of Azure OpenAI applications by delivering responses to users in an
incremental manner, improving the user experience.

＂

Achieve performance: Determine when to use fine-tuning before you commit to
fine-tuning. Although there are good use cases for fine-tuning, such as when the
information needed to steer the model is too long or complex to fit into the

＂

https://github.com/Azure/azure-openai-benchmark/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/fine-tuning-considerations

Feedback

Was this page helpful?

There are no recommended configurations for Performance Efficiency for Azure OpenAI.

Azure provides an extensive set of built-in policies related to Azure OpenAI and its
dependencies. Some of the preceding recommendations can be audited through Azure
Policy. Consider the following policy definitions:

Disable key access
Restrict network access
Disable public network access
Use Azure Private Link
Enable data encryption with customer-managed keys

These Azure Policy definitions are also Azure Advisor security best-practice
recommendations for Azure OpenAI.

Consider the following articles as resources that demonstrate the recommendations
highlighted in this article.

Use this reference architecture as an example of how you can apply this article's
guidance to a workload: Baseline OpenAI end-to-end chat reference architecture.
Build implementation expertise by using Azure Machine Learning product
documentation.

prompt, make sure that prompt engineering and retrieval-augmented generation
(RAG) approaches don't work or are demonstrably more expensive.

Achieve performance: Consider using dedicated model deployments per consumer
group to provide per-model usage isolation that can help prevent noisy neighbors
between your consumer groups.

＂

Recommendations

Azure Policy

Next steps

 Yes No

https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F71ef260a-8f18-47b7-abcb-62d0673d94dc
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F037eea7a-bd0a-46c5-9a66-03aea78705d3
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F0725b4dd-7e76-479c-a735-68e7ee23d5ca
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Fcddd188c-4b82-4c48-a19d-ddf74ee66a01
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F67121cc7-ff39-4ab8-b7e3-95b84dab487d
https://azure.microsoft.com/products/advisor
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/architecture/baseline-openai-e2e-chat
https://learn.microsoft.com/en-us/azure/ai-services/openai/

Azure Well-Architected Framework
review - Azure Service Fabric
Article • 11/14/2023

Azure Service Fabric is a distributed systems platform that makes it easy to package,
deploy, and manage scalable and reliable microservices and containers. These resources
are deployed onto a network-connected set of virtual or physical machines, which is
called a cluster.

There are two clusters models in Azure Service Fabric: standard clusters and managed
clusters.

Standard clusters require you to define a cluster resource alongside a number of
supporting resources. These resources must be set up correctly upon deployment and
maintained correctly throughout the lifecycle of the cluster. Otherwise, the cluster and
your services will not function properly.

Managed clusters simplify your deployment and management operations. The
managed cluster model consists of a single Service Fabric managed cluster resource that
encapsulates and abstracts away the underlying resources.

This article primarily discusses the managed cluster model for simplicity. However, call-
outs are made for any special considerations that apply to the standard cluster model.

In this article, you learn architectural best practices for Azure Service Fabric. The
guidance is based on the five pillars of architectural excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

Understanding the Well-Architected Framework pillars can help produce a high
quality, stable, and efficient cloud architecture. Check out the Azure Well-
Architected Framework overview page to review the five pillars of architectural
excellence.

Prerequisites

https://learn.microsoft.com/en-us/azure/service-fabric/

Reviewing the core concepts of Azure Service Fabric and microservice architecture
can help you understand the context of the best practices provided in this article.

The following sections cover design considerations and configuration recommendations,
specific to Azure Service Fabric and reliability.

When discussing reliability with Azure Service Fabric, it's important to distinguish
between cluster reliability and workload reliability. Cluster reliability is a shared
responsibility between the Service Fabric cluster admin and their resource provider,
while workload reliability is the domain of a developer. Azure Service Fabric has
considerations and recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

For more information about Azure Service Fabric cluster reliability, check out the
capacity planning documentation.

For more information about Azure Service Fabric workload reliability, reference the
Reliability subsystem included in the Service Fabric architecture.

As you make design choices for Azure Service Fabric, review the design principles for
adding reliability to the architecture.

Reliability

Design checklist

Cluster architecture: Use Standard SKU for production scenarios. Standard cluster:
Use durability level Silver (5 VMs) or greater for production scenarios.

＂

Cluster architecture: For critical workloads, consider using Availability Zones for
your Service Fabric clusters.

＂

Cluster architecture: For production scenarios, use the Standard tier load balancer.
Managed clusters create an Azure public Standard Load Balancer and fully qualified
domain name with a static public IP for both the primary and secondary node types.
You can also bring your own load balancer, which supports both Basic and Standard
SKU load balancers.

＂

Cluster architecture: Create additional, secondary node types for your workloads.＂

Recommendations

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-content-roadmap
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/microservices/service-fabric
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-capacity-scaling#reliability-levels
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-architecture#reliability-subsystem
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/service-fabric/overview-managed-cluster#service-fabric-managed-cluster-skus
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-capacity#durability-characteristics-of-the-cluster
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-availability-zones
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-networking#bring-your-own-azure-load-balancer

Explore the following table of recommendations to optimize your Azure Service Fabric
configuration for service reliability:

Azure Service Fabric
Recommendation

Benefit

Cluster architecture: Use Standard
SKU for production scenarios.

This level ensures the resource provider maintains cluster
reliability. Standard cluster: A Standard SKU managed
cluster provides the equivalent of durability level Silver. To
achieve this using the standard cluster model, you will
need to use 5 VMs (or more).

Cluster architecture: Consider using
Availability Zones for your Service
Fabric clusters.

Service Fabric managed cluster supports deployments
that span across multiple Availability Zones to provide
zone resiliency. This configuration will ensure high-
availability of the critical system services and your
applications to protect from single-points-of-failure.

Cluster architecture: Consider using
Azure API Management to expose
and offload cross-cutting
functionality for APIs hosted on the
cluster.

API Management can integrate with Service Fabric
directly.

Workload architecture: For stateful
workload scenarios, consider using
Reliable Services.

The Reliable Services model allows your services to stay
up even in unreliable environments where your machines
fail or hit network issues, or in cases where the services
themselves encounter errors and crash or fail. For stateful
services, your state is preserved even in the presence of
network or other failures.

For more suggestions, see Principles of the reliability pillar.

The following sections cover design considerations and configuration recommendations,
specific to Azure Service Fabric and security.

When discussing security with Azure Service Fabric, it's important to distinguish between
cluster security and workload security. Cluster security is a shared responsibility between
the Service Fabric cluster admin and their resource provider, while workload security is
the domain of a developer. Azure Service Fabric has considerations and
recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,

Security

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-api-management-overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

or both.

For more information about Azure Service Fabric cluster security, check out Service
Fabric cluster security scenarios.

For more information about Azure Service Fabric workload security, reference Service
Fabric application and service security.

As you make design choices for Azure Service Fabric, review the design principles for
adding security to the architecture.

Consider the following recommendations to optimize your Azure Service Fabric
configuration for security:

Azure Service Fabric Recommendation Benefit

Cluster architecture: Ensure Network
Security Groups (NSG) are configured to
restrict traffic flow between subnets and
node types.

For example, you may have an API Management
instance (one subnet), a frontend subnet (exposing a
website directly), and a backend subnet (accessible
only to frontend).

Design checklist

Cluster architecture: Ensure Network Security Groups (NSG) are configured to
restrict traffic flow between subnets and node types. Ensure that the correct ports
are opened for application deployment and workloads.

＂

Cluster architecture: When using the Service Fabric Secret Store to distribute
secrets, use a separate data encipherment certificate to encrypt the values.

＂

Cluster architecture: Deploy client certificates by adding them to Azure Key Vault
and referencing the URI in your deployment.

＂

Cluster architecture: Enable Microsoft Entra integration for your cluster to ensure
users can access Service Fabric Explorer using their Microsoft Entra credentials.
Don't distribute the cluster client certificates among users to access Explorer.

＂

Cluster architecture: For client authentication, use admin and read-only client
certificates and/or Microsoft Entra authentication.

＂

Cluster and workload architectures: Create a process for monitoring the expiration
date of client certificates.

＂

Cluster and workload architectures: Maintain separate clusters for development,
staging, and production.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-application-and-service-security
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-networking#cluster-networking
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-application-secrets

Azure Service Fabric Recommendation Benefit

Cluster architecture: Deploy Key Vault
certificates to Service Fabric cluster virtual
machine scale sets.

Centralizing storage of application secrets in Azure
Key Vault allows you to control their distribution. Key
Vault greatly reduces the chances that secrets may
be accidentally leaked.

Cluster architecture: Apply an Access
Control List (ACL) to your client certificate
for your Service Fabric cluster.

Using an ACL provides an additional level of
authentication.

Cluster architecture: Use resource
requests and limits to govern resource
usage across the nodes in your cluster.

Enforcing resource limits helps ensure that one
service doesn't consume too many resources and
starve other services.

Workload architecture: Encrypt Service
Fabric package secret values.

Encryption on your secret values provides an
additional level of security.

Workload architecture: Include client
certificates in Service Fabric applications.

Having your applications use client certificates for
authentication provides opportunities for security at
both the cluster and workload level.

Workload architecture: Authenticate
Service Fabric applications to Azure
Resources using Managed Identity.

Using Managed Identity allow you to securely
manage the credentials in your code for
authenticating to various services without saving
them locally on a developer workstation or in source
control.

Cluster and workload architectures:
Follow Service Fabric best practices when
hosting untrusted applications.

Following the best practices provides a security
standard to follow.

For more suggestions, see Principles of the security pillar.

Azure Advisor helps you ensure and improve the security of Azure Service Fabric. You
can review the recommendations in the Azure Advisor section of this article.

Azure Policy helps maintain organizational standards and assess compliance across your
resources. Keep the following built-in policies in mind as you configure Azure Service
Fabric:

Service Fabric clusters should have the ClusterProtectionLevel property set to
EncryptAndSign . This is the default value for managed clusters and isn't
changeable. Standard cluster: Ensure you set ClusterProtectionLevel to
EncryptAndSign .

Policy definitions

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-resource-governance#resource-governance-mechanism
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-identity-managed-cluster-virtual-machine-scale-sets
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-security#hosting-untrusted-applications-in-a-service-fabric-cluster
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles

Service Fabric clusters should only use Microsoft Entra ID for client authentication.

All built-in policy definitions related to Azure Service Fabric are listed in Built-in policies
- Service Fabric.

The following sections cover design considerations and configuration recommendations,
specific to Azure Service Fabric and cost optimization.

When discussing cost optimization with Azure Service Fabric, it's important to
distinguish between cost of cluster resources and cost of workload resources. Cluster
resources are a shared responsibility between the Service Fabric cluster admin and their
resource provider, while workload resources are the domain of a developer. Azure
Service Fabric has considerations and recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

For cluster cost optimization, go to the Azure pricing calculator and select Azure
Service Fabric from the available products. You can test different configuration and
payment plans in the calculator.

For more information about Azure Service Fabric workload pricing, check out the
example cost calculation process for application planning.

As you make design choices for Azure Service Fabric, review the design principles for
optimizing the cost of your architecture.

Explore the following table of recommendations to optimize your Azure Service Fabric
configuration for cost:

Cost optimization

Design checklist

Cluster architecture: Select appropriate VM SKU.＂

Cluster architecture: Use appropriate node type and size.＂

Cluster and workload architectures: Use appropriate managed disk tier and size.＂

Recommendations

https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#service-fabric
https://azure.microsoft.com/pricing/calculator/
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-capacity-planning#use-a-spreadsheet-for-cost-calculation

Azure Service Fabric Recommendation Benefit

Cluster architecture: Avoid VM SKUs with temp disk
offerings.

Service Fabric uses managed disks by
default, so avoiding temp disk offerings
ensures you don't pay for unneeded
resources.

Cluster architecture: If you need to select a certain VM
SKU for capacity reasons and it happens to offer temp
disk, consider using temporary disk support for your
stateless workloads.

Make the most of the resources you're
paying for. Using a temporary disk
instead of a managed disk can reduce
costs for stateless workloads.

Cluster and workload architectures: Align SKU
selection and managed disk size with workload
requirements.

Matching your selection to your
workload demands ensures you don't
pay for unneeded resources.

For more suggestions, see Principles of the cost optimization pillar.

The following sections cover design considerations and configuration recommendations,
specific to Azure Service Fabric and operational excellence.

When discussing security with Azure Service Fabric, it's important to distinguish between
cluster operation and workload operation. Cluster operation is a shared responsibility
between the Service Fabric cluster admin and their resource provider, while workload
operation is the domain of a developer. Azure Service Fabric has considerations and
recommendations for both of these roles.

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

As you make design choices for Azure Service Fabric, review the design principles for
operational excellence.

Operational excellence

Design checklist

Cluster architecture: Prepare a cluster monitoring solution.＂

Cluster architecture: Review the cluster health policies in the Service Fabric health
model.

＂

Workload architecture: Prepare an application monitoring solution.＂

Workload architecture: Review the application and service type health policies in
the Service Fabric health model.

＂

https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-stateless-node-type#temporary-disk-support
https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring#cluster-monitoring
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction#health-policies
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring#application-monitoring
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction#health-policies

Explore the following table of recommendations to optimize your Azure Service Fabric
configuration for operational excellence:

Azure Service Fabric Recommendation Benefit

Workload architecture: Use Application Insights to
monitor your workloads.

Application Insights integrates with the
Azure platform, including Service Fabric.

Cluster and workload architectures: Create a
process for monitoring the expiration date of client
certificates.

For example, Key Vault offers a feature that
sends an email when x% of the certificate's
lifespan has elapsed.

Cluster and workload architectures: For pre-
production clusters use Azure Chaos Studio to drill
service disruption on a Virtual Machine Scale Set
instance failure.

Practicing service disruption scenarios will
help you understand what is at-risk in your
infrastructure and how to best mitigate the
issues if they arise.

Cluster and workload architectures: Use Azure
Monitor to monitor cluster and container
infrastructure events.

Azure Monitor integrates well with the
Azure platform, including Service Fabric.

Cluster and workload architectures: Use Azure
Pipelines for your continuous integration and
deployment solution.

Azure Pipelines integrates well with the
Azure platform, including Service Fabric.

For more suggestions, see Principles of the operational excellence pillar.

The following section covers configuration recommendations, specific to Azure Service
Fabric and performance efficiency.

When discussing security with Azure Service Fabric, it's important to distinguish between
cluster operation and workload operation. Cluster performance is a shared responsibility
between the Service Fabric cluster admin and their resource provider, while workload
performance is the domain of a developer. Azure Service Fabric has considerations and
recommendations for both of these roles.

Cluster and workload architectures: Prepare an infrastructure monitoring solution.＂

Cluster and workload architectures: Design your cluster with build and release
pipelines for continuous integration and deployment.

＂

Recommendations

Performance efficiency

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring#application-monitoring
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-chaos-experiments
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring#cluster-monitoring
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-deploy-app-with-cicd-vsts
https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring#infrastructure-monitoring

In the design checklist and list of recommendations below, call-outs are made to
indicate whether each choice is applicable to cluster architecture, workload architecture,
or both.

For more information about how Azure Service Fabric can reduce performance issues for
your workload with Service Fabric performance counters, reference Monitoring and
diagnostic best practices for Azure Service Fabric.

Consider the following recommendations to optimize your Azure Service Fabric
configuration for performance efficiency:

Azure Service Fabric
Recommendation

Benefit

Cluster architecture: Exclude the
Service Fabric processes from
Windows Defender to improve
performance.

By default, Windows Defender antivirus is installed on
Windows Server 2016 and 2019. To reduce any performance
impact and resource consumption overhead incurred by
Windows Defender, and if your security policies allow you
to exclude processes and paths for open-source software,
you can exclude.

Cluster architecture: Consider
using Autoscaling for your cluster.

Autoscaling gives great elasticity and enables addition or
reduction of nodes on demand on a secondary node type.
This automated and elastic behavior reduces the
management overhead and potential business impact by
monitoring and optimizing the amount of nodes servicing
your workload.

Cluster architecture: Consider
using Accelerated Networking.

Accelerated networking enables a high-performance path
that bypasses the host from the data path, which reduces
latency, jitter, and CPU utilization for the most demanding
network workloads.

Cluster architecture: Considering
using encryption at host instead of

This encryption method improves on ADE by supporting all
OS types and images, including custom images, for your

Design checklist

Cluster architecture: Exclude the Service Fabric processes from Windows Defender
to improve performance.

＂

Cluster architecture: Select appropriate VM SKU.＂

Workload architecture: Decide what programming model you will use for your
services.

＂

Cluster and workload architectures: Use appropriate managed disk tier and size.＂

Recommendations

https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-monitoring
https://learn.microsoft.com/en-us/azure/service-fabric/
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-autoscale
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-networking#enable-accelerated-networking
https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-enable-disk-encryption?tabs=azure-powershell#enable-encryption-at-host
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-security#windows-defender
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework

Azure Service Fabric
Recommendation

Benefit

Azure Disk Encryption (ADE). VMs by encrypting data in the Azure Storage service.

Workload architecture: Review the
Service Fabric programming
models to decide what model
would best suit your services.

Service Fabric supports several programming models. Each
come with their own advantages and disadvantages.
Knowing about the available programming models can help
you make the best choices for designing your services.

Workload architecture: Leverage
loosely-coupled microservices for
your workloads where appropriate.

Using microservices allows you to get the most out of
Service Fabric's features.

Workload architecture: Leverage
event-driven architecture for your
workloads where appropriate.

Using event-driven architecture allows you to get the most
out of Service Fabric's features.

Workload architecture: Leverage
background processing for your
workloads where appropriate.

Using background processing allows you to get the most
out of Service Fabric's features.

Cluster and workload
architectures: Review the different
ways you can scale your solution in
Service Fabric.

You can use scaling to enable maximum resource utilization
for your solution.

For more suggestions, see Principles of the performance efficiency pillar.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you
improve the reliability, security, cost effectiveness, performance, and operational
excellence when using Azure Service Fabric.

Service Fabric clusters should have the ClusterProtectionLevel property set to
EncryptAndSign . This is the default value for managed clusters and isn't
changeable. Standard cluster: Ensure you set ClusterProtectionLevel to
EncryptAndSign .
Service Fabric clusters should only use Microsoft Entra ID for client authentication.

Azure Advisor recommendations

Security

Additional resources

https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-enable-disk-encryption?tabs=azure-powershell#enable-encryption-at-host
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/web-queue-worker
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-scalability
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/advisor/

Check out the Azure Service Fabric managed cluster configuration options article for a
list of all the options you have while creating and maintaining your cluster.

Review the Azure application architecture fundamentals for guidance on how to develop
your workloads. While Service Fabric can be used solely as a container hosting platform,
using well-architected workloads leverages Service Fabric's full functionality.

Use these recommendations as you create your Service Fabric managed cluster using an
ARM template or through the Azure portal:

Quickstart: Deploy a Service Fabric managed cluster with an Azure Resource
Manager template
Quickstart: Deploy a Service Fabric managed cluster using the Azure portal

Next steps

https://learn.microsoft.com/en-us/azure/service-fabric/how-to-managed-cluster-configuration
https://learn.microsoft.com/en-us/azure/architecture/guide/
https://learn.microsoft.com/en-us/azure/service-fabric/quickstart-managed-cluster-template
https://learn.microsoft.com/en-us/azure/service-fabric/quickstart-managed-cluster-portal

Azure Well-Architected Framework
review - Azure SQL Database
Article • 11/14/2023

Azure SQL Database is a fully managed platform as a service (PaaS) database engine
that handles most of the database management functions without user involvement.
Management functions include upgrades, patches, backups, and monitoring.

The single database resource type creates a database in Azure SQL Database with its
own set of resources and is managed via a logical server. You can choose between the
DTU-based purchasing model or vCore-based purchasing model. You can create
multiple databases in a single resource pool, with elastic pools.

The following sections include a design checklist and recommended design options
specific to Azure SQL Database security. The guidance is based on the five pillars of
architectural excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

Understanding the Well-Architected Framework pillars can help produce a high
quality, stable, and efficient cloud architecture. Check out the Azure Well-
Architected Framework overview page to review the five pillars of architectural
excellence.

Review the core concepts of Azure SQL Database and What's new in Azure SQL
Database?.

Azure SQL Database is a fully managed platform as a service (PaaS) database engine
that handles most of the database management functions without user involvement.
Management functions include:

Upgrades

Prerequisites

Azure SQL Database and reliability

https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://learn.microsoft.com/en-us/azure/azure-sql/database/service-tiers-dtu
https://learn.microsoft.com/en-us/azure/azure-sql/database/service-tiers-vcore
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/doc-changes-updates-release-notes-whats-new
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview

Patches
Backups
Monitoring

This service allows you to create a highly available and high-performance data storage
layer for your Azure applications and workloads. Azure SQL Database is always running
on the latest stable version of the SQL Server database engine and patched OS with
99.99% availability.

For more information about how Azure SQL Database promotes reliability and enables
your business to continue operating during disruptions, reference Availability
capabilities.

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure SQL Database and reliability.

Azure SQL Database includes the following design considerations:

Azure SQL Database Business Critical tier configured with geo-replication has a
guaranteed Recovery time objective (RTO) of 30 seconds for 100% of deployed
hours.

Use sharding to distribute data and processes across many identically structured
databases. Sharding provides an alternative to traditional scale-up approaches for
cost and elasticity. Consider using sharding to partition the database horizontally.
Sharding can provide fault isolation. For more information, reference Scaling out
with Azure SQL Database.

Azure SQL Database Business Critical or Premium tiers not configured for Zone
Redundant Deployments, General Purpose, Standard, or Basic tiers, or Hyperscale
tier with two or more replicas have an availability guarantee. For more information
about the availability guarantee, reference SLA for Azure SQL Database .

Provides built-in regional high availability and turnkey geo-replication to any Azure
region. It includes intelligence to support self-driving features, such as:

Performance tuning
Threat monitoring
Vulnerability assessments
Fully automated patching and updating of the code base

Design considerations

https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview#availability-capabilities
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-introduction
https://azure.microsoft.com/support/legal/sla/azure-sql-database/v1_6/

Define an application performance SLA and monitor it with alerts. Quickly detect
when your application performance inadvertently degrades below an acceptable
level, which is important to maintain high resiliency. Use the monitoring solution
previously defined to set alerts on key query performance metrics so you can take
action when the performance breaks the SLA. Go to Monitor Your Database and
alerting tools for more information.

Use geo-restore to recover from a service outage. You can restore a database on
any SQL Database server or an instance database on any managed instance in any
Azure region from the most recent geo-replicated backups. Geo-restore uses a
geo-replicated backup as its source. You can request geo-restore even if the
database or datacenter is inaccessible because of an outage. Geo-restore restores
a database from a geo-redundant backup. For more information, reference
Recover an Azure SQL database using automated database backups.

Use the Business Critical tier configured with geo-replication, which has a
guaranteed Recovery point objective (RPO) of 5 seconds for 100% of deployed
hours.

PaaS capabilities built into Azure SQL Database enable you to focus on the
domain-specific database administration and optimization activities that are critical
for your business.

Use point-in-time restore to recover from human error. Point-in-time restore
returns your database to an earlier point in time to recover data from changes
done inadvertently. For more information, read the Point-in-time restore (PITR)
documentation.

Business Critical or Premium tiers are configured as Zone Redundant Deployments
which have an availability guarantee. For more information about the availability
guarantee, reference SLA for Azure SQL Database .

Have you configured Azure SQL Database with reliability in mind?

Checklist

Use Active Geo-Replication to create a readable secondary in a different region.＂

Use Auto Failover Groups that can include one or multiple databases, typically used
by the same application.

＂

Use a Zone-Redundant database.＂

Monitor your Azure SQL Database in near-real time to detect reliability incidents.＂

Implement Retry Logic.＂

Back up your keys.＂

https://learn.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/alerts-insights-configure-portal
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#point-in-time-restore
https://azure.microsoft.com/support/legal/sla/azure-sql-database/v1_6/

Explore the following table of recommendations to optimize your Azure SQL Database
configuration for reliability:

Recommendation Description

Use Active Geo-
Replication to create a
readable secondary in a
different region.

If your primary database fails, perform a manual failover to the
secondary database. Until you fail over, the secondary database
remains read-only. Active geo-replication enables you to create
readable replicas and manually failover to any replica if there is a
datacenter outage or application upgrade. Up to four secondaries are
supported in the same or different regions, and the secondaries can
also be used for read-only access queries. The failover must be
initiated manually by the application or the user. After failover, the
new primary has a different connection end point.

Use Auto Failover Groups
that can include one or
multiple databases,
typically used by the
same application.

You can use the readable secondary databases to offload read-only
query workloads. Because autofailover groups involve multiple
databases, these databases must be configured on the primary
server. Autofailover groups support replication of all databases in the
group to only one secondary server or instance in a different region.
Learn more about AutoFailover Groups and DR design.

Use a Zone-Redundant
database.

By default, the cluster of nodes for the premium availability model is
created in the same datacenter. With the introduction of Azure
Availability Zones, SQL Database can place different replicas of the
Business Critical database to different availability zones in the same
region. To eliminate a single point of failure, the control ring is also
duplicated across multiple zones as three gateway rings (GW). The
routing to a specific gateway ring is controlled by Azure Traffic
Manager (ATM). Because the zone redundant configuration in the
Premium or Business Critical service tiers doesn't create extra
database redundancy, you can enable it at no extra cost. Learn more
about Zone-redundant databases.

Monitor your Azure SQL
Database in near-real
time to detect reliability
incidents.

Use one of the available solutions to monitor SQL DB to detect
potential reliability incidents early and make your databases more
reliable. Choose a near real-time monitoring solution to quickly react
to incidents. Reference Azure SQL Analytics for more information.

Implement Retry Logic. Although Azure SQL Database is resilient when it concerns transitive
infrastructure failures, these failures might affect your connectivity.
When a transient error occurs while working with SQL Database,
make sure your code can retry the call. For more information,
reference how to implement retry logic.

Back up your keys. If you're not using encryption keys in Azure Key Vault to protect your
data, back up your keys.

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/designing-cloud-solutions-for-disaster-recovery
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/azure-sql#analyze-data-and-create-alerts
https://learn.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-azure-key-vault-configure?tabs=azure-powershell

SQL Database provides a range of built-in security and compliance features to help your
application meet various security and compliance requirements.

Have you designed your workload and configured Azure SQL Database with security
in mind?

Recommendation Benefit

Review the minimum
TLS version.

Determine whether you have legacy applications that require older TLS or
unencrypted connections. After you enforce a version of TLS, it's not
possible to revert to the default. Review and configure the minimum TLS
version for SQL Database connections via the Azure portal. If not, set the
latest TLS version to the minimum.

Ledger Consider designing database tables based on the Ledger to provide
auditing, tamper-evidence, and trust of all data changes.

Always Encrypted Consider designing application access based around Always Encrypted to
protect sensitive data inside applications by delegating data access to

Azure SQL Database and security

Design checklist

Understand logical servers and how you can administer logins for multiple
databases when appropriate.

＂

Enable Microsoft Entra authentication with Azure SQL. Microsoft Entra
authentication enables simplified permission management and centralized identity
management.

＂

Azure SQL logical servers should have a Microsoft Entra administrator provisioned.＂

Verify contact information email address in your Azure Subscription for service
administrator and co-administrators is reaching the correct parties inside your
enterprise. You don't want to miss or ignore important security notifications from
Azure!

＂

Review the Azure SQL Database connectivity architecture. Choose the Redirect or
Proxy connection policy as appropriate.

＂

Review Azure SQL Database firewall rules.＂

Use virtual network rules to control communication from particular subnets in
virtual networks.

＂

If using the Azure Firewall, configure Azure Firewall application rules with SQL
FQDNs.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/security-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/connectivity-settings#minimal-tls-version
https://learn.microsoft.com/en-us/sql/relational-databases/security/ledger/ledger-overview
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://learn.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://learn.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure
https://learn.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure#azure-ad-admin-with-a-server-in-sql-database
https://learn.microsoft.com/en-us/azure/azure-sql/database/connectivity-architecture
https://learn.microsoft.com/en-us/azure/azure-sql/database/connectivity-architecture#connection-policy
https://learn.microsoft.com/en-us/azure/azure-sql/database/firewall-configure
https://learn.microsoft.com/en-us/azure/azure-sql/database/vnet-service-endpoint-rule-overview
https://learn.microsoft.com/en-us/azure/firewall/sql-fqdn-filtering

Recommendation Benefit

encryption keys.

Private endpoints and
private link

Private endpoint connections enforce secure communication by enabling
private connectivity to Azure SQL Database. You can use a private
endpoint to secure connections and deny public network access by
default. Azure Private Link for Azure SQL Database is a type of private
endpoint recommended for Azure SQL Database.

Automated
vulnerability
assessments

Monitor for vulnerability assessment scan results and recommendations
for how to remediate database vulnerabilities.

Advanced Threat
Protection

Detect anomalous activities indicating unusual and potentially harmful
attempts to access or exploit databases with Advanced Threat Protection
for Azure SQL Database. Advanced Threat Protection integrates its alerts
with Microsoft Defender for Cloud .

Auditing Track database events with Auditing for Azure SQL Database.

Managed identities Consider configuring a user-assigned managed identity (UMI). Managed
identities for Azure resources eliminate the need to manage credentials
in code.

Microsoft Entra-only
authentication

Consider disabling SQL-based authentication and allowing only on
Microsoft Entra authentication.

Review the Azure security baseline for Azure SQL Database and Azure Policy built-in
definitions.

All built-in policy definitions related to Azure SQL are listed in Built-in policies.

Review Tutorial: Secure a database in Azure SQL Database.

Azure SQL Database is a fully managed platform as a service (PaaS) database engine
that handles most of the database management functions without user involvement.
Management functions include:

Upgrades
Patches
Backups
Monitoring

Policy definitions

Azure SQL Database and cost optimization

https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-vulnerability-assessment
https://learn.microsoft.com/en-us/azure/azure-sql/database/threat-detection-configure
https://azure.microsoft.com/services/security-center/
https://learn.microsoft.com/en-us/azure/azure-sql/database/auditing-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/authentication-azure-ad-user-assigned-managed-identity
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-manage-user-assigned-managed-identities
https://learn.microsoft.com/en-us/azure/azure-sql/database/authentication-aad-configure
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/sql-database-security-baseline
https://learn.microsoft.com/en-us/azure/azure-sql/database/policy-reference
https://learn.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies#sql
https://learn.microsoft.com/en-us/azure/azure-sql/database/secure-database-tutorial
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview

This service allows you to create a highly available and high-performance data storage
layer for your Azure applications and workloads. SQL Database includes built-in
intelligence that helps you dramatically reduce the costs of running and managing
databases through automatic performance monitoring and tuning.

For more information about how Azure SQL Database provides cost-saving features,
reference Plan and manage costs for Azure SQL Database.

The following sections include a configuration checklist and recommended
configuration options specific to Azure SQL Database and cost optimization.

Have you configured Azure SQL Database with cost optimization in mind?

Explore the following table of recommendations to optimize your Azure SQL Database
configuration for cost savings:

Recommendation Description

Optimize queries. Optimize the queries, tables, and databases using Query Performance
Insights and Performance Recommendations to help reduce resource
consumption, and arrive at appropriate configuration.

Evaluate resource
usage.

Evaluate the resource usage for all databases and determine if they've
been sized and provisioned correctly. For non-production databases,
consider scaling resources down as applicable. The DTUs or vCores for
a database can be scaled on demand, for example, when running a
load test or user acceptance test.

Fine-tune backup
storage consumption

For vCore databases in Azure SQL Database, the storage consumed by
each type of backup (full, differential, and log) is reported on the
database monitoring pane as a separate metric. Backup storage
consumption up to the maximum data size for a database is not
charged. Excess backup storage consumption will depend on the

Checklist

Optimize queries.＂

Evaluate resource usage.＂

Fine-tune backup storage consumption.＂

Evaluate Azure SQL Database serverless.＂

Consider reserved capacity for Azure SQL Database.＂

Consider elastic pools for managing and scaling multiple databases.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/cost-management
https://learn.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use
https://learn.microsoft.com/en-us/azure/azure-sql/database/database-advisor-find-recommendations-portal
https://learn.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview#fine-tune-backup-storage-consumption
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/reserved-capacity-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview

Recommendation Description

workload and maximum size of the individual databases. For more
information, see Backup storage consumption.

Evaluate Azure SQL
Database Serverless.

Consider using Azure SQL Database serverless over the Provisioned
Computing Tier. Serverless is a compute tier for single databases that
automatically scales compute based on workload demand and bills for
the amount of compute used per second. The serverless compute tier
also automatically pauses databases during inactive periods when only
storage is billed. It automatically resumes databases when activity
returns. Azure SQL Database serverless isn't suited for all scenarios. If
you have a database with unpredictable or bursty usage patterns
interspersed with periods of low or idle usage, serverless is a solution
that can help you optimize price-performance.

Consider reserved
capacity for Azure SQL
Database.

You can reduce compute costs associated with Azure SQL Database by
using Reservation Discount. Once you've determined the total compute
capacity and performance tier for Azure SQL databases in a region, you
can use this information to reserve the capacity. The reservation can
span one or three years. For more information, reference Save costs for
resources with reserved capacity.

Elastic pools help you
manage and scale
multiple databases in
Azure SQL Database

Azure SQL Database elastic pools are a simple, cost-effective solution
for managing and scaling multiple databases that have varying and
unpredictable usage demands. The databases in an elastic pool are on
a single server and share a set number of resources at a set price. For
more information, see Elastic pools for managing and scaling multiple
databases.

For more information, see Plan and manage costs for Azure SQL Database.

Azure SQL Database is a fully managed platform as a service (PaaS) database engine
that handles most of the database management functions without user involvement.
Management functions include:

Upgrades
Patches
Backups
Monitoring

This service allows you to create a highly available and high-performance data storage
layer for your Azure applications and workloads. Azure SQL Database provides advanced
monitoring and tuning capabilities backed by artificial intelligence to help you
troubleshoot and maximize the performance of your databases and solutions.

Azure SQL Database and operational excellence

https://learn.microsoft.com/en-us/azure/azure-sql/database/automated-backups-overview#backup-storage-consumption
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/understand-reservation-charges
https://learn.microsoft.com/en-us/azure/azure-sql/database/reserved-capacity-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/cost-management
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview

For more information about how Azure SQL Database promotes operational excellence
and enables your business to continue operating during disruptions, reference
Monitoring and performance tuning in Azure SQL Database.

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure SQL Database, and operational
excellence.

Azure SQL Database includes the following design considerations:

Azure SQL Database Business Critical tier configured with geo-replication has a
guaranteed Recovery time objective (RTO) of 30 seconds for 100% of deployed
hours.

Use sharding to distribute data and processes across many identically structured
databases. Sharding provides an alternative to traditional scale-up approaches for
cost and elasticity. Consider using sharding to partition the database horizontally.
Sharding can provide fault isolation. For more information, reference Scaling out
with Azure SQL Database.

Azure SQL Database Business Critical or Premium tiers not configured for Zone
Redundant Deployments, General Purpose, Standard, or Basic tiers, or Hyperscale
tier with two or more replicas have an availability guarantee. For more information,
reference SLA for Azure SQL Database .

Provides built-in regional high availability and turnkey geo-replication to any Azure
region. It includes intelligence to support self-driving features, such as:

Performance tuning
Threat monitoring
Vulnerability assessments
Fully automated patching and updating of the code base

Define an application performance SLA and monitor it with alerts. Quickly detect
when your application performance inadvertently degrades below an acceptable
level, which is important to maintain high resiliency. Use the monitoring solution
previously defined to set alerts on key query performance metrics so you can take
action when the performance breaks the SLA. Go to Monitor Your Database for
more information.

Use geo-restore to recover from a service outage. You can restore a database on
any SQL Database server or an instance database on any managed instance in any

Design considerations

https://learn.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-scale-introduction
https://azure.microsoft.com/support/legal/sla/azure-sql-database/v1_6/
https://learn.microsoft.com/en-us/azure/azure-sql/database/monitor-tune-overview

Azure region from the most recent geo-replicated backups. Geo-restore uses a
geo-replicated backup as its source. You can request geo-restore even if the
database or datacenter is inaccessible because of an outage. Geo-restore restores
a database from a geo-redundant backup. For more information, reference
Recover an Azure SQL database using automated database backups.

Use the Business Critical tier configured with geo-replication, which has a
guaranteed Recovery point objective (RPO) of 5 seconds for 100% of deployed
hours.

PaaS capabilities built into Azure SQL Database enable you to focus on the
domain-specific database administration and optimization activities that are critical
for your business.

Use point-in-time restore to recover from human error. Point-in-time restore
returns your database to an earlier point in time to recover data from changes
done inadvertently. For more information, read the Point-in-time restore (PITR)
documentation.

Business Critical or Premium tiers are configured as Zone Redundant Deployments.
For more information about the availability guarantee, reference SLA for Azure SQL
Database .

Have you configured Azure SQL Database with operational excellence in mind?

Explore the following table of recommendations to optimize your Azure SQL Database
configuration for operational excellence:

Checklist

Use Active Geo-Replication to create a readable secondary in a different region.＂

Use Auto Failover Groups that can include one or multiple databases, typically used
by the same application.

＂

Use a Zone-Redundant database.＂

Monitor your Azure SQL Database in near-real time to detect reliability incidents.＂

Implement retry logic.＂

Back up your keys.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#point-in-time-restore
https://azure.microsoft.com/support/legal/sla/azure-sql-database/v1_6/

Recommendation Description

Use Active Geo-
Replication to create a
readable secondary in a
different region.

If your primary database fails, perform a manual failover to the
secondary database. Until you fail over, the secondary database
remains read-only. Active geo-replication enables you to create
readable replicas and manually failover to any replica if there is a
datacenter outage or application upgrade. Up to four secondaries are
supported in the same or different regions, and the secondaries can
also be used for read-only access queries. The failover must be
initiated manually by the application or the user. After failover, the
new primary has a different connection end point.

Use Auto Failover Groups
that can include one or
multiple databases,
typically used by the
same application.

You can use the readable secondary databases to offload read-only
query workloads. Because autofailover groups involve multiple
databases, these databases must be configured on the primary
server. Autofailover groups support replication of all databases in the
group to only one secondary server or instance in a different region.
Learn more about Auto-Failover Groups and DR design.

Use a Zone-Redundant
database.

By default, the cluster of nodes for the premium availability model is
created in the same datacenter. With the introduction of Azure
Availability Zones, SQL Database can place different replicas of the
Business Critical database to different availability zones in the same
region. To eliminate a single point of failure, the control ring is also
duplicated across multiple zones as three gateway rings (GW). The
routing to a specific gateway ring is controlled by Azure Traffic
Manager (ATM). Because the zone redundant configuration in the
Premium or Business Critical service tiers doesn't create extra
database redundancy, you can enable it at no extra cost. Learn more
about Zone-redundant databases.

Monitor your Azure SQL
Database in near-real
time to detect reliability
incidents.

Use one of the available solutions to monitor SQL DB to detect
potential reliability incidents early and make your databases more
reliable. Choose a near real-time monitoring solution to quickly react
to incidents. Reference Azure SQL Analytics for more information.

Implement Retry Logic. Although Azure SQL Database is resilient when it concerns transitive
infrastructure failures, these failures might affect your connectivity.
When a transient error occurs while working with SQL Database,
make sure your code can retry the call. For more information,
reference how to implement retry logic and Configurable retry logic
in SqlClient introduction.

Back up your keys. If you're not using encryption keys in Azure Key Vault to protect your
data, back up your keys.

Azure SQL Database and performance
efficiency

https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/designing-cloud-solutions-for-disaster-recovery
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/azure-sql#analyze-data-and-create-alerts
https://learn.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues
https://learn.microsoft.com/en-us/sql/connect/ado-net/configurable-retry-logic-sqlclient-introduction
https://learn.microsoft.com/en-us/azure/azure-sql/database/always-encrypted-azure-key-vault-configure?tabs=azure-powershell

Azure SQL Database is a fully managed platform as a service (PaaS) database engine
that handles most of the database management functions without user involvement.
Management functions include:

Upgrades
Patches
Backups
Monitoring

The following sections include a design checklist and recommended design options
specific to Azure SQL Database performance efficiency.

Have you designed your workload and configured Azure SQL Database with
performance efficiency in mind?

Recommendation Benefit

Diagnose and troubleshoot
high CPU utilization.

Azure SQL Database provides built-in tools to identify the causes of
high CPU usage and to optimize workload performance.

Design checklist

Review resource limits. For specific resource limits per pricing tier (also known as
service objective) for single databases, refer to either DTU-based single database
resource limits or vCore-based single database resource limits. For elastic pool
resource limits, refer to either DTU-based elastic pool resource limits or vCore-
based elastic pool resource limits.

＂

Choose the right deployment model for your workload, vCore or DTU. Compare the
vCore and DTU-based purchasing models.

＂

Microsoft recommends the latest vCore database standard-series or premium-
series hardware. Older Gen4 hardware has been retired.

＂

When using elastic pools, familiarize yourself with resource governance.＂

Review the default max degree of parallelism (MAXDOP) and configure as needed
based on a migrated or expected workload.

＂

Consider using read-only replicas of critical database to offload read-only query
workloads.

＂

Review the Performance Center for SQL Server Database Engine and Azure SQL
Database.

＂

Applications connecting to Azure SQL Database should use the latest connection
providers, for example the latest OLE DB Driver or ODBC Driver.

＂

Recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-cpu-diagnose-troubleshoot
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-dtu-single-databases
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-dtu-elastic-pools
https://learn.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-elastic-pools
https://learn.microsoft.com/en-us/azure/azure-sql/database/purchasing-models
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-resource-management
https://learn.microsoft.com/en-us/azure/azure-sql/database/configure-max-degree-of-parallelism
https://learn.microsoft.com/en-us/azure/azure-sql/database/read-scale-out
https://learn.microsoft.com/en-us/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database
https://learn.microsoft.com/en-us/sql/connect/oledb/oledb-driver-for-sql-server
https://learn.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server

Recommendation Benefit

Understand blocking and
deadlocking issues.

Blocking due to concurrency and terminated sessions due to
deadlocks have different causes and outcomes.

Tune applications and
databases for performance.

Tune your application and database to improve performance.
Review best practices.

Review Azure portal
utilization reporting and
scale as appropriate.

After deployment, use built-in reporting in the Azure portal to
regularly review peak and average database utilization and right-
size up or down. You can easily scale single databases or elastic
pools with no data loss and minimal downtime.

Review Performance
Recommendations.

In the Intelligent Performance menu of the database page in the
Azure portal, review and consider action on any of the Performance
Recommendations and implement any index, schema, and
parameterization issues.

Review Query Performance
Insight.

Review Query Performance Insight for Azure SQL Database reports
to identify top resource-consuming queries, long running queries,
and more.

Configure Automatic
tuning.

Provide peak performance and stable workloads through
continuous performance tuning based on AI and machine learning.
Consider using Azure Automation to configure email notifications
for automatic tuning.

Evaluate potential use of in-
memory database objects.

In-memory technologies enable you to improve performance of
your application, and potentially reduce cost of your database.
Consider designing some database objects in high-volume OLTP
applications.

Leverage the Query Store. Enabled by default in Azure SQL Database, the Query Store
contains a wealth of query performance and resource consumption
data, as well as advanced tuning features like Query Store hints and
automatic plan correction. Review Query Store defaults in Azure
SQL Database.

Implement retry logic for
transient errors.

Applications should include automatic transaction retry logic for
transient errors including common connection errors. Leverage
exponential retry interval logic.

For information about supported features, see Features and Resolving Transact-SQL
differences during migration to SQL Database.

Migrating to Azure SQL Database? Review our Azure Database Migration Guides.

Additional resources

https://learn.microsoft.com/en-us/azure/azure-sql/database/understand-resolve-blocking
https://learn.microsoft.com/en-us/azure/azure-sql/database/analyze-prevent-deadlocks
https://learn.microsoft.com/en-us/azure/azure-sql/database/performance-guidance
https://learn.microsoft.com/en-us/azure/azure-sql/database/single-database-scale
https://learn.microsoft.com/en-us/azure/azure-sql/database/elastic-pool-scale
https://learn.microsoft.com/en-us/azure/azure-sql/database/scale-resources
https://learn.microsoft.com/en-us/azure/azure-sql/database/intelligent-insights-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/database-advisor-find-recommendations-portal
https://learn.microsoft.com/en-us/azure/azure-sql/database/database-advisor-implement-performance-recommendations
https://learn.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-email-notifications-configure
https://learn.microsoft.com/en-us/azure/azure-sql/in-memory-oltp-overview
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://learn.microsoft.com/en-us/sql/relational-databases/performance/tune-performance-with-the-query-store
https://learn.microsoft.com/en-us/sql/relational-databases/performance/query-store-hints
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://learn.microsoft.com/en-us/sql/relational-databases/performance/best-practice-with-the-query-store
https://learn.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues
https://learn.microsoft.com/en-us/azure/azure-sql/database/features-comparison
https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://learn.microsoft.com/en-us/data-migration/

Watch episodes of Data Exposed covering Azure SQL topics and more.

Try Azure SQL Database free with Azure free account, then get started with single
databases in Azure SQL Database.

Next steps

https://learn.microsoft.com/en-us/shows/data-exposed/
https://learn.microsoft.com/en-us/azure/azure-sql/database/free-sql-db-free-account-how-to-deploy
https://learn.microsoft.com/en-us/azure/azure-sql/database/quickstart-content-reference-guide

Azure SQL Managed Instance and
reliability
Article • 11/14/2023

Azure SQL Managed Instance is the intelligent, scalable cloud database service that
combines the broadest SQL Server database engine compatibility with all the benefits of
a fully managed and evergreen platform as a service.

The goal of the high availability architecture in SQL Managed Instance is to guarantee
that your database is up and running without worrying about the impact of
maintenance operations and outages. This solution is designed to:

Ensure that committed data is never lost because of failures.
Ensure that maintenance failures don't affect your workload.
Ensure that the database won't be a single point of failure in your software
architecture.

For more information about how Azure SQL Managed Instance supports application and
workload resilience, reference the following articles:

High availability for Azure SQL Managed Instance
Use autofailover groups to enable transparent and coordinated geo-failover of
multiple databases

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure SQL Managed Instance, and
reliability.

Azure SQL Managed Instance includes the following design considerations:

Define an application performance SLA and monitor it with alerts. Detecting
quickly when your application performance inadvertently degrades below an
acceptable level is important to maintain high resiliency. Use a monitoring solution
to set alerts on key query performance metrics so you can take action when the
performance breaks the SLA.
Use point-in-time restore to recover from human error. Point-in-time restore
returns your database to an earlier point in time to recover data from changes
done inadvertently. For more information, read the Point-in-time-restore (PITR)
documentation for managed instance.

Design considerations

https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/sql-managed-instance-paas-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#point-in-time-restore

Use geo-restore to recover from a service outage. Geo-restore restores a database
from a geo-redundant backup into a managed instance in a different region. For
more information, reference Recover a database using Geo-restore documentation.
Consider the time required for certain operations. Make sure you separate time to
thoroughly test the amount of time required to scale up and down your existing
managed instance, and to create a new managed instance. This timing practice
ensures that you understand completely how time consuming operations will
affect your RTO and RPO.

Have you configured Azure SQL Managed Instance with reliability in mind?

Explore the following table of recommendations to optimize your Azure SQL Managed
Instance configuration for reliability:

Recommendation Description

Use the Business Critical Tier. This tier provides higher resiliency to failures and faster failover
times because of the underlying HA architecture, among other
benefits. For more information, reference SQL Managed
Instance High availability.

Configure a secondary instance
and an Autofailover group to
enable failover to another
region.

If an outage impacts one or more of the databases in the
managed instance, you can manually or automatically failover
all the databases inside the instance to a secondary region. For
more information, read the Autofailover groups documentation
for managed instance.

Implement Retry Logic. Although Azure SQL MI is resilient to transitive infrastructure
failures, these failures might affect your connectivity. When a
transient error occurs while working with SQL MI, make sure
your code can retry the call. For more information, reference
how to implement retry logic.

Monitor your SQL MI instance
in near-real time to detect

Use one of the available solutions to monitor your SQL MI to
detect potential reliability incidents early and make your

Checklist

Use the Business Critical Tier.＂

Configure a secondary instance and an Autofailover group to enable failover to
another region.

＂

Implement Retry Logic.＂

Monitor your SQL MI instance in near-real time to detect reliability incidents.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues

Recommendation Description

reliability incidents. databases more reliable. Choose a near real-time monitoring
solution to quickly react to incidents. For more information,
check out the Azure SQL Managed Instance monitoring
options .

Next step
Azure SQL Managed Instance and operational excellence

https://techcommunity.microsoft.com/t5/azure-sql/monitoring-options-available-for-azure-sql-managed-instance/ba-p/1065416

Azure SQL Managed Instance and
operational excellence
Article • 11/14/2023

Azure SQL Managed Instance is the intelligent, scalable cloud database service that
combines the broadest SQL Server database engine compatibility with all the benefits of
a fully managed and evergreen platform as a service.

The goal of the high availability architecture in SQL Managed Instance is to guarantee
that your database is up and running without worrying about the impact of
maintenance operations and outages. This solution is designed to:

Ensure that committed data is never lost because of failures.
Ensure that maintenance failures don't affect your workload.
Ensure that the database won't be a single point of failure in your software
architecture.

For more information about how Azure SQL Managed Instance supports operational
excellence for your application workloads, reference the following articles:

Overview of Azure SQL Managed Instance management operations
Monitoring Azure SQL Managed Instance management operations

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure SQL Managed Instance, and
operational excellence.

Azure SQL Managed Instance includes the following design considerations:

Define an application performance SLA and monitor it with alerts. Detecting
quickly when your application performance inadvertently degrades below an
acceptable level is important to maintain high resiliency. Use a monitoring solution
to set alerts on key query performance metrics so you can take action when the
performance breaks the SLA.
Use point-in-time restore to recover from human error. Point-in-time restore
returns your database to an earlier point in time to recover data from changes
done inadvertently. For more information, read the Point-in-time-restore (PITR)
documentation for managed instance.

Design considerations

https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/sql-managed-instance-paas-overview
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/management-operations-overview?branch=master#what-are-management-operations
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/management-operations-monitor?branch=master&tabs=azure-portal
https://learn.microsoft.com/en-us/azure/azure-sql/database/recovery-using-backups#point-in-time-restore

Use geo-restore to recover from a service outage. Geo-restore restores a database
from a geo-redundant backup into a managed instance in a different region. For
more information, reference Recover a database using Geo-restore documentation.
Consider the time required for certain operations. Make sure you separate time to
thoroughly test the amount of time required to scale up and down your existing
managed instance, and to create a new managed instance. This timing practice
ensures that you understand completely how time consuming operations will
affect your RTO and RPO.

Have you configured Azure SQL Managed Instance with operational excellence in
mind?

Explore the following table of recommendations to optimize your Azure SQL Managed
Instance configuration for operational excellence:

Recommendation Description

Use the Business Critical Tier. This tier provides higher resiliency to failures and faster failover
times because of the underlying HA architecture, among other
benefits. For more information, reference SQL Managed
Instance High availability.

Configure a secondary instance
and an Autofailover group to
enable failover to another
region.

If an outage impacts one or more of the databases in the
managed instance, you can manually or automatically failover
all the databases inside the instance to a secondary region. For
more information, read the Autofailover groups documentation
for managed instance.

Implement Retry Logic. Although Azure SQL MI is resilient to transitive infrastructure
failures, these failures might affect your connectivity. When a
transient error occurs while working with SQL MI, make sure
your code can retry the call. For more information, reference
how to implement retry logic.

Checklist

Use the Business Critical Tier.＂

Configure a secondary instance and an Autofailover group to enable failover to
another region.

＂

Implement Retry Logic.＂

Monitor your SQL MI instance in near-real time to detect reliability incidents.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/high-availability-sla
https://learn.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell
https://learn.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues

Recommendation Description

Monitor your SQL MI instance
in near-real time to detect
reliability incidents.

Use one of the available solutions to monitor your SQL MI to
detect potential reliability incidents early and make your
databases more reliable. Choose a near real-time monitoring
solution to quickly react to incidents. For more information,
check out the Azure SQL Managed Instance monitoring
options .

Next step
Azure Cosmos DB for NoSQL

https://techcommunity.microsoft.com/t5/azure-sql/monitoring-options-available-for-azure-sql-managed-instance/ba-p/1065416

Azure Stack Hub and reliability
Article • 11/14/2023

Azure Stack Hub is a hybrid cloud platform that lets you provide Azure services from
your datacenter. It provides a way to run apps in an on-premises environment.

This service unlocks the following hybrid cloud use cases for customer-facing and
internal line-of-business apps:

Edge and disconnected solutions: Addresses latency and connectivity requirements
by processing data locally.
Cloud apps that meet varied regulations: Allows you to develop and deploy apps
with full flexibility to meet regulatory or policy requirements.
Cloud app model on-premises: Provides Azure services, containers, serverless, and
microservice architectures to update and extend existing apps or build new ones.

For more information, reference Azure Stack Hub overview.

To understand how Azure Stack Hub supports resiliency for your application workload,
reference the following articles:

Capacity planning for Azure Stack Hub overview
Storage Spaces Direct cache and capacity tiers
Datacenter integration planning considerations for Azure Stack Hub integrated
systems

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Stack Hub and reliability.

Azure Stack Hub includes the following design considerations:

Microsoft doesn't provide an SLA for Azure Stack Hub because Microsoft doesn't
have control over customer datacenter reliability, people, and processes.
Azure Stack Hub only supports a single Scale Unit (SU) within a single region,
which consists of between four and 16 servers that use Hyper-V failover clustering.
Each region serves as an independent Azure Stack Hub stamp with separate portal
and API endpoints.
Azure Stack Hub doesn't support Availability Zones because it consists of a single
region or a single physical location. High availability to cope with outages of a

Design considerations

https://learn.microsoft.com/en-us/azure-stack/operator/?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-overview?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-capacity-planning-overview?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-capacity-planning-storage?view=azs-2102#storage-spaces-direct-cache-and-capacity-tiers&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-datacenter-integration?view=azs-2102&preserve-view=true

single location should be implemented by using two Azure Stack Hub instances
deployed in different physical locations.
Azure Stack Hub supports premium storage to ensure compatibility. However,
provisioning premium storage accounts or disks doesn't guarantee that storage
objects will be allocated onto SSD or NVMe drives.
Azure Stack Hub supports only a subset of VPN Gateway SKUs available in Azure
with a limited bandwidth of 100 or 200 Mbps .
Only one site-to-site (S2S) VPN connection can be created between two Azure
Stack Hub deployments. This connection limit is because of a platform limitation
that allows only a single VPN connection to the same IP address. Multiple S2S VPN
connections with higher throughput can be established using third-party NVAs.
Apply general Azure configuration recommendations for all Azure Stack Hub
services.

Have you configured Azure Stack Hub with reliability in mind?

Consider the following recommendation table to optimize your Azure Stack Hub
configuration for reliability:

Recommendation Description

Treat Azure Stack Hub as a scale unit and deploy
multiple instances to remove Azure Stack Hub as a
single point of failure for encompassed workloads.

Deploy workloads in either an active-
active or active-passive configuration
across Azure Stack Hub stamps or Azure.

Checklist

Treat Azure Stack Hub as a scale unit and deploy multiple instances to remove
Azure Stack Hub as a single point of failure for encompassed workloads.

＂

Configuration recommendations

Next step
Azure Stack Hub and operational excellence

https://learn.microsoft.com/en-us/azure-stack/user/azure-stack-vpn-gateway-about-vpn-gateways?view=azs-2102#estimated-aggregate-throughput-by-sku&preserve-view=true

Azure Stack Hub and operational
excellence
Article • 11/14/2023

Azure Stack Hub is a hybrid cloud platform that lets you provide Azure services from
your datacenter. It provides a way to run apps in an on-premises environment.

This service unlocks the following hybrid cloud use cases for customer-facing and
internal line-of-business apps:

Edge and disconnected solutions: Addresses latency and connectivity requirements
by processing data locally.
Cloud apps that meet varied regulations: Allows you to develop and deploy apps
with full flexibility to meet regulatory or policy requirements.
Cloud app model on-premises: Provides Azure services, containers, serverless, and
microservice architectures to update and extend existing apps or build new ones.

For more information, reference Azure Stack Hub overview.

To understand how Azure Stack Hub supports operational excellence for your
application workload, reference the following articles:

Monitor health and alerts in Azure Stack Hub
Monitor Azure Stack Hub hardware components
Manage network resources in Azure Stack Hub

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure Stack Hub and operational
excellence.

Azure Stack Hub includes the following design considerations:

Microsoft doesn't provide an SLA for Azure Stack Hub because Microsoft doesn't
have control over customer datacenter reliability, people, and processes.
Azure Stack Hub only supports a single Scale Unit (SU) within a single region,
which consists of between four and 16 servers that use Hyper-V failover clustering.
Each region serves as an independent Azure Stack Hub stamp with separate portal
and API endpoints.

Design considerations

https://learn.microsoft.com/en-us/azure-stack/operator/?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-overview?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-monitor-health?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-hardware-monitoring?view=azs-2102&preserve-view=true
https://learn.microsoft.com/en-us/azure-stack/operator/azure-stack-viewing-public-ip-address-consumption?view=azs-2102&preserve-view=true

Azure Stack Hub doesn't support Availability Zones because it consists of a single
region or a single physical location. High availability to cope with outages of a
single location should be implemented by using two Azure Stack Hub instances
deployed in different physical locations.
Apply general Azure configuration recommendations for all Azure Stack Hub
services.

Have you configured Azure Stack Hub with operational excellence in mind?

Consider the following recommendation table to optimize your Azure Stack Hub
configuration for operational excellence:

Recommendation Description

Treat Azure Stack Hub as a scale unit and deploy
multiple instances to remove Azure Stack Hub as a
single point of failure for encompassed workloads.

Deploy workloads in either an active-
active or active-passive configuration
across Azure Stack Hub stamps or Azure.

Checklist

Treat Azure Stack Hub as a scale unit and deploy multiple instances to remove
Azure Stack Hub as a single point of failure for encompassed workloads.

＂

Configuration recommendations

Next step
Storage Accounts and reliability

Reliability and Azure Virtual Network
Article • 11/14/2023

A fundamental building block for your private network, Azure Virtual Network enables
Azure resources to securely communicate with each other, the internet, and on-premises
networks.

Key features of Azure Virtual Network include:

Communication with Azure resources
Communication with the internet
Communication with on-premises resources
Network traffic filtering

For more information, reference What is Azure Virtual Network?

To understand how Azure Virtual Network supports a reliable workload, reference the
following topics:

Tutorial: Move Azure VMs across regions
Quickstart: Create a virtual network using the Azure portal
Virtual Network – Business Continuity

The Virtual Network (VNet) includes the following design considerations for a reliable
Azure workload:

Overlapping IP address spaces across on-premises and Azure regions creates
major contention challenges.
While a Virtual Network address space can be added after creation, this process
requires an outage if the Virtual Network is already connected to another Virtual
Network through peering. An outage is necessary because the Virtual Network
peering is deleted and re-created.
Resizing of peered Virtual Networks is in public preview (August 20, 2021).
Some Azure services do require dedicated subnets, such as:

Azure Firewall
Azure Bastion
Virtual Network Gateway

Subnets can be delegated to certain services to create instances of that service
within the subnet.

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-network/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-between-azure-resources
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-with-the-internet
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-with-on-premises-resources
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#filter-network-traffic
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/resource-mover/tutorial-move-region-virtual-machines?toc=/azure/virtual-network/toc.json
https://learn.microsoft.com/en-us/azure/virtual-network/quick-create-portal
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-disaster-recovery-guidance
https://azure.microsoft.com/blog/how-to-resize-azure-virtual-networks-that-are-peered-now-in-preview/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-for-azure-services#services-that-can-be-deployed-into-a-virtual-network

Azure reserves five IP addresses within each subnet, which should be factored in
when sizing Virtual Networks and encompassed subnets.

Have you configured Azure Virtual Network with reliability in mind?

Checklist

Use Azure DDoS Standard Protection Plans to protect all public endpoints hosted
within customer Virtual Networks.

＂

Enterprise customers must plan for IP addressing in Azure to ensure there's no
overlapping IP address space across considered on-premises locations and Azure
regions.

＂

Use IP addresses from the address allocation for private internets (Request for
Comment (RFC) 1918).

＂

For environments with limited private IP addresses (RFC 1918) availability, consider
using IPv6.

＂

Don't create unnecessarily large Virtual Networks (for example: /16) to ensure
there's no unnecessary waste of IP address space.

＂

Don't create Virtual Networks without planning the required address space in
advance.

＂

Don't use public IP addresses for Virtual Networks, especially if the public IP
addresses don't belong to the customer.

＂

Use VNet Service Endpoints to secure access to Azure Platform as a Service (PaaS)
services from within a customer VNet.

＂

To address data exfiltration concerns with Service Endpoints, use Network Virtual
Appliance (NVA) filtering and VNet Service Endpoint Policies for Azure Storage.

＂

Don't implement forced tunneling to enable communication from Azure to Azure
resources.

＂

Access Azure PaaS services from on-premises through ExpressRoute Private Peering.＂

To access Azure PaaS services from on-premises networks when VNet injection or
Private Link aren't available, use ExpressRoute with Microsoft Peering when there
are no data exfiltration concerns.

＂

Don't replicate on-premises perimeter network (also known as DMZ, demilitarized
zone, and screened subnet) concepts and architectures into Azure.

＂

Ensure the communication between Azure PaaS services that have been injected
into a Virtual Network is locked down within the Virtual Network using user-defined
routes (UDRs) and network security groups (NSGs).

＂

Don't use VNet Service Endpoints when there are data exfiltration concerns, unless
NVA filtering is used.

＂

Don't enable VNet Service Endpoints by default on all subnets.＂

Consider the following recommendations to optimize reliability when configuring an
Azure Virtual Network:

Recommendation Description

Don't create Virtual Networks without planning the
required address space in advance.

Adding address space will cause an
outage once a Virtual Network is
connected through Virtual Network
peering.

Use VNet Service Endpoints to secure access to Azure
Platform as a Service (PaaS) services from within a
customer VNet.

Only when Private Link isn't available
and when there are no data exfiltration
concerns.

Access Azure PaaS services from on-premises through
ExpressRoute Private Peering.

Use either VNet injection for dedicated
Azure services or Azure Private Link for
available shared Azure services.

To access Azure PaaS services from on-premises
networks when VNet injection or Private Link aren't
available, use ExpressRoute with Microsoft Peering
when there are no data exfiltration concerns.

Avoids transit over the public internet.

Don't replicate on-premises perimeter network (also
known as DMZ, demilitarized zone, and screened
subnet) concepts and architectures into Azure.

Customers can get similar security
capabilities in Azure as on-premises, but
the implementation and architecture will
need to be adapted to the cloud.

Ensure the communication between Azure PaaS
services that have been injected into a Virtual Network
is locked down within the Virtual Network using user-
defined routes (UDRs) and network security groups
(NSGs).

Azure PaaS services that have been
injected into a Virtual Network still
perform management plane operations
using public IP addresses.

Configuration recommendations

Next step
Operational excellence and Azure Virtual Network

Operational excellence and Azure
Virtual Network
Article • 11/14/2023

A fundamental building block for your private network, Azure Virtual Network enables
Azure resources to securely communicate with each other, the internet, and on-premises
networks.

Key features of Azure Virtual Network include:

Communication with Azure resources
Communication with the internet
Communication with on-premises resources
Network traffic filtering

For more information, reference What is Azure Virtual Network?

To understand how Azure Virtual Network supports operational excellence, reference
the following topics:

Monitoring Azure Virtual Network
Monitoring Azure Virtual Network data reference
Azure Virtual Network concepts and best practices

The Virtual Network (VNet) includes the following design considerations for operational
excellence:

Overlapping IP address spaces across on-premises and Azure regions creates
major contention challenges.
While a Virtual Network address space can be added after creation, this process
requires an outage if the Virtual Network is already connected to another Virtual
Network through peering. An outage is necessary because the Virtual Network
peering is deleted and re-created.
Resizing of peered Virtual Networks is in public preview (August 20, 2021).
Some Azure services do require dedicated subnets, such as:

Azure Firewall
Azure Bastion
Virtual Network Gateway

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-network/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-between-azure-resources
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-with-the-internet
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#communicate-with-on-premises-resources
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview#filter-network-traffic
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/virtual-network/monitor-virtual-network
https://learn.microsoft.com/en-us/azure/virtual-network/monitor-virtual-network-reference#resource-logs
https://learn.microsoft.com/en-us/azure/virtual-network/concepts-and-best-practices
https://azure.microsoft.com/blog/how-to-resize-azure-virtual-networks-that-are-peered-now-in-preview/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-for-azure-services#services-that-can-be-deployed-into-a-virtual-network

Subnets can be delegated to certain services to create instances of that service
within the subnet.
Azure reserves five IP addresses within each subnet, which should be factored in
when sizing Virtual Networks and encompassed subnets.

Have you configured Azure Virtual Network with operational excellence in mind?

Checklist

Use Azure DDoS Standard Protection Plans to protect all public endpoints hosted
within customer Virtual Networks.

＂

Enterprise customers must plan for IP addressing in Azure to ensure there's no
overlapping IP address space across considered on-premises locations and Azure
regions.

＂

Use IP addresses from the address allocation for private internets (Request for
Comment (RFC) 1918).

＂

For environments with limited private IP addresses (RFC 1918) availability, consider
using IPv6.

＂

Don't create unnecessarily large Virtual Networks (for example: /16) to ensure
there's no unnecessary waste of IP address space.

＂

Don't create Virtual Networks without planning the required address space in
advance.

＂

Don't use public IP addresses for Virtual Networks, especially if the public IP
addresses don't belong to the customer.

＂

Use VNet Service Endpoints to secure access to Azure Platform as a Service (PaaS)
services from within a customer VNet.

＂

To address data exfiltration concerns with Service Endpoints, use Network Virtual
Appliance (NVA) filtering and VNet Service Endpoint Policies for Azure Storage.

＂

Don't implement forced tunneling to enable communication from Azure to Azure
resources.

＂

Access Azure PaaS services from on-premises through ExpressRoute Private Peering.＂

To access Azure PaaS services from on-premises networks when VNet injection or
Private Link aren't available, use ExpressRoute with Microsoft Peering when there
are no data exfiltration concerns.

＂

Don't replicate on-premises perimeter network (also known as DMZ, demilitarized
zone, and screened subnet) concepts and architectures into Azure.

＂

Ensure the communication between Azure PaaS services that have been injected
into a Virtual Network is locked down within the Virtual Network using user-defined
routes (UDRs) and network security groups (NSGs).

＂

Consider the following recommendations for operational excellence when configuring
an Azure Virtual Network:

Recommendation Description

Don't create Virtual Networks without planning the
required address space in advance.

Adding address space will cause an
outage once a Virtual Network is
connected through Virtual Network
peering.

Use VNet Service Endpoints to secure access to Azure
Platform as a Service (PaaS) services from within a
customer VNet.

Only when Private Link isn't available
and when there are no data exfiltration
concerns.

Access Azure PaaS services from on-premises through
ExpressRoute Private Peering.

Use either VNet injection for dedicated
Azure services or Azure Private Link for
available shared Azure services.

To access Azure PaaS services from on-premises
networks when VNet injection or Private Link aren't
available, use ExpressRoute with Microsoft Peering
when there are no data exfiltration concerns.

Avoids transit over the public internet.

Don't replicate on-premises perimeter network (also
known as DMZ, demilitarized zone, and screened
subnet) concepts and architectures into Azure.

Customers can get similar security
capabilities in Azure as on-premises, but
the implementation and architecture will
need to be adapted to the cloud.

Ensure the communication between Azure PaaS
services that have been injected into a Virtual Network
is locked down within the Virtual Network using user-
defined routes (UDRs) and network security groups
(NSGs).

Azure PaaS services that have been
injected into a Virtual Network still
perform management plane operations
using public IP addresses.

Don't use VNet Service Endpoints when there are data exfiltration concerns, unless
NVA filtering is used.

＂

Don't enable VNet Service Endpoints by default on all subnets.＂

Configuration recommendations

Next step
Reliability and ExpressRoute

Disks and cost optimization
Article • 11/14/2023

Azure managed disks are block-level storage volumes that are managed by Azure and
used with Azure Virtual Machines. Managed disks are like a physical disk in an on-
premises server, but these disks are virtualized.

Available disk types include:

Ultra disks
Premium solid-state drives (SSD)
Standard SSDs
Standard hard disk drives (HDD)

For more information about the different types of disks, reference Azure managed disk
types.

To understand how Azure managed disks are cost-effective solutions for your workload,
reference the following articles:

Overview of Azure Disk Backup
Understand how your reservation discount is applied to Azure disk storage
Reduce costs with Azure Disks Reservation

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure managed disks and cost
optimization.

Azure Disks include the following design considerations:

Use a shared disk for workload, such as SQL server failover cluster instance (FCI),
file server for general use (IW workload), and SAP ASCS/SCS.
Consider selective disk backup and restore for Azure VMs.
Premium storage also features free bursting, combined with an understanding of
workload patterns, offers an effective SKU selection and cost optimization strategy
for IaaS infrastructure, enabling high performance without excessive over-
provisioning and minimizing the cost of unused capacity.

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-types
https://learn.microsoft.com/en-us/azure/backup/disk-backup-overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/understand-disk-reservations?context=/azure/virtual-machines/context/context
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-reserved-capacity

Considerations Description

Use a shared disk for workload, such as
SQL server failover cluster instance (FCI),
file server for general use (IW workload),
and SAP ASCS/SCS.

You can use shared disks to enable cost-effective
clustering instead of setting up your own shared
disks through S2D (Storage Spaces Direct). Sample
workloads that would benefit from shared disks
include:
- SQL Server Failover Cluster Instances (FCI)
- Scale-out File Server (SoFS)
- File Server for General Use (IW workload)
- SAP ASCS/SCS

Have you configured your Azure managed disk with cost optimization in mind?

Consider the following recommendations to optimize costs when configuring your
Azure managed disk:

Recommendation Description

Configure data and log files on
different disks for database
workloads.

You can optimize IaaS DB workload performance by
configuring system, data, and log files to be on different disk
SKUs (leveraging Premium Disks for data and Ultra Disks for
logs satisfies most production scenarios). Ultra Disk cost and
performance can be optimized by taking advantage of
configuring capacity, IOPS, and throughput independently.
Also, you can dynamically configure these attributes. Example
workloads include:
- SQL on IaaS
- Cassandra DB
- Maria DB
- MySql and
- Mongo DB on IaaS

Use bursting for P20 and lower
disks for workloads, such as
batch jobs, workloads, which

Azure Disks offer various SKUs and sizes to satisfy different
workload requirements. Some of the more recent features
could help further optimize cost performance of existing disk
use cases. You can use disk bursting for Premium (disks P20

Checklist

Configure data and log files on different disks for database workloads.＂

Use bursting for P20 and lower disks for workloads, such as batch jobs, workloads,
which handle traffic spikes, and to improve OS boot time.

＂

Consider using Premium disks (P30 and greater).＂

Configuration recommendations

Recommendation Description

handle traffic spikes, and to
improve OS boot time.

and lower). Example scenarios that could benefit from this
feature include:
- Improving OS boot time
- Handling batch jobs
- Handling traffic spikes

Consider using Premium disks
(P30 and greater).

Premium Disks (P30 and greater) can be reserved (one or three
years) at a discounted price.

Optimize with managed disks. Determine your performance needs in combination with your
storage capacity needs, accounting for fluctuating workload
patterns. Knowing your needs allows you to determine what
disk type and disk size you need. Some higher performance
disk types offer extra cost optimization features and strategies.

Consider Ephemeral OS disks. Ephemeral OS disks provide top-tier performance at no extra
cost, but are non-persistent, have limited capacity, and are
restricted to OS and temp disk use only.

Next step
Event Grid and reliability

Event Grid and reliability
Article • 11/14/2023

Azure Event Grid lets you easily build applications with event-based architectures. This
solution has build-in support for events coming from Azure services, like storage blobs
and resource groups. Event Grid also has support for your own events, using custom
topics.

For more information about using Event Grid, reference Create and route custom events
with Azure Event Grid.

To understand how using Event Grid creates a more reliable workload, reference Server-
side geo disaster recovery in Azure Event Grid.

The following sections are specific to Azure Event Grid and reliability:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Azure Event Grid provides an uptime SLA. For more information, reference SLA for Event
Grid .

Have you configured Azure Event Grid with reliability in mind?

Design considerations

Checklist

Deploy an Event Grid instance per region, in case of a multi-region Azure solution.＂

Monitor Event Grid for failed event delivery.＂

Use batched events.＂

Event batches can't exceed 1MB in size.＂

Configure and optimize batch-size selection during load testing.＂

Ensure Event Grid messages are accepted with HTTP 200-204 responses only if
delivering to an endpoint that holds custom code.

＂

Monitor Event Grid for failed event publishing.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/event-grid/overview
https://learn.microsoft.com/en-us/azure/event-grid/custom-event-quickstart
https://learn.microsoft.com/en-us/azure/event-grid/geo-disaster-recovery
https://azure.microsoft.com/support/legal/sla/event-grid/v1_0/

Consider the following recommendations to optimize reliability when configuring Azure
Event Grid:

Recommendation Description

Monitor Event Grid for
failed event delivery.

The Delivery Failed metric will increase every time a message can't
be delivered to an event handler (timeout or a non- 200-204 HTTP
status code). If an event can't be lost, set up a Dead-Letter-Queue
(DLQ) storage account. A DLQ account is where events that can't be
delivered after the maximum retry count will be placed. Optionally,
implement a notification system on the DLQ storage account, for
example, by handling a new file event through Event Grid.

Use batched events in
high-throughput
scenarios.

The service will deliver a json array with multiple events to the
subscribers, instead of an array with one event. The consuming
application must be able to process these arrays.

Event batches can't
exceed 1MB in size.

If the message payload is large, only one or a few messages will fit in
the batch. The consuming service will need to process more event
batches. If your event has a large payload, consider storing it
elsewhere, such as in blob storage, and passing a reference in the
event. When integrating with third-party services through the
CloudEvents schema, it's not recommended to exceed 64KB events.

Configure and optimize
batch-size selection
during load testing.

Batch size selection depends on the payload size and the message
volume.

Monitor Event Grid for
failed event publishing.

The Unmatched metric will show messages that are published, but not
matched to any subscription. Depending on your application
architecture, the latter may be intentional.

To determine the Input Schema type for all available Event Grid topics, use the following
query:

SQL

To retrieve the Resource ID of existing private endpoints for Event Grid domains, use the
following query:

Source artifacts

Resources
| where type == 'microsoft.eventgrid/topics'
| project name, resourceGroup, location, subscriptionId,
properties['inputSchema']

SQL

To identify Public Network Access status for all available Event Grid domains, use the
following query:

SQL

To identify Firewall Rules for all public Event Grid domains, use the following query:

SQL

To identify Firewall Rules for all public Event Grid topics, use the following query:

SQL

To retrieve the Resource ID of existing private endpoints for Event Grid topics, use the
following query:

SQL

Resources
| where type == 'microsoft.eventgrid/domains' and
notnull(properties['privateEndpointConnections'])
| mvexpand properties['privateEndpointConnections']
| project-rename privateEndpointConnections =
properties_privateEndpointConnections
| project name, resourceGroup, location, subscriptionId,
privateEndpointConnections['properties']['privateEndpoint']['id']

Resources
| where type == 'microsoft.eventgrid/domains'
| project name, resourceGroup, location, subscriptionId,
properties['publicNetworkAccess']

Resources
| where type == 'microsoft.eventgrid/domains' and
properties['publicNetworkAccess'] == 'Enabled'
| project name, resourceGroup, location, subscriptionId,
properties['inboundIpRules']

Resources
| where type == 'microsoft.eventgrid/topics' and
properties['publicNetworkAccess'] == 'Enabled'
| project name, resourceGroup, location, subscriptionId,
properties['inboundIpRules']

To determine the Input Schema type for all available Event Grid domains, use the
following schema:

SQL

To identify Public Network Access status for all available Event Grid topics, use the
following query:

SQL

Resources
| where type == 'microsoft.eventgrid/topics' and
notnull(properties['privateEndpointConnections'])
| mvexpand properties['privateEndpointConnections']
| project-rename privateEndpointConnections =
properties_privateEndpointConnections
| project name, resourceGroup, location, subscriptionId,
privateEndpointConnections['properties']['privateEndpoint']['id']

Resources
| where type == 'microsoft.eventgrid/domains'
| project name, resourceGroup, location, subscriptionId,
properties['inputSchema']

Resources
| where type == 'microsoft.eventgrid/topics'
| project name, resourceGroup, location, subscriptionId,
properties['publicNetworkAccess']

Next step
Event Grid and operational excellence

Event Grid and operational excellence
Article • 11/14/2023

Azure Event Grid lets you easily build applications with event-based architectures. This
solution has build-in support for events coming from Azure services, like storage blobs
and resource groups. Event Grid also has support for your own events, using custom
topics.

For more information about using Event Grid, reference Create and route custom events
with Azure Event Grid.

To understand how using Event Grid promotes operational excellence for your workload,
reference Diagnostic logs for Event Grid topics and Event Grid domains.

The following sections are specific to Azure Event Grid and operational excellence:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Azure Event Grid provides an uptime SLA. For more information, reference SLA for Event
Grid .

Have you configured Azure Event Grid with operational excellence in mind?

Design considerations

Checklist

Monitor Event Grid for failed event delivery.＂

Use batched events.＂

Event batches can't exceed 1MB in size.＂

Configure and optimize batch-size selection during load testing.＂

Ensure Event Grid messages are accepted with HTTP 200-204 responses only if
delivering to an endpoint that holds custom code.

＂

Monitor Event Grid for failed event publishing.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/event-grid/overview
https://learn.microsoft.com/en-us/azure/event-grid/custom-event-quickstart
https://learn.microsoft.com/en-us/azure/event-grid/diagnostic-logs
https://azure.microsoft.com/support/legal/sla/event-grid/v1_0/

Consider the following recommendations to optimize operational excellence when
configuring Azure Event Grid:

Recommendation Description

Monitor Event Grid for
failed event delivery.

The Delivery Failed metric will increase every time a message can't
be delivered to an event handler (timeout or a non- 200-204 HTTP
status code). If an event can't be lost, set up a Dead-Letter-Queue
(DLQ) storage account. A DLQ account is where events that can't be
delivered after the maximum retry count will be placed. Optionally,
implement a notification system on the DLQ storage account, for
example, by handling a new file event through Event Grid.

Use batched events in
high-throughput
scenarios.

The service will deliver a json array with multiple events to the
subscribers, instead of an array with one event. The consuming
application must be able to process these arrays.

Event batches can't
exceed 1MB in size.

If the message payload is large, only one or a few messages will fit in
the batch. The consuming service will need to process more event
batches. If your event has a large payload, consider storing it
elsewhere, such as in blob storage, and passing a reference in the
event. When integrating with third-party services through the
CloudEvents schema, it's not recommended to exceed 64KB events.

Configure and optimize
batch-size selection
during load testing.

Batch size selection depends on the payload size and the message
volume.

Monitor Event Grid for
failed event publishing.

The Unmatched metric will show messages that are published, but not
matched to any subscription. Depending on your application
architecture, the latter may be intentional.

To determine the Input Schema type for all available Event Grid topics, use the following
query:

SQL

To retrieve the Resource ID of existing private endpoints for Event Grid domains, use the
following query:

Source artifacts

Resources
| where type == 'microsoft.eventgrid/topics'
| project name, resourceGroup, location, subscriptionId,
properties['inputSchema']

SQL

To identify Public Network Access status for all available Event Grid domains, use the
following query:

SQL

To identify Firewall Rules for all public Event Grid domains, use the following query:

SQL

To identify Firewall Rules for all public Event Grid topics, use the following query:

SQL

To retrieve the Resource ID of existing private endpoints for Event Grid topics, use the
following query:

SQL

Resources
| where type == 'microsoft.eventgrid/domains' and
notnull(properties['privateEndpointConnections'])
| mvexpand properties['privateEndpointConnections']
| project-rename privateEndpointConnections =
properties_privateEndpointConnections
| project name, resourceGroup, location, subscriptionId,
privateEndpointConnections['properties']['privateEndpoint']['id']

Resources
| where type == 'microsoft.eventgrid/domains'
| project name, resourceGroup, location, subscriptionId,
properties['publicNetworkAccess']

Resources
| where type == 'microsoft.eventgrid/domains' and
properties['publicNetworkAccess'] == 'Enabled'
| project name, resourceGroup, location, subscriptionId,
properties['inboundIpRules']

Resources
| where type == 'microsoft.eventgrid/topics' and
properties['publicNetworkAccess'] == 'Enabled'
| project name, resourceGroup, location, subscriptionId,
properties['inboundIpRules']

To determine the Input Schema type for all available Event Grid domains, use the
following schema:

SQL

To identify Public Network Access status for all available Event Grid topics, use the
following query:

SQL

Resources
| where type == 'microsoft.eventgrid/topics' and
notnull(properties['privateEndpointConnections'])
| mvexpand properties['privateEndpointConnections']
| project-rename privateEndpointConnections =
properties_privateEndpointConnections
| project name, resourceGroup, location, subscriptionId,
privateEndpointConnections['properties']['privateEndpoint']['id']

Resources
| where type == 'microsoft.eventgrid/domains'
| project name, resourceGroup, location, subscriptionId,
properties['inputSchema']

Resources
| where type == 'microsoft.eventgrid/topics'
| project name, resourceGroup, location, subscriptionId,
properties['publicNetworkAccess']

Next step
Event Hubs and reliability

Event Hubs and reliability
Article • 11/14/2023

Azure Event Hubs is a scalable event processing service that ingests and processes large
volumes of events and data, with low latency and high reliability. It can receive and
process millions of events per second. Data sent to an event hub can be transformed
and stored by using any real-time analytics provider or batching and storage adapters.

For more information about using Event Hubs, reference the Azure Event Hubs
documentation to learn how to use Event Hubs to ingest millions of events per second
from connected devices and applications.

To understand how using Event Hubs creates a more reliable workload, reference Azure
Event Hubs - Geo-disaster recovery.

The following sections are specific to Azure Event Hubs and reliability:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Azure Event Hubs provides an uptime SLA. For more information, reference SLA for
Event Hubs .

Have you configured Azure Event Hubs with reliability in mind?

Design considerations

Checklist

Create SendOnly and ListenOnly policies for the event publisher and consumer,
respectively.

＂

When using the SDK to send events to Event Hubs, ensure the exceptions thrown
by the retry policy (EventHubsException or OperationCancelledException) are
properly caught.

＂

In high-throughput scenarios, use batched events.＂

Every consumer can read events from one to 32 partitions.＂

When developing new applications, use EventProcessorClient (.NET and Java) or
EventHubConsumerClient (Python and JavaScript) as the client SDK.

＂

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://learn.microsoft.com/en-us/azure/event-hubs/
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-geo-dr?tabs=portal
https://azure.microsoft.com/support/legal/sla/event-hubs/v1_0/

Consider the following recommendations to optimize reliability when configuring Azure
Event Hubs:

Recommendation Description

When using the SDK to send events to
Event Hubs, ensure the exceptions
thrown by the retry policy
(EventHubsException or
OperationCancelledException) are
properly caught.

When using HTTPS , ensure a proper retry pattern is
implemented.

In high-throughput scenarios, use
batched events.

The service will deliver a json array with multiple
events to the subscribers, instead of an array with
one event. The consuming application must process
these arrays.

Every consumer can read events from
one to 32 partitions.

To achieve maximum scale on the side of the
consuming application, every consumer should read
from a single partition.

When developing new applications, use
EventProcessorClient (.NET and Java) or
EventHubConsumerClient (Python and
JavaScript) as the client SDK.

EventProcessorHost has been deprecated.

As part of your solution-wide availability
and disaster recovery strategy, consider
enabling the Event Hubs geo disaster-
recovery option.

This option allows the creation of a secondary
namespace in a different region. Only the active
namespace receives messages at any time. Messages
and events aren't replicated to the secondary region.
The RTO for the regional failover is up to 30 minutes.

As part of your solution-wide availability and disaster recovery strategy, consider
enabling the Event Hubs geo disaster-recovery option.

＂

When a solution has a large number of independent event publishers, consider
using Event Publishers for fine-grained access control.

＂

Don't publish events to a specific partition.＂

When publishing events frequently, use the AMQP protocol when possible.＂

The number of partitions reflect the degree of downstream parallelism you can
achieve.

＂

Ensure each consuming application uses a separate consumer group and only one
active receiver per consumer group is in place.

＂

When using the Capture feature, carefully consider the configuration of the time
window and file size, especially with low event volumes.

＂

Configuration recommendations

Recommendation Description

Confirm this RTO aligns with the requirements of the
customer and fits in the broader availability strategy.
If a higher RTO is required, consider implementing a
client-side failover pattern.

When a solution has a large number of
independent event publishers, consider
using Event Publishers for fine-grained
access control.

Event Publishers automatically set the partition key to
the publisher name, so this feature should only be
used if the events originate from all publishers
evenly.

Don't publish events to a specific
partition.

If ordering events is essential, implement ordering
downstream or use a different messaging service
instead.

When publishing events frequently, use
the AMQP protocol when possible.

AMQP has higher network costs when initializing the
session, but HTTPS requires TLS overhead for every
request. AMQP has higher performance for frequent
publishers.

The number of partitions reflect the
degree of downstream parallelism you
can achieve.

For maximum throughput, use the maximum number
of partitions (32) when creating the Event Hub. The
maximum number of partitions will allow you to scale
up to 32 concurrent processing entities and will offer
the highest send and receive availability.

When using the Capture feature, carefully
consider the configuration of the time
window and file size, especially with low
event volumes.

Data Lake will charge for minimal file size for storage
(gen1) or minimal transaction size (gen2). If you set
the time window so low that the file hasn't reached
minimum size, you'll incur extra cost.

To find Event Hubs namespaces with Basic SKU, use the following query:

SQL

Source artifacts

Resources
| where type == 'microsoft.eventhub/namespaces'
| where sku.name == 'Basic'
| project resourceGroup, name, sku.name

Next step
Event Hubs and operational excellence

Event Hubs and operational excellence
Article • 11/14/2023

Azure Event Hubs is a scalable event processing service that ingests and processes large
volumes of events and data, with low latency and high reliability. It can receive and
process millions of events per second. Data sent to an event hub can be transformed
and stored by using any real-time analytics provider or batching and storage adapters.

For more information about using Event Hubs, reference the Azure Event Hubs
documentation to learn how to use Event Hubs to ingest millions of events per second
from connected devices and applications.

To understand ways using Event Hubs helps you achieve operational excellence for your
workload, reference the following articles:

Monitor Azure Event Hubs
Stream Azure Diagnostics data using Event Hubs
Scaling with Event Hubs

The following sections are specific to Azure Event Hubs and operational excellence:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Azure Event Hubs provides an uptime SLA. For more information, reference SLA for
Event Hubs .

Have you configured Azure Event Hubs with operational excellence in mind?

Design considerations

Checklist

Create SendOnly and ListenOnly policies for the event publisher and consumer,
respectively.

＂

When using the SDK to send events to Event Hubs, ensure the exceptions thrown
by the retry policy (EventHubsException or OperationCancelledException) are
properly caught.

＂

In high-throughput scenarios, use batched events.＂

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://learn.microsoft.com/en-us/azure/event-hubs/
https://learn.microsoft.com/en-us/azure/event-hubs/monitor-event-hubs
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/diagnostics-extension-stream-event-hubs
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-scalability
https://azure.microsoft.com/support/legal/sla/event-hubs/v1_0/

Consider the following recommendations to optimize reliability when configuring Azure
Event Hubs:

Recommendation Description

When using the SDK to send events to
Event Hubs, ensure the exceptions
thrown by the retry policy
(EventHubsException or
OperationCancelledException) are
properly caught.

When using HTTPS , ensure a proper retry pattern is
implemented.

In high-throughput scenarios, use
batched events.

The service will deliver a json array with multiple
events to the subscribers, instead of an array with
one event. The consuming application must process
these arrays.

Every consumer can read events from
one to 32 partitions.

To achieve maximum scale on the side of the
consuming application, every consumer should read
from a single partition.

When developing new applications, use
EventProcessorClient (.NET and Java) or
EventHubConsumerClient (Python and
JavaScript) as the client SDK.

EventProcessorHost has been deprecated.

Every consumer can read events from one to 32 partitions.＂

When developing new applications, use EventProcessorClient (.NET and Java) or
EventHubConsumerClient (Python and JavaScript) as the client SDK.

＂

As part of your solution-wide availability and disaster recovery strategy, consider
enabling the Event Hubs geo disaster-recovery option.

＂

When a solution has a large number of independent event publishers, consider
using Event Publishers for fine-grained access control.

＂

Don't publish events to a specific partition.＂

When publishing events frequently, use the AMQP protocol when possible.＂

The number of partitions reflect the degree of downstream parallelism you can
achieve.

＂

Ensure each consuming application uses a separate consumer group and only one
active receiver per consumer group is in place.

＂

When using the Capture feature, carefully consider the configuration of the time
window and file size, especially with low event volumes.

＂

Configuration recommendations

Recommendation Description

As part of your solution-wide availability
and disaster recovery strategy, consider
enabling the Event Hubs geo disaster-
recovery option.

This option allows the creation of a secondary
namespace in a different region. Only the active
namespace receives messages at any time. Messages
and events aren't replicated to the secondary region.
The RTO for the regional failover is up to 30 minutes.
Confirm this RTO aligns with the requirements of the
customer and fits in the broader availability strategy.
If a higher RTO is required, consider implementing a
client-side failover pattern.

When a solution has a large number of
independent event publishers, consider
using Event Publishers for fine-grained
access control.

Event Publishers automatically set the partition key to
the publisher name, so this feature should only be
used if the events originate from all publishers
evenly.

Don't publish events to a specific
partition.

If ordering events is essential, implement ordering
downstream or use a different messaging service
instead.

When publishing events frequently, use
the AMQP protocol when possible.

AMQP has higher network costs when initializing the
session, but HTTPS requires TLS overhead for every
request. AMQP has higher performance for frequent
publishers.

The number of partitions reflect the
degree of downstream parallelism you
can achieve.

For maximum throughput, use the maximum number
of partitions (32) when creating the Event Hub. The
maximum number of partitions will allow you to scale
up to 32 concurrent processing entities and will offer
the highest send and receive availability.

When using the Capture feature, carefully
consider the configuration of the time
window and file size, especially with low
event volumes.

Data Lake will charge for minimal file size for storage
(gen1) or minimal transaction size (gen2). If you set
the time window so low that the file hasn't reached
minimum size, you'll incur extra cost.

To find Event Hubs namespaces with Basic SKU, use the following query:

SQL

Source artifacts

Resources
| where type == 'microsoft.eventhub/namespaces'
| where sku.name == 'Basic'
| project resourceGroup, name, sku.name

Next step
Service Bus and reliability

Azure Well-Architected Framework
review - Azure ExpressRoute
Article • 11/14/2023

This article provides architectural best practice for Azure ExpressRoute. The guidance is
based on the five pillars of the architecture excellence:

Reliability
Security
Cost optimization
Operational excellence
Performance efficiency

We assume that you have working knowledge of Azure ExpressRoute and are well
versed with all of its features. For more information, see Azure ExpressRoute.

For context, consider reviewing a reference architecture that reflects these
considerations in its design. We recommend that you start with Cloud Adoption
Framework Ready methodology's guidance Connect to Azure and Architect for hybrid
connectivity with Azure ExpressRoute. For low-code application architectures, we
recommend reviewing Enabling ExpressRoute for Power Platform when planning and
configuring ExpressRoute for use with Microsoft Power Platform.

In the cloud, we acknowledge that failures happen. Instead of trying to prevent failures
altogether, the goal is to minimize the effects of a single failing component. Use the
following information to minimize down time to and from Azure when establishing
connectivity using Azure ExpressRoute.

When discussing about reliability with Azure ExpressRoute it's important to taking into
consideration bandwidth usage, physical layout of the network, and disaster recovery if
there's failures. Azure ExpressRoute is capable of achieving these design considerations
and have recommendations for each item in the checklist.

In the design checklist and list of recommendations below, information is presented in
order for you to design a highly available network between your Azure environment and
on-premises network.

Prerequisites

Reliability

https://learn.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/connectivity-to-azure
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://learn.microsoft.com/en-us/power-platform/guidance/expressroute/overview

As you make design choices for Azure ExpressRoute, review the design principles for
adding reliability to the architecture.

Explore the following table of recommendations to optimize your ExpressRoute
configuration for Reliability.

Recommendation Benefit

Plan for ExpressRoute
circuit or
ExpressRoute Direct

During the initial planning phase, you want to decide whether you want
to configure an ExpressRoute circuit or an ExpressRoute Direct
connection. An ExpressRoute circuit allows a private dedicated
connection into Azure with the help of a connectivity provider.
ExpressRoute Direct allows you to extend on-premises network directly
into the Microsoft network at a peering location. You also need to
identify the bandwidth requirement and the SKU type requirement for
your business needs.

Physical layer diversity For better resiliency, plan to have multiple paths between the on-
premises edge and the peering locations (provider/Microsoft edge
locations). This configuration can be achieved by going through different
service provider or through a different location from the on-premises
network.

Plan for geo-
redundant circuits

To plan for disaster recovery, set up ExpressRoute circuits in more than
one peering locations. You can create circuits in peering locations in the
same metro or different metro and choose to work with different service

Design checklist

Select between ExpressRoute circuit or ExpressRoute Direct for business
requirements.

＂

Configure a diverse physical layer network to the service provider.＂

Configure ExpressRoute circuits with different service provider to have diverse
routing paths.

＂

Configure Active-Active ExpressRoute connections between on-premises and Azure.＂

Set up availability zone aware ExpressRoute Virtual Network Gateways.＂

Configure ExpressRoute circuits in a different location than the on-premises
network.

＂

Configure ExpressRoute Virtual Network Gateways in different regions.＂

Configure site-to-site VPN as a backup to ExpressRoute private peering.＂

Set up monitoring for ExpressRoute circuit and ExpressRoute Virtual Network
Gateway health.

＂

Configure service health to receive ExpressRoute circuit maintenance notification.＂

Recommendations

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Recommendation Benefit

providers for diverse paths through each circuit. For more information,
see Designing for disaster recovery and Designing for high availability.

Plan for Active-Active
connectivity

ExpressRoute dedicated circuits guarantee 99.95% availability when an
active-active connectivity is configured between on-premises and Azure.
This mode provides higher availability of your Expressroute connection.
It's also recommended to configure BFD for faster failover if there's a link
failure on a connection.

Planning for Virtual
Network Gateways

Create availability zone aware Virtual Network Gateway for higher
resiliency and plan for Virtual Network Gateways in different region for
disaster recovery and high availability.

Monitor circuits and
gateway health

Set up monitoring and alerts for ExpressRoute circuits and Virtual
Network Gateway health based on various metrics available.

Enable service health ExpressRoute uses service health to notify about planned and unplanned
maintenance. Configuring service health will notify you about changes
made to your ExpressRoute circuits.

For more suggestions, see Principles of the reliability pillar.

Azure Advisor provides many recommendations for ExpressRoute circuits as they relate
to reliability. For example, Azure Advisor can detect:

ExpressRoute gateways in which only a single ExpressRoute circuit is deployed,
instead of multiple. Multiple ExpressRoute circuits are recommended for add
resiliency for the peering location.
ExpressRoute circuits that aren't being observed by Connection Monitor, as end-
to-end monitoring of your ExpressRoute circuit is critical for reliability insights.
Network topologies involving multiple peering locations that would benefit from
ExpressRoute Global Reach to improve disaster recovery designs for on-premises
connectivity to account for unplanned connectivity loss.

Security is one of the most important aspects of any architecture. ExpressRoute provides
features to employ both the principle of least privilege and defense-in-defense. We
recommend you review the Security design principles.

Security

Design checklist

Configure Activity log to send logs to archive.＂

https://learn.microsoft.com/en-us/azure/expressroute/designing-for-disaster-recovery-with-expressroute-privatepeering
https://learn.microsoft.com/en-us/azure/expressroute/designing-for-high-availability-with-expressroute
https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles

Explore the following table of recommendations to optimize your ExpressRoute
configuration for security.

Recommendation Benefit

Configure Activity log to
send logs to archive

Activity logs provide insights into operations that were performed at
the subscription level for ExpressRoute resources. With Activity logs,
you can determine who and when an operation was performed at the
control plane. Data retention is only 90 days and required to be stored
in Log Analytics, Event Hubs or a storage account for archive.

Maintain inventory of
administrative accounts

Use Azure RBAC to configure roles to limit user accounts that can add,
update, or delete peering configuration on an ExpressRoute circuit.

Configure MD5 hash on
ExpressRoute circuit

During configuration of private peering or Microsoft peering, apply an
MD5 hash to secure messages between the on-premises route and the
MSEE routers.

Configure MACSec for
ExpressRoute Direct
resources

Media Access Control security is a point-to-point security at the data
link layer. ExpressRoute Direct supports configuring MACSec to
prevent security threats to protocols such as ARP, DHCP, LACP not
normally secured on the Ethernet link. For more information on how to
configure MACSec, see MACSec for ExpressRoute Direct ports.

Encrypt traffic using
IPsec

Configure a Site-to-site VPN tunnel over your ExpressRoute circuit to
encrypt data transferring between your on-premises network and
Azure virtual network. You can configure a tunnel using private
peering or using Microsoft peering.

For more suggestions, see Principles of the security pillar.

Cost optimization is about looking at ways to reduce unnecessary expenses and
improve operational efficiencies. We recommend you review the Cost optimization
design principle and Plan and manage costs for Azure ExpressRoute.

Maintain an inventory of administrative accounts with access to ExpressRoute
resources.

＂

Configure MD5 hash on ExpressRoute circuit.＂

Configure MACSec for ExpressRoute Direct resources.＂

Encrypt traffic over private peering and Microsoft peering for virtual network traffic.＂

Recommendations

Cost optimization

https://learn.microsoft.com/en-us/azure/expressroute/expressroute-about-encryption
https://learn.microsoft.com/en-us/azure/vpn-gateway/site-to-site-vpn-private-peering?toc=%2Fazure%2Fexpressroute%2Ftoc.json
https://learn.microsoft.com/en-us/azure/expressroute/site-to-site-vpn-over-microsoft-peering
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/azure/expressroute/plan-manage-cost

Explore the following table of recommendations to optimize your ExpressRoute
configuration for Cost optimization.

Recommendation Benefit

Familiarize yourself
with ExpressRoute
pricing

For information about ExpressRoute pricing, see Understand pricing for
Azure ExpressRoute . You can also use the Pricing calculator .

Ensure that the options are adequately sized to meet the capacity
demand and deliver expected performance without wasting resources.

Determine SKU and
bandwidth required

The way you're charged for your ExpressRoute usage varies between the
three different SKU types. With Local SKU, you're automatically charged
with an Unlimited data plan. With Standard and Premium SKU, you can
select between a Metered or an Unlimited data plan. All ingress data are
free of charge except when using the Global Reach add-on. It's
important to understand which SKU types and data plan works best for
your workload to best optimize cost and budget. For more information
resizing ExpressRoute circuit, see upgrading ExpressRoute circuit
bandwidth.

Determine the
ExpressRoute virtual
network gateway size

ExpressRoute virtual network gateways are used to pass traffic into a
virtual network over private peering. Review the performance and scale
needs of your preferred Virtual Network Gateway SKU. Select the
appropriate gateway SKU on your on-premises to Azure workload.

Monitor cost and
create budget alerts

Monitor the cost of your ExpressRoute circuit and create alerts for
spending anomalies and overspending risks. For more information, see
Monitoring ExpressRoute costs.

Deprovision and
delete ExpressRoute
circuits no longer in
use.

ExpressRoute circuits are charged from the moment they're created. To
reduce unnecessary cost, deprovision the circuit with the service
provider and delete the ExpressRoute circuit from your subscription. For
steps on how to remove an ExpressRoute circuit, see Deprovisioning an
ExpressRoute circuit.

For more suggestions, see Design review checklist for Cost Optimization.

Design checklist

Familiarize yourself with ExpressRoute pricing.＂

Determine the ExpressRoute circuit SKU and bandwidth required.＂

Determine the ExpressRoute virtual network gateway size required.＂

Monitor cost and create budget alerts.＂

Deprovision ExpressRoute circuits no longer in use.＂

Recommendations

https://azure.microsoft.com/pricing/details/expressroute/
https://azure.microsoft.com/pricing/calculator/
https://learn.microsoft.com/en-us/azure/expressroute/about-upgrade-circuit-bandwidth
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways
https://learn.microsoft.com/en-us/azure/expressroute/plan-manage-cost#monitor-costs
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-howto-circuit-portal-resource-manager#delete

Azure Advisor can detect ExpressRoute circuits that have been deployed for a significant
time but have a provider status of Not Provisioned. Circuits in this state aren't
operational; and removing the unused resource will reduce unnecessary costs.

Monitoring and diagnostics are crucial. Not only can you measure performance statistics
but also use metrics troubleshoot and remediate issues quickly. We recommend you
review the Operational excellence design principles.

Explore the following table of recommendations to optimize your ExpressRoute
configuration for Operational excellence.

Recommendation Benefit

Configure connection
monitoring

Connection monitoring allows you to monitor connectivity between your
on-premises resources and Azure over the ExpressRoute private peering
and Microsoft peering connection. Connection monitor can detect
networking issues by identifying where along the network path the
problem is and help you quickly resolve configuration or hardware
failures.

Configure Service
Health

Set up Service Health notifications to alert when planned and upcoming
maintenance is happening to all ExpressRoute circuits in your
subscription. Service Health also displays past maintenance along with
RCA if an unplanned maintenance were to occur.

Review metrics with
Network Insights

ExpressRoute Insights with Network Insights allow you to review and
analyze ExpressRoute circuits, gateways, connections metrics and health
dashboards. ExpressRoute Insights also provide a topology view of your
ExpressRoute connections where you can view details of your peering
components all in a single place.

Metrics available:

Operational excellence

Design checklist

Configure connection monitoring between your on-premises and Azure network.＂

Configure Service Health for receiving notification.＂

Review metrics and dashboards available through ExpressRoute Insights using
Network Insights.

＂

Review ExpressRoute resource metrics.＂

Recommendations

https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/expressroute/how-to-configure-connection-monitor
https://learn.microsoft.com/en-us/azure/expressroute/maintenance-alerts
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-network-insights

Recommendation Benefit

- Availability
- Throughput
- Gateway metrics

Review ExpressRoute
resource metrics

ExpressRoute uses Azure Monitor to collect metrics and create alerts base
on your configuration. Metrics are collected for ExpressRoute circuits,
ExpressRoute gateways, ExpressRoute gateway connections, and
ExpressRoute Direct. These metrics are useful for diagnosing connectivity
problems and understanding the performance of your ExpressRoute
connection.

For more suggestions, see Principles of the operational excellence pillar.

Performance efficiency is the ability of your workload to scale to meet the demands
placed on it by users in an efficient manner. We recommend you review the
Performance efficiency principles.

Explore the following table of recommendations to optimize your ExpressRoute
configuration for performance efficiency.

Recommendation Benefit

Test ExpressRoute gateway
performance to meet work
load requirements.

Use Azure Connectivity Toolkit to test performance across your
ExpressRoute circuit to understand bandwidth capacity and
latency of your network connection.

Increase the size of the
ExpressRoute gateway.

Upgrade to a higher gateway SKU for improved throughput
performance between on-premises and Azure environment.

Upgrade ExpressRoute circuit
bandwidth

Upgrade your circuit bandwidth to meet your work load
requirements. Circuit bandwidth is shared between all virtual

Performance efficiency

Design checklist

Test ExpressRoute gateway performance to meet work load requirements.＂

Increase the size of the ExpressRoute gateway.＂

Upgrade the ExpressRoute circuit bandwidth.＂

Enable ExpressRoute FastPath for higher throughput.＂

Monitor the ExpressRoute circuit and gateway metrics.＂

Recommendations

https://learn.microsoft.com/en-us/azure/expressroute/expressroute-monitoring-metrics-alerts
https://learn.microsoft.com/en-us/azure/well-architected/devops/principles
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-troubleshooting-network-performance#azurect---the-azure-connectivity-toolkit
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways
https://learn.microsoft.com/en-us/azure/expressroute/about-upgrade-circuit-bandwidth

Recommendation Benefit

networks connected to the ExpressRoute circuit. Depending on
your work load, one or more virtual networks can use up all the
bandwidth on the circuit.

Enable ExpressRoute FastPath
for higher throughput

If you're using an Ultra performance or an ErGW3AZ virtual
network gateway, you can enable FastPath to improve the data
path performance between your on-premises network and Azure
virtual network.

Monitor ExpressRoute circuit
and gateway metrics

Set up alerts base on ExpressRoute metrics to proactively notify
you when a certain threshold is met. These metrics are useful to
understand anomalies that can happen with your ExpressRoute
connection such as outages and maintenance happening to your
ExpressRoute circuits.

For more suggestions, see Principles of the performance efficiency pillar.

Azure Advisor will offer a recommendation to upgrade your ExpressRoute circuit
bandwidth to accommodate usage when your circuit has recently been consuming over
90% of your procured bandwidth. If your traffic exceeds your allocated bandwidth, you’ll
experience dropped packets, which can lead to significant performance or reliability
impact.

Azure Policy doesn't provide any built-in policies for ExpressRoute, but custom policies
can be created to help govern how ExpressRoute circuits should match your desired end
state, such as SKU choice, peering type, peering configurations and so on.

Traditional Azure network topology
Virtual WAN network topology (Microsoft-managed)

Configure an ExpressRoute circuit or ExpressRoute Direct port to establish
communication between your on-premises network and Azure.

Azure Policy

Additional resources

Cloud Adoption Framework guidance

Next steps

https://learn.microsoft.com/en-us/azure/expressroute/about-upgrade-circuit-bandwidth
https://learn.microsoft.com/en-us/azure/expressroute/about-fastpath
https://learn.microsoft.com/en-us/azure/expressroute/monitor-expressroute
https://learn.microsoft.com/en-us/azure/well-architected/scalability/principles
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/traditional-azure-networking-topology
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/traditional-azure-networking-topology
https://learn.microsoft.com/en-us/azure/expressroute/expressroute-howto-circuit-portal-resource-manager
https://learn.microsoft.com/en-us/azure/expressroute/how-to-expressroute-direct-portal

Azure Functions and security
Article • 11/14/2023

Azure Functions is a cloud service available on-demand that provides all the continually
updated infrastructure and resources needed to run your applications. Functions allow
you to write less code, maintain less infrastructure, and save on costs. Instead of
worrying about deploying and maintaining servers, the cloud infrastructure provides all
the up-to-date resources needed to keep your applications securely running.

For more information related to network security, reference Securing Azure Functions.

The following sections include a design consideration checklist and recommendations
specific to Azure Functions, and security.

Have you designed your workload and configured Azure Functions with security in
mind?

The following table reflects design consideration recommendations and descriptions
related to Azure Functions:

Azure Functions
Design
Recommendations

Description

Evaluate if Azure
Functions requires
HTTP trigger.

Azure Functions supports multiple specific triggers and bindings. These
include Azure Blob storage, Azure Cosmos DB, Azure Service Bus, and
many more. If HTTP trigger is needed, then consider protecting that
HTTP endpoint like any other web application. Common protection
measures include keeping HTTP endpoint internal to specific Azure
virtual networks by using Private endpoint connections or service
endpoints. Consider using guidance available on Azure Functions
networking options for more information. If Functions HTTP endpoint

Design consideration checklist

Evaluate if Azure Functions requires HTTP trigger.＂

Treat Azure Functions code just like any other code.＂

Use guidance available on Securing Azure Functions.＂

Consider using Azure Functions Proxy to act as a facade.＂

Design consideration recommendations

https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options#private-endpoint-connections
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options#use-service-endpoints
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts
https://learn.microsoft.com/en-us/azure/azure-functions/functions-proxies

Azure Functions
Design
Recommendations

Description

will be exposed to internet, then it's recommended to secure the
endpoint behind a web application firewall (WAF).

Treat Azure Functions
code just like any
other code.

Subject Azure Functions code to code scanning tools that are integrated
with CI/CD pipeline.

Use guidance available
on Securing Azure
Functions.

This guidance addresses key security concerns such as operations,
deployment, and network security.

Consider using Azure
Functions Proxy to act
as a facade.

Functions Proxy can inspect and modify incoming requests and
responses.

Next step
Azure Service Fabric and reliability

https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options#use-service-endpoints
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts
https://learn.microsoft.com/en-us/azure/azure-functions/functions-proxies

IoT Hub and reliability
Article • 11/14/2023

Azure IoT Hub is a managed service hosted in the cloud that acts as a central message
hub for communication between an IoT application and its attached devices. You can
connect millions of devices and their backend solutions reliably and securely. Almost
any device can be connected to an IoT Hub.

IoT Hub supports monitoring to help you track device creation, device connections, and
device failures.

IoT Hub also supports the following messaging patterns:

Device-to-cloud telemetry
Uploading files from devices
Request-reply methods to control your devices from the cloud

For more information about IoT Hub, reference IoT Concepts and Azure IoT Hub.

To understand how IoT Hub supports a reliable workload, reference the following topics:

IoT Hub high availability and disaster recovery
How to achieve cross-region High Availability with IoT Hub
How to clone an Azure IoT Hub to another region

The following sections are specific to Azure IoT Hub and reliability:

Design considerations
Configuration checklist
Recommended configuration options

For more information about the Azure IoT Hub Service Level Agreement, reference SLA
for Azure IoT Hub .

Have you configured Azure IoT Hub with reliability in mind?

Design considerations

Checklist

Provision a second IoT Hub in another region and have routing logic on the device.＂

Use the AMQP or MQTT protocol when sending events frequently.＂

https://learn.microsoft.com/en-us/azure/iot-hub/
https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#achieve-cross-region-ha
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-how-to-clone
https://azure.microsoft.com/support/legal/sla/iot-hub/v1_2/

Consider the following recommendations to optimize reliability when configuring Azure
IoT Hub:

Recommendation Description

Provision a second IoT Hub in another
region and have routing logic on the
device.

These configurations can be further enhanced with a
Concierge Service.

Use the AMQP or MQTT protocol when
sending events frequently.

AMQP and MQTT have higher network costs when
initializing the session, however HTTPS requires extra
TLS overhead for every request. AMQP and MQTT have
higher performance for frequent publishers.

Use only certificates validated by a root
CA in the production environment if
you're using X.509 certificates for the
device connection.

Make sure you have processes in place to update the
certificate before they expire.

For maximum throughput, use the
maximum number of partitions (32)
when creating the IoT Hub, if you're
planning to use the built-in endpoint.

The number of device-to-cloud partitions for the
Event Hub-compatible endpoint reflect the degree of
downstream parallelism you can achieve. This will
allow you to scale up to 32 concurrent processing

Use only certificates validated by a root CA in the production environment if you're
using X.509 certificates for the device connection.

＂

For maximum throughput, use the maximum number of partitions (32) when
creating the IoT Hub, if you're planning to use the built-in endpoint.

＂

For scaling, increase the tier and allocated IoT Hub units instead of adding more
than one IoT Hub per region.

＂

In high-throughput scenarios, use batched events.＂

If you require the minimum possible latency, don't use routing and read the events
from the built-in endpoint.

＂

As part of your solution-wide availability and disaster recovery strategy, consider
using the IoT Hub cross-region Disaster Recovery option.

＂

When reading device telemetry from the built-in Event Hub-compatible endpoint,
refer to the Event Hub consumers recommendation.

＂

When using an SDK to send events to IoT Hubs, ensure the exceptions thrown by
the retry policy (EventHubsException or OperationCancelledException) are properly
caught.

＂

To avoid telemetry interruption due to throttling and a fully used quota, consider
adding a custom auto-scaling solution.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#achieve-cross-region-ha
https://learn.microsoft.com/en-us/azure/iot-hub/tutorial-x509-scripts#get-x509-ca-certificates
https://learn.microsoft.com/en-us/azure/iot-hub/tutorial-x509-scripts#get-x509-ca-certificates
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#cross-region-dr
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling#auto-scale

Recommendation Description

entities and will offer the highest send and receive
availability. This number can't be changed after
creation.

For scaling, increase the tier and allocated
IoT Hub units instead of adding more
than one IoT Hub per region.

Adding more than one IoT Hub per region doesn't
offer extra resiliency because all hubs can run on the
same underlying cluster.

In high-throughput scenarios, use
batched events.

The service will deliver an array with multiple events
to the consumers, instead of an array with one event.
The consuming application must process these
arrays.

If you require the minimum possible
latency, don't use routing and read the
events from the built-in endpoint.

When using message routing in IoT Hub, latency of
the message delivery increases. On average, latency
shouldn't exceed 500 ms , but there's no guarantee
for the delivery latency.

As part of your solution-wide availability
and disaster recovery strategy, consider
using the IoT Hub cross-region Disaster
Recovery option.

This option will move the IoT Hub endpoint to the
paired Azure region. Only the device registry gets
replicated. Events aren't replicated to the secondary
region. The RTO for the customer-initiated failover is
between 10 minutes to a couple of hours. For a
Microsoft-initiated failover, the RTO is 2-26 hours.
Confirm this RTO aligns with the requirements of the
customer and fits in the broader availability strategy. If
a higher RTO is required, consider implementing a
client-side failover pattern.

When using an SDK to send events to IoT
Hub, ensure the exceptions thrown by the
retry policy (EventHubsException or
OperationCancelledException) are
properly caught.

When using HTTPS , implement a proper retry pattern.

Next step
IoT Hub and operational excellence

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#cross-region-dr

IoT Hub and operational excellence
Article • 11/14/2023

Azure IoT Hub is a managed service hosted in the cloud that acts as a central message
hub for communication between an IoT application and its attached devices. You can
connect millions of devices and their backend solutions reliably and securely. Almost
any device can be connected to an IoT Hub.

IoT Hub supports monitoring to help you track device creation, device connections, and
device failures.

IoT Hub also supports the following messaging patterns:

Device-to-cloud telemetry
Uploading files from devices
Request-reply methods to control your devices from the cloud

For more information about IoT Hub, reference IoT Concepts and Azure IoT Hub.

To understand how IoT Hub promotes operational excellence, reference the following
topics:

Tutorial: Set up and use metrics and logs with an IoT Hub
Monitoring Azure IoT Hub
Trace Azure IoT device-to-cloud messages with distributed tracing (preview)
Check IoT Hub service and resource health

The following sections are specific to Azure IoT Hub and operational excellence:

Design considerations
Configuration checklist
Recommended configuration options

For more information about the Azure IoT Hub Service Level Agreement, reference SLA
for Azure IoT Hub .

Have you configured Azure IoT Hub with operational excellence in mind?

Design considerations

Checklist

https://learn.microsoft.com/en-us/azure/iot-hub/
https://learn.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub
https://learn.microsoft.com/en-us/azure/iot-hub/tutorial-use-metrics-and-diags
https://learn.microsoft.com/en-us/azure/iot-hub/monitor-iot-hub
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-distributed-tracing
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-azure-service-health-integration
https://azure.microsoft.com/support/legal/sla/iot-hub/v1_2/

Consider the following recommendations for increasing operational excellence when
configuring Azure IoT Hub:

Recommendation Description

Provision a second IoT Hub in another
region and have routing logic on the
device.

These configurations can be further enhanced with a
Concierge Service.

Use the AMQP or MQTT protocol when
sending events frequently.

AMQP and MQTT have higher network costs when
initializing the session, however HTTPS requires extra
TLS overhead for every request. AMQP and MQTT have
higher performance for frequent publishers.

Use only certificates validated by a root
CA in the production environment if
you're using X.509 certificates for the
device connection.

Make sure you have processes in place to update the
certificate before they expire.

For maximum throughput, use the
maximum number of partitions (32)

The number of device-to-cloud partitions for the
Event Hub-compatible endpoint reflect the degree of

Provision a second IoT Hub in another region and have routing logic on the device.＂

Use the AMQP or MQTT protocol when sending events frequently.＂

Use only certificates validated by a root CA in the production environment if you're
using X.509 certificates for the device connection.

＂

For maximum throughput, use the maximum number of partitions (32) when
creating the IoT Hub, if you're planning to use the built-in endpoint.

＂

For scaling, increase the tier and allocated IoT Hub units instead of adding more
than one IoT Hub per region.

＂

In high-throughput scenarios, use batched events.＂

If you require the minimum possible latency, don't use routing and read the events
from the built-in endpoint.

＂

As part of your solution-wide availability and disaster recovery strategy, consider
using the IoT Hub cross-region Disaster Recovery option.

＂

When reading device telemetry from the built-in Event Hub-compatible endpoint,
refer to the Event Hub consumers recommendation.

＂

When using an SDK to send events to IoT Hubs, ensure the exceptions thrown by
the retry policy (EventHubsException or OperationCancelledException) are properly
caught.

＂

To avoid telemetry interruption due to throttling and a fully used quota, consider
adding a custom auto-scaling solution.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#achieve-cross-region-ha
https://learn.microsoft.com/en-us/azure/iot-hub/tutorial-x509-scripts#get-x509-ca-certificates
https://learn.microsoft.com/en-us/azure/iot-hub/tutorial-x509-scripts#get-x509-ca-certificates
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#cross-region-dr
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling#auto-scale

Recommendation Description

when creating the IoT Hub, if you're
planning to use the built-in endpoint.

downstream parallelism you can achieve. This will
allow you to scale up to 32 concurrent processing
entities and will offer the highest send and receive
availability. This number can't be changed after
creation.

For scaling, increase the tier and allocated
IoT Hub units instead of adding more
than one IoT Hub per region.

Adding more than one IoT Hub per region doesn't
offer extra resiliency because all hubs can run on the
same underlying cluster.

In high-throughput scenarios, use
batched events.

The service will deliver an array with multiple events
to the consumers, instead of an array with one event.
The consuming application must process these
arrays.

If you require the minimum possible
latency, don't use routing and read the
events from the built-in endpoint.

When using message routing in IoT Hub, latency of
the message delivery increases. On average, latency
shouldn't exceed 500 ms , but there's no guarantee
for the delivery latency.

As part of your solution-wide availability
and disaster recovery strategy, consider
using the IoT Hub cross-region Disaster
Recovery option.

This option will move the IoT Hub endpoint to the
paired Azure region. Only the device registry gets
replicated. Events aren't replicated to the secondary
region. The RTO for the customer-initiated failover is
between 10 minutes to a couple of hours. For a
Microsoft-initiated failover, the RTO is 2-26 hours.
Confirm this RTO aligns with the requirements of the
customer and fits in the broader availability strategy. If
a higher RTO is required, consider implementing a
client-side failover pattern.

When using an SDK to send events to IoT
Hub, ensure the exceptions thrown by the
retry policy (EventHubsException or
OperationCancelledException) are
properly caught.

When using HTTPS , implement a proper retry pattern.

Next step
IoT Hub Device Provisioning Service and reliability

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-ha-dr#cross-region-dr
https://learn.microsoft.com/en-us/azure/well-architected/service-guides/iot-hub-dps/reliability

Cost optimization and IP addresses
Article • 11/14/2023

IP services are a collection of IP address-related services that enable communication in
an Azure Virtual Network. Public and private IP addresses are used in Azure for
communication between resources. The communication with resources can occur in a
private Azure Virtual Network and the public internet.

Key features include:

Public IP addresses
Public IP address prefixes
Private IP addresses
Routing preference
Routing preference unmetered

For more information, reference What is Azure Virtual Network IP Services?

To understand how IP services support a cost-optimized workload, reference the
following articles:

IP addresses pricing
Create, change, or delete an Azure public IP address
Routing over public Internet (ISP network)

Have you configured IP addresses with cost optimization in mind?

Consider the following recommendation for cost optimization when configuring IP
addresses:

Recommendation Description

PIPs (Public IPs) are free until used.
Static PIPs are paid even when not
assigned to resources.

There's a difference in billing for regular and static public
IP addresses. Develop a process to look for orphan

Checklist

PIPs (Public IPs) are free until used. Static PIPs are paid even when not assigned to
resources.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview#public-ip-addresses
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview#public-ip-address-prefixes
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview#private-ip-addresses
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview#routing-preference
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview#routing-preference-unmetered
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/ip-services-overview
https://azure.microsoft.com/pricing/details/ip-addresses/
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/virtual-network-public-ip-address
https://learn.microsoft.com/en-us/azure/virtual-network/ip-services/routing-preference-overview#routing-over-public-internet-isp-network

Recommendation Description

network interface cards (NICs) and PIPs that aren't being
used in production and non-production.

Next step
Cost optimization and Log Analytics

https://learn.microsoft.com/en-us/azure/well-architected/service-guides/log-analytics-cost-optimization

Azure Well-Architected Framework
perspective on Log Analytics
Article • 03/01/2024

Well-Architected Framework workload functionality and performance must be
monitored in diverse ways and for diverse reasons. Azure Monitor Log Analytics
workspaces are the primary log and metric sink for a large portion of the monitoring
data. Workspaces support multiple features in Azure Monitor including ad-hoc queries,
visualizations, and alerts. For general monitoring principles, see Monitoring and
diagnostics guidance. The guidance presents general monitoring principles. It identifies
the different types of data. It identifies the required analysis that Azure Monitor
supports and it also identifies the data stored in the workspace that enables the analysis.

This article assumes that you understand system design principles. You also need a
working knowledge of Log Analytics workspaces and features in Azure Monitor that
populate operational workload data. For more information, see Log Analytics workspace
overview.

This guide focuses on the interrelated decisions for the following Azure resources.

Log Analytics workspaces
Workload operational log data

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies localized to the technology scope.

Also included are recommendations on the technology capabilities or deployment
topologies that can help materialize those strategies. The recommendations don't
represent an exhaustive list of all configurations available for Log Analytics
workspaces and its related Azure Monitor resources. Instead, they list the key
recommendations mapped to the design perspectives. Use the recommendations
to build your proof-of-concept, design your workload monitoring environment, or
optimize your existing workload monitoring solution.

Technology scope

https://learn.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-overview

Diagnostic settings on Azure resources in your workload

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

The reliability situations to consider for Log Analytics workspaces are:

Availability of the workspace.
Protection of collected data in the rare case of an Azure datacenter or region
failure.

There's currently no standard feature for failover between workspaces in different
regions, but there are strategies to use if you have particular requirements for
availability or compliance.

Start your design strategy based on the design review checklist for Reliability and
determine its relevance to your business requirements while keeping in mind the SKUs
and features of virtual machines (VMs) and their dependencies. Extend the strategy to
include more approaches as needed.

Reliability

Design checklist for Reliability

Review service limits for Log Analytics workspaces. The service limits section helps
you understand restrictions on data collection and retention, and other aspects of
the service. These limits help you determine how to properly design your workload
observability strategy. Be sure to review Azure Monitor service limits since many of
the functions discussed therein, like queries, work hand-in-hand with Log Analytics
workspaces.

＂

Plan for workspace resilience and recovery. Log Analytics workspaces are regional,
with no built-in support for cross-regional redundancy or replication. Also,
availability zone redundancy options are limited. As such, you should determine the
reliability requirements of your workspaces and strategize to meet those targets.
Your requirements might stipulate that your workspace must be resilient to
datacenter failures or regional failures, or they might stipulate that you must be
able to recover your data to a new workspace in a failover region. Each of these
scenarios require additional resources and processes to be put in place to be

＂

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/azure-monitor/service-limits#log-analytics-workspaces
https://learn.microsoft.com/en-us/azure/azure-monitor/service-limits

Recommendation Benefit

Don't include your Log Analytics workspaces in your
workload's critical path. Your workspaces are
important to a functioning observability system, but
the functionality of your workload shouldn't depend
on them.

Keeping your workspaces and associated
functions out of your workload's critical
path minimizes the risk of issues affecting
your observability system from affecting
the runtime execution of your workload.

To support high durability of workspace data,
deploy Log Analytics workspaces into a region that
supports data resilience. Data resilience is only
possible through linking of the workspace to a
dedicated cluster in the same region.

When you use a dedicated cluster, it lets
you spread the associated workspaces
across availability zones, which offer
protection against datacenter outages. If
you don't collect enough data now to
justify a dedicated cluster, this preemptive
regional choice supports future growth.

Choose your workspace deployment based on
proximity to your workload.

Use data collection endpoints (DCE) in the same
region as the Log Analytics workspace.

Deploy your workspace in the same region
as the instances of your workload. Having
your workspace and DCEs in the same
region as your workload mitigates the risk
of impacts by outages in other regions.

DCEs are used by the Azure Monitor agent
and the Logs Ingestion API to send
workload operational data to a Log

successful, so balancing your reliability targets with cost and complexity should be
carefully considered.
Choose the right deployment regions to meet your reliability requirements.
Deploy your Log Analytics workspace and data collection endpoints (DCEs) co-
located with the workload components emitting operational data. Your choice of
the appropriate region in which to deploy your workspace and your DCEs should be
informed by where you deploy your workload. You might need to weigh the
regional availability of certain Log Analytics functionality, like dedicated clusters,
against other factors more central to your workload's reliability, cost, and
performance requirements.

＂

Ensure that your observability systems are healthy. Like any other component of
your workload, ensure that your monitoring and logging systems are functioning
properly. To accomplish this, enable features that send health data signals to your
operations teams. Set up health data signals specific to your Log Analytics
workspaces and associated resources.

＂

Configuration recommendations for Reliability

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/availability-zones#data-resilience---supported-regions
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-dedicated-clusters
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/regions

Recommendation Benefit

Analytics workspace. You might need
multiple DCEs even though your
deployment only has a single workspace.
For more information on how to configure
DCEs for your particular environment,
see How to set up data collection
endpoints based on your deployment.<br
If your workload is deployed in an active-
active design, consider using multiple
workspaces and DCEs spread across the
regions in which your workload is
deployed.

Deploying workspaces in multiple regions
adds complexity to your environment.
Balance the criteria detailed in Design a
Log Analytics workspace architecture with
your availability requirements.

If you require the workspace to be available in a
region failure, or you don't collect enough data for
a dedicated cluster, configure data collection to
send critical data to multiple workspaces in different
regions. This practice is also known as log
multicasting.

For example, configure DCRs for multiple
workspaces for Azure Monitor agent running on
VMs. Configure multiple diagnostic settings to
collect resource logs from Azure resources and send
the logs to multiple workspaces.

In this way, workload operational data is available in
the alternate workspace if there's a regional failure.
But know that resources that rely on the data such
as alerts and workbooks wouldn't automatically be
replicated to the other regions. Consider storing
Azure Resource Manager (ARM) templates for
critical alerting resources with configuration for the
alternate workspace or deploying them in all
regions but disabling them to prevent redundant
alerts. Both options support quick enablement in a
regional failure.

Tradeoff: This configuration results in duplicate
ingestion and retention charges so only use it for
critical data.

https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-collection-endpoint-overview#how-to-set-up-data-collection-endpoints-based-on-your-deployment
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design

Recommendation Benefit

If you require data to be protected in a datacenter
or region failure, configure data export from the
workspace to save data in an alternate location.

This option is similar to the previous option of
multicasting the data to different workspaces. But
this option costs less because the extra data is
written to storage.

Use Azure Storage redundancy options, including
geo-redundant storage (GRS) and geo-zone-
redundant storage (GZRS), to further replicate this
data to other regions.

Data export doesn't provide resiliency against
incidents impacting the regional ingestion pipeline.

While the historic operational log data
might not be readily queryable in the
exported state, it ensures the data survives
a prolonged regional outage and can be
accessed and retained for extended period.

If you require the export of tables not
supported by data export, you can use
other methods of exporting data, including
Logic Apps, to protect your data.

For this strategy to work as a viable
recovery plan, you must have processes in
place to reconfigure diagnostic settings for
your resources in Azure and on all agents
that provide data. You must also plan to
manually rehydrate your exported data
into a new workspace. As with the
previously described option, you also need
to define processes for those resources
that rely on the data like alerts and
workbooks.

For mission-critical workloads requiring high
availability, consider implementing a federated
workspace model that uses multiple workspaces to
provide high availability if there's a regional failure.

Mission-critical provides prescriptive best
practice guidance for designing highly
reliable applications on Azure. The design
methodology includes a federated
workspace model with multiple Log
Analytics workspaces to deliver high
availability if there are multiple failures,
including the failure of an Azure region.

This strategy eliminates egress costs across
regions and remains operational with a
region failure. But it requires more
complexity that you must manage with
configuration and processes described in
Health modeling and observability of
mission-critical workloads on Azure.

Use infrastructure as code (IaC) to deploy and
manage your workspaces and associated functions.

When you automate as much of your
deployment and your mechanisms for
resilience and recovery as practical, it
ensures that these operations are reliable.
You save critical time in your operations
processes and minimize the risk of human
error.

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-data-export
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy#redundancy-in-a-secondary-region
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-data-export#limitations
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-overview
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-design-methodology#select-a-reliability-tier
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling

Recommendation Benefit

Ensure that functions like saved log queries
are also defined through your IaC to
recover them to a new region if recovery is
required.

Design DCRs with a single responsibility principle to
keep DCR rules simple.

While one DCR could be loaded with all the input,
rules, and destinations for the source systems, it's
preferable to design narrowly focused rules that rely
on fewer data sources. Use composition of rule
assignments to arrive at the desired observability
scope for the logical target.

Also, minimize transformation in DCRs

When you use narrowly focused DCRs, it
minimizes the risk of a rule
misconfiguration having a broader effect. It
limits the effect to only the scope for which
the DCR was built. For more information,
see Best practices for data collection rule
creation and management in Azure
Monitor.

While transformation can be powerful and
necessary in some situations, it can be
challenging to test and troubleshoot the
keyword query language (KQL) work being
done. When possible, minimize the risk of
data loss by ingesting the data raw and
handling transformations downstream at
query time.

When setting a daily cap or a retention policy, be
sure you're maintaining your reliability requirements
by ingesting and retaining the logs that you need.

A daily cap stops the collection of data for
a workspace once a specified amount is
reached, which helps you maintain control
over your ingestion volume. But only use
this feature after careful planning. Ensure
that your daily cap isn't being hit with
regularity. If that happens, your cap is set
too restrictively. You need to reconfigure
the daily cap so you don't miss critical
signals coming from your workload.

Likewise, be sure to carefully and
thoughtfully approach the lowering of your
data retention policy to ensure that you
don't inadvertently lose critical data.

Use Log Analytics workspace insights to track
ingestion volume, ingested data versus your data
cap, unresponsive log sources, and failed queries
among other data. Create health status alerts to
proactively notify you if a workspace becomes
unavailable because of a datacenter or regional
failure.

This strategy ensures that you're able to
successfully monitor the health of your
workspaces and proactively act if the
health is at risk of degrading. Like any
other component of your workload, it's
critical that you're aware of health metrics
and can identify trends to improve your
reliability over time.

https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-collection-rule-best-practices
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/daily-cap
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-health#view-log-analytics-workspace-health-and-set-up-health-status-alerts

Azure offers no policies related to reliability of Log Analytics workspaces. You can create
custom policies to build compliance guardrails around your workspace deployments,
such as ensuring workspaces are associated to a dedicated cluster.

While not directly related to the reliability of Log Analytics workspaces, there are Azure
policies for nearly every service available. The policies ensure that diagnostics settings
are enabled for that service and validate that the service's log data is flowing into a Log
Analytics workspace. All services in workload architecture should be sending their log
data to a Log Analytics workspace for their own reliability needs, and the policies can
help enforce it. Likewise, policies exist to ensure agent-based platforms, such as VMs
and Kubernetes, have the agent installed.

Azure offers no Azure Advisor recommendations related to the reliability of Log
Analytics workspaces.

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving these
goals by applying approaches to the technical design around your monitoring and
logging solution.

Start your design strategy based on the design review checklist for Security and
identify vulnerabilities and controls to improve the security posture. Extend the strategy
to include more approaches as needed.

Azure Policy

Azure Advisor

Security

Design checklist for Security

Review the Azure Monitor security baseline and Manage access to Log Analytics
workspaces topics. These topics provide guidance on security best practices.

＂

Deploy your workspaces with segmentation as a cornerstone principle.
Implement segmentation at the networking, data, and access levels. Segmentation
helps ensure that your workspaces are isolated to the appropriate degree and are
better protected from unauthorized access to the highest degree possible, while

＂

https://learn.microsoft.com/en-us/azure/governance/policy/tutorials/create-custom-policy-definition
https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/azure-monitor-security-baseline
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access

Recommendation Benefit

Use customer managed keys if you require your
own encryption key to protect data and saved
queries in your workspaces.

Azure Monitor ensures that all data and saved
queries are encrypted at rest using Microsoft-
managed keys (MMK). If you require your own
encryption key and collect enough data for a
dedicated cluster, use customer-managed key. You
can encrypt data by using your own key in Azure
Key Vault, for control over the key lifecycle, and

This strategy lets you encrypt data by using
your own key in Azure Key Vault, for
control over the key lifecycle, and ability to
revoke access to your data.

still meeting your business requirements for reliability, cost optimization,
operational excellence, and performance efficiency.
Ensure that you can audit workspace reads and writes activities and associated
identities. Attackers can benefit from viewing operational logs. A compromised
identity can lead to log injection attacks. Enable auditing of operations run from the
Azure Portal or through API interactions and the associated users. If you're not set
up to audit your workspace, you might be putting your organization at risk of being
in breach of compliance requirements.

＂

Implement robust network controls. Helps secure your network access to your
workspace and your logs through network isolation and firewall functions.
Insufficiently configured network controls might put you at risk of being accessed
by unauthorized or malicious actors.

＂

Determine what types of data need immutability or long-term retention. Your log
data should be treated with the same rigor as workload data inside production
systems. Include log data in your data classification practices to ensure that you're
successfully storing sensitive log data according to its compliance requirements.

＂

Protect log data at rest through encryption. Segmentation alone won't completely
protect confidentiality of your log data. If unauthorized raw access happens, having
the log data encrypted at rest helps prevent bad actors from using that data
outside of your workspace.

＂

Protect sensitive log data through obfuscation. Just like workload data residing in
production systems, you must take extra measures to ensure confidentiality is
retained for sensitive information that might be intentionally or unintentionally
present in operational logs. When you use obfuscation methods, it helps you hide
sensitive log data from unauthorized eyes.

＂

Configuration recommendations for Security

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-dedicated-clusters
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/customer-managed-keys
https://learn.microsoft.com/en-us/azure/key-vault/general/overview

Recommendation Benefit

ability to revoke access to your data.

If you use Microsoft Sentinel, make sure that you're
familiar with the considerations at Set up Microsoft
Sentinel customer-managed key.

Configure Log query auditing to track which users
are running queries.

Configure the audit logs for each workspace to be
sent to the local workspace or consolidate in a
dedicated security workspace if you separate your
operational and security data. Use Log Analytics
workspace insights to periodically review this data.
Consider creating log query alert rules to
proactively notify you if unauthorized users are
attempting to run queries.

Log query auditing records the details for
each query run in a workspace. Treat this
audit data as security data and secure the
LAQueryLogs table appropriately. This
strategy bolsters your security posture by
helping to ensure that unauthorized access
is caught immediately if it ever happens.

Help secure your workspace through private
networking and segmentation measures.

Use private link functionality to limit
communications between log sources and your
workspaces to private networking.

When you use private link, it also lets you
control which virtual networks can access a
given workspace, further bolstering your
security through segmentation.

Use Microsoft Entra ID instead of API keys for
workspace API access where available.

API key-based access to the query APIs
doesn't leave a per-client audit trail. Use
sufficiently scoped Entra ID-based access
so that you can properly audit
programmatic access.

Configure access for different types of data in the
workspace required for different roles in your
organization.

Set the access control mode for the workspace to
Use resource or workspace permissions. This access
control lets resource owners use resource-context
to access their data without being granted explicit
access to the workspace.

Use table level RBAC for users who require access
to a set of tables across multiple resources.

This setting simplifies your workspace
configuration and helps to ensure users
can't access operational data they
shouldn't.

Assign the appropriate built-in role to
grant workspace permissions to
administrators at either the subscription,
resource group, or workspace level
depending on their scope of
responsibilities.

Users with table permissions have access to
all the data in the table regardless of their
resource permissions.

See Manage access to Log Analytics

https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/sentinel/customer-managed-keys#considerations
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/query-audit
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/reference/tables/laquerylogs
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/private-link-security
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/api/overview#api-key-authentication-for-sample-data
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/api/overview#microsoft-entra-authentication-for-workspace-data
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access#access-control-mode
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access#access-mode
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access#set-table-level-read-access
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access#azure-rbac
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access

Recommendation Benefit

workspaces for details on the different
options for granting access to data in the
workspace.

Export logs that require long-term retention or
immutability.

Use data export to send data to an Azure Storage
account with immutability policies to help protect
against data tampering. Not every type of log has
the same relevance for compliance, auditing, or
security, so determine the specific data types that
should be exported.

You might collect audit data in your
workspace that's subject to regulations
requiring its long-term retention. Data in a
Log Analytics workspace can't be altered,
but it can be purged. Exporting a copy of
the operational data for retention purposes
lets you build a solution that meets your
compliance requirements.

Determine a strategy to filter or obfuscate sensitive
data in your workspace.

You might be collecting data that includes sensitive
information. Filter records that shouldn't be
collected by using the configuration for the
particular data source. Use a transformation if only
particular columns in the data should be removed
or obfuscated.

If you have standards that require the original data
to be unmodified, you can use the 'h' literal in KQL
queries to obfuscate query results displayed in
workbooks.

Obfuscating or filtering out sensitive data
in your workspace helps ensure you
maintain confidentiality on sensitive
information. In many cases, compliance
requirements dictate the ways that you can
handle sensitive information. This strategy
helps you comply with the requirements
proactively.

Azure offers policies related to the security of Log Analytics workspaces to help enforce
your desired security posture. Examples of such policies are:

Azure Monitor Logs clusters should be encrypted with customer-managed key
Saved-queries in Azure Monitor should be saved in customer storage account for
logs encryption
Log Analytics Workspaces should block non-Azure Active Directory based
ingestion

Azure also offers numerous policies to help enforce private link configuration, such as
Log Analytics workspaces should block log ingestion and querying from public
networks or even configuring the solution through DINE policies such as Configure
Azure Monitor Private Link Scope to use private DNS zones .

Azure Policy

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/manage-access
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-data-export
https://learn.microsoft.com/en-us/azure/storage/blobs/immutable-policy-configure-version-scope
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/personal-data-mgmt#exporting-and-deleting-personal-data
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/personal-data-mgmt
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-collection-transformations
https://learn.microsoft.com/en-us/azure/data-explorer/kusto/query/scalar-data-types/string#obfuscated-string-literals
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F1f68a601-6e6d-4e42-babf-3f643a047ea2
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2Ffa298e57-9444-42ba-bf04-86e8470e32c7
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F94c1f94d-33b0-4062-bd04-1cdc3e7eece2
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F6c53d030-cc64-46f0-906d-2bc061cd1334
https://portal.azure.com/#view/Microsoft_Azure_Policy/PolicyDetailBlade/definitionId/%2Fproviders%2FMicrosoft.Authorization%2FpolicyDefinitions%2F437914ee-c176-4fff-8986-7e05eb971365

Azure offers no Azure Advisor recommendations related to the security of Log Analytics
workspaces.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

The Cost Optimization design principles provide a high-level design strategy for
achieving those business goals. They also help you make tradeoffs as necessary in the
technical design related to your monitoring and logging solution.

For more information on how data charges are calculated for your Log Analytics
workspaces, see Azure Monitor Logs cost calculations and options.

Start your design strategy based on the design review checklist for Cost Optimization
for investments and fine tune the design so that the workload is aligned with the budget
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Azure Advisor

Cost Optimization

Design checklist for Cost Optimization

Perform cost modeling exercises. These exercizes help you understand your
current workspace costs and forecast your costs relative to workspace growth.
Analyze your growth trends in your workload and ensure that you understand plans
for workload expansion to properly forecast your future operational logging costs.

＂

Choose the right billing model. Use your cost model to determine the best billing
model for your scenario. How you use your workspaces currently, and how you plan
to you use them as your workload evolves determines whether a pay-as-you-go or
a commitment tier model is the best fit for your scenario.

Remember that you can choose different billing models for each workspace, and
you can combine workspace costs in certain cases, so you can be granular in your
analysis and decision-making.

＂

Collect just the right amount of log data. Perform regularly scheduled analysis of
your diagnostic settings on your resources, data collection rule configuration, and
custom application code logging to ensure that you aren't collecting unnecessary
log data.

＂

https://learn.microsoft.com/en-us/azure/azure-monitor/cost-usage
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/cost-logs

Recommendation Benefit

Configure the pricing tier for the
amount of data that each Log
Analytics workspace typically collects.

By default, Log Analytics workspaces uses pay-as-you-
go pricing with no minimum data volume. If you collect
enough data, you can significantly decrease your cost by
using a commitment tier, which lets you commit to a
daily minimum of data collected in exchange for a lower
rate. If you collect enough data across workspaces in a
single region, you can link them to a dedicated cluster
and combine their collected volume by using cluster
pricing.

For more information on commitment tiers and
guidance on determining what's most appropriate for
your level of usage, see Azure Monitor Logs cost
calculations and options. To view estimated costs for
your usage at different pricing tiers, see Usage and
estimated costs.

Configure data retention and
archiving.

There's a charge for retaining data in a Log Analytics
workspace beyond the default of 31 days. It's 90 days if
Microsoft Sentinel is enabled on the workspace and 90
days for Application Insights data. Consider your
particular requirements for having data readily available
for log queries. You can significantly reduce your cost by
configuring archived logs. Archived logs let you retain
data for up to seven years and still access it occasionally.
You access the data by using search jobs or restoring a
set of data to the workspace.

If you use Microsoft Sentinel to
analyze security logs, consider
employing a separate workspace to
store those logs.

When you use a dedicated workspace for log data that
your SIEM uses, it can help you control costs. The
workspaces that Microsoft Sentinel uses are subject to
Microsoft Sentinel pricing. Your security requirements
dictate the types of logs that are required to be
included in your SIEM solution. You might be able to
exclude operational logs, which would be charged at the

Treat nonproduction environments differently than production. Review your
nonproduction environments to ensure that you have configured your diagnostic
settings and retention policies appropriately. These can often be significantly less
robust than production, especially for dev/test or sandbox environments.

＂

Configuration recommendations for Cost Optimization

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/cost-logs#commitment-tiers
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/logs-dedicated-clusters
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/cost-logs#dedicated-clusters
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/cost-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/usage-estimated-costs#usage-and-estimated-costs
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-retention-archive
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/search-jobs
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/restore
https://learn.microsoft.com/en-us/azure/sentinel/billing#how-youre-charged-for-microsoft-sentinel

Recommendation Benefit

standard Log Analytics pricing if they're in a separate
workspace.

Configure tables used for debugging,
troubleshooting, and auditing as Basic
Logs.

Tables in a Log Analytics workspace configured for Basic
Logs have a lower ingestion cost in exchange for limited
features and a charge for log queries. If you query these
tables infrequently and don't use them for alerting, this
query cost can be more than offset by the reduced
ingestion cost.

Limit data collection from data sources
for the workspace.

The primary factor for the cost of Azure Monitor is the
amount of data that you collect in your Log Analytics
workspace. Be sure that you collect no more data than
you require to assess the health and performance of
your services and applications. For each resource, select
the right categories for the diagnostic settings you
configure to provide the amount of operational data
you need. It helps you successfully manage your
workload, and not manage ignored data.

There might be a tradeoff between cost and your
monitoring requirements. For example, you might be
able to detect a performance issue more quickly with a
high sample rate, but you might want a lower sample
rate to save costs. Most environments have multiple
data sources with different types of collection, so you
need to balance your particular requirements with your
cost targets for each. See Cost optimization in Azure
Monitor for recommendations on configuring collection
for different data sources.

Regularly analyze workspace usage
data to identify trends and anomalies.

Use Log Analytics workspace insights
to periodically review the amount of
data collected in your workspace.
Further analyze data collection by
using methods in Analyze usage in
Log Analytics workspace to determine
if there's other configurations that can
decrease your usage further.

By helping you understand the amount of data collected
by different sources, it identifies anomalies and upward
trends in data collection that could result in excess cost.
This consideration is important when you add a new set
of data sources to your workload. For example, if you
add a new set of VMs, enable new Azure diagnostics
settings on a service, or change log levels in your
application.

Create an alert when data collection is
high.

To avoid unexpected bills, you should be proactively
notified anytime you experience excessive usage.
Notification lets you address any potential anomalies
before the end of your billing period.

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/basic-logs-configure
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices-cost
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/analyze-usage
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/analyze-usage#send-alert-when-data-collection-is-high

Recommendation Benefit

Consider a daily cap as a preventative
measure to ensure that you don't
exceed a particular budget.

A daily cap disables data collection in a Log Analytics
workspace for the rest of the day after your configured
limit is reached. Don't use this practice as a method to
reduce costs as described in When to use a daily cap,
but instead to prevent runaway ingestion due to
misconfiguration or abuse.

If you set a daily cap, create an alert when the cap is
reached. Be sure to also create an alert rule when some
percentage is reached. For example, you can set an alert
rule for when 90 percent capacity is reached. This alert
gives you an opportunity to investigate and address the
cause of the increased data before the cap shuts off
critical data collection from your workload.

Azure offers no policies related to cost optimization of Log Analytics workspaces. You
can create custom policies to build compliance guardrails around your workspace
deployments, such as ensuring that your workspaces contain the right retention
settings.

Azure Advisor makes recommendations to move specific tables in a workspace to the
low-cost Basic Log data plan for tables that receive relatively high ingestion volume.
Understand the limitations by using basic logs before switching. For more information,
see When should I use Basic Logs?. Azure Advisor might also recommend changing
pricing commitment tier for the whole workspace based on overall usage volume.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals towards the operational requirements of the workload.

Azure Policy

Azure Advisor

Operational Excellence

Design checklist for Operational Excellence

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/daily-cap
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/daily-cap#when-to-use-a-daily-cap
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-health#view-log-analytics-workspace-health-and-set-up-health-status-alerts
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/analyze-usage#send-alert-when-data-collection-is-high
https://learn.microsoft.com/en-us/azure/governance/policy/tutorials/create-custom-policy-definition
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/basic-logs-configure#when-should-i-use-basic-logs
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/change-pricing-tier

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to
Log Analytics workspaces.

Use infrastructure as code (IaC) for all functions related to your workload's Log
Analytics workspaces. Minimize the risk of human error that can occur with
manually administering and operating your log collection, ingestion, storage and
querying functions, including saved queries and query packs, by automating as
many of those functions as possible through code. Also, include alerts that report
health status changes and the configuration of diagnostic settings for resources
that send logs to your workspaces in your IaC code. Include the code with your
other workload-related code to ensure that your safe deployment practices are
maintained for the management of your workspaces.

＂

Ensure that your workspaces are healthy, and you're notified when issues arise.
Like any other component of your workload, your workspaces can encounter issues.
The issues can cost valuable time and resources to troubleshoot and resolve, and
potentially leave your team unaware of the production workload status. Being able
to proactively monitor workspaces and mitigate potential issues helps your
operations teams minimize the time they spend troubleshooting and fixing issues.

＂

Separate your production from nonproduction workloads. Avoid unnecessary
complexity that can cause extra work for an operations team by using different
workspaces for your production environment than those used by nonproduction
environments. Comingled data can also lead to confusion as testing activities might
appear to be events in production.

＂

Prefer built-in tools and functions over non-Microsoft solutions Use built-in tools
to extend the functionality of your monitoring and logging systems. You might
need to put additional configurations in place to support requirements like
recoverability or data sovereignty that aren't available out-of-the-box with Log
Analytics workspaces. In these cases, whenever practical, use native Azure or
Microsoft tools to keep the number of tools that your organization must support to
a minimum.

＂

Treat your workspaces as static rather than ephemeral components Like other
types of data stores, workspaces shouldn't be considered among the ephemeral
components of your workload. The Well-Architected Framework generally favors
immutable infrastructure and the ability to quickly and easily replace resources
within your workload as part of your deployments. But the loss of workspace data
can be catastrophic and irreversible. For this reason, leave workspaces out of
deployment packages that replace infrastructure during updates, and only perform
in-place upgrades on the workspaces.

＂

Ensure that operations staff is trained on Kusto Query Language Train staff to
create or modify queries when needed. If operators are unable to write or modify

＂

Recommendation Benefit

Design a workspace strategy to meet
your business requirements.

See Design a Log Analytics workspace
architecture for guidance on designing a
strategy for your Log Analytics
workspaces. Include how many to create
and where to place them.

If you required your workload to use a
centralized platform team offering,
ensure that you set all necessary
operational access. Also, construct alerts
to ensure workload observability needs
are met.

A single or at least minimal number of workspaces
maximize your workload's operational efficiency. It
limits the distribution of your operational and security
data, increases visibility into potential issues, makes
patterns easier to identify, and minimizes your
maintenance requirements.

You might have requirements for multiple workspaces
such as multiple tenants, or you might need
workspaces in multiple regions to support your
availability requirements. So, ensure that you have
appropriate processes in place to manage this
increased complexity.

Use infrastructure as code (IaC) to
deploy and manage your workspaces
and associated functions.

Use infrastructure as code (IaC) to define the details of
your workspaces in ARM templates, Azure BICEP, or
Terraform . It lets you use your existing DevOps
processes to deploy new workspaces and Azure Policy
to enforce their configuration.

Colocating all of your IaC code with your application
code helps ensure that your safe deployment
practices are maintained for all deployments.

Use Log Analytics workspace insights to
track the health and performance of your
Log Analytics workspaces, and create
meaningful and actionable alerts to be
proactively notified of operational issues.

Log Analytics workspace insights
provides a unified view of the usage,
performance, health, agents, queries,
and change log for all your workspaces.

Each workspace has an operation table

Review the information that Log Analytics insights
provides regularly to track the health and operation of
each of your workspaces. When you use this
information, it lets you create easily understood
visualizations like dashboards or reports that
operations and stakeholders can use to track the
health of your workspaces.

Create alert rules based on this table to be proactively
notified when an operational issue occurs. You can
use recommended alerts for the workspace to simplify
how you create the most critical alert rules.

queries, it can slow critical troubleshooting or other functions as operators must
rely on other teams to do that work for them.

Configuration recommendations for Operational
Excellence

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/resource-manager-workspace
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/log_analytics_workspace.html
https://learn.microsoft.com/en-us/azure/governance/policy/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/monitor-workspace
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-health

Recommendation Benefitthat logs important activities affecting
workspace.

Practice continuous improvement by
frequently revisiting Azure diagnostic
settings on your resources, data
collection rules, and application log
verbosity.

Ensure that you're optimizing your log
collection strategy through frequent
reviews of your resource settings. From
an operational standpoint, look to
reduce the noise in your logs by focusing
on those logs that provide useful
information about a resource's health
status.

By optimizing in this manner, you enable operators to
investigate and troubleshoot issues when they arise,
or perform other routine, improvised, or emergency
tasks.

When new diagnostic categories are made available
for a resource type, review the types of logs that are
emitted with this category to understand whether
enabling them might help you optimize your
collection strategy. For example, a new category
might be a subset of a larger set of activities that are
being captured. The new subset might let you reduce
the volume of logs coming in by focusing on the
activities that are important for your operations to
track.

Azure offers no policies nor Azure Advisor recommendations related to the operational
excellence of Log Analytics workspaces.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency for defining a baseline for your Log Analytics workspaces and associated
functions.

Azure Policy and Azure Advisor

Performance efficiency

Design checklist for Performance Efficiency

Be familiar with fundamentals of log data ingestion latency in Azure Monitor.
There are several factors that contribute to latency when ingesting logs into your
workspaces. Many of these factors are inherent to the Azure Monitor platform.
Understanding the factors and the normal latency behavior can help you set
appropriate expectations within your workload operations teams.

＂

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/data-ingestion-time

Recommendation Benefit

Configure log query auditing and use Log
Analytics workspace insights to identify slow
and inefficient queries.

Log query auditing stores the compute time
required to run each query and the time until
results are returned. Log Analytics workspace
insights uses this data to list potentially
inefficient queries in your workspace.
Consider rewriting these queries to improve
their performance. Refer to Optimize log
queries in Azure Monitor for guidance on
optimizing your log queries.

Optimized queries return results faster and use
less resources on the back end, which makes the
processes that rely on those queries more
efficient as well.

Understand service limits for Log Analytics
workspaces.

In certain high-traffic implementations, you
might run into service limits that affect your
performance and your workspace or
workload design. For example, the query API
limits the number of records and data
volume returned by a query. The Logs
Ingestion API limits the size of each API call.

Understanding the limits that might affect the
performance of your workspace helps you design
appropriately to mitigate them. You might decide
to use multiple workspaces to avoid hitting limits
associated with a single workspace.

Weigh the design decisions to mitigate service
limits against requirements and targets for other
pillars.

Separate your nonproduction and production workloads. Production-specific
workspaces mitigate any overhead that nonproduction systems might introduce. It
reduces the overall footprint of your workspaces, requiring fewer resources to
handle log data processing.

＂

Choose the right deployment regions to meet your performance requirements.
Deploy your Log Analytics workspace and data collection endpoints (DCEs) close to
your workload. Your choice of the appropriate region in which to deploy your
workspace and your DCEs should be informed by where you deploy the workload.
You might need to weigh the performance benefits of deploying your workspaces
and DCEs in the same region as your workload against your reliability requirements
if you have already deployed your workload into a region that cannot support those
requirements for your log data.

＂

Configuration recommendations for Performance
Efficiency

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-monitor/logs/query-audit
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-insights-overview#query-audit-tab
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/query-optimization

Feedback

Was this page helpful?

Recommendation Benefit

For a complete list of Azure Monitor and Log
Analytics workspaces limits and limits specific
to the workspace itself, see Azure Monitor
service limits.

Create DCRs specific to data source types
inside one or more defined observability
scopes. Create separate DCRs for
performance and events to optimize the
backend processing compute utilization.

When you use separate DCRs for performance
and events, it helps mitigate backend resource
exhaustion. By having DCRs that combine
performance events, it forces every associated
virtual machine to transfer, process, and run
configurations that might not be applicable
according to the installed software. An excessive
compute resource consumption and errors in
processing a configuration might happen and
cause the Azure Monitor Agent (AMA) to become
unresponsive.

Azure offers no policies nor Azure Advisor recommendations related to the performance
of Log Analytics workspaces.

Get best practices for a complete deployment of Azure Monitor.

Azure Policy and Azure Advisor

Next step

 Yes No

https://learn.microsoft.com/en-us/azure/azure-monitor/service-limits#log-analytics-workspaces
https://learn.microsoft.com/en-us/azure/azure-monitor/service-limits#logs-ingestion-api
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices

Reliability and Network connectivity
Article • 11/14/2023

Network connectivity includes three Azure models for private network connectivity:

VNet injection
VNet service endpoints
Private Link

VNet injection applies to services that are deployed specifically for you, such as:

Azure Kubernetes Service (AKS) nodes
SQL Managed Instance
Virtual Machines

These resources connect directly to your virtual network.

Virtual Network (VNet) service endpoints provide secure and direct connectivity to
Azure services. These service endpoints use an optimized route over the Azure network.
Service endpoints enable private IP addresses in the VNet to reach the endpoint of an
Azure service without needing a public IP address on the VNet.

Private Link provides dedicated access using private IP addresses to Azure PaaS
instances, or custom services behind an Azure Load Balancer Standard.

Network connectivity includes the following design considerations related to a reliable
workload:

Use Private Link, where available, for shared Azure PaaS services. Private Link is
generally available for several services and is in public preview for numerous ones.

Access Azure PaaS services from on-premises through ExpressRoute private
peering.

Use either virtual network injection for dedicated Azure services or Azure Private
Link for available shared Azure services. To access Azure PaaS services from on-
premises when virtual network injection or Private Link isn't available, use
ExpressRoute with Microsoft peering. This method avoids transiting over the public
internet.

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview#private-link-resource
https://learn.microsoft.com/en-us/azure/expressroute/

Use virtual network service endpoints to secure access to Azure PaaS services from
within your virtual network. Use virtual network service endpoints only when
Private Link isn't available and there are no concerns with unauthorized movement
of data.

Service Endpoints don't allow a PaaS service to be accessed from on-premises
networks. Private Endpoints do.

To address concerns about unauthorized movement of data with service endpoints,
use network-virtual appliance (NVA) filtering. You can also use virtual network
service endpoint policies for Azure Storage.

The following native network security services are fully managed services.
Customers don't incur the operational and management costs associated with
infrastructure deployments, which can become complex at scale:

Azure Firewall
Application Gateway
Azure Front Door

PaaS services are typically accessed over public endpoints. The Azure platform
provides capabilities to secure these endpoints or make them entirely private.

You can also use third-party network-virtual appliances (NVAs) if the customer
prefers them for situations where native services don't satisfy specific
requirements.

Have you configured Network connectivity with reliability in mind?

Checklist

Don't implement forced tunneling to enable communication from Azure to Azure
resources.

＂

Unless you use network virtual appliance (NVA) filtering, don't use virtual network
service endpoints when there are concerns about unauthorized movement of data.

＂

Don't enable virtual network service endpoints by default on all subnets.＂

Next step
Cost optimization and Network connectivity

Cost optimization and Network
connectivity
Article • 03/27/2024

Network connectivity includes three Azure models for private network connectivity:

VNet injection
VNet service endpoints
Private Link

VNet injection applies to services that are deployed specifically for you, such as:

Azure Kubernetes Service (AKS) nodes
SQL Managed Instance
Virtual Machines

These resources connect directly to your virtual network.

Virtual Network (VNet) service endpoints provide secure and direct connectivity to
Azure services. These service endpoints use an optimized route over the Azure network.
Service endpoints enable private IP addresses in the VNet to reach the endpoint of an
Azure service without needing a public IP address on the VNet.

Private Link provides dedicated access using private IP addresses to Azure PaaS
instances, or custom services behind an Azure Load Balancer Standard.

Network connectivity includes the following design considerations related to cost
optimization:

Running cost of services: The services are metered. Pay for service itself and
consumption on service.
VNet Peering cost: Consider the consequences of putting all resources in a single
VNet to save costs. It also prevents the infrastructure from growing. The VNet can
eventually reach a point where new resources don't fit anymore.
For two peered VNets using a private endpoint: Only the private endpoint access is
billed and not the VNet peering cost.
Azure Firewall is also metered: Pay for the instance and for usage. The same
applies to load balancers.

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview#private-link-resource

Feedback

Was this page helpful?

Have you configured Network connectivity with cost optimization in mind?

Consider the following recommendation for cost optimization when configuring
Network connectivity:

Recommendation Description

For the Load balancer, select
two SKUs: Basic (free) and
Standard (paid).

Microsoft recommends Standard because it has richer
capabilities, such as:
- Outbound rules
- Granular network security configuration
- Monitoring
Standard provides a Service Level Agreement (SLA) and can be
deployed in Availability Zones. Capabilities in Basic are limited.

Select DDoS Network
Protection.

Depending on the workload and usage patterns, DDoS
Network Protection can provide useful protection. Otherwise,
you can use the defualt Infrastructure protection or DDoS IP
Protection SKU for small customers.

Checklist

Select SKU for service so that it does the job required, which allows the customer to
grow as the workload evolves.

＂

For the Load balancer, select two SKUs: Basic (free) and Standard (paid).＂

For App Gateway, select Basic or V2.＂

For Gateways, limit throughput and performance.＂

Select DDoS Network Protection.＂

Configuration recommendations

ﾉ Expand table

Next step
Operational excellence and Network connectivity

 Yes No

Operational excellence and Network
connectivity
Article • 11/14/2023

Network connectivity includes three Azure models for private network connectivity:

VNet injection
VNet service endpoints
Private Link

VNet injection applies to services that are deployed specifically for you, such as:

Azure Kubernetes Service (AKS) nodes
SQL Managed Instance
Virtual Machines

These resources connect directly to your virtual network.

Virtual Network (VNet) service endpoints provide secure and direct connectivity to
Azure services. These service endpoints use an optimized route over the Azure network.
Service endpoints enable private IP addresses in the VNet to reach the endpoint of an
Azure service without needing a public IP address on the VNet.

Private Link provides dedicated access using private IP addresses to Azure PaaS
instances, or custom services behind an Azure Load Balancer Standard.

Network connectivity includes the following design considerations related to
operational excellence:

Use Private Link, where available, for shared Azure PaaS services. Private Link is
generally available for several services and is in public preview for numerous ones.

Access Azure PaaS services from on-premises through ExpressRoute private
peering.

Use either virtual network injection for dedicated Azure services or Azure Private
Link for available shared Azure services. To access Azure PaaS services from on-
premises when virtual network injection or Private Link isn't available, use
ExpressRoute with Microsoft peering. This method avoids transiting over the public
internet.

Design considerations

https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview#private-link-resource
https://learn.microsoft.com/en-us/azure/expressroute/

Use virtual network service endpoints to secure access to Azure PaaS services from
within your virtual network. Use virtual network service endpoints only when
Private Link isn't available and there are no concerns with unauthorized movement
of data.

Service Endpoints don't allow a PaaS service to be accessed from on-premises
networks. Private Endpoints do.

To address concerns about unauthorized movement of data with service endpoints,
use network-virtual appliance (NVA) filtering. You can also use virtual network
service endpoint policies for Azure Storage.

The following native network security services are fully managed services.
Customers don't incur the operational and management costs associated with
infrastructure deployments, which can become complex at scale:

Azure Firewall
Application Gateway
Azure Front Door

PaaS services are typically accessed over public endpoints. The Azure platform
provides capabilities to secure these endpoints or make them entirely private.

You can also use third-party network-virtual appliances (NVAs) if the customer
prefers them for situations where native services don't satisfy specific
requirements.

Have you configured Network connectivity with operational excellence in mind?

Checklist

Don't implement forced tunneling to enable communication from Azure to Azure
resources.

＂

Unless you use network virtual appliance (NVA) filtering, don't use virtual network
service endpoints when there are concerns about unauthorized movement of data.

＂

Don't enable virtual network service endpoints by default on all subnets.＂

Next step
Reliability and Azure Virtual Network

Reliability and Network Virtual
Appliances (NVA)
Article • 11/14/2023

Network Virtual Appliances (NVA) are typically used to control the flow of traffic
between network segments classified with different security levels, for example between
a perimeter network (also known as DMZ, demilitarized zone, and screened subnet) and
the public internet.

Examples of NVAs include:

Network firewalls
Layer-4 reverse-proxies
Internet Protocol Security (IPsec) Virtual Private Network (VPN) endpoints
Web-based reverse-proxies
Internet proxies
Layer-7 load balancers

For more information about Network Virtual Appliances, reference Deploy highly
available NVAs.

To understand how NVAs support a reliable workload, reference the following topics:

Scenario: Route traffic through an NVA
Scenario: Route traffic through NVAs by using custom settings
Use L7 load balancers

Have you configured your Network Virtual Appliances (NVA) with reliability in mind?

Checklist

NVAs should be deployed within a Landing Zone or solution-level Virtual Network.＂

For Virtual Wide Area Network (VWAN) topologies, deploy the NVAs to a separate
Virtual Network (such as, NVA VNet). Connect the NVA to the regional Virtual WAN
Hub and to the Landing Zones that require access to NVAs.

＂

For non-Virtual Wide Are Network (WAN) topologies, deploy the third-party NVAs
in the central Hub Virtual Network (VNet).

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha?tabs=cli
https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nva
https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nvas-custom
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha?tabs=cli#using-l7-load-balancers

Consider the following recommendations to optimize reliability when configuring your
Network Virtual Appliances (NVA):

Recommendation Description

NVAs should be deployed within a Landing Zone or
solution-level Virtual Network.

If third-party NVAs are required for
inbound HTTP/S connections, deploy
NVAs together with the applications
that they're protecting and exposing to
the internet.

For Virtual Wide Area Network (VWAN) topologies,
deploy the NVAs to a separate Virtual Network (such as,
NVA VNet). Connect the NVA to the regional Virtual
WAN Hub and to the Landing Zones that require access
to NVAs.

If third-party NVAs are required for
east-west or south-north traffic
protection and filtering, reference
Scenario: Route traffic through an NVA.

For non-Virtual Wide Area Network (WAN) topologies,
deploy the third-party NVAs in the central Hub Virtual
Network (VNet).

If third-party NVAs are required for
east-west or south-north traffic
protection and filtering, deploy the
third-party NVAs in the central Hub
Virtual Network.

Next step
Cost optimization and Network Virtual Appliances (NVA)

https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nva

Cost optimization and Network Virtual
Appliances (NVA)
Article • 11/14/2023

Network Virtual Appliances (NVA) are typically used to control the flow of traffic
between network segments classified with different security levels, for example between
a perimeter network (also known as DMZ, demilitarized zone, and screened subnet) and
the public internet.

Examples of NVAs include:

Network firewalls
Layer-4 reverse-proxies
Internet Protocol Security (IPsec) Virtual Private Network (VPN) endpoints
Web-based reverse-proxies
Internet proxies
Layer-7 load balancers

For more information about Network Virtual Appliances, reference Deploy highly
available NVAs.

When deploying a Network Virtual Appliance (NVA), keep in mind the following design
considerations:

There's a difference between using a third-party app (NVA) and using an Azure
native service (Firewall or Application Gateway).
With managed Platform as a Service (PaaS) services such as Azure Firewall or
Application Gateway, Microsoft handles the management of the service and the
underlying infrastructure. Using NVAs, which usually have to be deployed on
Virtual Machines or Infrastructure as a Service (IaaS), the customer has to handle
the management operations (such as patching and updating) of that Virtual
Machine and the appliance on top. Managing third-party services also involves
using specific vendor tools making integration difficult.

Design considerations

Next step
Operational excellence and Network Virtual Appliances (NVA)

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha?tabs=cli

Operational excellence and Network
Virtual Appliances (NVA)
Article • 11/14/2023

Network Virtual Appliances (NVA) are typically used to control the flow of traffic
between network segments classified with different security levels, for example between
a perimeter network (also known as DMZ, demilitarized zone, and screened subnet) and
the public internet.

Examples of NVAs include:

Network firewalls
Layer-4 reverse-proxies
Internet Protocol Security (IPsec) Virtual Private Network (VPN) endpoints
Web-based reverse-proxies
Internet proxies
Layer-7 load balancers

For more information about Network Virtual Appliances, reference Deploy highly
available NVAs.

To understand how NVAs promote operational excellence, reference the following
topics:

Scenario: Route traffic through an NVA
Scenario: Route traffic through NVAs by using custom settings
Gateway Load Balancer

Have you configured your Network Virtual Appliances (NVA) with operational
excellence in mind?

Checklist

NVAs should be deployed within a Landing Zone or solution-level Virtual Network.＂

For Virtual Wide Area Network (VWAN) topologies, deploy the NVAs to a separate
Virtual Network (such as, NVA VNet). Connect the NVA to the regional Virtual WAN
Hub and to the Landing Zones that require access to NVAs.

＂

For non-Virtual Wide Are Network (WAN) topologies, deploy the third-party NVAs
in the central Hub Virtual Network (VNet).

＂

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha?tabs=cli
https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nva
https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nvas-custom
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha?tabs=cli#gateway-load-balancer

Consider the following recommendations to optimize reliability when configuring your
Network Virtual Appliances (NVA):

Recommendation Description

NVAs should be deployed within a Landing Zone or
solution-level Virtual Network.

If third-party NVAs are required for
inbound HTTP/S connections, deploy
NVAs together with the applications
that they're protecting and exposing to
the internet.

For Virtual Wide Area Network (VWAN) topologies,
deploy the NVAs to a separate Virtual Network (such as,
NVA VNet). Connect the NVA to the regional Virtual
WAN Hub and to the Landing Zones that require access
to NVAs.

If third-party NVAs are required for
east-west or south-north traffic
protection and filtering, reference
Scenario: Route traffic through an NVA.

For non-Virtual Wide Area Network (WAN) topologies,
deploy the third-party NVAs in the central Hub Virtual
Network (VNet).

If third-party NVAs are required for
east-west or south-north traffic
protection and filtering, deploy the
third-party NVAs in the central Hub
Virtual Network.

Configuration recommendations

Next step
Reliability and Network connectivity

https://learn.microsoft.com/en-us/azure/virtual-wan/scenario-route-through-nva

Queue Storage and reliability
Article • 11/14/2023

Azure Queue Storage is a service for storing large numbers of messages that you can
access from anywhere in the world through authenticated calls using HTTP or HTTPS .
Queues are commonly used to create a backlog of work to process asynchronously.

For more information about Queue Storage, reference What is Azure Queue Storage?

To understand how Azure Queue Storage helps maintain a reliable workload, reference
the following topics:

Azure Storage redundancy
Disaster recovery and storage account failover

The following sections are specific to Azure Queue Storage and reliability:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Azure Queue Storage follows the SLA statements of the general Storage Account
service .

Have you configured Azure Queue Storage with reliability in mind?

Design considerations

Checklist

Since Storage Queues are a part of the Azure Storage service, refer to the Storage
Accounts configuration checklist and recommendations for reliability.

＂

Ensure that for all clients accessing the storage account, implement a proper retry
policy.

＂

Refer to the Storage guidance for specifics on data recovery for storage accounts.＂

For an SLA increase, use geo-redundant storage.＂

Use geo-zone-redundant storage (GZRS) or read-access geo-zone-redundant
storage (RA-GZRS) for durability and protection against failover if an entire data
center becomes unavailable.

＂

https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/queues/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance?toc=/azure/storage/queues/toc.json
https://azure.microsoft.com/support/legal/sla/storage/v1_5/
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance?toc=/azure/storage/blobs/toc.json

Consider the following recommendations to optimize reliability when configuring your
Azure Queue Storage:

Recommendation Description

For an SLA increase, use geo-redundant
storage.

Use geo-redundant storage with read access and
configure the client application to fail over to
secondary read endpoints if the primary
endpoints fail to respond. This consideration
should be part of the overall reliability strategy of
your solution.

Use geo-zone-redundant storage (GZRS) or
read-access geo-zone-redundant storage
(RA-GZRS) for durability and protection
against failover if an entire data center
becomes unavailable.

For more information, reference Azure Storage
redundancy.

To identify storage accounts using locally redundant storage (LRS), use the following
query:

SQL

To identify storage accounts using V1 storage accounts, use the following query:

SQL

Configuration recommendations

Source artifacts

Resources
| where
 type == 'microsoft.storage/storageaccounts'
 and sku.name =~ 'Standard_LRS'

Resources
| where
 type == 'microsoft.storage/storageaccounts'
 and kind == 'Storage'

Next step
Queue Storage and operational excellence

https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy

Queue Storage and operational
excellence
Article • 11/14/2023

Azure Queue Storage is a service for storing large numbers of messages that you can
access from anywhere in the world through authenticated calls using HTTP or HTTPS .
Queues are commonly used to create a backlog of work to process asynchronously.

For more information about Queue Storage, reference What is Azure Queue Storage?

To understand how Azure Queue Storage promotes operational excellence, reference
the following topics:

Monitoring Azure Queue Storage
Best practices for monitoring Azure Queue Storage

The following sections are specific to Azure Queue Storage and operational excellence:

Design considerations
Configuration checklist
Source artifacts

Azure Queue Storage follows the SLA statements of the general Storage Account
service .

Have you configured Azure Queue Storage with operational excellence in mind?

To identify storage accounts using V1 storage accounts, use the following query:

Design considerations

Checklist

Since Storage Queues are a part of the Azure Storage service, refer to the Storage
Accounts configuration checklist and recommendations for operational excellence.

＂

Ensure that for all clients accessing the storage account, implement a proper retry
policy.

＂

Refer to the Storage guidance for specifics on data recovery for storage accounts.＂

Source artifacts

https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/monitor-queue-storage?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/queues/queues-storage-monitoring-scenarios?tabs=azure-powershell
https://azure.microsoft.com/support/legal/sla/storage/v1_5/
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific#azure-storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance?toc=/azure/storage/blobs/toc.json

SQL

Resources
| where
 type == 'microsoft.storage/storageaccounts'
 and kind == 'Storage'

Next step
IoT Hub and reliability

Service Bus and reliability
Article • 11/14/2023

Fully manage enterprise message brokering with message queues and publish-subscribe
topics used in Azure Service Bus. This service stores messages in a broker (for example, a
queue) until the consuming party is ready to receive the messages.

Benefits include:

Load-balancing across competing workers.
Safely routing and transferring data and control across service, and application
boundaries.
Coordinating transactional work that requires a high-degree of reliability.

For more information about using Service Bus, reference Azure Service Bus Messaging.
Learn how to set up messaging that connects applications and services across on-
premises and cloud environments.

To understand how Service Bus contributes to a reliable workload, reference the
following topics:

Asynchronous messaging patterns and high availability
Azure Service Bus Geo-disaster recovery
Handling outages and disasters

The following sections are specific to Azure Service Bus and reliability:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Maximize reliability with an Azure Service Bus uptime SLA. Properly configured
applications can send or receive messages, or do other operations on a deployed Queue
or Topic. For more information, reference the Service Bus SLA .

Other design considerations include:

Express Entities
Partitioned queues and topics

Design considerations

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-async-messaging
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-geo-dr
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-outages-disasters
https://azure.microsoft.com/support/legal/sla/service-bus/v1_1/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.queuedescription.enableexpress?view=azure-dotnet&preserve-view=true
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning

Besides the documentation on Service Bus Premium and Standard messaging tiers, the
following features are only available on the Premium Stock Keeping Unit (SKU):

Dedicated resources.
Virtual network integration: Limits the networks that can connect to the Service
Bus instance. Requires Service Endpoints to be enabled on the subnet. There are
Trusted Microsoft services that are not supported when implementing Virtual
Networks(for example, integration with Event Grid). For more information,
reference Allow access to Azure Service Bus namespace from specific virtual
networks.
Private endpoints.
IP Filtering/Firewall: Restrict connections to only defined IPv4 addresses or IPv4
address ranges.
Availability zones: Provides enhanced availability by spreading replicas across
availability zones within one region at no extra cost.
Event Grid integration: Available event types.
Scale messaging units.
Geo-Disaster Recovery (paired namespace).
CMK (Customer Managed Key): Azure Service Bus encrypts data at rest and
automatically decrypts it when accessed, but customers can also bring their own
customer-managed key.

When deploying Service Bus with Geo-disaster recovery and in availability zones, the
Service Level Operation (SLO) increases dramatically, but does not change the uptime
SLA.

Have you configured Azure Service Bus with reliability in mind?

Checklist

Evaluate Premium tier benefits of Azure Service Bus.＂

Ensure that Service Bus Messaging Exceptions are handled properly.＂

Connect to Service Bus with the Advanced Messaging Queue Protocol (AMQP) and
use Service Endpoints or Private Endpoints when possible.

＂

Review the Best Practices for performance improvements using Service Bus
Messaging.

＂

Implement geo-replication on the sender and receiver side to protect against
outages and disasters.

＂

Configure Geo-Disaster.＂

If you need mission-critical messaging with queues and topics, Service Bus Premium
is recommended with Geo-Disaster Recovery.

＂

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-service-endpoints
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-ip-filtering
https://learn.microsoft.com/en-us/azure/availability-zones/az-overview
https://learn.microsoft.com/en-us/azure/event-grid/event-schema-service-bus?tabs=event-grid-event-schema
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging#how-many-messaging-units-are-needed
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-geo-dr
https://learn.microsoft.com/en-us/azure/service-bus-messaging/configure-customer-managed-key
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-exceptions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements?tabs=net-standard-sdk-2

Consider the following recommendations to optimize reliability when configuring Azure
Service Bus:

Recommendation Description

Evaluate Premium tier benefits
of Azure Service Bus.

Consider migrating to the Premium tier of Service Bus to take
advantage of platform-supported outage and disaster
protection.

Connect to Service Bus with
the AMQP protocol and use
Service Endpoints or Private
Endpoints when possible.

This recommendation keeps traffic on the Azure Backbone. Note:
The default connection protocol for Microsoft.Azure.ServiceBus
and Windows.Azure.ServiceBus namespaces is AMQP .

Implement geo-replication on
the sender and receiver side
to protect against outages
and disasters.

Standard tier supports only the implementation of sender and
receiver-side geo-redundancy. An outage or disaster in an Azure
Region could cause downtime for your solution.

Configure Geo-Disaster. - Active/Active
- Active/Passive
- Paired Namespace (Active/Passive)
- Note: The secondary region should preferably be an Azure
paired region.

If you need mission-critical
messaging with queues and
topics, Service Bus Premium is
recommended with Geo-
Disaster Recovery.

Choosing the pattern is dependent on the business
requirements and the recovery time objective (RTO).

Configure Zone Redundancy
in the Service Bus namespace
(only available with Premium
tier).

Zone Redundancy includes three copies of the messaging store.
One zone is allocated as the primary messaging store and the
other zones are allocated as secondaries. If the primary zone
becomes unavailable, a secondary is promoted to primary with

Configure Zone Redundancy in the Service Bus namespace (only available with
Premium tier).

＂

Implement high availability for the Service Bus namespace.＂

Ensure related messages are delivered in guaranteed order.＂

Evaluate different Java Messaging Service (JMS) features through the JMS API.＂

Use .NET Nuget packages to communicate with Service Bus messaging entities.＂

Implement resilience for transient fault handling when sending or receiving
messages.

＂

Implement auto-scaling of messaging units.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-outages-disasters#active-replication
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-outages-disasters#passive-replication
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-geo-dr
https://learn.microsoft.com/en-us/azure/availability-zones/cross-region-replication-azure

Recommendation Description

no perceivable downtime. Availability Zones are available in a
subset of Azure Regions with new regions added regularly.

Implement high availability for
the Service Bus namespace.

Premium tier supports Geo-disaster recovery and replication at
the namespace level. At this level, Premium tier provides high
availability for metadata disaster recovery using primary and
secondary disaster recovery namespaces.

Ensure related messages are
delivered in guaranteed order.

Be aware of the requirement to set a Partition Key, Session ID, or
Message ID on each message to ensure related messages send
to the same partition in the messaging entity.

Evaluate different JMS
features through the JMS API.

Features available through the JMS 2.0 API (and its Software
Development Kit (SDK)) are not the same as the features
available through the native SDK. For example, Service Bus
Sessions are not available in JMS.

Implement resilience for
transient fault handling when
sending or receiving
messages.

It is essential to implement suitable transient fault handling and
error handling for send and receive operations to maintain
throughput and to prevent message loss.

Implement auto-scaling of
messaging units, to ensure
that you have enough
resources available for your
workloads.

To identify premium Service Bus Instances that are not using private endpoints, use
the following query:

Kusto

To identify Service Bus Instances that are not on the premium tier, use the
following query:

Kusto

Source artifacts

Resources
| where
 type == 'microsoft.servicebus/namespaces'
| where
 sku.tier == 'Premium'
 and isempty(properties.privateEndpointConnections)

https://learn.microsoft.com/en-us/azure/service-bus-messaging/automate-update-messaging-units

To identify premium Service Bus Instances that are not zone redundant, use the
following query:

Kusto

Resources
| where
 type == 'microsoft.servicebus/namespaces'
| where
 sku.tier != 'Premium'

Resources
| where
 type == 'microsoft.servicebus/namespaces'
| where
 sku.tier == 'Premium'
 and properties.zoneRedundant == 'false'

Next step
Service Bus and operational excellence

Service Bus and operational excellence
Article • 11/14/2023

Fully manage enterprise message brokering with message queues and publish-subscribe
topics using Azure Service Bus. This service stores messages in a broker (for example, a
queue) until the consuming party is ready to receive the messages.

Benefits include:

Load-balancing work across competing workers.
Safely routing and transferring data and control across service, and application
boundaries.
Coordinating transactional work that requires a high-degree of reliability.

For more information about using Service Bus, reference Azure Service Bus Messaging.
Learn how to set up messaging that connects applications and services across on-
premises and cloud environments.

To understand how Service Bus promotes operational excellence, reference the following
topics:

Handling outages and disasters
Throttling operations on Azure Service Bus

The following sections are specific to Azure Service Bus and operational excellence:

Design considerations
Configuration checklist
Recommended configuration options
Source artifacts

Maximize reliability with an Azure Service Bus uptime Service Level Agreement (SLA).
Properly configured applications can send or receive messages, or do other operations
on a deployed Queue or Topic. For more information, reference the Service Bus SLA .

Other design considerations include:

Express Entities
Partitioned queues and topics

Design considerations

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-outages-disasters
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-throttling
https://azure.microsoft.com/support/legal/sla/service-bus/v1_1/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.messaging.queuedescription.enableexpress?view=azure-dotnet&preserve-view=true
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning

Besides the documentation on Service Bus Premium and Standard messaging tiers, the
following features are only available on the Premium Stock Keeping Unit (SKU):

Dedicated resources.
Virtual network integration: Limits the networks that can connect to the Service
Bus instance. Requires Service Endpoints to be enabled on the subnet. There are
Trusted Microsoft services that are not supported when implementing Virtual
Networks (for example, integration with Event Grid). For more information,
reference Allow access to Azure Service Bus namespace from specific virtual
networks.
Private endpoints.
IP Filtering/Firewall: Restrict connections to only defined IPv4 addresses or IPv4
address ranges.
Availability zones: Provides enhanced availability by spreading replicas across
availability zones within one region at no extra cost.
Event Grid integration: Available event types.
Scale messaging units.
Geo-Disaster Recovery (paired namespace).
BYOK (Bring Your Own Key): Azure Service Bus encrypts data at rest and
automatically decrypts it when accessed, but customers can also bring their own
customer-managed key.

When deploying Service Bus with Geo-disaster recovery and in availability zones, the
Service Level Objective (SLO) increases dramatically, but does not change the uptime
SLA.

Have you configured Azure Service Bus with operational excellence in mind?

Checklist

Ensure that Service Bus Messaging Exceptions are handled properly.＂

Connect to Service Bus with the Advanced Message Queuing Protocol (AMQP) and
use Service Endpoints or Private Endpoints when possible.

＂

Establish a process to actively monitor the dead-letter queue (dlq) messages.＂

Review the Best Practices for performance improvements using Service Bus
Messaging.

＂

Analyze the differences between Azure Storage Queues and Azure Service Bus
Queues.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-service-endpoints
https://learn.microsoft.com/en-us/azure/availability-zones/az-overview
https://learn.microsoft.com/en-us/azure/event-grid/event-schema-service-bus?tabs=event-grid-event-schema
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-geo-dr
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-exceptions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements?tabs=net-standard-sdk-2

Consider the following recommendation to optimize reliability when configuring Azure
Service Bus:

Recommendation Description

Connect to Service Bus with the
AMQP protocol and use
Service Endpoints or Private
Endpoints when possible.

This recommendation keeps traffic on the Azure Backbone.
Note: The default connection protocol for
Microsoft.Azure.ServiceBus and Windows.Azure.ServiceBus
namespaces is AMQP .

Establish a process to actively
monitor the dead-letter queue
(dlq) messages.

The dead-letter queue holds messages that cannot be
processed or cannot be delivered to any receiver. It is important
to monitor this queue to examine the issue cause, apply
required corrections, and to resubmit messages.

Analyze the differences
between Azure Storage Queues
and Azure Service Bus Queues.

You will find that Azure Service Bus Messaging Entities are more
advanced, reliable, and feature-rich than Azure Storage Queues.
If your requirement is for simple queue messaging without
requirements for reliable messaging, then Azure Storage
Queues may be a more suitable option.

To identify premium Service Bus Instances that aren't using private endpoints, use
the following query:

Kusto

To identify Service Bus Instances that are not on the premium tier, use the
following query:

Kusto

Source artifacts

Resources
| where
 type == 'microsoft.servicebus/namespaces'
| where
 sku.tier == 'Premium'
 and isempty(properties.privateEndpointConnections)

Resources
| where
 type == 'microsoft.servicebus/namespaces'
| where
 sku.tier != 'Premium'

Next step
Queue Storage and reliability

Storage Accounts and reliability
Article • 11/14/2023

Azure Storage Accounts are ideal for workloads that require fast and consistent
response times, or that have a high number of input output (IOP) operations per
second. Storage accounts contain all your Azure Storage data objects, which include:

Blobs
File shares
Queues
Tables
Disks

Storage accounts provide a unique namespace for your data that's accessible anywhere
over HTTP or HTTPS .

For more information about the different types of storage accounts that support
different features, reference Types of storage accounts.

To understand how an Azure storage account supports resiliency for your application
workload, reference the following articles:

Azure storage redundancy
Disaster recovery and storage account failover

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure storage accounts and reliability.

Azure storage accounts include the following design considerations:

General purpose v1 storage accounts provide access to all Azure Storage services,
but may not have the latest features or the lower per-gigabyte pricing. It's
recommended to use general purpose v2 storage accounts, in most cases. Reasons
to use v1 include:

Applications require the classic deployment model.
Applications are transaction intensive or use significant geo-replication
bandwidth, but don't require large capacity.
The use of a Storage Service REST API that is earlier than February 14, 2014, or a
client library with a version earlier than 4.x is required. An application upgrade
isn't possible.

Design considerations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json#types-of-storage-accounts
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-disaster-recovery-guidance?toc=/azure/storage/blobs/toc.json

For more information, reference the Storage account overview.

Storage account names must be between three and 24 characters and may contain
numbers, and lowercase letters only.
For current SLA specifications, reference SLA for Storage Accounts .
Go to Azure Storage redundancy to determine which redundancy option is best for
a specific scenario.
Storage account names must be unique within Azure. No two storage accounts can
have the same name.

Have you configured your Azure Storage Account with reliability in mind?

Consider the following recommendations to optimize reliability when configuring your
Azure Storage Account:

Recommendation Description

Turn on soft delete for
blob data.

Soft delete for Azure Storage blobs enables you to recover blob
data after it has been deleted.

Checklist

Turn on soft delete for blob data.＂

Use Microsoft Entra ID to authorize access to blob data.＂

Consider the principle of least privilege when you assign permissions to a Microsoft
Entra security principal through Azure RBAC.

＂

Use managed identities to access blob and queue data.＂

Use blob versioning or immutable blobs to store business-critical data.＂

Restrict default internet access for storage accounts.＂

Enable firewall rules.＂

Limit network access to specific networks.＂

Allow trusted Microsoft services to access the storage account.＂

Enable the Secure transfer required option on all your storage accounts.＂

Limit shared access signature (SAS) tokens to HTTPS connections only.＂

Avoid and prevent using Shared Key authorization to access storage accounts.＂

Regenerate your account keys periodically.＂

Create a revocation plan and have it in place for any SAS that you issue to clients.＂

Use near-term expiration times on an impromptu SAS, service SAS, or account SAS.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://azure.microsoft.com/support/legal/sla/storage/v1_5/
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://learn.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview

Recommendation Description

Use Microsoft Entra ID to
authorize access to blob
data.

Microsoft Entra ID provides superior security and ease of use over
Shared Key for authorizing requests to blob storage. It's
recommended to use Microsoft Entra authorization with your blob
and queue applications when possible to minimize potential
security vulnerabilities inherent in Shared Key. For more
information, reference Authorize access to Azure blobs and queues
using Microsoft Entra ID.

Consider the principle of
least privilege when you
assign permissions to a
Microsoft Entra security
principal through Azure
RBAC.

When assigning a role to a user, group, or application, grant that
security principal only those permissions necessary for them to
perform their tasks. Limiting access to resources helps prevent both
unintentional and malicious misuse of your data.

Use managed identities to
access blob and queue
data.

Azure Blob and Queue storage support Microsoft Entra
authentication with managed identities for Azure resources.
Managed identities for Azure resources can authorize access to
blob and queue data using Microsoft Entra credentials from
applications running in Azure virtual machines (VMs), function apps,
virtual machine scale sets, and other services. By using managed
identities for Azure resources together with Microsoft Entra
authentication, you can avoid storing credentials with your
applications that run in the cloud and issues with expiring service
principals. Reference Authorize access to blob and queue data with
managed identities for Azure resources for more information.

Use blob versioning or
immutable blobs to store
business-critical data.

Consider using Blob versioning to maintain previous versions of an
object or the use of legal holds and time-based retention policies to
store blob data in a WORM (Write Once, Read Many) state.
Immutable blobs can be read, but can't be modified or deleted
during the retention interval. For more information, reference Store
business-critical blob data with immutable storage.

Restrict default internet
access for storage
accounts.

By default, network access to Storage Accounts isn't restricted and
is open to all traffic coming from the internet. Access to storage
accounts should be granted to specific Azure Virtual Networks only
whenever possible or use private endpoints to allow clients on a
virtual network (VNet) to access data securely over a Private Link.
Reference Use private endpoints for Azure Storage for more
information. Exceptions can be made for Storage Accounts that
need to be accessible over the internet.

Enable firewall rules. Configure firewall rules to limit access to your storage account to
requests that originate from specified IP addresses or ranges, or
from a list of subnets in an Azure Virtual Network (VNet). For more
information about configuring firewall rules, reference Configure
Azure Storage firewalls and virtual networks.

https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-access-azure-active-directory
https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-managed-identity
https://learn.microsoft.com/en-us/azure/storage/blobs/versioning-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/immutable-storage-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal

Recommendation Description

Limit network access to
specific networks.

Limiting network access to networks hosting clients requiring access
reduces the exposure of your resources to network attacks either by
using the built-in Firewall and virtual networks functionality or by
using private endpoints.

Allow trusted Microsoft
services to access the
storage account.

Turning on firewall rules for storage accounts blocks incoming
requests for data by default, unless the requests originate from a
service operating within an Azure Virtual Network (VNet) or from
allowed public IP addresses. Blocked requests include those
requests from other Azure services, from the Azure portal, from
logging and metrics services, and so on. You can permit requests
from other Azure services by adding an exception to allow trusted
Microsoft services to access the storage account. For more
information about adding an exception for trusted Microsoft
services, reference Configure Azure Storage firewalls and virtual
networks.

Enable the Secure transfer
required option on all your
storage accounts.

When you enable the Secure transfer required option, all requests
made against the storage account must take place over secure
connections. Any requests made over HTTP will fail. For more
information, reference Require secure transfer in Azure Storage.

Limit shared access
signature (SAS) tokens to
HTTPS connections only.

Requiring HTTPS when a client uses a SAS token to access blob data
helps to minimize the risk of eavesdropping. For more information,
reference Grant limited access to Azure Storage resources using
shared access signatures (SAS).

Avoid and prevent using
Shared Key authorization
to access storage accounts.

It's recommended to use Microsoft Entra ID to authorize requests to
Azure Storage and to prevent Shared Key Authorization. For
scenarios that require Shared Key authorization, always prefer SAS
tokens over distributing the Shared Key.

Regenerate your account
keys periodically.

Rotating the account keys periodically reduces the risk of exposing
your data to malicious actors.

Create a revocation plan
and have it in place for any
SAS that you issue to
clients.

If a SAS is compromised, you'll want to revoke that SAS
immediately. To revoke a user delegation SAS, revoke the user
delegation key to quickly invalidate all signatures associated with
that key. To revoke a service SAS that's associated with a stored
access policy, you can delete the stored access policy, rename the
policy, or change its expiry time to a time that is in the past.

Use near-term expiration
times on an impromptu
SAS, service SAS, or
account SAS.

If a SAS is compromised, it's valid only for a short time. This practice
is especially important if you can't reference a stored access policy.
Near-term expiration times also limit the amount of data that can
be written to a blob by limiting the time available to upload to it.
Clients should renew the SAS well before the expiration to allow
time for retries if the service providing the SAS is unavailable.

https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer
https://learn.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://learn.microsoft.com/en-us/azure/storage/common/shared-key-authorization-prevent?tabs=portal

Next step
Storage Accounts and security

Storage Accounts and security
Article • 11/14/2023

Azure Storage Accounts are ideal for workloads that require fast and consistent
response times, or that have a high number of input output (IOP) operations per
second. Storage accounts contain all your Azure Storage data objects, which include:

Blobs
File shares
Queues
Tables
Disks

Storage accounts provide a unique namespace for your data that's accessible anywhere
over HTTP or HTTPS .

For more information about the different types of storage accounts that support
different features, reference Types of storage accounts.

To understand how an Azure storage account boosts security for your application
workload, reference the following articles:

Azure security baseline for Azure Storage
Azure Storage encryption for data at rest
Use private endpoints for Azure Storage

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure storage accounts and security.

Azure storage accounts include the following design considerations:

Storage account names must be between three and 24 characters and may contain
numbers, and lowercase letters only.
For current SLA specifications, reference SLA for Storage Accounts .
Go to Azure Storage redundancy to determine which redundancy option is best for
a specific scenario.
Storage account names must be unique within Azure. No two storage accounts can
have the same name.

Design considerations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json#types-of-storage-accounts
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/storage-security-baseline?toc=%2fazure%2fstorage%2fblobs%2ftoc.json?toc=/azure/storage/blobs/TOC.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints?toc=/azure/storage/blobs/toc.json
https://azure.microsoft.com/support/legal/sla/storage/v1_5/
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy

Have you configured your Azure Storage Account with security in mind?

Consider the following recommendations to optimize security when configuring your
Azure Storage Account:

Recommendation Description

Enable Azure Defender for
all your storage accounts.

Azure Defender for Azure Storage provides an extra layer of security
intelligence that detects unusual and potentially harmful attempts
to access or exploit storage accounts. Security alerts are triggered in
Azure Security Center when anomalies in activity occur. Alerts are
also sent through email to subscription administrators, with details
of suspicious activity and recommendations on how to investigate,
and remediate threats. For more information, reference Configure
Azure Defender for Azure Storage.

Turn on soft delete for
blob data.

Soft delete for Azure Storage blobs enables you to recover blob
data after it has been deleted.

Use Microsoft Entra ID to
authorize access to blob
data.

Microsoft Entra ID provides superior security and ease of use over
Shared Key for authorizing requests to blob storage. It's
recommended to use Microsoft Entra authorization with your blob

Checklist

Enable Azure Defender for all your storage accounts.＂

Turn on soft delete for blob data.＂

Use Microsoft Entra ID to authorize access to blob data.＂

Consider the principle of least privilege when you assign permissions to a Microsoft
Entra security principal through Azure RBAC.

＂

Use managed identities to access blob and queue data.＂

Use blob versioning or immutable blobs to store business-critical data.＂

Restrict default internet access for storage accounts.＂

Enable firewall rules.＂

Limit network access to specific networks.＂

Allow trusted Microsoft services to access the storage account.＂

Enable the Secure transfer required option on all your storage accounts.＂

Limit shared access signature (SAS) tokens to HTTPS connections only.＂

Avoid and prevent using Shared Key authorization to access storage accounts.＂

Regenerate your account keys periodically.＂

Create a revocation plan and have it in place for any SAS that you issue to clients.＂

Use near-term expiration times on an impromptu SAS, service SAS, or account SAS.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/storage/common/azure-defender-storage-configure?tabs=azure-security-center
https://learn.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview

Recommendation Description

and queue applications when possible to minimize potential security
vulnerabilities inherent in Shared Key. For more information,
reference Authorize access to Azure blobs and queues using
Microsoft Entra ID.

Consider the principle of
least privilege when you
assign permissions to a
Microsoft Entra security
principal through Azure
RBAC.

When assigning a role to a user, group, or application, grant that
security principal only those permissions necessary for them to
complete their tasks. Limiting access to resources helps prevent
both unintentional and malicious misuse of your data.

Use managed identities to
access blob and queue
data.

Azure Blob and Queue storage support Microsoft Entra
authentication with managed identities for Azure resources.
Managed identities for Azure resources can authorize access to blob
and queue data using Microsoft Entra credentials from applications
running in Azure virtual machines (VMs), function apps, virtual
machine scale sets, and other services. By using managed identities
for Azure resources together with Microsoft Entra authentication,
you can avoid storing credentials with your applications that run in
the cloud and issues with expiring service principals. Reference
Authorize access to blob and queue data with managed identities
for Azure resources for more information.

Use blob versioning or
immutable blobs to store
business-critical data.

Consider using Blob versioning to maintain previous versions of an
object or the use of legal holds and time-based retention policies to
store blob data in a WORM (Write Once, Read Many) state.
Immutable blobs can be read, but can't be modified or deleted
during the retention interval. For more information, reference Store
business-critical blob data with immutable storage.

Restrict default internet
access for storage
accounts.

By default, network access to Storage Accounts isn't restricted and is
open to all traffic coming from the internet. Access to storage
accounts should be granted to specific Azure Virtual Networks only
whenever possible or use private endpoints to allow clients on a
virtual network (VNet) to access data securely over a Private Link.
Reference Use private endpoints for Azure Storage for more
information. Exceptions can be made for Storage Accounts that
need to be accessible over the internet.

Enable firewall rules. Configure firewall rules to limit access to your storage account to
requests that originate from specified IP addresses or ranges, or
from a list of subnets in an Azure Virtual Network (VNet). For more
information about configuring firewall rules, reference Configure
Azure Storage firewalls and virtual networks.

Limit network access to
specific networks.

Limiting network access to networks hosting clients requiring access
reduces the exposure of your resources to network attacks either by

https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-access-azure-active-directory
https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-managed-identity
https://learn.microsoft.com/en-us/azure/storage/blobs/versioning-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/immutable-storage-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal

Recommendation Description

using the built-in Firewall and virtual networks functionality or by
using private endpoints.

Allow trusted Microsoft
services to access the
storage account.

Turning on firewall rules for storage accounts blocks incoming
requests for data by default, unless the requests originate from a
service operating within an Azure Virtual Network (VNet) or from
allowed public IP addresses. Blocked requests include those
requests from other Azure services, from the Azure portal, from
logging and metrics services, and so on. You can permit requests
from other Azure services by adding an exception to allow trusted
Microsoft services to access the storage account. For more
information about adding an exception for trusted Microsoft
services, reference Configure Azure Storage firewalls and virtual
networks.

Enable the Secure transfer
required option on all
your storage accounts.

When you enable the Secure transfer required option, all requests
made against the storage account must take place over secure
connections. Any requests made over HTTP will fail. For more
information, reference Require secure transfer in Azure Storage.

Limit shared access
signature (SAS) tokens to
HTTPS connections only.

Requiring HTTPS when a client uses a SAS token to access blob data
helps to minimize the risk of eavesdropping. For more information,
reference Grant limited access to Azure Storage resources using
shared access signatures (SAS).

Avoid and prevent using
Shared Key authorization
to access storage
accounts.

It's recommended to use Microsoft Entra ID to authorize requests to
Azure Storage and to prevent Shared Key Authorization. For
scenarios that require Shared Key authorization, always prefer SAS
tokens over distributing the Shared Key.

Regenerate your account
keys periodically.

Rotating the account keys periodically reduces the risk of exposing
your data to malicious actors.

Create a revocation plan
and have it in place for any
SAS that you issue to
clients.

If a SAS is compromised, you'll want to revoke that SAS
immediately. To revoke a user delegation SAS, revoke the user
delegation key to quickly invalidate all signatures associated with
that key. To revoke a service SAS that's associated with a stored
access policy, you can delete the stored access policy, rename the
policy, or change its expiry time to a time that is in the past.

Use near-term expiration
times on an impromptu
SAS, service SAS, or
account SAS.

If a SAS is compromised, it's valid only for a short time. This practice
is especially important if you can't reference a stored access policy.
Near-term expiration times also limit the amount of data that can be
written to a blob by limiting the time available to upload to it.
Clients should renew the SAS well before the expiration to allow
time for retries if the service providing the SAS is unavailable.

https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer
https://learn.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://learn.microsoft.com/en-us/azure/storage/common/shared-key-authorization-prevent?tabs=portal

Next step
Storage Accounts and cost optimization

Storage Accounts and cost optimization
Article • 11/14/2023

Azure Storage Accounts are ideal for workloads that require fast and consistent
response times, or that have a high number of input output (IOP) operations per
second. Storage accounts contain all your Azure Storage data objects, which include:

Blobs
File shares
Queues
Tables
Disks

Storage accounts provide a unique namespace for your data that's accessible anywhere
over HTTP or HTTPS .

For more information about the different types of storage accounts that support
different features, reference Types of storage accounts.

To understand how an Azure storage account can optimize costs for your workload,
reference the following articles:

Plan and manage costs for Azure Blob Storage
Optimize costs for Blob storage with reserved capacity
Understand how reservation discounts are applied to Azure storage services

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure storage accounts and cost
optimization.

Azure storage accounts include the following design considerations:

Periodically dispose and clean up unused storage resources, such as unattached
disks and old snapshots.
Consider Azure Blob access time tracking and access time-based lifecycle
management.
Transition your data from a hotter access tier to a cooler access tier if there's no
access for a period.
Delete your data if there's no access for an extended period.

Design considerations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json#types-of-storage-accounts
https://learn.microsoft.com/en-us/azure/storage/common/storage-plan-manage-costs
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-reserved-capacity
https://learn.microsoft.com/en-us/azure/cost-management-billing/reservations/understand-storage-charges

Considerations Description

Periodically dispose and clean up unused
storage resources, such as unattached disks
and old snapshots.

Unused storage resources can incur cost and it's a
good idea to regularly perform cleanup to reduce
cost.

Consider Azure Blob access time tracking
and access time-based lifecycle
management.

Minimize your storage cost automatically by
setting up a policy based on last access time to:
cost-effective backup storage options.

Transition your data from a hotter access
tier to a cooler access tier if there's no
access for a period

For example:
- Hot to cool
- Cool to archive
- Hot to archive

Have you configured your Azure Storage Account with cost optimization in mind?

Consider the following recommendations to optimize costs when configuring your
Azure Storage Account:

Recommendation Description

Consider cost savings by
reserving data capacity
for block blob storage.

Save money by reserving capacity for block blob and for Azure Data
Lake Storage gen 2 data in standard storage account when customer
commits to one or three years reservation.

Organize data into access
tiers.

You can reduce cost by placing blob data into the most cost-effective
access tier. Place frequently accessed data in a hot tier, less frequent
in a cold or archive tier. Use Premium storage for workloads with high
transaction volumes or workloads where latency is critical.

Use lifecycle policy to
move data between
access tiers.

Lifecycle management policy periodically moves data between tiers.
Policies can move data based on rules specified by the user. For
example, you can create rules that move blobs to the archive tier if
that blob has been modified in 90 days. Unused data can be removed
completely using a policy. By creating policies that adjust the access
tier of your data, you can design the least expensive storage options
for your requirements.

Checklist

Consider cost savings by reserving data capacity for block blob storage.＂

Organize data into access tiers.＂

Use lifecycle policy to move data between access tiers.＂

Configuration recommendations

Next step
Storage Accounts and operational excellence

Storage Accounts and operational
excellence
Article • 11/14/2023

Azure Storage Accounts are ideal for workloads that require fast and consistent
response times, or that have a high number of input output (IOP) operations per
second. Storage accounts contain all your Azure Storage data objects, which include:

Blobs
File shares
Queues
Tables
Disks

Storage accounts provide a unique namespace for your data that's accessible anywhere
over HTTP or HTTPS .

For more information about the different types of storage accounts that support
different features, reference Types of storage accounts.

To understand how an Azure storage account can promote operational excellence for
your workload, reference the following articles:

Best practices for monitoring Azure Blob Storage
Use Azure Storage analytics to collect logs and metrics data
Azure Storage analytics logging

The following sections include design considerations, a configuration checklist, and
recommended configuration options specific to Azure storage accounts and operational
excellence.

Azure storage accounts include the following design considerations:

General purpose v1 storage accounts provide access to all Azure Storage services,
but may not have the latest features or the lower per-gigabyte pricing. It's
recommended to use general purpose v2 storage accounts, in most cases. Reasons
to use v1 include:

Applications require the classic deployment model.

Design considerations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=/azure/storage/blobs/toc.json#types-of-storage-accounts
https://learn.microsoft.com/en-us/azure/storage/blobs/blob-storage-monitoring-scenarios
https://learn.microsoft.com/en-us/azure/storage/common/storage-analytics
https://learn.microsoft.com/en-us/azure/storage/common/storage-analytics-logging

Applications are transaction intensive or use significant geo-replication
bandwidth, but don't require large capacity.
The use of a Storage Service REST API that is earlier than February 14, 2014, or a
client library with a version earlier than 4.x is required. An application upgrade
isn't possible.

For more information, reference the Storage account overview.

Storage account names must be between three and 24 characters and may contain
numbers, and lowercase letters only.
For current SLA specifications, reference SLA for Storage Accounts .
Go to Azure Storage redundancy to determine which redundancy option is best for
a specific scenario.
Storage account names must be unique within Azure. No two storage accounts can
have the same name.

Have you configured your Azure Storage Account with operational excellence in
mind?

Checklist

Enable Azure Defender for all your storage accounts.＂

Turn on soft delete for blob data.＂

Use Microsoft Entra ID to authorize access to blob data.＂

Consider the principle of least privilege when you assign permissions to a Microsoft
Entra security principal through Azure RBAC.

＂

Use managed identities to access blob and queue data.＂

Use blob versioning or immutable blobs to store business-critical data.＂

Restrict default internet access for storage accounts.＂

Enable firewall rules.＂

Limit network access to specific networks.＂

Allow trusted Microsoft services to access the storage account.＂

Enable the Secure transfer required option on all your storage accounts.＂

Limit shared access signature (SAS) tokens to HTTPS connections only.＂

Avoid and prevent using Shared Key authorization to access storage accounts.＂

Regenerate your account keys periodically.＂

Create a revocation plan and have it in place for any SAS that you issue to clients.＂

Use near-term expiration times on an impromptu SAS, service SAS, or account SAS.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://azure.microsoft.com/support/legal/sla/storage/v1_5/
https://learn.microsoft.com/en-us/azure/storage/common/storage-redundancy

Consider the following recommendations to optimize operational excellence when
configuring your Azure Storage Account:

Recommendation Description

Enable Azure Defender for
all your storage accounts.

Azure Defender for Azure Storage provides an extra layer of security
intelligence that detects unusual and potentially harmful attempts
to access or exploit storage accounts. Security alerts are triggered in
Azure Security Center when anomalies in activity occur. Alerts are
also sent through email to subscription administrators, with details
of suspicious activity and recommendations on how to investigate,
and remediate threats. For more information, reference Configure
Azure Defender for Azure Storage.

Turn on soft delete for
blob data.

Soft delete for Azure Storage blobs enables you to recover blob
data after it has been deleted.

Use Microsoft Entra ID to
authorize access to blob
data.

Microsoft Entra ID provides superior security and ease of use over
Shared Key for authorizing requests to blob storage. It's
recommended to use Microsoft Entra authorization with your blob
and queue applications when possible to minimize potential security
vulnerabilities inherent in Shared Key. For more information,
reference Authorize access to Azure blobs and queues using
Microsoft Entra ID.

Consider the principle of
least privilege when you
assign permissions to a
Microsoft Entra security
principal through Azure
RBAC.

When assigning a role to a user, group, or application, grant that
security principal only those permissions necessary for them to
complete their tasks. Limiting access to resources helps prevent
both unintentional and malicious misuse of your data.

Use managed identities to
access blob and queue
data.

Azure Blob and Queue storage support Microsoft Entra
authentication with managed identities for Azure resources.
Managed identities for Azure resources can authorize access to blob
and queue data using Microsoft Entra credentials from applications
running in Azure virtual machines (VMs), function apps, virtual
machine scale sets, and other services. By using managed identities
for Azure resources together with Microsoft Entra authentication,
you can avoid storing credentials with your applications that run in
the cloud and issues with expiring service principals. Reference
Authorize access to blob and queue data with managed identities
for Azure resources for more information.

Use blob versioning or
immutable blobs to store
business-critical data.

Consider using Blob versioning to maintain previous versions of an
object or the use of legal holds and time-based retention policies to
store blob data in a WORM (Write Once, Read Many) state.
Immutable blobs can be read, but can't be modified or deleted
during the retention interval. For more information, reference Store
business-critical blob data with immutable storage.

https://learn.microsoft.com/en-us/azure/storage/common/azure-defender-storage-configure?tabs=azure-security-center
https://learn.microsoft.com/en-us/azure/storage/blobs/soft-delete-blob-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-access-azure-active-directory
https://learn.microsoft.com/en-us/azure/storage/blobs/authorize-managed-identity
https://learn.microsoft.com/en-us/azure/storage/blobs/versioning-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/immutable-storage-overview

Recommendation Description

Restrict default internet
access for storage
accounts.

By default, network access to Storage Accounts isn't restricted and is
open to all traffic coming from the internet. Access to storage
accounts should be granted to specific Azure Virtual Networks only
whenever possible or use private endpoints to allow clients on a
virtual network (VNet) to access data securely over a Private Link.
Reference Use private endpoints for Azure Storage for more
information. Exceptions can be made for Storage Accounts that
need to be accessible over the internet.

Enable firewall rules. Configure firewall rules to limit access to your storage account to
requests that originate from specified IP addresses or ranges, or
from a list of subnets in an Azure Virtual Network (VNet). For more
information about configuring firewall rules, reference Configure
Azure Storage firewalls and virtual networks.

Limit network access to
specific networks.

Limiting network access to networks hosting clients requiring access
reduces the exposure of your resources to network attacks either by
using the built-in Firewall and virtual networks functionality or by
using private endpoints.

Allow trusted Microsoft
services to access the
storage account.

Turning on firewall rules for storage accounts blocks incoming
requests for data by default, unless the requests originate from a
service operating within an Azure Virtual Network (VNet) or from
allowed public IP addresses. Blocked requests include those
requests from other Azure services, from the Azure portal, from
logging and metrics services, and so on. You can permit requests
from other Azure services by adding an exception to allow trusted
Microsoft services to access the storage account. For more
information about adding an exception for trusted Microsoft
services, reference Configure Azure Storage firewalls and virtual
networks.

Enable the Secure transfer
required option on all
your storage accounts.

When you enable the Secure transfer required option, all requests
made against the storage account must take place over secure
connections. Any requests made over HTTP will fail. For more
information, reference Require secure transfer in Azure Storage.

Limit shared access
signature (SAS) tokens to
HTTPS connections only.

Requiring HTTPS when a client uses a SAS token to access blob data
helps to minimize the risk of eavesdropping. For more information,
reference Grant limited access to Azure Storage resources using
shared access signatures (SAS).

Avoid and prevent using
Shared Key authorization
to access storage
accounts.

It's recommended to use Microsoft Entra ID to authorize requests to
Azure Storage and to prevent Shared Key Authorization. For
scenarios that require Shared Key authorization, always prefer SAS
tokens over distributing the Shared Key.

Regenerate your account Rotating the account keys periodically reduces the risk of exposing

https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://learn.microsoft.com/en-us/azure/private-link/private-link-overview
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-private-endpoints
https://learn.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/storage/common/storage-require-secure-transfer
https://learn.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://learn.microsoft.com/en-us/azure/storage/common/shared-key-authorization-prevent?tabs=portal

Recommendation Description

keys periodically. your data to malicious actors.

Create a revocation plan
and have it in place for any
SAS that you issue to
clients.

If a SAS is compromised, you'll want to revoke that SAS
immediately. To revoke a user delegation SAS, revoke the user
delegation key to quickly invalidate all signatures associated with
that key. To revoke a service SAS that's associated with a stored
access policy, you can delete the stored access policy, rename the
policy, or change its expiry time to a time that is in the past.

Use near-term expiration
times on an impromptu
SAS, service SAS, or
account SAS.

If a SAS is compromised, it's valid only for a short time. This practice
is especially important if you can't reference a stored access policy.
Near-term expiration times also limit the amount of data that can be
written to a blob by limiting the time available to upload to it.
Clients should renew the SAS well before the expiration to allow
time for retries if the service providing the SAS is unavailable.

Next step
Disks and cost optimization

Reliability and Traffic Manager
Article • 11/14/2023

Traffic Manager is a Domain Name System (DNS)-based traffic load balancer. This
service allows you to distribute traffic to your public-facing applications across the
global Azure regions. Traffic Manager also provides your public endpoints with high
availability and quick responsiveness.

Features include:

Increase application availability
Improve application performance
Service maintenance without downtime
Combine hybrid applications
Distribute traffic for complex deployments

For more information, reference What is Traffic Manager?

To learn how Traffic Manager supports a reliable workload, reference the following
articles:

Enhance your service availability and data locality by using Azure Traffic Manager
Using load-balancing services in Azure
Disaster recovery using Azure DNS and Traffic Manager

Have you configured Traffic Manager with reliability in mind?

Consider the following recommendations to optimize reliability when configuring Traffic
Manager:

Checklist

If the Time to Live (TTL) interval of the DNS record is too long, consider adjusting
the health probe timing or DNS record TTL.

＂

Implement a custom page to use as a health check for your Traffic Manager.＂

Evaluate the three different traffic routing methods.＂

Consider nested Traffic Manager profiles.＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/traffic-manager/
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#increase-application-availability
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#improve-application-performance
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#service-maintenance-without-downtime
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#combine-hybrid-applications
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#distribute-traffic-for-complex-deployments
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://learn.microsoft.com/en-us/training/modules/distribute-load-with-traffic-manager/
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-load-balancing-azure
https://learn.microsoft.com/en-us/azure/networking/disaster-recovery-dns-traffic-manager

Recommendation Description

If the Time to Live (TTL)
interval of the DNS record is
too long, consider adjusting
the health probe timing or
DNS record TTL.

When a backend becomes unavailable, Traffic Manager won't
fail over to another region immediately. There will be a time
interval where clients can't be served. The length of this interval
depends on the time settings of the health probe (probe
interval and the number of unhealthy responses allowed). If the
resulting interval is still too large for the scenario, consider
switching to Azure Front Door for global load balancing.

Implement a custom page to
use as a health check for your
Traffic Manager.

A common practice is to implement a custom page within your
application (for example: /health.aspx). Using this path for
monitoring, you can do application-specific checks, such as
checking performance counters or verifying database
availability. Based on these custom checks, the page returns an
appropriate HTTPS status code.

Evaluate the three different
traffic routing methods.

Traffic Manager supports three traffic-routing methods to
determine how to route network traffic to the various service
endpoints. Traffic Manager applies the traffic-routing method to
each DNS query it receives. The traffic-routing method
determines which endpoint is returned in the DNS response.
The customer should be aware of these endpoints and the
differences in routing between endpoints.

Consider nested Traffic
Manager profiles.

Each Traffic Manager profile specifies a single traffic-routing
method. There are scenarios that require more sophisticated
traffic routing than the routing provided by a single Traffic
Manager profile. You can nest Traffic Manager profiles to
combine the benefits of more than one traffic-routing method.
Nested profiles allow you to override the default Traffic
Manager behavior to support larger, more complex application
deployments.

Next step
Operational excellence and Traffic Manager

Operational excellence and Traffic
Manager
Article • 11/14/2023

Traffic Manager is a Domain Name System (DNS)-based traffic load balancer. This
service allows you to distribute traffic to your public-facing applications across the
global Azure regions. Traffic Manager also provides your public endpoints with high
availability and quick responsiveness.

Features include:

Increase application availability
Improve application performance
Service maintenance without downtime
Combine hybrid applications
Distribute traffic for complex deployments

For more information, reference What is Traffic Manager?

To learn how Traffic Manager supports operational excellence, reference the following
articles:

Troubleshooting degraded state on Azure Traffic Manager
Traffic Manager endpoint monitoring
Traffic Manager metrics and alerts

Have you configured Traffic Manager with operational excellence in mind?

Consider the following recommendation for operational excellence when configuring
Traffic Manager:

Checklist

If the Time to Live (TTL) interval of the DNS record is too long, consider adjusting
the health probe timing or DNS record TTL.

＂

Configuration recommendations

https://learn.microsoft.com/en-us/azure/traffic-manager/
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#increase-application-availability
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#improve-application-performance
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#service-maintenance-without-downtime
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#combine-hybrid-applications
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview#distribute-traffic-for-complex-deployments
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-troubleshooting-degraded
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-monitoring
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-metrics-alerts

Recommendation Description

If the Time to Live (TTL) interval
of the DNS record is too long,
consider adjusting the health
probe timing or DNS record
TTL.

When a backend becomes unavailable, Traffic Manager won't
fail over to another region immediately. There will be a time
interval where clients can't be served. The length of this interval
depends on the time settings of the health probe (probe
interval and the number of unhealthy responses allowed). If the
resulting interval is still too large for the scenario, consider
switching to Azure Front Door for global load balancing.

Next step
Cost optimization and IP addresses

Azure Well-Architected Framework
perspective on Virtual Machines and
scale sets
Article • 02/21/2024

Azure Virtual Machines is a type of compute service that you can use to create and run
virtual machines (VMs) on the Azure platform. It offers flexibility in different SKUs,
operating systems, and configurations with various billing models.

This article assumes that as an architect you've reviewed the compute decision tree and
chose Virtual Machines as the compute service for your workload. The guidance in this
article provides architectural recommendations that are mapped to the principles of the
Azure Well-Architected Framework pillars.

This review focuses on the interrelated decisions for the following Azure resources:

Virtual Machines

Azure Virtual Machine Scale Sets

Disks

） Important

How to use this guide

Each section has a design checklist that presents architectural areas of concern
along with design strategies localized to the technology scope.

Also included are recommendations on the technology capabilities that can help
materialize those strategies. The recommendations don't represent an exhaustive
list of all configurations available for Virtual Machines and its dependencies.
Instead, they list the key recommendations mapped to the design perspectives. Use
the recommendations to build your proof-of-concept or optimize your existing
environments.

Foundational architecture that demonstrates the key recommendations: Virtual
Machines baseline architecture.

Technology scope

https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://learn.microsoft.com/en-us/azure/architecture/virtual-machines/baseline

Disks are a critical dependency for VM-based architectures. For more information,
see Disks and optimization.

The purpose of the Reliability pillar is to provide continued functionality by building
enough resilience and the ability to recover fast from failures.

The Reliability design principles provide a high-level design strategy applied for
individual components, system flows, and the system as a whole.

Start your design strategy based on the design review checklist for Reliability.
Determine its relevance to your business requirements while keeping in mind the SKUs
and features of VMs and their dependencies. Extend the strategy to include more
approaches as needed.

Reliability

Design checklist

Review Virtual Machines quotas and limits that might pose design restrictions.
VMs have specific limits and quotas, which vary based on the type of VM or the
region. There might be subscription restrictions, such as the number of VMs per
subscription or the number of cores per VM. If other workloads share your
subscription, then your ability to consume data might be reduced. Check limits on
VMs, virtual machine scale sets, and managed disks.

＂

Conduct a failure mode analysis to minimize points of failure by analyzing VM
interactions with the network and storage components. Choose configurations like
ephemeral operating system (OS) disks to localize disk access and avoid network
hops. Add a load balancer to enhance self-preservation by distributing network
traffic across multiple VMs, which improves availability and reliability.

＂

Calculate your composite service-level objectives (SLOs) based on Azure service-
level agreements (SLAs). Ensure that your SLO isn't higher than the Azure SLAs
to avoid unrealistic expectations and potential issues.

Be aware of the complexities that dependencies introduce. For example, some
dependencies, like virtual networks and network interface cards (NICs), don't have
their own SLAs. Other dependencies, such as an associated data disk, have SLAs
that integrate with VM SLAs. You should consider these variations because they can
affect VM performance and reliability.

＂

https://learn.microsoft.com/en-us/azure/well-architected/resiliency/principles
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#virtual-machine-scale-sets-limits
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#virtual-machine-scale-sets-limits
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits#managed-virtual-machine-disks
https://azure.microsoft.com/support/legal/sla/virtual-machines/v1_9/

Factor in the critical dependencies of VMs on components like disks and
networking components. If you understand these relationships, then you can
determine the critical flows that affect reliability.

Create state isolation. Workload data should be on a separate data disk to prevent
interference with the OS disk. If a VM fails, you can create a new OS disk with the
same data disk, which ensures resilience and fault isolation. For more information,
see Ephemeral OS disks.

＂

Make VMs and their dependencies redundant across zones. If a VM fails, the
workload should continue to function because of redundancy. Include
dependencies in your redundancy choices. For example, use the built-in
redundancy options that are available with disks. Use zone-redundant IPs to ensure
data availability and high uptime.

＂

Be ready to scale up and scale out to prevent service level degradation and to
avoid failures. Virtual Machine Scale Sets have autoscale capabilities that create new
instances as required and distribute the load across multiple VMs and availability
zones.

＂

Explore the automatic recovery options. Azure supports health degradation
monitoring and self-healing features for VMs. For example, scale sets provide
automatic instance repairs. In more advanced scenarios, self-healing involves using
Azure Site Recovery, having a passive standby to fail over to, or redeploying from
infrastructure as code (IaC). The method that you choose should align with the
business requirements and your organizational operations. For more information,
see VM service disruptions.

＂

Rightsize the VMs and their dependencies. Understand your VM's expected work
to ensure it's not undersized and can handle the maximum load. Have extra
capacity to mitigate failures.

＂

Create a comprehensive disaster recovery plan. Disaster preparedness involves
creating a comprehensive plan and deciding on a technology for recovery.

Dependencies and stateful components, such as attached storage, can complicate
recovery. If disks go down, then that failure affects the VM's functioning. Include a
clear process for these dependencies in your recovery plans.

＂

Run operations with rigor. Reliability design choices must be supported by
effective operations based on the principles of monitoring, resiliency testing in
production, automated application VM patches and upgrades, and consistency of
deployments. For operational guidance, see Operational Excellence.

＂

https://learn.microsoft.com/en-us/azure/virtual-machines/ephemeral-os-disks
https://learn.microsoft.com/en-us/azure/virtual-machines/flexible-virtual-machine-scale-sets
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-automatic-instance-repairs
https://learn.microsoft.com/en-us/azure/virtual-machines/overview#service-disruptions

Recommendation Benefit

(Scale set) Use Virtual Machine
Scale Sets in Flexible orchestration
mode to deploy VMs.

Future-proof your application for scaling and take
advantage of the high availability guarantees that spread
VMs across fault domains in a region or an availability
zone.

(VMs) Implement heath endpoints
that emit instance health statuses
on VMs.

(Scale set) Enable automatic repairs
on the scale set by specifying the
preferred repair action.
Consider setting a time frame
during which automatic repairs
pause if the VM's state changes.

Maintain availability even if an instance is deemed
unhealthy. Automatic repairs initiate recovery by replacing
the faulty instance.

Setting a time window can prevent inadvertent or
premature repair operations.

(Scale set) Enable overprovisioning
on scale sets.

Overprovisioning reduces deployment times and has a cost
benefit because the extra VMs aren't billed.

(Scale set) Allow Flexible
orchestration to spread the VM
instances across as many fault
domains as possible.

This option isolates fault domains. During maintenance
periods, when one fault domain is updated, VM instances
are available in the other fault domains.

(Scale set) Deploy across
availability zones on scale sets. Set
up at least two instances in each
zone.
Zone balancing equally spreads the
instances across zones.

The VM instances are provisioned in physically separate
locations within each Azure region that are tolerant to local
failures.
Keep in mind that, depending on resource availability,
there might be an uneven number of instances across
zones. Zone balancing supports availability by making sure
that, if one zone is down, the other zones have sufficient
instances.
Two instances in each zone provide a buffer during
upgrades.

(VMs) Take advantage of the
capacity reservations feature.

Capacity is reserved for your use and is available within the
scope of the applicable SLAs. You can delete capacity
reservations when you no longer need them, and billing is
consumption based.

For more information on Reliability for VMs, see Reliability in Virtual Machines.

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-orchestration-modes#scale-sets-with-flexible-orchestration
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-automatic-instance-repairs
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-design-overview#overprovisioning
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-orchestration-modes#what-has-changed-with-flexible-orchestration-mode
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-use-availability-zones#design-considerations-for-availability-zones
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-use-availability-zones#zone-balancing
https://learn.microsoft.com/en-us/azure/virtual-machines/capacity-reservation-overview
https://learn.microsoft.com/en-us/azure/reliability/reliability-virtual-machines

The purpose of the Security pillar is to provide confidentiality, integrity, and availability
guarantees to the workload.

The Security design principles provide a high-level design strategy for achieving those
goals by applying approaches to the technical design of Virtual Machines.

Start your design strategy based on the design review checklist for Security. Identify
vulnerabilities and controls to improve the security posture. Extend the strategy to
include more approaches as needed.

Security

Design checklist

Review the security baselines for Linux and Windows VMs and Virtual Machine
Scale Sets.

As part of your baseline technology choices, consider the security features of the
VM SKUs that support your workload.

＂

Ensure timely and automated security patching and upgrades. Make sure updates
are automatically rolled out and validated by using a well-defined process. Use a
solution like Azure Automation to manage OS updates and maintain security
compliance by making critical updates.

＂

Identify the VMs that hold state. Make sure that data is classified according to the
sensitivity labels that your organization provided. Protect data by using security
controls like appropriate levels of at-rest and in-transit encryption. If you have high
sensitivity requirements, consider using high-security controls like double
encryption and Azure confidential computing to protect data-in-use.

＂

Provide segmentation to the VMs and scale sets by setting network boundaries
and access controls. Place VMs in resource groups that share the same lifecycle.

＂

Apply access controls to the identities that try to reach the VMs and also to the
VMs that reach other resources. Use Microsoft Entra ID for authentication and
authorization needs. Put strong passwords, multifactor authentication, and role-
based access control (RBAC) in place for your VMs and their dependencies, like
secrets, to permit allowed identities to perform only the operations that are
expected of their roles.

Restrict resource access based on conditions by using Microsoft Entra Conditional
Access. Define the conditional policies based on duration and the minimum set of

＂

https://learn.microsoft.com/en-us/azure/well-architected/security/security-principles
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/virtual-machines-linux-security-baseline
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/virtual-machines-windows-security-baseline
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/virtual-machine-scale-sets-security-baseline
https://learn.microsoft.com/en-us/azure/automation/update-management/overview

Recommendation Benefit

(Scale set) Assign a managed identity to
scale sets. All VMs in the scale set get the
same identity through the specified VM
profile.

(VMs) You can also assign a managed
identity to individual VMs when you create

When VMs communicate with other resources, they
cross a trust boundary. Scale sets and VMs should
authenticate their identity before communication is
allowed. Microsoft Entra ID handles that
authentication by using managed identities.

required permissions.

Use network controls to restrict ingress and egress traffic. Isolate VMs and scale
sets in Azure Virtual Network and define network security groups to filter traffic.
Protect against distributed denial of service (DDoS) attacks. Use load balancers and
firewall rules to protect against malicious traffic and data exfiltration attacks.

Use Azure Bastion to provide secure connectivity to the VMs for operational access.

Communication to and from the VMs to platform as a service (PaaS) solutions
should be over private endpoints.

＂

Reduce the attack surface by hardening OS images and removing unused
components. Use smaller images and remove binaries that aren't required to run
the workload. Tighten the VM configurations by removing features, like default
accounts and ports, that you don't need.

＂

Protect secrets such as the certificates that you need to protect data in transit.
Consider using the Azure Key Vault extension for Windows or Linux that
automatically refreshes the certificates stored in a key vault. When it detects a
change in the certificates, the extension retrieves and installs the corresponding
certificates.

＂

Threat detection. Monitor VMs for threats and misconfigurations. Use Defender for
Servers to capture VM and OS changes, and maintain an audit trail of access, new
accounts, and changes in permissions.

＂

Threat prevention. Protect against malware attacks and malicious actors by
implementing security controls like firewalls, antivirus software, and intrusion
detection systems. Determine if a Trusted Execution Environment (TEE) is required.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/qs-configure-cli-windows-vmss
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/qs-configure-template-windows-vm
https://learn.microsoft.com/en-us/azure/bastion/bastion-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-windows
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-linux
https://learn.microsoft.com/en-us/azure/defender-for-cloud/tutorial-enable-servers-plan
https://learn.microsoft.com/en-us/azure/confidential-computing/trusted-execution-environment

Recommendation Benefit

them and then add it to a scale set if
needed.

(Scale set) Choose VM SKUs with security
features.
For example, some SKUs support BitLocker
encryption, and confidential computing
provides encryption of data-in-use.
Review the features to understand the
limitations.

Azure-provided features are based on signals that
are captured across many tenants and can protect
resources better than custom controls. You can also
use policies to enforce those controls.

(VMs, scale set) Apply organization-
recommended tags in the provisioned
resources.

Tagging is a common way to segment and organize
resources and can be crucial during incident
management. For more information, see Purpose of
naming and tagging.

(VMs, scale set) Set a security profile with
the security features that you want to
enable in the VM configuration.
For example, when you specify encryption
at host in the profile, the data that's stored
on the VM host is encrypted at rest and
flows are encrypted to the storage service.

The features in the security profile are automatically
enabled when the VM is created.
For more information, see Azure security baseline
for Virtual Machine Scale Sets.

(VMs) Choose secure networking options
for your VM's network profile.

Don't directly associate public IP addresses
to your VMs and don't enable IP
forwarding.

Ensure that all virtual network interfaces
have an associated network security group.

You can set segmentation controls in the
networking profile.
Attackers scan public IP addresses, which makes
VMs vulnerable to threats.

(VMs) Choose secure storage options for
your VM's storage profile.

Enable disk encryption and data-at-rest
encryption by default. Disable public
network access to the VM disks.

Disabling public network access helps prevent
unauthorized access to your data and resources.

(VMs, scale set) Include extensions in your
VMs that protect against threats.
For example,
- Key Vault extension for Windows and
Linux
- Microsoft Entra ID authentication
- Microsoft Antimalware for Azure Cloud
Services and Virtual Machines

The extensions are used to bootstrap the VMs with
the right software that protects access to and from
the VMs.
Microsoft-provided extensions are updated
frequently to keep up with the evolving security
standards.

https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/qs-configure-template-windows-vm
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview#supported-vms-and-operating-systems
https://learn.microsoft.com/en-us/azure/confidential-computing/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging#purpose-of-naming-and-tagging
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-enable-host-based-encryption-portal
https://learn.microsoft.com/en-us/security/benchmark/azure/baselines/virtual-machine-scale-sets-security-baseline#security-profile
https://learn.microsoft.com/en-us/azure/security/fundamentals/azure-disk-encryption-vms-vmss
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-windows
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-linux
https://learn.microsoft.com/en-us/entra/identity/devices/howto-vm-sign-in-azure-ad-linux
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/iaas-antimalware-windows

Recommendation Benefit

- Azure Disk Encryption extension for
Windows and Linux.

Cost Optimization focuses on detecting spend patterns, prioritizing investments in
critical areas, and optimizing in others to meet the organization's budget while
meeting business requirements.

The Cost Optimization design principles provide a high-level design strategy for
achieving those goals and making tradeoffs as necessary in the technical design related
to Virtual Machines and its environment.

Start your design strategy based on the design review checklist for Cost Optimization for
investments. Fine-tune the design so that the workload is aligned with the budget that's
allocated for the workload. Your design should use the right Azure capabilities, monitor
investments, and find opportunities to optimize over time.

Cost Optimization

Design checklist

Estimate realistic costs. Use the pricing calculator to estimate the costs of your
VMs. Identify the best VM for your workload by using the VM selector. For more
information, see Linux and Windows pricing.

＂

Implement cost guardrails. Use governance policies to restrict resource types,
configurations, and locations. Use RBAC to block actions that can lead to
overspending.

＂

Choose the right resources. Your selection of VM plan sizes and SKUs directly affect
the overall cost. Choose VMs based on workload characteristics. Is the workload
CPU intensive or does it run interruptible processes? Each SKU has associated disk
options that affect the overall cost.

＂

Choose the right capabilities for dependent resources. Save on backup storage
costs for the vault-standard tier by using Azure Backup storage with reserved
capacity. It offers a discount when you commit to a reservation for either one year
or three years.

The archive tier in Azure Storage is an offline tier that's optimized for storing blob
data that's rarely accessed. The archive tier offers the lowest storage costs but
higher data retrieval costs and latency compared to the hot and cool online tiers.

＂

https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/iaas-antimalware-windows
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/disk-encryption-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/disk-encryption-overview
https://azure.microsoft.com/pricing/calculator/#virtual-machines
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/pricing/details/virtual-machines/windows/

Recommendation Benefit

(VMs, scale set) Choose the right VM plan size and
SKU. Identify the best VM sizes for your workload.
Use the VM selector to identify the best VM for
your workload. See Windows and Linux pricing.

SKUs are priced according to the
capabilities that they offer. If you don't
need advanced capabilities, don't
overspend on SKUs.

Consider using zone to zone disaster recovery for VMs to recover from site failure
while reducing the complexity of availability by using zone-redundant services.
There can be cost benefits from reduced operational complexity.

Choose the right billing model. Evaluate whether commitment-based models for
computing optimize costs based on the business requirements of workload.
Consider these Azure options:

Azure reservations: Prepay for predictable workloads to reduce costs compared
to consumption-based pricing.

Savings plan: If you commit to spend a fixed hourly amount on compute services
for one or three years, then this plan can reduce costs.
Azure Hybrid Benefit: Save when you migrate your on-premises VMs to Azure.

＂

） Important

Purchase reserved instances to reduce Azure costs for workloads that have
stable usage. Manage usage to make sure that you're not paying for more
resources than you're using. Keep reserved instances simple and keep
management overhead low to reduce costs.

Monitor usage. Continuously monitor usage patterns and detect unused or
underutilized VMs. For those instances, shut down VM instances when they're not in
use. Monitoring is a key approach of Operational Excellence. For more information,
see the recommendations in Operational Excellence.

＂

Look for ways to optimize. Some strategies include choosing the most cost-
effective approach between increasing resources in an existing system, or scaling
up, and adding more instances of that system, or scaling out. You can offload
demand by distributing it to other resources, or you can reduce demand by
implementing priority queues, gateway offloading, buffering, and rate limiting. For
more information, see the recommendations in Performance Efficiency.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://azure.microsoft.com/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://learn.microsoft.com/en-us/azure/site-recovery/azure-to-azure-how-to-enable-zone-to-zone-disaster-recovery
https://learn.microsoft.com/en-us/azure/virtual-machines/prepay-reserved-vm-instances
https://learn.microsoft.com/en-us/azure/cost-management-billing/savings-plan/savings-plan-compute-overview
https://learn.microsoft.com/en-us/azure/cost-management-billing/scope-level/

Recommendation Benefit

For workloads like highly parallel batch processing
jobs that can tolerate some interruptions, consider
using Azure Spot Virtual Machines. Spot virtual
machines are good for experimenting, developing,
and testing large-scale solutions.

Spot virtual machines take advantage of
the surplus capacity in Azure at a lower
cost.

(VMs, scale set) Evaluate the disk options that are
associated with your VM's SKUs.
Determine your performance needs while keeping
in mind your storage capacity needs and
accounting for fluctuating workload patterns.
For example, the Azure Premium SSD v2 disk allows
you to granularly adjust your performance
independent of the disk's size.

Some high-performance disk types offer
extra cost optimization features and
strategies.
The Premium SSD v2 disk's adjustment
capability can reduce costs because it
provides high performance without
overprovisioning, which could otherwise
lead to underutilized resources.

(Scale set) Mix regular VMs with spot virtual
machines.
Flexible orchestration lets you distribute spot
virtual machines based on a specified percentage.

Reduce compute infrastructure costs by
applying the deep discounts of spot virtual
machines.

(Scale set) Reduce the number of VM instances
when demand decreases.
Set a scale-in policy based on criteria.

Stop VMs during off-hours. You can use the Azure
Automation Start/Stop feature and configure it
according to your business needs.

Scaling in or stopping resources when
they're not in use reduces the number of
VMs running in the scale set, which saves
costs.
The Start/Stop feature is a low-cost
automation option.

(VMs, scale set) Take advantage of license mobility
by using Azure Hybrid Benefit. VMs have a
licensing option that allows you to bring your own
on-premises Windows Server OS licenses to Azure.
Azure Hybrid Benefit also lets you bring certain
Linux subscriptions to Azure.

You can maximize your on-premises
licenses while getting the benefits of the
cloud.

Operational Excellence primarily focuses on procedures for development practices,
observability, and release management.

The Operational Excellence design principles provide a high-level design strategy for
achieving those goals for the operational requirements of the workload.

Operational Excellence

Design checklist

https://azure.microsoft.com/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-types
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/spot-priority-mix
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-scale-in-policy
https://learn.microsoft.com/en-us/azure/automation/automation-solution-vm-management
https://learn.microsoft.com/en-us/azure/virtual-machines/windows/hybrid-use-benefit-licensing

Start your design strategy based on the design review checklist for Operational
Excellence for defining processes for observability, testing, and deployment related to
Virtual Machines and scale sets.

Monitor the VM instances. Collect logs and metrics from VM instances to monitor
resource usage and measure the health of the instances. Some common metrics
include CPU usage, number of requests, and input/output (I/O) latency. Set up
Azure Monitor alerts to be notified about issues and to detect configuration
changes in your environment.

＂

Monitor the health of the VMs and their dependencies.
Deploy monitoring components to collect logs and metrics that give a
comprehensive view of your VMs, guest OS, and boot diagnostics data. Virtual
Machine Scale Sets roll up telemetry, which allows you to view health metrics at
an individual VM level or as an aggregate. Use Azure Monitor to view this data
per VM or aggregated across multiple VMs. For more information, see
Recommendations on monitoring agents.
Take advantage of networking components that check the health status of VMs.
For example, Azure Load Balancer pings VMs to detect unhealthy VMs and
reroute traffic accordingly.
Set up Azure Monitor alert rules. Determine important conditions in your
monitoring data to identify and address issues before they affect the system.

＂

Create a maintenance plan that includes regular system patching as a part of
routine operations. Include emergency processes that allow for immediate patch
application. You can have custom processes to manage patching or partially
delegate the task to Azure. Azure provides features for individual VM maintenance.
You can set up maintenance windows to minimize disruptions during updates.
During platform updates, fault domain considerations are key for resilience. We
recommend that you deploy at least two instances in a zone. Two VMs per zone
guarantees a minimum of one VM in each zone because only one fault domain in a
zone is updated at a time. So, for three zones, provision at least six instances.

＂

Automate processes for bootstrapping, running scripts, and configuring VMs. You
can automate processes by using extensions or custom scripts. We recommend the
following options:

The Key Vault VM extension automatically refreshes certificates that are stored in
a key vault.

The Azure Custom Script Extension for Windows and Linux downloads and runs
scripts on Virtual Machines. Use this extension for post-deployment

＂

https://learn.microsoft.com/en-us/azure/azure-monitor/vm/vminsights-log-query
https://learn.microsoft.com/en-us/azure/virtual-network/monitor-virtual-network#alerts
https://learn.microsoft.com/en-us/azure/virtual-machines/maintenance-configurations
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-windows
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-linux

Recommendation Benefit

(Scale set) Virtual Machine Scale Sets in
Flexible orchestration mode can help
simplify the deployment and management
of your workload. For example, you can
easily manage self-healing by using
automatic repairs.

Flexible orchestration can manage VM instances at
scale. Handing individual VMs adds operational
overhead.

For example, when you delete VM instances, the
associated disks and NICs are also automatically
deleted. VM instances are spread across multiple
fault domains so that update operations don't
disrupt service.

(Scale set) Keep your VMs up to date by
setting an upgrade policy. We recommend
rolling upgrades. However, if you need
granular control, choose to upgrade
manually.

For Flexible orchestration, you can use
Update management in Azure Automation.

Security is the primary reason for upgrades.
Security assurances for the instances shouldn't
decay over time.

Rolling upgrades are done in batches, which
ensures all instances aren't down at the same time.

configuration, software installation, or any other configuration or management
task.

Use cloud-init to set up the startup environment for Linux-based VMs.

Have processes for installing automatic updates. Consider using Automatic VM
guest patching for a timely rollout of critical patches and security patches. Use
Update Management in Azure Automation to manage OS updates for your
Windows and Linux VMs in Azure.

＂

Build a test environment that closely matches your production environment to test
updates and changes before you deploy them to production. Have processes in
place to test the security updates, performance baselines, and reliability faults. Take
advantage of Azure Chaos Studio fault libraries to inject and simulate error
conditions. For more information, see Azure Chaos Studio fault and action library.

＂

Manage your quota. Plan what level of quota your workload requires and review
that level regularly as the workload evolves. If you need to increase or decrease
your quota, request those changes early.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-orchestration-modes#scale-sets-with-flexible-orchestration
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-upgrade-policy
https://learn.microsoft.com/en-us/azure/automation/update-management/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/automatic-vm-guest-patching
https://learn.microsoft.com/en-us/azure/automation/update-management/overview
https://learn.microsoft.com/en-us/azure/chaos-studio/chaos-studio-fault-library
https://learn.microsoft.com/en-us/azure/azure-portal/supportability/per-vm-quota-requests

Recommendation Benefit

(VMs, scale set) Automatically deploy VM
applications from the Azure Compute
Gallery by defining the applications in the
profile.

The VMs in the scale set are created and the
specified apps are preinstalled, which makes
management easier.

Install prebuilt software components as
extensions as part of bootstrapping.
Azure supports many extensions that can be
used to configure, monitor, secure, and
provide utility applications for your VMs.

Enable automatic upgrades on extensions.

Extensions can help simplify the software
installation at scale without you having to
manually install, configure, or upgrade it on each
VM.

(VMs, scale set) Monitor and measure the
health of the VM instances.

Deploy the Monitor agent extension to
your VMs to collect monitoring data from
the guest OS with OS-specific data
collection rules.

Enable VM insights to monitor health and
performance and to view trends from the
collected data.

Use boot diagnostics to get information as
VMs boot. Boot diagnostics also diagnose
boot failures.

Monitoring data is at the core of incident
resolution. A comprehensive monitoring stack
provides information about how the VMs are
performing and their health. By continuously
monitoring the instances, you can be ready for or
prevent failures like performance overload and
reliability issues.

Performance Efficiency is about maintaining user experience even when there's an
increase in load by managing capacity. The strategy includes scaling resources,
identifying and optimizing potential bottlenecks, and optimizing for peak performance.

The Performance Efficiency design principles provide a high-level design strategy for
achieving those capacity goals against the expected usage.

Start your design strategy based on the design review checklist for Performance
Efficiency. Define a baseline that's based on key performance indicators for Virtual
Machines and scale sets.

Performance Efficiency

Design checklist

https://learn.microsoft.com/en-us/azure/virtual-machines/azure-compute-gallery
https://learn.microsoft.com/en-us/azure/templates/microsoft.compute/virtualmachinescalesets?pivots=deployment-language-bicep#applicationprofile
https://learn.microsoft.com/en-us/azure/virtual-machines/extensions/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/automatic-extension-upgrade
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/agents/data-collection-rule-azure-monitor-agent
https://learn.microsoft.com/en-us/azure/azure-monitor/vm/vminsights-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/boot-diagnostics

Recommendation Benefit

(VMs, scale set) Choose SKUs for VMs that
align with your capacity planning.

Have a good understanding of your
workload requirements, including the
number of cores, memory, storage, and
network bandwidth so that you can filter out
unsuitable SKUs.

Rightsizing your VMs is a fundamental decision
that significantly affects the performance of your
workload. Without the right set of VMs, you might
experience performance issues and accrue
unnecessary costs.

Define performance targets. Identify VM metrics to track and measure against
performance indicators as response time, CPU utilization, and memory utilization, as
well as workload metrics such as transactions per second, concurrent users, and
availability and health.

＂

Factor in the performance profile of VMs, scale sets, and disk configuration in
your capacity planning. Each SKU has a different profile of memory and CPU and
behaves differently depending on the type of workload. Conduct pilots and proofs
of concept to understand performance behavior under the specific workload.

＂

VM performance tuning. Take advantage of performance optimization and
enhancing features as required by the workload. For example, use locally attached
Non-Volatile Memory Express (NVMe) for high performance use cases and
accelerated networking, and use Premium SSD v2 for better performance and
scalability.

＂

Take the dependent services into account. Workload dependencies, like caching,
network traffic, and content delivery networks, that interact with the VMs can affect
performance. Also, consider geographical distribution, like zones and regions, which
can add latency.

＂

Collect performance data. Follow the Operational Excellence best practices for
monitoring and deploy the appropriate extensions to view metrics that track
against performance indicators.

＂

Proximity placement groups. Use proximity placement groups in workloads where
low latency is required to ensure that VMs are physically located close to each
other.

＂

Recommendations

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/proximity-placement-groups

Recommendation Benefit

(VMs, scale set) Deploy latency-sensitive
workload VMs in proximity placement
groups.

Proximity placement groups reduce the physical
distance between Azure compute resources, which
can improve performance and reduce network
latency between stand-alone VMs, VMs in multiple
availability sets, or VMs in multiple scale sets.

(VMs, scale set) Set the storage profile by
analyzing the disk performance of existing
workloads and the VM SKU.

Use Premium SSDs for production VMs.
Adjust the performance of disks with
Premium SSD v2.

Use locally attached NVMe devices.

Premium SSDs deliver high-performance and low-
latency disk support VMs with I/O-intensive
workloads.
Premium SSD v2 doesn't require disk resizing,
which enables high performance without excessive
over-provisioning and minimizes the cost of
unused capacity.

When available on VM SKUs, locally attached
NVMe or similar devices can offer high
performance, especially for use cases that require
high input/output operations per second (IOPS)
and low latency.

(VMs) Consider enabling accelerated
networking.

It enables single root I/O virtualization (SR-IOV) to
a VM, which greatly improves its networking
performance.

(VMs, scale set) Set autoscale rules to
increase or decrease the number of VM
instances in your scale set based on
demand.

If your application demand increases, the load on
the VM instances in your scale set increases.
Autoscale rules ensure that you have enough
resources to meet the demand.

Azure provides an extensive set of built-in policies related to Virtual Machines and its
dependencies. Some of the preceding recommendations can be audited through Azure
Policy. For example, you can check whether:

Encryption at host is enabled.
Anti-malware extensions are deployed and enabled for automatic updates on VMs
that run Windows Server.
Automatic OS image patching on scale sets is enabled.
Only approved VM extensions are installed.
The Monitor agent and the dependency agents are enabled on new VMs in your
Azure environment.
Only the allowed VM SKUs are deployed to limit sizes according to cost
constraints.

Azure policies

https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/proximity-placement-groups
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-types
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-performance-tiers
https://learn.microsoft.com/en-us/azure/virtual-network/accelerated-networking-overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-portal

Feedback

Was this page helpful?

Private endpoints are used to access disk resources.
Vulnerability detection is enabled. There are specialized rules for Windows
machines. For example, you can schedule Windows Defender to scan every day.

For comprehensive governance, review the Azure Policy built-in definitions for Virtual
Machines and other policies that might affect the security of the compute layer.

Azure Advisor is a personalized cloud consultant that helps you follow best practices to
optimize your Azure deployments. Here are some recommendations that can help you
improve the reliability, security, cost effectiveness, performance, and operational
excellence of Virtual Machines.

Reliability
Security
Cost Optimization
Performance
Operational Excellence

Consider the following articles as resources that demonstrate the recommendations
highlighted in this article.

Use the following reference architectures as examples of how you can apply this
article's guidance to a workload:

Single VM architectures: Linux VM and Windows VM
Foundational architecture that focuses on infrastructure recommendations:
Virtual Machines baseline architecture

Build implementation expertise by using the following product documentation:
Virtual Machines
Virtual Machine Scale Sets

Azure Advisor recommendations

Next steps

 Yes No

https://learn.microsoft.com/en-us/azure/virtual-machines/policy-reference
https://learn.microsoft.com/en-us/azure/advisor/
https://learn.microsoft.com/en-us/azure/advisor/advisor-high-availability-recommendations
https://learn.microsoft.com/en-us/azure/defender-for-cloud/recommendations-reference#compute-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-performance-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-reference-operational-excellence-recommendations
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/linux-vm#architecture
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/windows-vm#architecture
https://learn.microsoft.com/en-us/azure/architecture/virtual-machines/baseline
https://learn.microsoft.com/en-us/azure/virtual-machines/
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview

Health modeling for workloads
Article • 04/15/2024

Cloud applications generate high volumes of operational data, which makes it
challenging to pinpoint and resolve problems quickly. A common reason for this
challenge is the absence of a health baseline that's customized to the workload's
functionality and the inability to detect drift from that baseline.

Health modeling is an observability exercise that combines business context with raw
monitoring data to quantify the overall health of a workload. It helps set a baseline that
you can monitor the workload against. You should consider data like telemetry from
infrastructure and application components. Health modeling might also incorporate
other information that's necessary to achieve the workload's quality targets.

Performance problems or operational degradation can cause drift from the expected
operational state. By modeling the health of a workload, you can identify drift and make
informed operational decisions that consider business impact.

Health modeling bridges the gap between tribal operational knowledge and actionable
insights. It helps you manage critical issues effectively. The concept is essential to
maximize reliability and operational effectiveness.

This guide offers practical guidance about health modeling, including how to build a
model that assesses the runtime health of a workload and all of its subsystems.

Terminology Definition

Health
modeling

An observability exercise that uses business context to interpret monitoring data
as health states.

Health model A graphical representation of logical entities and their relationships for a given
scope. Each node has a health state definition to rationalize monitoring data
across the model.

Health entity A logical component that represents an individual unit of a system, a logical
combination of multiple related entities, or the overall system.

Health state A defined and measurable status that provides meaningful operational insights
about the health of an entity.

Health signal Individual data streams that provide insights into the operational behavior of an
entity.

ﾉ Expand table

Terminology Definition

Model of
models

An aggregated modeling scope in which entities represent distinct health
models for component systems.

We recommend that you watch this video to get a high-level understanding of health
modeling.

The term health refers to the operational status of an entity and its dependencies. That
entity can be an individual unit of a system, a logical combination of multiple related
entities, or the overall system.

We recommend that you represent health in one of three states:

Healthy: Operates optimally and meets quality expectations

Degraded: Exhibits less than healthy behavior, which indicates potential problems

Unhealthy: In a critical state and requires immediate attention

Health states are derived by combining monitoring data with domain information. Each
state must be defined and must be measurable. Health states are calculated by using
health signals, which are individual data streams that provide insights into an entity's
operational behavior. Signals can include metrics, logs, traces, or other quality
characteristics. For example, a health signal for a virtual machine (VM) entity might track
the CPU utilization metric. Other signals for this entity can include memory usage,
network latency, or error rates.

As you define health signals, factor in the nonfunctional requirements for the workload.
In the example of CPU utilization, include the expected thresholds for each health state.
If utilization exceeds the tolerated threshold in accordance with the workload

https://learn-video.azurefd.net/vod/player?id=fd8c4e50-9d7f-4df0-97cb-
d0474b581398&embedUrl=%2Fazure%2Fwell-architected%2Fcross-cutting-
guides%2Fhealth-modeling&locale=en-us

What is health, health modeling, and a health
model?

７ Note

You can represent health with a score instead of states to provide more data
granularity.

https://learn-video.azurefd.net/vod/player?id=fd8c4e50-9d7f-4df0-97cb-d0474b581398&embedUrl=%2Fazure%2Fwell-architected%2Fcross-cutting-guides%2Fhealth-modeling&locale=en-us
https://learn-video.azurefd.net/vod/player?id=fd8c4e50-9d7f-4df0-97cb-d0474b581398&embedUrl=%2Fazure%2Fwell-architected%2Fcross-cutting-guides%2Fhealth-modeling&locale=en-us
https://learn-video.azurefd.net/vod/player?id=fd8c4e50-9d7f-4df0-97cb-d0474b581398&embedUrl=%2Fazure%2Fwell-architected%2Fcross-cutting-guides%2Fhealth-modeling&locale=en-us
https://learn-video.azurefd.net/vod/player?id=fd8c4e50-9d7f-4df0-97cb-d0474b581398&embedUrl=%2Fazure%2Fwell-architected%2Fcross-cutting-guides%2Fhealth-modeling&locale=en-us

requirements, the system transitions from Healthy to Degraded or Unhealthy. These
state changes trigger the appropriate alerts or actions.

Health modeling requires entities to have well-defined states that are derived from
multiple health signals and are contextualized for the workload. For example, the health
definition for a VM might be:

Healthy: Key nonfunctional requirements and targets, such as response time,
resource utilization, and overall system performance, are fully satisfied. For
example, 95% of requests are processed within 500 milliseconds. The workload
uses VM resources like CPU, memory, and storage optimally and maintains a
balance between workload demands and available capacity. User experience is at
expected levels.

Degraded: Resources aren't performing optimally but are still operational. For
example, the storage disk is experiencing throttling problems. Users might
experience slow responses.

Unhealthy: Degradation is beyond the tolerated limits. Resources are no longer
responsive or available, and the system is no longer meeting acceptable
performance levels. User experience is severely affected.

The outcome of health modeling is a model or a graphical representation of logical
entities and their relationships for a workload architecture. Each node has a health state
definition.

） Important

Health modeling is an abstract concept that you can implement and apply at
different scopes if you have a good understanding of the business scenarios.

In the image:

Entities are logical components of the workload that represent aspects of the
system. They can be infrastructure components, like servers, databases, and
networks. They can also be specific application modules, pods, services, or
microservices. Or, entities can capture user interactions and system flows within
the workload.

Relationships between entities mirror the dependency chains within the system. For
example, an application module might call specific infrastructure components that
form a relationship.

Consider a scenario in which an e-commerce workload experiences a spike in failed
messages on an Azure Service Bus queue, which is causing payments to fail. This
problem is critical for the organization due to the implied revenue loss. Although an
application developer might understand the effect of this metric spike on payments, this
tribal knowledge isn't often shared across the operations team.

A health model can give operators immediate visibility into the problem and its effects.
The payment flow depends on Service Bus, which is one of the workload components.
The visual representation reveals the degraded state of the Service Bus instance and its

７ Note

User and system flows summarize nonfunctional requirements across business
scenarios that involve application and infrastructure components. This
summary reflects business value for the application.

https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-model.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-model.png#lightbox

effect on the payment flow. Operators can understand the importance of the issue and
focus their remediation efforts on that specific component.

Health modeling was important in the preceding scenario in the following ways:

It improved the time to detect (TTD) and time to mitigate (TTM) by enabling faster
problem isolation, which led to quicker detection of problems and potential fixes.

Operators received alerts based on health states, which reduced unnecessary
noise. Operators received notifications that provided specific context about the
business impact on payments.

Dependency chains helped operators fully understand the extent of operational
issues. This knowledge accelerated impact assessments and led to prioritized
responses. Operators also easily identified cascading or correlated issues.

Operators conducted post-incident activities with accuracy because the health
model provided insights into the root causes of anomalies and the specific health
signals that were involved.

It made the monitoring data meaningful for all team members. It bridged the gap
between tribal knowledge and shared insights.

The organization used the health model as a baseline for future investments in AI-
driven operations to derive intelligent insights.

Health models provide a distinct data schema optimized for observability use cases. This
schema takes health modeling from an abstract concept to a measurable solution. By
modeling your specific requirements, objectives, and architectural context, you can tailor
health data to your unique scenario.

Health is a relative data concept. Each model represents health data that's unique and
prioritized for its contextual scope, even if it uses the same set of entities. What
constitutes healthy in a specific scenario might differ significantly in other contexts.

Health model schema

https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-state-definition.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-state-definition.png#lightbox

For example, consider Azure resources of the same type within your workload.

VM A runs a CPU-sensitive application.
VM B handles a memory-intensive service.

The health definitions for these machines are different. CPU utilization metrics likely
influence VM A's health status, and VM B might prioritize memory-related metrics.

The first step to build a health model is a logical design exercise, which typically involves
the activities that are described in the following sections.

Begin this logical design exercise by evaluating the following components of your
workload design.

Infrastructure components like compute clusters and databases

Application components that run on compute and their relevant components

Logical or physical dependencies between components

User and system flows

For example, the health model for an e-commerce application should represent the
current state of critical processes like user sign-in, checkout, and payments.

） Important

A health model shouldn't treat all failures the same. It should clearly distinguish
between expected or transient but recoverable failures and a true disaster state.

Build a health model

Evaluate your workload design

https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-model-activities.png#lightbox
https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/health-model-activities.png#lightbox

Evaluate the relative importance and overall impact of each flow on your organization.
Consider factors like user experience, security, and operational efficiency. For example,
in most scenarios, the failure of a payment process is likely more significant than the
failure of a reporting process.

Identify escalation paths for handling problems related to each flow. For more
information, see Optimize workload design using flows.

Look for relevant reliability metrics across the application design.

Consider defining service-level indicators (SLIs) and service-level objectives (SLOs) for
the entire application and its individual business processes. These SLIs and SLOs should
align with the specific health signals considered for your health model. By doing so, you
create a comprehensive definition of health that accurately reflects the achievement of
an acceptable service level for the application.

To build a comprehensive health model, correlate various types of monitoring data,
including metrics, logs, and traces. By doing so, you ensure that the concept of health
accurately reflects the runtime state of a specific entity or the entire workload.

Contextualize using business requirements

７ Note

You realize the value of health modeling only when you incorporate your business
scenarios and context. Then you can rationalize the business impact from
operational issues.

Map to reliability metrics

） Important

SLIs and SLOs are critical health signals. They create a meaningful definition of
health that reflects the level of service that you want along with other quality
attributes. You can also define service health objectives (SHOs) to capture the
health that you want to attain over an aggregated time range.

Identify health signals

Use platform metrics and logs

In the context of health modeling, it's essential to gather platform-level metrics and logs
from underlying Azure resources. These metrics include CPU percentage, network in and
network out, and disk operations per second. You can use this data in your health model
to detect and predict potential problems while maintaining a reliable environment.

Furthermore, this approach helps you differentiate between transient faults, or
temporary disruptions, and nontransient faults, or persistent problems.

Application logs are an important source of diagnostics data for your health model.
Here are some best practices for application logging:

Use semantic or structured logging. Structured logs facilitate automated
consumption and analysis of log data at scale.

Consider storing Azure resource metrics and diagnostics data in an Azure Monitor
Logs workspace instead of a storage account. By using this method, you can create
health signals by using Kusto queries for efficient evaluation.

Log data in the production environment. Capture comprehensive data while the
application operates in the production environment. Sufficient information is
essential for health assessment and to diagnose any detected production
problems.

Log events at service boundaries. Include a correlation ID that traverses service
boundaries. If a transaction involves multiple services and one of them fails, the
correlation ID helps you track requests throughout your application and pinpoint
the cause of failure.

Use asynchronous logging. Avoid synchronous logging operations that might
block application code. Asynchronous logging ensures availability by preventing
request backlogs during log writes.

Separate application logging from auditing. Maintain audit logs separately from
diagnostic logs. Although audit records serve compliance or regulatory

７ Note

As a best practice, you should configure all application resources to direct
diagnostic logs and metrics to the chosen log aggregation technology. Build
guardrails by using Azure Policy to ensure consistent diagnostic settings across the
application and enforce the chosen configuration for each Azure service.

Add application logs

https://learn.microsoft.com/en-us/azure/data-explorer/kusto/concepts/#kusto-queries
https://learn.microsoft.com/en-us/azure/governance/policy

requirements, keeping them distinct prevents dropped transactions.

Implement distributed tracing by correlating telemetry across critical system flows.
Correlated telemetry provides insights into end-to-end transactions and is essential for
effective root cause analysis (RCA) when failures occur.

Implement and run health probes outside of the application to explicitly check the
health and responsiveness of your application. Use probe responses as signals within
your health model.

You can implement health probes by measuring the response time from the application
as a whole or from its individual components. Probes can run processes to measure
latency and check availability or to extract information from the application. For more
information, see Health Endpoint Monitoring pattern.

Most load balancers support running health probes that ping application endpoints at
configured intervals. Alternatively, you can use an external watchdog service. A
watchdog service aggregates health checks from across multiple components in the
workload. Watchdogs can also host code that does immediate remediation for known
health conditions.

Structural monitoring involves equipping the application with semantic logs and metrics.
The application directly collects these metrics, which include current memory
consumption, request latency, and other relevant application-level data.

Strengthen your monitoring processes by using functional monitoring. This approach
focuses on measuring platform services and their effect on the overall user experience.
Unlike structural monitoring, functional monitoring doesn't require detailed knowledge
of the system. It tests the externally visible behavior of the application. This approach is
useful for assessing SLOs and SLIs.

Represent the identified application design as entities and relationships. Map health
signals to specific components to quantify health states at an entity level. Consider the

Implement distributed tracing

Use health probes

Adopt structural and functional monitoring techniques

Model the design

https://learn.microsoft.com/en-us/azure/azure-monitor/app/distributed-tracing-telemetry-correlation
https://learn.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring

criticality of components to determine how health states should propagate through the
model. For example, reporting components might not be as critical as other
components, which results in different effects on overall workload health.

Use the evaluated health states to trigger alerts and automated action. Health should be
integrated within existing operational runbooks as a core observability data tenet.

Typically, there's a one-to-one mapping between monitoring data and alert rules, which
can lead to undesirable outcomes, like alert storms and ambient alert noise. For
example, in a compute cluster, high volumes of VM-level alerts based on CPU utilization
and error count can overwhelm operators during failures and cause delays in resolution.
Similarly, when there's a high number of configured alerts, ambient alert noise often
results in alerts that are overlooked or ignored.

A health model introduces separation between monitoring data and alert rules. A health
definition aggregates many signals into a single health state, which decreases the
number of alerts so that operators can focus solely on high-value alerts that are critical
for the organization. Consider the e-commerce scenario. You can set up an alert to send
notifications about changes in the process payments flow health instead of changes in
underlying resources like the Service Bus queue.

Create visual representations, such as tables or graphs, to effectively convey the current
state and history of the health model. Ensure that the visualization aligns with the
business context and provides actionable insights.

When you visualize your health model, consider adopting a traffic light approach to
make health states immediately insightful across dependency chains.

Set actionable alerts

７ Note

The ability to alert across all layers of the health model provides flexibility for the
different workload personas. Application owners and product managers can be
alerted to health state changes in key business scenarios or in the entire workload.
Operators can be alerted based on the health of infrastructure or application
components.

Visualize the model

Assign green for healthy, amber for degraded, and red for unhealthy. By quickly
identifying the color-coded states, you can efficiently locate the root cause of any
application degradation.

After you build a health model, consider the following use cases to drive detection and
interpretation of failures or operational problems.

Health modeling can provide information that's specific to job functions or to roles
within the same context of the workload. For example, a DevOps role might need
operational health information. A security officer might be more concerned about
intrusion signals and security exposure. A database administrator is likely only interested
in a subset of the application model through the database resources.

Tailor health insights for different stakeholders. Consider creating separate models from
overlapping data sets.

７ Note

We recommend that you consider accessibility requirements for people who have a
vision disability when you create a dashboard for your health model. For
diagramming best practices, see Architecture design diagrams.

Adopt your health model

Applicability to various roles

Continuous validation

Use your health model to optimize testing and validation processes, such as load testing
and chaos testing. You can validate the runtime operational state during testing and
assess your model's effectiveness in scale and failure scenarios by incorporating health
models into your engineering lifecycle.

Although health modeling is commonly associated with quantifying health states for
individual applications, its applicability extends beyond that scope.

At an individual workload level, health models provide a foundation for application
observability and operational insights. Each application can have its own health model
that captures what each health state means within its context.

You can combine multiple health models into a high-level construct by building a model
of models. For example, you can build the observability footprint of a business unit or an
entire cloud estate by using health models as components within a larger model. Health
models represent workloads within the estate as nodes within the top-level graph. Use
the relationships in this model to capture inter-application dependencies, including data
flows, service interactions, and shared infrastructure.

Consider a retail company that has various applications for e-commerce, payments, and
order processing. You can define each of these applications as an independent health
model to quantify what health means for that workload. You can then use a parent
model to map all of these component health models as entities and capture inter-
application operational impact through dependency chains. For example, if the e-
commerce application becomes unhealthy, it has a cascading effect on the payment
application.

Health modeling provides a quantified operational baseline that's tuned to a specific
business context. AI for IT operations (AIOps) is a popular way to enhance operational
efficiency. Health data is a foundational input for machine learning models to analyze
health trends. For example, machine learning models can:

Extract more insights from state changes and recommend actions.

Analyze health trends over time to drive issue prediction and model refinement.

Organizational health

Health trends and AI for IT operations

Maintain your health model

Feedback

Was this page helpful?

 Maintaining a heath model is a continuous engineering activity that aligns with your
application's development and operations. As your application evolves, make sure that
your health model evolves in parallel.

Also, treat health models like workload artifacts that should be integrated into your
development lifecycle. Adopt infrastructure as code (IaC) for consistent, version-
controlled management of your health model. Use automation so that the model stays
up to date as you add or remove infrastructure and application components from the
workload.

Health data gradually diminishes in value over time. To optimize operational efficiency
and minimize costs, avoid retaining health data beyond 30 days. If necessary, you can
archive data to satisfy audit requirements or in scenarios that involve long-term pattern
analysis in AI for IT operations.

For implementing health probes in ASP.NET, see Health checks in ASP.NET Core.
For information on monitoring metrics, see Azure Monitor Metrics overview.
For information on using Application Insights, see Application Insights.
For design considerations and recommendations that pertain to mission-critical
workloads, see Health modeling and observability for mission-critical workloads on
Azure.
For a hands-on experience, see Design a health model for your mission critical
workload.

７ Note

When you archive health data, make sure you couple it with the configuration state
of the model. Interpreting state changes can be challenging without this context.

Related links

Next step
Recommendations for designing a reliable monitoring and alerting strategy

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/azure/azure-monitor/essentials/data-platform-metrics
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling
https://learn.microsoft.com/en-us/azure/well-architected/mission-critical/mission-critical-health-modeling
https://learn.microsoft.com/en-us/training/modules/design-health-model-mission-critical-workload/
https://learn.microsoft.com/en-us/training/modules/design-health-model-mission-critical-workload/

 Yes No

Complete an Azure Well-Architected
Review assessment
Article • 11/14/2023

Azure Well-Architected Review is a self-assessment that can help a workload team
examine a workload from the perspective of the Azure Well-Architected Framework. It
consists of approximately 60 questions that are based on the key recommendations
provided in the pillars of the Well-Architected Framework. The assessment tool can also
pull in Azure Advisor recommendations for an Azure subscription or resource group.

At the end of the assessment, you get recommendations and corresponding links to
supporting material that can help you improve your workload's design. You can export
these recommendations into a file that you can use to incorporate the
recommendations into the operational processes for continuous workload
improvement.

For greenfield workloads, we recommend that you perform the assessment during the
initial design process, entering the proposed decisions. The guidance then acts as a
baseline and starts a feedback loop that you can use to refine the workload design as
you make additional design decisions and periodically capture them in additional
assessment milestones.

Brownfield workloads should be examined as well, as part of the continuous
improvement cycle of the workload. Set a cadence, for example every four months, and
use milestones to track how the workload design can continue to improve.

When to take the assessment

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/azure/advisor/

Assess your workload by completing the assessment. The recommendations for your
current milestone are available on the assessment's guidance page. Export these
recommendations by selecting the Export to CSV button. You can use the offline copy
to share the recommendations and start to prioritize them. Although some teams might
consider the CSV file sufficient, we recommend that you add the recommendations to
the workload's backlog so they can be integrated into the workload's software
development lifecycle (SDLC).

Workload owners and key stakeholders should prioritize the recommendations in
accordance with the team's standard work prioritization process, factoring in the
applicability of the recommendations and any tradeoffs associated with a specific design
decision. For example, recommendations might be assigned to a specific owner, or a

Receive and integrate recommendations

 Tip

DevOps Tooling for Well-Architected Recommendation Process provides
example scripts that can help you create automation for backlog integration. These
scripts show one way to import the recommendations from the Well-Architected
Review CSV file into an existing Azure DevOps or GitHub organization.

Prioritize and implement recommendations

https://github.com/Azure/WellArchitected-Tools/tree/main/WARP/devops#readme

recommendation might be postponed or dismissed. Like all planned work, the
recommendation should be tracked until it's resolved, as part of the workload's SDLC.

Over time, the workload will evolve due to functionality changes, eliminating or accruing
technical debt, and making tradeoffs. Use the milestone feature of the assessment to
track this change over time, using the prior milestone as a baseline. You'll see the
change over time in the Azure Well-Architected Review. The workload's component of
the subscription's Azure Advisor score will probably improve as well.

You should always sign in when you take assessments so that the tool can
generate milestones.

Select the Azure subscription or resource group that contains the biggest portion
of your workload. Doing so helps ensure that only relevant Advisor
recommendations are included in exported CSV files. It's not possible include more
than one subscription or to exclude resource groups.

Choose a meaningful name for the assessment, not the default value. The
assessment's name should include the workload's name.

Use meaningful milestone names to indicate when you're evaluating the workload.

Use the notes feature on questions and on recommendations to capture any
specifics that you want to discuss with the workload team.

Rather than answering the 60 questions across all five pillars in one assessment,
consider taking the assessment one pillar at a time, staggered by month. Be sure
to include the name of the pillar in the assessment's name.

Monitor improvements

Tips

２ Warning

Assessments are tied to a Microsoft Learn profile. They can't be transferred to
or accessed by other profiles.

Get personalized support

https://learn.microsoft.com/en-us/assessments/azure-architecture-review/
https://learn.microsoft.com/en-us/azure/advisor/

Work with your Microsoft partner or your account team to learn how they can help
you perform an assessment as a formal engagement. As part of that engagement, they
can provide further details on the recommendations. These details can help you
determine the applicability of recommendations and how to prioritize them for
remediation.

Next step
Complete an Azure Well-Architected Review

https://appsource.microsoft.com/marketplace/partner-dir
https://learn.microsoft.com/en-us/assessments/azure-architecture-review/

Optimize workload design using flows
Article • 01/31/2024

This article covers the targeted optimization of workloads using flows. Different
components of a workload have varying requirements and levels of importance. By
segmenting a workload into flows, you can prioritize different parts of a workload and
better align workload investments with the importance of each flow.

This workload optimization process is iterative and involves three key steps: (1) define
the flow structure within your workload, (2) define technical requirements, and (3)
design the flow to meet the requirements (see figure 1).

Figure 1: The process to optimize workloads using flows.

Before you can define flow requirements, you need to understand the business drivers
for the flow. The prerequisites to defining a flow are identifying the business process
and use case its supports. When you understand the prerequisites, you can start
documenting the flow.

Flows are sequences of actions that support workload functionality. There are two
primary types of flows: user flows and system flows. User flows determine user
interactions. System flows determine communication between workload components.
Flows support business processes and use cases. A workload consists of multiple use
cases. You need to identify the business process and use case the flow supports before
documenting a flow (see figure 2).

Define the flow Define requirements Design the flow

Understand
prerequisites Document flow Establish

technical targets
Follow best
practices Develop and test

Define the flow

Understand the prerequisites

https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/flow-design-process.svg#lightbox

Figure 2: The relationship between business processes, use cases, flows, and workload.

A business process is a series of actions (stages) that fulfill a business requirement. Flows
determine the sequence a user or data takes to accomplish each stage of a business
process. For example, selling products online is a business process. The stages in this
business process might be listing the product online, receiving orders, and delivering
the product.

A use case defines the functional requirements of a flow. You need to identify and
understand the use case a flow supports before establishing the technical requirements
of a flow. Each use case should support one stage in a business process (see figure 2). A
use case should define the following attributes:

Purpose: Clearly articulate the tasks or objectives, like enabling online purchases.
This clarity guides the functional design and sets clear goals for flow design.

Criticality: Assess the importance of the use case, ranging from routine to critical.
The value assigned to a use case informs the prioritization and design of the flow.
High-value use cases might require enhanced error handling, performance tuning,
or user experience considerations.

Consumers: Identify whether users (customers, staff) or system components are the
primary consumers. This categorization determines whether it's a user flow or

Identify the business process

Identify the use case

https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/business-workload-process.svg#lightbox

system flow and influences the design.

Events: Define triggers or conditions that initiate and conclude the use case. These
events define the flow's boundaries.

Execution: Understand the operational frequency and variability of the use case to
anticipate system load. You must design a flow to handle different execution
scenarios.

Dependencies: Identify interdependencies with other use cases for risk
management. Recognizing a use case's dependencies aids in designing flows that
integrate smoothly with other system parts. You need to ensure the availability of
necessary inputs and compatibility of outputs with subsequent processes.

Use the use case to document the flow. You should outline or map each action you need
in a flow. Capture decision criteria and pathways. Identify interactions with other use
cases. This outline serves as a blueprint for flow design and management. You also need
to capture business information about the flow. Make sure to include the following
details in the flow documentation:

Flow description: A high-level description of the flow.

Business process: The business process the flow supports.

Process owner: The individual that owns the business process.

Stakeholders: The individuals that you should inform or consult on flow status or
changes.

Escalation paths: The individuals or groups you should contact to resolve issues. It's
a sequence of people. The scope of individual responsibility grows with each
person on the path.

Business impact: The importance of this flow to the business.

Criticality rating: A qualitative label that indicates the relative importance of the
flow.

For more information, see Flow examples.

Document the flow

Define flow requirements

Utilize the use case to establish the technical targets of the flow. Define measurable
targets for the flow that align to the five pillars of the Well-Architected Framework
(WAF). These pillars provide a framework for setting technical targets:

Reliability targets: Assess each flow's importance and set reliability targets
accordingly. Determine performance thresholds and establish clear service level
agreements (SLAs) and objectives (SLOs). Higher criticality flows require more
stringent reliability targets.

Security targets: Analyze the security needs of each flow based on data sensitivity
and user activities. Implement and continuously update security measures to meet
these needs while ensuring compliance with regulatory standards.

Cost targets: Understand the demands of each flow for effective resource
allocation. Set targets to balance cost with performance. Ensure resource usage
aligns with business priorities.

Operational targets: Define metrics for effective monitoring and troubleshooting.
Targets should ensure efficient resource use and alignment with organizational
goals.

Performance targets: Base performance targets on the initial requirements of each
flow. Ensure that essential flows receive adequate resources and continuously
adjust targets to meet evolving demands and enhance user experiences.

Design the flow to meet the technical targets. You should familiarize yourself with flow
design best practices so that you achieve the right result. Build and test the flow. Iterate
on the design until it meets the technical targets you established.

As you design a flow, follow flow design best practices. A well-designed flow has the
following attributes:

Scoped: Identify distinct starting and ending points for each flow. Clear boundaries
help optimize user or system interactions.

Logical: Design your flows with a logical order of steps. Optimize for the most
efficient path and reduce unnecessary steps.

Design the flow

Follow flow design best practices

Maintainable: Design flows that are easy to update and maintain. Use modular
components that you can modify without affecting the entire workload.

Defined: Incorporate specific conditions that trigger or guide each step in a flow.
This precision ensures that the flow responds accurately to user inputs, data
changes, or system states.

Reliable: Build error handling and exception paths into your flows. Effective error
management prevents disruption and maintains flow integrity under unexpected
circumstances.

Scalable: Ensure it can handle varying loads and adapt to growing or shrinking user
bases or data volumes.

Secure: Embed security measures within the flow. Protect data and user
interactions against unauthorized access and threats.

Efficient: Plan for efficient use of resources without over-provisioning. Keep cost
optimization in mind.

User-centric: For user flows, align the flow design with user expectations and
behaviors. Make it intuitive and reduce the learning curve for new users.

Develop the flow to meet technical targets and test it to ensure it meets its
requirements. This process validates that the flow operates as intended, efficiently
handles its tasks, and meets the technical targets. Here's guidance to build and test a
flow:

Select technologies: Choose technologies that align with the set targets in terms of
reliability, security, and performance.

Develop flow: Build the flow according to the design, keeping the set targets in
mind.

Test flow: Conduct testing to ensure the flow meets targets. Iterate as needed to
meet targets.

Monitor: Implement monitoring tools to track resource usage and costs.

Periodically review the flow against set targets and industry standards. Use feedback
from monitoring and audits to improve the flow. Adjust targets and processes as
necessary to align with changing business needs or technological advancements.

Develop and test the flow

Repeat the process defined in this article throughout the lifecycle of the flow. As you
iterate on the flow design, use the Well-Architected Framework to optimize flows from
the perspective of each pillar:

Flow reliability
Flow security
Flow cost optimization
Flow operational excellence
Flow performance efficiency

Here are a few flow examples to help you design your flows. The examples use the
reliable web app pattern reference architecture as the basis and shows the
documentation you should have on each flow.

Optimize flows

Flow examples

User flow 1: Create upcoming concerts

https://learn.microsoft.com/en-us/azure/architecture/web-apps/guides/reliable-web-app/dotnet/plan-implementation
https://learn.microsoft.com/en-us/azure/well-architected/cross-cutting-guides/_images/relecloud-flow.png#lightbox

Flow description: Call-center employees use the application to create an upcoming
concert.

Business processes: This flow supports the purchasing ticket process, but it's
asynchronous, lowering its criticality.

Process owner: Director of Sales.

Stakeholders: Sales department, concert planning and operations, platform team,
and application team.

Escalation paths: Application team, platform team, then sales department.

Business impact: This flow is important for making new concerts available on sales
platforms, directly influencing the main revenue stream of the business. When call-
center employees are unable to create concerts due to the unavailability of this
flow, it negatively impacts both revenue and the company's reputation. However,
high availability isn't essential for this process since concerts are typically
scheduled in advance on a weekly basis. The sales department specified a
requirement of 95% availability for this process and is agreeable to downtime
outside of business hours for maintenance purposes.

Criticality rating: Low.

Flow description: Call-center employees use the application to search for upcoming
concerts.

Business processes: This flow supports the purchasing ticket process, but call-center
employees can opt to list all concerts if the search function isn't available.

Process owner: The user experience (UX) department.

Stakeholders: Sales department, platform team, and application team.

Escalation path: Application team, platform team, sales department manager on-
call.

Business impact: This flow allows call-center employees to quickly find concerts and
is part of the normal sales process. High availability of this flow isn't critical since
employees have the capability to list concerts even in its absence. It does degrade
the call-center employee's experience might degrade and affect productivity.
Customers could experience frustration due to increased wait times or delays. The

User flow 2: Search concerts

sales department requested a 99% availability of this flow during regular business
hours.

Criticality rating: Medium.

Flow description: Call-center employees use the application to get a list of concerts.

Business processes: This flow directly supports the purchasing ticket process.

Process owner: Director of Platform.

Stakeholders: Sales department, platform team, data team.

Escalation path: Data team, data team on-call engineer, platform team on-call
engineer.

Business impact: This flow is integral to the critical path of revenue-generating
transactions for the business. High availability is essential, as call-center employees
rely on this flow to process ticket purchases. In recognition of its importance, the
business mandates a 99.9% uptime for this flow, which includes extended business
hours.

Criticality rating: High.

Flow description: Call-center employees use the application (the authentication and
authorization process) to buy tickets for an upcoming concert (the list upcoming concerts
process) on behalf of Relecloud customers.

Business processes: This flow is the core feature and flow of the application.

Process owner: Director of Sales.

Stakeholders: Sales department and all technical teams.

Escalation path: Application team on-call engineer, platform team on-call engineer,
data team on-call engineer, Chief Operating Officer.

Business impact: High availability of this flow is crucial, as it directly enables
customer ticket purchases. Any malfunction or unavailability of this flow can
significantly impact both revenue and the company's reputation. The business set

User flow 3: Get a list of the concerts

User flow 4: Purchase ticket

a stringent requirement for this vital process, expecting 99.9% uptime, even during
extended business hours.

Criticality rating: High.

Flow description: Call-center employees securely sign in to the application.
Administrators provide them with the proper roles to purchase tickets on behalf of
Relecloud customers.

Business processes: This flow directly supports the purchasing ticket process.
Without this functionality, call-center employees can't sign into the application to
buy tickets.

Process owner: Platform team.

Stakeholders: Platform team, operations team, and sales department.

Escalation path: Platform team on-call engineer, Chief Operating Officer.

Business impact: This flow requires high availability because call-center employees
can't purchase tickets if this flow isn't working properly. If this flow isn't available, it
directly affects revenue and reputation. It's a key process that the business expects
99.9% uptime for, including during extended business hours.

Criticality rating: High.

Flow description: To understand state changes in the production system, web application
and API instances collect and send information, errors, and warnings. This data helps the
operations team perform anomaly detection, troubleshooting, and profiling.

Business processes: This flow doesn't support any business processes, but it
provides important data for the operations team.

Process owner: Director of Operations.

Stakeholders: Operations team, platform team, and data team.

Escalation path: Operations team (24/7), data team on-call engineer.

Business impact: This flow is essential for the business's monitoring and continuous
improvement efforts. It needs to be as redundant and resilient as possible. The

User flow 5: Authentication and authorization

System flow: Collect telemetry

operations team is responsible for quickly restoring this flow after any failure to
avoid missing critical information and warnings. If the flow fails to achieve the
expected availability, there's a risk of overlooking production issues, potentially
leading to severe consequences. To mitigate this risk, the operations department
aims for 99% uptime, 24/7. They must schedule maintenance-related downtime at
least 48 hours in advance.

Criticality rating: Medium.

	Microsoft Azure Well-Architected Framework
	About
	What's new
	What is the Well-Architected Framework
	How to be a proficient architect
	Architect's fundamentals
	Deliverables
	Checklist
	Architecture design specification
	Design diagrams
	Architecture decision record
	Collaboration with implementors
	Consultative support

	Pillars
	Overview
	Reliability
	Quick links
	Design principles
	Checklist
	Tradeoffs
	Recommendations
	Reliability patterns
	RE:01 Simplicity and efficiency
	RE:02 Critical flows
	RE:03 Failure mode analysis
	RE:04 Target metrics
	RE:05 High-availability multi-region design
	RE:05 Redundancy
	RE:05 Regions and availability zones
	RE:06 Data partitioning
	RE:06 Scaling
	RE:07 Background jobs
	RE:07 Transient faults
	RE:07 Self-preservation
	RE:08 Testing
	RE:09 Disaster recovery
	RE:10 Monitoring and alerting

	Security
	Quick links
	Design principles
	Checklist
	Tradeoffs
	Recommendations
	Security patterns
	SE:01 Security baseline
	SE:02 Secured development lifecycle
	SE:02 Threat analysis
	SE:03 Data classification
	SE:04 Segmentation
	SE:05 Identity and access management
	SE:06 Network controls
	SE:07 Encryption
	SE:08 Hardening resources
	SE:09 Application secrets
	SE:10 Monitoring and threat detection
	SE:11 Testing and validation
	SE:12 Incident response

	Cost Optimization
	Quick links
	Design principles
	Checklist
	Tradeoffs
	Recommendations
	Cost optimization patterns
	CO:01 Financial responsibility
	CO:02 Cost model
	CO:03 Cost data and reporting
	CO:04 Spending guardrails
	CO:05 Rate optimization
	CO:06 Usage and billing increments
	CO:07 Component costs
	CO:08 Environment costs
	CO:09 Flow costs
	CO:10 Data costs
	CO:11 Code costs
	CO:12 Scaling costs
	CO:13 Personnel time
	CO:14 Consolidation

	Operational Excellence
	Quick links
	Design principles
	Checklist
	Tradeoffs
	Recommendations
	Operational excellence patterns
	OE:01 DevOps culture
	OE:02 Task execution process
	OE:03 Software development practices
	OE:04 Build velocity
	OE:04 Tools and processes
	OE:04 Continuous integration
	OE:05 Infrastructure as code
	OE:06 Supply chain for workload development
	OE:07 Monitoring system
	OE:07 Instrument an application
	OE:08 Emergency response
	OE:09 Task automation
	OE:10 Automation design
	OE:11 Safe deployment practices
	OE:12 Failure mitigation

	Performance Efficiency
	Quick links
	Design principles
	Checklist
	Tradeoffs
	Recommendations
	Performance efficiency patterns
	PE:01 Performance targets
	PE:02 Capacity planning
	PE:03 Selecting services
	PE:04 Metrics and logs
	PE:05 Scaling and partitioning
	PE:06 Performance testing
	PE:07 Code and infrastructure
	PE:08 Data performance
	PE:09 Critical flows
	PE:10 Operational tasks
	PE:11 Live-issues responses
	PE:12 Continuous performance optimization

	Workloads
	Overview
	Azure Virtual Desktop
	Azure VMware Solution
	Carrier-grade
	Hybrid
	IoT
	Mission-critical
	Oracle
	SAP
	Sustainability

	Service guides
	Quick links
	API Management
	Reliability
	Cost optimization
	Operational excellence

	Application Gateway
	Application Insights
	Security
	Cost optimization
	Operational excellence

	Azure Firewall
	Azure App Service
	Azure Batch
	Reliability
	Operational excellence
	Performance efficiency

	Azure Blob Storage
	Azure Cache for Redis
	Reliability
	Operational excellence

	Azure Cosmos DB
	Azure Databricks
	Azure Database for MySQL
	Azure Database for PostgreSQL
	Azure Front Door
	Azure Kubernetes Service
	Azure Load Balancer
	Reliability
	Operational excellence

	Azure Machine Learning
	Azure OpenAI
	Azure Service Fabric
	Azure SQL Database
	Azure SQL Managed Instance
	Reliability
	Operational excellence

	Azure Stack Hub
	Reliability
	Operational excellence

	Azure Virtual Network
	Reliability
	Operational excellence

	Disks
	Event Grid
	Reliability
	Operational excellence

	Event Hubs
	Reliability
	Operational excellence

	ExpressRoute
	Functions
	IoT Hub
	Reliability
	Operational excellence

	IP addresses
	Log Analytics
	Network connectivity
	Reliability
	Cost optimization
	Operational excellence

	Network Virtual Appliances (NVA)
	Reliability
	Cost optimization
	Operational excellence

	Queue Storage
	Reliability
	Operational excellence

	Service Bus
	Reliability
	Operational excellence

	Storage Accounts
	Reliability
	Security
	Cost optimization
	Operational excellence

	Traffic Manager
	Reliability
	Operational excellence

	Virtual Machines

	Cross-cutting guides
	Health modeling
	Implementing recommendations
	Optimize using flows

