
Tell us about your PDF experience.

Get started quickly searching the web using one of the following quickstarts.

O V E R V I E W
Compare the
Bing Search
APIs

H O W - T O …
Page through
search results

R E F E R E N C E
Use and display
requirements

R E F E R E N C E
Use and display
requirements
of Bing Searc…

R E F E R E N C E
API pricing
details

Get started

Bing Web Search

ｆ Use C#

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Web Search tutorial

See more Ｔ

Bing Custom Search
API

ｆ Create a custom search
instance

ｆ Use C#

ｆ Use Java

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

Bing Image Search

ｆ Use C#

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

Bing Entity Search API

ｆ Use C#

Bing News Search API

ｆ Use C#

Bing Video Search API

ｆ Use C#

Bing Search API documentation
The Bing Search APIs let you build web-connected apps and services that find webpages,
images, news and more without advertisements.

https://aka.ms/bingsearchapipricing
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/how-to/quick-start
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/quickstarts/sdk/custom-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/quickstarts/sdk/custom-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/quickstarts/sdk/custom-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/tutorial/custom-search-web-page
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/quickstarts/sdk/image-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/quickstarts/sdk/image-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/quickstarts/sdk/image-search-client-library-javascript
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/quickstarts/sdk/image-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/tutorial/bing-image-search-single-page-app
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/quickstarts/sdk/entity-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/quickstarts/sdk/entity-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/quickstarts/sdk/news-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/quickstarts/sdk/news-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/quickstarts/sdk/video-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/quickstarts/sdk/video-search-client-library-java
https://aka.ms/learn-pdf-feedback

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

Bing Visual Search API

ｆ Use C#

ｆ Use Java

ｆ Use JavaScript

ｆ Use Python

ｇ Visual Search tutorial

See more Ｔ

Bing Autosuggest API

ｆ Use C#

ｆ Use Go

ｆ Use Java

ｆ Use Node.js

ｆ Use Python

ｆ Create a single page web-
app

See more Ｔ

Bing Spell Check API

ｆ Use C#

ｆ Use Java

ｆ Use Node.js

ｆ Use Python

ｇ Create a single page web-
app

See more Ｔ

Reference

REST API v7

Bing Web Search

Bing Custom Search

Bing Image Search

Bing Entity Search

Bing News Search

Bing Video Search

Bing Visual Search

Bing Autosuggest

Bing Spell Check

.NET SDK

Bing Web Search

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing News Search

Bing Video Search

Bing Visual Search

Bing Spell Check

Bing Autosuggest

Java SDK

Bing Web Search

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing News Search

Bing Video Search

Bing Visual Search

Bing Spell Check

Bing Autosuggest

Python SDK

Bing Web Search

Node.js SDK

Bing Web Search

Go SDK

Bing Web Search

https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/quickstarts/sdk/entity-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/quickstarts/sdk/entity-search-client-library-javascript
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/quickstarts/sdk/entity-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/tutorial/bing-entities-search-single-page-app
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/quickstarts/sdk/news-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/quickstarts/sdk/news-search-client-library-javascript
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/quickstarts/sdk/news-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/tutorial/bing-news-search-single-page-app
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/quickstarts/sdk/video-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/quickstarts/sdk/video-search-client-library-javascript
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/quickstarts/sdk/video-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/tutorial/bing-video-search-single-page-app
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/quickstarts/sdk/visual-search-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/quickstarts/sdk/visual-search-client-library-java
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/quickstarts/sdk/visual-search-client-library-javascript
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/quickstarts/sdk/visual-search-client-library-python
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/tutorial/visual-search-single-page-app
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/quickstarts/sdk/autosuggest-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/quickstarts/sdk/autosuggest-client-library-go
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/quickstarts/rest/java
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/quickstarts/rest/nodejs
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/quickstarts/rest/python
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/tutorial/autosuggest
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/quickstarts/sdk/spell-check-client-library-csharp
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/quickstarts/rest/java
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/quickstarts/rest/nodejs
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/quickstarts/rest/python
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/tutorial/spellcheck
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/reference/endpoints
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-web-search-api-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-custom-search-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-entity-search-api-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-image-search-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-news-search-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-video-search-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-visual-search-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-spell-check-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/cognitiveservices/bing-autosuggest-readme?view=azure-dotnet
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingwebsearchapi?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingcustomsearch?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingentitysearchapi?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingimagesearch?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingnewssearch?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingvideosearch?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingvisualsearch?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingspellcheck?view=azure-java-stable
https://learn.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/bingautosuggest?view=azure-java-stable
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-web-search-api-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-custom-search-readme?view=azure-python
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-websearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-customsearch/?view=azure-node-latest
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/websearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/customsearch

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing News Search

Bing Video Search

Bing Visual Search

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing News Search

Bing Video Search

Bing Visual Search

Bing Spell Check

Bing Autosuggest

Bing Custom Search

Bing Entity Search

Bing Image Search

Bing News Search

Bing Video Search

Bing Spell Check

Bing Autosuggest

https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-custom-search-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-entity-search-api-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-image-search-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-news-search-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-video-search-readme?view=azure-python
https://learn.microsoft.com/en-us/python/api/overview/azure/cognitiveservices/bing-visual-search-readme?view=azure-python
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-customsearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-entitysearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-imagesearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-newssearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-videosearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-visualsearch/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-spellcheck/?view=azure-node-latest
https://learn.microsoft.com/en-us/javascript/api/@azure/cognitiveservices-autosuggest/?view=azure-node-latest
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/customsearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/entitysearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/imagesearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/newssearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/videosearch
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/spellcheck
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v1.0/autosuggest

What is the Bing Web Search API?
Article • 04/05/2022

Bing Web Search API enables safe, ad-free, location-aware search results, surfacing
relevant information from billions of web documents. Help your users find what they're
looking for from the world-wide-web by harnessing Bing's ability to comb billions of
webpages, images, videos, and news with a single API call.

To get started using the API, pick the subscription you want from Bing API Pricing .
After getting your subscription key, you're all set to make your first call.

You can easily call the API by sending a native HTTP GET request or by using the Web
Search SDK. For examples to help you get up and running quickly for either option, see
Quickstarts.

By default, the API returns and ranks whatever content is relevant to the user's search
query. But if you want to have some control over what Bing returns, see the following
features:

Feature Description

Filter the
answers that
bing returns

Filter the response to include or exclude specific answers such as news or
images, return webpages that Bing discovered within the last week, and more.

Page results Page through multiple pages of webpage results.

Hit highlighting Add highlighting characters to words and phrases in the results' titles and
descriptions that identify the words or phrases from the user's search query.

Bing also provides API metrics, which you can use to inform your strategic decisions.
Quickly retrieve statistics such as your top queries, call volume, market distribution,
response code summary, and much more. For details, see Bing Web Statistics.

Get started

Features

Search or search-like experience

https://aka.ms/bingsearchapipricing

Bing Web Search API may only be used as a result of a direct user query or search, or as
a result of an action within an app or experience that logically can be interpreted as a
user’s search request. For illustration purposes, the following are some examples of
acceptable search or search-like experiences:

User enters a query directly into a search box in an app.
User selects specific text or image and requests “more information” or “additional
information”.
User asks a search bot about a particular topic.
User dwells on a particular object or entity in a visual search type scenario.

If you are not sure if your experience can be considered a search-like experience, check
with Microsoft.

Learn about other APIs in the family of Bing Search APIs.
Learn about use and display requirements for Bing Web Search.
Learn about calling the API.
Learn about what's in the JSON response.
Review Web Search API v7 reference documentation.

Next steps

Bing family of search APIs
Article • 03/27/2023

Bing provides a family of search APIs that let your users comb billions of web
documents and get back safe, ad-free, location-aware search results. Depending on the
API, you can get back all relevant web results or only relevant news, images, or videos.

The following table provides a summary of all APIs in the family of Bing Search APIs. For
pricing and subscription details, see Bing API Pricing .

Bing API Description

Autosuggest Improves your users' search box experience by providing a list of suggested
queries with each character they type.

Custom
search

Enables you to create tailored, ad-free search experiences for topics that your
users care about. You specify the domains and webpages that Bing searches.

Entity search Finds information about a well-known person, place, or thing. Bing identifies the
most relevant entity based on your searched term, spanning multiple entity types
such as famous people, places, movies, TV shows, video games, books, and even
local businesses near you.

Image
search

Scours the web for images and trending images. Results include thumbnails, full
image URLs, publisher, image metadata, and more. You can also filter images by
size, color, license, freshness, and more.

News search Finds news articles, trending news, headline news, and today's top stories.

Spell check Helps users identify and fix spelling, grammar, slang, names, homonyms, and
brands. Bing spell-checker leverages machine learning and statistical machine
translation to provide accurate and contextual corrections.

Video
search

Scours the web for videos and trending videos. Results include creator, encoding
format, video length, view count, and more. You can also filter videos by pricing,
video length, freshness, and more.

Visual
search

Provides insights about an image such as getting visually similar images, and
related searches.

Web search Enables safe, ad-free, location-aware search results, surfacing relevant information
from billions of web documents. Results include webpages, images, videos, news,
and more.

Getting API metrics

https://aka.ms/bingsearchapipricing
https://learn.microsoft.com/en-us/bing/search-apis/bing-autosuggest/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-custom-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-spell-check/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-visual-search/overview

Bing provides API metrics such as your top queries, call volume, market distribution,
response code summary, and many more, which you can use to inform your strategic
decisions. For details, see Bing Web Statistics.

Learn about use and display requirements for Bing search results.
Learn about pricing and subscription options .

Next steps

https://aka.ms/bingsearchapipricing

Bing Web Search quickstarts
Article • 02/16/2022

Use these quickstarts to make your first Web Search API call in a matter of minutes.

C#
Go
Java
JavaScript
PHP
Python
Ruby

C#
Java
JavaScript
Python

For a more in depth web app example, see the Web Search tutorial.
For other REST and SDK samples, see Samples.

Quickstarts using native HTTP GET requests

Quickstarts using the Bing client library

Next steps

Quickstart: Search the web using C# and
Bing Web Search API
Article • 02/16/2022

Use this quickstart to make your first call to Bing Web Search API. This C# console
application sends a search request to Bing and parses the response. Since it's a console
application, it displays a text-based version of the response for illustrative purposes
only. The source code for this sample is available on GitHub .

Grab your favorite .NET editor, JSON library, and Create Bing Search Service resource for
Bing Web Search and let's get started.

Create a new project and declare the code's dependencies. This example uses
Newtonsoft to parse the JSON response. Use Newtonsoft's NuGet package to install
its libraries.

C#

Add a namespace and class. This example uses WebSearchQuickstart for the namespace
and Program for the class.

C#

Create a project and declare dependencies

using System;

using System.Net.Http.Headers;

using System.Net.Http;

using System.Threading.Tasks;

using System.Linq;

using System.Collections.Generic;
using Newtonsoft.Json;

Declare a namespace and class for your
program

namespace WebSearchQuickstart

{

 class Program

 {

 // The code in the following sections goes here.

https://github.com/microsoft/bing-search-dotnet-samples/blob/main/rest/quickstarts/WebSearch.cs
https://www.newtonsoft.com/json

Add a few variables to the Program class. For simplicity, this example hardcodes the
subscription key, but make sure you're pulling it from secured storage instead.

C#

Here are all the query parameters you can add to the base URI. The q parameter is
required and you should always include the mkt parameter too. The rest are optional.
For information about these parameters, see Query parameters.

C#

 }

}

Define variables

 // In production, make sure you're pulling the subscription key from
secured storage.

 private static string _subscriptionKey = "<your key goes here>";

 private static string _baseUri =
"https://api.bing.microsoft.com/v7.0/search";

 // The user's search string.

 private static string searchString = "coronavirus vaccine";

 // Bing uses the X-MSEdge-ClientID header to provide users with
consistent

 // behavior across Bing API calls. See the reference documentation

 // for usage.

 private static string _clientIdHeader = null;

 private const string QUERY_PARAMETER = "?q="; // Required

 private const string MKT_PARAMETER = "&mkt="; // Strongly suggested

 private const string RESPONSE_FILTER_PARAMETER = "&responseFilter=";

 private const string COUNT_PARAMETER = "&count=";

 private const string OFFSET_PARAMETER = "&offset=";

 private const string FRESHNESS_PARAMETER = "&freshness=";

 private const string SAFE_SEARCH_PARAMETER = "&safeSearch=";

 private const string TEXT_DECORATIONS_PARAMETER =
"&textDecorations=";

 private const string TEXT_FORMAT_PARAMETER = "&textFormat=";

 private const string ANSWER_COUNT = "&answerCount=";

 private const string PROMOTE = "&promote=";

Our Main() method is pretty simple since we're going to implement the HTTP requests
asynchronously.

C#

The RunAsync method is where all the work happens. It builds the query string that's
appended to the base URI, waits for the asynchronous HTTP request to return,
deserializes the response, and either prints the search results or an error message.

This example uses dictionaries instead of objects to access the response data.

C#

Declare the Main method

 static void Main()

 {

 RunAsync().Wait();

 }

Where all the work happens

 static async Task RunAsync()

 {

 try

 {

 // Remember to encode query parameters like q,
responseFilters, promote, etc.

 var queryString = QUERY_PARAMETER +
Uri.EscapeDataString(searchString);

 queryString += MKT_PARAMETER + "en-us";

 //queryString += RESPONSE_FILTER_PARAMETER +
Uri.EscapeDataString("webpages,news");

 queryString += TEXT_DECORATIONS_PARAMETER +
Boolean.TrueString;

 HttpResponseMessage response = await
MakeRequestAsync(queryString);

 _clientIdHeader = response.Headers.GetValues("X-MSEdge-
ClientID").FirstOrDefault();

 // This example uses dictionaries instead of objects to
access the response data.

 var contentString = await
response.Content.ReadAsStringAsync();

Here's the HTTP request. It's your basic HTTP GET request. Use whatever HTTP client
works for you.

C#

That's all there is to sending a search request and getting back search results. To see
what all the answers look like in the JSON response, see Handling the web search

 Dictionary<string, object> searchResponse =
JsonConvert.DeserializeObject<Dictionary<string, object>>(contentString);

 if (response.IsSuccessStatusCode)

 {

 PrintResponse(searchResponse);

 }

 else

 {

 PrintErrors(response.Headers, searchResponse);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 Console.WriteLine("\nPress ENTER to exit...");

 Console.ReadLine();

 }

The HTTP call

 // Makes the request to the Web Search endpoint.

 static async Task<HttpResponseMessage> MakeRequestAsync(string
queryString)

 {

 var client = new HttpClient();

 // Request headers. The subscription key is the only required
header but you should

 // include User-Agent (especially for mobile), X-MSEdge-
ClientID, X-Search-Location

 // and X-MSEdge-ClientIP (especially for local aware queries).

 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
_subscriptionKey);

 return (await client.GetAsync(_baseUri + queryString));

 }

response.

The rest of the sections walk you through one way of parsing the JSON response and
displaying the search results. Be sure to read the use and display requirements to make
sure you comply with all display requirements.

If the request succeeds, the code calls the PrintResponse method to print the search
results in the console window.

The example uses the RankingResponse answer to display the search results. The
ranking determines which answers to display in the pole, mainline, and sidebar sections
of the search results page. For information about using the RankingResponse answer,
see Use ranking to display search results.

C#

Using ranking to display the search results

 // Prints the JSON response data for pole, mainline, and sidebar.

 static void PrintResponse(Dictionary<string, object> response)

 {

 Console.WriteLine("The response contains the following
answers:\n");

 var ranking = response["rankingResponse"] as
Newtonsoft.Json.Linq.JToken;

 Newtonsoft.Json.Linq.JToken position;

 if ((position = ranking["pole"]) != null)

 {

 Console.WriteLine("Pole Position:\n");

 DisplayAnswersByRank(position["items"], response);
 }

 if ((position = ranking["mainline"]) != null)

 {

 Console.WriteLine("Mainline Position:\n");

 DisplayAnswersByRank(position["items"], response);
 }

 if ((position = ranking["sidebar"]) != null)

 {

 Console.WriteLine("Sidebar Position:\n");

 DisplayAnswersByRank(position["items"], response);
 }

 }

Each item in the ranking tells you whether to display all results from the answer together
or to display a single result from the answer.

If the item includes the resultIndex field, use the index value to display that single
result from the answer. But if the item doesn't include resultIndex , you display all
results from the answer. Typically, the ranking has you display individual webpages
interspersed among the other answers, and has you group all images together. For
answers that have many results like images and videos, you typically display a few of the
images or videos and provide a link that users can click to see the rest.

C#

Display all results for an answer or a single result

 // Displays each result based on ranking. Ranking contains the
results for

 // the pole, mainline, or sidebar section of the search results.

 static void DisplayAnswersByRank(Newtonsoft.Json.Linq.JToken items,
Dictionary<string, object> response)

 {

 foreach (Newtonsoft.Json.Linq.JToken item in items)

 {

 var answerType = (string)item["answerType"];

 Newtonsoft.Json.Linq.JToken index = -1;

 // If the ranking item doesn't include an index of the
result to

 // display, then display all the results for that answer.

 if ("WebPages" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllWebPages(((Newtonsoft.Json.Linq.JToken)response["webPages"])
["value"]);

 }

 else

 {

DisplayWegPage(((Newtonsoft.Json.Linq.JToken)response["webPages"])
["value"].ElementAt((int)index));

 }

 }

 else if ("Images" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllImages(((Newtonsoft.Json.Linq.JToken)response["images"])

["value"]);

 }

 else

 {

DisplayImage(((Newtonsoft.Json.Linq.JToken)response["images"])
["value"].ElementAt((int)index));

 }

 }

 else if ("Videos" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllVideos(((Newtonsoft.Json.Linq.JToken)response["videos"])
["value"]);

 }

 else

 {

DisplayVideo(((Newtonsoft.Json.Linq.JToken)response["videos"])
["value"].ElementAt((int)index));

 }

 }

 else if ("News" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllNews(((Newtonsoft.Json.Linq.JToken)response["news"])["value"]);

 }

 else

 {

DisplayArticle(((Newtonsoft.Json.Linq.JToken)response["news"])
["value"].ElementAt((int)index));

 }

 }

 else if ("RelatedSearches" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllRelatedSearches(((Newtonsoft.Json.Linq.JToken)response["relatedSea
rches"])["value"]);

 }

 else

 {

DisplayRelatedSearch(((Newtonsoft.Json.Linq.JToken)response["relatedSearches
"])["value"].ElementAt((int)index));

 }

 }

 else if ("Entities" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllEntities(((Newtonsoft.Json.Linq.JToken)response["entities"])
["value"]);

 }

 else

 {

DisplayEntity(((Newtonsoft.Json.Linq.JToken)response["entities"])
["value"].ElementAt((int)index));

 }

 }

 else if ("Places" == answerType)

 {

 if ((index = item["resultIndex"]) == null)

 {

DisplayAllPlaces(((Newtonsoft.Json.Linq.JToken)response["places"])
["value"]);

 }

 else

 {

DisplayPlace(((Newtonsoft.Json.Linq.JToken)response["places"])
["value"].ElementAt((int)index));

 }

 }

 else if ("Computation" == answerType)

 {

DisplayComputation((Newtonsoft.Json.Linq.JToken)response["computation"]);

 }

 else if ("Translations" == answerType)

 {

DisplayTranslations((Newtonsoft.Json.Linq.JToken)response["translations"]);

 }

 else if ("TimeZone" == answerType)

 {

DisplayTimeZone((Newtonsoft.Json.Linq.JToken)response["timeZone"]);

 }

 else

 {

 Console.WriteLine("\nUnknown answer type: {0}\n",
answerType);

 }

 }

 }

Display answer results

This example accesses a few of the fields from each type of answer result and applies
any contractual rules. You will likely use data from more of the fields than are shown in
this example. For information about the fields that each answer result may include, see
Response objects.

C#

 // Displays all webpages in the Webpages answer.

 static void DisplayAllWebPages(Newtonsoft.Json.Linq.JToken webpages)

 {

 foreach (Newtonsoft.Json.Linq.JToken webpage in webpages)

 {

 DisplayWegPage(webpage);

 }

 }

 // Displays a single webpage.

 static void DisplayWegPage(Newtonsoft.Json.Linq.JToken webpage)

 {

 string rule = null;

 // Some webpages require attribution. Checks if this page
requires

 // attribution and gets the list of attributions to apply.

 Dictionary<string, string> rulesByField = null;

 rulesByField = GetRulesByField(webpage["contractualRules"]);

 Console.WriteLine("\tWebpage\n");

 Console.WriteLine("\t\tName: " + webpage["name"]);

 Console.WriteLine("\t\tUrl: " + webpage["url"]);

 Console.WriteLine("\t\tDisplayUrl: " + webpage["displayUrl"]);

 Console.WriteLine("\t\tSnippet: " + webpage["snippet"]);

 // Apply attributions if they exist.

 if (null != rulesByField)

 {

 if (rulesByField.TryGetValue("snippet", out rule))

 {

 Console.WriteLine("\t\t\tData from: " +
rulesByField["snippet"]);

 }

 }

 Console.WriteLine();

 }

 // Displays all images in the Images answer.

 static void DisplayAllImages(Newtonsoft.Json.Linq.JToken images)

 {

 foreach (Newtonsoft.Json.Linq.JToken image in images)

 {

 DisplayImage(image);

 }

 }

 // Displays a single image.

 static void DisplayImage(Newtonsoft.Json.Linq.JToken image)

 {

 Console.WriteLine("\tImage\n");

 Console.WriteLine("\t\tThumbnail: " + image["thumbnailUrl"]);

 Console.WriteLine();

 }

 // Displays all videos in the Videos answer.

 static void DisplayAllVideos(Newtonsoft.Json.Linq.JToken videos)

 {

 foreach (Newtonsoft.Json.Linq.JToken video in videos)

 {

 DisplayVideo(video);

 }

 }

 // Displays a single video.

 static void DisplayVideo(Newtonsoft.Json.Linq.JToken video)

 {

 Console.WriteLine("\tVideo\n");

 Console.WriteLine("\t\tEmbed HTML: " + video["embedHtml"]);

 Console.WriteLine();

 }

 // Displays all news articles in the News answer.

 static void DisplayAllNews(Newtonsoft.Json.Linq.JToken news)

 {

 foreach (Newtonsoft.Json.Linq.JToken article in news)

 {

 DisplayArticle(article);

 }

 }

 // Displays a single news article.

 static void DisplayArticle(Newtonsoft.Json.Linq.JToken article)

 {

 // News articles require attribution. Gets the list of
attributions to apply.

 Dictionary<string, string> rulesByField = null;

 rulesByField = GetRulesByField(article["contractualRules"]);

 Console.WriteLine("\tArticle\n");

 Console.WriteLine("\t\tName: " + article["name"]);

 Console.WriteLine("\t\tURL: " + article["url"]);

 Console.WriteLine("\t\tDescription: " + article["description"]);

 Console.WriteLine("\t\tArticle from: " +
rulesByField["global"]);

 Console.WriteLine();

 }

 // Displays all related search in the RelatedSearches answer.

 static void DisplayAllRelatedSearches(Newtonsoft.Json.Linq.JToken
searches)

 {

 foreach (Newtonsoft.Json.Linq.JToken search in searches)

 {

 DisplayRelatedSearch(search);

 }

 }

 // Displays a single related search query.

 static void DisplayRelatedSearch(Newtonsoft.Json.Linq.JToken search)

 {

 Console.WriteLine("\tRelatedSearch\n");

 Console.WriteLine("\t\tName: " + search["displayText"]);

 Console.WriteLine("\t\tURL: " + search["webSearchUrl"]);

 Console.WriteLine();

 }

 // Displays all entities in the Entities answer.

 static void DisplayAllEntities(Newtonsoft.Json.Linq.JToken entities)

 {

 foreach (Newtonsoft.Json.Linq.JToken entity in entities)

 {

 DisplayEntity(entity);

 }

 }

 // Displays a single entity.

 static void DisplayEntity(Newtonsoft.Json.Linq.JToken entity)

 {

 string rule = null;

 // Entities require attribution. Gets the list of attributions
to apply.

 Dictionary<string, string> rulesByField = null;

 rulesByField = GetRulesByField(entity["contractualRules"]);

 Console.WriteLine("\tEntity\n");

 Console.WriteLine("\t\tName: " + entity["name"]);

 if (entity["image"] != null)

 {

 Console.WriteLine("\t\tImage: " + entity["image"]
["thumbnail"]);

 if (rulesByField.TryGetValue("image", out rule))

 {

 Console.WriteLine("\t\t\tImage from: " + rule);

 }

 }

 if (entity["description"] != null)

 {

 Console.WriteLine("\t\tDescription: " +
entity["description"]);

 if (rulesByField.TryGetValue("description", out rule))

 {

 Console.WriteLine("\t\t\tData from: " +
rulesByField["description"]);

 }

 }

 else

 {

 // See if presentation info can shed light on what this
entity is.

 var hintCount = entity["entityPresentationInfo"]
["entityTypeHints"].Count();

 Console.WriteLine("\t\tEntity hint: " +
entity["entityPresentationInfo"]["entityTypeHints"][hintCount - 1]);

 }

 Console.WriteLine();

 }

 // Displays all places in the Places answer.

 static void DisplayAllPlaces(Newtonsoft.Json.Linq.JToken places)

 {

 foreach (Newtonsoft.Json.Linq.JToken place in places)

 {

 DisplayPlace(place);

 }

 }

 // Displays a single place.

 static void DisplayPlace(Newtonsoft.Json.Linq.JToken place)

 {

 Console.WriteLine("\tPlace\n");

 Console.WriteLine("\t\tName: " + place["name"]);

 Console.WriteLine("\t\tPhone: " + place["telephone"]);

 Console.WriteLine("\t\tWebsite: " + place["url"]);

 Console.WriteLine();

 }

 // Displays the Computation answer.

 static void DisplayComputation(Newtonsoft.Json.Linq.JToken
expression)

 {

 Console.WriteLine("\tComputation\n");

 Console.WriteLine("\t\t{0} is {1}", expression["expression"],
expression["value"]);

 Console.WriteLine();

 }

 // Displays the Translation answer.

 static void DisplayTranslations(Newtonsoft.Json.Linq.JToken
translation)

 {

 // Some webpages require attribution. Checks if this page
requires

 // attribution and gets the list of attributions to apply.

 Dictionary<string, string> rulesByField = null;

 rulesByField = GetRulesByField(translation["contractualRules"]);

 // The translatedLanguageName field contains a 2-character
language code,

 // so you might want to provide the means to print Spanish
instead of es.

 Console.WriteLine("\tTranslation\n");

 Console.WriteLine("\t\t\"{0}\" translates to \"{1}\" in {2}",
translation["originalText"], translation["translatedText"],
translation["translatedLanguageName"]);

 Console.WriteLine("\t\tTranslation by " +
rulesByField["global"]);

 Console.WriteLine();

 }

 // Displays the TimeZone answer. This answer has multiple formats,
so you need to figure

 // out which fields exist in order to format the answer.

 static void DisplayTimeZone(Newtonsoft.Json.Linq.JToken timeZone)

 {

 Console.WriteLine("\tTime zone\n");

 if (timeZone["primaryCityTime"] != null)

 {

 var time =
DateTime.Parse((string)timeZone["primaryCityTime"]["time"]);

 Console.WriteLine("\t\tThe time in {0} is {1}:",
timeZone["primaryCityTime"]["location"], time);

 if (timeZone["otherCityTimes"] != null)

 {

The GetRulesByField method builds a dictionary of the rules that the calling method
accesses when it displays the result. If the rule applies to the result as a whole, the key is
global . Otherwise, the key is the name of the field that the rule targets (see the
targetPropertyName field).

C#

 Console.WriteLine("\t\tThere are {0} other time zones",
timeZone["otherCityTimes"].Count());

 }

 }

 if (timeZone["date"] != null)

 {

 Console.WriteLine("\t\t" + timeZone["date"]);

 }

 if (timeZone["primaryResponse"] != null)

 {

 Console.WriteLine("\t\t" + timeZone["primaryResponse"]);

 }

 if (timeZone["timeZoneDifference"] != null)

 {

 Console.WriteLine("\t\t{0} {1}", timeZone["description"],
timeZone["timeZoneDifference"]["text"]);

 }

 if (timeZone["primaryTimeZone"] != null)

 {

 Console.WriteLine("\t\t" + timeZone["primaryTimeZone"]
["timeZoneName"]);

 }

 Console.WriteLine();

 }

Handling contractual rules

 // Checks if the result includes contractual rules and builds a
dictionary of

 // the rules.

 static Dictionary<string, string>
GetRulesByField(Newtonsoft.Json.Linq.JToken contractualRules)

 {

 if (null == contractualRules)

 {

 return null;

 }

 var rules = new Dictionary<string, string>();

 foreach (Newtonsoft.Json.Linq.JToken rule in contractualRules as
Newtonsoft.Json.Linq.JToken)

 {

 // Use the rule's type as the key.

 string key = null;

 string value = null;

 var index = ((string)rule["_type"]).LastIndexOf('/');

 var ruleType = ((string)rule["_type"]).Substring(index + 1);

 string attribution = null;

 if (ruleType == "LicenseAttribution")

 {

 attribution = (string)rule["licenseNotice"];

 }

 else if (ruleType == "LinkAttribution")

 {

 attribution = string.Format("{0}({1})",
(string)rule["text"], (string)rule["url"]);

 }

 else if (ruleType == "MediaAttribution")
 {

 attribution = (string)rule["url"];

 }

 else if (ruleType == "TextAttribution")

 {

 attribution = (string)rule["text"];

 }

 // If the rule targets specific data in the result; for
example, the

 // snippet field, use the target's name as the key. Multiple
rules

 // can apply to the same field.

 if ((key = (string) rule["targetPropertyName"]) != null)

 {

 if (rules.TryGetValue(key, out value))

 {

 rules[key] = value + " | " + attribution;

 }

 else

 {

 rules.Add(key, attribution);

 }

 }

 else

 {

 // Otherwise, the rule applies to the result. Uses
'global' as the key

 // value for this case.

 key = "global";

This section shows an option for handling errors that the service may return. For
example, the service returns an error if your subscription key is not valid or is not valid
for the specified endpoint. The service may also return an error if you specify a
parameter value that's not valid.

C#

 if (rules.TryGetValue(key, out value))

 {

 rules[key] = value + " | " + attribution;

 }

 else

 {

 rules.Add(key, attribution);

 }

 }

 }

 return rules;

 }

Handling errors

 // Print any errors that occur. Depending on which part of the
service is

 // throwing the error, the response may contain different error
formats.

 static void PrintErrors(HttpResponseHeaders headers,
Dictionary<String, object> response)

 {

 Console.WriteLine("The response contains the following
errors:\n");

 object value;

 if (response.TryGetValue("error", out value)) // typically 401,
403

 {

 PrintError(response["error"] as
Newtonsoft.Json.Linq.JToken);

 }

 else if (response.TryGetValue("errors", out value))

 {

 // Bing API error

 foreach (Newtonsoft.Json.Linq.JToken error in
response["errors"] as Newtonsoft.Json.Linq.JToken)

 {

For a more in depth web app example, see the Web Search tutorial.

 PrintError(error);

 }

 // Included only when HTTP status code is 400; not included
with 401 or 403.

 IEnumerable<string> headerValues;

 if (headers.TryGetValues("BingAPIs-TraceId", out
headerValues))

 {

 Console.WriteLine("\nTrace ID: " +
headerValues.FirstOrDefault());

 }

 }

 }

 static void PrintError(Newtonsoft.Json.Linq.JToken error)

 {

 string value = null;

 Console.WriteLine("Code: " + error["code"]);
 Console.WriteLine("Message: " + error["message"]);

 if ((value = (string)error["parameter"]) != null)

 {

 Console.WriteLine("Parameter: " + value);

 }

 if ((value = (string)error["value"]) != null)

 {

 Console.WriteLine("Value: " + value);

 }

 }

Next steps

Quickstart: Search the web using the
Bing Web Search REST API and Go
Article • 09/27/2022

Use this quickstart to make your first call to the Bing Web Search API. This Go
application sends a search request to the API, and shows the JSON response. Although
this application is written in Go, the API is a RESTful Web service compatible with most
programming languages.

The code examples in this quickstart require only core libraries; there are no external
dependencies.

Here are a few things that you'll need before running this quickstart:

Go binaries
A subscription key

Create a new Go project in your favorite IDE or editor. Then, import net/http for
requests, ioutil to read the response, time and encoding/json to handle the JSON,
and fmt to print the output.

Go

The BingAnswer struct formats the data provided in the response.

Prerequisites

Create a project and import core libraries

package main

import (

 "fmt"

 "net/http"

 "io/ioutil"

 "time"

 "encoding/json"

)

Create a struct to format the search results

https://golang.org/dl/

Go

// This struct formats the answers provided by the Bing Web Search API.

type BingAnswer struct {

 Type string `json:"_type"`

 QueryContext struct {

 OriginalQuery string `json:"originalQuery"`

 } `json:"queryContext"`

 WebPages struct {

 WebSearchURL string `json:"webSearchUrl"`

 TotalEstimatedMatches int `json:"totalEstimatedMatches"`

 Value []struct {

 ID string `json:"id"`

 Name string `json:"name"`

 URL string `json:"url"`

 IsFamilyFriendly bool `json:"isFamilyFriendly"`

 DisplayURL string `json:"displayUrl"`

 Snippet string `json:"snippet"`

 DateLastCrawled time.Time `json:"dateLastCrawled"`

 SearchTags []struct {

 Name string `json:"name"`

 Content string `json:"content"`

 } `json:"searchTags,omitempty"`

 About []struct {

 Name string `json:"name"`

 } `json:"about,omitempty"`

 } `json:"value"`

 } `json:"webPages"`

 RelatedSearches struct {

 ID string `json:"id"`

 Value []struct {

 Text string `json:"text"`

 DisplayText string `json:"displayText"`

 WebSearchURL string `json:"webSearchUrl"`

 } `json:"value"`

 } `json:"relatedSearches"`

 RankingResponse struct {

 Mainline struct {

 Items []struct {

 AnswerType string `json:"answerType"`

 ResultIndex int `json:"resultIndex"`

 Value struct {

 ID string `json:"id"`

 } `json:"value"`

 } `json:"items"`

 } `json:"mainline"`

 Sidebar struct {

 Items []struct {

 AnswerType string `json:"answerType"`

 Value struct {

 ID string `json:"id"`

 } `json:"value"`

 } `json:"items"`

 } `json:"sidebar"`

This code declares the main function and sets the required variables:

2. Confirm that the endpoint is correct and replace the token value with a valid
subscription key from your Azure account.

3. Optionally, customize the search query by replacing the value for searchTerm .

Go

This code declares the HTTP request, inserts the header and payload, and instantiates
the client.

Go

 } `json:"rankingResponse"`

}

Declare the main function and define variables

// Declare the main function. This is required for all Go programs.

func main() {

// Replace the token string with a valid subscription key.

 const endpoint = "https://api.bing.microsoft.com/v7.0/search"

 token := "YOUR-ACCESS-KEY"

 searchTerm := "Microsoft Bing Search Services"

// The remaining code in this quickstart goes in the main function.

}

Construct a request

// Declare a new GET request.

req, err := http.NewRequest("GET", endpoint, nil)

if err != nil {

 panic(err)

}

// Add the payload to the request.

param := req.URL.Query()

param.Add("q", searchTerm)

req.URL.RawQuery = param.Encode()

// Insert the request header.

req.Header.Add("Ocp-Apim-Subscription-Key", token)

Use this code to call the Bing Web Search API and close the connection after a response
is returned.

Go

Use the struct we created previously to format the response and print the search results.

Go

The last step is to validate your code and run it. If you'd like to compare your code with
ours, here's the complete program:

// Instantiate a client.

client := new(http.Client)

Make a request

// Send the request to Bing.

resp, err := client.Do(req)

if err != nil {

 panic(err)

}

// Close the connection.

defer resp.Body.Close()

body, err := ioutil.ReadAll(resp.Body)

if err != nil {

 panic(err)

}

Handle the response

// Create a new answer.

ans := new(BingAnswer)

err = json.Unmarshal(body, &ans)

if err != nil {

 fmt.Println(err)

}

// Iterate over search results and print the result name and URL.

for _, result := range ans.WebPages.Value {

 fmt.Println(result.Name, "||", result.URL)

}

Put it all together

Go

package main

import (

 "fmt"

 "net/http"

 "io/ioutil"

 "time"

 "encoding/json"

)

// The is the struct for the data returned by Bing.

type BingAnswer struct {

 Type string `json:"_type"`

 QueryContext struct {

 OriginalQuery string `json:"originalQuery"`

 } `json:"queryContext"`

 WebPages struct {

 WebSearchURL string `json:"webSearchUrl"`

 TotalEstimatedMatches int `json:"totalEstimatedMatches"`

 Value []struct {

 ID string `json:"id"`

 Name string `json:"name"`

 URL string `json:"url"`

 IsFamilyFriendly bool `json:"isFamilyFriendly"`

 DisplayURL string `json:"displayUrl"`

 Snippet string `json:"snippet"`

 DateLastCrawled time.Time `json:"dateLastCrawled"`

 SearchTags []struct {

 Name string `json:"name"`

 Content string `json:"content"`

 } `json:"searchTags,omitempty"`

 About []struct {

 Name string `json:"name"`

 } `json:"about,omitempty"`

 } `json:"value"`

 } `json:"webPages"`

 RelatedSearches struct {

 ID string `json:"id"`

 Value []struct {

 Text string `json:"text"`

 DisplayText string `json:"displayText"`

 WebSearchURL string `json:"webSearchUrl"`

 } `json:"value"`

 } `json:"relatedSearches"`

 RankingResponse struct {

 Mainline struct {

 Items []struct {

 AnswerType string `json:"answerType"`

 ResultIndex int `json:"resultIndex"`

 Value struct {

 ID string `json:"id"`

 } `json:"value"`

 } `json:"items"`

 } `json:"mainline"`

 Sidebar struct {

 Items []struct {

 AnswerType string `json:"answerType"`

 Value struct {

 ID string `json:"id"`

 } `json:"value"`

 } `json:"items"`

 } `json:"sidebar"`

 } `json:"rankingResponse"`

}

// Replace the token string with a valid subscription key.

func main() {

 const endpoint = "https://api.bing.microsoft.com/v7.0/search"

 token := "YOUR-ACCESS-KEY"

 searchTerm := "Microsoft Cognitive Services"

 // Declare a new GET request.
 req, err := http.NewRequest("GET", endpoint, nil)

 if err != nil {

 panic(err)

 }

 // Add the payload to the request.

 param := req.URL.Query()

 param.Add("q", searchTerm)

 req.URL.RawQuery = param.Encode()

 // Insert the request header.

 req.Header.Add("Ocp-Apim-Subscription-Key", token)

 // Create a new client.

 client := new(http.Client)

 // Send the request to Bing.

 resp, err := client.Do(req)

 if err != nil {

 panic(err)

 }

 // Close the response.

 defer resp.Body.Close()

 body, err := ioutil.ReadAll(resp.Body)

 if err != nil {

 panic(err)

 }

 // Create a new answer.

 ans := new(BingAnswer)

 err = json.Unmarshal(body, &ans)

 if err != nil {

 fmt.Println(err)

 }

Responses from the Bing Web Search API are returned as JSON. This sample response
has been formatted by using the BingAnswer struct and shows the result.Name and
result.URL .

Go

 // Iterate over search results and print the result name and URL.

 for _, result := range ans.WebPages.Value {

 fmt.Println(result.Name, "||", result.URL)

 }

}

Example JSON response

Microsoft Cognitive Services || https://www.microsoft.com/cognitive-services

Cognitive Services | Microsoft Azure ||
https://azure.microsoft.com/services/cognitive-services/

What is Microsoft Cognitive Services? | Microsoft Docs ||
https://learn.microsoft.com/azure/cognitive-services/Welcome

Microsoft Cognitive Toolkit || https://www.microsoft.com/en-us/cognitive-
toolkit/

Microsoft Customers || https://customers.microsoft.com/en-us/search?
sq=%22Microsoft%20Cognitive%20Services%22&ff=&p=0&so=story_publish_date%20de
sc

Microsoft Enterprise Services - Microsoft Enterprise ||
https://enterprise.microsoft.com/en-us/services/

Microsoft Cognitive Services ||
https://westus.dev.cognitive.microsoft.com/docs/services/563879b61984550e40c
bbe8d/operations/563879b61984550f30395236

Cognitive Services - msdn.microsoft.com ||
https://msdn.microsoft.com/magazine/mt742868.aspx

Next steps
Bing Web Search API single-page app tutorial

Quickstart: Use Java to search the web
with the Bing Web Search REST API, an
Azure cognitive service
Article • 02/16/2022

In this quickstart, you'll use a Java application to make your first call to the Bing Web
Search API. This Java application sends a search request to the API, and shows the JSON
response. Although this application is written in Java, the API is a RESTful Web service
compatible with most programming languages.

Here are a few things that you'll need before running this quickstart:

JDK 7 or 8
Gson library
A subscription key

Create a new Java project in your favorite IDE or editor and import the following
libraries. Gson is required to convert Java Objects into JSON.

Java

If you're using Maven, declare Gson in POM.xml. Skip this step if you've installed Gson
locally.

XML

Prerequisites

Create a project and import dependencies

import java.net.*;

import java.util.*;

import java.io.*;

import javax.net.ssl.HttpsURLConnection;

import com.google.gson.Gson;

import com.google.gson.GsonBuilder;

import com.google.gson.JsonObject;

import com.google.gson.JsonParser;

Declare Gson in the Maven POM file

https://aka.ms/azure-jdks
https://github.com/google/gson

Declare the BingWebSearch class. It includes most of the code we review in this
quickstart, including the main() method.

Java

The following code sets the subscriptionKey , host , path , and searchTerm . Add this
code to the BingWebSearch class described in the previous section:

1. Replace the subscriptionKey value with a valid subscription key from your Azure
account.

2. Optionally, customize the search query by replacing the value for searchTerm .

Java

<dependency>

 <groupId>com.google.code.gson</groupId>

 <artifactId>gson</artifactId>

 <version>2.8.5</version>

</dependency>

Declare the BingWebSearch class

public class BingWebSearch {

// The code in the following sections goes here.

}

Define variables

// Enter a valid subscription key.

static String subscriptionKey = "enter key here";

/*

 * If you encounter unexpected authorization errors, double-check these
values

 * against the endpoint for your Bing Web search instance in your Azure

 * dashboard.

 */

static String host = "https://api.bing.microsoft.com";

static String path = "/v7.0/search";

static String searchTerm = "Microsoft Bing Search Services";

The SearchWeb() method, which is included in the BingWebSearch class, constructs the
url , receives and parses the response, and extracts Bing-related HTTP headers.

Java

Use Gson to parse and reserialize the response.

Java

Construct a request

public static SearchResults SearchWeb (String searchQuery) throws Exception
{

 // Construct the URL.

 URL url = new URL(host + path + "?q=" + URLEncoder.encode(searchQuery,
"UTF-8"));

 // Open the connection.

 HttpsURLConnection connection =
(HttpsURLConnection)url.openConnection();

 connection.setRequestProperty("Ocp-Apim-Subscription-Key",
subscriptionKey);

 // Receive the JSON response body.

 InputStream stream = connection.getInputStream();

 String response = new Scanner(stream).useDelimiter("\\A").next();

 // Construct the result object.

 SearchResults results = new SearchResults(new HashMap<String, String>(),
response);

 // Extract Bing-related HTTP headers.

 Map<String, List<String>> headers = connection.getHeaderFields();

 for (String header : headers.keySet()) {

 if (header == null) continue; // may have null key

 if (header.startsWith("BingAPIs-") || header.startsWith("X-MSEdge-
")){

 results.relevantHeaders.put(header, headers.get(header).get(0));

 }

 }

 stream.close();

 return results;

}

Handle the response

public static String prettify(String json_text) {

 JsonParser parser = new JsonParser();

 JsonObject json = parser.parse(json_text).getAsJsonObject();

The main() method is required and is the first method invoked when you start the
program. In this application, it includes code that validates the subscriptionKey , makes
a request, and then prints the JSON response.

Java

The SearchResults container class is defined outside of the BingWebSearch class. It
includes relevant headers and JSON data for the response.

Java

 Gson gson = new GsonBuilder().setPrettyPrinting().create();

 return gson.toJson(json);

}

Declare the main method

public static void main (String[] args) {

 // Confirm the subscriptionKey is valid.

 if (subscriptionKey.length() != 32) {

 System.out.println("Invalid Bing Search API subscription key!");

 System.out.println("Please paste yours into the source code.");

 System.exit(1);

 }

 // Call the SearchWeb method and print the response.

 try {

 System.out.println("Searching the Web for: " + searchTerm);

 SearchResults result = SearchWeb(searchTerm);

 System.out.println("\nRelevant HTTP Headers:\n");

 for (String header : result.relevantHeaders.keySet())

 System.out.println(header + ": " +
result.relevantHeaders.get(header));

 System.out.println("\nJSON Response:\n");

 System.out.println(prettify(result.jsonResponse));

 }

 catch (Exception e) {

 e.printStackTrace(System.out);

 System.exit(1);

 }

}

Create a container class for search results

class SearchResults{

 HashMap<String, String> relevantHeaders;

 String jsonResponse;

The last step is to compile your code and run it. Use the following commands:

PowerShell

If you'd like to compare your code with ours, sample code is available on GitHub .

Responses from the Bing Web Search API are returned as JSON. This sample response
has been truncated to show a single result.

JSON

 SearchResults(HashMap<String, String> headers, String json) {

 relevantHeaders = headers;

 jsonResponse = json;

 }

}

Put it all together

javac BingWebSearch.java -classpath ./gson-2.8.5.jar -encoding UTF-8

java -cp ./gson-2.8.5.jar BingWebSearch

Example JSON response

{

 "_type": "SearchResponse",

 "queryContext": {

 "originalQuery": "Microsoft Cognitive Services"

 },

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?
q=Microsoft+cognitive+services",

 "totalEstimatedMatches": 22300000,

 "value": [

 {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0",

 "name": "Microsoft Cognitive Services",

 "url": "https://www.microsoft.com/cognitive-services",

 "displayUrl": "https://www.microsoft.com/cognitive-services",

 "snippet": "Knock down barriers between you and your ideas. Enable
natural and contextual interaction with tools that augment users'
experiences via the power of machine-based AI. Plug them in and bring your
ideas to life.",

 "deepLinks": [

 {

 "name": "Face",

 "url": "https://azure.microsoft.com/services/cognitive-
services/face/",

https://github.com/Azure-Samples/cognitive-services-REST-api-samples/blob/master/java/Search/BingWebSearchv7.java

 "snippet": "Add facial recognition to your applications to
detect, identify, and verify faces using a Face service from Microsoft
Azure. ... Cognitive Services; Face service;"

 },

 {

 "name": "Text Analytics",

 "url": "https://azure.microsoft.com/services/cognitive-
services/text-analytics/",

 "snippet": "Cognitive Services; Text Analytics API; Text
Analytics API . Detect sentiment, ... you agree that Microsoft may store it
and use it to improve Microsoft services, ..."

 },

 {

 "name": "Computer Vision API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/computer-vision/",

 "snippet": "Extract the data you need from images using optical
character recognition and image analytics with Computer Vision APIs from
Microsoft Azure."

 },

 {

 "name": "Emotion",

 "url": "https://www.microsoft.com/cognitive-services/en-
us/emotion-api",

 "snippet": "Cognitive Services Emotion API - microsoft.com"

 },

 {

 "name": "Bing Speech API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/speech/",

 "snippet": "Add speech recognition to your applications,
including text to speech, with a speech API from Microsoft Azure. ...
Cognitive Services; Bing Speech API;"

 },

 {

 "name": "Get Started for Free",

 "url": "https://azure.microsoft.com/services/cognitive-
services/",

 "snippet": "Add vision, speech, language, and knowledge
capabilities to your applications using intelligence APIs and SDKs from
Cognitive Services."

 }

]

 }

]

 },

 "relatedSearches": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#RelatedSearches",

 "value": [

 {

 "text": "microsoft bot framework",

 "displayText": "microsoft bot framework",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+bot+framework"

 },

 {

 "text": "microsoft cognitive services youtube",

 "displayText": "microsoft cognitive services youtube",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+youtube"

 },

 {

 "text": "microsoft cognitive services search api",

 "displayText": "microsoft cognitive services search api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+search+api"

 },

 {

 "text": "microsoft cognitive services news",

 "displayText": "microsoft cognitive services news",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+news"

 },

 {

 "text": "ms cognitive service",

 "displayText": "ms cognitive service",

 "webSearchUrl": "https://www.bing.com/search?q=ms+cognitive+service"

 },

 {

 "text": "microsoft cognitive services text analytics",

 "displayText": "microsoft cognitive services text analytics",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+text+analytics"

 },

 {

 "text": "microsoft cognitive services toolkit",

 "displayText": "microsoft cognitive services toolkit",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+toolkit"

 },

 {

 "text": "microsoft cognitive services api",

 "displayText": "microsoft cognitive services api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+api"

 }

]

 },

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0"

 }

 }

]

 },

 "sidebar": {

 "items": [

 {

 "answerType": "RelatedSearches",

 "value": {

 "id":
"https://api.cognitive.microsoft.com/api/v7/#RelatedSearches"

 }

 }

]

 }

 }

}

Next steps
Bing Web Search API single-page app tutorial

Quickstart: Search the web using the
Bing Web Search REST API and Node.js
Article • 02/16/2022

Use this quickstart to make your first call to the Bing Web Search API. This Node.js
application sends a search request to the API, and shows the JSON response. Although
this application is written in JavaScript, the API is a RESTful Web service compatible with
most programming languages.

Here are a few things that you'll need before running this quickstart:

Node.js 6 or later
A subscription key

Create a new Node.js project in your favorite IDE or editor. Then, copy the following
code snippet to your project in a file named search.js:

JavaScript

This code snippet uses the AZURE_SUBSCRIPTION_KEY environment variable to store your
subscription key. Using an environment variable in this way is a good practice to prevent
the accidental exposure of your keys when deploying code.

If you're unfamiliar with the use of environment variables, or you want to run this app as
fast as possible, replace process.env['AZURE_SUBSCRIPTION_KEY'] with your subscription
key set as a string.

JavaScript

Prerequisites

Create a project and declare required modules

// Use this simple app to query the Bing Web Search API and get a JSON
response.

// Usage: node search.js "your query".

const https = require('https')

Set the subscription key

https://nodejs.org/en/download/

This function makes a secure GET request and saves the search query as a query
parameter in the path.

1. Use encodeURIComponent to escape invalid characters. The subscription key is
passed in a header.

2. The callback receives a response that subscribes to the data event to aggregate
the JSON body, the error event to log any issues, and the end event to know
when the message should be considered complete.

3. When the app is complete, it prints the relevant headers and message body. You
can adjust the colors and set the depth to suit your preference. A depth of 1 gives
a nice summary of the response.

JavaScript

const SUBSCRIPTION_KEY = process.env['AZURE_SUBSCRIPTION_KEY']

if (!SUBSCRIPTION_KEY) {

 throw new Error('AZURE_SUBSCRIPTION_KEY is not set.')

}

Create a function to make the request

function bingWebSearch(query) {

 https.get({

 hostname: 'api.bing.microsoft.com',

 path: '/v7.0/search?q=' + encodeURIComponent(query),

 headers: { 'Ocp-Apim-Subscription-Key': SUBSCRIPTION_KEY },

 }, res => {

 let body = ''

 res.on('data', part => body += part)

 res.on('end', () => {

 for (var header in res.headers) {

 if (header.startsWith("bingapis-") || header.startsWith("x-msedge-
")) {

 console.log(header + ": " + res.headers[header])

 }

 }

 console.log('\nJSON Response:\n')

 console.dir(JSON.parse(body), { colors: false, depth: null })

 })

 res.on('error', e => {

 console.log('Error: ' + e.message)

 throw e

 })

 })

}

https://nodejs.org/dist/latest-v10.x/docs/api/http.html#http_class_http_serverresponse

Let's look at the program's arguments to find the query. The first argument is the path
to the node, the second is our filename, and the third is your query. If the query is
absent, a default query of "Microsoft Cognitive Services" is used.

JavaScript

Now that everything is defined, let's call our function.

JavaScript

The last step is to run your code with the command: node search.js "<your query>" .

If you'd like to compare your code with ours, here's the complete program:

JavaScript

Get the query

const query = process.argv[2] || 'Microsoft Bing Search Services'

Make a request and print the response

bingWebSearch(query)

Put it all together

const https = require('https')

const SUBSCRIPTION_KEY = process.env['AZURE_SUBSCRIPTION_KEY']

if (!SUBSCRIPTION_KEY) {

 throw new Error('Missing the AZURE_SUBSCRIPTION_KEY environment variable')

}

function bingWebSearch(query) {

 https.get({

 hostname: 'api.bing.microsoft.com',

 path: '/v7.0/search?q=' + encodeURIComponent(query),

 headers: { 'Ocp-Apim-Subscription-Key': SUBSCRIPTION_KEY },

 }, res => {

 let body = ''

 res.on('data', part => body += part)

 res.on('end', () => {

 for (var header in res.headers) {

 if (header.startsWith("bingapis-") || header.startsWith("x-msedge-
")) {

 console.log(header + ": " + res.headers[header])

 }

 }

Responses from the Bing Web Search API are returned as JSON. This sample response
has been truncated to show a single result.

JSON

 console.log('\nJSON Response:\n')

 console.dir(JSON.parse(body), { colors: false, depth: null })

 })

 res.on('error', e => {

 console.log('Error: ' + e.message)

 throw e

 })

 })

}

const query = process.argv[2] || 'Microsoft Bing Search Services'

bingWebSearch(query)

Example JSON response

{

 "_type": "SearchResponse",

 "queryContext": {

 "originalQuery": "Microsoft Cognitive Services"

 },

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?
q=Microsoft+cognitive+services",

 "totalEstimatedMatches": 22300000,

 "value": [

 {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0",

 "name": "Microsoft Cognitive Services",

 "url": "https://www.microsoft.com/cognitive-services",

 "displayUrl": "https://www.microsoft.com/cognitive-services",

 "snippet": "Knock down barriers between you and your ideas. Enable
natural and contextual interaction with tools that augment users'
experiences via the power of machine-based AI. Plug them in and bring your
ideas to life.",

 "deepLinks": [

 {

 "name": "Face",

 "url": "https://azure.microsoft.com/services/cognitive-
services/face/",

 "snippet": "Add facial recognition to your applications to
detect, identify, and verify faces using a Face service from Microsoft
Azure. ... Cognitive Services; Face service;"

 },

 {

 "name": "Text Analytics",

 "url": "https://azure.microsoft.com/services/cognitive-
services/text-analytics/",

 "snippet": "Cognitive Services; Text Analytics API; Text
Analytics API . Detect sentiment, ... you agree that Microsoft may store it
and use it to improve Microsoft services, ..."

 },

 {

 "name": "Computer Vision API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/computer-vision/",

 "snippet": "Extract the data you need from images using optical
character recognition and image analytics with Computer Vision APIs from
Microsoft Azure."

 },

 {

 "name": "Emotion",

 "url": "https://www.microsoft.com/cognitive-services/emotion-
api",

 "snippet": "Cognitive Services Emotion API - microsoft.com"

 },

 {

 "name": "Bing Speech API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/speech/",

 "snippet": "Add speech recognition to your applications,
including text to speech, with a speech API from Microsoft Azure. ...
Cognitive Services; Bing Speech API;"

 },

 {

 "name": "Get Started for Free",

 "url": "https://azure.microsoft.com/services/cognitive-
services/",

 "snippet": "Add vision, speech, language, and knowledge
capabilities to your applications using intelligence APIs and SDKs from
Cognitive Services."

 }

]

 }

]

 },

 "relatedSearches": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#RelatedSearches",

 "value": [

 {

 "text": "microsoft bot framework",

 "displayText": "microsoft bot framework",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+bot+framework"

 },

 {

 "text": "microsoft cognitive services youtube",

 "displayText": "microsoft cognitive services youtube",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+youtube"

 },

 {

 "text": "microsoft cognitive services search api",

 "displayText": "microsoft cognitive services search api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+search+api"

 },

 {

 "text": "microsoft cognitive services news",

 "displayText": "microsoft cognitive services news",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+news"

 },

 {

 "text": "ms cognitive service",

 "displayText": "ms cognitive service",

 "webSearchUrl": "https://www.bing.com/search?q=ms+cognitive+service"

 },

 {

 "text": "microsoft cognitive services text analytics",

 "displayText": "microsoft cognitive services text analytics",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+text+analytics"

 },

 {

 "text": "microsoft cognitive services toolkit",

 "displayText": "microsoft cognitive services toolkit",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+toolkit"

 },

 {

 "text": "microsoft cognitive services api",

 "displayText": "microsoft cognitive services api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+api"

 }

]

 },

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0"

 }

 }

]

 },

 "sidebar": {

 "items": [

 {

 "answerType": "RelatedSearches",

 "value": {

 "id":
"https://api.cognitive.microsoft.com/api/v7/#RelatedSearches"

 }

 }

]

 }

 }

}

Next steps
Bing Web Search API single-page app tutorial

Quickstart: Use PHP to call the Bing
Web Search API
Article • 02/16/2022

Use this quickstart to make your first call to the Bing Web Search API. This PHP
application sends a search request to the API, and shows the response. Although this
application is written in PHP, the API is a RESTful Web service compatible with most
programming languages.

Here are a few things that you'll need before running this quickstart:

PHP 5.6.x or later
A subscription key

Before we get started, locate php.ini and uncomment this line:

PHP

1. Create a new PHP project in your favorite IDE or editor. Add opening and closing
tags: <?php and ?> .

2. Confirm that the $endpoint value is correct and replace the $accesskey value with
a valid subscription key from your Azure account.

3. Optionally, customize the search query by replacing the value for $term .

PHP

Prerequisites

Enable secure HTTP support

; extension=php_openssl.dll

Create a project and define variables

$accessKey = 'enter key here';

$endpoint = 'https://api.bing.microsoft.com/v7.0/search';

$term = 'Microsoft Bing Search Services';

https://php.net/downloads.php

This code declares a function called BingWebSearch that's used to construct requests to
the Bing Web Search API. It takes three arguments: $url , $key , and $query .

PHP

This code validates the subscription key, makes a request, and prints the response.

PHP

Construct a request

function BingWebSearch ($url, $key, $query) {

 /* Prepare the HTTP request.

 * NOTE: Use the key 'http' even if you are making an HTTPS request.

 * See: http://php.net/manual/en/function.stream-context-create.php.

 */

 $headers = "Ocp-Apim-Subscription-Key: $key\r\n";

 $options = array ('http' => array (

 'header' => $headers,

 'method' => 'GET'));

 // Perform the request and get a JSON response.

 $context = stream_context_create($options);

 $result = file_get_contents($url . "?q=" . urlencode($query), false,
$context);

 // Extract Bing HTTP headers.
 $headers = array();

 foreach ($http_response_header as $k => $v) {

 $h = explode(":", $v, 2);

 if (isset($h[1]))

 if (preg_match("/^BingAPIs-/", $h[0]) || preg_match("/^X-
MSEdge-/", $h[0]))

 $headers[trim($h[0])] = trim($h[1]);

 }

 return array($headers, $result);

}

Make a request and print the response

// Validates the subscription key.

if (strlen($accessKey) == 32) {

 print "Searching the Web for: " . $term . "\n";

 // Makes the request.

 list($headers, $json) = BingWebSearch($endpoint, $accessKey, $term);

 print "\nRelevant Headers:\n\n";

The last step is to validate your code and run it. If you'd like to compare your code with
ours, here's the complete program:

PHP

 foreach ($headers as $k => $v) {

 print $k . ": " . $v . "\n";

 }

 // Prints JSON encoded response.

 print "\nJSON Response:\n\n";

 echo json_encode(json_decode($json), JSON_PRETTY_PRINT);

} else {

 print("Invalid Bing Search API subscription key!\n");

 print("Please paste yours into the source code.\n");

}

Put it all together

<?php

$accessKey = 'enter key here';

$endpoint = 'https://api.bing.microsoft.com/v7.0/search';

$term = 'Microsoft Bing Search Services';

function BingWebSearch ($url, $key, $query) {

 $headers = "Ocp-Apim-Subscription-Key: $key\r\n";

 $options = array ('http' => array (

 'header' => $headers,

 'method' => 'GET'));

 $context = stream_context_create($options);

 $result = file_get_contents($url . "?q=" . urlencode($query), false,
$context);

 $headers = array();

 foreach ($http_response_header as $k => $v) {

 $h = explode(":", $v, 2);

 if (isset($h[1]))

 if (preg_match("/^BingAPIs-/", $h[0]) || preg_match("/^X-
MSEdge-/", $h[0]))

 $headers[trim($h[0])] = trim($h[1]);

 }

 return array($headers, $result);

}

if (strlen($accessKey) == 32) {

 print "Searching the Web for: " . $term . "\n";

 list($headers, $json) = BingWebSearch($endpoint, $accessKey, $term);

 print "\nRelevant Headers:\n\n";

 foreach ($headers as $k => $v) {

 print $k . ": " . $v . "\n";

Responses from the Bing Web Search API are returned as JSON. This sample response
has been truncated to show a single result.

JSON

 }

 print "\nJSON Response:\n\n";

 echo json_encode(json_decode($json), JSON_PRETTY_PRINT);

} else {

 print("Invalid Bing Search API subscription key!\n");

 print("Please paste yours into the source code.\n");

}

?>

Example JSON response

{

 "_type": "SearchResponse",

 "queryContext": {

 "originalQuery": "Microsoft Cognitive Services"

 },

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?
q=Microsoft+cognitive+services",

 "totalEstimatedMatches": 22300000,

 "value": [

 {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0",

 "name": "Microsoft Cognitive Services",

 "url": "https://www.microsoft.com/cognitive-services",

 "displayUrl": "https://www.microsoft.com/cognitive-services",

 "snippet": "Knock down barriers between you and your ideas. Enable
natural and contextual interaction with tools that augment users'
experiences via the power of machine-based AI. Plug them in and bring your
ideas to life.",

 "deepLinks": [

 {

 "name": "Face",

 "url": "https://azure.microsoft.com/services/cognitive-
services/face/",

 "snippet": "Add facial recognition to your applications to
detect, identify, and verify faces using the Face service from Microsoft
Azure. ... Cognitive Services; Face service;"

 },

 {

 "name": "Text Analytics",

 "url": "https://azure.microsoft.com/services/cognitive-
services/text-analytics/",

 "snippet": "Cognitive Services; Text Analytics API; Text
Analytics API . Detect sentiment, ... you agree that Microsoft may store it

and use it to improve Microsoft services, ..."

 },

 {

 "name": "Computer Vision API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/computer-vision/",

 "snippet": "Extract the data you need from images using optical
character recognition and image analytics with Computer Vision APIs from
Microsoft Azure."

 },

 {

 "name": "Emotion",

 "url": "https://www.microsoft.com/cognitive-services/en-
us/emotion-api",

 "snippet": "Cognitive Services Emotion API - microsoft.com"

 },

 {

 "name": "Bing Speech API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/speech/",

 "snippet": "Add speech recognition to your applications,
including text to speech, with a speech API from Microsoft Azure. ...
Cognitive Services; Bing Speech API;"

 },

 {

 "name": "Get Started for Free",

 "url": "https://azure.microsoft.com/services/cognitive-
services/",

 "snippet": "Add vision, speech, language, and knowledge
capabilities to your applications using intelligence APIs and SDKs from
Cognitive Services."

 }

]

 }

]

 },

 "relatedSearches": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#RelatedSearches",

 "value": [

 {

 "text": "microsoft bot framework",

 "displayText": "microsoft bot framework",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+bot+framework"

 },

 {

 "text": "microsoft cognitive services youtube",

 "displayText": "microsoft cognitive services youtube",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+youtube"

 },

 {

 "text": "microsoft cognitive services search api",

 "displayText": "microsoft cognitive services search api",

 "webSearchUrl": "https://www.bing.com/search?

q=microsoft+cognitive+services+search+api"

 },

 {

 "text": "microsoft cognitive services news",

 "displayText": "microsoft cognitive services news",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+news"

 },

 {

 "text": "ms cognitive service",

 "displayText": "ms cognitive service",

 "webSearchUrl": "https://www.bing.com/search?q=ms+cognitive+service"

 },

 {

 "text": "microsoft cognitive services text analytics",

 "displayText": "microsoft cognitive services text analytics",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+text+analytics"

 },

 {

 "text": "microsoft cognitive services toolkit",

 "displayText": "microsoft cognitive services toolkit",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+toolkit"

 },

 {

 "text": "microsoft cognitive services api",

 "displayText": "microsoft cognitive services api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+api"

 }

]

 },

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0"

 }

 }

]

 },

 "sidebar": {

 "items": [

 {

 "answerType": "RelatedSearches",

 "value": {

 "id":
"https://api.cognitive.microsoft.com/api/v7/#RelatedSearches"

 }

 }

]

 }

 }

}

Next steps
Bing Web Search API single-page app tutorial

Quickstart: Use Python to call the Bing
Web Search API
Article • 10/28/2020

Use this quickstart to make your first call to the Bing Web Search API. This Python
application sends a search request to the API, and shows the JSON response. Although
this application is written in Python, the API is a RESTful Web service compatible with
most programming languages.

This example is run as a Jupyter notebook on MyBinder . To run it, select the launch
binder badge:

launchlaunch binderbinder

Python 2.x or 3.x

1. Replace the subscription_key value with a valid subscription key from your Azure
account.

Python

2. Declare the Bing Web Search API endpoint.

Python

3. Optionally, customize the search query by replacing the value for search_term .

Python

Prerequisites

Define variables

subscription_key = "YOUR_ACCESS_KEY"

assert subscription_key

search_url = "https://api.bing.microsoft.com/v7.0/search"

search_term = "Microsoft Bing Search Services"

https://mybinder.org/
https://mybinder.org/v2/gh/Microsoft/cognitive-services-notebooks/master?filepath=BingWebSearchAPI.ipynb
https://www.python.org/

This code uses the requests library to call the Bing Web Search API and return the
results as a JSON object. The API key is passed in the headers dictionary, and the search
term and query parameters are passed in the params dictionary.

For a complete list of options and parameters, see Bing Web Search API v7.

Python

The search_results object includes the search results, and such metadata as related
queries and pages. This code uses the IPython.display library to format and display the
response in your browser.

Python

To run this code locally, see the complete sample available on GitHub .

Make a request

import requests

headers = {"Ocp-Apim-Subscription-Key": subscription_key}

params = {"q": search_term, "textDecorations": True, "textFormat": "HTML"}

response = requests.get(search_url, headers=headers, params=params)

response.raise_for_status()

search_results = response.json()

Format and display the response

from IPython.display import HTML

rows = "\n".join(["""<tr>

 <td>{1}</td>

 <td>{2}</td>

 </tr>""".format(v["url"], v["name"], v["snippet"])

 for v in search_results["webPages"]["value"]])

HTML("<table>{0}</table>".format(rows))

Sample code on GitHub

Next steps
Bing Web Search API single-page app tutorial

https://github.com/Azure-Samples/cognitive-services-REST-api-samples/blob/master/python/Search/BingWebSearchv7.py

Quickstart: Use Ruby to call the Bing
Web Search API
Article • 02/16/2022

Use this quickstart to make your first call to the Bing Web Search API. This Ruby
application sends a search request to the API, and shows the JSON response. Although
this application is written in Ruby, the API is a RESTful Web service compatible with most
programming languages.

Here are a few things that you'll need before running this quickstart:

Ruby 2.4 or later
A subscription key

Create a new Ruby project in your favorite IDE or editor. Then, require net/https for
requests, uri for URI handling, and json to parse the response.

Ruby

A few variables must be set before we can continue:

1. Confirm that the uri and path values are valid and replace the accessKey value
with a subscription key from your Azure account.

2. Optionally, customize the search query by replacing the value for term .

Ruby

Prerequisites

Create a project and declare required modules

require 'net/https'

require 'uri'

require 'json'

Define variables

accessKey = "YOUR_SUBSCRIPTION_KEY"

uri = "https://api.bing.microsoft.com"

https://www.ruby-lang.org/en/downloads/

Use this code to make a request and handle the response:

Ruby

Validate the headers, format the response data as JSON, and print the results.

Ruby

path = "/v7.0/search"

term = "Microsoft Bing Search Services"

if accessKey.length != 32 then

 puts "Invalid Bing Search API subscription key!"

 puts "Please paste yours into the source code."

 abort

end

Make a request

Construct the endpoint uri.

uri = URI(uri + path + "?q=" + URI.escape(term))

puts "Searching the Web for: " + term

Create the request.

request = Net::HTTP::Get.new(uri)
request['Ocp-Apim-Subscription-Key'] = accessKey

Get the response.

response = Net::HTTP.start(uri.host, uri.port, :use_ssl => uri.scheme ==
'https') do |http|

 http.request(request)

end

Print the response

puts "\nRelevant Headers:\n\n"

response.each_header do |key, value|

 # Header names are lower-cased.

 if key.start_with?("bingapis-") or key.start_with?("x-msedge-") then

 puts key + ": " + value

 end

end

puts "\nJSON Response:\n\n"

puts JSON::pretty_generate(JSON(response.body))

The last step is to validate your code and run it. If you'd like to compare your code with
ours, here's the complete program:

Ruby

Responses from the Bing Web Search API are returned as JSON. This sample response
has been truncated to show a single result.

JSON

Put it all together

require 'net/https'

require 'uri'

require 'json'

accessKey = "enter key here"

uri = "https://api.bing.microsoft.com"

path = "/v7.0/search"

term = "Microsoft Bing Search Services"

if accessKey.length != 32 then

 puts "Invalid Bing Search API subscription key!"

 puts "Please paste yours into the source code."

 abort

end

uri = URI(uri + path + "?q=" + URI.escape(term))

puts "Searching the Web for: " + term

request = Net::HTTP::Get.new(uri)
request['Ocp-Apim-Subscription-Key'] = accessKey

response = Net::HTTP.start(uri.host, uri.port, :use_ssl => uri.scheme ==
'https') do |http|

 http.request(request)

end

puts "\nRelevant Headers:\n\n"

response.each_header do |key, value|

 if key.start_with?("bingapis-") or key.start_with?("x-msedge-") then

 puts key + ": " + value

 end

end

puts "\nJSON Response:\n\n"

puts JSON::pretty_generate(JSON(response.body))

Example JSON response

{

 "_type": "SearchResponse",

 "queryContext": {

 "originalQuery": "Microsoft Cognitive Services"

 },

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?
q=Microsoft+cognitive+services",

 "totalEstimatedMatches": 22300000,

 "value": [

 {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0",

 "name": "Microsoft Cognitive Services",

 "url": "https://www.microsoft.com/cognitive-services",

 "displayUrl": "https://www.microsoft.com/cognitive-services",

 "snippet": "Knock down barriers between you and your ideas. Enable
natural and contextual interaction with tools that augment users'
experiences via the power of machine-based AI. Plug them in and bring your
ideas to life.",

 "deepLinks": [

 {

 "name": "Face",

 "url": "https://azure.microsoft.com/services/cognitive-
services/face/",

 "snippet": "Add facial recognition to your applications to
detect, identify, and verify faces using the Face service from Microsoft
Azure. ... Cognitive Services; Face service;"

 },

 {

 "name": "Text Analytics",

 "url": "https://azure.microsoft.com/services/cognitive-
services/text-analytics/",

 "snippet": "Cognitive Services; Text Analytics API; Text
Analytics API . Detect sentiment, ... you agree that Microsoft may store it
and use it to improve Microsoft services, ..."

 },

 {

 "name": "Computer Vision API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/computer-vision/",

 "snippet": "Extract the data you need from images using optical
character recognition and image analytics with Computer Vision APIs from
Microsoft Azure."

 },

 {

 "name": "Emotion",

 "url": "https://www.microsoft.com/cognitive-services/en-
us/emotion-api",

 "snippet": "Cognitive Services Emotion API - microsoft.com"

 },

 {

 "name": "Bing Speech API",

 "url": "https://azure.microsoft.com/services/cognitive-
services/speech/",

 "snippet": "Add speech recognition to your applications,

including text to speech, with a speech API from Microsoft Azure. ...
Cognitive Services; Bing Speech API;"

 },

 {

 "name": "Get Started for Free",

 "url": "https://azure.microsoft.com/services/cognitive-
services/",

 "snippet": "Add vision, speech, language, and knowledge
capabilities to your applications using intelligence APIs and SDKs from
Cognitive Services."

 }

]

 }

]

 },

 "relatedSearches": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#RelatedSearches",

 "value": [

 {

 "text": "microsoft bot framework",

 "displayText": "microsoft bot framework",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+bot+framework"

 },

 {

 "text": "microsoft cognitive services youtube",

 "displayText": "microsoft cognitive services youtube",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+youtube"

 },

 {

 "text": "microsoft cognitive services search api",

 "displayText": "microsoft cognitive services search api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+search+api"

 },

 {

 "text": "microsoft cognitive services news",

 "displayText": "microsoft cognitive services news",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+news"

 },

 {

 "text": "ms cognitive service",

 "displayText": "ms cognitive service",

 "webSearchUrl": "https://www.bing.com/search?q=ms+cognitive+service"

 },

 {

 "text": "microsoft cognitive services text analytics",

 "displayText": "microsoft cognitive services text analytics",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+text+analytics"

 },

 {

 "text": "microsoft cognitive services toolkit",

 "displayText": "microsoft cognitive services toolkit",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+toolkit"

 },

 {

 "text": "microsoft cognitive services api",

 "displayText": "microsoft cognitive services api",

 "webSearchUrl": "https://www.bing.com/search?
q=microsoft+cognitive+services+api"

 }

]

 },

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0"

 }

 }

]

 },

 "sidebar": {

 "items": [

 {

 "answerType": "RelatedSearches",

 "value": {

 "id":
"https://api.cognitive.microsoft.com/api/v7/#RelatedSearches"

 }

 }

]

 }

 }

}

Next steps
Bing Web Search API single-page app tutorial

Quickstart: Use a Bing Web Search .NET
client library
Article • 09/09/2022

The Bing Web Search client library makes it easy to integrate Bing Web Search into your
C# application. In this quickstart, you'll learn how to instantiate a client, send a request,
and print the response.

Want to see the code right now? Samples for the Bing Search client libraries for .NET
are available on GitHub.

Here are a few things that you'll need before running this quickstart:

Visual Studio or
Visual Studio Code 2017

C# for Visual Studio Code
NuGet Package Manager

.NET Core SDK

The first step is to create a new console project. If you need help with setting up a
console project, see Hello World -- Your First Program (C# Programming Guide). To use
the Bing Web Search SDK in your application, you'll need to install
Microsoft.Azure.CognitiveServices.Search.WebSearch using the NuGet Package
Manager.

The Web Search SDK package also installs:

Microsoft.Rest.ClientRuntime
Microsoft.Rest.ClientRuntime.Azure
Newtonsoft.Json

Prerequisites

Create a project and install dependencies

 Tip

Get the latest code as a Visual Studio solution from GitHub .

https://github.com/Azure-Samples/cognitive-services-dotnet-sdk-samples/tree/master/BingSearchv7
https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com/download
https://visualstudio.microsoft.com/downloads/
https://github.com/jmrog/vscode-nuget-package-manager
https://www.microsoft.com/net/download
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://www.nuget.org/packages/Microsoft.Azure.CognitiveServices.Search.WebSearch/1.2.0
https://github.com/Azure-Samples/cognitive-services-dotnet-sdk-samples/

Open your project in Visual Studio or Visual Studio Code and import these
dependencies:

C#

When you created your new console project, a namespace and class for your application
should have been created. Your program should look like this example:

C#

In the following sections, we'll build our sample application within this class.

This code constructs the search query.

C#

Declare dependencies

using System;

using System.Collections.Generic;
using Microsoft.Azure.CognitiveServices.Search.WebSearch;

using Microsoft.Azure.CognitiveServices.Search.WebSearch.Models;

using System.Linq;

Create project scaffolding

namespace WebSearchSDK

{

 class YOUR_PROGRAM

 {

 // The code in the following sections goes here.

 }

}

Construct a request

public static async void WebResults(WebSearchClient client)

{

 try

 {

 var webData = await client.Web.SearchAsync(query: "Yosemite National
Park");

 Console.WriteLine("Searching for \"Yosemite National Park\"");

Next, let's add some code to parse the response and print the results. The Name and Url
for the first web page, image, news article, and video are printed if present in the
response object.

C#

 // Code for handling responses is provided in the next section...

 }

 catch (Exception ex)

 {

 Console.WriteLine("Encountered exception. " + ex.Message);
 }

}

Handle the response

if (webData?.WebPages?.Value?.Count > 0)

{

 // find the first web page

 var firstWebPagesResult = webData.WebPages.Value.FirstOrDefault();

 if (firstWebPagesResult != null)

 {

 Console.WriteLine("Webpage Results # {0}",
webData.WebPages.Value.Count);

 Console.WriteLine("First web page name: {0} ",
firstWebPagesResult.Name);

 Console.WriteLine("First web page URL: {0} ",
firstWebPagesResult.Url);

 }

 else

 {

 Console.WriteLine("Didn't find any web pages...");

 }

}

else

{

 Console.WriteLine("Didn't find any web pages...");

}

/*

 * Images

 * If the search response contains images, the first result's name

 * and url are printed.

 */

if (webData?.Images?.Value?.Count > 0)

{

 // find the first image result

 var firstImageResult = webData.Images.Value.FirstOrDefault();

 if (firstImageResult != null)

 {

 Console.WriteLine("Image Results # {0}",
webData.Images.Value.Count);

 Console.WriteLine("First Image result name: {0} ",
firstImageResult.Name);

 Console.WriteLine("First Image result URL: {0} ",
firstImageResult.ContentUrl);

 }

 else

 {

 Console.WriteLine("Didn't find any images...");

 }

}

else

{

 Console.WriteLine("Didn't find any images...");

}

/*

 * News

 * If the search response contains news articles, the first result's name

 * and url are printed.

 */

if (webData?.News?.Value?.Count > 0)

{

 // find the first news result
 var firstNewsResult = webData.News.Value.FirstOrDefault();

 if (firstNewsResult != null)

 {

 Console.WriteLine("\r\nNews Results # {0}",
webData.News.Value.Count);

 Console.WriteLine("First news result name: {0} ",
firstNewsResult.Name);

 Console.WriteLine("First news result URL: {0} ",
firstNewsResult.Url);

 }

 else

 {

 Console.WriteLine("Didn't find any news articles...");

 }

}

else

{

 Console.WriteLine("Didn't find any news articles...");

}

/*

 * Videos

 * If the search response contains videos, the first result's name

 * and url are printed.

 */

if (webData?.Videos?.Value?.Count > 0)

{

In this application, the main method includes code that instantiates the client, validates
the subscriptionKey , and calls WebResults . Make sure that you enter a valid subscription
key for your Azure account before continuing.

C#

Let's run the application!

Console

 // find the first video result

 var firstVideoResult = webData.Videos.Value.FirstOrDefault();

 if (firstVideoResult != null)

 {

 Console.WriteLine("\r\nVideo Results # {0}",
webData.Videos.Value.Count);

 Console.WriteLine("First Video result name: {0} ",
firstVideoResult.Name);

 Console.WriteLine("First Video result URL: {0} ",
firstVideoResult.ContentUrl);

 }

 else

 {

 Console.WriteLine("Didn't find any videos...");

 }

}

else

{

 Console.WriteLine("Didn't find any videos...");

}

Declare the main method

static void Main(string[] args)

{

 var client = new WebSearchClient(new
ApiKeyServiceClientCredentials("YOUR_SUBSCRIPTION_KEY"));

 WebResults(client);

 Console.WriteLine("Press any key to exit...");

 Console.ReadKey();

}

Run the application

dotnet run

Now that you've made your first call to the Bing Web Search API, let's look at a few
functions that highlight SDK functionality for refining queries and filtering results. Each
function can be added to your C# application created in the previous section.

This sample uses the count and offset parameters to limit the number of results
returned for "Best restaurants in Seattle". The Name and Url for the first result are
printed.

1. Add this code to your console project:

C#

Define functions and filter results

Limit the number of results returned by Bing

public static async void WebResultsWithCountAndOffset(WebSearchClient
client)

{

 try

 {

 var webData = await client.Web.SearchAsync(query: "Best
restaurants in Seattle", offset: 10, count: 20);

 Console.WriteLine("\r\nSearching for \" Best restaurants in
Seattle \"");

 if (webData?.WebPages?.Value?.Count > 0)

 {

 var firstWebPagesResult =
webData.WebPages.Value.FirstOrDefault();

 if (firstWebPagesResult != null)

 {

 Console.WriteLine("Web Results #{0}",
webData.WebPages.Value.Count);

 Console.WriteLine("First web page name: {0} ",
firstWebPagesResult.Name);

 Console.WriteLine("First web page URL: {0} ",
firstWebPagesResult.Url);

 }

 else

 {

 Console.WriteLine("Couldn't find first web result!");

 }

 }

 else

 {

2. Add WebResultsWithCountAndOffset to main :

C#

3. Run the application.

This sample uses the response_filter parameter to filter search results. The search
results returned are limited to news articles for "Microsoft". The Name and Url for the
first result are printed.

1. Add this code to your console project:

C#

 Console.WriteLine("Didn't see any Web data..");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("Encountered exception. " + ex.Message);
 }

}

static void Main(string[] args)

{

 var client = new WebSearchClient(new
ApiKeyServiceClientCredentials("YOUR_SUBSCRIPTION_KEY"));

 WebResults(client);

 // Search with count and offset...

 WebResultsWithCountAndOffset(client);

 Console.WriteLine("Press any key to exit...");

 Console.ReadKey();

}

Filter for news

public static async void WebSearchWithResponseFilter(WebSearchClient
client)

{

 try

 {

 IList<string> responseFilterstrings = new List<string>() {
"news" };

 var webData = await client.Web.SearchAsync(query: "Microsoft",
responseFilter: responseFilterstrings);

 Console.WriteLine("\r\nSearching for \" Microsoft \" with
response filter \"news\"");

2. Add WebResultsWithCountAndOffset to main :

C#

3. Run the application.

 if (webData?.News?.Value?.Count > 0)

 {

 var firstNewsResult = webData.News.Value.FirstOrDefault();

 if (firstNewsResult != null)

 {

 Console.WriteLine("News Results #{0}",
webData.News.Value.Count);

 Console.WriteLine("First news result name: {0} ",
firstNewsResult.Name);

 Console.WriteLine("First news result URL: {0} ",
firstNewsResult.Url);

 }

 else

 {

 Console.WriteLine("Couldn't find first News results!");

 }

 }

 else

 {

 Console.WriteLine("Didn't see any News data..");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("Encountered exception. " + ex.Message);
 }

}

static void Main(string[] args)

{

 var client = new WebSearchClient(new
ApiKeyServiceClientCredentials("YOUR_SUBSCRIPTION_KEY"));

 WebResults(client);

 // Search with count and offset...

 WebResultsWithCountAndOffset(client);

 // Search with news filter...
 WebSearchWithResponseFilter(client);

 Console.WriteLine("Press any key to exit...");

 Console.ReadKey();

}

This sample uses the answer_count , promote , and safe_search parameters to filter
search results for "Music Videos". The Name and ContentUrl for the first result are
displayed.

1. Add this code to your console project:

C#

Use safe search, answer count, and the promote filter

public static async void
WebSearchWithAnswerCountPromoteAndSafeSearch(WebSearchClient client)

{

 try

 {

 IList<string> promoteAnswertypeStrings = new List<string>() {
"videos" };

 var webData = await client.Web.SearchAsync(query: "Music
Videos", answerCount: 2, promote: promoteAnswertypeStrings, safeSearch:
SafeSearch.Strict);

 Console.WriteLine("\r\nSearching for \"Music Videos\"");

 if (webData?.Videos?.Value?.Count > 0)

 {

 var firstVideosResult =
webData.Videos.Value.FirstOrDefault();

 if (firstVideosResult != null)

 {

 Console.WriteLine("Video Results # {0}",
webData.Videos.Value.Count);

 Console.WriteLine("First Video result name: {0} ",
firstVideosResult.Name);

 Console.WriteLine("First Video result URL: {0} ",
firstVideosResult.ContentUrl);

 }

 else

 {

 Console.WriteLine("Couldn't find videos results!");

 }

 }

 else

 {

 Console.WriteLine("Didn't see any data..");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine("Encountered exception. " + ex.Message);
 }

}

2. Add WebResultsWithCountAndOffset to main :

C#

3. Run the application.

When you're done with this project, make sure to remove your subscription key from
the application's code.

static void Main(string[] args)

{

 var client = new WebSearchClient(new
ApiKeyServiceClientCredentials("YOUR_SUBSCRIPTION_KEY"));

 WebResults(client);

 // Search with count and offset...

 WebResultsWithCountAndOffset(client);

 // Search with news filter...
 WebSearchWithResponseFilter(client);

 // Search with answer count, promote, and safe search

 WebSearchWithAnswerCountPromoteAndSafeSearch(client);

 Console.WriteLine("Press any key to exit...");

 Console.ReadKey();

}

Clean up resources

Next steps
Cognitive Services .NET SDK samples

https://github.com/Azure-Samples/cognitive-services-dotnet-sdk-samples/

Quickstart: Use a Bing Web Search Java
client library
Article • 10/28/2020

The Bing Web Search client library makes it easy to integrate Bing Web Search into your
Java application. In this quickstart, you'll learn how to send a request, receive a JSON
response, and filter and parse the results.

Want to see the code right now? Samples for the Bing Search client libraries for Java
are available on GitHub.

Here are a few things that you'll need before running this quickstart:

JDK 7 or 8
Apache Maven or your favorite build automation tool
A subscription key

Create a new Java project using Maven or your favorite build automation tool. Assuming
that you're using Maven, add the following lines to your Project Object Model (POM)
file. Replace all instances of mainClass with your application.

XML

Prerequisites

Create a project and set up your POM file

<build>

 <plugins>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>exec-maven-plugin</artifactId>

 <version>1.4.0</version>

 <configuration>

 <!--Your comment

 Replace the mainClass with the path to your java application.

 It should begin with com and doesn't require the .java
extension.

 For example: com.bingwebsearch.app.BingWebSearchSample. This
maps to

 The following directory structure:

 src/main/java/com/bingwebsearch/app/BingWebSearchSample.java.

 -->

 <mainClass>com.path.to.your.app.APP_NAME</mainClass>

https://github.com/Azure-Samples/cognitive-services-java-sdk-samples/tree/master/Search
https://aka.ms/azure-jdks
https://maven.apache.org/download.cgi
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

 </configuration>

 </plugin>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.0</version>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

 <plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>attached</goal>

 </goals>

 <configuration>

 <descriptorRefs>

 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>

 <archive>
 <manifest>

 <!--Your comment

 Replace the mainClass with the path to your java
application.

 For example:
com.bingwebsearch.app.BingWebSearchSample.java.

 This maps to the following directory structure:

src/main/java/com/bingwebsearch/app/BingWebSearchSample.java.

 -->

 <mainClass>com.path.to.your.app.APP_NAME.java</mainClass>

 </manifest>

 </archive>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>com.microsoft.azure</groupId>

 <artifactId>azure</artifactId>

 <version>1.9.0</version>

 </dependency>

 <dependency>

 <groupId>commons-net</groupId>

 <artifactId>commons-net</artifactId>

 <version>3.3</version>

 </dependency>

 <dependency>

 <groupId>com.microsoft.azure.cognitiveservices</groupId>

Open your project in your favorite IDE or editor and import these dependencies:

Java

If you created the project with Maven, the package should already be declared.
Otherwise, declare the package now. For example:

Java

Declare the BingWebSearchSample class. It will include most of our code including the
main method.

Java

 <artifactId>azure-cognitiveservices-websearch</artifactId>

 <version>1.0.1</version>

 </dependency>

 </dependencies>

Declare dependencies

import
com.microsoft.azure.cognitiveservices.search.websearch.BingWebSearchAPI;

import
com.microsoft.azure.cognitiveservices.search.websearch.BingWebSearchManager;

import
com.microsoft.azure.cognitiveservices.search.websearch.models.ImageObject;

import
com.microsoft.azure.cognitiveservices.search.websearch.models.NewsArticle;

import
com.microsoft.azure.cognitiveservices.search.websearch.models.SearchResponse
;

import
com.microsoft.azure.cognitiveservices.search.websearch.models.VideoObject;

import
com.microsoft.azure.cognitiveservices.search.websearch.models.WebPage;

package com.bingwebsearch.app

Declare the BingWebSearchSample class

public class BingWebSearchSample {

// The code in the following sections goes here.

}

The runSample method, which lives in the BingWebSearchSample class, constructs the
request. Copy this code into your application:

Java

Next, let's add some code to parse the response and print the results. The name and url
for the first web page, image, news article, and video are printed when included in the
response object.

Java

Construct a request

public static boolean runSample(BingWebSearchAPI client) {

 /*

 * This function performs the search.

 *

 * @param client instance of the Bing Web Search API client

 * @return true if sample runs successfully

 */

 try {

 /*

 * Performs a search based on the .withQuery and prints the name and

 * url for the first web pages, image, news, and video result

 * included in the response.

 */

 System.out.println("Searched Web for \"Xbox\"");

 // Construct the request.
 SearchResponse webData = client.bingWebs().search()

 .withQuery("Xbox")

 .withMarket("en-us")

 .withCount(10)

 .execute();

// Code continues in the next section...

Handle the response

/*

* WebPages

* If the search response has web pages, the first result's name

* and url are printed.

*/

if (webData != null && webData.webPages() != null &&
webData.webPages().value() != null &&

 webData.webPages().value().size() > 0) {

 // find the first web page

 WebPage firstWebPagesResult = webData.webPages().value().get(0);

 if (firstWebPagesResult != null) {

 System.out.println(String.format("Webpage Results#%d",
webData.webPages().value().size()));

 System.out.println(String.format("First web page name: %s ",
firstWebPagesResult.name()));

 System.out.println(String.format("First web page URL: %s ",
firstWebPagesResult.url()));

 } else {

 System.out.println("Couldn't find the first web result!");
 }

} else {

 System.out.println("Didn't find any web pages...");

}

/*

 * Images

 * If the search response has images, the first result's name

 * and url are printed.

 */

if (webData != null && webData.images() != null && webData.images().value()
!= null &&

 webData.images().value().size() > 0) {

 // find the first image result

 ImageObject firstImageResult = webData.images().value().get(0);

 if (firstImageResult != null) {

 System.out.println(String.format("Image Results#%d",
webData.images().value().size()));

 System.out.println(String.format("First Image result name: %s ",
firstImageResult.name()));

 System.out.println(String.format("First Image result URL: %s ",
firstImageResult.contentUrl()));

 } else {

 System.out.println("Couldn't find the first image result!");

 }

} else {

 System.out.println("Didn't find any images...");

}

/*

 * News

 * If the search response has news articles, the first result's name

 * and url are printed.

 */

if (webData != null && webData.news() != null && webData.news().value() !=
null &&

 webData.news().value().size() > 0) {

 // find the first news result
 NewsArticle firstNewsResult = webData.news().value().get(0);

 if (firstNewsResult != null) {

 System.out.println(String.format("News Results#%d",
webData.news().value().size()));

 System.out.println(String.format("First news result name: %s ",
firstNewsResult.name()));

In this application, the main method includes code that instantiates the client, validates
the subscriptionKey , and calls runSample . Make sure that you enter a valid subscription
key for your Azure account before continuing.

Java

 System.out.println(String.format("First news result URL: %s ",
firstNewsResult.url()));

 } else {

 System.out.println("Couldn't find the first news result!");

 }

} else {

 System.out.println("Didn't find any news articles...");

}

/*

 * Videos

 * If the search response has videos, the first result's name

 * and url are printed.

 */

if (webData != null && webData.videos() != null && webData.videos().value()
!= null &&

 webData.videos().value().size() > 0) {

 // find the first video result

 VideoObject firstVideoResult = webData.videos().value().get(0);

 if (firstVideoResult != null) {

 System.out.println(String.format("Video Results#%s",
webData.videos().value().size()));

 System.out.println(String.format("First Video result name: %s ",
firstVideoResult.name()));

 System.out.println(String.format("First Video result URL: %s ",
firstVideoResult.contentUrl()));

 } else {

 System.out.println("Couldn't find the first video result!");

 }

} else {

 System.out.println("Didn't find any videos...");

}

Declare the main method

public static void main(String[] args) {

 try {

 // Enter a valid subscription key for your account.

 final String subscriptionKey = "YOUR_SUBSCRIPTION_KEY";

 // Instantiate the client.

 BingWebSearchAPI client =
BingWebSearchManager.authenticate(subscriptionKey);

 // Make a call to the Bing Web Search API.

 runSample(client);

The final step is to run your program!

Console

When you're done with this project, make sure to remove your subscription key from
the program's code.

 } catch (Exception e) {

 System.out.println(e.getMessage());

 e.printStackTrace();

 }

}

Run the program

mvn compile exec:java

Clean up resources

Next steps
Cognitive Services Java SDK samples

https://github.com/Azure-Samples/cognitive-services-java-sdk-samples/tree/master/Search/BingWebSearch

Quickstart: Use a Bing Web Search
JavaScript client library
Article • 02/16/2022

The Bing Web Search client library makes it easy to integrate Bing Web Search into your
Node.js application. In this quickstart, you'll learn how to instantiate a client, send a
request, and print the response.

Want to see the code right now? Samples for the Bing Search client libraries for
JavaScript are available on GitHub.

Here are a few things that you'll need before running this quickstart:

Node.js 6 or later
A subscription key

Let's start by setting up the development environment for our Node.js project.

1. Create a new directory for your project:

Console

2. Create a new package file:

Console

3. Now, let's install some Azure modules and add them to the package.json :

Console

Prerequisites

Set up your development environment

mkdir YOUR_PROJECT

cd YOUR_PROJECT

npm init

npm install --save azure-cognitiveservices-websearch

npm install --save ms-rest-azure

https://github.com/Azure-Samples/cognitive-services-node-sdk-samples/tree/master/Samples
https://nodejs.org/en/download/

In the same directory as your package.json , create a new Node.js project using your
favorite IDE or editor. For example: sample.js .

Next, copy this code into your project. It loads the modules installed in the previous
section.

JavaScript

This code instantiates a client and using the azure-cognitiveservices-websearch
module. Make sure that you enter a valid subscription key for your Azure account before
continuing.

JavaScript

Use the client to send a search query to Bing Web Search. If the response includes
results for any of the items in the properties array, the result.value is printed to the
console.

JavaScript

Create a project and declare required modules

const CognitiveServicesCredentials = require('ms-rest-
azure').CognitiveServicesCredentials;

const WebSearchAPIClient = require('azure-cognitiveservices-websearch');

Instantiate the client

let credentials = new CognitiveServicesCredentials('YOUR-ACCESS-KEY');

let webSearchApiClient = new WebSearchAPIClient(credentials);

Make a request and print the results

webSearchApiClient.web.search('seahawks').then((result) => {

 let properties = ["images", "webPages", "news", "videos"];

 for (let i = 0; i < properties.length; i++) {

 if (result[properties[i]]) {

 console.log(result[properties[i]].value);

 } else {

 console.log(`No ${properties[i]} data`);

 }

 }

The final step is to run your program!

When you're done with this project, make sure to remove your subscription key from
the program's code.

}).catch((err) => {

 throw err;

})

Run the program

Clean up resources

Next steps
Cognitive Services Node.js SDK samples

https://github.com/Azure-Samples/cognitive-services-node-sdk-samples

Quickstart: Use a Bing Web Search
Python client library
Article • 09/27/2022

The Bing Web Search client library makes it easy to integrate Bing Web Search into your
Python application. In this quickstart, you'll learn how to send a request, receive a JSON
response, and filter and parse the results.

Want to see the code right now? Samples for the Bing Search client libraries for
Python are available on GitHub.

The Bing Web Search SDK is compatible with Python 2.7, 3.3, 3.4, 3.5, and 3.6. We
recommend using a virtual environment for this quickstart.

Python 2.7, 3.3, 3.4, 3.5 or 3.6
virtualenv for Python 2.7
venv for Python 3.x

The instructions to set up and configure a virtual environment are different for Python
2.x and Python 3.x. Follow the steps below to create and initialize your virtual
environment.

Create a virtual environment with virtualenv for Python 2.7:

Console

Activate your environment:

Console

Prerequisites

Create and configure your virtual environment

Python 2.x

virtualenv mytestenv

cd mytestenv

source bin/activate

https://github.com/Azure-Samples/cognitive-services-python-sdk-samples/tree/master/samples/search
https://docs.python.org/3/tutorial/venv.html
https://pypi.python.org/pypi/virtualenv

Install Bing Web Search SDK dependencies:

Console

Create a virtual environment with venv for Python 3.x:

Console

Activate your environment:

Console

Install Bing Web Search SDK dependencies:

Console

Now that you've set up your virtual environment and installed dependencies, let's create
a client. The client will handle requests to and responses from the Bing Web Search API.

If the response contains web pages, images, news, or videos, the first result for each is
printed.

1. Create a new Python project using your favorite IDE or editor.

2. Copy this sample code into your project.

Python

python -m pip install azure-cognitiveservices-search-websearch

Python 3.x

python -m venv mytestenv

mytestenv\Scripts\activate.bat

cd mytestenv

python -m pip install azure-cognitiveservices-search-websearch

Create a client and print your first results

Import required modules.

from azure.cognitiveservices.search.websearch import WebSearchClient

from azure.cognitiveservices.search.websearch.models import SafeSearch

from msrest.authentication import CognitiveServicesCredentials

Replace with your subscription key.

subscription_key = "YOUR_SUBSCRIPTION_KEY"

Instantiate the client and replace with your endpoint.

client = WebSearchClient(endpoint="YOUR_ENDPOINT",
credentials=CognitiveServicesCredentials(subscription_key))

Make a request. Replace Yosemite if you'd like.

web_data = client.web.search(query="Yosemite")

print("\r\nSearched for Query# \" Yosemite \"")

'''

Web pages

If the search response contains web pages, the first result's name and
url

are printed.

'''

if hasattr(web_data.web_pages, 'value'):

 print("\r\nWebpage Results#
{}".format(len(web_data.web_pages.value)))

 first_web_page = web_data.web_pages.value[0]

 print("First web page name: {} ".format(first_web_page.name))

 print("First web page URL: {} ".format(first_web_page.url))

else:

 print("Didn't find any web pages...")

'''

Images

If the search response contains images, the first result's name and url

are printed.

'''

if hasattr(web_data.images, 'value'):

 print("\r\nImage Results#{}".format(len(web_data.images.value)))

 first_image = web_data.images.value[0]

 print("First Image name: {} ".format(first_image.name))

 print("First Image URL: {} ".format(first_image.url))

else:

 print("Didn't find any images...")

'''

News

If the search response contains news, the first result's name and url

are printed.

3. Replace SUBSCRIPTION_KEY with a valid subscription key.

4. Replace YOUR_ENDPOINT with your endpoint URL in portal and remove the
"bing/v7.0" section from the endpoint.

5. Run the program. For example: python your_program.py .

Now that you've made your first call to the Bing Web Search API, let's look at a few
functions. The following sections highlight SDK functionality for refining queries and
filtering results. Each function can be added to the Python program you created in the
previous section.

This sample uses the count and offset parameters to limit the number of results
returned using the SDK's search method. The name and url for the first result are
printed.

'''

if hasattr(web_data.news, 'value'):

 print("\r\nNews Results#{}".format(len(web_data.news.value)))

 first_news = web_data.news.value[0]

 print("First News name: {} ".format(first_news.name))

 print("First News URL: {} ".format(first_news.url))

else:

 print("Didn't find any news...")

'''

If the search response contains videos, the first result's name and url

are printed.

'''

if hasattr(web_data.videos, 'value'):

 print("\r\nVideos Results#{}".format(len(web_data.videos.value)))

 first_video = web_data.videos.value[0]

 print("First Videos name: {} ".format(first_video.name))

 print("First Videos URL: {} ".format(first_video.url))

else:

 print("Didn't find any videos...")

Define functions and filter results

Limit the number of results returned by Bing

https://learn.microsoft.com/en-us/python/api/azure-cognitiveservices-search-websearch/azure.cognitiveservices.search.websearch.operations.weboperations?view=azure-python&preserve-view=true

1. Add this code to your Python project:

Python

2. Run the program.

This sample uses the response_filter and freshness parameters to filter search results
using the SDK's search method. The search results returned are limited to news articles

 # Declare the function.

 def web_results_with_count_and_offset(subscription_key):

 client =
WebSearchAPI(CognitiveServicesCredentials(subscription_key))

 try:

 '''

 Set the query, offset, and count using the SDK's search
method. See:

 https://learn.microsoft.com/python/api/azure-
cognitiveservices-search-
websearch/azure.cognitiveservices.search.websearch.operations.weboperat
ions?view=azure-python.

 '''

 web_data = client.web.search(query="Best restaurants in
Seattle", offset=10, count=20)

 print("\r\nSearching for \"Best restaurants in Seattle\"")

 if web_data.web_pages.value:

 '''

 If web pages are available, print the # of responses, and
the first and second

 web pages returned.

 '''

 print("Webpage Results#
{}".format(len(web_data.web_pages.value)))

 first_web_page = web_data.web_pages.value[0]

 print("First web page name: {}
".format(first_web_page.name))

 print("First web page URL: {}
".format(first_web_page.url))

 else:

 print("Didn't find any web pages...")

 except Exception as err:

 print("Encountered exception. {}".format(err))

Filter for news and freshness

https://learn.microsoft.com/en-us/python/api/azure-cognitiveservices-search-websearch/azure.cognitiveservices.search.websearch.operations.weboperations

and pages that Bing has discovered within the last 24 hours. The name and url for the
first result are printed.

1. Add this code to your Python project:

Python

Declare the function.

def web_search_with_response_filter(subscription_key):

 client =
WebSearchAPI(CognitiveServicesCredentials(subscription_key))

 try:

 '''

 Set the query, response_filter, and freshness using the SDK's
search method. See:

 https://learn.microsoft.com/python/api/azure-cognitiveservices-
search-
websearch/azure.cognitiveservices.search.websearch.operations.weboperat
ions?view=azure-python.

 '''

 web_data = client.web.search(query="xbox",

 response_filter=["News"],

 freshness="Day")

 print("\r\nSearching for \"xbox\" with the response filter set
to \"News\" and freshness filter set to \"Day\".")

 '''

 If news articles are available, print the # of responses, and
the first and second

 articles returned.

 '''

 if web_data.news.value:

 print("# of news results:
{}".format(len(web_data.news.value)))

 first_web_page = web_data.news.value[0]

 print("First article name: {}
".format(first_web_page.name))

 print("First article URL: {} ".format(first_web_page.url))

 print("")

 second_web_page = web_data.news.value[1]

 print("\nSecond article name: {}
".format(second_web_page.name))

 print("Second article URL: {}
".format(second_web_page.url))

 else:

 print("Didn't find any news articles...")

 except Exception as err:

2. Run the program.

This sample uses the answer_count , promote , and safe_search parameters to filter
search results using the SDK's search method. The name and url for the first result are
displayed.

1. Add this code to your Python project:

Python

 print("Encountered exception. {}".format(err))

Call the function.

web_search_with_response_filter(subscription_key)

Use safe search, answer count, and the promote filter

Declare the function.

def
web_search_with_answer_count_promote_and_safe_search(subscription_key):

 client =
WebSearchAPI(CognitiveServicesCredentials(subscription_key))

 try:

 '''

 Set the query, answer_count, promote, and safe_search
parameters using the SDK's search method. See:

 https://learn.microsoft.com/python/api/azure-cognitiveservices-
search-
websearch/azure.cognitiveservices.search.websearch.operations.weboperat
ions?view=azure-python.

 '''

 web_data = client.web.search(

 query="Niagara Falls",

 answer_count=2,

 promote=["videos"],

 safe_search=SafeSearch.strict # or directly "Strict"

)

 print("\r\nSearching for \"Niagara Falls\"")

 '''

 If results are available, print the # of responses, and the
first result returned.

 '''

 if web_data.web_pages.value:

 print("Webpage Results#
{}".format(len(web_data.web_pages.value)))

 first_web_page = web_data.web_pages.value[0]

https://learn.microsoft.com/en-us/python/api/azure-cognitiveservices-search-websearch/azure.cognitiveservices.search.websearch.operations.weboperations?view=azure-python&preserve-view=true

2. Run the program.

When you're done with this project, make sure to remove your subscription key from
the program's code and to deactivate your virtual environment.

 print("First web page name: {}
".format(first_web_page.name))

 print("First web page URL: {} ".format(first_web_page.url))

 else:

 print("Didn't see any Web data..")

 except Exception as err:

 print("Encountered exception. {}".format(err))

Clean up resources

Next steps
Cognitive Services Python SDK samples

https://github.com/Azure-Samples/cognitive-services-python-sdk-samples

Tutorial: Create a single-page app using
the Bing Web Search API
Article • 02/21/2024

This single-page app demonstrates how to retrieve, parse, and display search results
from the Bing Web Search API. The tutorial uses boilerplate HTML and CSS, and focuses
on the JavaScript code. HTML, CSS, and JS files are available on GitHub with quickstart
instructions.

This sample app can:

Here are a few things that you'll need to run the app:

An Azure subscription - Create one for free .

Once you have your Azure subscription, create a Bing Search resource Ｍ in the
Azure portal to get your key and endpoint. After it deploys, click Go to resource.

Node.js 8 or later

The first step is to clone the repository with the sample app's source code.

Console

Then run npm install . For this tutorial, Express.js is the only dependency.

Console

Call the Bing Web Search API with search options＂

Display web, image, news, and video results＂

Paginate results＂

Manage subscription keys＂

Handle errors＂

Prerequisites

git clone https://github.com/Azure-Samples/cognitive-services-REST-api-
samples.git

cd <path-to-repo>/cognitive-services-REST-api-samples/Tutorials/Bing-Web-
Search
npm install

https://github.com/Azure-Samples/cognitive-services-REST-api-samples/tree/master/Tutorials/Bing-Web-Search
https://azure.microsoft.com/free/ai-services/
https://ms.portal.azure.com/#create/Microsoft.BingSearch

The sample app we're building is made up of four parts:

bing-web-search.js - Our Express.js app. It handles request/response logic and
routing.
public/index.html - The skeleton of our app; it defines how data is presented to
the user.
public/css/styles.css - Defines page styles, such as fonts, colors, text size.

public/js/scripts.js - Contains the logic to make requests to the Bing Web
Search API, manage subscription keys, handle and parse responses, and display
results.

This tutorial focuses on scripts.js and the logic required to call the Bing Web Search
API and handle the response.

The index.html includes a form that enables users to search and select search options.
The onsubmit attribute fires when the form is submitted, calling the bingWebSearch()
method defined in scripts.js . It takes three arguments:

Search query
Selected options
Subscription key

HTML

The HTML form includes options that map to query parameters in the Bing Web Search
API v7 reference. This table provides a breakdown of how users can filter search results
using the sample app:

App components

HTML form

<form name="bing" onsubmit="return bingWebSearch(this.query.value,
 bingSearchOptions(this), getSubscriptionKey())">

Query options

ﾉ Expand table

Parameter Description

query A text field to enter a query string.

where A drop-down menu to select the market (location and language).

what Checkboxes to promote specific result types. Promoting images, for example,
increases the ranking of images in search results.

when A drop-down menu that allows the user to limit the search results to today, this
week, or this month.

safe A checkbox to enable Bing SafeSearch, which filters out adult content.

count Hidden field. The number of search results to return on each request. Change this
value to display fewer or more results per page.

offset Hidden field. The offset of the first search result in the request, which is used for
paging. It's reset to 0 with each new request.

The bingSearchOptions() function converts these options to match the format required
by the Bing Search API.

JavaScript

７ Note

The Bing Web Search API offers additional query parameters to help refine search
results. This sample only uses a few. For a complete list of available parameters, see
Bing Web Search API v7 reference.

// Build query options from selections in the HTML form.
function bingSearchOptions(form) {

 var options = [];
 // Where option.
 options.push("mkt=" + form.where.value);
 // SafeSearch option.
 options.push("SafeSearch=" + (form.safe.checked ? "strict" :
"moderate"));
 // Freshness option.
 if (form.when.value.length) options.push("freshness=" +
form.when.value);
 var what = [];
 for (var i = 0; i < form.what.length; i++)
 if (form.what[i].checked) what.push(form.what[i].value);
 // Promote option.
 if (what.length) {
 options.push("promote=" + what.join(","));

SafeSearch can be set to strict , moderate , or off , with moderate being the default
setting for Bing Web Search. This form uses a checkbox, which has two states: strict or

moderate .

If any of the Promote check boxes are selected, the answerCount parameter is added to
the query. answerCount is required when using the promote parameter. In this snippet,
the value is set to 9 to return all available result types.

The textDecoration and textFormat query parameters are hardcoded into the script,
and cause the search term to be boldfaced in the search results. These parameters aren't
required.

To avoid hardcoding the Bing Search API subscription key, this sample app uses a
browser's persistent storage to store the subscription key. If no subscription key is
stored, the user is prompted to enter one. If the subscription key is rejected by the API,
the user is prompted to re-enter a subscription key.

The getSubscriptionKey() function uses the storeValue and retrieveValue functions to
store and retrieve a user's subscription key. These functions use the localStorage
object, if supported, or cookies.

 options.push("answerCount=9");
 }
 // Count option.
 options.push("count=" + form.count.value);
 // Offset option.
 options.push("offset=" + form.offset.value);
 // Hardcoded text decoration option.
 options.push("textDecorations=true");
 // Hardcoded text format option.
 options.push("textFormat=HTML");
 return options.join("&");
}

７ Note

Promoting a result type doesn't guarantee that it will be included in the search
results. Rather, promotion increases the ranking of those kinds of results relative to
their usual ranking. To limit searches to particular kinds of results, use the
responseFilter query parameter, or call a more specific endpoint such as Bing
Image Search or Bing News Search.

Manage subscription keys

JavaScript

As we saw earlier, when the form is submitted, onsubmit fires, calling bingWebSearch .
This function initializes and sends the request. getSubscriptionKey is called on each
submission to authenticate the request.

Given the query, the options string, and the subscription key, the BingWebSearch
function creates an XMLHttpRequest object to call the Bing Web Search endpoint.

JavaScript

// Cookie names for stored data.
API_KEY_COOKIE = "bing-search-api-key";
CLIENT_ID_COOKIE = "bing-search-client-id";

BING_ENDPOINT = "https://api.bing.microsoft.com/v7.0/search";

// See source code for storeValue and retrieveValue definitions.

// Get stored subscription key, or prompt if it isn't found.
function getSubscriptionKey() {
 var key = retrieveValue(API_KEY_COOKIE);
 while (key.length !== 32) {
 key = prompt("Enter Bing Search API subscription key:", "").trim();
 }
 // Always set the cookie in order to update the expiration date.
 storeValue(API_KEY_COOKIE, key);
 return key;
}

Call Bing Web Search

// Perform a search constructed from the query, options, and subscription
key.
function bingWebSearch(query, options, key) {
 window.scrollTo(0, 0);
 if (!query.trim().length) return false;

 showDiv("noresults", "Working. Please wait.");
 hideDivs("pole", "mainline", "sidebar", "_json", "_http", "paging1",
"paging2", "error");

 var request = new XMLHttpRequest();
 var queryurl = BING_ENDPOINT + "?q=" + encodeURIComponent(query) + "&" +
options;

 // Initialize the request.
 try {
 request.open("GET", queryurl);

Following a successful request, the load event handler fires and calls the
handleBingResponse function. handleBingResponse parses the result object, displays the
results, and contains error logic for failed requests.

JavaScript

 }
 catch (e) {
 renderErrorMessage("Bad request (invalid URL)\n" + queryurl);
 return false;
 }

 // Add request headers.
 request.setRequestHeader("Ocp-Apim-Subscription-Key", key);
 request.setRequestHeader("Accept", "application/json");
 var clientid = retrieveValue(CLIENT_ID_COOKIE);
 if (clientid) request.setRequestHeader("X-MSEdge-ClientID", clientid);

 // Event handler for successful response.
 request.addEventListener("load", handleBingResponse);

 // Event handler for errors.
 request.addEventListener("error", function() {
 renderErrorMessage("Error completing request");
 });

 // Event handler for an aborted request.
 request.addEventListener("abort", function() {
 renderErrorMessage("Request aborted");
 });

 // Send the request.
 request.send();
 return false;
}

function handleBingResponse() {
 hideDivs("noresults");

 var json = this.responseText.trim();
 var jsobj = {};

 // Try to parse results object.
 try {
 if (json.length) jsobj = JSON.parse(json);
 } catch(e) {
 renderErrorMessage("Invalid JSON response");
 return;
 }

 // Show raw JSON and the HTTP request.
 showDiv("json", preFormat(JSON.stringify(jsobj, null, 2)));

 showDiv("http", preFormat("GET " + this.responseURL + "\n\nStatus: " +
this.status + " " +
 this.statusText + "\n" + this.getAllResponseHeaders()));

 // If the HTTP response is 200 OK, try to render the results.
 if (this.status === 200) {
 var clientid = this.getResponseHeader("X-MSEdge-ClientID");
 if (clientid) retrieveValue(CLIENT_ID_COOKIE, clientid);
 if (json.length) {
 if (jsobj._type === "SearchResponse" && "rankingResponse" in
jsobj) {
 renderSearchResults(jsobj);
 } else {
 renderErrorMessage("No search results in JSON response");
 }
 } else {
 renderErrorMessage("Empty response (are you sending too many
requests too quickly?)");
 }
 }

 // Any other HTTP response is considered an error.
 else {
 // 401 is unauthorized; force a re-prompt for the user's
subscription
 // key on the next request.
 if (this.status === 401) invalidateSubscriptionKey();

 // Some error responses don't have a top-level errors object, if
absent
 // create one.
 var errors = jsobj.errors || [jsobj];
 var errmsg = [];

 // Display the HTTP status code.
 errmsg.push("HTTP Status " + this.status + " " + this.statusText +
"\n");

 // Add all fields from all error responses.
 for (var i = 0; i < errors.length; i++) {
 if (i) errmsg.push("\n");
 for (var k in errors[i]) errmsg.push(k + ": " + errors[i][k]);
 }

 // Display Bing Trace ID if it isn't blocked by CORS.
 var traceid = this.getResponseHeader("BingAPIs-TraceId");
 if (traceid) errmsg.push("\nTrace ID " + traceid);

 // Display the error message.
 renderErrorMessage(errmsg.join("\n"));
 }
}

Much of the code in both of the preceding functions is dedicated to error handling.
Errors may occur at the following stages:

Stage Potential error(s) Handled by

Building the request
object

Invalid URL try / catch block

Making the request Network errors, aborted connections error and abort event
handlers

Performing the search Invalid request, invalid JSON, rate
limits

Tests in load event handler

Errors are handled by calling renderErrorMessage() . If the response passes all of the
error tests, renderSearchResults() is called to display the search results.

There are use and display requirements for results returned by the Bing Web Search API.
Since a response may include various result types, it isn't enough to iterate through the
top-level WebPages collection. Instead, the sample app uses RankingResponse to order
the results to spec.

Each response has a RankingResponse object that may include up to three collections:

pole , mainline , and sidebar . pole , if present, is the most relevant search result and
must be prominently displayed. mainline contains most of the search results, and is

） Important

A successful HTTP request doesn't mean that the search itself succeeded. If an error
occurs in the search operation, the Bing Web Search API returns a non-200 HTTP
status code and includes error information in the JSON response. If the request was
rate-limited, the API returns an empty response.

ﾉ Expand table

Display search results

７ Note

If you only want a single result type, use the responseFilter query parameter, or
consider using one of the other Bing Search endpoints, such as Bing Image Search.

displayed immediately after pole . sidebar includes auxiliary search results. If possible,
these results should be displayed in the sidebar. If screen limits make a sidebar
impractical, these results should appear after the mainline results.

Each RankingResponse includes a RankingItem array that specifies how results must be
ordered. Our sample app uses the answerType and resultIndex parameters to identify
the result.

Let's take a look at the code:

JavaScript

The renderResultsItems() function iterates through the items in each RankingResponse
collection, maps each ranking result to a search result using the answerType and
resultIndex values, and calls the appropriate rendering function to generate the HTML.
If resultIndex isn't specified for an item, renderResultsItems() iterates through all
results of that type and calls the rendering function for each item. The resulting HTML is
inserted into the appropriate <div> element in index.html .

JavaScript

７ Note

There are additional ways to identify and rank results. For more information, see
Using ranking to display results.

// Render the search results from the JSON response.
function renderSearchResults(results) {

 // If spelling was corrected, update the search field.
 if (results.queryContext.alteredQuery)
 document.forms.bing.query.value = results.queryContext.alteredQuery;

 // Add Prev / Next links with result count.
 var pagingLinks = renderPagingLinks(results);
 showDiv("paging1", pagingLinks);
 showDiv("paging2", pagingLinks);

 // Render the results for each section.
 for (section in {pole: 0, mainline: 0, sidebar: 0}) {
 if (results.rankingResponse[section])
 showDiv(section, renderResultsItems(section, results));
 }
}

In our sample app, the searchItemRenderers object includes functions that generate
HTML for each type of search result.

JavaScript

// Render search results from the RankingResponse object per rank response
and
// use and display requirements.
function renderResultsItems(section, results) {

 var items = results.rankingResponse[section].items;
 var html = [];
 for (var i = 0; i < items.length; i++) {
 var item = items[i];
 // Collection name has lowercase first letter while answerType has
uppercase
 // e.g. `WebPages` RankingResult type is in the `webPages` top-level
collection.
 var type = item.answerType[0].toLowerCase() +
item.answerType.slice(1);
 if (type in results && type in searchItemRenderers) {
 var render = searchItemRenderers[type];
 // This ranking item refers to ONE result of the specified type.
 if ("resultIndex" in item) {
 html.push(render(results[type].value[item.resultIndex],
section));
 // This ranking item refers to ALL results of the specified
type.
 } else {
 var len = results[type].value.length;
 for (var j = 0; j < len; j++) {
 html.push(render(results[type].value[j], section, j,
len));
 }
 }
 }
 }
 return html.join("\n\n");
}

Review renderer functions

// Render functions for each result type.
searchItemRenderers = {
 webPages: function(item) { ... },
 news: function(item) { ... },
 images: function(item, section, index, count) { ... },
 videos: function(item, section, index, count) { ... },

Some of the rendering functions accept only the item parameter. Others accept
additional parameters, which can be used to render items differently based on context.
A renderer that doesn't use this information doesn't need to accept these parameters.

The context arguments are:

Parameter Description

section The results section (pole , mainline , or sidebar) in which the item appears.

index

count

Available when the RankingResponse item specifies that all results in a given
collection are to be displayed; undefined otherwise. The index of the item within its
collection and the total number of items in that collection. You can use this
information to number the results, to generate different HTML for the first or last
result, and so on.

In the sample app, both the images and relatedSearches renderers use the context
arguments to customize the generated HTML. Let's take a closer look at the images
renderer:

JavaScript

 relatedSearches: function(item, section, index, count) { ... }
}

） Important

The sample app has renderers for web pages, news, images, videos, and related
searches. Your application will need renderers for any type of results it may receive,
which could include computations, spelling suggestions, entities, time zones, and
definitions.

ﾉ Expand table

searchItemRenderers = {
 // Render image result with thumbnail.
 images: function(item, section, index, count) {
 var height = 60;
 var width = Math.round(height * item.thumbnail.width /
item.thumbnail.height);
 var html = [];
 if (section === "sidebar") {
 if (index) html.push("
");
 } else {
 if (!index) html.push("<p class='images'>");
 }

The image renderer:

Calculates the image thumbnail size (width varies, while height is fixed at 60 pixels).
Inserts the HTML that precedes the image result based on context.
Builds the HTML <a> tag that links to the page that contains the image.
Builds the HTML tag to display the image thumbnail.

The image renderer uses the section and index variables to display results differently
depending on where they appear. A line break (
 tag) is inserted between image
results in the sidebar, so that the sidebar displays a column of images. In other sections,
the first image result (index === 0) is preceded by a <p> tag.

The thumbnail size is used in both the tag and the h and w fields in the
thumbnail's URL. The title and alt attributes (a textual description of the image) are
constructed from the image's name and the hostname in the URL.

Here's an example of how images are displayed in the sample app:

Responses from the Bing search APIs may include a X-MSEdge-ClientID header that
should be sent back to the API with each successive request. If more than one of the

 html.push("");
 var title = escape(item.name) + "\n" +
getHost(item.hostPageDisplayUrl);
 html.push("<img src='"+ item.thumbnailUrl + "&h=" + height + "&w=" +
width +
 "' height=" + height + " width=" + width + " title='" + title +
"' alt='" + title + "'>");
 html.push("");
 return html.join("");
 },
 // Other renderers are omitted from this sample...
}

Persist the client ID

Bing Search APIs is used by your app, make sure the same client ID is sent with each
request across services.

Providing the X-MSEdge-ClientID header allows the Bing APIs to associate a user's
searches. First, it allows the Bing search engine to apply past context to searches to find
results that better satisfy the request. If a user has previously searched for terms related
to sailing, for example, a later search for "knots" might preferentially return information
about knots used in sailing. Second, Bing may randomly select users to experience new
features before they are made widely available. Providing the same client ID with each
request ensures that users who have been chosen to see a feature will always see it.
Without the client ID, the user might see a feature appear and disappear, seemingly at
random, in their search results.

Browser security policies, such as Cross-Origin Resource Sharing (CORS), may prevent
the sample app from accessing the X-MSEdge-ClientID header. This limitation occurs
when the search response has a different origin from the page that requested it. In a
production environment, you should address this policy by hosting a server-side script
that does the API call on the same domain as the Web page. Since the script has the
same origin as the Web page, the X-MSEdge-ClientID header is then available to
JavaScript.

For development purposes, you can make a request through a CORS proxy. The
response from this type of proxy has an Access-Control-Expose-Headers header that
identify headers and makes them available to JavaScript.

It's easy to install a CORS proxy to allow our sample app to access the client ID header.
Run this command:

Console

Next, change the Bing Web Search endpoint in script.js to:

７ Note

In a production Web application, you should perform the request server-side
anyway. Otherwise, your Bing Search API subscription key must be included in the
web page, where it's available to anyone who views source. You are billed for all
usage under your API subscription key, even requests made by unauthorized
parties, so it is important not to expose your key.

npm install -g cors-proxy-server

JavaScript

Start the CORS proxy with this command:

Console

Leave the command window open while you use the sample app; closing the window
stops the proxy. In the expandable HTTP Headers section below the search results, the
X-MSEdge-ClientID header should be visible. Verify that it's the same for each request.

 reference

http://localhost:9090/https://api.bing.microsoft.com/v7.0/search

cors-proxy-server

Next steps
Bing Web Search API v7

Build a console app search client in C#
Article • 02/16/2022

This tutorial shows how to build a simple .NET Core console app that allows users to
query the Bing Web Search API and display ranked results.

This tutorial shows how to:

Make a simple query to the Bing Web Search API.
Display query results in ranked order.

To follow along with the tutorial, you need:

An Azure subscription - Create one for free .
Once you have your Azure subscription, create a Bing Search resource Ｍ in the
Azure portal to get your key and endpoint. After it deploys, click Go to resource.
The Visual Studio IDE .

In Visual Studio, create a project with Ctrl+Shift+N .

In the New Project dialog, click Visual C# > Windows Classic Desktop > Console App
(.NET Framework).

Name the application MyConsoleSearchApp, and then click OK.

JSON.net allows you to work with the JSON responses returned by the API. Add its
NuGet package to your project:

In Solution Explorer, right-click on the project and select Manage NuGet
Packages.
On the Browse tab, search for Newtonsoft.Json . Select the latest version, and then
click Install.
Click the OK button on the Review Changes window.

Prerequisites

Create a new Console App project

Add the JSON.net NuGet package to the
project

https://azure.microsoft.com/free/cognitive-services/
https://portal.azure.com/#create/Microsoft.CognitiveServicesBingSearch-v7
https://www.visualstudio.com/downloads/

Close the Visual Studio tab titled NuGet: MyConsoleSearchApp.

This tutorial relies on the System.Web assembly. Add a reference to this assembly to your
project:

In Solution Explorer, right-click on References and select Add Reference
Select Assemblies > Framework, then scroll down and check System.Web.
Select OK.

The code in this tutorial requires three additional using statements. Add these
statements below the existing using statements at the top of Program.cs:

C#

In Solution Explorer, open Program.cs. Update the Main() method:

C#

This method:

Add a reference to System.Web

Add some necessary using statements

using System.Web;

using System.Net.Http;

Ask the user for a query

static void Main()

{

 // Get the user's query

 Console.Write("Enter Bing query: ");

 string userQuery = Console.ReadLine();

 Console.WriteLine();

 // Run the query and display the results

 RunQueryAndDisplayResults(userQuery);

 // Prevent the console window from closing immediately

 Console.WriteLine("\nHit ENTER to exit...");

 Console.ReadLine();

}

Asks the user for a query.
Calls RunQueryAndDisplayResults(userQuery) to execute the query and display the
results.
Waits for user input in order to prevent the console window from immediately
closing.

Next, add a method that queries the API and displays the results:

C#

Search for query results using the Bing Web
Search API

static void RunQueryAndDisplayResults(string userQuery)

{

 try

 {

 // Create a query

 var client = new HttpClient();

 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "
<YOUR_SUBSCRIPTION_KEY_GOES_HERE>");

 var queryString = HttpUtility.ParseQueryString(string.Empty);

 queryString["q"] = userQuery;

 var query = "https://api.bing.microsoft.com/v7.0/search?" +
queryString;

 // Run the query

 HttpResponseMessage httpResponseMessage =
client.GetAsync(query).Result;

 // Deserialize the response content

 var responseContentString =
httpResponseMessage.Content.ReadAsStringAsync().Result;

 Newtonsoft.Json.Linq.JObject responseObjects =
Newtonsoft.Json.Linq.JObject.Parse(responseContentString);

 // Handle success and error codes

 if (httpResponseMessage.IsSuccessStatusCode)

 {

 DisplayAllRankedResults(responseObjects);

 }

 else

 {

 Console.WriteLine($"HTTP error status code:
{httpResponseMessage.StatusCode.ToString()}");

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

This method:

Creates an HttpClient to query the Web Search API.
Sets the Ocp-Apim-Subscription-Key HTTP header, which Bing uses to authenticate
the request.
Executes the request and uses JSON.net to deserialize the results.
Calls DisplayAllRankedResults(responseObjects) to display all results in ranked
order.

Make sure to set the value of Ocp-Apim-Subscription-Key to your subscription key.

Before showing how to display the results in ranked order, take a look at a sample web
search response:

JSON

 }

}

Display ranked results

{

 "_type" : "SearchResponse",

 "webPages" : {

 "webSearchUrl" : "https:\/\/www.bing.com\/cr?IG=70BE289346...",

 "totalEstimatedMatches" : 982000,

 "value" : [{

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/v7\/#WebPages.0",

 "name" : "Contoso Sailing Club - Seattle",

 "url" : "https:\/\/www.bing.com\/cr?
IG=70BE289346ED4594874FE...",

 "displayUrl" : "https:\/\/contososailingsea...",

 "snippet" : "Come sail with Contoso in Seattle...",

 "dateLastCrawled" : "2017-04-07T02:25:00"

 },

 {

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/7\/#WebPages.6",

 "name" : "Contoso Sailing Lessons - Official Site",

 "url" : "http:\/\/www.bing.com\/cr?IG=70BE289346ED4594874FE...",

 "displayUrl" : "https:\/\/www.constososailinglessonsseat...",

 "snippet" : "Contoso sailing lessons in Seattle...",

 "dateLastCrawled" : "2017-04-09T14:30:00"

 },

 ...

The rankingResponse describes the appropriate display order for search results. It
includes one or more of the following, prioritized groups:

],

 "someResultsRemoved" : true

 },

 "relatedSearches" : {

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/7\/#RelatedSearches",
 "value" : [{

 "text" : "sailing lessons",

 "displayText" : "sailing lessons",

 "webSearchUrl" : "https:\/\/www.bing.com\/cr?IG=70BE289346E..."

 }

 ...

]

 },

 "rankingResponse" : {

 "mainline" : {

 "items" : [{

 "answerType" : "WebPages",

 "resultIndex" : 0,

 "value" : {

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/v7\/#WebPages.0"

 }

 },

 {

 "answerType" : "WebPages",

 "resultIndex" : 1,

 "value" : {

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/v7\/#WebPages.1"

 }

 }

 ...

]

 },

 "sidebar" : {

 "items" : [{

 "answerType" : "RelatedSearches",

 "value" : {

 "id" :
"https:\/\/api.cognitive.microsoft.com\/api\/v7\/#RelatedSearches"

 }

 }]

 }

 }

}

pole : The search results to get the most visible treatment (for example, displayed
above the mainline and sidebar).
mainline : The search results to display in the mainline.
sidebar : The search results to display in the sidebar. If there is no sidebar, display
the results below the mainline.

The ranking response JSON may include one or more of the groups.

In Program.cs, add the following method to display results in properly ranked order:

C#

static void DisplayAllRankedResults(Newtonsoft.Json.Linq.JObject
responseObjects)

{

 string[] rankingGroups = new string[] { "pole", "mainline", "sidebar" };

 // Loop through the ranking groups in priority order

 foreach (string rankingName in rankingGroups)

 {

 Newtonsoft.Json.Linq.JToken rankingResponseItems =
responseObjects.SelectToken($"rankingResponse.{rankingName}.items");

 if (rankingResponseItems != null)

 {

 foreach (Newtonsoft.Json.Linq.JObject rankingResponseItem in
rankingResponseItems)

 {

 Newtonsoft.Json.Linq.JToken resultIndex;

 rankingResponseItem.TryGetValue("resultIndex", out
resultIndex);

 var answerType = rankingResponseItem.Value<string>
("answerType");

 switch (answerType)

 {

 case "WebPages":

 DisplaySpecificResults(resultIndex,
responseObjects.SelectToken("webPages.value"), "WebPage", "name", "url",
"displayUrl", "snippet");

 break;

 case "News":

 DisplaySpecificResults(resultIndex,
responseObjects.SelectToken("news.value"), "News", "name", "url",
"description");

 break;

 case "Images":

 DisplaySpecificResults(resultIndex,
responseObjects.SelectToken("images.value"), "Image", "thumbnailUrl");

 break;

 case "Videos":

 DisplaySpecificResults(resultIndex,
responseObjects.SelectToken("videos.value"), "Video", "embedHtml");

 break;

This method:

Loops over the rankingResponse groups that the response contains.
Displays the items in each group by calling DisplaySpecificResults(...) .

In Program.cs, add the following two methods:

C#

These methods work together to output the search results to the console.

 case "RelatedSearches":

 DisplaySpecificResults(resultIndex,
responseObjects.SelectToken("relatedSearches.value"), "RelatedSearch",
"displayText", "webSearchUrl");

 break;

 }

 }

 }

 }

}

static void DisplaySpecificResults(Newtonsoft.Json.Linq.JToken resultIndex,
Newtonsoft.Json.Linq.JToken items, string title, params string[] fields)

{

 if (resultIndex == null)

 {

 foreach (Newtonsoft.Json.Linq.JToken item in items)

 {

 DisplayItem(item, title, fields);

 }

 }

 else

 {

 DisplayItem(items.ElementAt((int)resultIndex), title, fields);

 }

}

static void DisplayItem(Newtonsoft.Json.Linq.JToken item, string title,
string[] fields)

{

 Console.WriteLine($"{title}: ");

 foreach(string field in fields)

 {

 Console.WriteLine($"- {field}: {item[field]}");

 }

 Console.WriteLine();

}

Run the application. The output should look similar to the following:

Read more about using ranking to display results.

Run the application

Enter Bing query: sailing lessons seattle

WebPage:

- name: Contoso Sailing Club - Seattle

- url: https://www.bing.com/cr?IG=70BE289346ED4594874FE...

- displayUrl: https://contososailingsea....

- snippet: Come sail with Contoso in Seattle...

WebPage:

- name: Contoso Sailing Lessons Seattle - Official Site

- url: http://www.bing.com/cr?IG=70BE289346ED4594874FE...

- displayUrl: https://www.constososailinglessonsseat...

- snippet: Contoso sailing lessons in Seattle...

...

Next steps

Bing Web Search samples
Article • 10/28/2020

Use the Bing Web Search samples to learn how to add search capabilities to your
application or service using a number of programming languages. The samples,
prerequisites, and build instructions are provided on GitHub.

Here's a list of REST samples by language. The list is subject to change. For the current
list, see GitHub.

Language Sample

C# Bing Web Search

Java Bing Web Search

JavaScript Bing Web Search

PHP Bing Web Search

Python Bing Web Search

Ruby Bing Web Search

Go Bing Web Search

Here's a list of SDK samples by language. The list is subject to change. For the current
list, see GitHub.

Language Sample

C# Bing Web Search

Java Bing Web Search

Node.js Bing Web Search

Python Bing Web Search

Samples using native HTTP GET requests

Samples using the Bing client library

https://github.com/microsoft/bing-search-dotnet-samples/tree/main/rest
https://github.com/microsoft/bing-search-dotnet-samples/blob/main/rest/BingWebSearchV7.cs
https://github.com/microsoft/bing-search-java-samples/tree/main/rest
https://github.com/microsoft/bing-search-java-samples/blob/main/rest/BingWebSearchV7.java
https://github.com/microsoft/bing-search-nodejs-samples/tree/main/rest
https://github.com/microsoft/bing-search-nodejs-samples/blob/main/rest/BingWebSearchV7.js
https://github.com/microsoft/bing-search-php-samples/tree/main/rest
https://github.com/microsoft/bing-search-php-samples/blob/main/rest/BingWebSearchV7.php
https://github.com/microsoft/bing-search-python-samples/tree/main/rest
https://github.com/microsoft/bing-search-python-samples/blob/main/rest/BingWebSearchV7.py
https://github.com/microsoft/bing-search-ruby-samples/tree/main/rest
https://github.com/microsoft/bing-search-ruby-samples/blob/main/rest/BingWebSearchV7.rb
https://github.com/microsoft/bing-search-go-samples/tree/main/rest
https://github.com/microsoft/bing-search-go-samples/blob/main/rest/BingWebSearchV7.go
https://github.com/microsoft/bing-search-dotnet-samples/tree/main/rest
https://github.com/microsoft/bing-search-dotnet-samples/blob/main/rest/BingWebSearchV7.cs
https://github.com/Azure-Samples/cognitive-services-java-sdk-samples
https://github.com/microsoft/bing-search-java-samples/blob/main/rest/BingWebSearchV7.java
https://github.com/Azure-Samples/cognitive-services-node-sdk-samples
https://github.com/microsoft/bing-search-nodejs-samples/blob/main/rest/BingWebSearchV7.js
https://github.com/Azure-Samples/cognitive-services-python-sdk-samples
https://github.com/microsoft/bing-search-python-samples/blob/main/rest/BingWebSearchV7.py

For a more in depth web app example, see the Web Search tutorial.

Next steps

Search the web
Article • 02/16/2022

Use Bing Web Search API to search billions of web documents for content that's relevant
to the user's search string.

It's easy. If you have your subscription key, just send an HTTP GET request to the
following endpoint:

Here's a cURL example that shows you how to call the endpoint using your subscription
key. Change the q query parameter to search for whatever you'd like.

curl

Although that's all you need to do to search the web, Bing suggests you include a
couple of other headers to provide a better search experience for your user. Those
headers include:

User-Agent — Lets Bing know whether needs a mobile or desktop experience.
X-MSEdge-ClientID — Provides continuity of experience.
X-MSEdge-ClientIP — Provides the user's location for location aware queries.
X-Search-Location — Provides the user's location for location aware queries.

The more information you can provide Bing, the better the search experience will be for
your users. To learn more about these headers, see Request headers.

Here's a cURL example that includes these headers.

curl

https://api.bing.microsoft.com/v7.0/search

curl -H "Ocp-Apim-Subscription-Key: <yourkeygoeshere>"
https://api.bing.microsoft.com/v7.0/search?q=microsoft+devices

Request and response headers

curl -H "Ocp-Apim-Subscription-Key: <yourkeygoeshere>" -H "X-MSEdge-
ClientID: 00B4230B74496E7A13CC2C1475056FF4" -H "X-MSEdge-ClientIP:
11.22.33.44" -H "X-Search-Location: lat:55;long:-111;re:22" -A "Mozilla/5.0
(X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)

Bing returns a few headers you should capture.

BingAPIs-TraceId — The ID that identifies the request in the log file.
X-MSEdge-ClientID — The ID that you need to pass in subsequent request to
provide continuity of experience.
BingAPIs-Market — The market used by Bing for the request.

To learn more about these headers, see Response headers.

Here's a cURL call that returns the response headers. If you want to remove the
response data so you can see only the headers, include the -o nul parameter.

curl

The only query parameter that you must pass is the q parameter, which you set to the
user's query string. You must URL-encode the user's query string and all query
parameter values that you pass.

The API supports a number of query parameters that you can pass in your request.
Here's a list of the ones you're most likely to pass.

count and offset — Used to page webpage results. Read more
mkt — Used to specify the market where the results come from, which is typically
the market where the user is making the request from.
safeSearch — Used to specify the user's safe search preference.
textDecorations and textFormat — Used to turn on hit highlighting. Read more

To learn more about these parameters and other parameters that you may specify, see
Query parameters.

Here's a cURL example that includes these query parameters.

curl

Chrome/29.0.1547.65 Safari/537.36"
https://api.bing.microsoft.com/v7.0/search?q=microsoft+devices

curl -D - -H "Ocp-Apim-Subscription-Key: <yourkeygoeshere>"
https://api.bing.microsoft.com/v7.0/search?q=microsoft+devices

Query parameters

curl -H "Ocp-Apim-Subscription-Key: <yourkeygoeshere>"
https://api.bing.microsoft.com/v7.0/search?q=microsoft+devices&mkt=en-

For information about query parameters that you can use to filter the search results, see
Filtering search results.

Learn about the response that Bing returns for the user's query.
Learn how to get the next page of search results.
Learn what happens if you don't stay within your queries per second (QPS) limit.
Hint: your requests get throttled.
Learn about the quickstarts and samples that are available to help you get up and
running fast.

us&safeSearch=moderate&textdecorations=true&textformat=raw&count=10&offset=0

Next steps

Filter the answers that Bing returns
Article • 02/16/2022

When you query the Web, Bing returns all relevant content that it finds. This could
include webpages, images, news, videos, and more. But what if you're only interested in
webpages and news; how can you tell Bing you're not interested in any other answers?
You use the responseFilter query parameter.

You can specify the answers to include in the response or those that you want to
exclude from the response, or not both. To include only the webpage and news answers,
specify responseFilter as:

Remember that you need to URL-encode all query parameters, so the parameter
actually looks like:

Bing includes the answers you request only if it finds relevant content that ranks high
enough for the page of results you requested. For example, if you filter the response for
images, videos, and news but Bing doesn't find relevant videos and news results that
rank high enough for the first page, the response includes only images. But if you page
through more results, they may include videos and news content.

To exclude specific answers from the response, prefix a minus sign (-) to the answer's
name. For example, "-images."

In theory, you could use responseFilter to filter for a single answer like only images or
news but you're strongly discouraged from doing so. Instead, you should use the
answer-specific endpoint to get richer results and better performance. For example, to
receive only images, send the request using Image Search API. The Image Search API
offers filters that are not available to the Web Search API.

&responseFilter=webpages,news

&responseFilter=webpages%2Cnews

Getting results from a specific site

https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/overview

To get search results from a specific domain, use Bing's site: operator in the query
string. The response may contain results from other sites depending on the number of
relevant results found on the specified site.

It’s possible that Bing will return content that’s older than 30 days. If you want to ensure
the freshness of the content that Bing returns, use the freshness query parameter.
Freshness refers to the date that Bing originally discovered the webpage, not when the
publisher published the webpage. The Webpage object's datePublished field tells you
when Bing originally discovered the page.

You may set the parameter to one of the following time periods:

Day — Return webpages that Bing discovered within the last 24 hours.
Week — Return webpages that Bing discovered within the last 7 days.
Month — Return webpages that Bing discovered within the last 30 days.

The following example filters the webpage results to those that Bing discovered in the
last seven days:

You may also set this parameter to a custom date range in the form, YYYY-MM-DD..YYYY-
MM-DD . For example:

q=sailing+dinghies+site%3Acontososailing.com

７ Note

Depending on the query, if you use the site: query operator, there is the chance
that the response may contain adult content regardless of the safeSearch setting.
You should use site: only if you are aware of the content on the site and your
scenario supports the possibility of adult content.

Specifying the content's freshness

freshness=week

https://help.bing.microsoft.com/#apex/18/en-US/10001/-1

To limit the results to a single date, set the freshness parameter to the specific date in
the form, YYYY-MM-DD .

The results may include webpages that fall outside the specified period if the number of
webpages that Bing finds that matches your criteria is less than the number of
webpages you requested (or the default number that Bing returns).

A response may include any number of answer types. To limit the number of answers in
the response to the top two ranked answers, set the answerCount query parameter to 2.
Bing chooses the answers based on ranking. For example, if Bing ranks the answers as
webpages, images, videos, and relatedSearches, the response includes only webpages
and images.

If the request includes the responseFilter and answerCount query parameters, both
apply. For example, if you set responseFilter to webpages and news and answerCount to
2, the response contains only webpages since news is not ranked.

To include answers that Bing would otherwise exclude because of ranking, use the
promote query parameter. Set promote to a comma-delimited list of answer names that
you want the response to include regardless of their ranking. For example, if the top
ranked answers that Bing returns for a query are webpages, images, videos, and
relatedSearches, the response would include those answers. But if you set answerCount
to 2, Bing returns the top two ranked answers, which are webpages and images. If you
want to ensure that Bing includes images and videos in the response, set promote to
images and videos.

Bing returns the top two answers, webpages and images, and promotes videos into the
response.

freshness=2019-02-01..2019-05-30

Returning the top n answers

Promoting answers that are not ranked

answerCount=2&promote=images%2Cvideos

If you set promote to news, the response doesn't include the news answer because it is
not a ranked answer — you can promote only ranked answers.

The answers that you want to promote do not count against the answerCount limit. For
example, if the ranked answers are news, images, and videos, and you set answerCount
to 1 and promote to news, the response contains news and images. Or, if the ranked
answers are videos, images, and news, the response contains videos and news.

You may use promote only if you specify the answerCount query parameter.

By default, Web Search API returns 10 webpages. If you want to receive a different
number of webpages, use the count query parameter. The following example shows
how to get back only 5 webpages.

The count query parameter affects only the number of webpages that Bing returns; it
does not affect the number of results that Bing includes for the other answers (for
example, images or videos).

You can also use the count and offset query parameters together to page through all the
webpages that match the user’s intent. For details about paging results, see Paging
results.

The safeSearch query parameter lets you filter out webpages, images, and videos with
adult content. You may set this parameter to one of the following values:

Off — Returns content with adult text and images but not adult videos.
Moderate — Returns content with adult text but not adult images or videos.
Strict — Does not return content with adult text, images, or videos.

The default is Moderate.

Learn about the response that Bing returns for the user's query.

Limiting the number of webpages

count=5

Filtering adult content

Next steps

Learn how to highlight the user's search terms in the results that Bing returns.
Learn about the quickstarts and samples that are available to help you get up and
running fast.

Handling the web search response
Article • 04/05/2022

When you send a request to Web Search API, it returns a SearchResponse object in the
response body. The object may include one or more of the following answer types:

JSON

Basically, Bing returns any answer it finds that's relevant to the user's query, which is
typically a subset of the possible answers. But Bing always returns the following answers
in each response:

JSON

But if an error occurs, the response body contains an ErrorResponse object. Bing returns
an error response for all 400 level HTTP status codes. Read more

JSON

{

 "_type": "SearchResponse",

 "queryContext": {...},

 "webPages": {...},

 "images": {...},

 "relatedSearches": {...},

 "videos": {...},

 "news": {...},

 "spellSuggestion": {...},

 "computation": {...},

 "timeZone": {...},

 "rankingResponse": {...},

 "entities": {...},

 "places": {...},

 "translations": {...},

}

{

 "_type": "SearchResponse",

 "queryContext": {...},

 "rankingResponse": {...}

}

{

 "_type": "ErrorResponse",

 "errors": [

 {

 "code": "InvalidAuthorization",

The rest of this topic provides details about each of the answer types in the
SearchResponse object.

The webPages answer contains a list of links to webpages that Bing determined were
relevant to the query. At a minimum, each webpage in the list includes the page's name,
URL, display URL, a short description of the content, the date Bing found the content,
and the ranking ID.

JSON

Use name and url to create a hyperlink that takes the user to the webpage.

 "subCode": "AuthorizationMissing",

 "message": "Authorization is required.",

 "moreDetails": "Subscription key is not recognized."

 }

]

}

７ Note

Because URL formats and parameters are subject to change without notice, use all
URLs in Bing search results as-is. You should not take dependencies on the URL
format or parameters except where noted.

Webpages answer

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?q=mt+rainier",

 "totalEstimatedMatches": 594000,

 "value": [

 {

 "id": "https://api.bing.microsoft.com/api/v7/#WebPages.0",

 "name": "Dinghy sailing",

 "url": "https://www.bing.com/cr?IG=3A43CA5...",

 "displayUrl": "https://en.contoso.com/wiki/Dinghy_sailing",

 "snippet": "Dinghy sailing is the activity of sailing small
boats...",

 "dateLastCrawled": "2017-04-05T16:25:00"

 },

 . . .

]

 }

The webpage may include a few other fields that you should account for like deep links,
a malware notification, and contractual rules.

Deep links are related webpages that Bing found on the webpage’s website. The
Webpage object in this context includes only the name and URL fields and may include
the snippet field.

JSON

Deep links can also have nested deep links.

JSON

Deep links

 "deepLinks": [

 {

 "name": "Drug Product Database Online Query",

 "url": "https://health-products.canada.ca/dpd-bdpp/index-
eng.jsp"

 },

 {

 "name": "Access The Extracts",

 "url": "https://www.canada.ca/en/health-canada/services/drugs-
health-products/drug-products/drug-product-database/extracts.html"

 },

 {

 "name": "Product Monograph Brand Safety Updates",

 "url": "https://www.canada.ca/en/health-canada/services/drugs-
health-products/drug-products/drug-product-database/label-safety-assessment-
update/product-monograph-brand-safety-updates.html"

 }

],

 "deepLinks": [

 {

 "name": "Webcams",

 "url":
"https://www.nps.gov/mora/learn/photosmultimedia/webcams.htm",

 "snippet": "See the view from the clouds! Camp Muir perches on
the side of Mount Rainier at an elevation of over 10,000 feet (3,000
meters). Updates every 5 minutes. NOTE: Down for repairs for the 2020
season. Thanks for your patience. View Webcam",

 "deepLinks": [

 {

 "name": "Road Status",

 "url": "https://www.nps.gov/mora/planyourvisit/road-
status.htm"

 },

 {

If Bing determines that a webpage may cause a potential issue for the user if they click
the link, Bing provides a notice that you should display next to the webpage's link.
Potential issues might be that the page contains malware, is a phishing site, or is not
recommended for purchasing pharmaceuticals.

The following image shows how Bing might display the notice for the query, canada
drugs. Bing displays the warning when the user hovers over the webpage in the search
results page, tabs to it, or touches the webpage on a touch device.

Bing does not let the user click the link or deep links in the search results page.
However, the warning does include a link that the user can click to navigate to the
webpage if they choose to.

The following example shows what the notice looks like in the JSON response.

JSON

 "name": "Maps",

 "url": "https://www.nps.gov/mora/planyourvisit/maps.htm"

 },

 {

 "name": "Operating Hours & Seasons",

 "url": "https://www.nps.gov/mora/planyourvisit/hours.htm"

 },

 {

 "name": "Weather",

 "url": "https://www.nps.gov/mora/planyourvisit/weather.htm"

 }

]

 },

Malware notice

 "malware": {

 "malwareWarningType": "NABP",

If you follow Bing's approach of disabling the webpage's link in the search results, then
you'd use the webpage's link in the notice's "visit anyway" link.

If a webpage requires attribution, the Webpage object includes the contractualRules
field. For webpages, you typically have to display the license under which the
information is provided. The rule could target the webpage as a whole or a specific field
of the Webpage object. Here's an example that targets the webpage's snippet text
field.

JSON

To learn more about attribution, see Data attribution.

The images answer contains a list of images that Bing thought were relevant to the
query. Each image in the list includes the image's URL, its size, its dimensions, and its
encoding format. The Image object also includes a thumbnail URL and the thumbnail's
dimensions.

 "warningExplanationUrl": "https://verifybeforeyoubuy.org/",

 "warningLetterUrl": "https://www.safe.pharmacy/not-recommended-
sites/",

 "beSafeRxUrl":
"https://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafe
ly/BuyingMedicinesOvertheInternet/BeSafeRxKnowYourOnlinePharmacy/default.htm
",

 },

Contractual rules

 "contractualRules": [

 {

 "_type": "ContractualRules/LicenseAttribution",

 "targetPropertyName": "snippet",

 "targetPropertyIndex": 7,

 "mustBeCloseToContent": true,

 "license": {

 "name": "CC-BY-SA",

 "url": "http://creativecommons.org/licenses/by-sa/3.0/"

 },

 "licenseNotice": "Text under CC-BY-SA license"

 }

],

Images answer

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/response-objects#imageanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/response-objects#image

JSON

The contentUrl is the image's URL, the hostPageUrl is the URL of the webpage that
includes the image, and thumbnailUrl is the URL to a thumbnail version of the image in
contentUrl .

Depending on the user's device, you'd typically display a subset of the thumbnails, with
an option for the user to see the remaining images.

You can also expand the thumbnail as the user hovers the cursor over it. Be sure to
attribute the image if you expand it. For example, by extracting the host from
hostPageDisplayUrl and displaying it below the image. For information about resizing
the thumbnail, see Resizing and cropping thumbnails.

If the user clicks the thumbnail, use webSearchUrl to take the user to Bing's search
results page for images, which contains a collage of the images.

 "images": {

 "id": "https://api.bing.microsoft.com/api/v7/#Images",

 "readLink": "https://api.bing.microsoft.com/api/v7/images/search?
q=dinghy+sailing&qpvt=dinghy+sailing",

 "webSearchUrl": "https://www.bing.com/images/search?
q=dinghy+sailing&qpvt=lady+gaga",
 "isFamilyFriendly": true,

 "value": [

 {

 "name": "Rich Passage Sailing Dinghy",

 "webSearchUrl": "https://www.bing.com/cr?IG=3A43CA5CA64...",

 "thumbnailUrl": "https://tse1.mm.bing.net/th?id=OIP....",

 "datePublished": "2011-10-29T11:26:00",

 "contentUrl": "http://upload.contoso.com/sailing/...",

 "hostPageUrl": "http://www.bing.com/cr?IG=3A43CA5CA6464....",

 "contentSize": "79239 B",

 "encodingFormat": "jpeg",

 "hostPageDisplayUrl": "http://en.contoso.com/wiki/File...",

 "width": 526,

 "height": 688,

 "thumbnail": {

 "width": 229,

 "height": 300

 },

 "insightsSourcesSummary": {

 "shoppingSourcesCount": 0,

 "recipeSourcesCount": 0

 }

 },

 . . .

]

 }

For details about the image answer and images, see Image Search API.

The videosAnswer answer contains a list of videos that Bing thought were relevant to
the query. Each video in the list includes the video's URL, its duration, its dimensions,
and its encoding format. The Video object also includes thumbnail URL of the video and
the thumbnail's dimensions.

JSON

Videos answer

 "videos": {

 "id": "https://api.bing.microsoft.com/api/v7/#Videos",

 "readLink": "https://api.bing.microsoft.com/api/v7/videos/search?
q=dinghy+sailing",

 "webSearchUrl": "https://www.bing.com/videos/search?q=dinghy+sailing",

 "isFamilyFriendly": true,

 "value": [

 {

 "name": "Sailing dinghy",

 "description": "Northwind Traders is a 12 foot gunter rigged...",

 "webSearchUrl": "https://www.bing.com/cr?IG=1CAE739681D84...",

 "thumbnailUrl": "https://tse2.mm.bing.net/th?id=OVP.wsKiL...",

 "datePublished": "2013-11-06T01:56:28",

 "publisher": [{

 "name": "Fabrikam"

 }],

 "contentUrl": "https://www.fabrikam.com/watch?v=MrVBWZpJjX",

 "hostPageUrl": "https://www.bing.com/cr?IG=1CAE739681D8400DB...",

 "encodingFormat": "mp4",

 "hostPageDisplayUrl": "https://www.fabrikam.com/watch?v=MrBWZpJjXo",

 "width": 1280,

 "height": 720,

 "duration": "PT3M47S",

 "motionThumbnailUrl": "https://tse2.mm.bing.net/th?id=OM.oa...",

 "embedHtml": "<iframe width=\"1280\" height=\"720\"
src=\"http://www....></iframe>",

 "allowHttpsEmbed": true,

 "viewCount": 19089,

 "thumbnail": {

 "width": 300,

 "height": 168

 },

 "allowMobileEmbed": true,

 "isSuperfresh": false

 },

 . . .

]

 }

https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/reference/response-objects#videosanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/reference/response-objects#video

Depending on the user's device, you'd typically display a subset of the videos and
provide the user an option to view the remaining videos. You'd display a thumbnail of
the video with the video's length, description (name), and attribution (publisher).

As the user hovers over the thumbnail you can use motionThumbnailUrl to play a
thumbnail version of the video. Be sure to attribute the motion thumbnail when you
display it.

If the user clicks the thumbnail, the following are the options for viewing the video:

Use hostPageUrl to view the video on the host website (for example, YouTube).
Use webSearchUrl to view the video in the Bing video browser.
Use embedHtml to embed the video in your own experience.

For details about the video answer and videos, see Video Search API.

The news answer contains a list of news articles that Bing thought were relevant to the
query. Each news article in the list includes the article's name, description, and URL to
the article on the host's website. If the article contains an image, the object includes a
thumbnail of the image.

JSON

News answer

 "news": {

 "id": "https://api.bing.microsoft.com/api/v7/#News",

 "readLink": "https://api.bing.microsoft.com/api/v7/news/search?
q=dinghy+sailing",

 "value": [

 {

 "contractualRules": [

 {

 "_type": "ContractualRules/TextAttribution",

 "text": "contoso.com"

 }

],

 "name": "WC Sailing Qualifies for America Trophy with...",

 "url": "http://www.bing.com/cr?IG=3445EEF15DAF4FFFBF7...",
 "image": {

 "contentUrl": "http://www.contoso.com/sports/sail...",

 "thumbnail": {

 "contentUrl": "https://www.bing.com/th?id=ON.1...",

 "width": 400,

 "height": 272

 }

 },

 "description": "The WC sailing team qualified for a...",

https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/overview
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/reference/response-objects#newsanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/reference/response-objects#newsarticle

If Bing finds a video that's related to the article, it includes the video's URL in the Video
object.

JSON

Depending on the user's device, you'd display a subset of the news articles with an
option for the user to view the remaining articles. Use name and url to create a
hyperlink that takes the user to the news article on the host's site. If the article includes
an image, make the image clickable using url .

Be sure to use contractualRules to attribute the article. For information about
attribution, see Data attribution.

For details about the news answer and news articles, see News Search API.

 "provider": [

 {

 "_type": "Organization",

 "name": "contoso.com",

 "image": {

 "thumbnail": {

 "contentUrl": "https://www.bing.com/th?
id=AR_85d7ddac409e7624f6b911ce58ac&pid=news"

 }

 }

 }

],

 "datePublished": "2017-04-16T21:56:00",

 "category": "Sports"

 },

 ...

]

 }

 "video": {

 "name": "America Trophy qualifiers",

 "motionThumbnailUrl": "https://wus-streaming-video-msn-
com.fabrikam.net/34572c32-1a0f-4576-...mp4",

 "thumbnail": {

 "width": 640,

 "height": 360

 }

 },

Related searches answer

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/overview

The relatedSearches answer contains a list of the most popular related queries made by
other users. Each query in the list includes a query string (text), a query string with hit
highlighting characters (displayText), and a URL (webSearchUrl) to Bing's search results
page for that query.

JSON

Use the displayText query string and the webSearchUrl URL to create a hyperlink that
takes the user to the Bing search results page for the related query. You could also use
the text query string in your own Web Search API query and display the results
yourself.

For information about how to handle the highlighting markers in displayText , see Hit
Highlighting.

If the user enters a mathematical expression or a unit conversion query, the response
may contain a Computation answer. The computation answer contains the normalized
expression and its result.

A unit conversion query is a query that converts one unit to another. For example, How
many feet in 10 meters? or How many tablespoons in a 1/4 cup?

The following shows the computation answer for How many feet in 10 meters?

JSON

{

 "text": "dinghy racing teams",

 "displayText": "dinghy racing teams",

 "webSearchUrl": "https://www.bing.com/cr?IG=96C4CF214A0..."

}, ...

Computation answer

Unit conversions

 "computation": {

 "id": "https://www.bing.com/api/v7/#Computation",

 "expression": "10 meters",

 "value": "32.808399 feet"

 }

The following examples show different mathematical expressions and their
corresponding computation answers.

Expression: (5+3)(10/2)+8

JSON

Expression: sqrt(4^2+8^2)

JSON

Expression: 30 6/8 - 18 8/16

JSON

Expression: 8^2+11^2-2811*cos(37)

JSON

A mathematical expression may contain the following symbols:

Mathematical expression

"computation": {

 "id": "https://www.bing.com/api/v7/#Computation",

 "expression": "((5+3)*(10/2))+8",

 "value": "48"

}

"computation": {

 "id": "https://www.bing.com/api/v7/#Computation",

 "expression": "sqrt((4^2)+(8^2))",

 "value": "8.94427191"

}

"computation": {

 "id": "https://www.bing.com/api/v7/#WolframAlpha",

 "expression": "30 6/8-18 8/16",

 "value": "12.25"

}

"computation": {

 "id": "https://www.bing.com/api/v7/#Computation",

 "expression": "(8^2)+(11^2)-(2*8*11*cos(37))",

 "value": "44.4401502"

}

Symbol DescriptionSymbol Description

+ Addition

- Subtraction

/ Division

* Multiplication

^ Power

! Factorial

. Decimal

() Precedence grouping

[] Function

A mathematical expression may contain the following constants:

Symbol Description

Pi 3.14159...

Degree Degree

i Imaginary number

e e, 2.71828...

GoldenRatio Golden ratio, 1.61803...

A mathematical expression may contain the following functions:

Symbol Description

Sort Square root

Sin[x], Cos[x], Tan[x]

Csc[x], Sec[x], Cot[x]

Trigonometric functions (with arguments in radians)

ArcSin[x], ArcCos[x], ArcTan[x]

ArcCsc[x], ArcSec[x], ArcCot[x]

Inverse trigonometric functions (giving results in radians)

Exp[x], E^x Exponential function

Log[x] Natural logarithm

Symbol Description

Sinh[x], Cosh[x], Tanh[x]

Csch[x], Sech[x], Coth[x]

Hyperbolic functions

ArcSinh[x], ArcCosh[x], ArcTanh[x]

ArcCsch[x], ArcSech[x], ArcCoth[x]

Inverse hyperbolic functions

Mathematical expressions that contain variables (for example, 4x+6=18, where x is the
variable) are not supported.

If the user enters a time or date query, the response may contain a TimeZone answer.
This answer supports implicit or explicit queries. An implicit query, such as What time is
it?, returns the local time based on the user's location. An explicit query, such as What
time is it in Seattle?, returns the local time for Seattle, WA.

Implicit queries, such as What time zone am I in?, require the user's location to provide
accurate results. Although optional, you should always provide the user’s location using
the X-Search-Location and X-MSEdge-ClientIP headers. If you don’t provide the user’s
location and Bing thinks the query would benefit from the user's location, it sets the
QueryContext object’s askUserForLocation field to true.

JSON

The timeZone answer provides the name of the location, the current UTC date and time
at the specified location, and the UTC offset. If the boundary of the location is within
multiple time zones, the answer contains the current UTC date and time of all time
zones within the boundary. For example, because Florida State falls within two time
zones, the answer contains the local date and time of both time zones.

If the query requests the time of a state or country/region, Bing determines the primary
city within the location's geographical boundary and returns it in the primaryCityTime
field. If the boundary contains multiple time zones, the remaining time zones are
returned in the otherCityTimes field.

The following examples show queries that return the timeZone answer.

TimeZone answer

 "queryContext": {

 "originalQuery": "what’s the time",

 "askUserForLocation": true

 },

Query: What time is it?

JSON

Query: What time is it in the Pacific time zone?

JSON

Query: Time in Florida?

JSON

Query: What time is it in the U.S.

JSON

 "timeZone": {

 "id": "https://www.bing.com/api/v7/#TimeZone",

 "primaryCityTime": {

 "location": "Redmond, Washington, United States",

 "time": "2015-10-27T08:38:12.1189231Z",

 "utcOffset": "UTC-7"

 }

 }

 "timeZone": {

 "id": "https://www.bing.com/api/v7/#TimeZone",

 "primaryCityTime": {

 "location": "Pacific Time Zone",

 "time": "2015-10-23T12:33:19.0728146Z",

 "utcOffset": "UTC-7"

 }

 }

 "timeZone": {

 "id": "https://www.bing.com/api/v7/#TimeZone",

 "primaryCityTime": {

 "location": "Tallahassee, Florida, United States",

 "time": "2015-10-23T13:04:56.6774389Z",

 "utcOffset": "UTC-4"

 },

 "otherCityTimes": [

 {

 "location": "Pensacola, Florida, United States",

 "time": "2015-10-23T12:04:56.6664294Z",

 "utcOffset": "UTC-5"

 }

]

 }

This answer also supports determining the difference between time zones or calculating
dates such as 90 days from today.

Query: What's the date

JSON

 "timeZone": {

 "id": "https://www.bing.com/api/v7/#TimeZone",

 "primaryCityTime": {

 "location": "Washington, D.C., United States",

 "time": "2015-10-23T15:27:59.8892745Z",

 "utcOffset": "UTC-4"

 },

 "otherCityTimes": [

 {

 "location": "Honolulu",

 "time": "2015-10-23T09:27:59.8892745Z",

 "utcOffset": "UTC-10"

 },

 {

 "location": "Anchorage",

 "time": "2015-10-23T11:27:59.8892745Z",

 "utcOffset": "UTC-8"

 },

 {

 "location": "Phoenix",

 "time": "2015-10-23T12:27:59.8892745Z",

 "utcOffset": "UTC-7"

 },

 {

 "location": "Los Angeles",

 "time": "2015-10-23T12:27:59.8942788Z",

 "utcOffset": "UTC-7"

 },

 {

 "location": "Denver",

 "time": "2015-10-23T13:27:59.8812681Z",

 "utcOffset": "UTC-6"

 },

 {

 "location": "Chicago",

 "time": "2015-10-23T14:27:59.8892745Z",

 "utcOffset": "UTC-5"

 }

]

 }

 "timeZone": {

 "id": "https://<host>/api/v7/#TimeZone",

 "primaryResponse": "Wednesday, December 11, 2019",

Query: PST to EST

JSON

Query: 90 days from today

JSON

Query: How may weeks in 2020

JSON

Query: What time zone am I in

 "description": "Date in Redmond, WA"

 },

 "timeZone": {

 "id": "https://<host>/api/v7/#TimeZone",

 "description": "Pacific Standard Time is behind Eastern Standard Time
by",

 "timeZoneDifference": {

 "location1": {

 "location": "Pacific Standard Time",

 "time": "2019-12-11T11:54:14.5567693Z",

 "utcOffset": "UTC-8",

 "timeZoneName": "PST"

 },

 "location2": {

 "location": "Eastern Standard Time",

 "time": "2019-12-11T14:54:14.5567693Z",

 "utcOffset": "UTC-5",

 "timeZoneName": "EST"

 },

 "text": "3 hours"
 }

 },

 "timeZone": {

 "id": "https://<host>/api/v7/#TimeZone",

 "date": "Tuesday, March 10, 2020"

 },

 "timeZone": {

 "id": "https://<host>/api/v7/#TimeZone",

 "primaryResponse": "52 weeks and 2 days",

 "description": "There are 52 weeks and 2 days from January 1, 2020 to
January 1, 2021"

 },

JSON

If Bing determines that the user may have intended to search for something different,
the response includes a SpellSuggestions object. For example, if the user searches for
carlos pen, Bing may determine that the user likely intended to search for Carlos Pena
instead (based on past searches by others of carlos pen). The following shows an
example spell response.

JSON

Each response contains a QueryContext object that provides the context that Bing used
for the request. At a minimum, the context contains the user’s query string.

JSON

 "timeZone": {

 "id": "https://<host>/api/v7/#TimeZone",

 "primaryTimeZone": {

 "location": "Redmond, WA",

 "time": "2019-12-11T11:56:13.6395905Z",

 "utcOffset": "UTC-8",

 "timeZoneName": "Pacific Standard Time"

 }

 },

SpellSuggestion answer

 "spellSuggestions": {

 "id": "https://www.bing.com/api/v7/#SpellSuggestions",

 "value": [

 {

 "text": "carlos pena",

 "displayText": "carlos pena"

 }

]

 },

QueryContext answer

 "queryContext": {

 "originalQuery": "mt rainier"

 },

If the user's query string contains a spelling mistake, the context includes alteredQuery
field, with contains the corrected spelling. Bing uses the alteredQuery query string in
the request instead of the user’s query string.

JSON

The following example shows how Bing uses this information in the UX. If you provide
the same feature and the user chooses to use their original query string, use the
alterationOverrideQuery query string in the request. When encoded, the override string
looks like, %2Bsialing+%2Bdingy+for+sale. This forces Bing to use the user’s original
string instead of the corrected string.

Some queries are helped by knowing the user’s location. For example, if the user asks
for today’s weather or restaurants near me, the context object includes the
askUserForLocation field. If true, you should send a new query and include the X-
MSEdge-ClientIP and X-Search-Location headers with the user’s location.

JSON

If the user’s query has adult intent, the context includes the adultIntent field. If true,
the user’s safeSearch setting determines the content that Bing returns.

JSON

"queryContext": {

 "originalQuery": "sialing dingy for sale",

 "alteredQuery": "sailing dinghy for sale",

 "alterationOverrideQuery": "+sialing +dingy for sale"

}

User location

 "queryContext": {

 "originalQuery": "today's weather",

 "askUserForLocation": true

 },

Adult intent

Each Bing response contains a RankingResponse object that suggests the order in which
you should display the Bing answers and the results within each answer. For information
about how to use the RankingResponse object, see Using ranking to display search
results.

The following example shows parts of the ranking response answer for brevity.

JSON

 "queryContext": {

 "originalQuery": "xxx movies",

 "adultIntent": true

 },

RankingResponse answer

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "Videos",

 "value": {

 "id": "https://<host>/api/v7/#Videos"

 }

 },

 {

 "answerType": "News",

 "value": {

 "id": "https://<host>/api/v7/#News"

 }

 },

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://<host>/api/v7/#WebPages.0"

 }

 },

 . . .

 {

 "answerType": "RelatedSearches",

 "value": {

 "id": "https://<host>/api/v7/#RelatedSearches"

 }

 }

]

 },

The Translations answer contains the translation of a word or phrase from one language
to another. The context used in the translation comes from the query string and other
signals. For example, in the query, amigo in english, Spanish is inferred from Amigo. If
the query string doesn’t explicitly specify the language to translate the text into (for
example, if the query is bon appetit), Bing infers the language from the browser’s
language setting.

The originalText field contains the word or phrase to translate and translatedText
contains the translated text. If the translation request cannot be satisfied within system-
defined thresholds, the translatedText field is set to "…". If this occurs, you shouldn’t
display the answer.

JSON

 "sidebar": {

 "items": [

 {

 "answerType": "Images",

 "value": {

 "id": "https://<host>/api/v7/#Images"

 }

 },

 {

 "answerType": "Entities",

 "resultIndex": 0,

 "value": {

 "id": "https://<host>/api/v7/#Entities.0"

 }

 }

]

 }

 }

Translations answer

 "translations": {

 "id": "https://<host/api/v7/#Translations",

 "contractualRules": [

 {

 "_type": "ContractualRules/LinkAttribution",

 "text": "Microsoft Translator",

 "url": "http://www.bing.com/translator/?
ref=TThis&text=hello&from=en&to=es"

 }

],

 "attributions": [

 {

Be sure to use contractualRules to attribute the article. For information about
attribution, see Data attribution.

The entities answer contains a list of entity objects that Bing thought were relevant to
the query. Each entity in the list identifies a person, place, or thing. Bing returns well-
known entities only. Well-known people may include singers, actors, athletes, models,
and others. Places refers to well-known tourist attractions, organizations, and localities
such as a cities, states, countries, and regions. Things cover everything else not covered
by places and people, such as animals, foods, drinks, books, songs, movies, and more.
For information about places such as restaurants, hotels, or other local businesses, see
the Places answer.

The list of entities may contain a single dominant entity, multiple disambiguation
entities, or both. The following example fragments show the different entity types. See
the entityScenario field.

Dominant-only entity (query is Seattle)

JSON

 "providerDisplayName": "Microsoft Translator",

 "seeMoreUrl": "http://www.bing.com/translator/?
ref=TThis&text=hello&from=en&to=es"

 }

],

 "originalText": "hello",

 "translatedText": "Hola",

 "translatedLanguageName": "es",

 "inLanguage": "en"

 },

Entities answer

Dominant entity versus disambiguation entities

 "entities": {

 "value": [

 {

 "name": "Seattle",

 "entityPresentationInfo": {

 "entityScenario": "DominantEntity",

 "entityTypeHints": [

 "City"

]

 },

 }

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entityanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entity

Dominant and disambiguation entities (query is Mt Rainier)

JSON

Disambiguation-only entities (query is Washington)

JSON

]

 },

 "entities": {

 "value": [

 {

 "id": "https://<host>/api/v7/#Entities.0",

 "name": "Mount Rainier",

 "entityPresentationInfo": {

 "entityScenario": "DominantEntity",

 "entityTypeHints": [

 "Place"

]

 },

 },

 {

 "id": "https://<host>/api/v7/#Entities.1",

 "name": "Mount Rainier National Park",

 "entityPresentationInfo": {

 "entityScenario": "DisambiguationItem"

 },

 }

]

 },

 "entities": {

 "value": [

 {

 "id": "https://<host>/api/v7/#Entities.0",

 "name": "Washington, D.C.",

 "entityPresentationInfo": {

 "entityScenario": "DisambiguationItem",

 "entityTypeHints": [

 "City"

]

 },

 },

 {

 "id": "https://<host>/api/v7/#Entities.1",

 "name": "The Washington Post",

 "entityPresentationInfo": {

 "entityScenario": "DisambiguationItem",

 "entityTypeHints": [

 "Organization"

Bing returns a dominant entity when there is no ambiguity as to which entity satisfies
the request. If multiple entities could satisfy the request, the list contains more than one
disambiguation entities. For example, if the request uses the generic title of a movie
franchise, the list likely contains disambiguation entities. But, if the request specifies a
specific title from the franchise, the list likely contains a single dominant entity.

The EntityPresentationInfo object contains information that tells you whether the entity
is a dominant entity or a disambiguation entity (see the entityScenario field). The
object may also include one or more hints (see the entityTypeHints field) that tell you
the entity’s type. The list of hints could contain a single hint such as Movie or a list of
hints such as Place, LocalBusiness, Restaurant. Each successive hint in the array narrows
the entity's type. But not all entities include type hints.

If the list contains one or more disambiguation entities (the entityScenario field is set
to DisambiguationItem), consider displaying a list of entities and letting the user select
the one they’re interested in. The Entity object’s name field contains the entity’s name.
Use the name along with the URL in the url field, if it exists, or the webSearchUrl field
to create a hyperlink. The entity includes the url field only if Bing found a website or
webpage for the entity. The URL in the webSearchUrl field takes the user to Bing’s search
result page for the entity.

The following answer shows what the JSON response looks like for the query, mt rainier.
Most entities include the entity’s name, short description, contractual rules, and URL to
Bing’s search results page where the user can get more information about the entity.
The optional fields that not all entities include are the image , url , and entityTypeHints
fields.

JSON

]

 },

 },

 {

 "id": "https://<host>/api/v7/#Entities.2",

 "name": "Washington",

 "entityPresentationInfo": {

 "entityScenario": "DisambiguationItem",

 "entityTypeHints": [

 "State"

]

 },

 }

]

 },

https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entitypresentationinfo

{

 "_type": "SearchResponse",

 "queryContext": {

 "originalQuery": "mt rainier"

 },

 "entities": {

 "value": [

 {

 "id": "https://<host>/api/v7/#Entities.0",

 "contractualRules": [

 {

 "_type": "ContractualRules/LicenseAttribution",

 "targetPropertyName": "description",

 "mustBeCloseToContent": true,

 "license": {

 "name": "CC-BY-SA",

 "url": "http://creativecommons.org/licenses/by-sa/3.0/"

 },

 "licenseNotice": "Text under CC-BY-SA license"

 },

 {

 "_type": "ContractualRules/LinkAttribution",

 "targetPropertyName": "description",

 "mustBeCloseToContent": true,

 "text": "Wikipedia",

 "url": "http://en.wikipedia.org/wiki/Mount_Rainier"

 },

 {

 "_type": "ContractualRules/MediaAttribution",

 "targetPropertyName": "image",

 "mustBeCloseToContent": true,

 "url": "http://en.wikipedia.org/wiki/Mount_Rainier"

 }

],

 "webSearchUrl": "https://www.bing.com/entityexplore?
q=Mount+Rainier...",

 "name": "Mount Rainier",

 "image": {

 "name": "Mount Rainier",

 "thumbnailUrl": "https://www.bing.com/th?id=AMMS_65523b5b...",

 "provider": [

 {

 "_type": "Organization",

 "url": "http://en.wikipedia.org/wiki/Mount_Rainier"

 }

],

 "hostPageUrl":
"http://upload.wikimedia.org/commons/Mount_Rainier...",

 "width": 110,
 "height": 110,

 "sourceWidth": 474,

 "sourceHeight": 316

 },

 "description": "Mount Rainier, also known as Tahoma or Tacoma, is a

large active strato...",

 "entityPresentationInfo": {

 "entityScenario": "DominantEntity",

 "entityTypeHints": [

 "Place"

]

 },

 "bingId": "9ae3e6ca-81ea-6fa1-ffa0-42e1d7890906"

 },

 {

 "id": "https://<host>/api/v7/#Entities.1",

 "contractualRules": [

 {

 "_type": "ContractualRules/MediaAttribution",

 "targetPropertyName": "image",

 "mustBeCloseToContent": true,

 "url":
"http://en.wikipedia.org/wiki/Mount_Rainier_National_Park"

 }

],

 "webSearchUrl": "https://www.bing.com/entityexplore?
q=Mount+Rainier+Nat...",

 "name": "Mount Rainier National Park",

 "url": "https://www.nps.gov/mora/index.htm",

 "image": {

 "name": "Mount Rainier National Park",

 "thumbnailUrl": "https://www.bing.com/th?
id=AMMS_4bd2812676c04d54ef0e...",
 "provider": [

 {

 "_type": "Organization",

 "url":
"http://en.wikipedia.org/wiki/Mount_Rainier_National_Park"

 }

],

 "hostPageUrl":
"http://upload.wikimedia.org/Mount_Rainier_7437.JPG",

 "width": 72,

 "height": 72,

 "sourceWidth": 474,

 "sourceHeight": 355

 },

 "description": "Mount Rainier National Park is an American national
park located in southeast...",

 "entityPresentationInfo": {

 "entityScenario": "DisambiguationItem"

 },

 "bingId": "9a8a1f72-a577-9f45-e275-1d969576f069"

 }

]

 },

Entity attribution

Entities may include the contractualRules field, which contains one or more attributions
that you must apply when you display the entity. Not all entities include rules. If the
entity provides contractual rules, you must abide by them.

Entity information typically comes from third parties. You are responsible for ensuring
that your use is appropriate; for example, by complying with any creative commons
license your user experience relies on.

For information about applying attribution, see Data Attribution.

The places answer contains a list of local business entity objects that Bing thought were
relevant to the query. Bing returns this answer only when the query specifies the name
of a local business or asks for a type of business. For example, microsoft store and
restaurants near me. Each place in the list identifies a restaurant, hotel, or other local
business.

Local aware queries such as restaurant near me require the user's location to provide
accurate results. Although optional, you should always provide the user’s location using
the X-Search-Location and X-MSEdge-ClientIP headers. The X-Search-Location header
uses the user’s geographical coordinates (latitude and longitude).

If you don’t provide the user’s location and Bing thinks the query would benefit from the
user's location, it sets the askUserForLocation field of QueryContext to true.

JSON

Places answer

７ Note

The Places answer supports only U.S. business locations.

７ Note

You, or a third party on your behalf, may not use, retain, store, cache, share, or
distribute any data from the Places answer for the purpose of testing, developing,
training, distributing or making available any non-Microsoft service or feature.

X-Search-Location: lat:47.806897;long:-122.221304;re:30

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#localentityanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entity

The EntityPresentationInfo object contains hints that identify the local entity's type. The
list contains a list of hints such as Place, LocalBusiness, Restaurant. Each successive hint
in the array narrows the entity's type.

JSON

The local entity includes the place's name, address, and telephone number. If the URL to
the place’s website is known, the entity includes it, too. When you display the entity
information, use the URL in the url field to create link that takes the user to the
business' website; otherwise, use the URL in webSearchUrl to take the user to Bing’s
search results page for the entity.

The following example shows what the JSON response looks like for the query, coffee
near me.

JSON

 "queryContext": {

 "originalQuery": "italian restaurants near me",

 "askUserForLocation": true

 },

 "entityPresentationInfo": {

 "entityScenario": "ListItem",

 "entityTypeHints": [

 "Place",

 "LocalBusiness",

 "Restaurant"

]

 },

 "places": {

 "value": [

 {

 "_type": "Restaurant",

 "id": "https://<host>/api/v7/#Places.0",

 "webSearchUrl": "https://www.bing.com/entityexplore?
q=Fourth+Coffee...",

 "name": "Fourth Coffee",

 "url": "http://www.fourthcoffee.com/",

 "entityPresentationInfo": {

 "entityScenario": "ListItem",

 "entityTypeHints": [

 "Place",

 "LocalBusiness",

 "Restaurant"

]

 },

https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entitypresentationinfo

Note that the address’ neighborhood field may contain an empty string.

Note that the _type field identifies the local entity object's type. The above example
shows the object's type as Restaurant. Others object types include Hotel and
LocalBusiness.

Learn about use and display requirements for displaying Bing Web Search results.
Learn about how to use the RankingResponse object to order the search results in
your UX.
Learn about the JSON objects found in the response.
Learn about the hit highlighting characters found in the search results.
Learn how to page webpage results.

 "address": {

 "addressLocality": "Bothell",

 "addressRegion": "WA",

 "postalCode": "98021",

 "addressCountry": "US",

 "neighborhood": "Bothell"

 },

 "telephone": "(425) 555-1234"

 },

 . . .

]

 },

Next steps

Use ranking to display search results
Article • 10/28/2020

Each search response includes a RankingResponse answer tells you how to display the
search results. The ranking response groups results by mainline content and sidebar
content for a traditional search results page. If you don't display the results in a
traditional mainline and sidebar format, you must provide the mainline content higher
visibility than the sidebar content.

The following example fragment shows what the RankingResponse answer looks like in
the JSON response for the query, how to use saffron threads.

JSON

 "rankingResponse": {

 "mainline": {

 "items": [

 {

 "answerType": "Videos",

 "value": {

 "id": "https://<host>/api/v7.0/#Videos"

 }

 },

 {

 "answerType": "WebPages",

 "resultIndex": 0,

 "value": {

 "id": "https://<host>/api/v7.0/#WebPages.0"

 }

 },

 {

 "answerType": "WebPages",

 "resultIndex": 1,

 "value": {

 "id": "https://<host>/api/v7.0/#WebPages.1"

 }

 },

 . . .

 {

 "answerType": "WebPages",

 "resultIndex": 9,

 "value": {

 "id": "https://<host>/api/v7.0/#WebPages.9"

 }

 },

 {

 "answerType": "RelatedSearches",

 "value": {

Within each group (mainline or sidebar), the Items array identifies the order that the
content must appear in. Each item provides the following two ways to identify the result
within an answer.

answerType and resultIndex

The answerType field identifies the answer (for example, the News answer) and the
resultIndex field identifies a result within the answer (for example, a news article).
The result index is zero based.

value

The value field contains an ID that matches the ID of either an answer or a result
within the answer. Either the answer or the results contain the ID but not both. The
fragment portion of the URI identifies the answer type and index. For example,
https://<host>/api/v7.0/#WebPages.9 , identifies the 10th webpage in the
Webpages answer.

Because the videos ranking item doesn’t include the resultIndex field and the id URI is
missing the index value, you’d display all video results together.

JSON

 "id": "https://<host>/api/v7.0/#RelatedSearches"

 }

 }

]

 },

 "sidebar": {

 "items": [

 {

 "answerType": "Entities",

 "resultIndex": 0,

 "value": {

 "id": "<host>/api/v7.0/#Entities.0"

 }

 }

]

 }

 }

 {

 "answerType": "Videos",

 "value": {

 "id": "https://<host>/api/v7.0/#Videos"

 }

 },

The following JSON shows the videos answer in the response. Notice that the Videos
answer object includes the id field and the Video result objects don’t. Either the answer
will contain the id field or the results will, but not both.

JSON

However, because the Webpages answer doesn’t include an id field, you'd display all
webpages individually based on the ranking (each webpage includes an id field). Either

 "videos": {

 "id": "https://<host>/api/v7.0/#Videos",

 "readLink": "https://<host>/api/v7.0/videos/search?
q=how+to+use+saffron+threads",

 "webSearchUrl": "https://www.bing.com/videos/search?
q=how+to+use+saffron+threads",

 "isFamilyFriendly": true,

 "value": [

 {

 "webSearchUrl": "https://www.bing.com/videos/search?
q=how%20to%20use%20sa...",

 "name": "How to use Saffron Threads",

 "description": "How to use Saffron Threads. Best way to use saffron
threads for maximum flavour and color.",

 "thumbnailUrl": "https://tse3.mm.bing.net/th?id=OVP.qj4aGA...",

 "datePublished": "2018-08-21T17:01:27.0000000",

 "publisher": [

 {

 "name": "Contoso"

 }

],

 "isAccessibleForFree": true,

 "contentUrl": "https://www.contoso.com/watch?v=Ai7LksfYDPs",

 "hostPageUrl": "https://www.contoso.com/watch?v=Ai7LksfYDPs",

 "encodingFormat": "mp4",

 "hostPageDisplayUrl": "https://www.contoso.com/watch?v=Ai7LksfYDPs",

 "width": 1280,

 "height": 720,

 "duration": "PT45S",

 "motionThumbnailUrl": "https://tse3.mm.bing.net/th?
id=OM1.F1163Ia21PXw5w_...",

 "embedHtml": "<iframe width=\"1280\" height=\"720\"
src=\"http://www.youtube.com/embed/Ai7LksfYDPs?autoplay=1\"
frameborder=\"0\" allowfullscreen></iframe>",

 "allowHttpsEmbed": true,

 "viewCount": 349,

 "thumbnail": {

 "width": 160,
 "height": 120

 },

 "allowMobileEmbed": true,

 "isSuperfresh": false

 },

the answer will contain the id field or the results will, but not both.

JSON

To use the ranking ID, simply match the ranking ID with the ID of an answer or one of its
results. If you use the answerType and resultIndex fields, use answerType to identify the
answer that contains the results to display. Then, use resultIndex to index through the
answer's results to get the result to display.

Based on the ranking response example for the saffron query, you’d display the
following search results in the mainline:

All the videos (or several videos with a link to view the others)
Webpages 0 through 9
All the related searches

And you’d display the following search results in the sidebar:

Entity 0

Learn about promoting unranked results.
Learn about limiting the number of ranked answers in the response.

 "webPages": {

 "webSearchUrl": "https://www.bing.com/search?
q=how+to+use+saffron+threads",

 "totalEstimatedMatches": 1020000,

 "value": [

 {

 "id": "https://<host>/api/v7.0/#WebPages.0",

 "name": "3 Ways to Prepare Saffron",

 "url": "https://www.fabrikam.com/Prepare-Saffron",

 "about": [

 {

 "name": "Saffron"

 }

],

 "isFamilyFriendly": true,

 "displayUrl": "https://www.fabrikam.com/Prepare-Saffron",

 "snippet": "Measure the saffron threads. Your recipe will usually
tell you how much saffron to use...",

 "dateLastCrawled": "2020-02-18T22:19:00.0000000Z",

 "language": "en",

 "isNavigational": false

 },

Next steps

See the ranking to tutorial to see how to display search results in C#.

Using decoration markers to highlight
text
Article • 02/16/2022

Hit highlighting is when Bing highlights words or phrases from the user’s search string
that were found in search result strings. Bing uses either Unicode characters or HTML
tags to mark the words or phrases in the webpage’s name, display URL, and snippet text.
Bing may mark other terms that Bing finds relevant.

By default, Bing doesn't highlight words or phrases in display strings. To enable hit
highlighting, set the textDecorations query parameter in your request to true.

To specify whether you want Bing to use Unicode characters or HTML tags to mark the
words or phrases, set the textFormat query parameter one off the following possible
values.

Raw — Uses Unicode characters to mark content that needs special formatting.
The Unicode characters are in the range E000 through E019. For example, Bing
uses E000 and E001 to mark the beginning and end of words or phrases for hit
highlighting.

HTML — Uses HTML tags to mark content that needs special formatting. For
example, Bing uses tags to mark the beginning and end of words or phrases
for hit highlight.

The default is Raw.

The following example shows a web result for Sailing Dinghy . Bing marked the
beginning and end of the query term using the E000 and E001 Unicode characters.

Before displaying the result in your user interface, replace the Unicode characters with
ones that are appropriate for your display format.

Hit highlighting example

Bing can return several different text decorations. For example, a Computation answer
can contain subscript markers for the query term log(2) in the expression field.

If the request did not specify decorations, the expression field would contain log10(2) .

If textDecorations is true, Bing may include the following markers in the display strings
of answers. If there is no equivalent HTML tag, the table cell is empty.

Unicode HTML Description

U+E000 Marks the beginning of the query term (hit highlighting).

U+E001 Marks the end of the query term.

U+E002 <i> Marks the beginning of italicized content.

U+E003 </i> Marks the end of italicized content.

U+E004
 Marks a line break.

U+E005 Marks the beginning of a phone number.

U+E006 Marks the end of a phone number.

U+E007 Marks the beginning of an address.

U+E008 Marks the end of an address.

U+E009 Marks a non-breaking space.

U+E00C Marks the beginning of bold content.

U+E00D Marks the end of bold content.

U+E00E Marks the beginning of content whose background should be lighter
than its surrounding background.

U+E00F Marks the end of content whose background should be lighter than its
surrounding background.

U+E010 Marks the beginning of content whose background should be darker
than its surrounding background.

Additional text decorations

Unicode HTML Description

U+E011 Marks the end of content whose background should be darker than its
surrounding background.

U+E012 Marks the beginning of content that should be struck through.

U+E013 Marks the end of content that should be struck through.

U+E016 <sub> Marks the beginning of subscript content.

U+E017 </sub> Marks the end of subscript content.

U+E018 <sup> Marks the beginning of superscript content.

U+E019 </sup> Marks the end of superscript content.

Paging search results
Article • 10/28/2020

When you call any of the Bing APIs (for example, the Web Search API or Image Search
API), the API returns a list of results. The list is a subset of the total number of results
that may be relevant to the query. To get the estimated total number of available results,
access the answer object's totalEstimatedMatches field.

The following example shows the totalEstimatedMatches field for News Search API.

JSON

The estimated number of matches is only an estimate and may likely change from
request to request.

To page through the results, use the count and offset query parameters.

The count parameter specifies the number of results to return in the response. The
maximum number of results that you may request in the response is API specific (see
Count values by API). For example, the maximum count value that you may specify for
the Image Search API is 150.

The offset parameter specifies the number of results to skip. The offset is zero-based and
should be less than (totalEstimatedMatches - count).

If your user interface presents 20 news articles per page, set count to 20 and offset to 0
to get the first page of results. For each subsequent page, increment offset by 20 (for
example, 20, 40).

The following shows an example that requests 20 news articles beginning at offset 40.

{

 "_type": "News",

 "readLink": "https://<host>/api/v7.0/news/search?q=Sports",

 "queryContext": {

 "originalQuery": "Sports"

 },

 "totalEstimatedMatches": 118000,

 "value": [. . .]

}

Paging through search results

Because each API sets a default value for count, you may specify only offset. For example,
if the News Search API’s default count is 20, you only need to include the offset query
parameter.

The following table list the default and maximum count value per API.

API Default Maximum

Web Search 10 50

Image Search 35 150

News Search 10 100

Video Search 35 105

For the Image, News, and Video APIs, paging applies to only the general search
endpoint. For example, you may not use paging with the trending endpoints.

The Web Search API returns results that include webpages and may include other
answers like images, videos, and news. When you page the search results, you are
paging the webpage results and not the other answers. For example, if you set count to
15, Bing returns 15 webpage results, but may return 35 images and 4 news articles.

The answers that Bing returns from page to page is unknown. For example, Bing may
include news on the first page but not the second page, or vise-versa.

Note that if you specify the responseFilter query parameter and do not include
Webpages in the list of filters, you should not use the count and offset parameters.

https://<host>/api/v7.0/news/search?q=sailing&count=20&offset=40&mkt=en-us

https://<host>/api/v7.0/news/search?q=sailing&offset=40&mkt=en-us

Count values by API

Paging web search results

Paging image and video results

Typically, if you page 30 images at a time, you set the offset query parameter to 0 on
your first request, and increment offset by 30 on each subsequent request. However,
some results in the subsequent response may be duplicates of the previous response.
For example, the first two images in the response may be the same as the last two
images from the previous response.

To eliminate duplicate results, set the offset query parameter to the value in the
nextOffset field of the ImageAnswer object. The nextOffset value adjusts for
duplicates.

JSON

For example, if you want to page 30 images at a time, you'd set count to 30 and offset to
0 in your first request. In your next request, you'd set count to 30 and offset to the value
of nextOffset . The value of nextOffset will be 30 if there are no duplicates or it may be
32 if there are 2 duplicates.

Use the same technique when paging videos.

Learn about using rank to display search results.

{

 "_type": "Images",

 "readLink": "images/search?q=nurburgring",

 "webSearchUrl": "https://www.bing.com/images/search?
q=nurburgring&FORM=OIIARP",

 "queryContext": {. . .},

 "totalEstimatedMatches": 933,

 "pivotSuggestions": [. . .],

 "queryExpansion": [. . .],

 "relatedSearches": [. . .],

 "nextOffset": 65,

 "currentOffset": 0,

 "value": [. . .]

}

Next steps

https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/response-objects#imageanswer

Resize and crop thumbnail images
Article • 02/15/2024

Some answers include URLs to thumbnail images served by Bing. The following
examples show several thumbnail URL formats that you might find in an answer.

curl

You may resize and crop thumbnail images. To resize a thumbnail:

1. Remove all query parameters except the id and pid parameters.
2. Add only the w (width) or h (height) query parameter, but not both.
3. Set the w or h query parameter to the desired size, in pixels. Bing maintains the

aspect ratio for you.

If you specify an image size that’s larger than the thumbnail’s original size, Bing adds
white padding around the image as needed. For example, if the image’s original size is
474x316 and you set w (width) to 500, Bing returns a 500x333 image. Bing pads the top
and bottom edges with 8.5 pixels of white padding and the left and right edges with 13
pixels of white padding.

To prevent Bing from adding white padding if the requested size is greater than the
thumbnail’s original size, include the p query parameter. For example, if you include the
p parameter in the above example, Bing returns a 474x316 image instead of a 500x333
image. Set the p parameter to 0 (zero).

curl

７ Note

Be sure when cropping and resizing thumbnail images that you're doing so in
accordance with a search scenario that respects third party rights, as required by
your Bing Search API use and display requirements.

https://<host>/th?id=ON.A317B1375C1ADD5C646CB8635AE4E9&pid=News
https://<host>/th?id=OVP.VC36z4V1MoxzlwETyoaQHgFo&pid=Api
https://<host>/th?
id=AMMS_c1a785119b4d9fc14b6571a2a2f728&w=110&h=110&c=7&rs=1&qlt=80&cdv=1&pid
=16.1

https://<host>/th?id=AMMS_92772df988...&w=500&p=0&pid=16.1

If you specify both the w and h query parameters, Bing maintains the thumbnail’s aspect
ratio and adds white padding as needed. For example, if the thumbnail’s original size is
474x316 and you set the width and height parameters to 200x200 (&w=200&h=200),
Bing returns an image that contains 33 pixels of white padding on the top and bottom.
If you include the p query parameter, Bing returns an image that’s 200x134.

To crop an image, include the c (crop) query parameter. The following are the possible
values that you may specify.

4 — Blind Ratio
7 — Smart Ratio

If you request Smart Ratio cropping (c=7), Bing crops the image from the center of the
image’s region of interest outward, while maintaining the image’s aspect ratio. The
region of interest is the area of the image that Bing determines contains the most
important part. The following shows an example region of interest.

If Bing cannot determine the image’s region of interest, Bing uses Blind Ratio cropping.

Here's the original image used in the following examples.

Cropping a thumbnail image

Requesting smart ratio cropping

Here's what it looks like if you resize the image to 200x200 using Smart Ratio cropping.

Here's what it looks like if you resize the image to 200x100 using Smart Ratio cropping.

Here's what it looks like if you resize the image to 100x200 using Smart Ratio cropping.

If you request Blind Ratio cropping (c=4), Bing uses the following rules to crop the
image.

If (Original Image Width / Original Image Height) < (Requested Image Width /
Requested Image Height), Bing measures the image from its top left corner and
crops it at the bottom.

If (Original Image Width / Original Image Height) > (Requested Image Width /
Requested Image Height), Bing measures the image from the center and crops it to
the left and right.

Here's the original image used in the following examples.

Here's what it looks like if you resize the image to 200x200 using Blind Ratio cropping.

Requesting blind ratio cropping

Here's what it looks like if you resize the image to 200x100 using Blind Ratio cropping.

Here's what it looks like if you resize the image to 100x200 using Blind Ratio cropping.

Throttling requests
Article • 10/28/2020

The service and your subscription type determine the number of queries per second
(QPS) that you can make. Make sure your application includes the logic necessary to
stay within your quota. If the QPS limit is met or exceeded, the request fails and returns
an HTTP 429 status code. The response includes the Retry-After header, which
indicates how long you must wait before sending another request.

Bing distinguishes between a denial-of-service (DoS) attack and a QPS violation. If Bing
suspects a DoS attack, the request succeeds (HTTP status code is 200 OK) but the body
of the response is empty.

Denial-of-service versus throttling

Add analytics to the Bing Search APIs
Article • 02/16/2022

Bing Statistics provides analytics for the Bing Search APIs. These analytics include call
volume, top query strings, geographic distribution, and more. You can enable Bing
Statistics in the Azure portal by navigating to your Azure resource and clicking Enable
Bing Statistics.

The following image shows the available analytics for each Bing Search API endpoint.

Bing updates analytics data every 24 hours and maintains up to 13 months' worth of
history that you can access from the analytics dashboard . Make sure you're signed in

） Important

Bing Statistics is not available with resources on the free F0 pricing tier.
You may not use any data available via the Bing Statistics dashboard to create

applications for distribution to third parties.

Enabling Bing Statistics increases your subscription rate slightly. See pricing

for details.

Access your analytics

https://ms.portal.azure.com/
https://bingapistatistics.com/
https://aka.ms/bingstatisticspricing

using the same Microsoft account (MSA) you used to sign up for Bing Statistics.

By default, the charts and graphs display all metrics and data that you have access to.
You can filter the data shown in the charts and graphs by selecting the resources,
markets, endpoints, and reporting period you're interested in. You can change the
following filters:

Resource ID: The unique resource ID that identifies your Azure subscription. The
list contains multiple IDs if you subscribe to more than one Bing Search API tier. By
default, all resources are selected.

Markets: The markets where the results come from. For example, en-us (English,
United States). By default, all markets are selected. The en-WW market is the market
that Bing uses if the call does not specify a market and Bing is unable to determine
the user's market.

Endpoints: The Bing Search API endpoints. The list contains all endpoints for which
you have a paid subscription. By default, all endpoints are selected.

Time Frame: The reporting period. You can specify:
All: Includes up to 13 months' worth of data.
Past 24 hours: Includes analytics from the last 24 hours.
Past week: Includes analytics from the previous 7 days.
Past month: Includes analytics from the previous 30 days.
A custom date range: Includes analytics from the specified date range, if
available.

The dashboard shows charts and graphs of the metrics available for the selected
endpoint. Not all metrics are available for all endpoints. The charts and graphs for each

７ Note

It may take up to 24 hours for metrics to surface on the dashboard. The

dashboard shows the date and time the data was last updated.

Metrics are available from the time you enable the Bing Statistics Add-in.

Filter the data

Charts and graphs

endpoint are static (you may not select which charts and graphs to display). The
dashboard shows only charts and graphs for which there's data.

The following are the metrics that the dashboard may include.

Call Volume: Shows the number of calls made during the reporting period. If the
reporting period is for a day, the chart shows the number of calls made per hour.
Otherwise, the chart shows the number of calls made per day of the reporting
period.

Top Queries: Shows the top queries and the number of occurrences of each query
during the reporting period. You can configure the number of queries shown. For
example, you can show the top 25, 50, or 75 queries. Top Queries is not available
for the following endpoints:

/images/trending
/images/details
/images/visualsearch
/videos/trending
/videos/details
/news
/news/trendingtopics
/suggestions

Geographic Distribution: The markets where search results originate. For example,
en-us (English, United States). Bing uses the mkt query parameter to determine
the market, if specified. Otherwise, Bing uses signals such as the caller's IP address
to determine the market.

Response Code Distribution: The HTTP status codes of all calls during the
reporting period.

７ Note

The call volume may differ from billing reports, which generally includes only
successful calls.

７ Note

Some query terms may be suppressed to remove confidential information
such as emails, telephone numbers, SSN, etc.

Call Origin Distribution: The types of browsers used by the users. For example,
Microsoft Edge, Chrome, Safari, and FireFox. Calls made from outside a browser
(such as bots, Postman, or using curl from a console app) are grouped under
Libraries. The origin is determined using the request's User-Agent header value. If
the request doesn't include the User-Agent header, Bing tries to derive the origin
from other signals.

Safe Search Distribution: The distribution of safe search values. For example, off,
moderate, or strict. The safeSearch query parameter contains the value, if
specified. Otherwise, Bing defaults the value to moderate.

Answers Requested Distribution: The Web Search API answers that you requested
in the responseFilter query parameter.

Answers Returned Distribution: The answers that Web Search API returned in the
response.

Response Server Distribution: The application server that served your API
requests. The possible values are Bing.com (for traffic served from desktop and
laptop devices) and Bing.com-mobile (for traffic served from mobile devices). The
server is determined using the request's User-Agent header value. If the request
doesn't include the User-Agent header, Bing tries to derive the server from other
signals.

Upgrade from Bing Web Search API v5
to v7
Article • 02/16/2022

This upgrade guide identifies the changes between version 5 and version 7 of the Bing
Web Search API. Use this guide to help you identify the parts of your application that
you need to update to use version 7.

Changed the cognitive subdomain to bing .
Changed the endpoint's version number from v5 to v7.
Removed the /bing folder.

New search endpoint: https://api.bing.microsoft.com/v7.0/search

All failed requests should now include an ErrorResponse object in the response
body.

Added the following fields to the Error object.
subCode—Partitions the error code into discrete buckets, if possible.
moreDetails—Additional information about the error described in the message
field.

Replaced the v5 error codes with the following possible code and subCode values.

Code SubCode Description

ServerError UnexpectedError

ResourceError

NotImplemented

Bing returns ServerError whenever any of
the subcode conditions occur. The
response will include these errors if the
HTTP status code is 500.

Breaking changes

Endpoints

Error response objects and error codes

Code SubCode Description

InvalidRequest ParameterMissing

ParameterInvalidValue

HttpNotAllowed

Blocked

Bing returns InvalidRequest whenever any
part of the request is not valid. For
example, a required parameter is missing
or a parameter value is not valid.

If the error is ParameterMissing or
ParameterInvalidValue, the HTTP status
code is 400.

If the error is HttpNotAllowed, the HTTP
status code 410.

RateLimitExceeded Bing returns RateLimitExceeded whenever
you exceed your queries per second (QPS)
or queries per month (QPM) quota.

Bing returns HTTP status code 429 if you
exceeded QPS and 403 if you exceeded
QPM.

InvalidAuthorization AuthorizationMissing

AuthorizationRedundancy

Bing returns InvalidAuthorization when
Bing cannot authenticate the caller. For
example, the Ocp-Apim-Subscription-Key
header is missing or the subscription key
is not valid.

Redundancy occurs if you specify more
than one authentication method.

If the error is InvalidAuthorization, the
HTTP status code is 401.

InsufficientAuthorization AuthorizationDisabled

AuthorizationExpired

Bing returns InsufficientAuthorization
when the caller does not have permissions
to access the resource. This error can
occur if the subscription key has been
disabled or has expired.

If the error is InsufficientAuthorization, the
HTTP status code is 403.

The following maps the previous error codes to the new codes. If you've taken a
dependency on v5 error codes, update your code accordingly.

Version 5 code Version 7 code.subCode

RequestParameterMissing InvalidRequest.ParameterMissing

Version 5 code Version 7 code.subCode

RequestParameterInvalidValue InvalidRequest.ParameterInvalidValue

ResourceAccessDenied InsufficientAuthorization

ExceededVolume RateLimitExceeded

ExceededQpsLimit RateLimitExceeded

Disabled InsufficientAuthorization.AuthorizationDisabled

UnexpectedError ServerError.UnexpectedError

DataSourceErrors ServerError.ResourceError

AuthorizationMissing InvalidAuthorization.AuthorizationMissing

HttpNotAllowed InvalidRequest.HttpNotAllowed

UserAgentMissing InvalidRequest.ParameterMissing

NotImplemented ServerError.NotImplemented

InvalidAuthorization InvalidAuthorization

InvalidAuthorizationMethod InvalidAuthorization

MultipleAuthorizationMethod InvalidAuthorization.AuthorizationRedundancy

ExpiredAuthorizationToken InsufficientAuthorization.AuthorizationExpired

InsufficientScope InsufficientAuthorization

Blocked InvalidRequest.Blocked

Added the optional Pragma request header. By default, Bing returns cached
content, if available. To prevent Bing from returning cached content, set the
Pragma header to no-cache (for example, Pragma: no-cache).

Added the answerCount query parameter. Use this parameter to specify the
number of answers that you want the response to include. The answers are chosen

Non-breaking changes

Headers

Query parameters

based on ranking. For example, if you set this parameter to three (3), the response
includes the top three ranked answers.

Added the promote query parameter. Use this parameter along with answerCount
to explicitly include one or more answer types, regardless of their ranking. For
example, to promote videos and images into the response, you'd set promote to
videos, images. The list of answers that you want to promote does not count
against the answerCount limit. For example, if answerCount is 2 and promote is set
to videos, images, the response might include webpages, news, videos, and images.

Added the someResultsRemoved field to the WebAnswer object. The field contains a
Boolean value that indicates whether the response excluded some results from the
web answer.

Object changes

Web Search API v7 reference
Article • 10/28/2020

The Web Search API lets you send a search query to Bing and get back search results
that include links to webpages, images, and more. This section provides technical details
about the query parameters and headers that you use to request web search results and
the JSON response objects that contain them. For examples that show how to make
requests, see Bing Web Search overview.

For information about what you can do with the search results, see Use and display
requirements.

To request web search results, send a GET request to:

The request must use the HTTPS protocol.

７ Note

Because URL formats and parameters are subject to change without notice, use all
URLs as-is. You should not take dependencies on the URL format or parameters
except where noted.

Endpoints

https://api.bing.microsoft.com/v7.0/search

７ Note

The maximum URL length is 2,048 characters. To ensure that your URL length does
not exceed the limit, the maximum length of your query parameters should be less
than 1,500 characters. If the URL exceeds 2,048 characters, the server returns 404
Not found.

Next steps

Check out the following programming elements you'll use when sending search
requests and processing the responses:

Headers
Query parameters
Response objects

Web Search API v7 response objects
Article • 04/24/2024

For a list of possible objects, see In this article in the right pane.

If the request succeeds, the top-level object in the response is the SearchResponse
object. And if the request fails, the top-level object in the response is the ErrorResponse
object.

The JSON objects in this section are specific to the web answer. For details about the
JSON objects for other answer types that the search results may include, see the API-
specific reference documentation. For example, if the search results contain the images
and news answers, see the Image Search API reference and News Search API reference.

Defines the publisher that the content is attributed to.

Name Value Type

providerDisplayName The publisher's name that you use to attribute the content to. String

seeMoreUrl The URL to the publisher's website. Use providerDisplayName and
this URL to create a hyperlink that you display in the UX following
the translation.

String

Defines an expression and its answer.

７ Note

Because URL formats and parameters are subject to change without notice, use all
URLs as-is. You should not take dependencies on the URL format or parameters
except where noted.

Attribution

ﾉ Expand table

Computation

ﾉ Expand table

https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/endpoints
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/reference/endpoints

Name Value Type

expression The math or conversion expression.

If the query contains a request to convert units of measure (for example,
meters to feet), this field contains the from units and value contains the to
units.

If the query contains a mathematical expression such as 2+2, this field
contains the expression and value contains the answer.

Note that mathematical expressions may be normalized. For example, if the
query was sqrt(4^2+8^2), the normalized expression may be sqrt((4^2)+
(8^2)).

If the user's query is a math question and the textDecorations query
parameter is set to true, the expression string may include formatting
markers. For example, if the user's query is log(2), the normalized expression
includes the subscript markers. For more information, see Hit highlighting.

String

value The expression's answer. String

Defines the error that occurred.

Name Value Type

code The error code that identifies the category of error. For a list of possible
codes, see Error codes.

String

message A description of the error. String

moreDetails A description that provides additional information about the error. String

parameter The query parameter in the request that caused the error. String

subCode The error code that identifies the error. For example, if code is
InvalidRequest, subCode may be ParameterInvalid or
ParameterInvalidValue.

String

value The query parameter's value that was not valid. String

Error

ﾉ Expand table

ErrorResponse

The top-level object that the response includes when the request fails.

Name Value Type

_type Type hint, which is set to ErrorResponse. String

errors A list of errors that describe the reasons why the request failed. Error[]

Defines the identity of a resource.

Name Value Type

id An identifier. String

Defines an image.

Name Value Type

height The height of the source image, in pixels. Unsigned
Short

hostPageUrl The URL of the webpage that includes the image.

This URL and contentUrl may be the same URL.

String

ﾉ Expand table

Identifiable

ﾉ Expand table

Image

７ Note

Because URL formats and parameters are subject to change without notice, all
image URLs should be used as-is; you should not take dependencies on the URL
format or parameters. The exception is those parameters and values discussed by
Resize and crop thumbnail images.

ﾉ Expand table

Name Value Type

name An optional text string that contains random information about
the image.

String

provider The source of the image. The array will contain a single item.

You must attribute the image to the provider. For example, you
may display the provider's name as the cursor hovers over the
image or make the image a click-through link to the provider's
website where the image is found.

If the image object is part of a larger object, and the larger object
contains a contractual rule that applies to this object, you must
use the contractual rule for attribution instead of this field.

Organization[]

thumbnailUrl The URL to a thumbnail of the image. For information about
resizing the image, see Resize and crop thumbnail images.

String

width The width of the source image, in pixels. Unsigned
Short

Defines the license under which you may use the content.

Name Value Type

name The name of the license. String

url A URL to the website that describes the license. Use name and url to create a
hyperlink.

String

Defines a contractual rule for license attribution.

Name Value Type

_type A type hint, which is set to LicenseAttribution. String

license The license under which the content may be used. License

License

ﾉ Expand table

LicenseAttribution

ﾉ Expand table

Name Value Type

licenseNotice The license to display next to the targeted field. For example,
"Text under CC-BY-SA license".

Use the license's name and URL in the license field to create
a hyperlink to the website that describes the details of the
license. Then, replace the license name in the licenseNotice
string (for example, CC-BY-SA) with the hyperlink you just
created.

String

mustBeCloseToContent A Boolean value that determines whether the contents of the
rule must be placed in close proximity to the field that the
rule applies to. If true, the contents must be placed in close
proximity. If false, or this field does not exist, the contents
may be placed at the caller's discretion.

Boolean

targetPropertyName The name of the field that the rule applies to. String

Defines a contractual rule for link attribution.

Name Value Type

_type A type hint, which is set to LinkAttribution. String

mustBeCloseToContent A Boolean value that determines whether the contents of the
rule must be placed in close proximity to the field that the
rule applies to. If true, the contents must be placed in close
proximity. If false, or this field does not exist, the contents
may be placed at the caller's discretion.

Boolean

targetPropertyName The name of the field that the rule applies to.

If a target is not specified, the attribution applies to the entity
as a whole and should be displayed immediately following
the entity presentation. If there are multiple text and link
attribution rules that do not specify a target, you should
concatenate them and display them using a "Data from: "
label. For example, “Data from <provider name1> | <provider
name2>".

String

text The attribution text. String

LinkAttribution

ﾉ Expand table

Name Value Type

url The URL to the provider's website. Use text and URL to
create of hyperlink.

String

Defines a notice that the webpage may cause a potential issue if the user clicks the url
link.

Name Value Type

beSafeRxUrl A URL to a webpage where the user may get more information
about safely buying prescription medicine online.

String

malwareWarningType The type of malware notice. Possible values are:
NABP — Warns that the National Association of Boards of
Pharmacy includes this pharmacy on its Not
Recommended list.
Malware — Warns that the site may download malicious
software that may harm the user’s device.
MaliciousPageLink — Warns that the site may contain
links that could download malicious software that may
harm the user’s device.
Phishing — Warns that the site could trick the user into
disclosing financial, personal, or other sensitive
information.

String

warningExplanationUrl A URL to a webpage where the user can get an explanation of
the issue. For NABP notices, users can use this link to verify a
pharmacy.

String

warningLetterUrl A URL to a webpage where the user can get more information
about the notice. For NABP notices, users can use this link to see
the list of online sites that the board doesn’t recommend.

String

Defines a contractual rule for media attribution.

Malware

ﾉ Expand table

MediaAttribution

ﾉ Expand table

Name Value Type

_type A type hint, which is set to MediaAttribution. String

mustBeCloseToContent A Boolean value that determines whether the contents of the
rule must be placed in close proximity to the field that the
rule applies to. If true, the contents must be placed in close
proximity. If false, or this field does not exist, the contents
may be placed at the caller's discretion.

Boolean

targetPropertyName The name of the field that the rule applies to. String

url The URL that you use to create of hyperlink of the media
content. For example, if the target is an image, you would use
the URL to make the image clickable.

String

Defines a webpage's metadata.

Name Value Type

content The metadata. String

name The name of the metadata. String

Defines a publisher.

Note that a publisher may provide their name or their website or both.

Name Value Type

name The publisher's name. String

url The URL to the publisher's website.

Note that the publisher may not provide a website.

String

MetaTag

ﾉ Expand table

Organization

ﾉ Expand table

Query

Defines a search query.

The SpellSuggestions object uses this object to suggest a query string that likely
represents the user's intent. It's also used by RelatedSearchAnswer to return a related
query that other users have made.

Name Value Type

displayText The display version of the query term. This version of the query term may
contain special characters that highlight the search term found in the
query string. The string contains the highlighting characters only if the
query enabled hit highlighting (see the textDecorations query
parameter). For details about hit highlighting, see Hit highlighting.

String

text The query string. Use this string as the query term in a new search
request.

String

webSearchUrl The URL that takes the user to the Bing search results page for the query.

Only related search results include this field.

String

Defines the query string that Bing used for the request.

Name Value Type

adultIntent A Boolean value that indicates whether the specified query
has adult intent. The value is true if the query has adult
intent.

If true, and the request's safeSearch query parameter is set
to Strict, the response contains only news results, if
applicable.

Boolean

alterationOverrideQuery The query string to use to force Bing to use the original
string. For example, if the query string is saling downwind,
the override query string is +saling downwind. Remember to
encode the query string, which results in
%2Bsaling+downwind.

The object includes this field only if the original query string
contains a spelling mistake.

String

ﾉ Expand table

QueryContext

ﾉ Expand table

Name Value Type

alteredQuery The query string that Bing used to perform the query. Bing
uses the altered query string if the original query string
contained spelling mistakes. For example, if the query string
is saling downwind, the altered query string is sailing
downwind.

The object includes this field only if the original query string
contains a spelling mistake.

String

askUserForLocation A Boolean value that indicates whether Bing requires the
user's location to provide accurate results. If you specified
the user's location by using the X-MSEdge-ClientIP and X-
Search-Location headers, you can ignore this field.

For location aware queries, such as "today's weather" or
"restaurants near me" that need the user's location to
provide accurate results, this field is set to true.

For location aware queries that include the location (for
example, "Seattle weather"), this field is set to false. This
field is also set to false for queries that are not location
aware, such as "best sellers."

Boolean

originalQuery The query string as specified in the request. String

Defines a search results group, such as mainline.

Name Value Type

items A list of search result items to display in the group. RankingItem[]

Defines a search result item to display. For more information about how to use the IDs,
see Ranking results.

RankingGroup

ﾉ Expand table

RankingItem

ﾉ Expand table

Name Value Type

answerType The answer that contains the item to display. For example, News.

Use the type to find the answer in the SearchResponse object. The
type is the name of a field in the SearchResponse object.

String

resultIndex A zero-based index of the item in the answer.

If the item does not include this field, display all items in the answer.
For example, display all news articles in the News answer.

Integer

value The ID that identifies either an answer to display or an item of an
answer to display. If the ID identifies an answer, display all items of
the answer.

Identifiable

Defines where on the search results page content should be placed and in what order.

Name Value Type

mainline The search results to display in the mainline section of the search
results page.

RankingGroup

pole The search results that should be afforded the most visible treatment
(for example, displayed above the mainline and sidebar).

RankingGroup

sidebar The search results to display in the sidebar section of the search
results page.

RankingGroup

Defines a list of related queries made by others.

Name Value Type

id An ID that uniquely identifies the related search answer.

The object includes this field only if the Ranking answer specifies that you
should display all related searches in a group. For more information about how
to use the ID, see Ranking results.

String

RankingResponse

ﾉ Expand table

RelatedSearchAnswer

ﾉ Expand table

Name Value Type

value A list of related queries that were made by others. Query[]

The response's top-level object for search requests that succeed.

By default, the Search API includes all relevant answers unless:

The query specifies the responseFilter query parameter to limit the answers it
returns.
One or more of the search components does not return results (for example, no
news results are relevant to the query).
The subscription key does not have access to the search component.

If the service suspects a denial of service attack, the request succeeds (HTTP status code
is 200 OK), but the body of the response is empty.

Name Value Type

_type Type hint, which is set to SearchResponse. String

computation The answer to a math expression or unit conversion
expression.

Computation

entities A list of entities that are relevant to the search query. EntityAnswer

images A list of images that are relevant to the search query. ImageAnswer

news A list of news articles that are relevant to the search
query.

NewsAnswer

places A list of places that are relevant to the search query. LocalEntityAnswer

queryContext The query string that Bing used for the request. QueryContext

rankingResponse The order that Bing suggests that you display the
search results in.

RankingResponse

relatedSearches A list of related queries made by others. RelatedSearchAnswer

spellSuggestions The query string that likely represents the user's
intent.

SpellSuggestions

SearchResponse

ﾉ Expand table

https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entityanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/response-objects#imageanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-news-search/reference/response-objects#newsanswer
https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#localentityanswer

Name Value Type

timeZone The date and time of one or more geographic
locations.

TimeZone

translations The translation of a word or phrase in the query string
to another language.

TranslationAnswer

videos A list of videos that are relevant to the search query. VideosAnswer

webPages A list of webpages that are relevant to the search
query.

WebAnswer

Defines a suggested query string that likely represents the user's intent.

The search results include this response if Bing determines that the user may have
intended to search for something different. For example, if the user searches for alon
brown, Bing may determine that the user likely intended to search for Alton Brown
instead (based on past searches by others of alon brown).

Name Value Type

id An ID that uniquely identifies the spelling suggestion answer.

You use this field when you use ranking response to display the spelling
suggestions. For more information about how to use the ID, see Ranking
results.

String

value A list of suggested query strings that may represent the user's intention.

The list contains only one Query object.

Query[]

Defines a contractual rule for plain text attribution.

Name Value Type

_type A type hint, which is set to TextAttribution. String

SpellSuggestions

ﾉ Expand table

TextAttribution

ﾉ Expand table

https://learn.microsoft.com/en-us/bing/search-apis/bing-video-search/reference/response-objects#videosanswer

Name Value Type

text The attribution text.

Text attribution applies to the entity as a whole and should be displayed
immediately following the entity presentation. If there are multiple text or link
attribution rules that do not specify a target, you should concatenate them and
display them using a "Data from: " label.

String

Defines the date and time of one or more geographic locations.

Name Value Type

date A date in string form. For example, Thursday, June
5, 2019. The answer may include this field if the
user’s query asks Bing to compute a date. For
example, 90 days from today.

String

description A description of the response. The answer may
include this field if the query asks Bing how many
days or weeks in a period (for example, weeks in a
year or days in a month), or converts time to a
different time zone (for example, pst to est).

String

otherCityTimes A list of dates and times in a geographical
location. The answer includes this field for queries
like US time zones or Arizona time zones. The list
is ordered by UTC offset.

TimeZoneInformation[]

primaryCityTime The data and time, in UTC, of the geographic
location specified in the query.

If the query specified a specific geographic
location (for example, a city), this object contains
the name of the geographic location and the
current date and time of the location.

If the query specified a general geographic
location, such as a state or country/region, this
object contains the date and time of the primary
city or state found within the specified state or
country/region. If the location contains additional
time zones, the otherCityTimes field contains the

TimeZoneInformation

TimeZone

ﾉ Expand table

Name Value Type

date and time of cities or states located in the
other time zones.

primaryResponse The primary data that satisfies the request. If the
query string is how many weeks in 2019, this field
contains, 52 weeks and 1 day. Other query
examples: how many days in this month and
what’s the date.

String

primaryTimeZone The object contains the primary time zone in a
geographical location. If a location contains more
than one time zone, Bing determines which time
zone is the primary time zone. The answer
includes this field for queries like, time zone, time
zones in Arizona, us time zones.

TimeZoneInformation

timeZoneDifference The difference in time, in hours, between time
zones. For example, there's a three hour
difference between PST and EST.

TimeZoneDifference

Defines the difference in time, in hours, between time zone 1 and time zone 2.

Name Value Type

location1 the date and time of the first time zone. For example, if the
query is, pst to est, this field contains the date and time of the
Pacific time zone.

TimeZoneInformation

location2 the date and time of the second time zone. For example, if
the query is, pst to est, this field contains the date and time of
the Eastern time zone.

TimeZoneInformation

text A string that represents the difference in time between time
zones.

String

Defines a date and time for a geographical location.

TimeZoneDifference

ﾉ Expand table

TimeZoneInformation

ﾉ Expand table

Name Value Type

location The type of the geographical location.

For example, County; City; City, State; City, State, Country/Region; or
Time Zone.

String

time The UTC date and time specified in the form, YYYY-MM-
DDThh;mm:ss.ssssssZ.

String

timeZoneName The name of the time zone that the location is in. This string may be
empty if the query is not related to time zones.

String

utcOffset The offset from UTC. For example, UTC-7. String

Defines the translation of a word or phrase in the query string to another language.

Name Value Type

attributions A list of publishers that you must attribute the
information to when you render the answer.

You must display the names of all publishers in the list
as the source of the data. Typically, you display the
providers in a single line after the translation. For
example, “Data from: <provider> | <provider> | …",
where <provider> is the name of the provider in
providerDisplayName.

Note: If the answer includes contractualRules, you
must apply them instead of applying attributions from
this field.

Attribution[]

contractualRules A list of rules that you must adhere to if you display
the answer. The following contractual rules may apply.

LinkAttribution
For information about displaying contractual
rules, see Data Attribution.

Object[]

id An ID that uniquely identifies this answer.

The RankingResponse answer uses the ID to indicate
where in the rendered response you should display

String

TranslationAnswer

ﾉ Expand table

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution

Name Value Type

this answer. For information about how to use this
field, see How to use ranking to display search results.

inLanguage The language that the text was translated from. An ISO
639-1 two-letter language code identifies the
language. For example, es for Spanish.

String

originalText The text to translate. String

translatedLanguageName The language that the text was translated to. An ISO
639-1 two-letter language code identifies the
language. For example, en for English.

String

translatedText The translated text. String

Defines a list of relevant webpage links.

Name Value Type

id An ID that uniquely identifies the web answer.

The object includes this field only if the Ranking answer
suggests that you display all web results in a group. For
more information about how to use the ID, see Ranking
results.

String

someResultsRemoved A Boolean value that indicates whether the response
excluded some results from the answer. If Bing excluded
some results, the value is true.

Boolean

totalEstimatedMatches The estimated number of webpages that are relevant to
the query. Use this number along with the count and offset
query parameters to page the results.

Long

value A list of webpages that are relevant to the query. WebPage[]

webSearchUrl The URL to the Bing search results for the requested
webpages.

String

WebAnswer

ﾉ Expand table

Webpage

Defines a webpage that is relevant to the query.

Name Value Type

about For internal use only. Object[]

dateLastCrawled The last time that Bing crawled the webpage. The date is
in the form, YYYY-MM-DDTHH:MM:SS. For example,
2015-04-13T05:23:39.

String

datePublished The time that webpage published. The date is in the
form, YYYY-MM-DDTHH:MM:SS.
Example: 2015-04-13T05:23:39.

String

datePublishedDisplayText The display version of the datePublished. String

contractualRules A list of rules that you must adhere to if you display the
answer. The following contractual rules may apply.

LicenseAttribution

For information about displaying contractual rules, see
Data Attribution.

Object[]

deepLinks A list of links to related content that Bing found in the
website that contains this webpage.

The Webpage object in this context includes only the
name and url fields and optionally the snippet field.

Webpage[]

displayUrl The display URL of the webpage. The URL is meant for
display purposes only and is not well formed.

String

id An ID that uniquely identifies this webpage in the list of
web results.

The object includes this field only if the Ranking answer
specifies that you mix the webpages with the other
search results. Each webpage contains an ID that
matches an ID in the Ranking answer. For more
information, see Ranking results.

String

isFamilyFriendly A Boolean value that indicates whether the webpage
contains adult content. If the webpage doesn't contain
adult content, isFamilyFriendly is set to true.

Boolean

isNavigational A Boolean value that indicates whether the user’s query
is frequently used for navigation to different parts of the

Boolean

ﾉ Expand table

https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/data-attribution

Name Value Type

webpage’s domain. Is true if users navigate from this
page to other parts of the website.

language A two-letter language code that identifies the language
used by the webpage. For example, the language code
is en for English.

String

malware A notice that Bing provides if it thinks the webpage may
cause a potential issue if the user clicks the url link. You
should display the notice with high visibility next to the
webpage link.

Malware

name The name of the webpage.

Use this name along with url to create a hyperlink that
when clicked takes the user to the webpage.

String

mentions For internal use only. Object

searchTags A list of search tags that the webpage owner specified
on the webpage. The API returns only indexed search
tags.

The name field of the MetaTag object contains the
indexed search tag. Search tags begin with search.* (for
example, search.assetId). The content field contains the
tag's value.

MetaTag[]

snippet A snippet of text from the webpage that describes its
contents.

String

url The URL to the webpage.

Use this URL along with name to create a hyperlink that
when clicked takes the user to the webpage.

String

Web Search API v7 query parameters
Article • 04/07/2023

The following are the query parameters that requests may include. The Required column
indicates whether you must specify the parameter. You must URL encode the query
parameter values.

Name Value Type Required

answerCount The number of answers that you want the
response to include. The answers that Bing
returns are based on ranking. For example, if Bing
returns webpages, images, videos, and
relatedSearches for a request and you set this
parameter to two (2), the response includes
webpages and images.

If you included the responseFilter query
parameter in the same request and set it to
webpages and news, the response would include
only webpages.

For information about promoting a ranked
answer into the response, see the promote query
parameter.

Unsigned
Integer

No

Name Value Type Required

cc A 2-character country code of the country where
the results come from. For a list of possible
values, see Market codes.

If you set this parameter, you must also specify
the Accept-Language header. Bing uses the first
supported language it finds in the specified
languages and combines it with the country code
to determine the market to return results for. If
the languages list does not include a supported
language, Bing finds the closest language and
market that supports the request. Or, Bing may
use an aggregated or default market for the
results.

To know which market Bing used, get the
BingAPIs-Market header in the response.

Use this query parameter and the Accept-
Language header only if you specify multiple
languages. Otherwise, you should use the mkt
and setLang query parameters.

This parameter and the mkt query parameter are
mutually exclusive — do not specify both.

String No

count The number of search results to return in the
response. The default is 10 and the maximum
value is 50. The actual number delivered may be
less than requested.

Use this parameter along with the offset
parameter to page results. For more information,
see Paging results.

For example, if your user interface displays 10
search results per page, set count to 10 and
offset to 0 to get the first page of results. For
each subsequent page, increment offset by 10
(for example, 0, 10, 20). It is possible for multiple
pages to include some overlap in results. This
parameter affects only webpage results and has
no impact on the number of results that Bing
returns for other answers in the search results
such as images or videos.

UnsignedShort No

Name Value Type Required

freshness Filter search results by the following case-
insensitive age values:

Day — Return webpages that Bing
discovered within the last 24 hours.

Week — Return webpages that Bing
discovered within the last 7 days.

Month — Return webpages that Bing
discovered within the last 30 days.

To get articles discovered by Bing during a
specific timeframe, specify a date range in the
form, YYYY-MM-DD..YYYY-MM-DD. For example,
&freshness=2019-02-01..2019-05-30 . To limit the
results to a single date, set this parameter to a
specific date. For example, &freshness=2019-02-
04 .

String No

mkt The market where the results come from.
Typically, mkt is the country where the user is
making the request from. However, it could be a
different country if the user is not located in a
country where Bing delivers results. The market
must be in the form <language>-
<country/region>. For example, en-US. The string
is case insensitive. For a list of possible market
values, see Market codes.

NOTE: If known, you are encouraged to always
specify the market. Specifying the market helps
Bing route the request and return an appropriate
and optimal response. If you specify a market
that is not listed in Market codes, Bing uses a
best fit market code based on an internal
mapping that is subject to change.

To know which market Bing used, get the
BingAPIs-Market header in the response.

This parameter and the cc query parameter are
mutually exclusive — do not specify both.

String No

Name Value Type Required

offset The zero-based offset that indicates the number
of search results to skip before returning results.
The default is 0. The offset should be less than
(totalEstimatedMatches - count).

Use this parameter along with the count
parameter to page results. For example, if your
user interface displays 10 search results per page,
set count to 10 and offset to 0 to get the first
page of results. For each subsequent page,
increment offset by 10 (for example, 0, 10, 20). It
is possible for multiple pages to include some
overlap in results.

Unsigned
Short

No

Name Value Type Required

promote A comma-delimited list of answers that you want
the response to include regardless of their
ranking. For example, if you set answerCount) to
two (2) so Bing returns the top two ranked
answers, but you also want the response to
include news, you'd set promote to news. If the
top ranked answers are webpages, images,
videos, and relatedSearches, the response
includes webpages and images because news is
not a ranked answer. But if you set promote to
video, Bing would promote the video answer into
the response and return webpages, images, and
videos.

The answers that you want to promote do not
count against the answerCount limit. For example,
if the ranked answers are news, images, and
videos, and you set answerCount to 1 and
promote to news, the response contains news and
images. Or, if the ranked answers are videos,
images, and news, the response contains videos
and news.

The following are the possible values:

Computation
Entities
Images
News
RelatedSearches
SpellSuggestions
TimeZone
Videos
Webpages

NOTE: Use only if you specify the answerCount
parameter.

String No

Name Value Type Required

q The user's search query term. The term may not
be empty.

The term may contain Bing Advanced
Operators . For example, to limit results to a
specific domain, use the site: operator
(q=fishing+site:fishing.contoso.com). Note that
the results may contain results from other sites
depending on the number of relevant results
found on the specified site.

String Yes

https://support.microsoft.com/topic/advanced-search-options-b92e25f1-0085-4271-bdf9-14aaea720930

Name Value Type Required

responseFilter A comma-delimited list of answers to include in
the response. If you do not specify this
parameter, the response includes all search
answers for which there's relevant data.

The following are the possible filter values:

Computation
Entities
Images
News
Places
RelatedSearches
SpellSuggestions
TimeZone
Translations
Videos
Webpages

If you want to exclude specific types of content,
such as images, from the response, you can
exclude them by prefixing a hyphen (minus) to
the responseFilter value. For example,
&responseFilter=-images .

Although you may use this filter to get a single
answer, you should instead use the answer-
specific endpoint in order to get richer results.
For example, to receive only images, send the
request to one of the Image Search API
endpoints.

The RelatedSearches and SpellSuggestions
answers do not support a separate endpoint like
the Image Search API does (only the Web Search
API returns them).

To include answers that would otherwise be
excluded because of ranking, see the promote
query parameter.

String No

https://learn.microsoft.com/en-us/bing/search-apis/bing-image-search/reference/endpoints

Name Value Type Required

safeSearch Used to filter webpages, images, and videos for
adult content. The following are the possible filter
values:

Off — Returns content with adult text and
images but not adult videos.
Moderate — Returns webpages with adult
text, but not adult images or videos.
Strict — Does not return adult text, images,
or videos.

The default is Moderate.

NOTE: For video results, if safeSearch is set to
Off, Bing ignores it and uses Moderate.

NOTE: If the request comes from a market that
Bing's adult policy requires that safeSearch be
set to Strict, Bing ignores the safeSearch value
and uses Strict.

NOTE: If you use the site: query operator, there
is a chance that the response may contain adult
content regardless of what the safeSearch query
parameter is set to. Use site: only if you are
aware of the content on the site and your
scenario supports the possibility of adult content.

String No

Name Value Type Required

setLang The language to use for user interface strings.
You may specify the language using either a 2-
letter or 4-letter code. Using 4-letter codes is
preferred.

For a list of supported language codes, see Bing
supported languages.

Bing loads the localized strings if setlang
contains a valid 2-letter neutral culture code (fr)
or a valid 4-letter specific culture code (fr-ca). For
example, for fr-ca, Bing loads the fr neutral
culture code strings.

If setlang is not valid (for example, zh) or Bing
doesn’t support the language (for example, af, af-
na), Bing defaults to en (English).

To specify the 2-letter code, set this parameter to
an ISO 639-1 language code.

To specify the 4-letter code, use the form
<language>-<country/region> where
<language> is an ISO 639-1 language code
(neutral culture) and <country/region> is an ISO
3166 country/region (specific culture) code. For
example, use en-US for United States English.

Although optional, you should always specify the
language. Typically, you set setLang to the same
language specified by mkt unless the user wants
the user interface strings displayed in a different
language.

This parameter and the Accept-Language header
are mutually exclusive — do not specify both.

A user interface string is a string that's used as a
label in a user interface. There are few user
interface strings in the JSON response objects.
Also, any links to Bing.com properties in the
response objects use the specified language.

String No

Name Value Type Required

textDecorations A Boolean value that determines whether display
strings in the results should contain decoration
markers such as hit highlighting characters. If
true, the strings may include markers. The default
is false.

To specify whether to use Unicode characters or
HTML tags as the markers, see the textFormat
query parameter.

For information about hit highlighting, see Hit
highlighting.

Boolean No

textFormat The type of markers to use for text decorations
(see the textDecorations query parameter).

The following are the possible values:

Raw — Use Unicode characters to mark
content that needs special formatting. The
Unicode characters are in the range E000
through E019. For example, Bing uses E000
and E001 to mark the beginning and end of
query terms for hit highlighting.

HTML — Use HTML tags to mark content
that needs special formatting. For example,
use tags to highlight query terms in
display strings.

The default is Raw.

For a list of markers and information about
processing strings with the embedded Unicode
characters, see Hit highlighting.

For display strings that contain escapable HTML
characters such as <, >, and &, if textFormat is
set to HTML, Bing escapes the characters as
appropriate (for example, < is escaped to <).

String No

Web Search API v7 headers
Article • 02/21/2024

The following are the headers that a request and response may include.

Header Required Description

Accept No The default media type is application/json. To specify that the
response use JSON-LD , set the Accept header to
application/ld+json.

Accept-
Language

No A comma-delimited list of languages to use for user interface strings.
The list is in decreasing order of preference. For more information,
including expected format, see RFC2616 .

This header and the setLang query parameter are mutually exclusive
— do not specify both.

If you set this header, you must also specify the cc query parameter.
To determine the market to return results for, Bing uses the first
supported language it finds from the list and combines it with the cc
parameter value. If the list does not include a supported language,
Bing finds the closest language and market that supports the request
or it uses an aggregated or default market for the results. To
determine the market that Bing used, see the BingAPIs-Market
header.

Use this header and the cc query parameter only if you specify
multiple languages. Otherwise, use the mkt and setLang query
parameters.

A user interface string is a string that's used as a label in a user
interface. There are few user interface strings in the JSON response

７ Note

Remember that the Terms of Use require compliance with all applicable laws,
including regarding use of these headers. For example, in certain jurisdictions, such
as Europe, there are requirements to obtain user consent before placing certain
tracking devices on user devices.

Request headers

ﾉ Expand table

http://json-ld.org/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Header Required Description

objects. Any links to Bing.com properties in the response objects will
apply the specified language.

Ocp-Apim-
Subscription-
Key

Yes The subscription key that you received when you signed up for this
service in Azure Portal while creating a Bing resource.

Pragma No By default, Bing returns cached content, if available. To prevent Bing
from returning cached content, set the Pragma header to no-cache
(for example, Pragma: no-cache).

User-Agent No The user agent originating the request. Bing uses the user agent to
provide mobile users with an optimized experience. Although
optional, you are encouraged to always specify this header.

The user-agent should be the same string that any commonly used
browser sends. For information about user agents, see RFC 2616 .

The following are examples of user-agent strings:

Android — Mozilla/5.0 (Linux; U; Android 2.3.5; en-us; SCH-
I500 Build/GINGERBREAD) AppleWebKit/533.1 (KHTML; like
Gecko) Version/4.0 Mobile Safari/533.1

iPhone — Mozilla/5.0 (iPhone; CPU iPhone OS 6_1 like Mac OS
X) AppleWebKit/536.26 (KHTML; like Gecko) Mobile/10B142
iPhone4;1 BingWeb/3.03.1428.20120423

PC — Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0;
Touch; rv:11.0) like Gecko

iPad — Mozilla/5.0 (iPad; CPU OS 7_0 like Mac OS X)
AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0
Mobile/11A465 Safari/9537.53

X-MSEdge-
ClientID

No This header is used by both requests and responses.

Bing uses this header to provide users with consistent behavior
across Bing API calls. Bing often flights new features and
improvements, and it uses the client ID as a key for assigning traffic
on different flights. If you do not use the same client ID for a user
across multiple requests, then Bing may assign the user to multiple
conflicting flights. Being assigned to multiple conflicting flights can
lead to an inconsistent user experience. For example, if the second
request has a different flight assignment than the first, the
experience may be unexpected. Also, Bing can use the client ID to
tailor web results to that client ID’s search history, providing a richer
experience for the user.

https://portal.azure.com/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Header Required Description

Bing also uses this header to help improve result rankings by
analyzing the activity generated by a client ID. The relevance
improvements help with better quality of results delivered by Bing
APIs and in turn enables higher click-through rates for the API
consumer.

IMPORTANT: Although optional, you should consider this header
required. Persisting the client ID across multiple requests for the
same end user and device combination enables: 1) the API consumer
to receive a consistent user experience, and 2) higher click-through
rates via better quality of results from the Bing APIs.

The following are the basic usage rules that apply to this header:

Each user that uses your application on the device must have a
unique, Bing-generated client ID.

If you do not include this header in the request, Bing generates
an ID and returns it in the X-MSEdge-ClientID response
header. The only time that you should NOT include this header
in a request is the first time the user uses your app on that
device.

ATTENTION: You must ensure that this Client ID is not linkable
to any authenticated user account information.

Use the client ID for each Bing API request that your app
makes for this user on the device.

Persist the client ID. To persist the ID in a browser app, use a
persistent HTTP cookie to ensure the ID is used across all
sessions. Do not use a session cookie. For other apps such as
mobile apps, use the device's persistent storage to persist the
ID.

The next time the user uses your app on that device, get the
client ID that you persisted.

NOTE: Bing responses may or may not include this header. If the
response includes this header, capture the client ID and use it for all
subsequent Bing requests for the user on that device.

NOTE: If you include the X-MSEdge-ClientID, you must not include
cookies in the request.

Header Required Description

X-MSEdge-
ClientIP

No The IPv4 or IPv6 address of the client device. The IP address is used
to discover the user's location. Bing uses the location information to
determine safe search behavior.

NOTE: Although optional, you are encouraged to always specify this
header and the X-Search-Location header.

Do not obfuscate the address (for example, by changing the last
octet to 0). Obfuscating the address results in the location not being
anywhere near the device's actual location, which may result in Bing
serving erroneous results.

X-Search-
Location

No A semicolon-delimited list of key/value pairs that describe the client's
geographical location. Bing uses the location information to
determine safe search behavior and to return relevant local content.
Specify the key/value pair as <key>:<value>. The following are the
keys that you use to specify the user's location.

lat — Required. The latitude of the client's location, in degrees.
The latitude must be greater than or equal to -90.0 and less
than or equal to +90.0. Negative values indicate southern
latitudes and positive values indicate northern latitudes.

long — Required. The longitude of the client's location, in
degrees. The longitude must be greater than or equal to
-180.0 and less than or equal to +180.0. Negative values
indicate western longitudes and positive values indicate
eastern longitudes.

re — Required. The radius, in meters, which specifies the
horizontal accuracy of the coordinates. Pass the value returned
by the device's location service. Typical values might be 22m
for GPS/Wi-Fi, 380m for cell tower triangulation, and 18,000m
for reverse IP lookup.

ts — Optional. The UTC UNIX timestamp of when the client
was at the location. (The UNIX timestamp is the number of
seconds since January 1, 1970.)

head — Optional. The client's relative heading or direction of
travel. Specify the direction of travel as degrees from 0
through 360, counting clockwise relative to true north. Specify
this key only if the sp key is nonzero.

sp — Optional. The horizontal velocity (speed), in meters per
second, that the client device is traveling.

Header Required Description

alt — Optional. The altitude of the client device, in meters.

are — Optional. The radius, in meters, that specifies the vertical
accuracy of the coordinates. Specify this key only if you specify
the alt key.

disp — Optional. The user’s geographic location in the form,
disp:<City, State>. For example, disp:Seattle, Washington. This
is the display text version of the user’s location that you
specified using the lat/long keys. Remember to URL encode
the location. For example, Seattle%2C%20Washington.

NOTE: The order that you specify the parameters is import. For
example, if you specify the disp parameter, the order must be: lat,
long, re, and disp.

NOTE: Bing ignores this header if the query string includes a
location. For example, if this header is set to San Francisco, but the
query is restaurants seattle, Bing returns restaurants located in
Seattle, Washington.

NOTE: Although many of the keys are optional, the more information
that you provide, the more accurate the location results are.

NOTE: Although optional, you are encouraged to always specify the
user's geographical location. Providing the location is especially
important if the client's IP address does not accurately reflect the
user's physical location (for example, if the client uses VPN). For
optimal results, you should include this header and the X-Search-
ClientIP header, but at a minimum, you should include this header.

Header Description

BingAPIs-
Market

The market used by the request. The form is <languageCode>-<countryCode>. For
example, en-US.

This value may be different from the value you specify in the request's mkt query
parameter if that market value is not listed in Market codes. The same is true if you
specify values for cc and Accept-Language that can't be reconciled.

BingAPIs-
TraceId

The ID of the log entry that contains the details of the request. When an error occurs,
capture this ID. If you are not able to determine and resolve the issue, include this ID

Response headers

ﾉ Expand table

Header Description

along with the other information that you provide the Support team.

Retry-
After

The response includes this header if you exceed the number of queries allowed per
second (QPS) or per month (QPM). The header contains the number of seconds that
you must wait before sending another request.

X-
MSEdge-
ClientID

This header is used by both requests and responses.

Bing uses this header to provide users with consistent behavior across Bing API calls.
Bing often flights new features and improvements, and it uses the client ID as a key
for assigning traffic on different flights. If you do not use the same client ID for a
user across multiple requests, then Bing may assign the user to multiple conflicting
flights. Being assigned to multiple conflicting flights can lead to an inconsistent user
experience. For example, if the second request has a different flight assignment than
the first, the experience may be unexpected. Also, Bing can use the client ID to tailor
web results to that client ID’s search history, providing a richer experience for the
user.

Bing also uses this header to help improve result rankings by analyzing the activity
generated by a client ID. The relevance improvements help with better quality of
results delivered by Bing APIs and in turn enables higher click-through rates for the
API consumer.

IMPORTANT: Although optional, you should consider this header required. Persisting
the client ID across multiple requests for the same end user and device combination
enables: 1) the API consumer to receive a consistent user experience, and 2) higher
click-through rates via better quality of results from the Bing APIs.

The following are the basic usage rules that apply to this header.

Each user that uses your application on the device must have a unique, Bing
generated client ID.

If you do not include this header in the request, Bing generates an ID and
returns it in the X-MSEdge-ClientID response header. The only time that you
should NOT include this header in a request is the first time the user uses your
app on that device.

ATTENTION: You must ensure that this Client ID is not linkable to any
authenticated user account information.

Use the client ID for each Bing API request that your app makes for this user
on the device.

Persist the client ID. To persist the ID in a browser app, use a persistent HTTP
cookie to ensure the ID is used across all sessions. Do not use a session cookie.
For other apps such as mobile apps, use the device's persistent storage to
persist the ID.

Header Description

The next time the user uses your app on that device, get the client ID that you
persisted.

NOTE: Bing responses may or may not include this header. If the response includes
this header, capture the client ID and use it for all subsequent Bing requests for the
user on that device.

NOTE: If you include the X-MSEdge-ClientID, you must not include cookies in the
request.

If you're using JavaScript, your browser's built-in security features (CORS) might prevent
you from accessing the response header values. To handle this case, host a server-side
script on the same domain as the Web page that uses the Bing Web Search API. This
script should make API calls upon request from the Web page JavaScript and pass all
results, including headers, back to the client. Since the two resources (page and script)
share an origin, the headers are accessible to the JavaScript on the Web page.

This approach also protects your API key from exposure to the public, since only the
server-side script needs it. The script can use another method to make sure the request
is authorized.

Accessing headers in JavaScript

Market and language codes used by
Bing Web Search API
Article • 01/29/2024

The following table lists the market code values that you set the mkt query parameter
to. Bing returns content for only these markets. The list is subject to change.

For a list of country codes that you may set the cc query parameter to, see Country
codes.

Country/Region Language Market code

Argentina Spanish es-AR

Australia English en-AU

Austria German de-AT

Belgium Dutch nl-BE

Belgium French fr-BE

Brazil Portuguese pt-BR

Canada English en-CA

Canada French fr-CA

Chile Spanish es-CL

Denmark Danish da-DK

Finland Finnish fi-FI

France French fr-FR

Germany German de-DE

Hong Kong SAR Traditional Chinese zh-HK

India English en-IN

Indonesia English en-ID

Italy Italian it-IT

ﾉ Expand table

Country/Region Language Market code

Japan Japanese ja-JP

Korea Korean ko-KR

Malaysia English en-MY

Mexico Spanish es-MX

Netherlands Dutch nl-NL

New Zealand English en-NZ

Norway Norwegian no-NO

People's republic of China Chinese zh-CN

Poland Polish pl-PL

Republic of the Philippines English en-PH

Russia Russian ru-RU

South Africa English en-ZA

Spain Spanish es-ES

Sweden Swedish sv-SE

Switzerland French fr-CH

Switzerland German de-CH

Taiwan Traditional Chinese zh-TW

Türkiye Turkish tr-TR

United Kingdom English en-GB

United States English en-US

United States Spanish es-US

The following table lists the country codes that you may set the cc query parameter to.
The list is subject to change.

Country codes

ﾉ Expand table

Country/Region Country Code

Argentina AR

Australia AU

Austria AT

Belgium BE

Brazil BR

Canada CA

Chile CL

Denmark DK

Finland FI

France FR

Germany DE

Hong Kong SAR HK

India IN

Indonesia ID

Italy IT

Japan JP

Korea KR

Malaysia MY

Mexico MX

Netherlands NL

New Zealand NZ

Norway NO

People's Republic of China CN

Poland PL

Portugal PT

Republic of the Philippines PH

Country/Region Country Code

Russia RU

Saudi Arabia SA

South Africa ZA

Spain ES

Sweden SE

Switzerland CH

Taiwan TW

Türkiye TR

United Kingdom GB

United States US

The following table lists the Bing supported languages that you may set the setLang
query parameter to. The list is subject to change.

Supported Languages Language Code

Arabic ar

Basque eu

Bengali bn

Bulgarian bg

Catalan ca

Chinese (Simplified) zh-hans

Chinese (Traditional) zh-hant

Croatian hr

Czech cs

Danish​ da

Bing supported language codes

ﾉ Expand table

Supported Languages Language Code

Dutch​ nl

English en

English-United Kingdom en-gb

Estonian et

Finnish fi

French fr

Galician gl

German de

Gujarati gu

Hebrew he

Hindi hi

Hungarian hu

Icelandic is

Italian it

Japanese jp

Kannada kn

Korean ko

Latvian lv

Lithuanian lt

Malay ms

Malayalam ml

Marathi mr

Norwegian (Bokmål) nb

Polish​ pl

Portuguese (Brazil)​ pt-br

Portuguese (Portugal)​ pt-pt

Supported Languages Language Code

Punjabi​ pa

Romanian ro

Russian ru

Serbian (Cyrylic) sr

Slovak​ sk

Slovenian​ sl

Spanish es

Swedish sv

Tamil ta

Telugu te

Thai th

Turkish tr

Ukrainian uk

Vietnamese vi

HTTP status codes that Bing Web Search
API may return
Article • 06/07/2023

The following are the possible HTTP status codes that a request may return.

Status
code

Description

200 Success.

400 One of the query parameters is missing or not valid.

401 The subscription key is missing or is not valid.

403 The user is authenticated (for example, they used a valid subscription key) but they
don’t have permission to the requested resource.

Bing may also return this status if the caller exceeded their queries per day or queries
per month quota.

410 The request used HTTP instead of the HTTPS protocol. HTTPS is the only supported
protocol.

429 The caller exceeded their queries per second quota.

500 Unexpected server error.

If the request fails, the response contains an ErrorResponse object, which contains a list
of Error objects that describe what caused the error. If the error is related to a
parameter, the parameter field identifies the parameter that caused the issue. And if the
error is related to a parameter value, the value field identifies the value that is not valid.

JSON

７ Note

If you are using the Bing APIs, bring your own LLM S15 instance and expect to
exceed the 1M queries per day quota, you should consider implementing
monitoring to detect when you are nearing your limit so you can automate
switching to the next tier, S16.

{

 "_type": "ErrorResponse",

The following are the possible error code and sub-error code values.

Error code SubCode Description

ServerError UnexpectedError

ResourceError

NotImplemented

HTTP status code is 500.

InvalidRequest ParameterMissing

ParameterInvalidValue

HttpNotAllowed

Blocked

Bing returns InvalidRequest whenever any
part of the request is not valid. For
example, a required parameter is missing
or a parameter value is not valid.

If the error is ParameterMissing or
ParameterInvalidValue, the HTTP status
code is 400.

If you use the HTTP protocol instead of
HTTPS, Bing returns HttpNotAllowed, and
the HTTP status code is 410.

 "errors": [

 {

 "code": "InvalidRequest",

 "subCode": "ParameterMissing",

 "message": "Required parameter is missing.",

 "parameter": "q"

 }

]

}

{

 "_type": "ErrorResponse",

 "errors": [

 {

 "code": "InvalidAuthorization",

 "subCode": "AuthorizationMissing",

 "message": "Authorization is required.",

 "moreDetails": "Subscription key is not recognized."

 }

]

}

Error codes

Error code SubCode Description

RateLimitExceeded No sub-codes Bing returns RateLimitExceeded whenever
you exceed your queries per second (QPS)
or queries per month (QPM) quota.

If you exceed QPS, Bing returns HTTP
status code 429, and if you exceed QPM,
Bing returns 403.

InvalidAuthorization AuthorizationMissing

AuthorizationRedundancy

Bing returns InvalidAuthorization when
Bing cannot authenticate the caller. For
example, the Ocp-Apim-Subscription-Key
header is missing or the subscription key
is not valid.

Redundancy occurs if you specify more
than one authentication method.

If the error is InvalidAuthorization, the
HTTP status code is 401.

InsufficientAuthorization AuthorizationDisabled

AuthorizationExpired

Bing returns InsufficientAuthorization
when the caller does not have permissions
to access the resource. This can occur if
the subscription key has been disabled or
has expired.

If the error is InsufficientAuthorization, the
HTTP status code is 403.

Entity types used by Bing Web Search
API
Article • 10/28/2020

This section contains the list entity hints that the EntityPresentationInfo object's
entityTypeHint field can be set to. The hints are grouped by category of entities.

Generic
Person
Place
Media
Organization

Attraction
City
Continent
Country
Hotel
House
LocalBusiness
Locality
MinorRegion
Neighborhood
Other
PointOfInterest
PostalCode
RadioStation
Region
Restaurant
State
StreetAddress
SubRegion
TouristAttraction
Travel

Base entity types

Place base type entity hints

https://learn.microsoft.com/en-us/bing/search-apis/bing-entity-search/reference/response-objects#entitypresentationinfo

Book
Movie
TelevisionSeason
TelevisionShow
VideoGame

Event

Actor
Artist
Attorney

CollegeOrUniversity
School
Speciality

Animal
Car
Drug
Food
Product
SportsTeam

Media base type entity hints

Event-related entity hints

Profession-related entity hints

Education-related entity hints

Other entity hints

Create Bing Search resource through
Azure Marketplace
Article • 02/15/2024

Here are the steps to create a Bing Search Service resource through Azure Marketplace
and get your key.

1. Go to Azure Portal and sign in with your Microsoft account. If you don't have a
Microsoft account, click Create one!.

2. From the portal, type Bing in the search box.
3. Under Marketplace in the search results, select the Bing service you're interested in

(for example, Bing Search or Bing Custom Search).
4. If you have a free trial or pay account, skip to Create your Bing resource.
5. On the Create a free account splash screen, click Start free.
6. Next, you have the option of continuing with the free trial (click Start free again) or

paying for an Azure subscription (click Or buy now). You can always start with the
free trial and pay for a subscription later.

If you clicked Start free, simply follow the sign up process.

1. Provide your name and phone number. The process includes this step only if your
Microsoft account profile doesn't include your name and phone number.

2. Next, verify your identify and phone number. Enter a phone number, if it's not
already set. Choose to verify the phone number by using a text verification code or
by receiving a phone call.

3. Add your credit card information and click Next. Don't worry, you won't be
charged during the trial period. Read the No automatic charges section in the
right pane.

4. Click the check box if you agree to the subscription agreement, offer details, and
privacy statement.

5. Finally, click Sign up.

You should be redirected back to Azure Portal where you can create a resource and get
your key. If Azure wasn't able to redirect you, go to Azure Portal and sign in with your
Microsoft account. Back in the portal, type Bing in the search box. Under Marketplace in
the search results, select the Bing service you're interested in (for example, Bing Search
or Bing Custom Search).

Free trial option

https://portal.azure.com/
https://portal.azure.com/

The following steps walk you through creating a Bing Search resource:

1. Enter a resource name. Names may contain alphanumeric characters and dashes (-)
only.

2. The Subscription field could be set to Free Trial or select your appropriate
subscription.

3. In the Pricing tier dropdown, select Free F1 package. The other packages are for
the pay model. To view package options and pricing for the pay model, click View
full pricing details.

4. If you have an existing resource group that you want to add this resource to, select
it from the Resource group dropdown list. Otherwise, click Create new to create a
resource group.

5. Select a location from the Resource group location dropdown. The location is
where the metadata associated with your account resides and has no impact on
runtime availability.

6. Click the check the box to indicate that you have read and understood the notice.
7. Click Create. This starts the deployment process, which can take several minutes.
8. When the deployment process completes, click Go to resource.
9. To get your subscription key to use in API calls, click Keys and Endpoint in the left

pane.

Create your Bing resource

７ Note

While creating Bing Custom Search resource ensure Bing Custom Search is
selected as top level service and not "Bing Search".

Learn about calling the Bing Web Search API.
Learn about the quickstarts and samples that are available to help you get up and
running fast.
Review Web Search API v7 reference documentation.

Next steps

Bing Search API use and display
requirements
Article • 01/29/2024

These use and display requirements apply to any implementation of the content and
associated information from the following Bing Search APIs, including relationships,
metadata, and other signals.

Bing Custom Search
Bing Entity Search
Bing Image Search
Bing News Search
Bing Video Search
Bing Visual Search
Bing Web Search
Bing Spell Check
Bing Autosuggest

Term Description

Answer A category of results returned in a response. For example, a response from the Bing
Web Search API can include answers in the categories of webpage results, image,
video, and news.

Response Any and all answers and associated data received in response to a single call to a
Search API.

Result An item of information in an answer. For example, the set of data connected with a
single news article is a result in a news answer.

７ Note

The Use and Display requirements on this page apply to the Bing Search APIs. For
Use and Display Requirements specific to using the Bing Search APIs, with your
LLM, refer here.

Definitions

ﾉ Expand table

Term Description

Search
APIs

Collectively, the Bing Custom Search, Entity Search, Image Search, News Search,
Video Search, Visual Search, and Web Search APIs.

Do not:

Copy, store, or cache any data you receive from the Bing Spell Check or Bing
Autosuggest APIs.
Use data you receive from Bing Spell Check or Bing Autosuggest APIs as part of
any machine learning or similar algorithmic activity. Do not use this data to train,
evaluate, or improve new or existing services that you or third parties might offer.
Display data received from the Bing Spell Check or Bing Autosuggest APIs on the
same page as content from any general web search engine, large language models
or advertising network.

All data returned in responses may only be used in internet search experiences. An
internet search experience means the content displayed:

Is relevant and responsive to the end user's direct query, or other indication of
their search interest and intent (for example, a user-indicated search query).
Helps users find and navigate to the response's data sources. For example,
providing clickable links from hyperlinks in the response.
Includes multiple results for the user to select from.
Are in a placement that enables users to search.
Includes a visible indication that the content is an internet search result. For
example, a statement that the content is "from the web".

Bing Spell Check and Bing Autosuggest API
restrictions

Bing Search APIs

７ Note

The requirements in this section apply to only the Search APIs, which does not
include Bing Spell Check or Bing Autosuggest.

Internet search experience requirements

Includes any other appropriate measures to ensure your Bing Search API data does
not violate any applicable laws or rights of, or duties or obligations owed by you
to, third parties. Consult your legal advisors to determine what measures may be
appropriate.

The only exception to these internet search experience requirements is for URL
discovery, as described later in this article.

Do not:

Copy, store, or cache any data from responses (except retention to the extent
permitted by continuity of service).

Use data received from the Search APIs as part of any machine learning or similar
algorithmic activity. Do not use this data to train, evaluate, or improve new or
existing services that you or third parties might offer.

Display data received from the Search APIs on the same page as content from any
general web search engine, large language models or advertising network.

Modify the results content (other than to reformat them in a way that does not
violate any other requirement), unless required by law or agreed to by Microsoft.

Omit attribution information and URLs associated with results content.

Reorder, including by omission, the results displayed in an answer when an order
or ranking is provided, unless required by law or agreed to by Microsoft.

Display content that was not included within any part of a response in a way that
would lead a user to believe that content is part of the response.

Use Responses for websites where you are restricted by the website from using
such content, including but not limited to, where your crawler has been blocked
via robots.txt.

Display advertising that is not provided by Microsoft on any page that displays any
part of a response.

Restrictions

７ Note

This requirement does not apply to reordering implemented through the
portal for the Bing Custom Search API.

Display any advertising on pages with responses:
From the Bing Image, News Search, Video Search, or Visual Search APIs, or
That are filtered or limited primarily (or solely) to image, news and/or video or
visual search results.

Do:

Prominently include a functional hyperlink to the Microsoft Privacy Statement ,
near each point in the user experience (UX) that offers a user the ability to input a
search query. Label the hyperlink Microsoft Privacy Statement.
Prominently display Bing branding, consistent with the Bing Trademark Usage
Guidelines , near each point in the UX that offers a user the ability to input a
search query. Such branding must clearly state to the user that Microsoft is
powering the internet search experience.
Attribute each response (or portion of a response) displayed from the Bing Web
Search, Entity Search, Image Search, News Search, Video Search, and Visual Search
APIs to Microsoft, unless Microsoft specifies otherwise in writing for your use. This
is described in Bing Trademark Usage Guidelines .

Do not:

Attribute responses (or portions of responses) displayed from the Bing Custom
Search API to Microsoft, unless Microsoft specifies otherwise in writing for your
particular use.

If you enable a user to transfer a response from a Search API to another user, such as
through a messaging app or social media posting, the following apply:

Transferred responses must:
Consist of content that is unmodified from the content of the responses
displayed to the transferring user. Formatting changes are permissible.
Not include any data in metadata form.
Display language indicating that a Bing Web, Image, News, Video, or Visual API
response was obtained through an internet search experience powered by Bing.
For example, you can display language such as "Powered by Bing" or "Learn
more about this image on Bing," or you can use the Bing logo.
Display language indicating that a Bing Custom Search API response was
obtained through an internet search experience. For example, you can display

Notices and branding

Transferring responses

https://go.microsoft.com/fwlink/?LinkId=521839
https://www.microsoft.com/legal/intellectualproperty/trademarks
https://www.microsoft.com/legal/intellectualproperty/trademarks

language such as "Learn more about this search result.”
Prominently display the full query used to generate the response.
Include a prominent link or similar attribution to the underlying source of the
response, either directly or through the search engine (bing.com, m.bing.com,
or your custom search service, as applicable).

You may not automate the transfer of responses. A transfer must be initiated by a
user action clearly evidencing an intent to transfer a response.
You may only enable a user to transfer responses that were displayed in response
to the transferring user's query.

Do not copy, store, or cache any data from Search API responses. However, to enable
continuity of service access and data rendering, you may retain results solely under the
following conditions:

You may enable a user to retain results on a device for the lesser of (i) 24 hours from the
time of the query, or (ii) until a user submits another query for updated results, provided
that retained results may be used only:

To enable the user to access results previously returned to that user on that device
(for example, in case of service interruption).
To store results returned for your proactive query personalized in anticipation of
the user's needs, based on that user's signals (for example, in case of anticipated
service interruption).

You may retain results specific to a single user securely on a server you control, and
display the retained results only:

To enable the user to access a historical report of results previously returned to
that user in your solution. The results may not be (i) retained for more than 21 days
from the time of the end user's initial query, and (ii) displayed in response to a
user's new or repeated query.
To store results returned for your proactive query personalized in anticipation of
the user's needs, based on that user's signals. You can store these results for the
lesser of (i) 24 hours from the time of the query, or (ii) until a user submits another
query for updated results.

Continuity of service

Device

Server

Whenever retained, results for a specific user cannot be commingled with results for
another user. That is, the results of each user must be retained and delivered separately.

For all presentation of retained results:

Include a clear, visible notice of the time the query was sent.
Present the user with a button or similar means to re-query and obtain updated
results.
Retain the Bing branding in the presentation of the results.
Delete (and refresh with a new query if needed) the stored results within the
timeframe specified.

You may only use search responses in a non-internet search experience for the sole
purpose of discovering URLs of sources of information responsive to a query from your
user or customer. You may copy such URLs in a report or similar response you provide:

Only to that user or customer, in response to that query.
Only if it includes significant additional valuable content, relevant to the query.

The previous sections of Search APIs use and display requirements do not apply to this
non-display URL discovery use, except for the following:

Do not cache, copy, or store any data or content from, or derived from, the search
response, other than the limited URL copying described previously.
Ensure your use of data (including the URLs) received from the Search APIs does
not violate any applicable laws or rights of, or duties or obligations owed by you
to, third parties.
Do not use the data (including the URLs) received from the Search APIs as part of
any search index or machine learning or similar algorithmic activity. Do not use this
data to create train, evaluate, or improve services that you or third parties might
offer.

With respect to any personal data subject to the European Union General Data
Protection Regulation (GDPR) and that is processed in connection with calls to the
Search APIs, Bing Spell Check API, or Bing Autosuggest API, you understand that you

General

Non-display URL discovery

GDPR compliance

and Microsoft are independent data controllers under the GDPR. You are independently
responsible for your compliance with the GDPR.

Use and Display requirements of Bing
Search APIs, with your LLM
Article • 01/29/2024

These Bing Search APIs, with your LLM use and display requirements apply to any
implementation of the content and associated information from the following Bing
Search APIs, including relationships, metadata, and other signals. Specific terms apply to
use of Bing Search APIs, with your LLM used in connection with large language models
(LLMs), see "LLM use and display requirements" below.

Bing Entity Search
Bing Image Search
Bing News Search
Bing Video Search
Bing Web Search
Bing Spell Check
Bing Autosuggest

Note use of Bing Custom Search and Bing Visual Search is not included in Bing Search
APIs, with your LLM.

Term Description

Answer A category of results returned in a response. For example, a response from the Bing
Web Search API can include answers in the categories of webpage results, image,
video, and news.

Grounding The process of allowing an LLM model to temporarily access and use the Web
Results to formulate or augment an LLM response for a single query and user, but
not for the purposes of training the LLM model with such data for future use.

７ Note

The Use and Display requirements on this page apply to the Bing Search APIs, with
your LLM. For Use and Display Requirements specific to using the Bing Search APIs,
refer here.

Definitions

ﾉ Expand table

Term Description

LLM(s) Large language model(s).

Response Any and all answers and associated data received in response to a single call to a
Search API.

Result An item of information in an answer. For example, the set of data connected with a
single news article is a result in a news answer.

Search
APIs

Collectively, Entity Search, Image Search, News Search, Video Search, and Web
Search APIs.

Web
Results

The title, URL and snippet for the top ten webpage results returned from the Bing
Web Search API.

Do not:

Copy, store, or cache any data you receive from the Bing Spell Check or Bing
Autosuggest APIs.
Use data you receive from the Bing Spell Check or Bing Autosuggest APIs as part
of any machine learning or similar algorithmic activity. Do not use this data to
train, evaluate, or improve new or existing services that you or third parties might
offer.
Display data received from the Bing Spell Check or Bing Autosuggest APIs on the
same page as content from any general web search engine, LLMs (except as
permitted below) or advertising network.
Attribute to Microsoft responses (or parts of responses) displayed from the Bing
Spell Check or Bing Autosuggest APIs, unless Microsoft specifies otherwise in
writing for your particular use.

Note:

The requirements in this section apply to only the Search APIs, which does not include
Bing Spell Check or Bing Autosuggest. This section applies to use and display of
Responses from the Search APIs.

Bing Spell Check and Bing Autosuggest API
restrictions

Bing Search APIs

When using in connection with LLMs specific additional terms apply, see "LLM use and
display requirements" below.

All data returned in Responses may only be used in internet search experiences. An
internet search experience means the content displayed:

Is relevant and responsive to the end user's direct query, or other indication of
their search interest and intent (for example, a user-indicated search query).
Helps users find and navigate to the response's data sources. For example,
providing clickable links from hyperlinks in the response.
Includes multiple results for the user to select from.
Are in a placement that enables users to search.
Includes a visible indication that the content is an internet search result. For
example, a statement that the content is "from the web".
Includes any other appropriate measures to ensure your Bing Search API data does
not violate any applicable laws or rights of, or duties or obligations owed by you
to, third parties. Consult your legal advisors to determine what measures may be
appropriate.

Do not:

Copy, store, or cache any data from Responses.
Use data received from the Search APIs as part of any machine learning or similar
algorithmic activity. Do not use this data to train, evaluate, or improve new or
existing services that you or third parties might offer.
Display data received from the Search APIs on the same page as content from any
general web search engine, LLMs (except as permitted below) or advertising
network.
Modify the results content (other than to reformat them in a way that does not
violate any other requirement), unless required by law or agreed to by Microsoft.
Omit attribution information and URLs associated with results content.
Reorder, including by omission, the results displayed in an answer when an order
or ranking is provided, unless required by law or agreed to by Microsoft.
Attribute to Microsoft Responses (or parts of Responses) displayed from the
Search APIs, unless Microsoft specifies otherwise in writing for your particular use.
Display content that was not included within any part of a Response in a way that
would lead a user to believe that content is part of the Response.

Internet search experience requirements

Restrictions

Use Responses for websites where you are restricted by the website from using
such content, including but not limited to, where your crawler has been blocked
via robots.txt.
Display advertising that is not provided by Microsoft on any page that displays any
part of a Response.
Display any advertising on pages with Responses:

From the Bing Image, News Search, or Video Search APIs, or
That are filtered or limited primarily (or solely) to image, news and/or video
results.

Do:

Prominently include a functional hyperlink to the Microsoft Privacy Statement ,
near each point in the user experience (UX) that offers a user the ability to input a
search query. Label the hyperlink Microsoft Privacy Statement.

When using Search APIs, Bing Spell Check API, or Bing Autosuggest API in connection
with LLMs, you must follow the guidelines below:

You may only:

Display responses received from the Search APIs, Bing Spell Check API and Bing
Autosuggest API on the same webpage as content from an LLM, provided the
Search APIs, Bing Spell Check API and Bing Autosuggest API responses are clearly
separated from the LLM content (e.g. the LLM content should not be inserted in
between the Search APIs Results); and/or
Use Web Results for Grounding an LLM.

Do not:

Use any responses (including, without limitation, web, images, videos, news, entity
data, auto suggest, spell etc.) to train, evaluate or improve any LLM, including your
proprietary LLM;
Use Responses for websites where you are restricted by the website from using
such content, including but not limited to, where your crawler has been blocked

Privacy Notice

LLM use and display requirements for Search
APIs, Bing Spell Check API and Bing
Autosuggest API

https://go.microsoft.com/fwlink/?LinkId=521839

via robots.txt;
Display advertising that is not provided by Microsoft; or
Attribute the Web Results for Grounding your LLM to Microsoft, unless Microsoft
specifies otherwise in writing for your particular use.

LLM Attribution:

You must provide source attribution and a link back to each source that is used for
the content being displayed from the LLM, when using Web Results for Grounding
an LLM. The source attribution must be near the displayed LLM content.

With respect to any personal data subject to the European Union General Data
Protection Regulation (GDPR) and that is processed in connection with calls to the
Search APIs, Bing Spell Check API, or Bing Autosuggest API, you understand that you
and Microsoft are independent data controllers under the GDPR. You are independently
responsible for your compliance with the GDPR.

GDPR compliance

Release notes for Web Search API
Article • 09/27/2022

See the following sections for information about changes that were included with each
release.

Initial release of this version of Bing Web Search API. This API replaces the same API
hosted by Azure Cognitive Services, which is being phased out.

To subscribe to a package that includes this API, see Create Bing Search Service
resource. Next, get familiar with the Web Search API documentation, and be sure to
check out the quickstarts to get up and running quickly.

Things current Cognitive Services users must do prior to their subscription ending:

1. Update your application to use your Bing Search Services subscription key. Current
Cognitive Services users that want to maintain continuity of service should sign up
here for a Bing Search Services subscription before their Azure Cognitive Services
subscription ends.

2. Update your app to use the new endpoints. For the new endpoints, see Web
Search API reference.

If you use Local Business Search API, it's not available in Bing Search Services.

October 30, 2020

New to Bing Search?

Current Cognitive Services user?

https://learn.microsoft.com/en-us/azure/cognitive-services/bing-web-search/
https://learn.microsoft.com/en-us/azure/cognitive-services/bing-local-business-search/local-search-reference

	Bing Web Search API documentation
	Overview
	What is Bing Web Search?
	Compare the Bing Search APIs

	Quickstarts
	Quickstarts
	REST
	C#
	Go
	Java
	Node.js
	PHP
	Python
	Ruby

	SDKs (client library)
	C#
	Java
	Node.js
	Python

	Tutorials
	Build a single-page web app
	Display search results in rank order - C#

	Samples
	How-to guides
	Search the web
	Filter answers
	Handle the response
	Rank results
	Highlighting query terms
	Page through results
	Resize and crop thumbnails
	Throttling requests
	Get Web Search API analytics
	Upgrade from v5 to v7

	Reference
	REST
	Endpoints
	Response objects
	Query parameters
	Headers
	Market and language codes
	Error codes
	Entity types

	Resources
	Create Bing Search Service resource
	Pricing
	Terms of use
	Support
	Create support ticket
	Stack Overflow

	Use and display requirements
	Use and display requirements with your LLM
	Release notes

