
Tell us about your PDF experience.

Configure apps by using configuration
files
Article • 03/05/2025

.NET Framework gives developers and administrators control and flexibility over the way
applications run through configuration files. Configuration files are XML files that can be
changed as needed. An administrator can control which protected resources an
application can access, which versions of assemblies an application will use, and where
remote applications and objects are located. Developers can put settings in
configuration files, eliminating the need to recompile an application every time a setting
changes. This section describes what can be configured and why configuring an
application might be useful.

This article describes the syntax of configuration files and provides information about
the three types of configuration files: machine, application, and security.

Configuration files contain elements, which are logical data structures that set
configuration information. Within a configuration file, you use tags to mark the
beginning and end of an element. For example, the <runtime> element consists of
<runtime> child elements </runtime> . An empty element would be written as <runtime/>
or <runtime></runtime> .

As with all XML files, the syntax in configuration files is case-sensitive.

You specify configuration settings using predefined attributes, which are name/value
pairs inside an element's start tag. The following example specifies two attributes

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

７ Note

Managed code can use the classes in the System.Configuration namespace to read
settings from the configuration files, but not to write settings to those files.

Configuration file format

https://learn.microsoft.com/en-us/dotnet/api/system.configuration
https://aka.ms/learn-pdf-feedback

(version and href) for the <codeBase> element, which specifies where the runtime can
locate an assembly (for more information, see Specifying an Assembly's Location).

XML

The machine configuration file, Machine.config, contains settings that apply to an entire
computer. This file is located in the %runtime install path%\Config directory.
Machine.config contains configuration settings for machine-wide assembly binding,
built-in remoting channels, and ASP.NET.

The configuration system first looks in the machine configuration file for the
<appSettings> element and other configuration sections that a developer might define.
It then looks in the application configuration file. To keep the machine configuration file
manageable, it is best to put these settings in the application configuration file.
However, putting the settings in the machine configuration file can make your system
more maintainable. For example, if you have a third-party component that both your
client and server application uses, it is easier to put the settings for that component in
one place. In this case, the machine configuration file is the appropriate place for the
settings, so you don't have the same settings in two different files.

For more information about how the common language runtime uses the machine
configuration file for assembly binding, see How the Runtime Locates Assemblies.

An application configuration file contains settings that are specific to an app. This file
includes configuration settings that the common language runtime reads (such as
assembly binding policy, remoting objects, and so on), and settings that the app can
read.

<codeBase version="2.0.0.0"
 href="http://www.litwareinc.com/myAssembly.dll"/>

Machine configuration files

７ Note

Deploying an application using XCOPY will not copy the settings in the machine
configuration file.

Application configuration files

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/dkfd3wha(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies

The name and location of the application configuration file depend on the app's host,
which can be one of the following:

Executable–hosted app.

These apps have two configuration files: a source configuration file, which is
modified by the developer during development, and an output file that's
distributed with the app.

By default, the name of the source configuration file is App.config. When you
create a .NET Framework project in Visual Studio, an App.config file is automatically
added to the project. You can also add a file manually by selecting File > New File.
Place the App.config file in the project directory and set its Copy To Output
Directory property to Copy always or Copy if newer.

To create the output configuration file that's deployed with the app, Visual Studio
copies the source configuration file to the directory where the compiled assembly
is placed. This file is named <yourappname>.exe.config. For example, an app
named myApp.exe has an output configuration file named myApp.exe.config.

In some cases, Visual Studio might modify the output configuration file. For more
information, see Redirect versions at the app level.

ASP.NET-hosted app.

For more information about ASP.NET configuration files, see ASP.NET
Configuration Settings.

Security configuration files contain information about the code group hierarchy and
permission sets associated with a policy level. We strongly recommend that you use the
Code Access Security Policy tool (Caspol.exe) to modify security policy to ensure that
policy changes do not corrupt the security configuration files.

The security configuration files are in the following locations:

Security configuration files

７ Note

Starting with .NET Framework 4, the security configuration files are present only if
security policy has been changed.

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/b5ysx397(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/b5ysx397(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/tools/caspol-exe-code-access-security-policy-tool

Enterprise policy configuration file: %runtime-install-
path%\Config\Enterprisesec.config

Machine policy configuration file: %runtime-install-path%\Config\Security.config

User policy configuration file: %USERPROFILE%\Application data\Microsoft\CLR
security config\vxx.xx\Security.config

Configuration File Schema
Specifying an Assembly's Location
Redirecting Assembly Versions
ASP.NET Web Site Administration
Security Policy Management
Caspol.exe (Code Access Security Policy Tool)
Assemblies in .NET

See also

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/6hy1xzbw(v=vs.90)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/c1k0eed6(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/tools/caspol-exe-code-access-security-policy-tool
https://learn.microsoft.com/en-us/dotnet/standard/assembly/

How to: Read application settings
Article • 06/04/2024

This article shows you how to add a simple setting to an App.config file in a .NET
Framework app, and then read the value programmatically. Instead of just reading a
single value, you can read an entire section or the entire file. For more examples and
information, see the ConfigurationManager docs.

Visual Studio makes it easy to add an App.config file to your project. After creating a
.NET Framework project, right-click on your project in Solution Explorer and choose
Add > New Item. Choose the Application Configuration File item and then select Add.

Open the App.config file and add the following XML within the <configuration>
element.

XML

To access the setting's value in your code, get the value by indexing into the
AppSettings property. The AppSettings property makes it easy to obtain data from the
<appSettings> element of your configuration file.

C#

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Add the App.config file

Add a setting

 <appSettings>
 <add key="occupation" value="dentist"/>
 </appSettings>

Access the setting programmatically

https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationmanager
https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationmanager.appsettings#system-configuration-configurationmanager-appsettings
https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationmanager.appsettings#system-configuration-configurationmanager-appsettings

While it's straightforward to use configuration files for executable apps, it's a little more
complicated for class libraries. Class libraries can access configuration settings in the
same way as executable apps, however, the configuration settings must exist in the
client app's App.config file. Even if you distribute an App.config file alongside your
library's assembly file, the library code will not read the file. Alternatively, consider the
following ways to use configuration settings in a class library:

Obtain the configuration settings in the client app and pass them to the class
you're instantiating from the class library.
Implement a custom section type that extends the ConfigurationSection class.
Keep a separate configuration file for your class library, and then reference the
library's configuration file from the client app's configuration file. For more
information, see How to: Create Custom Configuration Sections Using
ConfigurationSection.

System.Configuration.ConfigurationManager

string occupation = ConfigurationManager.AppSettings["occupation"];

Configuration for libraries

See also

https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationsection
https://learn.microsoft.com/en-us/previous-versions/aspnet/2tw134k3(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/aspnet/2tw134k3(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationmanager

How to: Locate Assemblies by Using
DEVPATH
Article • 06/04/2024

Developers might want to make sure that a shared assembly they are building works
correctly with multiple applications. Instead of continually putting the assembly in the
global assembly cache during the development cycle, the developer can create a
DEVPATH environment variable that points to the build output directory for the
assembly.

For example, assume that you are building a shared assembly called MySharedAssembly
and the output directory is C:\MySharedAssembly\Debug. You can put
C:\MySharedAssembly\Debug in the DEVPATH variable. You must then specify the
<developmentMode> element in the machine configuration file. This element tells the
common language runtime to use DEVPATH to locate assemblies.

The shared assembly must be discoverable by the runtime. To specify a private directory
for resolving assembly references use the <codeBase> Element or <probing> Element
in a configuration file, as described in Specifying an Assembly's Location. You can also
put the assembly in a subdirectory of the application directory. For more information,
see How the Runtime Locates Assemblies.

The following example shows how to cause the runtime to search for assemblies in
directories specified by the DEVPATH environment variable.

XML

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

７ Note

This is an advanced feature, intended only for development.

Example

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/developmentmode-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies

This setting defaults to false.

Configuring Apps by using Configuration Files

<configuration>
 <runtime>
 <developmentMode developerInstallation="true"/>
 </runtime>
</configuration>

７ Note

Use this setting only at development time. The runtime does not check the versions
on strong-named assemblies found in the DEVPATH. It simply uses the first
assembly it finds.

See also

Redirect assembly versions
Article • 03/05/2025

You can redirect compile-time binding references to .NET Framework assemblies, third-
party assemblies, or your own app's assemblies. You can redirect your app to use a
different version of an assembly in a number of ways: through publisher policy, through
an app configuration file, or through the machine configuration file. This article
discusses how assembly binding works in .NET Framework and how you can configure it.

Bindings to .NET Framework assemblies are sometimes redirected through a process
called assembly unification. .NET Framework consists of a version of the common
language runtime and about two dozen .NET Framework assemblies that make up the
type library. These .NET Framework assemblies are treated by the runtime as a single
unit. By default, when an app is launched, all references to types in code run by the
runtime are directed to .NET Framework assemblies that have the same version number
as the runtime that's loaded in a process. The redirections that occur with this model are
the default behavior for the runtime.

For example, if your app references types in the System.XML namespace and was built
by using .NET Framework 4.5, it contains static references to the System.XML assembly
that ships with runtime version 4.5. If you want to redirect the binding reference to point
to the System.XML assembly that ships with .NET Framework 4, you can put redirect
information in the app configuration file. A binding redirection in a configuration file for
a unified .NET Framework assembly cancels the unification for that assembly.

In addition, you might want to manually redirect assembly binding for third-party
assemblies if there are multiple versions available.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

 Tip

This article is specific to .NET Framework apps. For information about assembly
loading in .NET 5+ (and .NET Core), see Dependency loading in .NET.

Assembly unification and default binding

https://learn.microsoft.com/en-us/dotnet/core/dependency-loading/overview

Vendors of assemblies can direct apps to a newer version of an assembly by including a
publisher policy file with the new assembly. The publisher policy file, which is located in
the global assembly cache, contains assembly redirection settings.

Each major.minor version of an assembly has its own publisher policy file. For example,
redirections from version 2.0.2.222 to 2.0.3.000 and from version 2.0.2.321 to version
2.0.3.000 both go into the same file, because they are associated with version 2.0.
However, a redirection from version 3.0.0.999 to version 4.0.0.000 goes into the file for
version 3.0.999. Each major version of the .NET Framework has its own publisher policy
file.

If a publisher policy file exists for an assembly, the runtime checks this file after checking
the assembly's manifest and app configuration file. Vendors should use publisher policy
files only when the new assembly is backward compatible with the assembly being
redirected.

You can bypass publisher policy for your app by specifying settings in the app
configuration file, as discussed in the Bypass publisher policy section.

 Tip

If you update a NuGet package that your application references indirectly and start
to see new errors like FileLoadException , MissingMethodException ,
TypeLoadException , or FileNotFoundException , you might need to enable automatic
binding redirects or manually add a binding redirect. This is normal when updating
NuGet packages and is a result of some packages being built against an older
version of a dependency. The following app config file excerpt adds a binding
redirect for the System.Memory package :

XML

<dependentAssembly>
 <assemblyIdentity name="System.Memory"
publicKeyToken="cc7b13ffcd2ddd51" culture="neutral" />
 <bindingRedirect oldVersion="0.0.0.0-4.0.2.0" newVersion="4.0.2.0"
/>
</dependentAssembly>

Redirect versions by using publisher policy

Redirect versions at the app level

https://www.nuget.org/packages/System.Memory
https://www.nuget.org/packages/System.Memory

There are a few different techniques for changing the binding behavior for your app
through the app configuration file: you can manually edit the file, you can rely on
automatic binding redirection, or you can specify binding behavior by bypassing
publisher policy.

You can manually edit the app configuration file to resolve assembly issues. For
example, if a vendor releases a newer version of an assembly that your app uses without
supplying a publisher policy (because they don't guarantee backward compatibility), you
can direct your app to use the newer version of the assembly by putting assembly
binding information in your app's configuration file as follows.

XML

When you create a desktop app in Visual Studio that targets .NET Framework 4.5.1 or a
later version, the app uses automatic binding redirection. This means that if two
components reference different versions of the same strong-named assembly, the
runtime automatically adds a binding redirection to the newer version of the assembly
in the output app configuration (app.config) file. This redirection overrides the assembly
unification that might otherwise take place. The source app.config file is not modified.
For example, let's say that your app directly references an out-of-band .NET Framework
component but uses a third-party library that targets an older version of the same
component. When you compile the app, the output app configuration file is modified to
contain a binding redirection to the newer version of the component.

If you create a web app, you receive a build warning regarding the binding conflict,
which in turn, gives you the option to add the necessary binding redirect to the source
web configuration file.

If you manually add binding redirects to the source app.config file, at compile time,
Visual Studio tries to unify the assemblies based on the binding redirects you added. For
example, let's say you insert the following binding redirect for an assembly:

Manually edit the app config file

<dependentAssembly>
 <assemblyIdentity name="someAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />
 <bindingRedirect oldVersion="7.0.0.0" newVersion="8.0.0.0" />
</dependentAssembly>

Rely on automatic binding redirection

<bindingRedirect oldVersion="3.0.0.0" newVersion="2.0.0.0" />

If another project in your app references version 1.0.0.0 of the same assembly, automatic
binding redirection adds the following entry to the output app.config file so that the
app is unified on version 2.0.0.0 of this assembly:

<bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0" />

You can enable automatic binding redirection if your app targets older versions of .NET
Framework. You can override this default behavior by providing binding redirection
information in the app.config file for any assembly, or by turning off the binding
redirection feature. For information about how to turn this feature on or off, see How to:
Enable and Disable Automatic Binding Redirection.

You can override publisher policy in the app configuration file if necessary. For example,
new versions of assemblies that claim to be backward compatible can still break an app.
If you want to bypass publisher policy, add a <publisherPolicy> element to the
<dependentAssembly> element in the app configuration file, and set the apply
attribute to no , which overrides any previous yes settings.

<publisherPolicy apply="no" />

Bypass publisher policy to keep your app running for your users, but make sure you
report the problem to the assembly vendor. If an assembly has a publisher policy file,
the vendor should make sure that the assembly is backward compatible and that clients
can use the new version as much as possible.

For tests, you should generate a .dll.config file. Most existing unit test frameworks honor
these files when loading tests.

Plugins might honor .dll.config files, however, they also might not. The only fool-proof
mechanism for redirects is by providing bindingRedirects when the AppDomain is
created.

You might try to solve this problem with AssemblyResolve event handlers, but that
doesn't work since those handlers only are called on a failed load. If an assembly load

Bypass publisher policy

Redirect versions for tests, plugins, or libraries
used by another component

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/publisherpolicy-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/dependentassembly-element
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.assemblyresolve#system-appdomain-assemblyresolve

succeeds, either because it was loaded by another assembly or the host, or was present
in the GAC, an AssemblyResolve handler won't be called.

There might be rare cases when a machine administrator wants all apps on a computer
to use a specific version of an assembly. For example, a specific version might fix a
security hole. If an assembly is redirected in the machine's configuration file, called
machine.config, all apps on that machine that use the old version are directed to use the
new version. The machine configuration file overrides the app configuration file and the
publisher policy file. This machine.config file is located at
%windir%\Microsoft.NET\Framework[version]\config\machine.config for 32-bit machines,
or %windir%\Microsoft.NET\Framework64[version]\config\machine.config for 64-bit
machines.

You use the same XML format to specify binding redirects whether it's in the app
configuration file, the machine configuration file, or the publisher policy file. To redirect
one assembly version to another, use the <bindingRedirect> element. The oldVersion
attribute can specify a single assembly version or a range of versions. The newVersion
attribute should specify a single version. For example, <bindingRedirect
oldVersion="1.1.0.0-1.2.0.0" newVersion="2.0.0.0"/> specifies that the runtime should
use version 2.0.0.0 instead of the assembly versions between 1.1.0.0 and 1.2.0.0.

The following code example demonstrates a variety of binding redirect scenarios. The
example specifies a redirect for a range of versions for myAssembly , and a single binding
redirect for mySecondAssembly . The example also specifies that publisher policy file will
not override the binding redirects for myThirdAssembly .

To bind an assembly, you must specify the string "urn:schemas-microsoft-com:asm.v1"
with the xmlns attribute in the <assemblyBinding> tag.

XML

Redirect versions at the machine level

Specify assembly binding in configuration files

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/bindingredirect-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime

You can use the appliesTo attribute on the <assemblyBinding> element in an app
configuration file to redirect assembly binding references to a specific version of .NET
Framework. This optional attribute uses a .NET Framework version number to indicate
what version it applies to. If no appliesTo attribute is specified, the <assemblyBinding>
element applies to all versions of .NET Framework.

For example, to redirect assembly binding for a .NET Framework 3.5 assembly, you'd
include the following XML code in your app configuration file.

XML

You should enter redirection information in version order. For example, enter assembly
binding redirection information for .NET Framework 3.5 assemblies followed by .NET
Framework 4.5 assemblies. Finally, enter assembly binding redirection information for

 <!-- Assembly versions can be redirected in app,
 publisher policy, or machine configuration files. -->
 <bindingRedirect oldVersion="1.0.0.0-2.0.0.0" newVersion="3.0.0.0"
/>
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="mySecondAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />
 <bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="myThirdAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />
 <!-- Publisher policy can be set only in the app
 configuration file. -->
 <publisherPolicy apply="no" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Limit assembly bindings to a specific version

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"
 appliesTo="v3.5">
 <dependentAssembly>
 <!-- assembly information goes here -->
 </dependentAssembly>
 </assemblyBinding>
</runtime>

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime

any .NET Framework assembly redirection that does not use the appliesTo attribute and
therefore applies to all versions of .NET Framework. If there is a conflict in redirection,
the first matching redirection statement in the configuration file is used.

For example, to redirect one reference to a .NET Framework 3.5 assembly and another
reference to a .NET Framework 4 assembly, use the pattern shown in the following
pseudocode.

XML

How to: Enable and Disable Automatic Binding Redirection
<bindingRedirect> Element
Assembly Binding Redirection Security Permission
Assemblies in .NET
Programming with Assemblies
How the Runtime Locates Assemblies
Configuring Apps
Runtime Settings Schema
Configuration File Schema
How to: Create a Publisher Policy

<assemblyBinding xmlns="..." appliesTo="v3.5 ">
 <!--.NET Framework version 3.5 redirects here -->
</assemblyBinding>

<assemblyBinding xmlns="..." appliesTo="v4.0.30319">
 <!--.NET Framework version 4.0 redirects here -->
</assemblyBinding>

<assemblyBinding xmlns="...">
 <!-- redirects meant for all versions of the runtime -->
</assemblyBinding>

See also

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/bindingredirect-element
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/

How to: Enable and disable automatic
binding redirection
Article • 07/29/2022

When you compile desktop apps in Visual Studio that target .NET Framework 4.5.1 and
later versions, binding redirects may be automatically added to the app configuration
file to override assembly unification. Binding redirects are added if your app or its
components reference more than one version of the same assembly, even if you
manually specify binding redirects in the configuration file for your app. The automatic
binding redirection feature affects desktop apps that target .NET Framework 4.5.1 or a
later version. If you haven't explicitly enabled or disabled autogenerated binding
redirection and you upgrade an existing project, the feature is automatically enabled.

For web apps, when Visual Studio encounters a binding conflict, it prompts you to add a
binding redirect to resolve the conflict.

You can enable automatic binding redirection for existing apps that target previous
versions of .NET Framework (4.5 and earlier). You can disable this feature if you want to
manually author binding redirects.

Automatic binding redirects are enabled by default for Windows desktop apps that
target .NET Framework 4.5.1 and later versions. The binding redirects are added to the

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

） Important

Starting with Visual Studio 2022, Visual Studio no longer includes .NET Framework
components for .NET Framework 4.0 - 4.5.1 because these versions are no longer
supported. Visual Studio 2022 and later versions can't build apps that target .NET
Framework 4.0 through .NET Framework 4.5.1. To continue building these apps, you
can use Visual Studio 2019 or an earlier version.

Disable automatic binding redirects in desktop
apps

output configuration (app.config) file when the app is compiled. The redirects override
the assembly unification that might otherwise take place. The source app.config file is
not modified. You can disable this feature by modifying the project file for the app or by
deselecting a checkbox in the project's properties in Visual Studio.

If you have Visual Studio 2017 version 15.7 or later, you can disable autogenerated
binding redirects in the project's property pages.

1. Right-click the project in Solution Explorer and select Properties.

2. On the Application page, uncheck the Auto-generate binding redirects option.

If you don't see the option, you'll need to manually disable the feature in the
project file.

3. Press Ctrl + S to save the change.

1. Open the project file for editing using one of the following methods:

In Visual Studio, select the project in Solution Explorer, and then choose
Open Folder in File Explorer from the shortcut menu. In File Explorer, find the
project (.csproj or .vbproj) file and open it in Notepad.
In Visual Studio, in Solution Explorer, right-click the project and choose
Unload Project. Right-click the unloaded project again, and then choose Edit
[projectname.csproj].

2. In the project file, find the following property entry:

XML

3. Change true to false :

XML

Disable through project properties

Disable manually in the project file

<AutoGenerateBindingRedirects>true</AutoGenerateBindingRedirects>

<AutoGenerateBindingRedirects>false</AutoGenerateBindingRedirects>

You can enable automatic binding redirects in existing apps that target older versions of
.NET Framework, or in cases where you're not automatically prompted to add a redirect.
If you're targeting a newer version of .NET Framework but do not get automatically
prompted to add a redirect, you'll likely get build output that suggests you remap
assemblies.

1. Open the project file for editing using one of the following methods:

In Visual Studio, select the project in Solution Explorer, and then choose
Open Folder in File Explorer from the shortcut menu. In File Explorer, find the
project (.csproj or .vbproj) file and open it in Notepad.
In Visual Studio, in Solution Explorer, right-click the project and choose
Unload Project. Right-click the unloaded project again, and then choose Edit
[projectname.csproj].

2. Add the following element to the first configuration property group (under the
<PropertyGroup> tag):

XML

The following shows an example project file with the element inserted:

XML

Enable automatic binding redirects manually

<AutoGenerateBindingRedirects>true</AutoGenerateBindingRedirects>

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Import
Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Comm
on.props"
Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Micr
osoft.Common.props')" />
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == ''
">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProjectGuid>{123334}</ProjectGuid>
 ...
 <AutoGenerateBindingRedirects>true</AutoGenerateBindingRedirects>
 </PropertyGroup>
 ...
</Project>

3. Compile your app.

Automatic binding redirects are implemented differently for web apps. Because the
source configuration (web.config) file must be modified for web apps, binding redirects
are not automatically added to the configuration file. However, Visual Studio notifies
you of binding conflicts, and you can add binding redirects to resolve the conflicts.
Because you're always prompted to add binding redirects, you don't need to explicitly
disable this feature for a web app.

To add binding redirects to a web.config file:

1. In Visual Studio, compile the app, and check for build warnings.

2. If there are assembly binding conflicts, a warning appears. Double-click the
warning, or select the warning and press Enter .

A dialog box that enables you to automatically add the necessary binding redirects
to the source web.config file appears.

<bindingRedirect> Element
Redirecting Assembly Versions

Enable automatic binding redirects in web apps

See also

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/bindingredirect-element

Assembly Binding Redirection Security
Permission
Article • 06/04/2024

Explicit assembly binding redirection in an application configuration file requires a
security permission. This applies to redirection of .NET Framework assemblies and
assemblies from third parties. The permission is granted by setting the
SecurityPermissionFlag flag on the SecurityPermission. Managed assemblies have no
permissions by default.

The security permission is granted to applications running in the Trusted Zone (local
machine) and Intranet Zone. Applications running in the Internet Zone are strictly
prohibited from performing assembly binding redirection.

The permission is not required if assembly redirection is performed in a publisher policy
file that is controlled by the component publisher, or in the machine configuration file
that is controlled by the administrator. However, the permission is required for an
application to explicitly ignore publisher policy using the <publisherPolicy apply="no"/>
element in the application configuration file.

The following table shows the default security settings for the BindingRedirects flag.

Zone BindingRedirects flag setting

Trusted Zone (local machine) ON

Intranet Zone ON

Internet Zone OFF

Untrusted zones OFF

An administrator can change these security settings to support or restrict specific
scenarios on a given computer. There are no tools for changing the BindingRedirects

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.securitypermissionflag
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.securitypermission
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/publisherpolicy-element

flag setting from the default; an administrator must manually edit the Security.config file
on a user's computer.

Publisher Policy Files and Side-by-Side Execution
How to: Enable and Disable Automatic Binding Redirection
Side-by-Side Execution

See also

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/06d2bae3(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/deployment/side-by-side-execution

Specifying an Assembly's Location
Article • 06/04/2024

There are two ways to specify an assembly's location:

Using the <codeBase> element.

Using the <probing> element.

You can also use the .NET Framework Configuration Tool (Mscorcfg.msc) to specify
assembly locations or specify locations for the common language runtime to probe for
assemblies.

You can use the <codeBase> element only in machine configuration or publisher policy
files that also redirect the assembly version. When the runtime determines which
assembly version to use, it applies the code base setting from the file that determines
the version. If no code base is indicated, the runtime probes for the assembly in the
normal way. For details, see How the Runtime Locates Assemblies.

The following example shows how to specify an assembly's location.

XML

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Using the <codeBase> Element

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />
 <codeBase version="2.0.0.0"
 href="http://www.litwareinc.com/myAssembly.dll"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/2bc0cxhc(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies

The version attribute is required for all strong-named assemblies but should be omitted
for assemblies that are not strong-named. The <codeBase> element requires the href
attribute. You cannot specify version ranges in the <codeBase> element.

The runtime locates assemblies that do not have a code base by probing. For more
information about probing, see How the Runtime Locates Assemblies.

You can use the <probing> element in the application configuration file to specify
subdirectories the runtime should search when locating an assembly. The following
example shows how to specify directories the runtime should search.

XML

The privatePath attribute contains the directories that the runtime should search for
assemblies. If the application is located at C:\Program Files\MyApp, the runtime will look
for assemblies that do not specify a code base in C:\Program Files\MyApp\Bin,
C:\Program Files\MyApp\Bin2\Subbin, and C:\Program Files\MyApp\Bin3. The
directories specified in privatePath must be subdirectories of the application base
directory.

Assemblies in .NET
Programming with Assemblies
How the Runtime Locates Assemblies
Configuring Apps by using Configuration Files

７ Note

If you are supplying a code base hint for an assembly that is not strong-named, the
hint must point to the application base or a subdirectory of the application base
directory.

Using the <probing> Element

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <probing privatePath="bin;bin2\subbin;bin3"/>
 </assemblyBinding>
 </runtime>
</configuration>

See also

https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies

Configuring Cryptography Classes
Article • 06/04/2024

The Windows SDK allows computer administrators to configure the default
cryptographic algorithms and algorithm implementations that the .NET Framework and
appropriately written applications use. For example, an enterprise that has its own
implementation of a cryptographic algorithm can make that implementation the default
instead of the implementation shipped in the Windows SDK. Although managed
applications that use cryptography can always choose to explicitly bind to a particular
implementation, it is recommended that they create cryptographic objects by using the
crypto configuration system.

Mapping Algorithm Names to Cryptography Classes Describes how to map an algorithm
name to a cryptography class.

Mapping Object Identifiers to Cryptography Algorithms Describes how to map an object
identifier to a cryptography algorithm.

Cryptographic Services Provides an overview of cryptographic services provided by the
Windows SDK.

Cryptography Settings Schema Describes elements that map friendly algorithm names
to classes that implement cryptography algorithms.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

In This Section

Related Sections

https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/

Mapping Algorithm Names to
Cryptography Classes
Article • 06/04/2024

There are four ways a developer can create a cryptography object using the Windows
SDK:

Create an object by using the new operator.

Create an object that implements a particular cryptography algorithm by calling
the Create method on the abstract class for that algorithm.

Create an object that implements a particular cryptography algorithm by calling
the CryptoConfig.CreateFromName method.

Create an object that implements a class of cryptographic algorithms (such as a
symmetric block cipher) by calling the Create method on the abstract class for that
type of algorithm (such as SymmetricAlgorithm).

For example, suppose a developer wants to compute the SHA1 hash of a set of bytes.
The System.Security.Cryptography namespace contains two implementations of the
SHA1 algorithm, one purely managed implementation and one that wraps CryptoAPI.
The developer can choose to instantiate a particular SHA1 implementation (such as the
SHA1Managed) by calling the new operator. However, if it does not matter which class
the common language runtime loads as long as the class implements the SHA1 hash
algorithm, the developer can create an object by calling the SHA1.Create method. This
method calls
System.Security.Cryptography.CryptoConfig.CreateFromName("System.Security.Crypt
ography.SHA1"), which must return an implementation of the SHA1 hash algorithm.

The developer can also call
System.Security.Cryptography.CryptoConfig.CreateFromName("SHA1") because, by
default, cryptography configuration includes short names for the algorithms shipped in
the .NET Framework.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.cryptoconfig.createfromname
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.symmetricalgorithm
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha1managed
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha1.create

If it does not matter which hash algorithm is used, the developer can call the
HashAlgorithm.Create method, which returns an object that implements a hashing
transformation.

By default, the runtime returns a SHA1CryptoServiceProvider object for all four
scenarios. However, a machine administrator can change the type of object that the
methods in the last two scenarios return. To do this, you must map a friendly algorithm
name to the class you want to use in the machine configuration file (Machine.config).

The following example shows how to configure the runtime so that
System.Security.Cryptography.SHA1.Create,
System.Security.CryptoConfig.CreateFromName("SHA1"), and
System.Security.Cryptography.HashAlgorithm.Create return a MySHA1HashClass object.

XML

You can specify the name of the attribute in the <cryptoClass> element (the previous
example names the attribute MySHA1Hash). The value of the attribute in the
<cryptoClass> element is a string that the common language runtime uses to find the
class. You can use any string that meets the requirements specified in Specifying Fully
Qualified Type Names.

Mapping Algorithm Names in Configuration
Files

<configuration>
 <!-- Other configuration settings. -->
 <mscorlib>
 <cryptographySettings>
 <cryptoNameMapping>
 <cryptoClasses>
 <cryptoClass MySHA1Hash="MySHA1HashClass, MyAssembly
 Culture='en', PublicKeyToken=a5d015c7d5a0b012,
 Version=1.0.0.0"/>
 </cryptoClasses>
 <nameEntry name="SHA1" class="MySHA1Hash"/>
 <nameEntry name="System.Security.Cryptography.SHA1"
 class="MySHA1Hash"/>
 <nameEntry name="System.Security.Cryptography.HashAlgorithm"
 class="MySHA1Hash"/>
 </cryptoNameMapping>
 </cryptographySettings>
 </mscorlib>
</configuration>

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.hashalgorithm.create
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha1cryptoserviceprovider
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/cryptoclass-element
https://learn.microsoft.com/en-us/dotnet/fundamentals/reflection/specifying-fully-qualified-type-names
https://learn.microsoft.com/en-us/dotnet/fundamentals/reflection/specifying-fully-qualified-type-names

Many algorithm names can map to the same class. The <nameEntry> element maps a
class to one friendly algorithm name. The name attribute can be either a string that is
used when calling the System.Security.Cryptography.CryptoConfig.CreateFromName
method or the name of an abstract cryptography class in the
System.Security.Cryptography namespace. The value of the class attribute is the name of
the attribute in the <cryptoClass> element.

For a list of default names and the classes they map to, see CryptoConfig.

Cryptographic Services
Configuring Cryptography Classes

７ Note

You can get an SHA1 algorithm by calling the SHA1.Create or the
Security.CryptoConfig.CreateFromName("SHA1") method. Each method
guarantees only that it returns an object that implements the SHA1 algorithm. You
do not have to map each friendly name of an algorithm to the same class in the
configuration file.

See also

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/nameentry-element
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.cryptoconfig
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.sha1.create

Mapping Object Identifiers to
Cryptography Algorithms
Article • 06/04/2024

Digital signatures ensure that data is not tampered with when it is sent from one
program to another. Typically the digital signature is computed by applying a
mathematical function to the hash of the data to be signed. When formatting a hash
value to be signed, some digital signature algorithms append an ASN.1 Object Identifier
(OID) as part of the formatting operation. The OID identifies the algorithm that was used
to compute the hash. You can map algorithms to object identifiers to extend the
cryptography mechanism to use custom algorithms. The following example shows how
to map an object identifier to a new hash algorithm.

XML

The <oidEntry> element contains two attributes. The OID attribute is the object
identifier number. The name attribute is the value of the name attribute from the
<nameEntry> element. There must be a mapping from an algorithm name to a class
before an object identifier can be mapped to a simple name.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

<configuration>
 <mscorlib>
 <cryptographySettings>
 <cryptoNameMapping>
 <cryptoClasses>
 <cryptoClass MyNewHash="MyNewHashClass, MyAssembly
 Culture='en', PublicKeyToken=a5d015c7d5a0b012,
 Version=1.0.0.0"/>
 </cryptoClasses>
 <nameEntry name="NewHash" class="MyNewHash"/>
 </cryptoNameMapping>
 <oidMap>
 <oidEntry OID="1.3.14.33.42.46" name="NewHash"/>
 </oidMap>
 </cryptographySettings>
 </mscorlib>
</configuration>

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/oidentry-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/nameentry-element

Configuring Cryptography Classes
Cryptographic Services

See also

https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services

How to: Create a Publisher Policy
Article • 06/04/2024

Vendors of assemblies can state that applications should use a newer version of an
assembly by including a publisher policy file with the upgraded assembly. The publisher
policy file specifies assembly redirection and code base settings, and uses the same
format as an application configuration file. The publisher policy file is compiled into an
assembly and placed in the global assembly cache.

There are three steps involved in creating a publisher policy:

1. Create a publisher policy file.

2. Create a publisher policy assembly.

3. Add the publisher policy assembly to the global assembly cache.

The schema for publisher policy is described in Redirecting Assembly Versions. The
following example shows a publisher policy file that redirects one version of myAssembly
to another.

XML

To learn how to specify a code base, see Specifying an Assembly's Location.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myAssembly"
 publicKeyToken="32ab4ba45e0a69a1"
 culture="en-us" />
 <!-- Redirecting to version 2.0.0.0 of the assembly. -->
 <bindingRedirect oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Use the Assembly Linker (Al.exe) to create the publisher policy assembly.

Type the following command at the command prompt:

Console

In this command:

The publisherPolicyFile argument is the name of the publisher policy file.

The publisherPolicyAssemblyFile argument is the name of the publisher policy
assembly that results from this command. The assembly file name must follow the
format:

`policy.majorNumber.minorNumber.mainAssemblyName.dll'

The keyPairFile argument is the name of the file containing the key pair. You
must sign the assembly and publisher policy assembly with the same key pair.

The processorArchitecture argument identifies the platform targeted by a
processor-specific assembly.

The ability to target a specific processor architecture is available starting with .NET
Framework 2.0. The following command creates a publisher policy assembly called
policy.1.0.myAssembly from a publisher policy file called pub.config , assigns a strong
name to the assembly using the key pair in the sgKey.snk file, and specifies that the
assembly targets the x86 processor architecture.

Console

Creating the Publisher Policy Assembly

To create a publisher policy assembly

al /link:publisherPolicyFile /out:publisherPolicyAssemblyFile
/keyfile:keyPairFile /platform:processorArchitecture

７ Note

The ability to target a specific processor architecture is available starting with
.NET Framework 2.0.

https://learn.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker

The publisher policy assembly must match the processor architecture of the assembly
that it applies to. Thus, if your assembly has a ProcessorArchitecture value of MSIL, the
publisher policy assembly for that assembly must be created with /platform:anycpu . You
must provide a separate publisher policy assembly for each processor-specific assembly.

A consequence of this rule is that in order to change the processor architecture for an
assembly, you must change the major or minor component of the version number, so
that you can supply a new publisher policy assembly with the correct processor
architecture. The old publisher policy assembly cannot service your assembly once your
assembly has a different processor architecture.

Another consequence is that the version 2.0 linker cannot be used to create a publisher
policy assembly for an assembly compiled using earlier versions of the .NET Framework,
because it always specifies processor architecture.

Use the Global Assembly Cache tool (Gacutil.exe) to add the publisher policy assembly
to the global assembly cache.

Type the following command at the command prompt:

Console

The following command adds policy.1.0.myAssembly.dll to the global assembly cache.

Console

al /link:pub.config /out:policy.1.0.myAssembly.dll /keyfile:sgKey.snk
/platform:x86

Adding the Publisher Policy Assembly to the
Global Assembly Cache

To add the publisher policy assembly to the global
assembly cache

gacutil /i publisherPolicyAssemblyFile

gacutil /i policy.1.0.myAssembly.dll

） Important

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyname.processorarchitecture
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.processorarchitecture#system-reflection-processorarchitecture-msil
https://learn.microsoft.com/en-us/dotnet/framework/tools/gacutil-exe-gac-tool

Programming with Assemblies
How the Runtime Locates Assemblies
Configuring Apps by using Configuration Files
Runtime Settings Schema
Configuration File Schema
Redirecting Assembly Versions

The publisher policy assembly cannot be added to the global assembly cache
unless the original publisher policy file specified in the /link argument is located
in the same directory as the assembly.

See also

https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/

Configuration file schema for .NET
Framework
Article • 05/25/2022

Configuration files are standard XML files that you can use to change settings and set
policies for your apps. The .NET Framework configuration schema consists of elements
that you can use in configuration files to control the behavior of your apps. The table of
contents for this section reflects the schema hierarchy for startup, runtime, network, and
other types of configuration settings.

For information about the types, format, and location of configuration files, see
Configure apps. Familiarize yourself with XML if you want to edit the configuration files
directly.

<configuration> Element
The top-level element for all configuration files.

<assemblyBinding> Element
Specifies assembly binding policy at the configuration level.

<linkedConfiguration> Element
Specifies a configuration file to include.

Startup Settings Schema
Elements that specify which version of the common language runtime to use.

Runtime Settings Schema
Elements that configure assembly binding and runtime behavior.

Network Settings Schema
Elements that specify how the .NET Framework connects to the internet.

Cryptography Settings Schema
Elements that map friendly algorithm names to classes that implement cryptography
algorithms.

） Important

XML tags and attributes in configuration files are case-sensitive.

In this section

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/configuration-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/configuration-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/assemblybinding-element-for-configuration
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/assemblybinding-element-for-configuration
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/linkedconfiguration-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/linkedconfiguration-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/network/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/cryptography/

Configuration Sections Schema
Elements used to create and use configuration sections for custom settings.

Trace and Debug Settings Schema
Elements that specify trace switches and listeners.

Compiler and Language Provider Settings Schema
Elements that specify compiler configuration for available language providers.

Application Settings Schema
Elements that enable a Windows Forms or ASP.NET application to store and retrieve
application-scoped and user-scoped settings.

App Settings Schema
Contains custom application settings, such as file paths, XML Web service URLs, or any
other custom configuration information for an application.

Web Settings Schema
Elements for configuring how ASP.NET works with a host application such as IIS. Used in
Aspnet.config files.

Windows Forms Configuration Schema
All elements in the Windows Forms application configuration section, which includes
customizations such as multi-monitor and high-DPI support.

WCF Configuration Schema
All elements that enable you to configure WCF service and client applications.

WCF Directive Syntax
Describes the @ServiceHost directive, which defines page-specific attributes used by the
.svc compiler.

Remoting Settings Schema
Describes the elements that configure client and server applications that implement
remoting.

ASP.NET Settings Schema
Describes the elements that control the behavior of ASP.NET Web applications.

Web Services Settings Schema
Describes the elements that control the behavior of ASP.NET Web services and their
clients.

Related sections

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/configuration-sections-schema
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/trace-debug/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/compiler/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/application-settings-schema
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/web/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/winforms/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf-directive/
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/z415cf9a(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/b5ysx397(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/cctwteet(v=vs.100)

Configuring .NET Framework Apps
Describes how to configure security, assembly binding, and remoting in the .NET
Framework.

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/kza1yk3a(v=vs.100)

	Configure apps
	Read application settings
	Locate assemblies by using DEVPATH
	Redirect assembly versions
	Overview
	How to: Enable and disable automatic binding redirection
	Assembly binding redirection security permission

	Specify an assembly's location
	Configure cryptography classes
	Map algorithm names to cryptography classes
	Map object identifiers to cryptography algorithms

	Create a publisher policy
	Configuration file schema

