
Tell us about your PDF experience.

Deploy .NET Framework and
applications
Article • 05/26/2022

This article helps you get started deploying .NET Framework with your application. Most
of the information is intended for developers, OEMs, and enterprise administrators.
Users who want to install .NET Framework on their computers should read Install .NET
Framework.

Use the following links to other MSDN topics for specific information about deploying
and servicing the .NET Framework.

Setup and deployment

General installer and deployment information:

Installer options:

Web installer

Offline installer

Installation modes:

Silent installation

Displaying a UI

Reducing system restarts during .NET Framework 4.5 installations

Troubleshoot blocked .NET Framework installations and uninstallations

Deploying the .NET Framework with a client application (for developers):

Using InstallShield in a setup and deployment project

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Key Deployment Resources

https://learn.microsoft.com/en-us/dotnet/framework/install/
https://learn.microsoft.com/en-us/dotnet/framework/install/
https://learn.microsoft.com/en-us/dotnet/framework/install/guide-for-developers#to-install-or-download-the-net-framework-redistributable
https://learn.microsoft.com/en-us/dotnet/framework/install/guide-for-developers#to-install-or-download-the-net-framework-redistributable
https://learn.microsoft.com/en-us/dotnet/framework/install/troubleshoot-blocked-installations-and-uninstallations
https://aka.ms/learn-pdf-feedback


Using a Visual Studio ClickOnce application

Creating a WiX installation package

Using a custom installer

Additional information for developers

Deploying the .NET Framework (for OEMs and administrators):

Windows Assessment and Deployment Kit (ADK)

Administrator's guide

Servicing

For general information, see the .NET Framework blog .

Detecting versions

Detecting service packs and updates

The .NET Framework provides a number of basic features that make it easier to deploy
your applications:

No-impact applications.

This feature provides application isolation and eliminates DLL conflicts. By default,
components do not affect other applications.

Private components by default.

By default, components are deployed to the application directory and are visible
only to the containing application.

Controlled code sharing.

Code sharing requires you to explicitly make code available for sharing instead of
being the default behavior.

Side-by-side versioning.

Multiple versions of a component or application can coexist, you can choose which
versions to use, and the common language runtime enforces versioning policy.

Features That Simplify Deployment

https://learn.microsoft.com/en-us/windows-hardware/get-started/adk-install
https://devblogs.microsoft.com/dotnet/
https://devblogs.microsoft.com/dotnet/
https://learn.microsoft.com/en-us/dotnet/framework/install/how-to-determine-which-versions-are-installed
https://learn.microsoft.com/en-us/dotnet/framework/install/how-to-determine-which-net-framework-updates-are-installed


XCOPY deployment and replication.

Self-described and self-contained components and applications can be deployed
without registry entries or dependencies.

On-the-fly updates.

Administrators can use hosts, such as ASP.NET, to update program DLLs, even on
remote computers.

Integration with the Windows Installer.

Advertisement, publishing, repair, and install-on-demand are all available when
deploying your application.

Enterprise deployment.

This feature provides easy software distribution, including using Active Directory.

Downloading and caching.

Incremental downloads keep downloads smaller, and components can be isolated
for use only by the application for low-impact deployment.

Partially trusted code.

Identity is based on the code instead of the user, and no certificate dialog boxes
appear.

Some of the packaging and deployment information for the .NET Framework is
described in other sections of the documentation. Those sections provide information
about the self-describing units called assemblies, which require no registry entries,
strong-named assemblies, which ensure name uniqueness and prevent name spoofing,
and assembly versioning, which addresses many of the problems associated with DLL
conflicts. The following sections provide information about packaging and distributing
.NET Framework applications.

The .NET Framework provides the following options for packaging applications:

Packaging and Distributing .NET Framework
Applications

Packaging

https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/standard/assembly/strong-named
https://learn.microsoft.com/en-us/dotnet/standard/assembly/versioning


As a single assembly or as a collection of assemblies.

With this option, you simply use the .dll or .exe files as they were built.

As cabinet (CAB) files.

With this option, you compress files into .cab files to make distribution or
download less time consuming.

As a Windows Installer package or in other installer formats.

With this option, you create .msi files for use with the Windows Installer, or you
package your application for use with some other installer.

The .NET Framework provides the following options for distributing applications:

Use XCOPY or FTP.

Because common language runtime applications are self-describing and require no
registry entries, you can use XCOPY or FTP to simply copy the application to an
appropriate directory. The application can then be run from that directory.

Use code download.

If you are distributing your application over the Internet or through a corporate
intranet, you can simply download the code to a computer and run the application
there.

Use an installer program such as Windows Installer 2.0.

Windows Installer 2.0 can install, repair, or remove .NET Framework assemblies in
the global assembly cache and in private directories.

To determine where to deploy your application's assemblies so they can be found by the
runtime, see How the Runtime Locates Assemblies.

Security considerations can also affect how you deploy your application. Security
permissions are granted to managed code according to where the code is located.
Deploying an application or component to a location where it receives little trust, such
as the internet, limits what the application or component can do.

Distribution

Installation Location



Title Description

How the Runtime Locates
Assemblies

Describes how the common language runtime determines which
assembly to use to fulfill a binding request.

Best Practices for
Assembly Loading

Discusses ways to avoid problems of type identity that can lead to
InvalidCastException, MissingMethodException, and other errors.

Reducing System Restarts
During .NET Framework
4.5 Installations

Describes the Restart Manager, which prevents reboots whenever
possible, and explains how applications that install the .NET
Framework can take advantage of it.

Deployment Guide for
Administrators

Explains how a system administrator can deploy the .NET Framework
and its system dependencies across a network by using Microsoft
Endpoint Configuration Manager.

Deployment Guide for
Developers

Explains how developers can install .NET Framework on their users'
computers with their applications.

Deploying Applications,
Services, and
Components

Discusses deployment options in Visual Studio, including instructions
for publishing an application using the ClickOnce and Windows
Installer technologies.

Publishing ClickOnce
Applications

Describes how to package a Windows Forms application and deploy
it with ClickOnce to client computers on a network.

Package and Deploy
resources

Describes the hub and spoke model that the .NET Framework uses to
package and deploy resources; covers resource naming conventions,
fallback process, and packaging alternatives.

Deploying an Interop
Application

Explains how to ship and install interop applications, which typically
include a .NET Framework client assembly, one or more interop
assemblies representing distinct COM type libraries, and one or more
registered COM components.

How to: Get Progress
from the .NET Framework
4.5 Installer

Describes how to silently launch and track the .NET Framework setup
process while showing your own view of the setup progress.

Development Guide

Related Topics

ﾉ Expand table

See also

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.missingmethodexception
https://learn.microsoft.com/en-us/visualstudio/deployment/deploying-applications-services-and-components
https://learn.microsoft.com/en-us/visualstudio/deployment/deploying-applications-services-and-components
https://learn.microsoft.com/en-us/visualstudio/deployment/deploying-applications-services-and-components
https://learn.microsoft.com/en-us/visualstudio/deployment/publishing-clickonce-applications
https://learn.microsoft.com/en-us/visualstudio/deployment/publishing-clickonce-applications
https://learn.microsoft.com/en-us/dotnet/core/extensions/package-and-deploy-resources
https://learn.microsoft.com/en-us/dotnet/core/extensions/package-and-deploy-resources
https://learn.microsoft.com/en-us/dotnet/framework/interop/deploying-an-interop-application
https://learn.microsoft.com/en-us/dotnet/framework/interop/deploying-an-interop-application
https://learn.microsoft.com/en-us/dotnet/framework/development-guide


Deploying the .NET Framework
Article • 06/04/2024

This section of the .NET Framework documentation provides information for developers
who want to install the .NET Framework with their applications, and administrators who
want to deploy the .NET Framework across a network. It also discusses activation and
restart issues associated with deployment, and how to monitor the progress of your
.NET Framework installation.

Deployment Guide for Developers Explains how developers can install .NET Framework
on their users' computers with their applications.

Deployment Guide for Administrators Explains how a system administrator can deploy
the .NET Framework and its system dependencies across a network by using Microsoft
Endpoint Configuration Manager.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

） Important

.NET Framework content previously digitally signed using certificates that use the
SHA1 algorithm, will be retired in order to support evolving industry standards.

The following versions of .NET Framework will reach end-of-support on April 26,
2022: 4.5.2, 4.6, and 4.6.1. After this date, security fixes, updates, and technical
support for these versions will no longer be provided.

If you're using .NET Framework 4.5.2, 4.6, or 4.6.1, update your deployed runtime to
a more recent version, such as .NET Framework 4.6.2, before April 26, 2022 in order
to continue to receive updates and technical support.

Updated SHA2 signed installers will be available for .NET Framework 3.5 SP1, and
4.6.2 through 4.8. For more information, see the SHA1 retirement plan , the .NET
4.5.2, 4.6, and 4.6.1 lifecycle update blog post , and the FAQ .

In This Section

https://support.microsoft.com/topic/-net-framework-retiring-sha-1-content-9750f20d-a9ef-4d43-853f-2075f0a9d7da
https://support.microsoft.com/topic/-net-framework-retiring-sha-1-content-9750f20d-a9ef-4d43-853f-2075f0a9d7da
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://support.microsoft.com/topic/-net-framework-4-5-2-4-6-4-6-1-end-of-support-faq-72b7d8ca-3057-4f0c-8404-67305d40cc04
https://support.microsoft.com/topic/-net-framework-4-5-2-4-6-4-6-1-end-of-support-faq-72b7d8ca-3057-4f0c-8404-67305d40cc04


Reducing System Restarts During .NET Framework 4.5 Installations Describes the Restart
Manager, which prevents reboots whenever possible, and explains how applications that
install the .NET Framework can take advantage of it.

How to: Get Progress from the .NET Framework 4.5 Installer Describes how to silently
launch and track the .NET Framework setup process while showing your own view of the
setup progress.

.NET Framework Initialization Errors: Managing the User Experience Explains what
happens when a .NET Framework application requires a CLR version that's invalid or not
installed on the user's computer, how to resolve these errors, and how to control the
error message displayed to the user.

How to: Debug CLR Activation Issues Explains how you can view and debug CLR
activation logs to resolve issues you may encounter in getting your application to run
with the correct version of the CLR.

Development Guide

See also

https://learn.microsoft.com/en-us/dotnet/framework/development-guide


.NET Framework deployment guide for
developers
Article • 08/30/2022

This article provides information for developers who want to install any version of .NET
Framework from .NET Framework 4.5 to .NET Framework 4.8 with their apps.

You can download the redistributable packages and language packs for .NET Framework
from the download pages:

.NET Framework 4.8.1

.NET Framework 4.8

.NET Framework 4.7.2

.NET Framework 4.7.1

.NET Framework 4.7

.NET Framework 4.6.2

.NET Framework 4.6.1

.NET Framework 4.6

.NET Framework 4.5.2

.NET Framework 4.5.1

.NET Framework 4.5

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

） Important

.NET Framework content previously digitally signed using certificates that use the
SHA1 algorithm, will be retired in order to support evolving industry standards.

The following versions of .NET Framework will reach end-of-support on April 26,
2022: 4.5.2, 4.6, and 4.6.1. After this date, security fixes, updates, and technical
support for these versions will no longer be provided.

If you're using .NET Framework 4.5.2, 4.6, or 4.6.1, update your deployed runtime to
a more recent version, such as .NET Framework 4.6.2, before April 26, 2022 in order
to continue to receive updates and technical support.

https://dotnet.microsoft.com/download/dotnet-framework/net481
https://dotnet.microsoft.com/download/dotnet-framework/net481
https://dotnet.microsoft.com/download/dotnet-framework/net48
https://dotnet.microsoft.com/download/dotnet-framework/net48
https://dotnet.microsoft.com/download/dotnet-framework/net472
https://dotnet.microsoft.com/download/dotnet-framework/net472
https://dotnet.microsoft.com/download/dotnet-framework/net471
https://dotnet.microsoft.com/download/dotnet-framework/net471
https://dotnet.microsoft.com/download/dotnet-framework/net47
https://dotnet.microsoft.com/download/dotnet-framework/net47
https://dotnet.microsoft.com/download/dotnet-framework/net462
https://dotnet.microsoft.com/download/dotnet-framework/net462
https://dotnet.microsoft.com/download/dotnet-framework/net461
https://dotnet.microsoft.com/download/dotnet-framework/net461
https://dotnet.microsoft.com/download/dotnet-framework/net46
https://dotnet.microsoft.com/download/dotnet-framework/net46
https://dotnet.microsoft.com/download/dotnet-framework/net452
https://dotnet.microsoft.com/download/dotnet-framework/net452
https://dotnet.microsoft.com/download/dotnet-framework/net451
https://dotnet.microsoft.com/download/dotnet-framework/net451
https://dotnet.microsoft.com/download/dotnet-framework/net45
https://dotnet.microsoft.com/download/dotnet-framework/net45


Important notes:

Versions of .NET Framework from .NET Framework 4.5.1 through .NET Framework
4.8 are in-place updates to .NET Framework 4.5, which means they use the same
runtime version, but the assembly versions are updated and include new types and
members.

.NET Framework 4.5 and later versions are built incrementally on .NET Framework
4. When you install .NET Framework 4.5 or later versions on a system that has .NET
Framework 4 installed, the version 4 assemblies are replaced with newer versions.

If you are referencing a Microsoft out-of-band package in your app, the assembly
will be included in the app package.

You must have administrator privileges to install .NET Framework 4.5 or later
versions.

.NET Framework 4.5 is included in Windows 8 and Windows Server 2012, so you
don't have to deploy it with your app on those operating systems. Similarly, .NET
Framework 4.5.1 is included in Windows 8.1 and Windows Server 2012 R2. .NET
Framework 4.5.2 isn't included in any operating systems. .NET Framework 4.6 is
included in Windows 10, .NET Framework 4.6.1 is included in Windows 10
November Update, and .NET Framework 4.6.2 is included in Windows 10
Anniversary Update. .NET Framework 4.7 is included in Windows 10 Creators
Update, .NET Framework 4.7.1 is included in Windows 10 Fall Creators Update, and
.NET Framework 4.7.2 is included in Windows 10 October 2018 Update and
Windows 10 April 2018 Update. .NET Framework 4.8 is included in Windows 10
May 2019 Update and all later Windows 10 updates. For a full list of hardware and
software requirements, see System Requirements.

Starting with .NET Framework 4.5, your users can view a list of running .NET
Framework apps during setup and close them easily. This may help avoid system
restarts caused by .NET Framework installations. See Reducing System Restarts.

Uninstalling .NET Framework 4.5 or later versions also removes pre-existing .NET
Framework 4 files. If you want to go back to .NET Framework 4, you must reinstall
it and any updates to it. See Installing the .NET Framework 4.

Updated SHA2 signed installers will be available for .NET Framework 3.5 SP1, and
4.6.2 through 4.8. For more information, see the SHA1 retirement plan , the .NET
4.5.2, 4.6, and 4.6.1 lifecycle update blog post , and the FAQ .

https://learn.microsoft.com/en-us/dotnet/framework/get-started/out-of-band-releases
https://learn.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/5a4x27ek(v=vs.100)
https://support.microsoft.com/topic/-net-framework-retiring-sha-1-content-9750f20d-a9ef-4d43-853f-2075f0a9d7da
https://support.microsoft.com/topic/-net-framework-retiring-sha-1-content-9750f20d-a9ef-4d43-853f-2075f0a9d7da
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://devblogs.microsoft.com/dotnet/net-framework-4-5-2-4-6-4-6-1-will-reach-end-of-support-on-april-26-2022/
https://support.microsoft.com/topic/-net-framework-4-5-2-4-6-4-6-1-end-of-support-faq-72b7d8ca-3057-4f0c-8404-67305d40cc04
https://support.microsoft.com/topic/-net-framework-4-5-2-4-6-4-6-1-end-of-support-faq-72b7d8ca-3057-4f0c-8404-67305d40cc04


The .NET Framework 4.5 redistributable was updated on October 9, 2012 to correct
an issue related to an improper timestamp on a digital certificate, which caused
the digital signature on files produced and signed by Microsoft to expire
prematurely. If you previously installed the .NET Framework 4.5 redistributable
package dated August 16, 2012, we recommend that you update your copy with
the latest redistributable from the .NET Framework download page . For more
information about this issue, see Microsoft Security Advisory 2749655.

For information about how a system administrator can deploy the .NET Framework and
its system dependencies across a network, see Deployment Guide for Administrators.

When you're ready to publish your app to a web server or other centralized location so
that users can install it, you can choose from several deployment methods. Some of
these are provided with Visual Studio. The following table lists the deployment options
for your app and specifies the .NET Framework redistributable package that supports
each option. In addition to these, you can write a custom setup program for your app;
for more information, see the section Chaining the .NET Framework Installation to Your
App's Setup.

Deployment strategy for
your app

Deployment
methods available

.NET Framework redistributable to
use

Install from the web - InstallAware
- InstallShield
- WiX toolset
- Manual installation

Web installer

Install from disc - InstallAware
- InstallShield
- WiX toolset
- Manual installation

Offline installer

Install from a local area
network (for enterprise apps)

- ClickOnce Either web installer (see ClickOnce for
restrictions) or offline installer

.NET Framework is available in two redistributable packages: web installer (bootstrapper)
and offline installer (stand-alone redistributable). All .NET Framework downloads are

Deployment options for your app

ﾉ Expand table

Redistributable packages

https://dotnet.microsoft.com/download/dotnet-framework/net45
https://dotnet.microsoft.com/download/dotnet-framework/net45
https://learn.microsoft.com/en-us/security-updates/SecurityAdvisories/2012/2749655


hosted on the Download .NET Framework page . The following table compares the two
packages:

Web installer Offline installer

Internet
connection
required?

Yes No

Size of download Smaller (includes installer
for target platform only)*

Larger*

Language packs Included** Must be installed separately, unless you use
the package that targets all operating
systems

Deployment
method

Supports all methods:

- ClickOnce
- InstallAware
- InstallShield
- Windows Installer XML
(WiX)
- Manual installation
- Custom setup (chaining)

Supports all methods:

- ClickOnce
- InstallAware
- InstallShield
- Windows Installer XML (WiX)
- Manual installation
- Custom setup (chaining)

* The offline installer is larger because it contains the components for all the target
platforms. When you finish running setup, the Windows operating system caches only
the installer that was used. If the offline installer is deleted after the installation, the disk
space used is the same as that used by the web installer. If the tool you use (for
example, InstallAware or InstallShield) to create your app's setup program provides a
setup file folder that is removed after installation, the offline installer can be
automatically deleted by placing it into the setup folder.

** If you're using the web installer with custom setup, you can use default language
settings based on the user's Multilingual User Interface (MUI) setting, or specify another
language pack by using the /LCID  option on the command line. See the section
Chaining by Using the Default .NET Framework UI for examples.

Four deployment methods are available:

ﾉ Expand table

Deployment methods

https://dotnet.microsoft.com/download/dotnet-framework/
https://dotnet.microsoft.com/download/dotnet-framework/


You can set a dependency on .NET Framework. You can specify .NET Framework as
a prerequisite in your app's installation, using one of these methods:

Use ClickOnce deployment (available with Visual Studio)

Create an InstallAware project (free edition available for Visual Studio users)

Create an InstallShield project (available with Visual Studio)

Use the Windows Installer XML (WiX) toolset

You can ask your users to install .NET Framework manually.

You can chain (include) the .NET Framework setup process in your app's setup, and
decide how you want to handle the .NET Framework installation experience:

Use the default UI. Let the .NET Framework installer provide the installation
experience.

Customize the UI to present a unified installation experience and to monitor the
.NET Framework installation progress.

These deployment methods are discussed in detail in the following sections.

If you use ClickOnce, InstallAware, InstallShield, or WiX to deploy your app, you can add
a dependency on .NET Framework so it can be installed as part of your app.

ClickOnce deployment is available for projects that are created with Visual Basic and
Visual C#, but it is not available for Visual C++.

In Visual Studio, to choose ClickOnce deployment and add a dependency on .NET
Framework:

1. Open the app project you want to publish.

2. In Solution Explorer, open the shortcut menu for your project, and then choose
Properties.

3. Choose the Publish pane.

4. Choose the Prerequisites button.

Set a dependency on .NET Framework

ClickOnce deployment



5. In the Prerequisites dialog box, make sure that the Create setup program to
install prerequisite components check box is selected.

6. In the prerequisites list, locate and select the version of .NET Framework that
you've used to build your project.

7. Choose an option to specify the source location for the prerequisites, and then
choose OK.

If you supply a URL for the .NET Framework download location, you can specify
either the .NET Framework download page or a site of your own. If you are placing
the redistributable package on your own server, it must be the offline installer and
not the web installer. You can only link to the web installer on the .NET Framework
download page. The URL can also specify a disc on which your own app is being
distributed.

8. In the Property Pages dialog box, choose OK.

InstallAware builds Windows app (APPX), Windows Installer (MSI), Native Code (EXE),
and App-V (Application Virtualization) packages from a single source. Easily include any
version of the .NET Framework  in your setup, optionally customizing the installation
by editing the default scripts . For example, InstallAware pre-installs certificates on
Windows 7, without which .NET Framework 4.7 setup fails. For more information on
InstallAware, see the InstallAware for Windows Installer  website.

InstallShield builds Windows app packages (MSIX, APPX), Windows Installer packages
(MSI), and Native Code (EXE) installers. InstallShield also provides Visual Studio
integration. For more information, see the InstallShield  website.

The Windows Installer XML (WiX) toolset builds Windows installation packages from
XML source code. WiX supports a command-line environment that can be integrated
into your build processes to build MSI and MSM setup packages. By using WiX, you can
specify the .NET Framework as a prerequisite , or create a chainer  to fully control the
.NET Framework deployment experience. For more information about WiX, see the
Windows Installer XML (WiX) toolset  website.

InstallAware deployment

InstallShield deployment

Windows Installer XML (WiX) deployment

https://www.installaware.com/one-click-pre-requisite-installer.htm
https://www.installaware.com/one-click-pre-requisite-installer.htm
https://www.installaware.com/one-click-pre-requisite-installer.htm
https://www.installaware.com/msicode.htm
https://www.installaware.com/msicode.htm
https://www.installaware.com/
https://www.installaware.com/
https://www.flexerasoftware.com/install/products/installshield.html
https://www.flexerasoftware.com/install/products/installshield.html
https://wixtoolset.org/documentation/manual/v3/howtos/redistributables_and_install_checks/install_dotnet.html
https://wixtoolset.org/documentation/manual/v3/howtos/redistributables_and_install_checks/install_dotnet.html
https://wixtoolset.org/documentation/manual/v3/xsd/wix/exepackage.html
https://wixtoolset.org/documentation/manual/v3/xsd/wix/exepackage.html
https://wixtoolset.org/
https://wixtoolset.org/


In some situations, it might be impractical to automatically install .NET Framework with
your app. In that case, you can have users install .NET Framework themselves. The
redistributable package is available in two packages. In your setup process, provide
instructions for how users should locate and install .NET Framework.

If you're creating a custom setup program for your app, you can chain (include) the .NET
Framework setup process in your app's setup process. Chaining provides two UI options
for the .NET Framework installation:

Use the default UI provided by the .NET Framework installer.

Create a custom UI for the .NET Framework installation for consistency with your
app's setup program.

Both methods allow you to use either the web installer or the offline installer. Each
package has its advantages:

If you use the web installer, the .NET Framework setup process will decide which
installation package is required, and download and install only that package from
the web.

If you use the offline installer, you can include the complete set of .NET Framework
installation packages with your redistribution media so that your users don't have
to download any additional files from the web during setup.

To silently chain the .NET Framework installation process and let the .NET Framework
installer provide the UI, add the following command to your setup program:

<.NET Framework redistributable> /q /norestart /ChainingPackage <PackageName>

For example, if your executable program is Contoso.exe and you want to silently install
the .NET Framework 4.5 offline redistributable package, use the command:

dotNetFx45_Full_x86_x64.exe /q /norestart /ChainingPackage Contoso

Install .NET Framework manually

Chain the .NET Framework installation to your
app's setup

Chaining by using the default .NET Framework UI



You can use additional command-line options to customize the installation. For
example:

To provide a way for users to close running .NET Framework apps to minimize
system restarts, set passive mode and use the /showrmui  option as follows:

dotNetFx45_Full_x86_x64.exe /norestart /passive /showrmui /ChainingPackage

Contoso

This command allows Restart Manager to display a message box that gives users
the opportunity to close .NET Framework apps before installing the .NET
Framework.

If you're using the web installer, you can use the /LCID  option to specify a
language pack. For example, to chain the .NET Framework 4.5 web installer to your
Contoso setup program and install the Japanese language pack, add the following
command to your app's setup process:

dotNetFx45_Full_setup.exe /q /norestart /ChainingPackage Contoso /LCID 1041

If you omit the /LCID  option, setup will install the language pack that matches the
user's MUI setting.

For a complete list of options, see the Command-Line Options section.

For common return codes, see the Return Codes section.

If you have a custom setup package, you may want to silently launch and track the .NET
Framework setup while showing your own view of the setup progress. If this is the case,
make sure that your code covers the following:

Check for .NET Framework hardware and software requirements.

７ Note

Different language packs may have different release dates. If the language
pack you specify is not available at the download center, setup will install the
.NET Framework without the language pack. If the .NET Framework is already
installed on the user’s computer, the setup will install only the language pack.

Chaining by using a Custom UI

https://learn.microsoft.com/en-us/dotnet/framework/get-started/system-requirements


Detect whether the correct version of the .NET Framework is already installed on
the user’s computer.

Detect whether the language packs are already installed on the user’s computer.

If you want to control the deployment, silently launch and track the .NET
Framework setup process (see How to: Get Progress from the .NET Framework 4.5
Installer).

If you’re deploying the offline installer, chain the language packs separately.

Customize deployment by using command-line options. For example, if you’re
chaining the .NET Framework web installer, but you want to override the default
language pack, use the /LCID  option, as described in the previous section.

Troubleshoot.

The .NET Framework installer writes registry keys when installation is successful. You can
test whether .NET Framework 4.5 or later is installed by checking the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full  folder in the
registry for a DWORD  value named Release . (Note that "NET Framework Setup" doesn't
begin with a period.) The existence of this key indicates that .NET Framework 4.5 or a
later version has been installed on that computer. The value of Release  indicates which
version of .NET Framework is installed.

） Important

In determining whether the correct version of the .NET Framework is already
installed, you should check whether your target version or a later version is
installed, not whether your target version is installed. In other words, you
should evaluate whether the release key you retrieve from the registry is
greater than or equal to the release key of your target version, not whether it
equals the release key of your target version.

Detect .NET Framework

） Important

Check for a value greater than or equal to the release keyword value when
attempting to detect whether a specific version is present.



Version Value of the
Release DWORD

.NET Framework 4.8.1 533325

.NET Framework 4.8 installed on Windows 10 May 2020 Update and Windows
10 October 2020 Update

528372

.NET Framework 4.8 installed on Windows 10 May 2019 Update and Windows
10 November 2019 Update

528040

.NET Framework 4.8 installed on all OS versions other than the listed Windows
10 Update versions

528049

.NET Framework 4.7.2 installed on Windows 10 April 2018 Update and on
Windows Server, version 1803

461808

.NET Framework 4.7.2 installed on all OS versions other than Windows 10
April 2018 Update, and Windows Server, version 1803. This includes Windows
10 October 2018 Update.

461814

.NET Framework 4.7.1 installed on Windows 10 Fall Creators Update and on
Windows Server, version 1709

461308

.NET Framework 4.7.1 installed on all OS versions other than Windows 10 Fall
Creators Update and Windows Server, version 1709

461310

.NET Framework 4.7 installed on Windows 10 Creators Update 460798

.NET Framework 4.7 installed on all OS versions other than Windows 10
Creators Update

460805

.NET Framework 4.6.2 installed on Windows 10 Anniversary Edition and on
Windows Server 2016

394802

.NET Framework 4.6.2 installed on all OS versions other than Windows 10
Anniversary Edition and Windows Server 2016

394806

.NET Framework 4.6.1 installed on Windows 10 November Update 394254

.NET Framework 4.6.1 installed on all OS versions other than Windows 10
November Update

394271

.NET Framework 4.6 installed on Windows 10 393295

.NET Framework 4.6 installed on all OS versions other than Windows 10 393297

.NET Framework 4.5.2 379893

.NET Framework 4.5.1 installed with Windows 8.1 or Windows Server 2012 R2 378675

ﾉ Expand table



Version Value of the
Release DWORD

.NET Framework 4.5.1 installed on Windows 8, Windows 7 378758

.NET Framework 4.5 378389

You can test whether a specific language pack is installed by checking the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full\LCID
folder in the registry for a DWORD value named Release . (Note that "NET Framework
Setup" doesn't begin with a period.) LCID specifies a locale identifier; see supported
languages for a list of these.

For example, to detect whether the full Japanese language pack (LCID=1041) is installed,
retrieve the following named value from the registry:

Value

Key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full\1041

Entry Release

Type DWORD

To determine whether the final release version of a language pack is installed for a
particular version of .NET Framework from 4.5 through 4.7.2, check the value of the
RELEASE key DWORD value described in the previous section, Detecting .NET
Framework.

.NET Framework provides a set of stand-alone language pack executable files that
contain localized resources for specific cultures. The language packs are available from
the .NET Framework download pages:

.NET Framework 4.8.1

.NET Framework 4.8

.NET Framework 4.7.2

.NET Framework 4.7.1

.NET Framework 4.7

Detect language packs

ﾉ Expand table

Chaining the language packs to your app setup

https://dotnet.microsoft.com/download/dotnet-framework/net481
https://dotnet.microsoft.com/download/dotnet-framework/net481
https://dotnet.microsoft.com/download/dotnet-framework/net48
https://dotnet.microsoft.com/download/dotnet-framework/net48
https://dotnet.microsoft.com/download/dotnet-framework/net472
https://dotnet.microsoft.com/download/dotnet-framework/net472
https://dotnet.microsoft.com/download/dotnet-framework/net471
https://dotnet.microsoft.com/download/dotnet-framework/net471
https://dotnet.microsoft.com/download/dotnet-framework/net47
https://dotnet.microsoft.com/download/dotnet-framework/net47


.NET Framework 4.6.2

.NET Framework 4.6.1

.NET Framework 4.6

.NET Framework 4.5.2

.NET Framework 4.5.1

.NET Framework 4.5

Starting with .NET Framework 4.5.1, the package names take the form NDP< version>-
KB< number>-x86-x64-AllOS-< culture>.exe, where version  is the version number of
the .NET Framework, number  is a Microsoft Knowledge Base article number, and culture
specifies a country/region. An example of one of these packages is NDP452-KB2901907-
x86-x64-AllOS-JPN.exe . Package names are listed in the Redistributable Packages section
earlier in this article.

To install a language pack with the .NET Framework offline installer, you must chain it to
your app's setup. For example, to deploy .NET Framework 4.5.1 offline installer with the
Japanese language pack, use the following command:

NDP451-KB2858728-x86-x64-AllOS-JPN.exe /q /norestart /ChainingPackage

<ProductName>

You do not have to chain the language packs if you use the web installer; setup will
install the language pack that matches the user's MUI setting. If you want to install a
different language, you can use the /LCID  option to specify a language pack.

For a complete list of command-line options, see the Command-Line Options section.

The following table lists the most common return codes for the .NET Framework
redistributable installer. The return codes are the same for all versions of the installer.
For links to detailed information, see the next section.

） Important

The language packs don't contain the .NET Framework components that are
required to run an app. You must install .NET Framework by using the web or
offline installer before you install a language pack.

Troubleshooting

Return codes

https://dotnet.microsoft.com/download/dotnet-framework/net462
https://dotnet.microsoft.com/download/dotnet-framework/net462
https://dotnet.microsoft.com/download/dotnet-framework/net461
https://dotnet.microsoft.com/download/dotnet-framework/net461
https://dotnet.microsoft.com/download/dotnet-framework/net46
https://dotnet.microsoft.com/download/dotnet-framework/net46
https://dotnet.microsoft.com/download/dotnet-framework/net452
https://dotnet.microsoft.com/download/dotnet-framework/net452
https://dotnet.microsoft.com/download/dotnet-framework/net451
https://dotnet.microsoft.com/download/dotnet-framework/net451
https://dotnet.microsoft.com/download/dotnet-framework/net45
https://dotnet.microsoft.com/download/dotnet-framework/net45


Return code Description

0 Installation completed successfully.

1602 The user canceled installation.

1603 A fatal error occurred during installation.

1641 A restart is required to complete the installation. This message indicates success.

3010 A restart is required to complete the installation. This message indicates success.

5100 The user's computer does not meet system requirements.

See the following content:

Background Intelligent Transfer Service (BITS) error codes

URL moniker error codes

WinHttp error codes

See the following content:

Windows Installer error codes

Windows Update Agent result codes

Starting with Windows 8, you can uninstall .NET Framework 4.5 or later versions by using
Turn Windows features on and off in Control Panel. In older versions of Windows, you
can uninstall .NET Framework 4.5 or later versions by using Add or Remove Programs in
Control Panel.

ﾉ Expand table

Download error codes

Other error codes

Uninstall .NET Framework

） Important

For Windows 7 and earlier operating systems, uninstalling .NET Framework 4.5.1,
4.5.2, 4.6, 4.6.1, 4.6.2, 4.7, 4.7.1, 4.7.2, 4.8, or 4.8.1 doesn't restore .NET Framework

https://learn.microsoft.com/en-us/windows/win32/bits/bits-return-values
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775145(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/winhttp/error-messages
https://learn.microsoft.com/en-us/previous-versions/aa368542(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc720442(v=ws.10)


The following table lists options that you can include when you chain the .NET
Framework 4.5 redistributable to your app's setup.

Option Description

/CEIPConsent Overwrites the default behavior and sends anonymous feedback to
Microsoft to improve future deployment experiences. This option
can be used only if the setup program prompts for consent and if
the user grants permission to send anonymous feedback to
Microsoft.

/chainingpackage
packageName

Specifies the name of the executable that is doing the chaining. This
information is sent to Microsoft as anonymous feedback to help
improve future deployment experiences.

If the package name includes spaces, use double quotation marks
as delimiters; for example: /chainingpackage "Lucerne Publishing".
For an example of a chaining package, see Getting Progress
Information from an Installation Package.

/LCID LCID

where LCID  specifies a
locale identifier (see
supported languages)

Installs the language pack specified by LCID  and forces the
displayed UI to be shown in that language, unless quiet mode is set.

For the web installer, this option chain-installs the language
package from the web. Note: Use this option only with the web
installer.

/log file  | folder Specifies the location of the log file. The default is the temporary
folder for the process, and the default file name is based on the
package. If the file extension is .txt, a text log is produced. If you
specify any other extension or no extension, an HTML log is created.

/msioptions Specifies options to be passed for .msi and .msp items; for example:
/msioptions "PROPERTY1='Value'" .

4.5 files, and uninstalling .NET Framework 4.5 doesn't restore .NET Framework 4
files. If you want to go back to the older version, you must reinstall it and any
updates to it.

Appendix

Command-line options

ﾉ Expand table

https://learn.microsoft.com/en-us/previous-versions/cc825975(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/cc825975(v=vs.100)


Option Description

/norestart Prevents the setup program from rebooting automatically. If you
use this option, the chaining app has to capture the return code and
handle rebooting (see Getting Progress Information from an
Installation Package).

/passive Sets passive mode. Displays the progress bar to indicate that
installation is in progress, but does not display any prompts or error
messages to the user. In this mode, when chained by a setup
program, the chaining package must handle return codes.

/pipe Creates a communication channel to enable a chaining package to
get progress.

/promptrestart Passive mode only, if the setup program requires a restart, it
prompts the user. This option requires user interaction if a restart is
required.

/q Sets quiet mode.

/repair Triggers the repair functionality.

/serialdownload Forces the installation to happen only after the package has been
downloaded.

/showfinalerror Sets passive mode. Displays errors only if the installation is not
successful. This option requires user interaction if the installation is
not successful.

/showrmui Used only with the /passive option. Displays a message box that
prompts users to close .NET Framework apps that are currently
running. This message box behaves the same in passive and non-
passive mode.

/uninstall Uninstalls the .NET Framework redistributable.

The following table lists .NET Framework language packs that are available for .NET
Framework 4.5 and later versions.

LCID Language – country/region Culture

1025 Arabic - Saudi Arabia ar

1028 Chinese – Traditional zh-Hant

Supported languages

ﾉ Expand table

https://learn.microsoft.com/en-us/previous-versions/cc825975(v=vs.100)
https://learn.microsoft.com/en-us/previous-versions/cc825975(v=vs.100)


LCID Language – country/region Culture

1029 Czech cs

1030 Danish da

1031 German – Germany de

1032 Greek el

1035 Finnish fi

1036 French – France fr

1037 Hebrew he

1038 Hungarian hu

1040 Italian – Italy it

1041 Japanese ja

1042 Korean ko

1043 Dutch – Netherlands nl

1044 Norwegian (Bokmål) no

1045 Polish pl

1046 Portuguese – Brazil pt-BR

1049 Russian ru

1053 Swedish sv

1055 Turkish tr

2052 Chinese – Simplified zh-Hans

2070 Portuguese – Portugal pt-PT

3082 Spanish - Spain (Modern Sort) es

Deployment Guide for Administrators
System Requirements
Install the .NET Framework for developers
Troubleshoot blocked .NET Framework installations and uninstallations

See also

https://learn.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://learn.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://learn.microsoft.com/en-us/dotnet/framework/install/troubleshoot-blocked-installations-and-uninstallations


Reducing System Restarts During .NET Framework 4.5 Installations
How to: Get Progress from the .NET Framework 4.5 Installer



.NET Framework Deployment Guide for
Administrators
Article • 09/15/2021

This step-by-step article describes how a system administrator can deploy .NET
Framework 4.5 and its system dependencies across a network by using Microsoft
Endpoint Configuration Manager. This article assumes that all target client computers
meet the minimum requirements for .NET Framework. For a list of the software and
hardware requirements for installing .NET Framework 4.5, see System Requirements.

This topic contains the following sections:

The deployment process
Deploying .NET Framework
Create a collection
Create a package and program
Select a distribution point
Deploy the package
Resources
Troubleshooting

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

７ Note

The software referenced in this document, including, without limitation, .NET
Framework 4.5, Configuration Manager, and Active Directory, are each subject to
license terms and conditions. These instructions assume that such license terms and
conditions have been reviewed and accepted by the appropriate licensees of the
software. These instructions do not waive any of the terms and conditions of such
license agreements.

For information about support for .NET Framework, see .NET Framework official
support policy  on the Microsoft Support website.

https://learn.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://dotnet.microsoft.com/platform/support/policy/dotnet-framework
https://dotnet.microsoft.com/platform/support/policy/dotnet-framework
https://dotnet.microsoft.com/platform/support/policy/dotnet-framework


When you have the supporting infrastructure in place, you use Configuration Manager
to deploy the .NET Framework redistributable package to computers on the network.
Building the infrastructure involves creating and defining five primary areas: collections,
a package and program for the software, distribution points, and deployments.

Collections are groups of Configuration Manager resources, such as users, user
groups, or computers, to which .NET Framework is deployed. For more
information, see Introduction to collections in Configuration Manager in the
Configuration Manager documentation library.

Packages and programs typically represent software applications to be installed
on a client computer, but they might also contain individual files, updates, or even
individual commands. For more information, see Packages and programs in
Configuration Manager in the Configuration Manager documentation library.

Distribution points are Configuration Manager site system roles that store files
required for software to run on client computers. When the Configuration Manager
client receives and processes a software deployment, it contacts a distribution
point to download the content associated with the software and to start the
installation process. For more information, see Fundamental concepts for content
management in Configuration Manager in the Configuration Manager
documentation library.

Deployments instruct applicable members of the specified target collection to
install the software package.

You can use Configuration Manager to deploy a silent installation of .NET Framework
4.5, where the users do not interact with the installation process. Follow these steps:

1. Create a collection.

The deployment process

） Important

The procedures in this topic contain typical settings for creating and deploying a
package and program, and might not cover all possible settings. For other
Configuration Manager deployment options, see the Configuration Manager
Documentation Library.

Deploying .NET Framework

https://learn.microsoft.com/en-us/configmgr/core/clients/manage/collections/introduction-to-collections
https://learn.microsoft.com/en-us/configmgr/apps/deploy-use/packages-and-programs
https://learn.microsoft.com/en-us/configmgr/apps/deploy-use/packages-and-programs
https://learn.microsoft.com/en-us/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management
https://learn.microsoft.com/en-us/configmgr/core/plan-design/hierarchy/fundamental-concepts-for-content-management
https://learn.microsoft.com/en-us/previous-versions/system-center/system-center-2012-R2/gg682041(v=technet.10)
https://learn.microsoft.com/en-us/previous-versions/system-center/system-center-2012-R2/gg682041(v=technet.10)


2. Create a package and program for the .NET Framework redistributable.

3. Select a distribution point.

4. Deploy the package.

In this step, you select the computers to which you will deploy the package and
program, and group them into a device collection. To create a collection in
Configuration Manager, you can use direct membership rules (where you manually
specify the collection members) or query rules (where Configuration Manager
determines the collection members based on criteria you specify). For more information
about membership rules, including queries and direct rules, see Introduction to
collections in Configuration Manager in the Configuration Manager Documentation
Library.

To create a collection:

1. In the Configuration Manager console, choose Assets and Compliance.

2. In the Assets and Compliance workspace, choose Device Collections.

3. On the Home tab in the Create group, choose Create Device Collection.

4. On the General page of the Create Device Collection Wizard, enter a name for the
collection.

5. Choose Browse to specify a limiting collection.

6. On the Membership Rules page, choose Add Rule, and then choose Direct Rule to
open the Create Direct Membership Rule Wizard. Choose Next.

7. On the Search for Resources page, in the Resource class list, choose System
Resource. In the Attribute name list, choose Name. In the Value field, enter % , and
then choose Next.

8. On the Select Resources page, select the check box for each computer that you
want to deploy the .NET Framework to. Choose Next, and then complete the
wizard.

9. On the Membership Rules page of the Create Device Collection Wizard, choose
Next, and then complete the wizard.

Create a collection

https://learn.microsoft.com/en-us/configmgr/core/clients/manage/collections/introduction-to-collections
https://learn.microsoft.com/en-us/configmgr/core/clients/manage/collections/introduction-to-collections


The following steps create a package for the .NET Framework redistributable manually.
The package contains the specified parameters for installing .NET Framework and the
location from where the package will be distributed to the target computers.

To create a package:

1. In the Configuration Manager console, choose Software Library.

2. In the Software Library workspace, expand Application Management, and then
choose Packages.

3. On the Home tab, in the Create group, choose Create Package.

4. On the Package page of the Create Package and Program Wizard, enter the
following information:

Name: .NET Framework 4.5

Manufacturer: Microsoft

Language. English (US)

5. Choose This package contains source files, and then choose Browse to select the
local or network folder that contains the .NET Framework installation files. When
you have selected the folder, choose OK, and then choose Next.

6. On the Program Type page of the wizard, choose Standard Program, and then
choose Next.

7. On the Program page of the Create Package and Program Wizard, enter the
following information:

a. Name: .NET Framework 4.5

b. Command line: dotNetFx45_Full_x86_x64.exe /q /norestart /ChainingPackage
ADMINDEPLOYMENT  (command-line options are described in the table after these
steps)

c. Run: Choose Hidden.

d. Program can run: Choose the option that specifies that the program can run
regardless of whether a user is logged on.

Create a package and program for the .NET Framework
redistributable package



8. On the Requirements page, choose Next to accept the default values, and then
complete the wizard.

The following table describes the command-line options specified in step 7.

Option Description

/q Sets quiet mode. No user input is required, and no output is shown.

/norestart Prevents the Setup program from rebooting automatically. If you use this
option, Configuration Manager must handle the computer restart.

/chainingpackage
PackageName

Specifies the name of the package that is doing the chaining. This
information is reported with other installation session information for
those who have signed up for the Microsoft Customer Experience
Improvement Program (CEIP). If the package name includes spaces, use
double quotation marks as delimiters; for example: /chainingpackage
"Chaining Product".

These steps create a package named .NET Framework 4.5. The program deploys a silent
installation of .NET Framework 4.5. In a silent installation, users do not interact with the
installation process, and the chaining application has to capture the return code and
handle rebooting; see Getting Progress Information from an Installation Package.

To distribute the package and program to client computers from a server, you must first
designate a site system as a distribution point and then distribute the package to the
distribution point.

Use the following steps to select a distribution point for the .NET Framework 4.5
package you created in the previous section:

1. In the Configuration Manager console, choose Software Library.

2. In the Software Library workspace, expand Application Management, and then
choose Packages.

3. From the list of packages, select the package .NET Framework 4.5 that you created
in the previous section.

4. On the Home tab, in the Deployment group, choose Distribute Content.

5. On the General tab of the Distribute Content Wizard, choose Next.

ﾉ Expand table

Select a distribution point

https://learn.microsoft.com/en-us/previous-versions/cc825975(v=vs.100)


6. On the Content Destination page of the wizard, choose Add, and then choose
Distribution Point.

7. In the Add Distribution Points dialog box, select the distribution point(s) that will
host the package and program, and then choose OK.

8. Complete the wizard.

The package now contains all the information you need to silently deploy .NET
Framework 4.5. Before you deploy the package and program, verify that it was installed
on the distribution point; see the "Content status monitoring" section of Monitor
content you distribute with Configuration Manager in the Configuration Manager
Documentation Library.

To deploy the .NET Framework 4.5 package and program:

1. In the Configuration Manager console, choose Software Library.

2. In the Software Library workspace, expand Application Management, and then
choose Packages.

3. From the list of packages, select the package you created named .NET Framework
4.5.

4. On the Home tab, in the Deployment group, choose Deploy.

5. On the General page of the Deploy Software Wizard, choose Browse, and then
select the collection that you created earlier. Choose Next.

6. On the Content page of the wizard, verify that the point from which you want to
distribute the software is displayed, and then choose Next.

7. On the Deployment Settings page of the wizard, confirm that Action is set to
Install, and Purpose is set to Required. This ensures that the software package will
be a mandatory installation on the targeted computers. Choose Next.

8. On the Scheduling page of the wizard, specify when you want .NET Framework to
be installed. You can choose New to assign an installation time, or instruct the
software to install when the user logs on or off, or as soon as possible. Choose
Next.

9. On the User Experience page of the wizard, use the default values and choose
Next.

Deploy the package

https://learn.microsoft.com/en-us/configmgr/core/servers/deploy/configure/monitor-content-you-have-distributed
https://learn.microsoft.com/en-us/configmgr/core/servers/deploy/configure/monitor-content-you-have-distributed


10. On the Distribution Points page of the wizard, use the default values and choose
Next.

11. Complete the wizard. You can monitor the progress of the deployment in the
Deployments node of the Monitoring workspace.

The package will now be deployed to the targeted collection and the silent installation
of .NET Framework 4.5 will begin. For information about .NET Framework 4.5 installation
error codes, see the Return Codes section later in this topic.

For more information about the infrastructure for testing the deployment of the .NET
Framework 4.5 redistributable package, see the following resources.

Active Directory, DNS, DHCP:

Active Directory Domain Services

Domain Name System (DNS)

Dynamic Host Configuration Protocol (DHCP)

SQL Server 2008:

Installing SQL Server 2008 (SQL Server Video)

SQL Server 2008 Security Overview for Database Administrators

System Center 2012 Configuration Manager (Management Point, Distribution Point):

Site Administration for System Center 2012 Configuration Manager

System Center 2012 Configuration Manager client for Windows computers:

Deploying Clients for System Center 2012 Configuration Manager

２ Warning

Your production environment might have policies that require different
selections for the deployment schedule.

Resources

Troubleshooting

https://learn.microsoft.com/en-us/windows/desktop/ad/active-directory-domain-services
https://learn.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://learn.microsoft.com/en-us/windows-server/networking/technologies/dhcp/dhcp-top
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd299415(v=sql.100)
https://download.microsoft.com/download/a/c/d/acd8e043-d69b-4f09-bc9e-4168b65aaa71/SQL2008SecurityOverviewforAdmins.docx
https://download.microsoft.com/download/a/c/d/acd8e043-d69b-4f09-bc9e-4168b65aaa71/SQL2008SecurityOverviewforAdmins.docx
https://learn.microsoft.com/en-us/previous-versions/system-center/system-center-2012-R2/gg681983(v=technet.10)
https://learn.microsoft.com/en-us/previous-versions/system-center/system-center-2012-R2/gg699391(v=technet.10)


The following log files are generated during .NET Framework setup:

%temp%\Microsoft .NET Framework version*.txt
%temp%\Microsoft .NET Framework version*.html

where version is the version of .NET Framework that you're installing, such as 4.5 or
4.7.2.

You can also specify the directory to which log files are written by using the /log
command-line option in the .NET Framework installation command. For more
information, see .NET Framework deployment guide for developers.

You can use the log collection tool  to collect the .NET Framework log files and to
create a compressed cabinet (.cab) file that reduces the size of the files.

The following table lists the most common return codes from the .NET Framework 4.5
redistributable installation program. The return codes are the same for all versions of the
installer.

For links to detailed information, see the next section, Download error codes.

Return code Description

0 Installation completed successfully.

1602 The user canceled installation.

1603 A fatal error occurred during installation.

1641 A restart is required to complete the installation. This message indicates success.

3010 A restart is required to complete the installation. This message indicates success.

5100 The user's computer does not meet system requirements.

Background Intelligent Transfer Service (BITS) error codes

URL moniker error codes

Log file locations

Return codes

ﾉ Expand table

Download error codes

https://www.microsoft.com/download/details.aspx?id=12493
https://www.microsoft.com/download/details.aspx?id=12493
https://learn.microsoft.com/en-us/windows/desktop/Bits/bits-return-values
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775145(v=vs.85)


WinHttp error codes

Other error codes:

Windows Installer error codes

Windows Update Agent result codes

Deployment Guide for Developers
System Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/WinHttp/error-messages
https://learn.microsoft.com/en-us/windows/desktop/msi/error-codes
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc720442(v=ws.10)
https://learn.microsoft.com/en-us/dotnet/framework/get-started/system-requirements


Reducing System Restarts During .NET
Framework 4.5 Installations
Article • 06/04/2024

The .NET Framework 4.5 installer uses the Restart Manager to prevent system restarts
whenever possible during installation. If your app setup program installs the .NET
Framework, it can interface with the Restart Manager to take advantage of this feature.
For more information, see How to: Get Progress from the .NET Framework 4.5 Installer.

The .NET Framework 4.5 installation requires a system restart if a .NET Framework 4 app
is in use during the installation. This is because the .NET Framework 4.5 replaces .NET
Framework 4 files and requires those files to be available during installation. In many
cases, the restart can be prevented by preemptively detecting and closing.NET
Framework 4 apps that are in use. However, some system apps should not be closed. In
these cases, a restart cannot be avoided.

An end-user who is doing a full installation of the .NET Framework 4.5 is given the
opportunity to avoid a system restart if the installer detects .NET Framework 4 apps in
use. A message lists all running .NET Framework 4 apps and provides the option to close
these apps before the installation. If the user confirms, these apps are shut down by the
installer, and a system restart is avoided. If the user does not respond to the message
within a certain amount of time, the installation continues without closing any apps.

If the Restart Manager detects a situation that will require a system restart even if
running apps are closed, the message is not displayed.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Reasons for a Restart

End-User Experience

https://learn.microsoft.com/en-us/windows/win32/rstmgr/about-restart-manager


If you want to redistribute the .NET Framework with your app, but you want to use your
own setup program and UI, you can include (chain) the .NET Framework setup process
to your setup process. For more information about chained installations, see
Deployment Guide for Developers. To reduce system restarts in chained installations, the
.NET Framework installer supplies your setup program with the list of apps to close. Your
setup program must provide this information to the user through a user interface such
as a message box, get the user’s response, and then pass the response back to the .NET
Framework installer. For an example of a chained installer, see the article How to: Get
Progress from the .NET Framework 4.5 Installer.

If you're using a chained installer, but you do not want to provide your own message
box for closing apps, you can use the /showrmui  and /passive  options on the command
line when you chain the .NET Framework setup process. When you use these options
together, the installer shows the message box for closing apps if they can be closed to
avoid a system restart. This message box behaves the same in passive mode as it does
under the full user interface. See Deployment Guide for Developers for the complete set
of command-line options for the .NET Framework redistributable.

Deployment
Deployment Guide for Developers
How to: Get Progress from the .NET Framework 4.5 Installer

Using a Chained Installer

See also



How to: Get Progress from the .NET
Framework 4.5 Installer
Article • 07/23/2022

The .NET Framework 4.5 is a redistributable runtime. If you develop apps for this version
of the .NET Framework, you can include (chain) .NET Framework 4.5 setup as a
prerequisite part of your app's setup. To present a customized or unified setup
experience, you may want to silently launch .NET Framework 4.5 setup and track its
progress while showing your app's setup progress. To enable silent tracking, .NET
Framework 4.5 setup (which can be watched) defines a protocol by using a memory-
mapped I/O (MMIO) segment to communicate with your setup (the watcher or chainer).
This protocol defines a way for a chainer to obtain progress information, get detailed
results, respond to messages, and cancel the .NET Framework 4.5 setup.

Invocation. To call .NET Framework 4.5 setup and receive progress information
from the MMIO section, your setup program must do the following:

1. Call the .NET Framework 4.5 redistributable program:

dotNetFx45_Full_x86_x64.exe /q /norestart /pipe section-name

Where section name is any name you want to use to identify your app. .NET
Framework setup reads and writes to the MMIO section asynchronously, so
you might find it convenient to use events and messages during that time. In
the example, the .NET Framework setup process is created by a constructor
that both allocates the MMIO section ( TheSectionName ) and defines an event
( TheEventName ):

C++

Please replace those names with names that are unique to your setup
program.

2. Read from the MMIO section. In .NET Framework 4.5, the download and
installation operations are simultaneous: One part of the .NET Framework
might be installing while another part is downloading. As a result, progress is
sent back (that is, written) to the MMIO section as two numbers

Server():ChainerSample::MmioChainer(L"TheSectionName", 
L"TheEventName")



( m_downloadSoFar  and m_installSoFar ) that increase from 0 to 255. When 255
is written and the .NET Framework exits, the installation is complete.

Exit codes. The following exit codes from the command to call the .NET Framework
4.5 redistributable program indicate whether setup has succeeded or failed:

0 - Setup completed successfully.

3010 – Setup completed successfully; a system restart is required.

1602 – Setup has been canceled.

All other codes - Setup encountered errors; examine the log files created in
%temp% for details.

Canceling setup. You can cancel setup at any time by using the Abort  method to
set the m_downloadAbort  and m_ installAbort  flags in the MMIO section.

The Chainer sample silently launches and tracks .NET Framework 4.5 setup while
showing progress. This sample is similar to the Chainer sample provided for the .NET
Framework 4. However, in addition, it can avoid system restarts by processing the
message box for closing .NET Framework 4 apps. For information about this message
box, see Reducing System Restarts During .NET Framework 4.5 Installations. You can use
this sample with the .NET Framework 4 installer; in that scenario, the message is simply
not sent.

The following sections describe the significant files in this sample: MMIOChainer.h,
ChainingdotNet4.cpp, and IProgressObserver.h.

The MMIOChainer.h file contains the data structure definition and the base class
from which the chainer class should be derived. The .NET Framework 4.5 extends
the MMIO data structure to handle data that the .NET Framework 4.5 installer
needs. The changes to the MMIO structure are backward-compatible, so a .NET
Framework 4 chainer can work with .NET Framework 4.5 setup without requiring

Chainer Sample

２ Warning

You must run the example as an administrator.

MMIOChainer.h



recompilation. However, this scenario does not support the feature for reducing
system restarts.

A version field provides a means of identifying revisions to the structure and
message format. The .NET Framework setup determines the version of the chainer
interface by calling the VirtualQuery  function to determine the size of the file
mapping. If the size is large enough to accommodate the version field, .NET
Framework setup uses the specified value. If the file mapping is too small to
contain a version field, which is the case with the .NET Framework 4, the setup
process assumes version 0 (4). If the chainer does not support the version of the
message that .NET Framework setup wants to send, .NET Framework setup
assumes an ignore response.

The MMIO data structure is defined as follows:

C++

// MMIO data structure for interprocess communication
    struct MmioDataStructure
    {
        bool m_downloadFinished;               // Is download complete?
        bool m_installFinished;                // Is installation 
complete?
        bool m_downloadAbort;                  // Set to cause 
downloader to abort.
        bool m_installAbort;                   // Set to cause 
installer to abort.
        HRESULT m_hrDownloadFinished;          // Resulting HRESULT for 
download.
        HRESULT m_hrInstallFinished;           // Resulting HRESULT for 
installation.
        HRESULT m_hrInternalError;
        WCHAR m_szCurrentItemStep[MAX_PATH];
        unsigned char m_downloadSoFar;         // Download progress 0-
255 (0-100% done).
        unsigned char m_installSoFar;          // Installation progress 
0-255 (0-100% done).
        WCHAR m_szEventName[MAX_PATH];         // Event that chainer 
creates and chainee opens to sync communications.

        BYTE m_version;                        // Version of the data 
structure, set by chainer:
                                               // 0x0: .NET Framework 4
                                               // 0x1: .NET Framework 
4.5

        DWORD m_messageCode;                   // Current message sent 
by the chainee; 0 if no message is active.
        DWORD m_messageResponse;               // Chainer's response to 
current message; 0 if not yet handled.



The MmioDataStructure  data structure should not be used directly; use the
MmioChainer  class instead to implement your chainer. Derive from the MmioChainer
class to chain the .NET Framework 4.5 redistributable.

The IProgressObserver.h file implements a progress observer. This observer gets
notified of download and installation progress (specified as an unsigned char , 0-
255, indicating 1%-100% complete). The observer is also notified when the chainee
sends a message, and the observer should send a response.

C++

The ChainingdotNet4.5.cpp file implements the Server  class, which derives from
the MmioChainer  class and overrides the appropriate methods to display progress
information. The MmioChainer creates a section with the specified section name
and initializes the chainer with the specified event name. The event name is saved
in the mapped data structure. You should make the section and event names
unique. The Server  class in the following code launches the specified setup
program, monitors its progress, and returns an exit code.

C++

        DWORD m_messageDataLength;             // Length of the 
m_messageData field, in bytes.
        BYTE m_messageData[1];                 // Variable-length 
buffer; content depends on m_messageCode.
    };

IProgressObserver.h

    class IProgressObserver
    {
    public:
        virtual void OnProgress(unsigned char) = 0; // 0 - 255:  255 == 
100%
        virtual void Finished(HRESULT) = 0;         // Called when 
operation is complete
        virtual DWORD Send(DWORD dwMessage, LPVOID pData, DWORD 
dwDataLength) = 0; // Called when a message is sent
    };

ChainingdotNet4.5.cpp

class Server : public ChainerSample::MmioChainer, public 
ChainerSample::IProgressObserver



The installation is started in the Main method.

C++

Before launching the installation, the chainer checks to see if the .NET Framework
4.5 is already installed by calling IsNetFx4Present :

C++

{
public:
    …………….
    Server():ChainerSample::MmioChainer(L"TheSectionName", 
L"TheEventName") //customize for your event names
    {}

// Main entry point for program
int __cdecl main(int argc, _In_count_(argc) char **_argv)
{
    int result = 0;
    CString args;
    if (argc > 1)
    {
        args = CString(_argv[1]);
    }

    if (IsNetFx4Present(NETFX45_RC_REVISION))
    {
        printf(".NET Framework 4.5 is already installed");
    }
    else
    {
        result = Server().Launch(args);
    }

    return result;
}

///  Checks for presence of the .NET Framework 4.
///    A value of 0 for dwMinimumRelease indicates a check for the .NET 
Framework 4 full
///    Any other value indicates a check for a specific compatible 
release of the .NET Framework 4.
#define NETFX40_FULL_REVISION 0
// TODO: Replace with released revision number
#define NETFX45_RC_REVISION MAKELONG(50309, 5)   // .NET Framework 4.5
bool IsNetFx4Present(DWORD dwMinimumRelease)
{
    DWORD dwError = ERROR_SUCCESS;
    HKEY hKey = NULL;
    DWORD dwData = 0;



You can change the path of the executable (Setup.exe in the example) in the
Launch  method to point to its correct location, or customize the code to determine
the location. The MmioChainer  base class provides a blocking Run()  method that
the derived class calls.

C++

    DWORD dwType = 0;
    DWORD dwSize = sizeof(dwData);

    dwError = ::RegOpenKeyExW(HKEY_LOCAL_MACHINE, 
L"SOFTWARE\\Microsoft\\NET Framework Setup\\NDP\\v4\\Full", 0, 
KEY_READ, &hKey);
    if (ERROR_SUCCESS == dwError)
    {
        dwError = ::RegQueryValueExW(hKey, L"Release", 0, &dwType, 
(LPBYTE)&dwData, &dwSize);

        if ((ERROR_SUCCESS == dwError) && (REG_DWORD != dwType))
        {
            dwError = ERROR_INVALID_DATA;
        }
        else if (ERROR_FILE_NOT_FOUND == dwError)
        {
            // Release value was not found, let's check for 4.0.
            dwError = ::RegQueryValueExW(hKey, L"Install", 0, &dwType, 
(LPBYTE)&dwData, &dwSize);

            // Install = (REG_DWORD)1;
            if ((ERROR_SUCCESS == dwError) && (REG_DWORD == dwType) && 
(dwData == 1))
            {
                // treat 4.0 as Release = 0
                dwData = 0;
            }
            else
            {
                dwError = ERROR_INVALID_DATA;
            }
        }
    }

    if (hKey != NULL)
    {
        ::RegCloseKey(hKey);
    }

    return ((ERROR_SUCCESS == dwError) && (dwData >= 
dwMinimumRelease));
}



The Send  method intercepts and processes the messages. In this version of the
.NET Framework, the only supported message is the close application message.

C++

bool Launch(const CString& args)
{
CString cmdline = L"dotNetFx45_Full_x86_x64.exe -pipe TheSectionName " 
+ args; // Customize with name and location of setup .exe that you want 
to run
STARTUPINFO si = {0};
si.cb = sizeof(si);
PROCESS_INFORMATION pi = {0};

// Launch the Setup.exe that installs the .NET Framework 4.5
BOOL bLaunchedSetup = ::CreateProcess(NULL,
 cmdline.GetBuffer(),
 NULL, NULL, FALSE, 0, NULL, NULL,
 &si,
 &pi);

// If successful
if (bLaunchedSetup != 0)
{
IProgressObserver& observer = dynamic_cast<IProgressObserver&>(*this);
Run(pi.hProcess, observer);

……………………..
return (bLaunchedSetup != 0);
}

        // SendMessage
        //
        // Send a message and wait for the response.
        // dwMessage: Message to send
        // pData: The buffer to copy the data to
        // dwDataLength: Initially a pointer to the size of pBuffer. 
Upon successful call, the number of bytes copied to pBuffer.
        //-------------------------------------------------------------
-
    virtual DWORD Send(DWORD dwMessage, LPVOID pData, DWORD 
dwDataLength)
    {
        DWORD dwResult = 0;
        printf("received message: %d\n", dwMessage);
        // Handle message
        switch (dwMessage)
        {
        case MMIO_CLOSE_APPS:
            {
                printf("    applications are holding files in use:\n");
                IronMan::MmioCloseApplications* applications = 



Progress data is an unsigned char  between 0 (0%) and 255 (100%).

C++

The HRESULT is passed to the Finished  method.

C++

reinterpret_cast<IronMan::MmioCloseApplications*>(pData);
                for(DWORD i = 0; i < applications-
>m_dwApplicationsSize; i++)
                {
                    printf("      %ls (%d)\n", applications-
>m_applications[i].m_szName, applications->m_applications[i].m_dwPid);
                }

                printf("    should applications be closed? (Y)es, (N)o, 
(R)efresh : ");
                while (dwResult == 0)
                {
                    switch (toupper(getwchar()))
                    {
                    case 'Y':
                        dwResult = IDYES;  // Close apps
                        break;
                    case 'N':
                        dwResult = IDNO;
                        break;
                    case 'R':
                        dwResult = IDRETRY;
                        break;
                    }
                }
                printf("\n");
                break;
            }
        default:
            break;
        }
        printf("  response: %d\n  ", dwResult);
        return dwResult;
    }
};

private: // IProgressObserver
    virtual void OnProgress(unsigned char ubProgressSoFar)
    {…………
   }

virtual void Finished(HRESULT hr)
{



A typical server creates a random MMIO file name, creates the file (as shown in the
previous code example, in Server::CreateSection ), and launches the redistributable by
using the CreateProcess  method and passing the pipe name with the -pipe
someFileSectionName  option. The server should implement OnProgress , Send , and
Finished  methods with application UI-specific code.

Deployment Guide for Developers
Deployment

// This HRESULT is communicated over MMIO and may be different than 
process
// Exit code of the Chainee Setup.exe itself
printf("\r\nFinished HRESULT: 0x%08X\r\n", hr);
}

） Important

The .NET Framework 4.5 redistributable typically writes many progress
messages and a single message that indicates completion (on the chainer
side). It also reads asynchronously, looking for Abort  records. If it receives an
Abort  record, it cancels the installation, and writes a finished record with
E_ABORT as its data after the installation has been aborted and setup
operations have been rolled back.

See also



.NET Framework initialization errors:
Managing the user experience
Article • 07/23/2022

The common language runtime (CLR) activation system determines the version of the
CLR that will be used to run managed application code. In some cases, the activation
system might not be able to find a version of the CLR to load. This situation typically
occurs when an application requires a CLR version that is invalid or not installed on a
given computer. If the requested version is not found, the CLR activation system returns
an HRESULT error code from the function or interface that was called, and may display
an error message to the user who is running the application. This article provides a list
of HRESULT codes and explains how you can prevent the error message from being
displayed.

The CLR provides logging infrastructure to help you debug CLR activation issues, as
described in How to: Debug CLR Activation Issues. This infrastructure should not be
confused with assembly binding logs, which are entirely different.

The CLR activation APIs return HRESULT codes to report the result of an activation
operation to a host. CLR hosts should always consult these return values before
proceeding with additional operations.

CLR_E_SHIM_RUNTIMELOAD

CLR_E_SHIM_RUNTIMEEXPORT

CLR_E_SHIM_INSTALLROOT

CLR_E_SHIM_INSTALLCOMP

CLR_E_SHIM_LEGACYRUNTIMEALREADYBOUND

CLR_E_SHIM_SHUTDOWNINPROGRESS

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

CLR activation HRESULT codes

https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer


If the CLR activation system cannot load the correct version of the runtime that is
required by an application, it displays an error message to users to inform them that
their computer is not properly configured to run the application, and provides them
with an opportunity to remedy the situation. The following error message is typically
presented in this situation. The user can choose Yes to go to a Microsoft website where
they can download the correct .NET Framework version for the application.

As a developer, you have a variety of options for controlling the .NET Framework
initialization error message. For example, you can use an API flag to prevent the
message from being displayed, as discussed in the next section. However, you still have
to resolve the issue that prevented your application from loading the requested runtime.
Otherwise, your application may not run at all, or some functionality may not be
available.

To resolve the underlying issues and provide the best user experience (fewer error
messages), we recommend the following:

For .NET Framework 3.5 (and earlier) applications: Configure your application to
support the .NET Framework 4 or later versions (see instructions).

For .NET Framework 4 applications: Install the .NET Framework 4 redistributable
package as part of your application setup. See Deployment Guide for Developers.

Displaying an error message to communicate that a requested .NET Framework version
was not found can be viewed as either a helpful service or a minor annoyance to users.
In either case, you can control this UI by passing flags to the activation APIs.

UI for initialization errors

Resolving the initialization error

Controlling the error message

https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-configure-an-app-to-support-net-framework-4-or-4-5


The ICLRMetaHostPolicy::GetRequestedRuntime method accepts a
METAHOST_POLICY_FLAGS enumeration member as input. You can include the
METAHOST_POLICY_SHOW_ERROR_DIALOG flag to request an error message if the
requested version of the CLR is not found. By default, the error message is not
displayed. (The ICLRMetaHost::GetRuntime method does not accept this flag, and does
not provide any other way to display the error message.)

Windows provides a SetErrorMode function that you can use to declare whether you
want error messages to be shown as a result of code that runs within your process. You
can specify the SEM_FAILCRITICALERRORS flag to prevent the error message from being
displayed.

However, in some scenarios, it is important to override the SEM_FAILCRITICALERRORS
setting set by an application process. For example, if you have a native COM component
that hosts the CLR and that is hosted in a process where SEM_FAILCRITICALERRORS is
set, you may want to override the flag, depending on the impact of displaying error
messages within that particular application process. In this case, you can use one of the
following flags to override SEM_FAILCRITICALERRORS:

Use METAHOST_POLICY_IGNORE_ERROR_MODE with the
ICLRMetaHostPolicy::GetRequestedRuntime method.

Use RUNTIME_INFO_IGNORE_ERROR_MODE with the GetRequestedRuntimeInfo
function.

The CLR includes a set of hosts for a variety of scenarios, and these hosts all display an
error message when they encounter problems loading the required version of the
runtime. The following table provides a list of hosts and their error message policies.

CLR host Description Error message policy Can error message be
disabled?

Managed
EXE host

Launches managed
EXEs.

Is shown in case of a
missing .NET Framework
version

No

Managed
COM host

Loads managed
COM components
into a process.

Is shown in case of a
missing .NET Framework
version

Yes, by setting the
SEM_FAILCRITICALERRORS flag

UI policy for CLR-provided hosts

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrmetahostpolicy-getrequestedruntime-method
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/metahost-policy-flags-enumeration
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrmetahost-getruntime-method
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-seterrormode
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrmetahostpolicy-getrequestedruntime-method
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/getrequestedruntimeinfo-function


CLR host Description Error message policy Can error message be
disabled?

ClickOnce
host

Launches ClickOnce
applications.

Is shown in case of a
missing .NET Framework
version, starting with the
.NET Framework 4.5

No

XBAP host Launches WPF
XBAP applications.

Is shown in case of a
missing .NET Framework
version, starting with the
.NET Framework 4.5

No

The CLR activation system provides the same behavior and UI on Windows 8 as it does
on other versions of the Windows operating system, except when it encounters issues
loading CLR 2.0. Windows 8 includes .NET Framework 4.5, which uses CLR 4.5. However,
Windows 8 does not include .NET Framework 2.0, 3.0, or 3.5, which all use CLR 2.0. As a
result, applications that depend on CLR 2.0 do not run on Windows 8 by default.
Instead, they display the following dialog box to enable users to install .NET Framework
3.5. Users can also enable the .NET Framework 3.5 in Control Panel. Both options are
discussed in the article Install the .NET Framework 3.5 on Windows 11, Windows 10,
Windows 8.1, and Windows 8.

Windows 8 behavior and UI

７ Note

https://learn.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows
https://learn.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows


When the .NET Framework 3.5 is installed, users can run applications that depend on
.NET Framework 2.0, 3.0, or 3.5 on their Windows 8 computers. They can also run .NET
Framework 1.0 and 1.1 applications, provided that those applications are not explicitly
configured to run only on the .NET Framework 1.0 or 1.1. See Migrating from the .NET
Framework 1.1.

Starting with .NET Framework 4.5, CLR activation logging has been improved to include
log entries that record when and why the initialization error message is displayed. For
more information, see How to: Debug CLR Activation Issues.

Deployment Guide for Developers
How to: Configure an app to support .NET Framework 4 or later versions
How to: Debug CLR Activation Issues
Install the .NET Framework 3.5 on Windows 11, Windows 10, Windows 8.1, and
Windows 8

The .NET Framework 4.5 replaces the .NET Framework 4 (CLR 4) on the user's
computer. Therefore, .NET Framework 4 applications run seamlessly, without
displaying this dialog box, on Windows 8.

See also

https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/migrating-from-the-net-framework-1-1
https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/migrating-from-the-net-framework-1-1
https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-configure-an-app-to-support-net-framework-4-or-4-5
https://learn.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows
https://learn.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows


How to debug CLR activation issues
Article • 09/15/2021

If you encounter problems in getting your application to run with the correct version of
the common language runtime (CLR), you can view and debug CLR activation logs.
These logs can be very useful in determining the root cause of an activation issue, when
your application either loads a different CLR version than expected or doesn't load the
CLR at all. The .NET Framework Initialization Errors: Managing the User Experience
discusses the experience when no CLR is found for an application.

CLR activation logging can be enabled system-wide by using an HKEY_LOCAL_MACHINE
registry key or a system environment variable. The log will be generated until the
registry entry or the environment variable is removed. Alternatively, you can use a user
or process-local environment variable to enable logging with a different scope and
duration.

CLR activation logs shouldn't be confused with assembly binding logs, which are entirely
different.

1. In the Registry Editor, navigate to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework (on a 32-bit
computer) or
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework
folder (on a 64-bit computer).

2. Add a string value named CLRLoadLogDir , and set it to the full path of an existing
directory where you'd like to store CLR activation logs.

Activation logging remains enabled until you remove the string value.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

To enable CLR activation logging

Using the registry

https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer


Set the COMPLUS_CLRLoadLogDir  environment variable to a string that represents the
full path of an existing directory where you'd like to store CLR activation logs.

How you set the environment variable determines its scope:

If you set it at the system level, activation logging is enabled for all .NET
Framework applications on that computer until the environment variable is
removed.

If you set it at the user level, activation logging is enabled only for the current
user account. Logging continues until the environment variable is removed.

If you set it from within the process before loading the CLR, activation logging is
enabled until the process terminates.

If you set it at a command prompt before you run an application, activation
logging is enabled for any application that is run from that command prompt.

For example, to store activation logs in the c:\clrloadlogs directory with process-
level scope, open a Command Prompt window and type the following before
you run the application:

Console

CLR activation logs provide a large amount of data about CLR activation and the use of
the CLR hosting APIs. Most of this data is used internally by Microsoft, but some of the
data can also be useful to developers, as described in this article.

The log reflects the order in which the CLR hosting APIs were called. It also includes
useful data about the set of installed runtimes detected on the computer. The CLR
activation log format is not itself documented, but can be used to aid developers who
need to resolve CLR activation issues.

Using an environment variable

set COMPLUS_CLRLoadLogDir=c:\clrloadlogs

Example

７ Note



In the following example of an activation log, the most useful information is highlighted
and described after the log.

Output

CLR Loading log provides the path to the executable that started the process that
loaded managed code. Note that this could be a native host.

You cannot open an activation log until the process that uses the CLR has
terminated.

７ Note

CLR activation logs are not localized; they are always generated in the English
language.

532,205950.367,CLR Loading log for C:\Tests\myapp.exe
532,205950.367,Log started at 4:26:12 PM on 10/6/2011
532,205950.367,-----------------------------------
532,205950.382,FunctionCall: _CorExeMain
532,205950.382,FunctionCall: ClrCreateInstance, Clsid: {2EBCD49A-1B47-4A61-
B13A-4A03701E594B}, Iid: {E2190695-77B2-492E-8E14-C4B3A7FDD593}
532,205950.382,MethodCall: ICLRMetaHostPolicy::GetRequestedRuntime. Version: 
(null), Metahost Policy Flags: 0x168, Binary: (null), Iid: {BD39D1D2-BA2F-
486A-89B0-B4B0CB466891}
532,205950.382,Installed Runtime: v4.0.30319. VERSION_ARCHITECTURE: 0
532,205950.382,Input values for ComputeVersionString follow this line
532,205950.382,-----------------------------------
532,205950.382,Default Application Name: C:\Tests\myapp.exe
532,205950.382,IsLegacyBind is: 0
532,205950.382,IsCapped is 0
532,205950.382,SkuCheckFlags are 0
532,205950.382,ShouldEmulateExeLaunch is 0
532,205950.382,LegacyBindRequired is 0
532,205950.382,-----------------------------------
532,205950.382,Parsing config file: C:\Tests\myapp.exe
532,205950.382,UseLegacyV2RuntimeActivationPolicy is set to 0
532,205950.382,LegacyFunctionCall: GetFileVersion. Filename: 
C:\Tests\myapp.exe
532,205950.382,LegacyFunctionCall: GetFileVersion. Filename: 
C:\Tests\myapp.exe
532,205950.382,C:\Tests\myapp.exe was built with version: v2.0.50727
532,205950.382,ERROR: Version v2.0.50727 is not present on the machine.
532,205950.398,SEM_FAILCRITICALERRORS is set to 0
532,205950.398,Launching feature-on-demand installation. CmdLine: 
C:\Windows\system32\fondue.exe /enable-feature:NetFx3
532,205950.398,FunctionCall: RealDllMain. Reason: 0
532,205950.398,FunctionCall: OnShimDllMainCalled. Reason: 0



Output

Installed Runtime is the set of CLR versions installed on the computer that are
candidates for the activation request.

Output

built with version is the version of the CLR that was used to build the binary that
was provided to a method such as ICLRMetaHostPolicy::GetRequestedRuntime.

Output

feature-on-demand installation refers to enabling the .NET Framework 3.5 on
Windows 8. See .NET Framework Initialization Errors: Managing the User
Experience for more information about this scenario.

Output

Deployment
How to: Configure an app to support .NET Framework 4 or later versions

532,205950.367,CLR Loading log for C:\Tests\myapp.exe

532,205950.382,Installed Runtime: v4.0.30319. VERSION_ARCHITECTURE: 0

532,205950.382,C:\Tests\myapp.exe was built with version: v2.0.50727

532,205950.398,Launching feature-on-demand installation. CmdLine: 
C:\Windows\system32\fondue.exe /enable-feature:NetFx3

See also

https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrmetahostpolicy-getrequestedruntime-method
https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-configure-an-app-to-support-net-framework-4-or-4-5


Deploying .NET Framework Applications
Article • 06/04/2024

This section of the .NET Framework documentation provides essential information for
deploying .NET Framework applications, including guidelines for loading assemblies,
resolving assembly references, and improving the performance of your application
through native image generation.

How the Runtime Locates Assemblies Describes how the common language runtime
locates and binds to the assemblies that make up your application.

Best Practices for Assembly Loading Discusses ways to avoid problems of type identity
that can lead to InvalidCastException, MissingMethodException, and other errors.

Development Guide

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

In This Section

See also

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.missingmethodexception
https://learn.microsoft.com/en-us/dotnet/framework/development-guide


How the Runtime Locates Assemblies
Article • 03/30/2023

To successfully deploy your .NET Framework application, you must understand how the
common language runtime locates and binds to the assemblies that make up your
application. By default, the runtime attempts to bind with the exact version of an
assembly that the application was built with. This default behavior can be overridden by
configuration file settings.

The common language runtime performs a number of steps when attempting to locate
an assembly and resolve an assembly reference. Each step is explained in the following
sections. The term probing is often used when describing how the runtime locates
assemblies; it refers to the set of heuristics used to locate the assembly based on its
name and culture.

The process of locating and binding to an assembly begins when the runtime attempts
to resolve a reference to another assembly. This reference can be either static or
dynamic. The compiler records static references in the assembly manifest's metadata at
build time. Dynamic references are constructed on the fly as a result of calling various
methods, such as Assembly.Load.

The preferred way to reference an assembly is to use a full reference, including the
assembly name, version, culture, and public key token (if one exists). The runtime uses
this information to locate the assembly, following the steps described later in this
section. The runtime uses the same resolution process regardless of whether the
reference is for a static or dynamic assembly.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

７ Note

You can view binding information in the log file using the Assembly Binding Log
Viewer (Fuslogvw.exe), which is included in the Windows SDK.

Initiating the Bind

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer
https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer


You can also make a dynamic reference to an assembly by providing the calling method
with only partial information about the assembly, such as specifying only the assembly
name. In this case, only the application directory is searched for the assembly, and no
other checking occurs. You make a partial reference using any of the various methods
for loading assemblies such as Assembly.Load or AppDomain.Load.

Finally, you can make a dynamic reference using a method such as Assembly.Load and
provide only partial information; you then qualify the reference using the
<qualifyAssembly> element in the application configuration file. This element allows
you to provide the full reference information (name, version, culture and, if applicable,
the public key token) in your application configuration file instead of in your code. You
would use this technique if you wanted to fully qualify a reference to an assembly
outside the application directory, or if you wanted to reference an assembly in the
global assembly cache but you wanted the convenience of specifying the full reference
in the configuration file instead of in your code.

The runtime uses the following steps to resolve an assembly reference:

1. Determines the correct assembly version by examining applicable configuration
files, including the application configuration file, publisher policy file, and machine
configuration file. If the configuration file is located on a remote machine, the
runtime must locate and download the application configuration file first.

2. Checks whether the assembly name has been bound to before and, if so, uses the
previously loaded assembly. If a previous request to load the assembly failed, the
request is failed immediately without attempting to load the assembly.

７ Note

This type of partial reference should not be used with assemblies that are shared
among several applications. Because configuration settings are applied per
application and not per assembly, a shared assembly using this type of partial
reference would require each application using the shared assembly to have the
qualifying information in its configuration file.

７ Note

The caching of assembly binding failures is new in .NET Framework version
2.0.

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/qualifyassembly-element


3. Checks the global assembly cache. If the assembly is found there, the runtime uses
this assembly.

4. Probes for the assembly using the following steps:

a. If configuration and publisher policy do not affect the original reference and if
the bind request was created using the Assembly.LoadFrom method, the
runtime checks for location hints.

b. If a codebase is found in the configuration files, the runtime checks only this
location. If this probe fails, the runtime determines that the binding request
failed and no other probing occurs.

c. Probes for the assembly using the heuristics described in the probing section. If
the assembly is not found after probing, the runtime requests the Windows
Installer to provide the assembly. This acts as an install-on-demand feature.

Assembly binding behavior can be configured at different levels based on three XML
files:

Application configuration file.

Publisher policy file.

Machine configuration file.

These files follow the same syntax and provide information such as binding redirects,
the location of code, and binding modes for particular assemblies. Each configuration
file can contain an <assemblyBinding> element that redirects the binding process. The
child elements of the <assemblyBinding> element include the <dependentAssembly>
element. The children of <dependentAssembly> element include the
<assemblyIdentity> element, the <bindingRedirect> element, and the <codeBase>
element.

７ Note

There is no version checking for assemblies without strong names, nor
does the runtime check in the global assembly cache for assemblies
without strong names.

Step 1: Examining the Configuration Files

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/dependentassembly-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/dependentassembly-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/dependentassembly-element
https://learn.microsoft.com/en-us/visualstudio/deployment/assemblyidentity-element-clickonce-deployment
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/bindingredirect-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element


First, the common language runtime checks the application configuration file for
information that overrides the version information stored in the calling assembly's
manifest. The application configuration file can be deployed with an application, but is
not required for application execution. Usually the retrieval of this file is almost
instantaneous, but in situations where the application base is on a remote computer,
such as in a Web-based scenario, the configuration file must be downloaded.

For client executables, the application configuration file resides in the same directory as
the application's executable and has the same base name as the executable with a
.config extension. For example, the configuration file for C:\Program
Files\Myapp\Myapp.exe is C:\Program Files\Myapp\Myapp.exe.config. In a browser-
based scenario, the HTML file must use the <link> element to explicitly point to the
configuration file.

The following code provides a simple example of an application configuration file. This
example adds a TextWriterTraceListener to the Listeners collection to enable recording
debug information to a file.

XML

７ Note

Configuration information can be found in the three configuration files; not all
elements are valid in all configuration files. For example, binding mode and private
path information can only be in the application configuration file. For a complete
list of the information that is contained in each file, see Configuring Apps by Using
Configuration Files.

Application Configuration File

<configuration>
   <system.diagnostics>
      <trace useGlobalLock="false" autoflush="true" indentsize="0">
         <listeners>
            <add name="myListener" 
type="System.Diagnostics.TextWriterTraceListener, system version=1.0.3300.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089" 
initializeData="c:\myListener.log" />
         </listeners>
      </trace>
   </system.diagnostics>
</configuration>

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.textwritertracelistener
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debug.listeners
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/


Second, the runtime examines the publisher policy file, if one exists. Publisher policy files
are distributed by a component publisher as a fix or update to a shared component.
These files contain compatibility information issued by the publisher of the shared
component that directs an assembly reference to a new version. Unlike application and
machine configuration files, publisher policy files are contained in their own assembly
that must be installed in the global assembly cache.

The following is an example of a Publisher Policy configuration file:

XML

To create an assembly, you can use the Al.exe (Assembly Linker) tool with a command
such as the following:

Console

compatkey.dat  is a strong-name key file. This command creates a strong-named
assembly you can place in the global assembly cache.

The publisher policy configuration file overrides version information that comes from
the application (that is, from the assembly manifest or from the application
configuration file). If there is no statement in the application configuration file to

Publisher Policy File

<configuration>
    <runtime>
        <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

            <dependentAssembly>
                <assemblyIdentity name="asm6" 
publicKeyToken="c0305c36380ba429" />
                <bindingRedirect oldVersion="3.0.0.0" newVersion="2.0.0.0"/>
            </dependentAssembly>

        </assemblyBinding>
    </runtime>
</configuration>

Al.exe /link:asm6.exe.config /out:policy.3.0.asm6.dll /keyfile: 
compatkey.dat /v:3.0.0.0

７ Note

Publisher policy affects all applications that use a shared component.

https://learn.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker


redirect the version specified in the assembly manifest, the publisher policy file overrides
the version specified in the assembly manifest. However, if there is a redirecting
statement in the application configuration file, publisher policy overrides that version
rather than the one specified in the manifest.

A publisher policy file is used when a shared component is updated and the new version
of the shared component should be picked up by all applications using that component.
The settings in the publisher policy file override settings in the application configuration
file, unless the application configuration file enforces safe mode.

Publisher policy files are usually explicitly installed as part of a service pack or program
update. If there is any problem with the upgraded shared component, you can ignore
the overrides in the publisher policy file using safe mode. Safe mode is determined by
the <publisherPolicy apply="yes|no"/> element, located only in the application
configuration file. It specifies whether the publisher policy configuration information
should be removed from the binding process.

Safe mode can be set for the entire application or for selected assemblies. That is, you
can turn off the policy for all assemblies that make up the application, or turn it on for
some assemblies but not others. To selectively apply publisher policy to assemblies that
make up an application, set <publisherPolicy apply=no/> and specify which assemblies
you want to be affected using the <dependentAssembly> element. To apply publisher
policy to all assemblies that make up the application, set <publisherPolicy apply=no/>
with no dependent assembly elements. For more about configuration, see Configuring
Apps by using Configuration Files.

Third, the runtime examines the machine configuration file. This file, called
Machine.config, resides on the local computer in the Config subdirectory of the root
directory where the runtime is installed. This file can be used by administrators to
specify assembly binding restrictions that are local to that computer. The settings in the
machine configuration file take precedence over all other configuration settings;
however, this does not mean that all configuration settings should be put in this file. The
version determined by the administrator policy file is final, and cannot be overridden.
Overrides specified in the Machine.config file affect all applications. For more
information about configuration files, see Configuring Apps by using Configuration Files.

Safe Mode

Machine Configuration File

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/


If the requested assembly has also been requested in previous calls, the common
language runtime uses the assembly that is already loaded. This can have ramifications
when naming assemblies that make up an application. For more information about
naming assemblies, see Assembly Names.

If a previous request for the assembly failed, subsequent requests for the assembly are
failed immediately without attempting to load the assembly. Starting with .NET
Framework version 2.0, assembly binding failures are cached, and the cached
information is used to determine whether to attempt to load the assembly.

For strong-named assemblies, the binding process continues by looking in the global
assembly cache. The global assembly cache stores assemblies that can be used by
several applications on a computer. All assemblies in the global assembly cache must
have strong names.

After the correct assembly version has been determined by using the information in the
calling assembly's reference and in the configuration files, and after it has checked in the
global assembly cache (only for strong-named assemblies), the common language
runtime attempts to find the assembly. The process of locating an assembly involves the
following steps:

1. If a <codeBase> element is found in the application configuration file, the runtime
checks the specified location. If a match is found, that assembly is used and no
probing occurs. If the assembly is not found there, the binding request fails.

Step 2: Checking for Previously Referenced
Assemblies

７ Note

To revert to the behavior of the .NET Framework versions 1.0 and 1.1, which did not
cache binding failures, include the <disableCachingBindingFailures> Element in
your configuration file.

Step 3: Checking the Global Assembly Cache

Step 4: Locating the Assembly through
Codebases or Probing

https://learn.microsoft.com/en-us/dotnet/standard/assembly/names
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/disablecachingbindingfailures-element


2. The runtime then probes for the referenced assembly using the rules specified
later in this section.

Codebase information can be provided by using a <codeBase> element in a
configuration file. This codebase is always checked before the runtime attempts to
probe for the referenced assembly. If a publisher policy file containing the final version
redirect also contains a <codeBase> element, that <codeBase> element is the one that
is used. For example, if your application configuration file specifies a <codeBase>
element, and a publisher policy file that is overriding the application information also
specifies a <codeBase> element, the <codeBase> element in the publisher policy file is
used.

If no match is found at the location specified by the <codeBase> element, the bind
request fails and no further steps are taken. If the runtime determines that an assembly
matches the calling assembly's criteria, it uses that assembly. When the file specified by
the given <codeBase> element is loaded, the runtime checks to make sure that the
name, version, culture, and public key match the calling assembly's reference.

If there is no <codeBase> element in the application configuration file, the runtime
probes for the assembly using four criteria:

７ Note

If you have multiple versions of an assembly in a directory and you want to
reference a particular version of that assembly, you must use the <codeBase>
element instead of the privatePath  attribute of the <probing> element. If you use
the <probing> element, the runtime stops probing the first time it finds an
assembly that matches the simple assembly name referenced, whether it is a
correct match or not. If it is a correct match, that assembly is used. If it is not a
correct match, probing stops and binding fails.

Locating the Assembly through Codebases

７ Note

Referenced assemblies outside the application's root directory must have strong
names and must either be installed in the global assembly cache or specified using
the <codeBase> element.

Locating the Assembly through Probing

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/codebase-element


Application base, which is the root location where the application is being
executed.

Culture, which is the culture attribute of the assembly being referenced.

Name, which is the name of the referenced assembly.

The privatePath  attribute of the <probing> element, which is the user-defined list
of subdirectories under the root location. This location can be specified in the
application configuration file and in managed code using the
AppDomainSetup.PrivateBinPath property for an application domain. When
specified in managed code, the managed code privatePath  is probed first,
followed by the path specified in the application configuration file.

The runtime always begins probing in the application's base, which can be either a URL
or the application's root directory on a computer. If the referenced assembly is not
found in the application base and no culture information is provided, the runtime
searches any subdirectories with the assembly name. The directories probed include:

[application base] / [assembly name].dll

[application base] / [assembly name] / [assembly name].dll

If culture information is specified for the referenced assembly, only the following
directories are probed:

[application base] / [culture] / [assembly name].dll

[application base] / [culture] / [assembly name] / [assembly name].dll

In addition to the culture subdirectories and the subdirectories named for the
referenced assembly, the runtime also probes directories specified using the
privatePath  attribute of the <probing> element. The directories specified using the
privatePath  attribute must be subdirectories of the application's root directory. The
directories probed vary depending on whether culture information is included in the
referenced assembly request.

The runtime stops probing the first time it finds an assembly that matches the simple
assembly name referenced, whether it is a correct match or not. If it is a correct match,

Probing the Application Base and Culture Directories

Probing with the privatePath Attribute

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.privatebinpath#system-appdomainsetup-privatebinpath
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element


that assembly is used. If it is not a correct match, probing stops and binding fails.

If culture is included, the following directories are probed:

[application base] / [binpath] / [culture] / [assembly name].dll

[application base] / [binpath] / [culture] / [assembly name] / [assembly name].dll

If culture information is not included, the following directories are probed:

[application base] / [binpath] / [assembly name].dll

[application base] / [binpath] / [assembly name] / [assembly name].dll

Given the following information:

Referenced assembly name: myAssembly

Application root directory: http://www.code.microsoft.com

<probing> element in configuration file specifies: bin

Culture: de

The runtime probes the following URLs:

http://www.code.microsoft.com/de/myAssembly.dll

http://www.code.microsoft.com/de/myAssembly/myAssembly.dll

http://www.code.microsoft.com/bin/de/myAssembly.dll

http://www.code.microsoft.com/bin/de/myAssembly/myAssembly.dll

The following example shows how to configure multiple assemblies with the same
name.

XML

Probing Examples

Multiple Assemblies with the Same Name

<dependentAssembly>
   <assemblyIdentity name="Server" publicKeyToken="c0305c36380ba429" />
   <codeBase version="1.0.0.0" href="v1/Server.dll" />

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/probing-element


Assembly location can also be determined using the current binding context. This most
often occurs when the Assembly.LoadFrom method is used and in COM interop
scenarios. If an assembly uses the LoadFrom method to reference another assembly, the
calling assembly's location is considered to be a hint about where to find the referenced
assembly. If a match is found, that assembly is loaded. If no match is found, the runtime
continues with its search semantics and then queries the Windows Installer to provide
the assembly. If no assembly is provided that matches the binding request, an exception
is thrown. This exception is a TypeLoadException in managed code if a type was
referenced, or a FileNotFoundException if an assembly being loaded was not found.

For example, if Assembly1 references Assembly2 and Assembly1 was downloaded from
http://www.code.microsoft.com/utils , that location is considered to be a hint about
where to find Assembly2.dll. The runtime then probes for the assembly in
http://www.code.microsoft.com/utils/Assembly2.dll  and
http://www.code.microsoft.com/utils/Assembly2/Assembly2.dll . If Assembly2 is not
found at either of those locations, the runtime queries the Windows Installer.

Best Practices for Assembly Loading
Deployment

   <codeBase version="2.0.0.0" href="v2/Server.dll" />
</dependentAssembly>

Other Locations Probed

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.typeloadexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.filenotfoundexception


Best Practices for Assembly Loading
Article • 09/15/2021

This article discusses ways to avoid problems of type identity that can lead to
InvalidCastException, MissingMethodException, and other errors. The article discusses
the following recommendations:

Understand the advantages and disadvantages of load contexts

Avoid binding on partial assembly names

Avoid loading an assembly into multiple contexts

Avoid loading multiple versions of an assembly into the same context

Consider switching to the default load context

The first recommendation, understand the advantages and disadvantages of load
contexts, provides background information for the other recommendations, because
they all depend on a knowledge of load contexts.

Within an application domain, assemblies can be loaded into one of three contexts, or
they can be loaded without context:

The default load context contains assemblies found by probing the global
assembly cache, the host assembly store if the runtime is hosted (for example, in
SQL Server), and the ApplicationBase and PrivateBinPath of the application
domain. Most overloads of the Load method load assemblies into this context.

The load-from context contains assemblies that are loaded from locations that are
not searched by the loader. For example, add-ins might be installed in a directory
that is not under the application path. Assembly.LoadFrom,

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Understand the Advantages and Disadvantages
of Load Contexts

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.missingmethodexception
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.applicationbase
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.privatebinpath
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom


AppDomain.CreateInstanceFrom, and AppDomain.ExecuteAssembly are examples
of methods that load by path.

The reflection-only context contains assemblies loaded with the
ReflectionOnlyLoad and ReflectionOnlyLoadFrom methods. Code in this context
cannot be executed, so it is not discussed here. For more information, see How to:
Load Assemblies into the Reflection-Only Context.

If you generated a transient dynamic assembly by using reflection emit, the
assembly is not in any context. In addition, most assemblies that are loaded by
using the LoadFile method are loaded without context, and assemblies that are
loaded from byte arrays are loaded without context unless their identity (after
policy is applied) establishes that they are in the global assembly cache.

The execution contexts have advantages and disadvantages, as discussed in the
following sections.

When assemblies are loaded into the default load context, their dependencies are
loaded automatically. Dependencies that are loaded into the default load context are
found automatically for assemblies in the default load context or the load-from context.
Loading by assembly identity increases the stability of applications by ensuring that
unknown versions of assemblies are not used (see the Avoid Binding on Partial
Assembly Names section).

Using the default load context has the following disadvantages:

Dependencies that are loaded into other contexts are not available.

You cannot load assemblies from locations outside the probing path into the
default load context.

The load-from context lets you load an assembly from a path that is not under the
application path, and therefore is not included in probing. It enables dependencies to be
located and loaded from that path, because the path information is maintained by the
context. In addition, assemblies in this context can use dependencies that are loaded
into the default load context.

Loading assemblies by using the Assembly.LoadFrom method, or one of the other
methods that load by path, has the following disadvantages:

Default Load Context

Load-From Context

https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.createinstancefrom
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.executeassembly
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.reflectiononlyload
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.reflectiononlyloadfrom
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/how-to-load-assemblies-into-the-reflection-only-context
https://learn.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/how-to-load-assemblies-into-the-reflection-only-context
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom


If an assembly with the same identity is already loaded in the load-from context,
LoadFrom returns the loaded assembly even if a different path was specified.

If an assembly is loaded with LoadFrom, and later an assembly in the default load
context tries to load the same assembly by display name, the load attempt fails.
This can occur when an assembly is deserialized.

If an assembly is loaded with LoadFrom, and the probing path includes an
assembly with the same identity but in a different location, an
InvalidCastException, MissingMethodException, or other unexpected behavior can
occur.

LoadFrom demands FileIOPermissionAccess.Read and
FileIOPermissionAccess.PathDiscovery, or WebPermission, on the specified path.

If a native image exists for the assembly, it is not used.

The assembly cannot be loaded as domain-neutral.

In the .NET Framework versions 1.0 and 1.1, policy is not applied.

Loading without context is the only option for transient assemblies that are generated
with reflection emit. Loading without context is the only way to load multiple assemblies
that have the same identity into one application domain. The cost of probing is avoided.

Assemblies that are loaded from byte arrays are loaded without context unless the
identity of the assembly, which is established when policy is applied, matches the
identity of an assembly in the global assembly cache; in that case, the assembly is
loaded from the global assembly cache.

Loading assemblies without context has the following disadvantages:

Other assemblies cannot bind to assemblies that are loaded without context,
unless you handle the AppDomain.AssemblyResolve event.

Dependencies are not loaded automatically. You can preload them without
context, preload them into the default load context, or load them by handling the
AppDomain.AssemblyResolve event.

Loading multiple assemblies with the same identity without context can cause type
identity problems similar to those caused by loading assemblies with the same
identity into multiple contexts. See Avoid Loading an Assembly into Multiple
Contexts.

No Context

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.missingmethodexception
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.fileiopermissionaccess#system-security-permissions-fileiopermissionaccess-read
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.fileiopermissionaccess#system-security-permissions-fileiopermissionaccess-pathdiscovery
https://learn.microsoft.com/en-us/dotnet/api/system.net.webpermission
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.assemblyresolve#system-appdomain-assemblyresolve
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.assemblyresolve#system-appdomain-assemblyresolve


If a native image exists for the assembly, it is not used.

The assembly cannot be loaded as domain-neutral.

In the .NET Framework versions 1.0 and 1.1, policy is not applied.

Partial name binding occurs when you specify only part of the assembly display name
(FullName) when you load an assembly. For example, you might call the Assembly.Load
method with only the simple name of the assembly, omitting the version, culture, and
public key token. Or you might call the Assembly.LoadWithPartialName method, which
first calls the Assembly.Load method and, if that fails to locate the assembly, searches
the global assembly cache and loads the latest available version of the assembly.

Partial name binding can cause many problems, including the following:

The Assembly.LoadWithPartialName method might load a different assembly with
the same simple name. For example, two applications might install two completely
different assemblies that both have the simple name GraphicsLibrary  into the
global assembly cache.

The assembly that is actually loaded might not be backward-compatible. For
example, not specifying the version might result in the loading of a much later
version than the version your program was originally written to use. Changes in the
later version might cause errors in your application.

The assembly that is actually loaded might not be forward-compatible. For
example, you might have built and tested your application with the latest version
of an assembly, but partial binding might load a much earlier version that lacks
features your application uses.

Installing new applications can break existing applications. An application that uses
the LoadWithPartialName method can be broken by installing a newer,
incompatible version of a shared assembly.

Unexpected dependency loading can occur. It you load two assemblies that share
a dependency, loading them with partial binding might result in one assembly
using a component that it was not built or tested with.

Because of the problems it can cause, the LoadWithPartialName method has been
marked obsolete. We recommend that you use the Assembly.Load method instead, and

Avoid Binding on Partial Assembly Names

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.fullname
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadwithpartialname
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadwithpartialname
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadwithpartialname
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadwithpartialname
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load


specify full assembly display names. See Understand the Advantages and Disadvantages
of Load Contexts and Consider Switching to the Default Load Context.

If you want to use the LoadWithPartialName method because it makes assembly loading
easy, consider that having your application fail with an error message that identifies the
missing assembly is likely to provide a better user experience than automatically using
an unknown version of the assembly, which might cause unpredictable behavior and
security holes.

Loading an assembly into multiple contexts can cause type identity problems. If the
same type is loaded from the same assembly into two different contexts, it is as if two
different types with the same name had been loaded. An InvalidCastException is thrown
if you try to cast one type to the other, with the confusing message that type MyType
cannot be cast to type MyType .

For example, suppose that the ICommunicate  interface is declared in an assembly named
Utility , which is referenced by your program and also by other assemblies that your
program loads. These other assemblies contain types that implement the ICommunicate
interface, allowing your program to use them.

Now consider what happens when your program is run. Assemblies that are referenced
by your program are loaded into the default load context. If you load a target assembly
by its identity, using the Load method, it will be in the default load context, and so will
its dependencies. Both your program and the target assembly will use the same Utility
assembly.

However, suppose you load the target assembly by its file path, using the LoadFile
method. The assembly is loaded without any context, so its dependencies are not
automatically loaded. You might have a handler for the AppDomain.AssemblyResolve
event to supply the dependency, and it might load the Utility  assembly with no
context by using the LoadFile method. Now when you create an instance of a type that
is contained in the target assembly and try to assign it to a variable of type
ICommunicate , an InvalidCastException is thrown because the runtime considers the
ICommunicate  interfaces in the two copies of the Utility  assembly to be different types.

There are many other scenarios in which an assembly can be loaded into multiple
contexts. The best approach is to avoid conflicts by relocating the target assembly in
your application path and using the Load method with the full display name. The

Avoid Loading an Assembly into Multiple
Contexts

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadwithpartialname
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.assemblyresolve#system-appdomain-assemblyresolve
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load


assembly is then loaded into the default load context, and both assemblies use the
same Utility  assembly.

If the target assembly must remain outside your application path, you can use the
LoadFrom method to load it into the load-from context. If the target assembly was
compiled with a reference to your application's Utility  assembly, it will use the

Utility  assembly that your application has loaded into the default load context. Note
that problems can occur if the target assembly has a dependency on a copy of the
Utility  assembly located outside your application path. If that assembly is loaded into
the load-from context before your application loads the Utility  assembly, your
application's load will fail.

The Consider Switching to the Default Load Context section discusses alternatives to
using file path loads such as LoadFile and LoadFrom.

Loading multiple versions of an assembly into one load context can cause type identity
problems. If the same type is loaded from two versions of the same assembly, it is as if
two different types with the same name had been loaded. An InvalidCastException is
thrown if you try to cast one type to the other, with the confusing message that type
MyType  cannot be cast to type MyType .

For example, your program might load one version of the Utility  assembly directly,
and later it might load another assembly that loads a different version of the Utility
assembly. Or a coding error might cause two different code paths in your application to
load different versions of an assembly.

In the default load context, this problem can occur when you use the Assembly.Load
method and specify complete assembly display names that include different version
numbers. For assemblies that are loaded without context, the problem can be caused by
using the Assembly.LoadFile method to load the same assembly from different paths.
The runtime considers two assemblies that are loaded from different paths to be
different assemblies, even if their identities are the same.

In addition to type identity problems, multiple versions of an assembly can cause a
MissingMethodException if a type that is loaded from one version of the assembly is
passed to code that expects that type from a different version. For example, the code
might expect a method that was added to the later version.

Avoid Loading Multiple Versions of an
Assembly into the Same Context

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.missingmethodexception


More subtle errors can occur if the behavior of the type changed between versions. For
example, a method might throw an unexpected exception or return an unexpected
value.

Carefully review your code to ensure that only one version of an assembly is loaded. You
can use the AppDomain.GetAssemblies method to determine which assemblies are
loaded at any given time.

Examine your application's assembly loading and deployment patterns. Can you
eliminate assemblies that are loaded from byte arrays? Can you move assemblies into
the probing path? If assemblies are located in the global assembly cache or in the
application domain's probing path (that is, its ApplicationBase and PrivateBinPath), you
can load the assembly by its identity.

If it is not possible to put all your assemblies in the probing path, consider alternatives
such as using the .NET Framework add-in model, placing assemblies into the global
assembly cache, or creating application domains.

If you are using the load-from context to implement add-ins, which typically are not
installed in the application base, use the .NET Framework add-in model. This model
provides isolation at the application domain or process level, without requiring you to
manage application domains yourself. For information about the add-in model, see
Add-ins and Extensibility.

Place assemblies in the global assembly cache to get the benefit of a shared assembly
path that is outside the application base, without losing the advantages of the default
load context or taking on the disadvantages of the other contexts.

If you determine that some of your assemblies cannot be deployed in the application's
probing path, consider creating a new application domain for those assemblies. Use an
AppDomainSetup to create the new application domain, and use the
AppDomainSetup.ApplicationBase property to specify the path that contains the
assemblies you want to load. If you have multiple directories to probe, you can set the

Consider Switching to the Default Load Context

Consider Using the .NET Framework Add-In Model

Consider Using the Global Assembly Cache

Consider Using Application Domains

https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.getassemblies
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.applicationbase
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.privatebinpath
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/bb384200(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.applicationbase


ApplicationBase to a root directory and use the AppDomainSetup.PrivateBinPath
property to identify the subdirectories to probe. Alternatively, you can create multiple
application domains and set the ApplicationBase of each application domain to the
appropriate path for its assemblies.

Note that you can use the Assembly.LoadFrom method to load these assemblies.
Because they are now in the probing path, they will be loaded into the default load
context instead of the load-from context. However, we recommend that you switch to
the Assembly.Load method and supply full assembly display names to ensure that
correct versions are always used.

Assembly.Load
Assembly.LoadFrom
Assembly.LoadFile
AppDomain.AssemblyResolve

See also

https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.applicationbase
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.privatebinpath
https://learn.microsoft.com/en-us/dotnet/api/system.appdomainsetup.applicationbase
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfrom
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.loadfile
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.assemblyresolve#system-appdomain-assemblyresolve


.NET Framework Client Profile
Article • 06/04/2024

The .NET Client Profile is a subset of the .NET Framework, which was provided with .NET
Framework 4 and earlier versions and was optimized for client applications. The .NET
Framework is a development platform for Windows, Windows Phone and Microsoft
Azure and provides a managed app execution environment and the .NET Framework
class library. The .NET Framework 4 and earlier versions provided two deployment
options: the full .NET Framework and the Client Profile. The Client Profile enabled faster
deployment and smaller app installation packages than the full .NET Framework.

Starting with .NET Framework 4.5, the Client Profile has been discontinued and only the
full redistributable package is available. Optimizations provided by .NET Framework 4.5,
such as smaller download size and faster deployment, have eliminated the need for a
separate deployment package. The single redistributable streamlines the installation
process and simplifies your app's deployment options.

However, if you are targeting the .NET Framework 4 or 3.5 and want to learn more about
the Client Profile and when to use it, see .NET Framework Client Profile in the .NET
Framework 4 documentation.

When you install .NET Framework 4.5, the .NET Framework 4 Client Profile is updated to
the full version of the .NET Framework. For information about installing .NET Framework
4.5, see Install the .NET Framework for developers.

.NET Framework Client Profile (.NET Framework 4)
Visual Studio Multi-Targeting Overview
Troubleshooting .NET Framework Targeting Errors
How to: Target a Version of the .NET Framework

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

See also

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/cc656912(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/cc656912(v=vs.100)
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-multi-targeting-overview
https://learn.microsoft.com/en-us/visualstudio/msbuild/troubleshooting-dotnet-framework-targeting-errors
https://learn.microsoft.com/en-us/visualstudio/ide/visual-studio-multi-targeting-overview


Side-by-Side Execution in the .NET
Framework
Article • 09/15/2021

Side-by-side execution is the ability to run multiple versions of an application or
component on the same computer. You can have multiple versions of the common
language runtime, and multiple versions of applications and components that use a
version of the runtime, on the same computer at the same time.

The following illustration shows several applications using two different versions of the
runtime on the same computer. Applications A, B, and C use runtime version 1.0, while
application D uses runtime version 1.1.

The .NET Framework consists of the common language runtime and a collection of
assemblies that contain the API types. The runtime and the .NET Framework assemblies
are versioned separately. For example, version 4.0 of the runtime is actually version
4.0.319, while version 1.0 of the .NET Framework assemblies is version 1.0.3300.0.

The following illustration shows several applications using two different versions of a
component on the same computer. Application A and B use version 1.0 of the
component while Application C uses version 2.0 of the same component.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

https://learn.microsoft.com/en-us/dotnet/framework/deployment/media/side-by-side-execution/side-by-side-runtime-execution.gif
https://learn.microsoft.com/en-us/dotnet/framework/deployment/media/side-by-side-execution/side-by-side-runtime-execution.gif


Side-by-side execution gives you more control over which versions of a component an
application binds to, and more control over which version of the runtime an application
uses.

Prior to Windows XP and the .NET Framework, DLL conflicts occurred because
applications were unable to distinguish between incompatible versions of the same
code. Type information contained in a DLL was bound only to a file name. An application
had no way of knowing if the types contained in a DLL were the same types that the
application was built with. As a result, a new version of a component could overwrite an
older version and break applications.

Side-by-side execution and the .NET Framework provide the following features to
eliminate DLL conflicts:

Strong-named assemblies.

Side-by-side execution uses strong-named assemblies to bind type information to
a specific version of an assembly. This prevents an application or component from
binding to an invalid version of an assembly. Strong-named assemblies also allow
multiple versions of a file to exist on the same computer and to be used by
applications. For more information, see Strong-Named Assemblies.

Version-aware code storage.

The .NET Framework provides version-aware code storage in the global assembly
cache. The global assembly cache is a computer-wide code cache present on all
computers with the .NET Framework installed. It stores assemblies based on
version, culture, and publisher information, and supports multiple versions of
components and applications. For more information, see Global Assembly Cache.

Benefits of Side-by-Side Execution

https://learn.microsoft.com/en-us/dotnet/framework/deployment/media/side-by-side-execution/side-by-side-component-execution.gif
https://learn.microsoft.com/en-us/dotnet/framework/deployment/media/side-by-side-execution/side-by-side-component-execution.gif
https://learn.microsoft.com/en-us/dotnet/standard/assembly/strong-named
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac


Isolation.

Using the .NET Framework, you can create applications and components that
execute in isolation. Isolation is an essential component of side-by-side execution.
It involves being aware of the resources you are using and sharing resources with
confidence among multiple versions of an application or component. Isolation also
includes storing files in a version-specific way. For more information about
isolation, see Guidelines for Creating Components for Side-by-Side Execution.

Versions 1.0 and 1.1 of the .NET Framework are designed to be compatible with one
another. An application built with the .NET Framework version 1.0 should run on version
1.1, and an application built with the .NET Framework version 1.1 should run on version
1.0. Note, however, that API features added in version 1.1 of the .NET Framework will not
work with version 1.0 of the .NET Framework. Applications created with version 2.0 will
run on version 2.0 only. Version 2.0 applications will not run on version 1.1 or earlier.

Versions of the .NET Framework are treated as a single unit consisting of the runtime
and its associated .NET Framework assemblies (a concept referred to as assembly
unification). You can redirect assembly binding to include other versions of the .NET
Framework assemblies, but overriding the default assembly binding can be risky and
must be rigorously tested before deployment.

Information on which runtime version an application or component was compiled with
and which versions of the runtime the application requires to run are stored in two
locations. When an application or component is compiled, information on the runtime
version used to compile it is stored in the managed executable. Information on the
runtime versions the application or component requires is stored in the application
configuration file.

The portable executable (PE) file header of each managed application and component
contains information about the runtime version it was built with. The common language
runtime uses this information to determine the most likely version of the runtime the
application needs to run.

Version Compatibility

Locating Runtime Version Information

Runtime Version Information in the Managed Executable



In addition to the information in the PE file header, an application can be deployed with
an application configuration file that provides runtime version information. The
application configuration file is an XML-based file that is created by the application
developer and that ships with an application. The <requiredRuntime> Element of the
<startup> section, if it is present in this file, specifies which versions of the runtime and
which versions of a component the application supports. You can also use this file in
testing to test an application's compatibility with different versions of the runtime.

Unmanaged code, including COM and COM+ applications, can have application
configuration files that the runtime uses for interacting with managed code. The
application configuration file affects any managed code that you activate through COM.
The file can specify which runtime versions it supports, as well as assembly redirects. By
default, COM interop applications calling to managed code use the latest version of the
runtime installed on the computer.

For more information about the application configuration files, see Configuring Apps.

The common language runtime uses the following information to determine which
version of the runtime to load for an application:

The runtime versions that are available.

The runtime versions that an application supports.

The runtime uses the application configuration file and the portable executable (PE) file
header to determine which version of the runtime an application supports. If no
application configuration file is present, the runtime loads the runtime version specified
in the application's PE file header, if that version is available.

If an application configuration file is present, the runtime determines the appropriate
runtime version to load based on the results of the following process:

1. The runtime examines the <supportedRuntime> Element element in the
application configuration file. If one or more of the supported runtime versions

Runtime Version Information in the Application
Configuration File

Determining Which Version of the Runtime to
Load

Supported Runtime Versions

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/requiredruntime-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/startup-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/supportedruntime-element


specified in the <supportedRuntime> element are present, the runtime loads the
runtime version specified by the first <supportedRuntime> element. If this version
is not available, the runtime examines the next <supportedRuntime> element and
attempts to load the runtime version specified. If this runtime version is not
available, subsequent <supportedRuntime> elements are examined. If none of the
supported runtime versions are available, the runtime fails to load a runtime
version and displays a message to the user (see step 3).

2. The runtime reads the PE file header of the application's executable file. If the
runtime version specified by the PE file header is available, the runtime loads that
version. If the runtime version specified is not available, the runtime searches for a
runtime version determined by Microsoft to be compatible with the runtime
version in the PE header. If that version is not found, the process continues to step
3.

3. The runtime displays a message stating that the runtime version supported by the
application is unavailable. The runtime is not loaded.

７ Note

You can suppress the display of this message by using the NoGuiFromShim
value under the registry key HKLM\Software\Microsoft\.NETFramework or
using the environment variable COMPLUS_NoGuiFromShim. For example, you
can suppress the message for applications that do not typically interact with
the user, such as unattended installations or Windows services. When this
message display is suppressed, the runtime writes a message to the event log.
Set the registry value NoGuiFromShim to 1 to suppress this message for all
applications on a computer. Alternately, set the COMPLUS_NoGuiFromShim
environment variable to 1 to suppress the message for applications running in
a particular user context.

７ Note

After a runtime version is loaded, assembly binding redirects can specify that a
different version of an individual .NET Framework assembly be loaded. These
binding redirects affect only the specific assembly that is redirected.

Partially Qualified Assembly Names and Side-
by-Side Execution



Because they are a potential source of side-by-side problems, partially qualified
assembly references can be used only to bind to assemblies within an application
directory. Avoid partially qualified assembly references in your code.

To mitigate partially qualified assembly references in code, you can use the
<qualifyAssembly> element in an application configuration file to fully qualify partially
qualified assembly references that occur in code. Use the <qualifyAssembly> element
to specify only fields that were not set in the partial reference. The assembly identity
listed in the fullName attribute must contain all the information needed to fully qualify
the assembly name: assembly name, public key, culture, and version.

The following example shows the application configuration file entry to fully qualify an
assembly called myAssembly .

XML

Whenever an assembly load statement references myAssembly , these configuration file
settings cause the runtime to automatically translate the partially qualified myAssembly
reference to a fully qualified reference. For example, Assembly.Load("myAssembly")
becomes Assembly.Load("myAssembly, version=1.0.0.0, publicKeyToken=...,
culture=neutral").

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<qualifyAssembly partialName="myAssembly"
fullName="myAssembly,
      version=1.0.0.0,
publicKeyToken=...,
      culture=neutral"/>
</assemblyBinding>

７ Note

You can use the LoadWithPartialName method to bypass the common language
runtime restriction that prohibits partially referenced assemblies from being loaded
from the global assembly cache. This method should be used only in remoting
scenarios as it can easily cause problems in side-by-side execution.

Related Topics

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/qualifyassembly-element


Title Description

How to: Enable and Disable
Automatic Binding Redirection

Describes how to bind an application to a specific version of an
assembly.

Configuring Assembly Binding
Redirection

Explains how to redirect assembly binding references to a
specific version of the .NET Framework assemblies.

In-Process Side-by-Side
Execution

Discusses how you can use in-process side-by-side runtime
host activation to run multiple versions of the CLR in a single
process.

Assemblies in .NET Provides a conceptual overview of assemblies.

Application Domains Provides a conceptual overview of application domains.

<supportedRuntime> Element

Reference

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-enable-and-disable-automatic-binding-redirection
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-enable-and-disable-automatic-binding-redirection
https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/supportedruntime-element


Configuring Assembly Binding
Redirection
Article • 06/04/2024

By default, applications use the set of .NET Framework assemblies that shipped with the
runtime version used to compile the application. You can use the appliesTo attribute on
the <assemblyBinding> element in an application configuration file to redirect assembly
binding references to a specific version of the .NET Framework assemblies. This optional
attribute uses a .NET Framework version number to indicate which version it applies to.
If no appliesTo attribute is specified, the <assemblyBinding> element applies to all
versions of the .NET Framework.

The appliesTo attribute was introduced in the .NET Framework version 1.1; it is ignored
by .NET Framework version 1.0. This means that all <assemblyBinding> elements are
applied when using .NET Framework version 1.0, even if an appliesTo attribute is
specified.

For example, to redirect assembly binding for a .NET Framework version 1.0 assembly,
you would include the following XML code in your application configuration file.

XML

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

７ Note

Use the appliesTo attribute to limit assembly binding redirection to a specific
version of the runtime.

<runtime>
        <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1" 
appliesTo="v1.0.3705">
            <dependentAssembly>
               * assembly information goes here *
            </dependentAssembly>
       </assemblyBinding>
</runtime>

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/assemblybinding-element-for-runtime


The <assemblyBinding> elements are order-sensitive. You should enter assembly
binding redirection information for any .NET Framework version 1.0 assemblies first,
followed by assembly binding redirection information for any .NET Framework version
1.1 assemblies. Finally, enter assembly binding redirection information for any .NET
Framework assembly redirection that does not use the appliesTo attribute and therefore
applies to all versions of the .NET Framework. In case of a conflict in redirection, the first
matching redirection statement in the configuration file is used.

For example, to redirect one reference to a .NET Framework version 1.0 assembly and
another reference to a .NET Framework version 1.1 assembly, you would use the pattern
shown in the following pseudocode.

XML

The runtime parses configuration files once when an application domain is created, and
loads code into that application domain. The common language runtime handles errors
in a configuration file by ignoring the entry. The runtime ignores the entire
configuration file if it contains malformed XML. For invalid XML, only the invalid sections
are ignored.

You can determine whether a configuration file is being used by determining whether
assembly binding redirects are occurring. Use the Assembly Binding Log Viewer
(Fuslogvw.exe) to see which assemblies are being loaded. To see all assembly binds, you
must set an entry for ForceLog in the registry.

How to: Enable and Disable Automatic Binding Redirection

<assemblyBinding xmlns="..." appliesTo="v1.0.3705">
  <!-- .NET Framework version 1.0 redirects here. -->
</assemblyBinding>

<assemblyBinding xmlns="..." appliesTo="v1.1.4322">
  <!-- .NET Framework version 1.1 redirects here. -->
</assemblyBinding>

<assemblyBinding xmlns="...">
  <!-- Redirects meant for all versions of the .NET Framework. -->
</assemblyBinding>

Debugging Configuration File Errors

See also

https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer
https://learn.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-enable-and-disable-automatic-binding-redirection


Guidelines for Creating Components for
Side-by-Side Execution
Article • 06/04/2024

Follow these general guidelines to create managed applications or components
designed for side-by-side execution:

Bind type identity to a particular version of a file.

The common language runtime binds type identity to a particular file version by
using strong-named assemblies. To create an application or component for side-
by-side execution, you must give all assemblies a strong name. This creates precise
type identity and ensures that any type resolution is directed to the correct file. A
strong-named assembly contains version, culture, and publisher information that
the runtime uses to locate the correct file to fulfill a binding request.

Use version-aware storage.

The runtime uses the global assembly cache to provide version-aware storage. The
global assembly cache is a version-aware directory structure installed on every
computer that uses the .NET Framework. Assemblies installed in the global
assembly cache are not overwritten when a new version of that assembly is
installed.

Create an application or component that runs in isolation.

An application or component that runs in isolation must manage resources to
avoid conflicts when two instances of the application or component are running
simultaneously. The application or component must also use a version-specific file
structure.

One key to successfully designing an application or component for side-by-side
execution is isolation. The application or component must manage all resources,

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Application and Component Isolation



particularly file I/O, in an isolated manner. Follow these guidelines to make sure your
application or component runs in isolation:

Write to the registry in a version-specific way. Store values in hives or keys that
indicate the version, and do not share information or state across versions of a
component. This prevents two applications or components running at the same
time from overwriting information.

Make named kernel objects version-specific so that a race condition does not
occur. For example, a race condition occurs when two semaphores from two
versions of the same application wait on each other.

Make file and directory names version-aware. This means that file structures
should rely on version information.

Create user accounts and groups in a version-specific manner. User accounts and
groups created by an application should be identified by version. Do not share
user accounts and groups between versions of an application.

When designing an application for side-by-side execution, follow these guidelines
concerning installing and uninstalling versions:

Do not delete information from the registry that may be needed by other
applications running under a different version of the .NET Framework.

Do not replace information in the registry that may be needed by other
applications running under a different version of the .NET Framework.

Do not unregister COM components that may be needed by other applications
running under a different version of the .NET Framework.

Do not change InprocServer32 or other registry entries for a COM server that was
already registered.

Do not delete user accounts or groups that may be needed by other applications
running under a different version of the .NET Framework.

Do not add anything to the registry that contains an unversioned path.

Installing and Uninstalling Versions

File Version Number and Assembly Version
Number



File version is a Win32 version resource that is not used by the runtime. In general, you
update the file version even for an in-place update. Two identical files can have different
file version information, and two different files can have the same file version
information.

The assembly version is used by the runtime for assembly binding. Two identical
assemblies with different version numbers are treated as two different assemblies by the
runtime.

The Global Assembly Cache tool (Gacutil.exe) allows you to replace an assembly when
only the file version number is newer. The installer generally does not install over an
assembly unless the assembly version number is greater.

Side-by-Side Execution
How to: Enable and Disable Automatic Binding Redirection

See also

https://learn.microsoft.com/en-us/dotnet/framework/tools/gacutil-exe-gac-tool
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-enable-and-disable-automatic-binding-redirection


In-Process Side-by-Side Execution
Article • 07/23/2022

Starting with the .NET Framework 4, you can use in-process side-by-side hosting to run
multiple versions of the common language runtime (CLR) in a single process. By default,
managed COM components run with the .NET Framework version they were built with,
regardless of the .NET Framework version that is loaded for the process.

The .NET Framework has always provided side-by-side hosting for managed code
applications, but before the .NET Framework 4, it did not provide that functionality for
managed COM components. In the past, managed COM components that were loaded
into a process ran either with the version of the runtime that was already loaded or with
the latest installed version of the .NET Framework. If this version was not compatible
with the COM component, the component would fail.

The .NET Framework 4 provides a new approach to side-by-side hosting that ensures
the following:

Installing a new version of the .NET Framework has no effect on existing
applications.

Applications run against the version of the .NET Framework that they were built
with. They do not use the new version of the .NET Framework unless expressly
directed to do so. However, it is easier for applications to transition to using a new
version of the .NET Framework.

End users and system administrators. These users can now have greater
confidence that when they install a new version of the runtime, either
independently or with an application, it will have no impact on their computers.
Existing applications will continue to run as they did before.

７ Note

This article is specific to .NET Framework. It doesn't apply to newer
implementations of .NET, including .NET 6 and later versions.

Background

Effects on Users and Developers



Application developers. Side-by-side hosting has almost no effect on application
developers. By default, applications always run against the version of the .NET
Framework they were built on; this has not changed. However, developers can
override this behavior and direct the application to run under a newer version of
the .NET Framework (see scenario 2).

Library developers and consumers. Side-by-side hosting does not solve the
compatibility problems that library developers face. A library that is directly loaded
by an application -- either through a direct reference or through an Assembly.Load
call -- continues to use the runtime of the AppDomain it is loaded into. You should
test your libraries against all versions of the .NET Framework that you want to
support. If an application is compiled using the .NET Framework 4 runtime but
includes a library that was built using an earlier runtime, that library will use the
.NET Framework 4 runtime as well. However, if you have an application that was
built using an earlier runtime and a library that was built using the .NET Framework
4, you must force your application to also use the .NET Framework 4 (see scenario
3).

Managed COM component developers. In the past, managed COM components
automatically ran using the latest version of the runtime installed on the computer.
You can now execute COM components against the version of the runtime they
were built with.

As shown by the following table, components that were built with the .NET
Framework version 1.1 can run side by side with version 4 components, but they
cannot run with version 2.0, 3.0, or 3.5 components, because side-by-side hosting
is not available for those versions.

.NET Framework version 1.1 2.0 - 3.5 4

1.1 Not applicable No Yes

2.0 - 3.5 No Not applicable Yes

4 Yes Yes Not applicable

ﾉ Expand table

７ Note

.NET Framework versions 3.0 and 3.5 are built incrementally on version 2.0, and do
not need to run side by side. These are inherently the same version.

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.load
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain


Scenario 1: Native application that uses COM components built with earlier
versions of the .NET Framework.

.NET Framework versions installed: The .NET Framework 4 and all other versions of
the .NET Framework used by the COM components.

What to do: In this scenario, do nothing. The COM components will run with the
version of the .NET Framework they were registered with.

Scenario 2: Managed application built with the .NET Framework 2.0 SP1 that you
would prefer to run with .NET Framework 2.0, but are willing to run on the .NET
Framework 4 if version 2.0 is not present.

.NET Framework versions installed: An earlier version of the .NET Framework and
the .NET Framework 4.

What to do: In the application configuration file in the application directory, use
the <startup> element and the <supportedRuntime> element set as follows:

XML

Scenario 3: Native application that uses COM components built with earlier
versions of the .NET Framework that you want to run with the .NET Framework 4.

.NET Framework versions installed: The .NET Framework 4.

What to do: In the application configuration file in the application directory, use
the <startup>  element with the useLegacyV2RuntimeActivationPolicy  attribute set
to true  and the <supportedRuntime>  element set as follows:

XML

Common Side-by-Side Hosting Scenarios

<configuration>
  <startup >
    <supportedRuntime version="v2.0.50727" />
    <supportedRuntime version="v4.0" />
  </startup>
</configuration>

<configuration>
  <startup useLegacyV2RuntimeActivationPolicy="true">
    <supportedRuntime version="v4.0" />
  </startup>
</configuration>

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/startup-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/supportedruntime-element


The following example demonstrates an unmanaged COM host that is running a
managed COM component by using the version of the .NET Framework that the
component was compiled to use.

To run the following example, compile and register the following managed COM
component using .NET Framework 3.5. To register the component, on the Project menu,
click Properties, click the Build tab, and then select the Register for COM interop check
box.

C#

Compile the following unmanaged C++ application, which activates the COM object
that is created by the previous example.

C++

Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;

namespace BasicComObject
{
    [ComVisible(true), Guid("9C99C4B5-CA54-4c58-8988-49B6811BA53B")]
    public class MyObject : SimpleObjectModel.IPrintInfo
    {
        public MyObject()
        {
        }
        public void PrintInfo()
        {
            Console.WriteLine("MyObject was activated in {0} runtime 
in:\n\tAppDomain {1}:{2}", 
System.Runtime.InteropServices.RuntimeEnvironment.GetSystemVersion(), 
AppDomain.CurrentDomain.Id, AppDomain.CurrentDomain.FriendlyName);
        }
    }
}

#include "stdafx.h"
#include <string>
#include <iostream>
#include <objbase.h>
#include <string.h>
#include <process.h>



using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
    char input;
    CoInitialize(NULL) ;
    CLSID clsid;
    HRESULT hr;
    HRESULT clsidhr = CLSIDFromString(L"{9C99C4B5-CA54-4c58-8988-
49B6811BA53B}",&clsid);
    hr = -1;
    if (FAILED(clsidhr))
    {
        printf("Failed to construct CLSID from String\n");
    }
    UUID id = __uuidof(IUnknown);
    IUnknown * pUnk = NULL;
    hr = ::CoCreateInstance(clsid,NULL,CLSCTX_INPROC_SERVER,id,(void **) 
&pUnk);
    if (FAILED(hr))
    {
        printf("Failed CoCreateInstance\n");
    }else
    {
        pUnk->AddRef();
        printf("Succeeded\n");
    }

    DISPID dispid;
    IDispatch* pPrintInfo;
    pUnk->QueryInterface(IID_IDispatch, (void**)&pPrintInfo);
    OLECHAR FAR* szMethod[1];
    szMethod[0]=OLESTR("PrintInfo");
    hr = pPrintInfo->GetIDsOfNames(IID_NULL,szMethod, 1, 
LOCALE_SYSTEM_DEFAULT, &dispid);
    DISPPARAMS dispparams;
    dispparams.cNamedArgs = 0;
    dispparams.cArgs = 0;
    VARIANTARG* pvarg = NULL;
    EXCEPINFO * pexcepinfo = NULL;
    WORD wFlags = DISPATCH_METHOD ;
;
    LPVARIANT pvRet = NULL;
    UINT * pnArgErr = NULL;
    hr = pPrintInfo->Invoke(dispid,IID_NULL, LOCALE_USER_DEFAULT, wFlags,
        &dispparams, pvRet, pexcepinfo, pnArgErr);
    printf("Press Enter to exit");
    scanf_s("%c",&input);
    CoUninitialize();
    return 0;
}



<startup> Element
<supportedRuntime> Element

See also

https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/startup-element
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/startup/supportedruntime-element

	Deployment
	Deploy .NET Framework
	Deployment Guide for Developers
	Deployment Guide for Administrators
	Reducing System Restarts During .NET Framework 4.5 Installations
	How to: Get Progress from the .NET Framework 4.5 Installer
	.NET Framework Initialization Errors: Managing the User Experience
	How to: Debug CLR Activation Issues

	Deploying .NET Framework Applications
	How the Runtime Locates Assemblies
	Best Practices for Assembly Loading

	.NET Framework Client Profile
	Side-by-Side Execution
	Configuring Assembly Binding Redirection
	Guidelines for Creating Components for Side-by-Side Execution
	In-Process Side-by-Side Execution


