
Tell us about your PDF experience.

Managed Extensibility Framework (MEF)
Article • 11/06/2021

This article provides an overview of the Managed Extensibility Framework that was
introduced in .NET Framework 4.

The Managed Extensibility Framework (MEF) is a library for creating lightweight and
extensible applications. It allows application developers to discover and use extensions
with no configuration required. It also lets extension developers easily encapsulate code
and avoid fragile hard dependencies. MEF not only allows extensions to be reused
within applications, but across applications as well.

Imagine that you are the architect of a large application that must provide support for
extensibility. Your application has to include a potentially large number of smaller
components, and is responsible for creating and running them.

The simplest approach to the problem is to include the components as source code in
your application, and call them directly from your code. This has a number of obvious
drawbacks. Most importantly, you cannot add new components without modifying the
source code, a restriction that might be acceptable in, for example, a Web application,
but is unworkable in a client application. Equally problematic, you may not have access
to the source code for the components, because they might be developed by third
parties, and for the same reason you cannot allow them to access yours.

A slightly more sophisticated approach would be to provide an extension point or
interface, to permit decoupling between the application and its components. Under this
model, you might provide an interface that a component can implement, and an API to
enable it to interact with your application. This solves the problem of requiring source
code access, but it still has its own difficulties.

Because the application lacks any capacity for discovering components on its own, it
must still be explicitly told which components are available and should be loaded. This is
typically accomplished by explicitly registering the available components in a
configuration file. This means that assuring that the components are correct becomes a
maintenance issue, particularly if it is the end user and not the developer who is
expected to do the updating.

What is MEF?

The problem of extensibility

https://aka.ms/learn-pdf-feedback

In addition, components are incapable of communicating with one another, except
through the rigidly defined channels of the application itself. If the application architect
has not anticipated the need for a particular communication, it is usually impossible.

Finally, the component developers must accept a hard dependency on what assembly
contains the interface they implement. This makes it difficult for a component to be
used in more than one application, and can also create problems when you create a test
framework for components.

Instead of this explicit registration of available components, MEF provides a way to
discover them implicitly, via composition. A MEF component, called a part, declaratively
specifies both its dependencies (known as imports) and what capabilities (known as
exports) it makes available. When a part is created, the MEF composition engine satisfies
its imports with what is available from other parts.

This approach solves the problems discussed in the previous section. Because MEF parts
declaratively specify their capabilities, they are discoverable at run time, which means an
application can make use of parts without either hard-coded references or fragile
configuration files. MEF allows applications to discover and examine parts by their
metadata, without instantiating them or even loading their assemblies. As a result, there
is no need to carefully specify when and how extensions should be loaded.

In addition to its provided exports, a part can specify its imports, which will be filled by
other parts. This makes communication among parts not only possible, but easy, and
allows for good factoring of code. For example, services common to many components
can be factored into a separate part and easily modified or replaced.

Because the MEF model requires no hard dependency on a particular application
assembly, it allows extensions to be reused from application to application. This also
makes it easy to develop a test harness, independent of the application, to test
extension components.

An extensible application written by using MEF declares an import that can be filled by
extension components, and may also declare exports in order to expose application
services to extensions. Each extension component declares an export, and may also
declare imports. In this way, extension components themselves are automatically
extensible.

What MEF provides

Where MEF is available

MEF is an integral part of the .NET Framework 4, and is available wherever the .NET
Framework is used. You can use MEF in your client applications, whether they use
Windows Forms, WPF, or any other technology, or in server applications that use
ASP.NET.

Previous versions of the .NET Framework introduced the Managed Add-in Framework
(MAF), designed to allow applications to isolate and manage extensions. The focus of
MAF is slightly higher-level than MEF, concentrating on extension isolation and
assembly loading and unloading, while MEF's focus is on discoverability, extensibility,
and portability. The two frameworks interoperate smoothly, and a single application can
take advantage of both.

The simplest way to see what MEF can do is to build a simple MEF application. In this
example, you build a very simple calculator named SimpleCalculator. The goal of
SimpleCalculator is to create a console application that accepts basic arithmetic
commands, in the form "5+3" or "6-2", and returns the correct answers. Using MEF,
you'll be able to add new operators without changing the application code.

To download the complete code for this example, see the SimpleCalculator sample
(Visual Basic).

To start, in Visual Studio, create a new Console Application project and name it
SimpleCalculator .

Add a reference to the System.ComponentModel.Composition assembly, where MEF
resides.

MEF and MAF

SimpleCalculator: An example application

７ Note

The purpose of SimpleCalculator is to demonstrate the concepts and syntax of MEF,
rather than to necessarily provide a realistic scenario for its use. Many of the
applications that would benefit most from the power of MEF are more complex
than SimpleCalculator. For more extensive examples, see the Managed Extensibility
Framework on GitHub.

https://learn.microsoft.com/en-us/samples/dotnet/samples/simple-calculator-vb/
https://learn.microsoft.com/en-us/samples/dotnet/samples/simple-calculator-vb/
https://github.com/MicrosoftArchive/mef
https://github.com/MicrosoftArchive/mef
https://github.com/MicrosoftArchive/mef

Open Module1.vb or Program.cs and add Imports or using directives for
System.ComponentModel.Composition and
System.ComponentModel.Composition.Hosting . These two namespaces contain MEF
types you will need to develop an extensible application.

If you're using Visual Basic, add the Public keyword to the line that declares the

Module1 module.

The core of the MEF composition model is the composition container, which contains all
the parts available and performs composition. Composition is the matching up of
imports to exports. The most common type of composition container is
CompositionContainer, and you'll use this for SimpleCalculator.

If you're using Visual Basic, add a public class named Program in Module1.vb.

Add the following line to the Program class in Module1.vb or Program.cs:

C#

In order to discover the parts available to it, the composition containers makes use of a
catalog. A catalog is an object that makes available parts discovered from some source.
MEF provides catalogs to discover parts from a provided type, an assembly, or a
directory. Application developers can easily create new catalogs to discover parts from
other sources, such as a Web service.

Add the following constructor to the Program class:

C#

Composition container and catalogs

private CompositionContainer _container;

private Program()
{
 try
 {
 // An aggregate catalog that combines multiple catalogs.
 var catalog = new AggregateCatalog();
 // Adds all the parts found in the same assembly as the Program
class.
 catalog.Catalogs.Add(new AssemblyCatalog(typeof(Program).Assembly));

 // Create the CompositionContainer with the parts in the catalog.
 _container = new CompositionContainer(catalog);

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.hosting.compositioncontainer

The call to ComposeParts tells the composition container to compose a specific set of
parts, in this case the current instance of Program . At this point, however, nothing will
happen, since Program has no imports to fill.

First, you have Program import a calculator. This allows the separation of user interface
concerns, such as the console input and output that will go into Program , from the logic
of the calculator.

Add the following code to the Program class:

C#

Notice that the declaration of the calculator object is not unusual, but that it is
decorated with the ImportAttribute attribute. This attribute declares something to be an
import; that is, it will be filled by the composition engine when the object is composed.

Every import has a contract, which determines what exports it will be matched with. The
contract can be an explicitly specified string, or it can be automatically generated by
MEF from a given type, in this case the interface ICalculator . Any export declared with
a matching contract will fulfill this import. Note that while the type of the calculator
object is in fact ICalculator , this is not required. The contract is independent from the
type of the importing object. (In this case, you could leave out the typeof(ICalculator) .
MEF will automatically assume the contract to be based on the type of the import unless
you specify it explicitly.)

Add this very simple interface to the module or SimpleCalculator namespace:

C#

 _container.ComposeParts(this);
 }
 catch (CompositionException compositionException)
 {
 Console.WriteLine(compositionException.ToString());
 }
}

Imports and Exports with attributes

[Import(typeof(ICalculator))]
public ICalculator calculator;

public interface ICalculator
{

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.attributedmodelservices.composeparts
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.importattribute

Now that you have defined ICalculator , you need a class that implements it. Add the
following class to the module or SimpleCalculator namespace:

C#

Here is the export that will match the import in Program . In order for the export to
match the import, the export must have the same contract. Exporting under a contract
based on typeof(MySimpleCalculator) would produce a mismatch, and the import
would not be filled; the contract needs to match exactly.

Since the composition container will be populated with all the parts available in this
assembly, the MySimpleCalculator part will be available. When the constructor for
Program performs composition on the Program object, its import will be filled with a
MySimpleCalculator object, which will be created for that purpose.

The user interface layer (Program) does not need to know anything else. You can
therefore fill in the rest of the user interface logic in the Main method.

Add the following code to the Main method:

C#

This code simply reads a line of input and calls the Calculate function of ICalculator
on the result, which it writes back to the console. That is all the code you need in

 string Calculate(string input);
}

[Export(typeof(ICalculator))]
class MySimpleCalculator : ICalculator
{

}

static void Main(string[] args)
{
 // Composition is performed in the constructor.
 var p = new Program();
 Console.WriteLine("Enter Command:");
 while (true)
 {
 string s = Console.ReadLine();
 Console.WriteLine(p.calculator.Calculate(s));
 }
}

Program . All the rest of the work will happen in the parts.

In order for SimpleCalculator to be extensible, it needs to import a list of operations. An
ordinary ImportAttribute attribute is filled by one and only one ExportAttribute. If more
than one is available, the composition engine produces an error. To create an import
that can be filled by any number of exports, you can use the ImportManyAttribute
attribute.

Add the following operations property to the MySimpleCalculator class:

C#

Lazy<T,TMetadata> is a type provided by MEF to hold indirect references to exports.
Here, in addition to the exported object itself, you also get export metadata, or
information that describes the exported object. Each Lazy<T,TMetadata> contains an
IOperation object, representing an actual operation, and an IOperationData object,
representing its metadata.

Add the following simple interfaces to the module or SimpleCalculator namespace:

C#

In this case, the metadata for each operation is the symbol that represents that
operation, such as +, -, *, and so on. To make the addition operation available, add the
following class to the module or SimpleCalculator namespace:

C#

Imports and ImportMany attributes

[ImportMany]
IEnumerable<Lazy<IOperation, IOperationData>> operations;

public interface IOperation
{
 int Operate(int left, int right);
}

public interface IOperationData
{
 char Symbol { get; }
}

[Export(typeof(IOperation))]
[ExportMetadata("Symbol", '+')]

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.importattribute
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.exportattribute
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.importmanyattribute
https://learn.microsoft.com/en-us/dotnet/api/system.lazy-2
https://learn.microsoft.com/en-us/dotnet/api/system.lazy-2

The ExportAttribute attribute functions as it did before. The ExportMetadataAttribute
attribute attaches metadata, in the form of a name-value pair, to that export. While the
Add class implements IOperation , a class that implements IOperationData is not
explicitly defined. Instead, a class is implicitly created by MEF with properties based on
the names of the metadata provided. (This is one of several ways to access metadata in
MEF.)

Composition in MEF is recursive. You explicitly composed the Program object, which
imported an ICalculator that turned out to be of type MySimpleCalculator .
MySimpleCalculator , in turn, imports a collection of IOperation objects, and that import
will be filled when MySimpleCalculator is created, at the same time as the imports of
Program . If the Add class declared a further import, that too would have to be filled, and
so on. Any import left unfilled results in a composition error. (It is possible, however, to
declare imports to be optional or to assign them default values.)

With these parts in place, all that remains is the calculator logic itself. Add the following
code in the MySimpleCalculator class to implement the Calculate method:

C#

class Add: IOperation
{
 public int Operate(int left, int right)
 {
 return left + right;
 }
}

Calculator logic

public String Calculate(string input)
{
 int left;
 int right;
 char operation;
 // Finds the operator.
 int fn = FindFirstNonDigit(input);
 if (fn < 0) return "Could not parse command.";

 try
 {
 // Separate out the operands.
 left = int.Parse(input.Substring(0, fn));
 right = int.Parse(input.Substring(fn + 1));
 }
 catch

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.exportattribute
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.exportmetadataattribute

The initial steps parse the input string into left and right operands and an operator
character. In the foreach loop, every member of the operations collection is examined.
These objects are of type Lazy<T,TMetadata>, and their metadata values and exported
object can be accessed with the Metadata property and the Value property respectively.
In this case, if the Symbol property of the IOperationData object is discovered to be a
match, the calculator calls the Operate method of the IOperation object and returns the
result.

To complete the calculator, you also need a helper method that returns the position of
the first non-digit character in a string. Add the following helper method to the
MySimpleCalculator class:

C#

You should now be able to compile and run the project. In Visual Basic, make sure that
you added the Public keyword to Module1 . In the console window, type an addition
operation, such as "5+3", and the calculator returns the results. Any other operator
results in the "Operation Not Found!" message.

 {
 return "Could not parse command.";
 }

 operation = input[fn];

 foreach (Lazy<IOperation, IOperationData> i in operations)
 {
 if (i.Metadata.Symbol.Equals(operation))
 {
 return i.Value.Operate(left, right).ToString();
 }
 }
 return "Operation Not Found!";
}

private int FindFirstNonDigit(string s)
{
 for (int i = 0; i < s.Length; i++)
 {
 if (!char.IsDigit(s[i])) return i;
 }
 return -1;
}

Extend SimpleCalculator using a new class

https://learn.microsoft.com/en-us/dotnet/api/system.lazy-2
https://learn.microsoft.com/en-us/dotnet/api/system.lazy-2.metadata
https://learn.microsoft.com/en-us/dotnet/api/system.lazy-1.value

Now that the calculator works, adding a new operation is easy. Add the following class
to the module or SimpleCalculator namespace:

C#

Compile and run the project. Type a subtraction operation, such as "5-3". The calculator
now supports subtraction as well as addition.

Adding classes to the source code is simple enough, but MEF provides the ability to look
outside an application's own source for parts. To demonstrate this, you will need to
modify SimpleCalculator to search a directory, as well as its own assembly, for parts, by
adding a DirectoryCatalog.

Add a new directory named Extensions to the SimpleCalculator project. Make sure to
add it at the project level, and not at the solution level. Then add a new Class Library
project to the solution, named ExtendedOperations . The new project will compile into a
separate assembly.

Open the Project Properties Designer for the ExtendedOperations project and click the
Compile or Build tab. Change the Build output path or Output path to point to the
Extensions directory in the SimpleCalculator project directory
(..\SimpleCalculator\Extensions\).

In Module1.vb or Program.cs, add the following line to the Program constructor:

C#

[Export(typeof(IOperation))]
[ExportMetadata("Symbol", '-')]
class Subtract : IOperation
{
 public int Operate(int left, int right)
 {
 return left - right;
 }
}

Extend SimpleCalculator using a new assembly

catalog.Catalogs.Add(
 new DirectoryCatalog(
 "C:\\SimpleCalculator\\SimpleCalculator\\Extensions"));

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.hosting.directorycatalog

Replace the example path with the path to your Extensions directory. (This absolute path
is for debugging purposes only. In a production application, you would use a relative
path.) The DirectoryCatalog will now add any parts found in any assemblies in the
Extensions directory to the composition container.

In the ExtendedOperations project, add references to SimpleCalculator and

System.ComponentModel.Composition . In the ExtendedOperations class file, add an
Imports or a using directive for System.ComponentModel.Composition . In Visual Basic,
also add an Imports statement for SimpleCalculator . Then add the following class to
the ExtendedOperations class file:

C#

Note that in order for the contract to match, the ExportAttribute attribute must have the
same type as the ImportAttribute.

Compile and run the project. Test the new Mod (%) operator.

This topic covered the basic concepts of MEF.

Parts, catalogs, and the composition container

Parts and the composition container are the basic building blocks of a MEF
application. A part is any object that imports or exports a value, up to and
including itself. A catalog provides a collection of parts from a particular source.
The composition container uses the parts provided by a catalog to perform
composition, the binding of imports to exports.

Imports and exports

Imports and exports are the way by which components communicate. With an
import, the component specifies a need for a particular value or object, and with

[Export(typeof(SimpleCalculator.IOperation))]
[ExportMetadata("Symbol", '%')]
public class Mod : SimpleCalculator.IOperation
{
 public int Operate(int left, int right)
 {
 return left % right;
 }
}

Conclusion

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.hosting.directorycatalog
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.exportattribute
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition.importattribute

an export it specifies the availability of a value. Each import is matched with a list
of exports by way of its contract.

To download the complete code for this example, see the SimpleCalculator sample
(Visual Basic).

For more information and code examples, see Managed Extensibility Framework . For a
list of the MEF types, see the System.ComponentModel.Composition namespace.

Next steps

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/en-us/samples/dotnet/samples/simple-calculator-vb/
https://learn.microsoft.com/en-us/samples/dotnet/samples/simple-calculator-vb/
https://github.com/MicrosoftArchive/mef
https://github.com/MicrosoftArchive/mef
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.composition
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Fframework%2Fmef%2F&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Fframework%2Fmef%2Findex.md&documentVersionIndependentId=6da3467d-e35b-b3b5-df32-4c442523491f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40gewarren&metadata=*+ID%3A+139928b3-6a8e-47e3-9ada-7658d85b38a4+%0A*+Service%3A+**dotnet-framework**
https://aka.ms/feedback/report?space=61

Attributed programming model
overview (MEF)
Article • 12/08/2021

In the Managed Extensibility Framework (MEF), a programming model is a particular
method of defining the set of conceptual objects on which MEF operates. These
conceptual objects include parts, imports, and exports. MEF uses these objects, but does
not specify how they should be represented. Therefore, a wide variety of programming
models are possible, including customized programming models.

The default programming model used in MEF is the attributed programming model. In
the attributed programming model parts, imports, exports, and other objects are
defined with attributes that decorate ordinary .NET Framework classes. This topic
explains how to use the attributes provided by the attributed programming model to
create a MEF application.

An export is a value that a part provides to other parts in the container, and an import is
a requirement that a part expresses to the container, to be filled from the available
exports. In the attributed programming model, imports and exports are declared by
decorating classes or members with the Import and Export attributes. The Export
attribute can decorate a class, field, property, or method, while the Import attribute can
decorate a field, property, or constructor parameter.

In order for an import to be matched with an export, the import and export must have
the same contract. The contract consists of a string, called the contract name, and the
type of the exported or imported object, called the contract type. Only if both the
contract name and contract type match is an export considered to fulfill a particular
import.

Either or both of the contract parameters can be implicit or explicit. The following code
shows a class that declares a basic import.

C#

Import and Export Basics

public class MyClass
{
 [Import]
 public IMyAddin MyAddin { get; set; }
}

In this import, the Import attribute has neither a contract type nor a contract name
parameter attached. Therefore, both will be inferred from the decorated property. In this
case, the contract type will be IMyAddin , and the contract name will be a unique string
created from the contract type. (In other words, the contract name will match only
exports whose names are also inferred from the type IMyAddin .)

The following shows an export that matches the previous import.

C#

In this export, the contract type is IMyAddin because it is specified as a parameter of the
Export attribute. The exported type must be either the same as the contract type, derive
from the contract type, or implement the contract type if it is an interface. In this export,
the actual type MyLogger implements the interface IMyAddin . The contract name is
inferred from the contract type, which means that this export will match the previous
import.

The contract type must match exactly for the export and import to be considered a
match. Consider the following export.

C#

In this export, the contract type is MyLogger instead of IMyAddin . Even though MyLogger
implements IMyAddin , and therefore could be cast to an IMyAddin object, this export will
not match the previous import because the contract types are not the same.

In general, it is not necessary to specify the contract name, and most contracts should
be defined in terms of the contract type and metadata. However, under certain

[Export(typeof(IMyAddin))]
public class MyLogger : IMyAddin { }

７ Note

Exports and imports should usually be declared on public classes or members.
Other declarations are supported, but exporting or importing a private, protected,
or internal member breaks the isolation model for the part and is therefore not
recommended.

[Export] //WILL NOT match the previous import!
public class MyLogger : IMyAddin { }

circumstances, it is important to specify the contract name directly. The most common
case is when a class exports several values that share a common type, such as primitives.
The contract name can be specified as the first parameter of the Import or Export
attribute. The following code shows an import and an export with a specified contract
name of MajorRevision .

C#

If the contract type is not specified, it will still be inferred from the type of the import or
export. However, even if the contract name is specified explicitly, the contract type must
also match exactly for the import and export to be considered a match. For example, if
the MajorRevision field was a string, the inferred contract types would not match and
the export would not match the import, despite having the same contract name.

The Export attribute can also decorate a method, in the same way as a class, property,
or function. Method exports must specify a contract type or contract name, as the type
cannot be inferred. The specified type can be either a custom delegate or a generic type,
such as Func . The following class exports a method named DoSomething .

C#

public class MyClass
{
 [Import("MajorRevision")]
 public int MajorRevision { get; set; }
}

public class MyExportClass
{
 [Export("MajorRevision")] //This one will match.
 public int MajorRevision = 4;

 [Export("MinorRevision")]
 public int MinorRevision = 16;
}

Importing and Exporting a Method

public class MyAddin
{
 //Explicitly specifying a generic type.
 [Export(typeof(Func<int, string>))]
 public string DoSomething(int TheParam);
}

In this class, the DoSomething method takes a single int parameter and returns a
string . To match this export, the importing part must declare an appropriate member.
The following class imports the DoSomething method.

C#

For more information about how to use of the Func<T, T> object, see Func<T,TResult>.

MEF support several import types, including dynamic, lazy, prerequisite, and optional.

In some cases, the importing class may want to match exports of any type that have a
particular contract name. In this scenario, the class can declare a dynamic import. The
following import matches any export with contract name "TheString".

C#

When the contract type is inferred from the dynamic keyword, it will match any contract
type. In this case, an import should always specify a contract name to match on. (If no
contract name is specified, the import will be considered to match no exports.) Both of
the following exports would match the previous import.

C#

public class MyClass
{
 [Import] //Contract name must match!
 public Func<int, string> DoSomething { get; set; }
}

Types of Imports

Dynamic Imports

public class MyClass
{
 [Import("TheString")]
 public dynamic MyAddin { get; set; }
}

[Export("TheString", typeof(IMyAddin))]
public class MyLogger : IMyAddin { }

[Export("TheString")]
public class MyToolbar { }

https://learn.microsoft.com/en-us/dotnet/api/system.func-2

Obviously, the importing class must be prepared to deal with an object of arbitrary type.

In some cases, the importing class may require an indirect reference to the imported
object, so that the object is not instantiated immediately. In this scenario, the class can
declare a lazy import by using a contract type of Lazy<T> . The following importing
property declares a lazy import.

C#

From the point of view of the composition engine, a contract type of Lazy<T> is
considered identical to contract type of T . Therefore, the previous import would match
the following export.

C#

The contract name and contract type can be specified in the Import attribute for a lazy
import, as described earlier in the "Basic Imports and Exports" section.

Exported MEF parts are typically created by the composition engine, in response to a
direct request or the need to fill a matched import. By default, when creating a part, the
composition engine uses the parameter-less constructor. To make the engine use a
different constructor, you can mark it with the ImportingConstructor attribute.

Each part may have only one constructor for use by the composition engine. Providing
no parameterless constructor and no ImportingConstructor attribute, or providing more
than one ImportingConstructor attribute, will produce an error.

To fill the parameters of a constructor marked with the ImportingConstructor attribute,
all of those parameters are automatically declared as imports. This is a convenient way

Lazy Imports

public class MyClass
{
 [Import]
 public Lazy<IMyAddin> MyAddin { get; set; }
}

[Export(typeof(IMyAddin))]
public class MyLogger : IMyAddin { }

Prerequisite Imports

to declare imports that are used during part initialization. The following class uses
ImportingConstructor to declare an import.

C#

By default, the ImportingConstructor attribute uses inferred contract types and contract
names for all of the parameter imports. It is possible to override this by decorating the
parameters with Import attributes, which can then define the contract type and contract
name explicitly. The following code demonstrates a constructor that uses this syntax to
import a derived class instead of a parent class.

C#

In particular, you should be careful with collection parameters. For example, if you
specify ImportingConstructor on a constructor with a parameter of type
IEnumerable<int> , the import will match a single export of type IEnumerable<int> ,
instead of a set of exports of type int . To match a set of exports of type int , you have
to decorate the parameter with the ImportMany attribute.

Parameters declared as imports by the ImportingConstructor attribute are also marked
as prerequisite imports. MEF normally allows exports and imports to form a cycle. For

public class MyClass
{
 private IMyAddin _theAddin;

 //Parameterless constructor will NOT be
 //used because the ImportingConstructor
 //attribute is present.
 public MyClass() { }

 //This constructor will be used.
 //An import with contract type IMyAddin is
 //declared automatically.
 [ImportingConstructor]
 public MyClass(IMyAddin MyAddin)
 {
 _theAddin = MyAddin;
 }
}

[ImportingConstructor]
public MyClass([Import(typeof(IMySubAddin))]IMyAddin MyAddin)
{
 _theAddin = MyAddin;
}

example, a cycle is where object A imports object B, which in turn imports object A.
Under ordinary circumstances, a cycle is not a problem, and the composition container
constructs both objects normally.

When an imported value is required by the constructor of a part, that object cannot
participate in a cycle. If object A requires that object B be constructed before it can be
constructed itself, and object B imports object A, then the cycle will be unable to resolve
and a composition error will occur. Imports declared on constructor parameters are
therefore prerequisite imports, which must all be filled before any of the exports from
the object that requires them can be used.

The Import attribute specifies a requirement for the part to function. If an import cannot
be fulfilled, the composition of that part will fail and the part will not be available.

You can specify that an import is optional by using the AllowDefault property. In this
case, the composition will succeed even if the import does not match any available
exports, and the importing property will be set to the default for its property type (null
for object properties, false for Booleans, or zero for numeric properties.) The following
class uses an optional import.

C#

The Import attribute will only be successfully composed when it matches one and only
one export. Other cases will produce a composition error. To import more than one
export that matches the same contract, use the ImportMany attribute. Imports marked
with this attribute are always optional. For example, composition will not fail if no
matching exports are present. The following class imports any number of exports of
type IMyAddin .

C#

Optional Imports

public class MyClass
{
 [Import(AllowDefault = true)]
 public Plugin thePlugin { get; set; }

 //If no matching export is available,
 //thePlugin will be set to null.
}

Importing Multiple Objects

The imported array can be accessed by using ordinary IEnumerable<T> syntax and
methods. It is also possible to use an ordinary array (IMyAddin[]) instead.

This pattern can be very important when you use it in combination with the Lazy<T>
syntax. For example, by using ImportMany , IEnumerable<T> , and Lazy<T> , you can import
indirect references to any number of objects and only instantiate the ones that become
necessary. The following class shows this pattern.

C#

In some cases, you may want to prevent a part from being discovered as part of a
catalog. For example, the part may be a base class intended to be inherited from, but
not used. There are two ways to accomplish this. First, you can use the abstract
keyword on the part class. Abstract classes never provide exports, although they can
provide inherited exports to classes that derive from them.

If the class cannot be made abstract, you can decorate it with the PartNotDiscoverable
attribute. A part decorated with this attribute will not be included in any catalogs. The
following example demonstrates these patterns. DataOne will be discovered by the
catalog. Since DataTwo is abstract, it will not be discovered. Since DataThree used the
PartNotDiscoverable attribute, it will not be discovered.

C#

public class MyClass
{
 [ImportMany]
 public IEnumerable<IMyAddin> MyAddin { get; set; }
}

public class MyClass
{
 [ImportMany]
 public IEnumerable<Lazy<IMyAddin>> MyAddin { get; set; }
}

Avoiding Discovery

[Export]
public class DataOne
{
 //This part will be discovered
 //as normal by the catalog.
}

Exports can provide additional information about themselves known as metadata.
Metadata can be used to convey properties of the exported object to the importing
part. The importing part can use this data to decide which exports to use, or to gather
information about an export without having to construct it. For this reason, an import
must be lazy to use metadata.

To use metadata, you typically declare an interface known as a metadata view, which
declares what metadata will be available. The metadata view interface must have only
properties, and those properties must have get accessors. The following interface is an
example metadata view.

C#

It is also possible to use a generic collection, IDictionary<string, object> , as a
metadata view, but this forfeits the benefits of type checking and should be avoided.

Ordinarily, all of the properties named in the metadata view are required, and any
exports that do not provide them will not be considered a match. The DefaultValue
attribute specifies that a property is optional. If the property is not included, it will be
assigned the default value specified as a parameter of DefaultValue . The following are

[Export]
public abstract class DataTwo
{
 //This part will not be discovered
 //by the catalog.
}

[PartNotDiscoverable]
[Export]
public class DataThree
{
 //This part will also not be discovered
 //by the catalog.
}

Metadata and Metadata Views

public interface IPluginMetadata
{
 string Name { get; }

 [DefaultValue(1)]
 int Version { get; }
}

two different classes decorated with metadata. Both of these classes would match the
previous metadata view.

C#

Metadata is expressed after the Export attribute by using the ExportMetadata attribute.
Each piece of metadata is composed of a name/value pair. The name portion of the
metadata must match the name of the appropriate property in the metadata view, and
the value will be assigned to that property.

It is the importer that specifies what metadata view, if any, will be in use. An import with
metadata is declared as a lazy import, with the metadata interface as the second type
parameter to Lazy<T,T> . The following class imports the previous part with metadata.

C#

In many cases, you will want to combine metadata with the ImportMany attribute, in
order to parse through the available imports and choose and instantiate only one, or
filter a collection to match a certain condition. The following class instantiates only
IPlugin objects that have the Name value "Logger".

C#

[Export(typeof(IPlugin)),
 ExportMetadata("Name", "Logger"),
 ExportMetadata("Version", 4)]
public class Logger : IPlugin
{
}

[Export(typeof(IPlugin)),
 ExportMetadata("Name", "Disk Writer")]
 //Version is not required because of the DefaultValue
public class DWriter : IPlugin
{
}

public class Addin
{
 [Import]
 public Lazy<IPlugin, IPluginMetadata> plugin;
}

public class User
{
 [ImportMany]
 public IEnumerable<Lazy<IPlugin, IPluginMetadata>> plugins;

If a class inherits from a part, that class may also become a part. Imports are always
inherited by subclasses. Therefore, a subclass of a part will always be a part, with the
same imports as its parent class.

Exports declared by using the Export attribute are not inherited by subclasses. However,
a part can export itself by using the InheritedExport attribute. Subclasses of the part
will inherit and provide the same export, including contract name and contract type.
Unlike an Export attribute, InheritedExport can be applied only at the class level, and
not at the member level. Therefore, member-level exports can never be inherited.

The following four classes demonstrate the principles of import and export inheritance.
NumTwo inherits from NumOne , so NumTwo will import IMyData . Ordinary exports are not
inherited, so NumTwo will not export anything. NumFour inherits from NumThree . Because
NumThree used InheritedExport , NumFour has one export with contract type NumThree .
Member-level exports are never inherited, so IMyData is not exported.

C#

 public IPlugin InstantiateLogger()
 {
 IPlugin logger = null;

 foreach (Lazy<IPlugin, IPluginMetadata> plugin in plugins)
 {
 if (plugin.Metadata.Name == "Logger")
 logger = plugin.Value;
 }
 return logger;
 }
}

Import and Export Inheritance

[Export]
public class NumOne
{
 [Import]
 public IMyData MyData { get; set; }
}

public class NumTwo : NumOne
{
 //Imports are always inherited, so NumTwo will
 //import IMyData.

 //Ordinary exports are not inherited, so

If there is metadata associated with an InheritedExport attribute, that metadata will
also be inherited. (For more information, see the earlier "Metadata and Metadata Views"
section.) Inherited metadata cannot be modified by the subclass. However, by re-
declaring the InheritedExport attribute with the same contract name and contract type,
but with new metadata, the subclass can replace the inherited metadata with new
metadata. The following class demonstrates this principle. The MegaLogger part inherits
from Logger and includes the InheritedExport attribute. Since MegaLogger re-declares
new metadata named Status, it does not inherit the Name and Version metadata from
Logger .

C#

 //NumTwo will NOT export anything. As a result it
 //will not be discovered by the catalog!
}

[InheritedExport]
public class NumThree
{
 [Export]
 Public IMyData MyData { get; set; }

 //This part provides two exports, one of
 //contract type NumThree, and one of
 //contract type IMyData.
}

public class NumFour : NumThree
{
 //Because NumThree used InheritedExport,
 //this part has one export with contract
 //type NumThree.

 //Member-level exports are never inherited,
 //so IMyData is not exported.
}

[InheritedExport(typeof(IPlugin)),
 ExportMetadata("Name", "Logger"),
 ExportMetadata("Version", 4)]
public class Logger : IPlugin
{
 //Exports with contract type IPlugin and
 //metadata "Name" and "Version".
}

public class SuperLogger : Logger
{
 //Exports with contract type IPlugin and
 //metadata "Name" and "Version", exactly the same

When re-declaring the InheritedExport attribute to override metadata, make sure that
the contract types are the same. (In the previous example, IPlugin is the contract type.)
If they differ, instead of overriding, the second attribute will create a second,
independent export from the part. Generally, this means that you will have to explicitly
specify the contract type when you override an InheritedExport attribute, as shown in
the previous example.

Since interfaces cannot be instantiated directly, they generally cannot be decorated with
Export or Import attributes. However, an interface can be decorated with an
InheritedExport attribute at the interface level, and that export along with any
associated metadata will be inherited by any implementing classes. The interface itself
will not be available as a part, however.

The basic export attributes, Export and InheritedExport , can be extended to include
metadata as attribute properties. This technique is useful for applying similar metadata
to many parts, or creating an inheritance tree of metadata attributes.

A custom attribute can specify the contract type, the contract name, or any other
metadata. In order to define a custom attribute, a class inheriting from ExportAttribute
(or InheritedExportAttribute) must be decorated with the MetadataAttribute attribute.
The following class defines a custom attribute.

C#

 //as the Logger class.
}

[InheritedExport(typeof(IPlugin)),
 ExportMetadata("Status", "Green")]
public class MegaLogger : Logger {
 //Exports with contract type IPlugin and
 //metadata "Status" only. Re-declaring
 //the attribute replaces all metadata.
}

Custom Export Attributes

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
public class MyAttribute : ExportAttribute
{
 public MyAttribute(string myMetadata)
 : base(typeof(IMyAddin))
 {
 MyMetadata = myMetadata;

This class defines a custom attribute named MyAttribute with contract type IMyAddin
and some metadata named MyMetadata . All properties in a class marked with the
MetadataAttribute attribute are considered to be metadata defined in the custom
attribute. The following two declarations are equivalent.

C#

C#

In the first declaration, the contract type and metadata are explicitly defined. In the
second declaration, the contract type and metadata are implicit in the customized
attribute. Particularly in cases where a large amount of identical metadata must be
applied to many parts (for example, author or copyright information), using a custom
attribute can save a lot of time and duplication. Further, inheritance trees of custom
attributes can be created to allow for variations.

To create optional metadata in a custom attribute, you can use the DefaultValue
attribute. When this attribute is applied to a property in a custom attribute class, it
specifies that the decorated property is optional and does not have to be supplied by an
exporter. If a value for the property is not supplied, it will be assigned the default value
for its property type (usually null , false , or 0.)

When a part specifies an import and composition is performed, the composition
container attempts to find a matching export. If it matches the import with an export
successfully, the importing member is set to an instance of the exported object. Where
this instance comes from is controlled by the exporting part's creation policy.

 }

 public string MyMetadata { get; private set; }
}

[Export(typeof(IMyAddin)),
 ExportMetadata("MyMetadata", "theData")]
public MyAddin myAddin { get; set; }

[MyAttribute("theData")]
public MyAddin myAddin { get; set; }

Creation Policies

The two possible creation policies are shared and non-shared. A part with a creation
policy of shared will be shared between every import in the container for a part with
that contract. When the composition engine finds a match and has to set an importing
property, it will instantiate a new copy of the part only if one does not already exist;
otherwise, it will supply the existing copy. This means that many objects may have
references to the same part. Such parts should not rely on internal state that might be
changed from many places. This policy is appropriate for static parts, parts that provide
services, and parts that consume a lot of memory or other resources.

A part with the creation policy of non-shared will be created every time a matching
import for one of its exports is found. A new copy will therefore be instantiated for every
import in the container that matches one of the part's exported contracts. The internal
state of these copies will not be shared. This policy is appropriate for parts where each
import requires its own internal state.

Both the import and the export can specify the creation policy of a part, from among
the values Shared , NonShared , or Any . The default is Any for both imports and exports.
An export that specifies Shared or NonShared will only match an import that specifies
the same, or that specifies Any . Similarly, an import that specifies Shared or NonShared
will only match an export that specifies the same, or that specifies Any . Imports and
exports with incompatible creation policies are not considered a match, in the same way
as an import and export whose contract name or contract type are not a match. If both
import and export specify Any , or do not specify a creation policy and default to Any ,
the creation policy will default to shared.

The following example shows both imports and exports specifying creation policies.
PartOne does not specify a creation policy, so the default is Any . PartTwo does not
specify a creation policy, so the default is Any . Since both import and export default to
Any , PartOne will be shared. PartThree specifies a Shared creation policy, so PartTwo
and PartThree will share the same copy of PartOne . PartFour specifies a NonShared
creation policy, so PartFour will be non-shared in PartFive . PartSix specifies a
NonShared creation policy. PartFive and PartSix will each receive separate copies of
PartFour . PartSeven specifies a Shared creation policy. Because there is no exported
PartFour with a creation policy of Shared , the PartSeven import does not match
anything and will not be filled.

C#

[Export]
public class PartOne
{
 //The default creation policy for an export is Any.

}

public class PartTwo
{
 [Import]
 public PartOne partOne { get; set; }

 //The default creation policy for an import is Any.
 //If both policies are Any, the part will be shared.
}

public class PartThree
{
 [Import(RequiredCreationPolicy = CreationPolicy.Shared)]
 public PartOne partOne { get; set; }

 //The Shared creation policy is explicitly specified.
 //PartTwo and PartThree will receive references to the
 //SAME copy of PartOne.
}

[Export]
[PartCreationPolicy(CreationPolicy.NonShared)]
public class PartFour
{
 //The NonShared creation policy is explicitly specified.
}

public class PartFive
{
 [Import]
 public PartFour partFour { get; set; }

 //The default creation policy for an import is Any.
 //Since the export's creation policy was explicitly
 //defined, the creation policy for this property will
 //be non-shared.
}

public class PartSix
{
 [Import(RequiredCreationPolicy = CreationPolicy.NonShared)]
 public PartFour partFour { get; set; }

 //Both import and export specify matching creation
 //policies. PartFive and PartSix will each receive
 //SEPARATE copies of PartFour, each with its own
 //internal state.
}

public class PartSeven
{
 [Import(RequiredCreationPolicy = CreationPolicy.Shared)]
 public PartFour partFour { get; set; }

Because parts are hosted in the composition container, their life cycle can be more
complex than ordinary objects. Parts can implement two important life cycle-related
interfaces: IDisposable and IPartImportsSatisfiedNotification .

Parts that require work to be performed at shut down or that need to release resources
should implement IDisposable , as usual for .NET Framework objects. However, since the
container creates and maintains references to parts, only the container that owns a part
should call the Dispose method on it. The container itself implements IDisposable , and
as portion of its cleanup in Dispose it will call Dispose on all the parts that it owns. For
this reason, you should always dispose the composition container when it and any parts
it owns are no longer needed.

For long-lived composition containers, memory consumption by parts with a creation
policy of non-shared can become a problem. These non-shared parts can be created
multiple times and will not be disposed until the container itself is disposed. To deal with
this, the container provides the ReleaseExport method. Calling this method on a non-
shared export removes that export from the composition container and disposes it. Parts
that are used only by the removed export, and so on down the tree, are also removed
and disposed. In this way, resources can be reclaimed without disposing the
composition container itself.

IPartImportsSatisfiedNotification contains one method named OnImportsSatisfied .
This method is called by the composition container on any parts that implement the
interface when composition has been completed and the part's imports are ready for
use. Parts are created by the composition engine to fill the imports of other parts. Before
the imports of a part have been set, you cannot perform any initialization that relies on
or manipulates imported values in the part constructor unless those values have been
specified as prerequisites by using the ImportingConstructor attribute. This is normally
the preferred method, but in some cases, constructor injection may not be available. In
those cases, initialization can be performed in OnImportsSatisfied , and the part should
implement IPartImportsSatisfiedNotification .

 //A creation policy mismatch. Because there is no
 //exported PartFour with a creation policy of Shared,
 //this import does not match anything and will not be
 //filled.
}

Life Cycle and Disposing

	Managed Extensibility Framework (MEF)
	Attributed programming model overview (MEF)

