
Tell us about your PDF experience.

Develop Windows service apps
Article • 09/15/2021

Using Visual Studio or the .NET Framework SDK, you can easily create services by
creating an application that is installed as a service. This type of application is called a
Windows service. With framework features, you can create services, install them, and
start, stop, and otherwise control their behavior.

Introduction to Windows Service Applications

Provides an overview of Windows service applications, the lifetime of a service, and how
service applications differ from other common project types.

Walkthrough: Creating a Windows Service Application in the Component Designer

Provides an example of creating a service in Visual Basic and Visual C#.

Service Application Programming Architecture

Explains the language elements used in service programming.

How to: Create Windows Services

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

７ Note

In Visual Studio you can create a service in managed code in Visual C# or Visual
Basic, which can interoperate with existing C++ code if required. Or, you can create
a Windows service in native C++ by using the ATL Project Wizard.

In this section

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/cpp/atl/reference/atl-project-wizard
https://aka.ms/learn-pdf-feedback

Describes the process of creating and configuring Windows services using the Windows
service project template.

ServiceBase - Describes the major features of the ServiceBase class, which is used to
create services.

ServiceProcessInstaller - Describes the features of the ServiceProcessInstaller class,
which is used along with the ServiceInstaller class to install and uninstall your services.

ServiceInstaller - Describes the features of the ServiceInstaller class, which is used along
with the ServiceProcessInstaller class to install and uninstall your service.

Create Projects from Templates - Describes the projects types used in this chapter and
how to choose between them.

Related sections

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2013/0fyc0azh(v=vs.120)

Introduction to Windows Service
Applications
Article • 09/15/2021

Microsoft Windows services, formerly known as NT services, enable you to create long-
running executable applications that run in their own Windows sessions. These services
can be automatically started when the computer boots, can be paused and restarted,
and do not show any user interface. These features make services ideal for use on a
server or whenever you need long-running functionality that does not interfere with
other users who are working on the same computer. You can also run services in the
security context of a specific user account that is different from the logged-on user or
the default computer account. For more information about services and Windows
sessions, see the Windows SDK documentation.

You can easily create services by creating an application that is installed as a service. For
example, suppose you want to monitor performance counter data and react to
threshold values. You could write a Windows Service application that listens to the
performance counter data, deploy the application, and begin collecting and analyzing
data.

You create your service as a Microsoft Visual Studio project, defining code within it that
controls what commands can be sent to the service and what actions should be taken
when those commands are received. Commands that can be sent to a service include
starting, pausing, resuming, and stopping the service; you can also execute custom
commands.

After you create and build the application, you can install it by running the command-
line utility InstallUtil.exe and passing the path to the service's executable file. You can
then use the Services Control Manager to start, stop, pause, resume, and configure

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

your service. You can also accomplish many of these same tasks in the Services node in
Server Explorer or by using the ServiceController class.

Service applications function differently from many other project types in several ways:

The compiled executable file that a service application project creates must be
installed on the server before the project can function in a meaningful way. You
cannot debug or run a service application by pressing F5 or F11; you cannot
immediately run a service or step into its code. Instead, you must install and start
your service, and then attach a debugger to the service's process. For more
information, see How to: Debug Windows Service Applications.

Unlike some types of projects, you must create installation components for service
applications. The installation components install and register the service on the
server and create an entry for your service with the Windows Services Control
Manager. For more information, see How to: Add Installers to Your Service
Application.

The Main method for your service application must issue the Run command for the
services your project contains. The Run method loads the services into the Services
Control Manager on the appropriate server. If you use the Windows Services
project template, this method is written for you automatically. Note that loading a
service is not the same thing as starting the service. See "Service Lifetime" below
for more information.

Windows Service applications run in a different window station than the interactive
station of the logged-on user. A window station is a secure object that contains a
Clipboard, a set of global atoms, and a group of desktop objects. Because the
station of the Windows service is not an interactive station, dialog boxes raised
from within a Windows service application will not be seen and may cause your
program to stop responding. Similarly, error messages should be logged in the
Windows event log rather than raised in the user interface.

The Windows service classes supported by the .NET Framework do not support
interaction with interactive stations, that is, the logged-on user. The .NET
Framework also does not include classes that represent stations and desktops. If
your Windows service must interact with other stations, you will need to access the

Service Applications vs. Other Visual Studio
Applications

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller

unmanaged Windows API. For more information, see the Windows SDK
documentation.

The interaction of the Windows service with the user or other stations must be
carefully designed to include scenarios such as there being no logged on user, or
the user having an unexpected set of desktop objects. In some cases, it may be
more appropriate to write a Windows application that runs under the control of
the user.

Windows service applications run in their own security context and are started
before the user logs into the Windows computer on which they are installed. You
should plan carefully what user account to run the service within; a service running
under the system account has more permissions and privileges than a user
account.

A service goes through several internal states in its lifetime. First, the service is installed
onto the system on which it will run. This process executes the installers for the service
project and loads the service into the Services Control Manager for that computer. The
Services Control Manager is the central utility provided by Windows to administer
services.

After the service has been loaded, it must be started. Starting the service allows it to
begin functioning. You can start a service from the Services Control Manager, from
Server Explorer, or from code by calling the Start method. The Start method passes
processing to the application's OnStart method and processes any code you have
defined there.

A running service can exist in this state indefinitely until it is either stopped or paused or
until the computer shuts down. A service can exist in one of three basic states: Running,
Paused, or Stopped. The service can also report the state of a pending command:
ContinuePending, PausePending, StartPending, or StopPending. These statuses indicate
that a command has been issued, such as a command to pause a running service, but
has not been carried out yet. You can query the Status to determine what state a service
is in, or use the WaitForStatus to carry out an action when any of these states occurs.

You can pause, stop, or resume a service from the Services Control Manager, from
Server Explorer, or by calling methods in code. Each of these actions can call an
associated procedure in the service (OnStop, OnPause, or OnContinue), in which you can
define additional processing to be performed when the service changes state.

Service Lifetime

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.start
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.start
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-running
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-paused
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-stopped
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-continuepending
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-pausepending
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-startpending
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-stoppending
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.status
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.waitforstatus
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onpause
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue

There are two types of services you can create in Visual Studio using the .NET
Framework. Services that are the only service in a process are assigned the type
Win32OwnProcess. Services that share a process with another service are assigned the
type Win32ShareProcess. You can retrieve the service type by querying the ServiceType
property.

You might occasionally see other service types if you query existing services that were
not created in Visual Studio. For more information on these, see the ServiceType.

The ServiceController component is used to connect to an installed service and
manipulate its state; using a ServiceController component, you can start and stop a
service, pause and continue its functioning, and send custom commands to a service.
However, you do not need to use a ServiceController component when you create a
service application. In fact, in most cases your ServiceController component should exist
in a separate application from the Windows service application that defines your service.

For more information, see ServiceController.

Services must be created in a Windows Service application project or another .NET
Framework–enabled project that creates an .exe file when built and inherits from
the ServiceBase class.

Projects containing Windows services must have installation components for the
project and its services. This can be easily accomplished from the Properties
window. For more information, see How to: Add Installers to Your Service
Application.

Windows Service Applications
Service Application Programming Architecture
How to: Create Windows Services
How to: Install and Uninstall Services
How to: Start Services
How to: Debug Windows Service Applications

Types of Services

Services and the ServiceController Component

Requirements

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicetype#system-serviceprocess-servicetype-win32ownprocess
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicetype#system-serviceprocess-servicetype-win32shareprocess
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.servicetype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicetype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase

Walkthrough: Creating a Windows Service Application in the Component Designer
How to: Add Installers to Your Service Application

Tutorial: Create a Windows service app
Article • 04/25/2024

This article demonstrates how to create a Windows service app in Visual Studio that
writes messages to an event log.

To begin, create the project and set the values that are required for the service to
function correctly.

1. From the Visual Studio File menu, select New > Project (or press Ctrl + Shift + N)
to open the New Project window.

2. Find and select the Windows Service (.NET Framework) project template.

3. For Project name, enter MyNewService, and then select Create.

The Design tab appears (Service1.cs [Design] or Service1.vb [Design]).

The project template includes a component class named Service1 that inherits
from System.ServiceProcess.ServiceBase. It includes much of the basic service code,
such as the code to start the service.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

Create a service

７ Note

If you don't see the Windows Service template, you might need to install the
.NET desktop development workload using Visual Studio Installer.

Rename the service

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

Rename the service from Service1 to MyNewService.

1. In Solution Explorer, select Service1.cs or Service1.vb, and choose Rename from
the shortcut menu. Rename the file to MyNewService.cs or MyNewService.vb, and
then press Enter .

A pop-up window appears asking whether you would like to rename all references
to the code element Service1.

2. In the pop-up window, select Yes.

3. Select Save All from the File menu.

In this section, you add a custom event log to the Windows service. The EventLog
component is an example of the type of component you can add to a Windows service.

1. In the Toolbox window, expand Components, and then drag the EventLog
component to the Service1.cs [Design] or Service1.vb [Design] designer.

2. In Solution Explorer, from the shortcut menu for MyNewService.cs or
MyNewService.vb, choose View Code.

3. Define a custom event log.

For C#, edit the existing MyNewService() constructor as shown in the following
code snippet. For Visual Basic, add the New() constructor as shown in the following
code snippet.

C#

Add features to the service

Add custom event log functionality

public MyNewService()
{
 InitializeComponent();
 _eventLog1 = new EventLog();

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog

4. Add a using directive to MyNewService.cs (if it doesn't already exist), or an
Imports statement to MyNewService.vb, for the System.Diagnostics namespace:

C#

5. Select Save All from the File menu.

In the code editor for MyNewService.cs or MyNewService.vb, locate the OnStart
method. Visual Studio automatically created an empty method definition when you
created the project. Add code that writes an entry to the event log when the service
starts:

C#

Because a service application is designed to be long-running, it usually polls or monitors
the system, which you set up in the OnStart method. The OnStart method must return
to the operating system after the service's operation has begun so that the system isn't
blocked.

To set up a simple polling mechanism, use the System.Timers.Timer component. The
timer raises an Elapsed event at regular intervals, at which time your service can do its
monitoring. You use the Timer component as follows:

Set the properties of the Timer component in the MyNewService.OnStart method.

 if (!EventLog.SourceExists("MySource"))
 {
 EventLog.CreateEventSource("MySource", "MyNewLog");
 }
 _eventLog1.Source = "MySource";
 _eventLog1.Log = "MyNewLog";
}

using System.Diagnostics;

Define what occurs when the service starts

protected override void OnStart(string[] args)
{
 _eventLog1.WriteEntry("In OnStart.");
}

Polling

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer
https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer.elapsed#system-timers-timer-elapsed
https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer
https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer

Start the timer by calling the Start method.

1. Add a using directive to MyNewService.cs, or an Imports statement to
MyNewService.vb, for the System.Timers namespace:

C#

2. Add the following code in the MyNewService.OnStart event to set up the polling
mechanism:

C#

3. In the MyNewService class, add a member variable. It contains the identifier of the
next event to write into the event log:

C#

4. In the MyNewService class, add the OnTimer method to handle the Timer.Elapsed
event:

C#

Instead of running all your work on the main thread, you can run tasks by using
background worker threads. For more information, see

Set up the polling mechanism

using System.Timers;

// Set up a timer that triggers every minute.
Timer timer = new Timer
{
 Interval = 60000 // 60 seconds
};
timer.Elapsed += new ElapsedEventHandler(this.OnTimer);
timer.Start();

private int eventId = 1;

public void OnTimer(object sender, ElapsedEventArgs args)
{
 // TODO: Insert monitoring activities here.
 _eventLog1.WriteEntry("Monitoring the System",
EventLogEntryType.Information, eventId++);
}

https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer.start
https://learn.microsoft.com/en-us/dotnet/api/system.timers
https://learn.microsoft.com/en-us/dotnet/api/system.timers.timer.elapsed#system-timers-timer-elapsed

System.ComponentModel.BackgroundWorker.

Insert a line of code in the OnStop method that adds an entry to the event log when the
service is stopped:

C#

You can override the OnPause, OnContinue, and OnShutdown methods to define
additional processing for your component.

The following code shows how you can override the OnContinue method in the
MyNewService class:

C#

Services report their status to the Service Control Manager so that a user can tell
whether a service is functioning correctly. By default, a service that inherits from
ServiceBase reports a limited set of status settings, which include SERVICE_STOPPED ,
SERVICE_PAUSED , and SERVICE_RUNNING . If a service takes a while to start up, it's useful to
report a SERVICE_START_PENDING status.

You can implement the SERVICE_START_PENDING and SERVICE_STOP_PENDING status
settings by adding code that calls the Windows SetServiceStatus function.

1. Add a using directive to MyNewService.cs, or an Imports statement to
MyNewService.vb, for the System.Runtime.InteropServices namespace:

Define what occurs when the service is stopped

protected override void OnStop()
{
 _eventLog1.WriteEntry("In OnStop.");
}

Define other actions for the service

protected override void OnContinue()
{
 _eventLog1.WriteEntry("In OnContinue.");
}

Set service status

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onpause
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onshutdown
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue
https://learn.microsoft.com/en-us/windows/desktop/Services/service-control-manager
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/windows/desktop/api/winsvc/nf-winsvc-setservicestatus
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices

C#

2. Add the following enumeration and structure to MyNewService.cs, or
MyNewService.vb, to declare the ServiceState values and to add a structure for
the status, which you'll use in a platform invoke call:

C#

3. In the MyNewService class, declare the SetServiceStatus function by using platform
invoke:

C#

using System.Runtime.InteropServices;

public enum ServiceState
{
 SERVICE_STOPPED = 0x00000001,
 SERVICE_START_PENDING = 0x00000002,
 SERVICE_STOP_PENDING = 0x00000003,
 SERVICE_RUNNING = 0x00000004,
 SERVICE_CONTINUE_PENDING = 0x00000005,
 SERVICE_PAUSE_PENDING = 0x00000006,
 SERVICE_PAUSED = 0x00000007,
}

[StructLayout(LayoutKind.Sequential)]
public struct ServiceStatus
{
 public int dwServiceType;
 public ServiceState dwCurrentState;
 public int dwControlsAccepted;
 public int dwWin32ExitCode;
 public int dwServiceSpecificExitCode;
 public int dwCheckPoint;
 public int dwWaitHint;
};

７ Note

The Service Control Manager uses the dwWaitHint and dwCheckpoint
members of the SERVICE_STATUS structure to determine how much time to
wait for a Windows service to start or shut down. If your OnStart and OnStop
methods run long, your service can request more time by calling
SetServiceStatus again with an incremented dwCheckPoint value.

https://learn.microsoft.com/en-us/windows/desktop/api/winsvc/nf-winsvc-setservicestatus
https://learn.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/ns-winsvc-service_status

4. To implement the SERVICE_START_PENDING status, add the following code to the
beginning of the OnStart method:

C#

5. Add code to the end of the OnStart method to set the status to SERVICE_RUNNING :

C#

6. (Optional) If OnStop is a long-running method, repeat this procedure in the OnStop
method. Implement the SERVICE_STOP_PENDING status and return the
SERVICE_STOPPED status before the OnStop method exits.

For example:

C#

[DllImport("advapi32.dll", SetLastError = true)]
private static extern bool SetServiceStatus(System.IntPtr handle, ref
ServiceStatus serviceStatus);

// Update the service state to Start Pending.
ServiceStatus serviceStatus = new ServiceStatus();
serviceStatus.dwCurrentState = ServiceState.SERVICE_START_PENDING;
serviceStatus.dwWaitHint = 100000;
SetServiceStatus(this.ServiceHandle, ref serviceStatus);

// Update the service state to Running.
serviceStatus.dwCurrentState = ServiceState.SERVICE_RUNNING;
SetServiceStatus(this.ServiceHandle, ref serviceStatus);

// Update the service state to Stop Pending.
ServiceStatus serviceStatus = new ServiceStatus();
serviceStatus.dwCurrentState = ServiceState.SERVICE_STOP_PENDING;
serviceStatus.dwWaitHint = 100000;
SetServiceStatus(this.ServiceHandle, ref serviceStatus);

// Update the service state to Stopped.
serviceStatus.dwCurrentState = ServiceState.SERVICE_STOPPED;
SetServiceStatus(this.ServiceHandle, ref serviceStatus);

Add installers to the service

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop

Before you run a Windows service, you need to install it, which registers it with the
Service Control Manager. Add installers to your project to handle the registration
details.

1. In Solution Explorer, from the shortcut menu for MyNewService.cs or
MyNewService.vb, choose View Designer.

2. In the Design view, select the background area, then choose Add Installer from
the shortcut menu.

By default, Visual Studio adds a component class named ProjectInstaller , which
contains two installers, to your project. These installers are for your service and for
the service's associated process.

3. In the Design view for ProjectInstaller, select serviceInstaller1 for a C# project, or
ServiceInstaller1 for a Visual Basic project, then choose Properties from the
shortcut menu.

4. In the Properties window, verify the ServiceName property is set to
MyNewService.

5. Add text to the Description property, such as A sample service.

This text appears in the Description column of the Services window and describes
the service to the user.

6. Add text to the DisplayName property. For example, MyNewService Display Name.

This text appears in the Display Name column of the Services window. This name
can be different from the ServiceName property, which is the name the system
uses (for example, the name you use for the net start command to start your
service).

7. Set the StartType property to Automatic from the drop-down list.

8. When you're finished, the Properties windows should look like the following
figure:

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.description
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.displayname
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicestartmode#system-serviceprocess-servicestartmode-automatic

9. In the Design view for ProjectInstaller, choose serviceProcessInstaller1 for a C#
project, or ServiceProcessInstaller1 for a Visual Basic project, then choose
Properties from the shortcut menu. Set the Account property to LocalSystem from
the drop-down list.

This setting installs the service and runs it by using the local system account.

For more information about installers, see How to: Add installers to your service
application.

） Important

The LocalSystem account has broad permissions, including the ability to write
to the event log. Use this account with caution, because it might increase your
risk of attacks from malicious software. For other tasks, consider using the
LocalService account, which acts as a non-privileged user on the local
computer and presents anonymous credentials to any remote server. This
example fails if you try to use the LocalService account, because it needs
permission to write to the event log.

(Optional) Set startup parameters

７ Note

Before you decide to add startup parameters, consider whether it's the best way to
pass information to your service. Although they're easy to use and parse, and a user
can easily override them, they might be harder for a user to discover and use

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller.account
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceaccount#system-serviceprocess-serviceaccount-localsystem
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceaccount#system-serviceprocess-serviceaccount-localsystem
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceaccount#system-serviceprocess-serviceaccount-localservice
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceaccount#system-serviceprocess-serviceaccount-localservice

A Windows service can accept command-line arguments, or startup parameters. When
you add code to process startup parameters, a user can start your service with their own
custom startup parameters in the service properties window. However, these startup
parameters aren't persisted the next time the service starts. To set startup parameters
permanently, set them in the registry.

Each Windows service has a registry entry under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services subkey. Under each
service's subkey, use the Parameters subkey to store information that your service can
access. You can use application configuration files for a Windows service the same way
you do for other types of programs. For sample code, see
ConfigurationManager.AppSettings.

1. In MyNewService.cs, or MyNewService.vb, change the MyNewService constructor
to accept and process an input parameter:

C#

without documentation. Generally, if your service requires more than just a few
startup parameters, you should use the registry or a configuration file instead.

To add startup parameters

public MyNewService(string[] args)
{
 InitializeComponent();

 string eventSourceName = "MySource";
 string logName = "MyNewLog";

 if (args.Length > 0)
 {
 eventSourceName = args[0];
 }

 if (args.Length > 1)
 {
 logName = args[1];
 }

 _eventLog1 = new EventLog();

 if (!EventLog.SourceExists(eventSourceName))
 {
 EventLog.CreateEventSource(eventSourceName, logName);
 }

https://learn.microsoft.com/en-us/dotnet/api/system.configuration.configurationmanager.appsettings#system-configuration-configurationmanager-appsettings

This code sets the event source and log name according to the startup parameters
that the user supplies. If no arguments are supplied, it uses default values.

2. Select Program.cs, or MyNewService.Designer.vb, then choose View Code from
the shortcut menu. In the Main method, change the code to add an input
parameter and pass it to the service constructor:

C#

3. To specify the command-line arguments, add the following code to the
ProjectInstaller class in ProjectInstaller.cs, or ProjectInstaller.vb:

C#

Typically, this value contains the full path to the executable for the Windows
service. For the service to start up correctly, the user must supply quotation marks
for the path and each individual parameter. A user can change the parameters in
the ImagePath registry entry to change the startup parameters for the Windows
service. However, a better way is to change the value programmatically and expose
the functionality in a user-friendly way, such as by using a management or
configuration utility.

 _eventLog1.Source = eventSourceName;
 _eventLog1.Log = logName;
}

static void Main(string[] args)
{
 ServiceBase[] ServicesToRun;
 ServicesToRun = new ServiceBase[]
 {
 new MyNewService(args)
 };
 ServiceBase.Run(ServicesToRun);
}

protected override void OnBeforeInstall(IDictionary savedState)
{
 string parameter = "MySource1\" \"MyLogFile1";
 Context.Parameters["assemblypath"] = "\"" +
Context.Parameters["assemblypath"] + "\" \"" + parameter + "\"";
 base.OnBeforeInstall(savedState);
}

Build the service

1. In Solution Explorer, choose Properties from the shortcut menu for the
MyNewService project.

2. On the Application tab, in the Startup object list, choose MyNewService.Program,
or Sub Main for Visual Basic projects.

3. To build the project, in Solution Explorer, choose Build from the shortcut menu for
your project (or press Ctrl + Shift + B).

Now that you've built the Windows service, you can install it. To install a Windows
service, you must have administrator credentials on the computer where it's installed.

1. Open Developer Command Prompt for Visual Studio with administrative
credentials.

2. In Developer Command Prompt for Visual Studio, navigate to the folder that
contains your project's output (by default, the \bin\Debug subdirectory of your
project).

3. Enter the following command:

shell

If the service installs successfully, the command reports success.

If the system can't find installutil.exe, make sure that it exists on your computer.
This tool is installed with .NET Framework to the folder
%windir%\Microsoft.NET\Framework[64]\<framework version>.

If the installutil.exe process fails, check the install log to find out why. By default,
the log is in the same folder as the service executable. The installation can fail if:

The RunInstallerAttribute class isn't present on the ProjectInstaller class.
The attribute isn't set to true .
The ProjectInstaller class isn't defined as public .
You didn't open Developer Command Prompt for VS as administrator.

For more information, see How to: Install and uninstall services.

Install the service

installutil MyNewService.exe

https://learn.microsoft.com/en-us/visualstudio/ide/reference/command-prompt-powershell
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.runinstallerattribute

1. In Windows, open the Services desktop app: Press Windows + R to open the Run
box, enter services.msc, and then press Enter or select OK.

You should see your service listed in Services, displayed alphabetically by the
display name that you set for it.

2. To start the service, choose Start from the service's shortcut menu.

3. To stop the service, choose Stop from the service's shortcut menu.

4. (Optional) From the command line, use the commands net start <service name>
and net stop <service name> to start and stop your service.

1. In Windows, open the Event Viewer desktop app: Enter Event Viewer in the
Windows search bar, and then select Event Viewer from the search results.

2. In Event Viewer, expand Applications and Services Logs.

3. Locate the listing for MyNewLog (or MyLogFile1 if you followed the procedure to
add command-line arguments) and expand it. You should see the entries for the

Start and run the service

Verify the event log output of your service

 Tip

In Visual Studio, you can access event logs by opening Server Explorer from
the View menu (or press Ctrl + Alt + S) and expanding the Event Logs node
for the local computer.

two actions (start and stop) that your service performed.

If you no longer need the Windows service app, you can remove it.

1. Open Developer Command Prompt for Visual Studio with administrative
credentials.

2. In the Developer Command Prompt for Visual Studio window, navigate to the
folder that contains your project's executable.

3. Enter the following command:

shell

If the service uninstalls successfully, the command reports that your service was
successfully removed. For more information, see How to: Install and uninstall
services.

Now that you've created the service, you can:

Create a standalone setup program for others to use to install your Windows
service. Use the WiX Toolset to create an installer for a Windows service. For
other ideas, see Create an installer package.

Clean up resources

installutil.exe /u MyNewService.exe

Next steps

https://wixtoolset.org/
https://wixtoolset.org/
https://learn.microsoft.com/en-us/visualstudio/deployment/deploying-applications-services-and-components#create-an-installer-package-windows-desktop

Explore the ServiceController component, which enables you to send commands to
the service you've installed.

Instead of creating the event log when the application runs, use an installer to
create an event log when you install the application. The event log is deleted by
the installer when you uninstall the application. For more information, see
EventLogInstaller.

Windows service applications
Introduction to Windows service applications
How to: Debug Windows service applications
Services (Windows)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventloginstaller
https://learn.microsoft.com/en-us/windows/desktop/Services/services

Service Application Programming
Architecture
Article • 09/15/2021

Windows Service applications are based on a class that inherits from the
System.ServiceProcess.ServiceBase class. You override methods from this class and
define functionality for them to determine how your service behaves.

The main classes involved in service creation are:

System.ServiceProcess.ServiceBase — You override methods from the ServiceBase
class when creating a service and define the code to determine how your service
functions in this inherited class.

System.ServiceProcess.ServiceProcessInstaller and
System.ServiceProcess.ServiceInstaller —You use these classes to install and
uninstall your service.

In addition, a class named ServiceController can be used to manipulate the service itself.
This class is not involved in the creation of a service, but can be used to start and stop
the service, pass commands to it, and return a series of enumerations.

In your service class, you override base class functions that determine what happens
when the state of your service is changed in the Services Control Manager. The
ServiceBase class exposes the following methods, which you can override to add custom
behavior.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

Defining Your Service's Behavior

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

Method Override to

OnStart Indicate what actions should be taken when your service starts running.
You must write code in this procedure for your service to perform useful
work.

OnPause Indicate what should happen when your service is paused.

OnStop Indicate what should happen when your service stops running.

OnContinue Indicate what should happen when your service resumes normal
functioning after being paused.

OnShutdown Indicate what should happen just prior to your system shutting down, if
your service is running at that time.

OnCustomCommand Indicate what should happen when your service receives a custom
command. For more information on custom commands, see MSDN online.

OnPowerEvent Indicate how the service should respond when a power management
event is received, such as a low battery or suspended operation.

There are several other properties and methods that are of interest. These include:

The Run method on the ServiceBase class. This is the main entry point for the
service. When you create a service using the Windows Service template, code is
inserted in your application's Main method to run the service. This code looks like
this:

C#

７ Note

These methods represent states that the service moves through in its lifetime; the
service transitions from one state to the next. For example, you will never get the
service to respond to an OnContinue command before OnStart has been called.

ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[]
 { new Service1() };
Run(ServicesToRun);

７ Note

These examples use an array of type ServiceBase, into which each service your
application contains can be added, and then all of the services can be run

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onpause
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onshutdown
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncustomcommand
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onpowerevent
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.run
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase

A series of properties on the ServiceBase class. These determine what methods can
be called on your service. For example, when the CanStop property is set to true ,
the OnStop method on your service can be called. When the
CanPauseAndContinue property is set to true , the OnPause and OnContinue
methods can be called. When you set one of these properties to true , you should
then override and define processing for the associated methods.

You can also use a component called the ServiceController to communicate with and
control the behavior of an existing service.

Introduction to Windows Service Applications
How to: Create Windows Services

together. If you are only creating a single service, however, you might choose
not to use the array and simply declare a new object inheriting from
ServiceBase and then run it. For an example, see How to: Write Services
Programmatically.

７ Note

Your service must override at least OnStart and OnStop to be useful.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canpauseandcontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onpause
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.oncontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop

How to: Create Windows Services
Article • 09/15/2021

When you create a service, you can use a Visual Studio project template called Windows
Service. This template automatically does much of the work for you by referencing the
appropriate classes and namespaces, setting up the inheritance from the base class for
services, and overriding several of the methods you're likely to want to override.

At a minimum, to create a functional service you must:

Set the ServiceName property.

Create the necessary installers for your service application.

Override and specify code for the OnStart and OnStop methods to customize the
ways in which your service behaves.

1. Create a Windows Service project.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

２ Warning

The Windows Services project template is not available in the Express edition of
Visual Studio.

To create a Windows Service application

７ Note

For instructions on writing a service without using the template, see How to:
Write Services Programmatically.

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

2. In the Properties window, set the ServiceName property for your service.

3. Set any of the following properties to determine how your service will function.

Property Setting

CanStop True to indicate that the service will accept requests to stop
running; false to prevent the service from being stopped.

CanShutdown True to indicate that the service wants to receive notification
when the computer on which it lives shuts down, enabling it to call
the OnShutdown procedure.

CanPauseAndContinue True to indicate that the service will accept requests to pause or
to resume running; false to prevent the service from being
paused and resumed.

CanHandlePowerEvent True to indicate that the service can handle notification of
changes to the computer's power status; false to prevent the

７ Note

The value of the ServiceName property must always match the name
recorded in the installer classes. If you change this property, you must update
the ServiceName property of installer classes as well.

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canshutdown
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onshutdown
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canpauseandcontinue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canhandlepowerevent
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename

Property Setting

service from being notified of these changes.

AutoLog True to write informational entries to the Application event log
when your service performs an action; false to disable this
functionality. For more information, see How to: Log Information
About Services. Note: By default, AutoLog is set to true .

4. Access the Code Editor and fill in the processing you want for the OnStart and
OnStop procedures.

5. Override any other methods for which you want to define functionality.

6. Add the necessary installers for your service application. For more information, see
How to: Add Installers to Your Service Application.

7. Build your project by selecting Build Solution from the Build menu.

8. Install the service. For more information, see How to: Install and Uninstall Services.

Introduction to Windows Service Applications
How to: Write Services Programmatically
How to: Add Installers to Your Service Application
How to: Log Information About Services
How to: Start Services
How to: Specify the Security Context for Services
How to: Install and Uninstall Services
Walkthrough: Creating a Windows Service Application in the Component Designer

７ Note

When CanStop or CanPauseAndContinue are set to false , the Service
Control Manager will disable the corresponding menu options to stop, pause,
or continue the service.

７ Note

Do not press F5 to run your project — you cannot run a service project in this
way.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.canpauseandcontinue

How to: Write Services
Programmatically
Article • 09/15/2021

If you choose not to use the Windows Service project template, you can write your own
services by setting up the inheritance and other infrastructure elements yourself. When
you create a service programmatically, you must perform several steps that the template
would otherwise handle for you:

You must set up your service class to inherit from the ServiceBase class.

You must create a Main method for your service project that defines the services to
run and calls the Run method on them.

You must override the OnStart and OnStop procedures and fill in any code you
want them to run.

1. Create an empty project and create a reference to the necessary namespaces by
following these steps:

a. In Solution Explorer, right-click the References node and click Add Reference.

b. On the .NET Framework tab, scroll to System.dll and click Select.

c. Scroll to System.ServiceProcess.dll and click Select.

d. Click OK.

2. Add a class and configure it to inherit from ServiceBase:

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

To write a service programmatically

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.run
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

C#

3. Add the following code to configure your service class:

C#

4. Create a Main method for your class, and use it to define the service your class will
contain; userService1 is the name of the class:

C#

5. Override the OnStart method, and define any processing you want to occur when
your service is started.

C#

6. Override any other methods you want to define custom processing for, and write
code to determine the actions the service should take in each case.

7. Add the necessary installers for your service application. For more information, see
How to: Add Installers to Your Service Application.

8. Build your project by selecting Build Solution from the Build menu.

public class UserService1 : ServiceBase
{
}

public UserService1()
{
 ServiceName = "MyService2";
 CanStop = true;
 CanPauseAndContinue = true;
 AutoLog = true;
}

public static void Main()
{
 ServiceBase.Run(new UserService1());
}

protected override void OnStart(string[] args)
{
 // Insert code here to define processing.
}

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart

9. Create a setup project and the custom actions to install your service. For an
example, see Walkthrough: Creating a Windows Service Application in the
Component Designer.

10. Install the service. For more information, see How to: Install and Uninstall Services.

Introduction to Windows Service Applications
How to: Create Windows Services
How to: Add Installers to Your Service Application
How to: Log Information About Services
Walkthrough: Creating a Windows Service Application in the Component Designer

７ Note

Do not press F5 to run your project — you cannot run a service project in this
way.

See also

How to: Add Installers to Your Service
Application
Article • 09/15/2021

Visual Studio ships installation components that can install resources associated with
your service applications. Installation components register an individual service on the
system to which it is being installed and let the Services Control Manager know that the
service exists. When you work with a service application, you can select a link in the
Properties window to automatically add the appropriate installers to your project.

When you add an installer to your project, a new class (which, by default, is named
ProjectInstaller) is created in the project, and instances of the appropriate installation
components are created within it. This class acts as a central point for all of the
installation components your project needs. For example, if you add a second service to
your application and click the Add Installer link, a second installer class is not created;
instead, the necessary additional installation component for the second service is added
to the existing class.

You do not need to do any special coding within the installers to make your services
install correctly. However, you may occasionally need to modify the contents of the
installers if you need to add special functionality to the installation process.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

７ Note

Property values for your service are copied from the service class to the installer
class. If you update the property values on the service class, they are not
automatically updated in the installer.

７ Note

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

1. In Solution Explorer, access Design view for the service for which you want to add
an installation component.

2. Click the background of the designer to select the service itself, rather than any of
its contents.

3. With the designer in focus, right-click, and then click Add Installer.

A new class, ProjectInstaller , and two installation components,
ServiceProcessInstaller and ServiceInstaller, are added to your project, and
property values for the service are copied to the components.

4. Click the ServiceInstaller component and verify that the value of the ServiceName
property is set to the same value as the ServiceName property on the service itself.

5. To determine how your service will be started, click the ServiceInstaller component
and set the StartType property to the appropriate value.

Value Result

Manual The service must be manually started after installation. For more information,
see How to: Start Services.

Automatic The service will start by itself whenever the computer reboots.

Disabled The service cannot be started.

6. To determine the security context in which your service will run, click the
ServiceProcessInstaller component and set the appropriate property values. For
more information, see How to: Specify the Security Context for Services.

7. Override any methods for which you need to perform custom processing.

8. Perform steps 1 through 7 for each additional service in your project.

The dialog boxes and menu commands you see might differ from those described
in Help depending on your active settings or edition. To change your settings,
choose Import and Export Settings on the Tools menu. For more information, see
Personalize the Visual Studio IDE.

To add installers to your service application

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.servicename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicestartmode#system-serviceprocess-servicestartmode-manual
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicestartmode#system-serviceprocess-servicestartmode-automatic
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicestartmode#system-serviceprocess-servicestartmode-disabled
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

Introduction to Windows Service Applications
How to: Install and Uninstall Services
How to: Start Services
How to: Specify the Security Context for Services

７ Note

For each additional service in your project, you must add an additional
ServiceInstaller component to the project's ProjectInstaller class. The
ServiceProcessInstaller component added in step three works with all of the
individual service installers in the project.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller

How to: Specify the Security Context for
Services
Article • 09/15/2021

By default, services run in a different security context than that of the logged-in user.
Services run in the context of the default system account, called LocalSystem , which
gives them different access privileges to system resources than the user. You can change
this behavior to specify a different user account under which your service should run.

You set the security context by manipulating the Account property for the process
within which the service runs. This property allows you to set the service to one of four
account types:

User , which causes the system to prompt for a valid user name and password
when the service is installed and runs in the context of an account specified by a
single user on the network;

LocalService , which runs in the context of an account that acts as a non-privileged
user on the local computer, and presents anonymous credentials to any remote
server;

LocalSystem , which runs in the context of an account that provides extensive local
privileges, and presents the computer's credentials to any remote server;

NetworkService , which runs in the context of an account that acts as a non-
privileged user on the local computer, and presents the computer's credentials to
any remote server.

For more information, see the ServiceAccount enumeration.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

To specify the security context for a service

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller.account
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceaccount
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

1. After creating your service, add the necessary installers for it. For more
information, see How to: Add Installers to Your Service Application.

2. In the designer, access the ProjectInstaller class and click the service process
installer for the service you are working with.

3. In the Properties window, set the Account to the appropriate value.

Introduction to Windows Service Applications
How to: Add Installers to Your Service Application
How to: Create Windows Services

７ Note

For every service application, there are at least two installation components in
the ProjectInstaller class — one that installs the processes for all services in
the project, and one installer for each service the application contains. In this
instance, you want to select ServiceProcessInstaller.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller.account
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceprocessinstaller

How to: Install and uninstall Windows
services
Article • 04/30/2024

If you're developing a Windows service with .NET Framework, you can quickly install
your service app by using the InstallUtil.exe command-line utility or PowerShell. If you
want to release a Windows service that users can install and uninstall, use the free WiX
Toolset or commercial tools like Advanced Installer and InstallShield . For more
information, see Create an installer package (Windows desktop).

To use the steps in this article, you first need to add a service installer to your Windows
service. For more information, see Walkthrough: Creating a Windows service app.

You can't run Windows service projects directly from the Visual Studio development
environment by pressing F5 . Before you can run the project, you must install the service
in the project.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

２ Warning

If you want to uninstall a service that you didn't develop from your computer, don't
follow the steps in this article. Instead, find out which program or software package
installed the service, and then choose Apps in Settings to uninstall that program.
Many services are integral parts of Windows; if you remove them, you might cause
system instability.

 Tip

You can use Server Explorer to verify that you've installed or uninstalled your
service.

https://learn.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool
https://learn.microsoft.com/en-us/powershell/scripting/overview
https://wixtoolset.org/
https://wixtoolset.org/
https://wixtoolset.org/
https://www.advancedinstaller.com/
https://www.advancedinstaller.com/
https://www.revenera.com/install/products/installshield.html
https://www.revenera.com/install/products/installshield.html
https://learn.microsoft.com/en-us/visualstudio/deployment/deploying-applications-services-and-components#create-an-installer-package-windows-desktop
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

1. Open Developer Command Prompt for VS.

From the Start menu, select All apps, expand Visual Studio <version>, and then
select Developer Command Prompt for VS <version>.

2. Navigate to the directory where your project's compiled executable file is located.

3. Run InstallUtil.exe from the command prompt with your project's executable as the
argument:

Console

If you're using the Developer Command Prompt for Visual Studio, InstallUtil.exe is
already on the system path. Otherwise, you can add it to the path, or use the fully
qualified path to invoke it. This tool is installed with .NET Framework in
%WINDIR%\Microsoft.NET\Framework[64]\<framework_version>.

1. Open Developer Command Prompt for VS.

From the Start menu, select All apps, expand Visual Studio <version>, and then
select Developer Command Prompt for VS <version>.

2. Run InstallUtil.exe from the command prompt with the /uninstall option and
your project's executable:

Console

3. After the executable for a service is deleted, the service might still be present in the
registry. If that's the case, use the command sc delete to remove the entry for the
service from the registry.

1. From the Start menu, search for Windows PowerShell and then select it.

Install using InstallUtil.exe utility

installutil <yourproject>.exe

Uninstall using InstallUtil.exe utility

installutil /uninstall <yourproject>.exe

Install using PowerShell

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-delete

2. Navigate to the directory where your project's compiled executable file is located.

3. Run the New-Service cmdlet with a service name and your project's executable as
arguments:

PowerShell

1. From the Start menu, search for Windows PowerShell and then select it.

2. Run the Remove-Service cmdlet with the name of your service as an argument:

PowerShell

3. After the executable for a service is deleted, the service might still be present in the
registry. If that's the case, use the command sc delete to remove the entry for the
service from the registry.

PowerShell

Introduction to Windows service applications
How to: Create Windows services
How to: Add installers to your service application
Installutil.exe (Installer tool)

New-Service -Name "YourServiceName" -BinaryPathName <yourproject>.exe

Uninstall using PowerShell

Remove-Service -Name "YourServiceName"

７ Note

You must have PowerShell 6 or later to use this cmdlet. For information about
updating PowerShell, see Installing PowerShell on Windows.

sc.exe delete "YourServiceName"

See also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-service
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-delete
https://learn.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows

How to: Start Services
Article • 09/15/2021

After a service is installed, it must be started. Starting calls the OnStart method on the
service class. Usually, the OnStart method defines the useful work the service will
perform. After a service starts, it remains active until it is manually paused or stopped.

Services can be set up to start automatically or manually. A service that starts
automatically will be started when the computer on which it is installed is rebooted or
first turned on. A user must start a service that starts manually.

There are several ways you can manually start a service — from Server Explorer, from
the Services Control Manager, or from code using a component called the
ServiceController.

You set the StartType property on the ServiceInstaller class to determine whether a
service should be started manually or automatically.

1. After creating your service, add the necessary installers for it. For more
information, see How to: Add Installers to Your Service Application.

2. In the designer, click the service installer for the service you are working with.

3. In the Properties window, set the StartType property to one of the following:

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

７ Note

By default, services created with Visual Studio are set to start manually.

Specify how a service should start

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

To have your service install Set this value

When the computer is restarted Automatic

When an explicit user action starts the service Manual

There are several ways you can start a service that has its StartType process set to
Manual — from Server Explorer, from the Windows Services Control Manager, or
from code. It is important to note that not all of these methods actually start the
service in the context of the Services Control Manager; Server Explorer and
programmatic methods of starting the service actually manipulate the controller.

1. In Server Explorer, add the server you want if it is not already listed. For more
information, see How to: Access and Initialize Server Explorer-Database Explorer.

2. Expand the Services node, and then locate the service you want to start.

3. Right-click the name of the service, and then select Start.

1. Open the Services app.

2. Select your service in the list, right-click it, and then select Start.

ﾉ Expand table

 Tip

To prevent your service from being started at all, you can set the StartType
property to Disabled. You might do this if you are going to reboot a server
several times and want to save time by preventing the services that would
normally start from starting up.

７ Note

These and other properties can be changed after your service is installed.

Start a service from Server Explorer

Start a service from Services

Start a service from code

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.serviceinstaller.starttype

1. Create an instance of the ServiceController class, and configure it to interact with
the service you want to administer.

2. Call the Start method to start the service.

Introduction to Windows Service Applications
How to: Create Windows Services
How to: Add Installers to Your Service Application

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.start

How to: Pause a Windows Service
(Visual Basic)
Article • 09/15/2021

This example uses the ServiceController component to pause the IIS Admin service on
the local computer.

VB

VB

This code example is also available as an IntelliSense code snippet. In the code snippet
picker, it is located in Windows Operating System > Windows Services. For more
information, see Code Snippets.

This example requires:

A project reference to System.serviceprocess.dll.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

Example

Dim theController As System.ServiceProcess.ServiceController
theController = New System.ServiceProcess.ServiceController("IISAdmin")

' Pauses the service.
theController.Pause()

Compiling the Code

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/visualstudio/ide/code-snippets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

Access to the members of the System.ServiceProcess namespace. Add an Imports
statement if you are not fully qualifying member names in your code. For more
information, see Imports Statement (.NET Namespace and Type).

The MachineName property of the ServiceController class is the local computer by
default. To reference Windows services on another computer, change the MachineName
property to the name of that computer.

The following conditions may cause an exception:

The service cannot be paused. (InvalidOperationException)

An error occurred when accessing a system API. (Win32Exception)

Control of services on the computer may be restricted by using the
ServiceControllerPermissionAccess to set permissions in the ServiceControllerPermission.

Access to service information may be restricted by using the PermissionState to set
permissions in the SecurityPermission.

ServiceController
ServiceControllerStatus
WaitForStatus
How to: Continue a Windows Service (Visual Basic)

Robust Programming

.NET Framework Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess
https://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/imports-statement-net-namespace-and-type
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.machinename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.machinename
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.win32exception
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerpermissionaccess
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerpermission
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.permissionstate
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.securitypermission
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.waitforstatus

How to: Continue a Windows Service
(Visual Basic)
Article • 09/15/2021

This example uses the ServiceController component to continue the IIS Admin service
on the local computer.

VB

VB

This code example is also available as an IntelliSense code snippet. In the code snippet
picker, it is located in Windows Operating System > Windows Services. For more
information, see Code Snippets.

This example requires:

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

Example

Dim theController As System.ServiceProcess.ServiceController
theController = New System.ServiceProcess.ServiceController("IISAdmin")

' Checks that the service is paused.
If theController.Status =
 System.ServiceProcess.ServiceControllerStatus.Paused Then

 ' Continues the service.
 theController.Continue()
End If

Compiling the Code

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/visualstudio/ide/code-snippets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

A project reference to System.serviceprocess.dll.

Access to the members of the System.ServiceProcess namespace. Add an Imports
statement if you are not fully qualifying member names in your code. For more
information, see Imports Statement (.NET Namespace and Type).

The MachineName property of the ServiceController class is the local computer by
default. To reference Windows services on another computer, change the MachineName
property to the name of that computer.

You cannot call the Continue method on a service until the service controller status is
Paused.

The following conditions may cause an exception:

The service cannot be resumed. (InvalidOperationException)

An error occurred when accessing a system API. (Win32Exception)

Control of services on the computer may be restricted by using the
ServiceControllerPermissionAccess enumeration to set permissions in the
ServiceControllerPermission class.

Access to service information may be restricted by using the PermissionState
enumeration to set permissions in the SecurityPermission class.

ServiceController
ServiceControllerStatus
How to: Pause a Windows Service (Visual Basic)

Robust Programming

.NET Framework Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess
https://learn.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/imports-statement-net-namespace-and-type
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.machinename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.machinename
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.continue
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus#system-serviceprocess-servicecontrollerstatus-paused
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.win32exception
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerpermissionaccess
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerpermission
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.permissionstate
https://learn.microsoft.com/en-us/dotnet/api/system.security.permissions.securitypermission
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontrollerstatus

How to: Debug Windows Service
Applications
Article • 09/15/2021

A service must be run from within the context of the Services Control Manager rather
than from within Visual Studio. For this reason, debugging a service is not as
straightforward as debugging other Visual Studio application types. To debug a service,
you must start the service and then attach a debugger to the process in which it is
running. You can then debug your application by using all of the standard debugging
functionality of Visual Studio.

You can attach the debugger only to a running service. The attachment process
interrupts the current functioning of your service; it doesn't actually stop or pause the
service's processing. That is, if your service is running when you begin debugging, it is
still technically in the Started state as you debug it, but its processing has been
suspended.

After attaching to the process, you can set breakpoints and use these to debug your
code. Once you exit the dialog box you use to attach to the process, you are effectively
in debug mode. You can use the Services Control Manager to start, stop, pause and
continue your service, thus hitting the breakpoints you've set. You can later remove this
dummy service after debugging is successful.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

Ｕ Caution

You should not attach to a process unless you know what the process is and
understand the consequences of attaching to and possibly killing that process. For
example, if you attach to the WinLogon process and then stop debugging, the
system will halt because it can't operate without WinLogon.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

This article covers debugging a service that's running on the local computer, but you
can also debug Windows Services that are running on a remote computer. See Remote
Debugging.

1. Build your service in the Debug configuration.

2. Install your service. For more information, see How to: Install and Uninstall
Services.

3. Start your service, either from Services Control Manager, Server Explorer, or from
code. For more information, see How to: Start Services.

4. Start Visual Studio with administrative credentials so you can attach to system
processes.

5. (Optional) On the Visual Studio menu bar, choose Tools, Options. In the Options
dialog box, choose Debugging, Symbols, select the Microsoft Symbol Servers
check box, and then choose the OK button.

6. On the menu bar, choose Attach to Process from the Debug or Tools menu.
(Keyboard: Ctrl+Alt+P)

７ Note

Debugging the OnStart method can be difficult because the Services Control
Manager imposes a 30-second limit on all attempts to start a service. For more
information, see Troubleshooting: Debugging Windows Services.

２ Warning

To get meaningful information for debugging, the Visual Studio debugger needs to
find symbol files for the binaries that are being debugged. If you are debugging a
service that you built in Visual Studio, the symbol files (.pdb files) are in the same
folder as the executable or library, and the debugger loads them automatically. If
you are debugging a service that you didn't build, you should first find symbols for
the service and make sure they can be found by the debugger. See Specify Symbol
(.pdb) and Source Files in the Visual Studio Debugger. If you're debugging a
system process or want to have symbols for system calls in your services, you
should add the Microsoft Symbol Servers. See Debugging Symbols.

To debug a service

https://learn.microsoft.com/en-us/visualstudio/debugger/debug-installed-app-package
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-installed-app-package
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger
https://learn.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger
https://learn.microsoft.com/en-us/windows/desktop/DxTechArts/debugging-with-symbols

The Processes dialog box appears.

7. Select the Show processes from all users check box.

8. In the Available Processes section, choose the process for your service, and then
choose Attach.

The Attach to Process dialog box appears.

9. Choose the appropriate options, and then choose OK to close the dialog box.

10. Set any breakpoints you want to use in your code.

11. Access the Services Control Manager and manipulate your service, sending stop,
pause, and continue commands to hit your breakpoints. For more information
about running the Services Control Manager, see How to: Start Services. Also, see
Troubleshooting: Debugging Windows Services.

Attaching to the service's process allows you to debug most, but not all, the code for
that service. For example, because the service has already been started, you cannot
debug the code in the service's OnStart method or the code in the Main method that is
used to load the service this way. One way to work around this limitation is to create a
temporary second service in your service application that exists only to aid in
debugging. You can install both services, and then start this dummy service to load the
service process. Once the temporary service has started the process, you can use the
Debug menu in Visual Studio to attach to the service process.

Try adding calls to the Sleep method to delay action until you're able to attach to the
process.

Try changing the program to a regular console application. To do this, rewrite the Main
method as follows so it can run both as a Windows Service and as a console application,

 Tip

The process will have the same name as the executable file for your service.

７ Note

You are now in debug mode.

Debugging Tips for Windows Services

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.threading.thread.sleep

depending on how it's started.

1. Add a method to your service that runs the OnStart and OnStop methods:

C#

2. Rewrite the Main method as follows:

C#

3. In the Application tab of the project's properties, set the Output type to Console
Application.

4. Choose Start Debugging (F5).

5. To run the program as a Windows Service again, install it and start it as usual for a
Windows Service. It's not necessary to reverse these changes.

In some cases, such as when you want to debug an issue that occurs only on system
startup, you have to use the Windows debugger. Download the Windows Driver Kit
(WDK) and see How to debug Windows Services .

How to: Run a Windows Service as a console application

internal void TestStartupAndStop(string[] args)
{
 this.OnStart(args);
 Console.ReadLine();
 this.OnStop();
}

static void Main(string[] args)
{
 if (Environment.UserInteractive)
 {
 MyNewService service1 = new MyNewService(args);
 service1.TestStartupAndStop(args);
 }
 else
 {
 // Put the body of your old Main method here.
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstop
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://support.microsoft.com/kb/824344
https://support.microsoft.com/kb/824344

Introduction to Windows Service Applications
How to: Install and Uninstall Services
How to: Start Services
Debugging a Service

https://learn.microsoft.com/en-us/windows/desktop/Services/debugging-a-service

How to: Log Information About Services
Article • 04/30/2024

By default, all Windows Service projects have the ability to interact with the Application
event log and write information and exceptions to it. You use the AutoLog property to
indicate whether you want this functionality in your application. By default, logging is
turned on for any service you create with the Windows Service project template. You can
use a static form of the EventLog class to write service information to a log without
having to create an instance of an EventLog component or manually register a source.

The installer for your service automatically registers each service in your project as a
valid source of events with the Application log on the computer where the service is
installed, when logging is turned on. The service logs information each time the service
is started, stopped, paused, resumed, installed, or uninstalled. It also logs any failures
that occur. You do not need to write any code to write entries to the log when using the
default behavior; the service handles this for you automatically.

If you want to write to an event log other than the Application log, you must set the
AutoLog property to false , create your own custom event log within your services
code, and register your service as a valid source of entries for that log. You must then
write code to record entries to the log whenever an action you're interested in occurs.

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

７ Note

If you use a custom event log and configure your service application to write to it,
you must not attempt to access the event log before setting the service's
ServiceName property in your code. The event log needs this property's value to
register your service as a valid source of events.

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename

Set the AutoLog property for your component to true .

Set the AutoLog property for your component to false .

C#

1. Set the AutoLog property to false .

2. Set up an instance of an EventLog component in your Windows Service
application.

3. Create a custom log by calling the CreateEventSource method and specifying the
source string and the name of the log file you want to create.

4. Set the Source property on the EventLog component instance to the source string
you created in step 3.

5. Write your entries by accessing the WriteEntry method on the EventLog
component instance.

To enable default event logging for your
service

７ Note

By default, this property is set to true . You do not need to set this explicitly
unless you are building more complex processing, such as evaluating a
condition and then setting the AutoLog property based on the result of that
condition.

To disable event logging for your service

AutoLog = false;

To set up logging to a custom log

７ Note

You must set AutoLog to false in order to use a custom log.

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog.createeventsource
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog.source
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog.writeentry
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.autolog

The following code shows how to set up logging to a custom log.

C#

C#

Introduction to Windows Service Applications

７ Note

In this code example, an instance of an EventLog component is named
eventLog1 (EventLog1 in Visual Basic). If you created an instance with another
name in step 2, change the code accordingly.

public UserService2()
{
 _eventLog1 = new EventLog();
 // Turn off autologging

 AutoLog = false;
 // create an event source, specifying the name of a log that
 // does not currently exist to create a new, custom log
 if (!EventLog.SourceExists("MySource"))
 {
 EventLog.CreateEventSource(
 "MySource", "MyLog");
 }
 // configure the event log instance to use this source name
 _eventLog1.Source = "MySource";
 _eventLog1.Log = "MyLog";
}

protected override void OnStart(string[] args)
{
 // write an entry to the log
 _eventLog1.WriteEntry("In OnStart.");
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventlog

Troubleshooting: Debugging Windows
Services
Article • 09/15/2021

When you debug a Windows service application, your service and the Windows Service
Manager interact. The Service Manager starts your service by calling the OnStart
method, and then waits 30 seconds for the OnStart method to return. If the method
does not return in this time, the manager shows an error that the service cannot be
started.

When you debug the OnStart method as described in How to: Debug Windows Service
Applications, you must be aware of this 30-second period. If you place a breakpoint in
the OnStart method and do not step through it in 30 seconds, the manager will not start
the service.

How to: Debug Windows Service Applications
Introduction to Windows Service Applications

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.onstart
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

Troubleshooting: Service Application
Won't Install
Article • 09/15/2021

If your service application will not install correctly, check to make sure that the
ServiceName property for the service class is set to the same value as is shown in the
installer for that service. The value must be the same in both instances in order for your
service to install correctly.

You should also check to determine whether you have another service with the same
name already installed. Service names must be unique for installation to succeed.

Introduction to Windows Service Applications

７ Note

This article doesn't apply to hosted services in .NET. For the latest content on
Windows services using Microsoft.Extensions.Hosting.BackgroundService and the
Worker Service template, see:

Worker services in .NET

Create a Windows service using BackgroundService

７ Note

You can also look at the installation logs to get feedback on the installation
process.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicebase.servicename
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.backgroundservice
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service
https://learn.microsoft.com/en-us/dotnet/core/extensions/windows-service

	Windows Service Applications
	Introduction to Windows Service Applications
	Walkthrough: Create a Windows Service App
	Service Application Programming Architecture
	How to: Create Windows Services
	How to: Write Services Programmatically
	How to: Add Installers to Your Service Application
	How to: Specify the Security Context for Services
	How to: Install and Uninstall Services
	How to: Start Services
	How to: Pause a Windows Service (Visual Basic)
	How to: Continue a Windows Service (Visual Basic)
	How to: Debug Windows Service Applications
	How to: Log Information About Services
	Troubleshooting: Debug Windows Services
	Troubleshooting: Service Application Won't Install

