
Tell us about your PDF experience.

F# documentation
Learn how to write any application using the F# programming language on .NET.

Learn to program in F#

ｂ GET STARTED

What is F#?

F# strategy

First steps in F#

Install F#

Get started with F# in Visual Studio

Get started with F# in Visual Studio Code

Further learning

ｑ VIDEO

Beginning F# video series

ａ DOWNLOAD

Download the .NET SDK

F# language guide

ｅ OVERVIEW

F# language guide

ｉ REFERENCE

F# language specification

F# RFCs

F# library reference

https://learn.microsoft.com/en-us/training/modules/fsharp-first-steps/
https://dotnet.microsoft.com/learn/fsharp
https://aka.ms/BeginnersSeriesFSharp
https://dotnet.microsoft.com/download
https://fsharp.org/specs/language-spec/
https://github.com/fsharp/fslang-design
https://fsharp.github.io/fsharp-core-docs
https://aka.ms/learn-pdf-feedback

.NET library reference

F# fundamentals

ｅ OVERVIEW

Overview

Tour of F#

Values

ｐ CONCEPT

Types and inference

Functional concepts

Type providers

ｇ TUTORIAL

Using Functions

Pattern matching

Object programming

Async programming

F# in practice

ｅ OVERVIEW

F# for web development

F# for machine learning

F# for deploying Azure resources

ｄ TRAINING

F# style guide

F# code formatting guidelines

https://learn.microsoft.com/en-us/dotnet/api/?view=net-8.0

F# coding conventions

F# tools

ｅ OVERVIEW

F# Interactive

F# development tools

F# notebooks

F# for JavaScript

New features in F#

ｈ WHAT'S NEW

What's new in F# 8

What's new in F# 7

What's new in F# 6

What's new in F# 5

What's new in F# 4.7

ｇ TUTORIAL

Explore tasks

Explore interpolated strings

Explore anonymous records

https://dotnet.microsoft.com/languages/fsharp/tools

What is F#
Article • 10/13/2022

F# is a universal programming language for writing succinct, robust and performant
code.

F# allows you to write uncluttered, self-documenting code, where your focus remains on
your problem domain, rather than the details of programming.

It does this without compromising on speed and compatibility - it is open-source, cross-
platform and interoperable.

F#

F# has numerous features, including:

Lightweight syntax
Immutable by default
Type inference and automatic generalization
First-class functions
Powerful data types
Pattern matching
Async programming

A full set of features are documented in the F# language guide.

Types such as Records and Discriminated Unions let you represent your data.

F#

open System // Gets access to functionality in System namespace.

// Defines a list of names
let names = ["Peter"; "Julia"; "Xi"]

// Defines a function that takes a name and produces a greeting.
let getGreeting name = $"Hello, {name}"

// Prints a greeting for each name!
names
|> List.map getGreeting
|> List.iter (fun greeting -> printfn $"{greeting}! Enjoy your F#")

Rich data types

F# records and discriminated unions are non-null, immutable, and comparable by
default, making them very easy to use.

F# functions are easy to define. When combined with pattern matching, they allow you
to define behavior whose correctness is enforced by the compiler.

F#

F# functions are also first-class, meaning they can be passed as parameters and
returned from other functions.

// Group data with Records
type SuccessfulWithdrawal =
 { Amount: decimal
 Balance: decimal }

type FailedWithdrawal =
 { Amount: decimal
 Balance: decimal
 IsOverdraft: bool }

// Use discriminated unions to represent data of 1 or more forms
type WithdrawalResult =
 | Success of SuccessfulWithdrawal
 | InsufficientFunds of FailedWithdrawal
 | CardExpired of System.DateTime
 | UndisclosedFailure

Correctness with functions and pattern
matching

// Returns a WithdrawalResult
let withdrawMoney amount = // Implementation elided

let handleWithdrawal amount =
 let w = withdrawMoney amount

 // The F# compiler enforces accounting for each case!
 match w with
 | Success s -> printfn $"Successfully withdrew %f{s.Amount}"
 | InsufficientFunds f -> printfn $"Failed: balance is %f{f.Balance}"
 | CardExpired d -> printfn $"Failed: card expired on {d}"
 | UndisclosedFailure -> printfn "Failed: unknown :("

Functions to define operations on objects

F# has full support for objects, which are useful when you need to blend data and
functionality. F# members and functions can be defined to manipulate objects.

F#

In F#, you will often write code that treats objects as a type for functions to manipulate.
Features such as generic interfaces, object expressions, and judicious use of members
are common in larger F# programs.

To learn more about a larger set of F# features, check out the F# Tour.

type Set<'T when 'T: comparison>(elements: seq<'T>) =
 member s.IsEmpty = // Implementation elided
 member s.Contains (value) =// Implementation elided
 member s.Add (value) = // Implementation elided
 // ...
 // Further Implementation elided
 // ...
 interface IEnumerable<'T>
 interface IReadOnlyCollection<'T>

module Set =
 let isEmpty (set: Set<'T>) = set.IsEmpty

 let contains element (set: Set<'T>) = set.Contains(element)

 let add value (set: Set<'T>) = set.Add(value)

Next steps

Annotated F# strategy
Article • 02/06/2023

We will drive F# evolution and support the F# ecosystem with language leadership and
governance. We will encourage community contributions to improve the F# language
and developer experience. We will continue to rely on the community to provide
important libraries, developer tools and workload support. As the language evolves, F#
will support .NET platform improvements and maintain interoperability with new C#
features. We will work across language, tooling, and documentation to lower the barrier
to entry into F# for new developers and organizations as well as broadening its reach
into new domains.

The F# strategy guides our decisions about F# evolution, and these annotations provide
insight into how we think about key statements.

"support the F# ecosystem with language leadership and governance"

The F# community makes significant contributions to F#. We support this by doing
almost all technical decision making via GitHub and holding public compiler design
sessions. We also provide architectural direction and aid users wishing to contribute. F#
is delivered as part of the .NET SDK.

"rely on community to provide important libraries, developer tools and workload
support"

The F# community provides many libraries and tools that solve a variety of developer
challenges. Offerings include libraries for .NET front end applications and JavaScript
transpilers that enable you to write full stack applications in F#. The community also
provides developer tools for editing, code formatting, and linting.

"F# will support .NET platform improvements and maintain interoperability with new
C# features"

We know F# developers want to use the latest .NET features and that many projects and
programmers embrace both F# and C#. We evolve F# to work well with C# and take
advantage of new .NET runtime and library improvements.

How strategy guides F#

https://learn.microsoft.com/en-us/dotnet/standard/glossary#workload

"lower the barrier to entry into F# for new developers and organizations"

Simplifying F# makes it easier for new developers to learn and for experienced
programmers to get their job done. Improving the approachability of F# includes
ongoing efforts to rephrase error messages and simplifying language features.

Get Started with F#
Article • 05/27/2022

You can get started with F# on your machine or online.

There are multiple guides on how to install and use F# for the first time on your
machine. You can use the following table to help in making a decision:

OS Prefer Visual Studio Prefer Visual Studio Code Prefer command line

Windows Get started with Visual
Studio

Get started with Visual Studio
Code

Get started with the
.NET CLI

macOS Get started with VS for
Mac

Get started with Visual Studio
Code

Get started with the
.NET CLI

Linux N/A Get started with Visual Studio
Code

Get started with the
.NET CLI

In general, there is no specific way that is better than the rest. We recommend trying all
ways to use F# on your machine to see what you like the best!

If you'd rather not install F# and .NET on your machine, you can also get started with F#
in the browser:

Introduction to F# on Binder is a Jupyter notebook hosted via the free
Binder service. No sign-up needed!
The Fable REPL is an interactive, in-browser REPL that uses Fable to translate
F# code into JavaScript. Check out the numerous samples that range from F#
basics to a fully fledged video game all executing in your browser!

Get started on your machine

Get started online

https://mybinder.org/v2/gh/dotnet/interactive/main?urlpath=lab
https://jupyter.org/
https://mybinder.org/
https://fable.io/repl/
https://fable.io/

Install F#
Article • 09/21/2022

You can install F# in multiple ways, depending on your environment.

1. If you're downloading Visual Studio for the first time, it will first install Visual Studio
Installer. Install the appropriate edition of Visual Studio from the installer.

If you already have Visual Studio installed, choose Modify next to the edition you
want to add F# to.

2. On the Workloads page, select the ASP.NET and web development workload,
which includes F# and .NET Core support for ASP.NET Core projects.

3. Choose Modify in the lower right-hand corner to install everything you've
selected.

You can then open Visual Studio with F# by choosing Launch in Visual Studio
Installer.

1. Ensure you have git installed and available on your PATH. You can verify that it's
installed correctly by entering git --version at a command prompt and pressing
Enter .

2. Install the .NET SDK and Visual Studio Code .

3. Select the Extensions icon and search for "Ionide":

The only plugin required for F# support in Visual Studio Code is Ionide-fsharp .
However, you can also install Ionide-FAKE to get FAKE support and Ionide-
Paket to get Paket support. FAKE and Paket are additional F# community tools
for building projects and managing dependencies, respectively.

F# is installed by default in Visual Studio for Mac, no matter which configuration you
choose.

Install F# with Visual Studio

Install F# with Visual Studio Code

Install F# with Visual Studio for Mac

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=learn.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://git-scm.com/download
https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-FAKE
https://fake.build/
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-Paket
https://fsprojects.github.io/Paket/
https://visualstudio.microsoft.com/vs/mac/?utm_medium=microsoft&utm_source=learn.microsoft.com&utm_campaign=inline+link

After the install completes, choose Start Visual Studio. You can also open Visual Studio
through Finder on macOS.

If you're using .NET Core or .NET Framework via the .NET SDK, you simply need to install
the .NET SDK on your build server. It has everything you need.

If you're using .NET Framework and you are not using the .NET SDK, then you'll need to
install the Visual Studio Build Tools SKU onto your Windows Server. In the installer,
select .NET desktop build tools, and then select the F# compiler component on the
right-hand side of the installer menu.

Install F# on a build server

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

Get started with F# in Visual Studio
Article • 07/29/2022

F# is supported in the Visual Studio integrated development environment (IDE).

To begin, ensure that you have Visual Studio installed with F# support.

One of the most basic projects in Visual Studio is the console app. Here's how to create
one:

1. Open Visual Studio 2019.

2. On the start window, choose Create a new project.

3. On the Create a new project page, choose F# from the Language list.

4. Choose the Console App (.NET Core) template, and then choose Next.

5. On the Configure your new project page, enter a name in the Project name box.
Then, choose Create.

Visual Studio creates the new F# project. You can see it in the Solution Explorer
window.

Let's get started by writing some code. Make sure that the Program.fs file is open, and
then replace its contents with the following:

F#

Create a console application

Write the code

module HelloSquare

let square x = x * x

[<EntryPoint>]
let main argv =
 printfn "%d squared is: %d!" 12 (square 12)
 0 // Return an integer exit code

The previous code sample defines a function called square that takes an input named x
and multiplies it by itself. Because F# uses Type inference, the type of x doesn't need to
be specified. The F# compiler understands the types where multiplication is valid and
assigns a type to x based on how square is called. If you hover over square , you should
see the following:

F#

This is what is known as the function's type signature. It can be read like this: "Square is
a function that takes an integer named x and produces an integer". The compiler gave
square the int type for now.

Another function, main , is defined, which is decorated with the EntryPoint attribute.
This attribute tells the F# compiler that program execution should start there. It follows
the same convention as other C-style programming languages , where command-line
arguments can be passed to this function, and an integer code is returned (typically 0).

It is in the entry point function, main , that you call the square function with an
argument of 12 . The F# compiler then assigns the type of square to be int -> int
(that is, a function that takes an int and produces an int). The call to printfn is a
formatted printing function that uses a format string and prints the result (and a new
line). The format string, similar to C-style programming languages, has parameters (%d)
that correspond to the arguments that are passed to it, in this case, 12 and (square
12) .

You can run the code and see the results by pressing Ctrl + F5 . Alternatively, you can
choose the Debug > Start Without Debugging from the top-level menu bar. This runs
the program without debugging.

The following output prints to the console window that Visual Studio opened:

Console

Congratulations! You've created your first F# project in Visual Studio, written an F#
function that calculates and prints a value, and run the project to see the results.

val square: x: int -> int

Run the code

12 squared is: 144!

https://en.wikipedia.org/wiki/Entry_point#C_and_C.2B.2B

If you haven't already, check out the Tour of F#, which covers some of the core features
of F#. It provides an overview of some of the capabilities of F# and ample code samples
that you can copy into Visual Studio and run.

F# language guide
Type inference
Symbol and operator reference

Next steps

Tour of F#

See also

Get Started with F# in Visual Studio
Code
Article • 07/29/2022

You can write F# in Visual Studio Code with the Ionide plugin to get a great cross-
platform, lightweight Integrated Development Environment (IDE) experience with
IntelliSense and code refactorings. Visit Ionide.io to learn more about the plugin.

To begin, ensure that you have F# and the Ionide plugin correctly installed.

To create a new F# project, open a command line and create a new project with the .NET
CLI:

.NET CLI

Once it completes, change directory to the project and open Visual Studio Code:

Console

After the project loads in Visual Studio Code, you should see the F# Solution Explorer
pane on the left-hand side of your window open. This means Ionide has successfully
loaded the project you just created. You can write code in the editor before this point in
time, but once this happens, everything has finished loading.

Once you've configured Visual Studio Code to use .NET Core scripting, navigate to the
Explorer view in Visual Studio Code and create a new file. Name it MyFirstScript.fsx.

Now add the following code to it:

F#

Create your first project with Ionide

dotnet new console -lang "F#" -o FirstIonideProject

cd FirstIonideProject
code .

Write your first script

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp
https://ionide.io/

This function converts a word to a form of Pig Latin . The next step is to evaluate it
using F# Interactive (FSI).

Highlight the entire function (it should be 11 lines long). Once it's highlighted, hold the
Alt key and hit Enter . You'll notice a terminal window pop up on the bottom of the

screen, and it should look similar to this:

This did three things:

1. It started the FSI process.
2. It sent the code you highlighted over to the FSI process.
3. The FSI process evaluated the code you sent over.

Because what you sent over was a function, you can now call that function with FSI! In
the interactive window, type the following:

F#

You should see the following result:

let toPigLatin (word: string) =
 let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

 if isVowel word[0] then
 word + "yay"
 else
 word[1..] + string(word[0]) + "ay"

toPigLatin "banana";;

https://en.wikipedia.org/wiki/Pig_Latin

F#

Now, let's try with a vowel as the first letter. Enter the following:

F#

You should see the following result:

F#

The function appears to be working as expected. Congratulations, you just wrote your
first F# function in Visual Studio Code and evaluated it with FSI!

If you're not sure about what the code is actually doing, here's a step-by-step.

As you can see, toPigLatin is a function that takes a word as its input and converts it to
a Pig-Latin representation of that word. The rules for this are as follows:

If the first character in a word starts with a vowel, add "yay" to the end of the word. If it
doesn't start with a vowel, move that first character to the end of the word and add "ay"
to it.

You may have noticed the following in FSI:

F#

val it: string = "ananabay"

toPigLatin "apple";;

val it: string = "appleyay"

７ Note

As you may have noticed, the lines in FSI are terminated with ;; . This is because
FSI allows you to enter multiple lines. The ;; at the end lets FSI know when the
code is finished.

Explaining the code

val toPigLatin: word: string -> string

This states that toPigLatin is a function that takes in a string as input (called word),
and returns another string . This is known as the type signature of the function , a
fundamental piece of F# that's key to understanding F# code. You'll also notice this if
you hover over the function in Visual Studio Code.

In the body of the function, you'll notice two distinct parts:

1. An inner function, called isVowel , that determines if a given character (c) is a
vowel by checking if it matches one of the provided patterns via Pattern Matching:

F#

2. An if..then..else expression that checks if the first character is a vowel, and
constructs a return value out of the input characters based on if the first character
was a vowel or not:

F#

The flow of toPigLatin is thus:

Check if the first character of the input word is a vowel. If it is, attach "yay" to the end of
the word. Otherwise, move that first character to the end of the word and add "ay" to it.

There's one final thing to notice about this: in F#, there's no explicit instruction to return
from the function. This is because F# is expression-based, and the last expression
evaluated in the body of a function determines the return value of that function.
Because if..then..else is itself an expression, evaluation of the body of the then block
or the body of the else block determines the value returned by the toPigLatin
function.

let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

if isVowel word[0] then
 word + "yay"
else
 word[1..] + string(word[0]) + "ay"

Turn the console app into a Pig Latin generator

https://fsharpforfunandprofit.com/posts/function-signatures/

The previous sections in this article demonstrated a common first step in writing F#
code: writing an initial function and executing it interactively with FSI. This is known as
REPL-driven development, where REPL stands for "Read-Evaluate-Print Loop". It's a
great way to experiment with functionality until you have something working.

The next step in REPL-driven development is to move working code into an F#
implementation file. It can then be compiled by the F# compiler into an assembly that
can be executed.

To begin, open the Program.fs file that you created earlier with the .NET CLI. You'll notice
that some code is already in there.

Next, create a new module called PigLatin and copy the toPigLatin function you
created earlier into it as such:

F#

This module should be above the main function and below the open System declaration.
Order of declarations matters in F#, so you'll need to define the function before you call
it in a file.

Now, in the main function, call your Pig Latin generator function on the arguments:

F#

Now you can run your console app from the command line:

module PigLatin =
 let toPigLatin (word: string) =
 let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

 if isVowel word[0] then
 word + "yay"
 else
 word[1..] + string word[0] + "ay"

[<EntryPoint>]
let main args =
 for arg in args do
 let newArg = PigLatin.toPigLatin arg
 printfn "%s in Pig Latin is: %s" arg newArg

 0

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

.NET CLI

And you'll see that it outputs the same result as your script file, but this time as a
running program!

Here are a few ways you can troubleshoot certain problems that you might run into:

1. To get the code editing features of Ionide, your F# files need to be saved to disk
and inside of a folder that is open in the Visual Studio Code workspace.

2. If you've made changes to your system or installed Ionide prerequisites with Visual
Studio Code open, restart Visual Studio Code.

3. If you have invalid characters in your project directories, Ionide might not work.
Rename your project directories if this is the case.

4. If none of the Ionide commands are working, check your Visual Studio Code Key
Bindings to see if you're overriding them by accident.

5. If Ionide is broken on your machine and none of the above has fixed your problem,
try removing the ionide-fsharp directory on your machine and reinstall the plugin
suite.

6. If a project failed to load (the F# Solution Explorer will show this), right-click on
that project and click See details to get more diagnostic info.

Ionide is an open-source project built and maintained by members of the F#
community. Report issues and feel free to contribute at the ionide-vscode-fsharp GitHub
repository .

You can also ask for further help from the Ionide developers and F# community in the
Ionide Gitter channel .

To learn more about F# and the features of the language, check out Tour of F#.

dotnet run apple banana

Troubleshooting Ionide

Next steps

https://code.visualstudio.com/docs/getstarted/keybindings#_advanced-customization
https://github.com/ionide/ionide-vscode-fsharp
https://gitter.im/ionide/ionide-project

Get started with F# with the .NET CLI
Article • 05/27/2022

This article covers how you can get started with F# on any operating system (Windows,
macOS, or Linux) with the .NET CLI. It goes through building a multi-project solution
with a class library that is called by a console application.

To begin, you must install the latest .NET SDK .

This article assumes that you know how to use a command line and have a preferred
text editor. If you don't already use it, Visual Studio Code is a great option as a text
editor for F#.

Open a command prompt/terminal and use the dotnet new command to create a new
solution file called FSharpSample :

.NET CLI

The following directory structure is produced after running the previous command:

Console

Change directories to FSharpSample.

Use the dotnet new command to create a class library project in the src folder named
Library.

.NET CLI

Prerequisites

Build a simple multi-project solution

dotnet new sln -o FSharpSample

FSharpSample
 ├── FSharpSample.sln

Write a class library

dotnet new classlib -lang "F#" -o src/Library

https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-new

The following directory structure is produced after running the previous command:

Console

Replace the contents of Library.fs with the following code:

F#

Add the Library project to the FSharpSample solution using the dotnet sln add
command:

.NET CLI

Run dotnet build to build the project. Unresolved dependencies will be restored when
building.

Use the dotnet new command to create a console application in the src folder named
App.

.NET CLI

└── FSharpSample
 ├── FSharpSample.sln
 └── src
 └── Library
 ├── Library.fs
 └── Library.fsproj

module Library

open System.Text.Json

let getJson value =
 let json = JsonSerializer.Serialize(value)
 value, json

dotnet sln add src/Library/Library.fsproj

Write a console application that consumes the class
library

dotnet new console -lang "F#" -o src/App

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-sln

The following directory structure is produced after running the previous command:

Console

Replace the contents of the Program.fs file with the following code:

F#

Add a reference to the Library project using dotnet add reference.

.NET CLI

Add the App project to the FSharpSample solution using the dotnet sln add command:

.NET CLI

Restore the NuGet dependencies with dotnet restore and run dotnet build to build
the project.

└── FSharpSample
 ├── FSharpSample.sln
 └── src
 ├── App
 │ ├── App.fsproj
 │ ├── Program.fs
 └── Library
 ├── Library.fs
 └── Library.fsproj

open System
open Library

[<EntryPoint>]
let main args =
 printfn "Nice command-line arguments! Here's what System.Text.Json has
to say about them:"

 let value, json = getJson {| args=args; year=System.DateTime.Now.Year |}
 printfn $"Input: %0A{value}"
 printfn $"Output: %s{json}"

 0 // return an integer exit code

dotnet add src/App/App.fsproj reference src/Library/Library.fsproj

dotnet sln add src/App/App.fsproj

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-reference

Change directory to the src/App console project and run the project passing Hello
World as arguments:

.NET CLI

You should see the following results:

Console

Next, check out the Tour of F# to learn more about different F# features.

cd src/App
dotnet run Hello World

Nice command-line arguments! Here's what System.Text.Json has to say about
them:
Input: { args = [|"Hello"; "World"|] year = 2021 }
Output: {"args":["Hello","World"],"year":2021}

Next steps

Get started with F# in Visual Studio for
Mac
Article • 09/08/2023

F# is supported in the Visual Studio for Mac IDE. Ensure that you have Visual Studio for
Mac installed.

One of the most basic projects in Visual Studio for Mac is the Console Application.
Here's how to do it. Once Visual Studio for Mac is open:

1. On the File menu, point to New Solution.

2. In the New Project dialog, there are 2 different templates for Console Application.
There is one under Other -> .NET which targets the .NET Framework. The other
template is under .NET Core -> App which targets .NET Core. Either template
should work for the purpose of this article.

3. Under console app, change C# to F# if needed. Choose the Next button to move
forward!

4. Give your project a name, and choose the options you want for the app. Notice,
the preview pane to the side of the screen that will show the directory structure
that will be created based on the options selected.

5. Click Create. You should now see an F# project in the Solution Explorer.

） Important

Microsoft has announced the retirement of Visual Studio for Mac. Visual Studio for
Mac will no longer be supported starting August 31, 2024. Alternatives include:

Visual Studio Code with the C# Dev Kit and related extensions, such as .NET
MAUI and Unity .

Visual Studio running on Windows in a VM on Mac.

Visual Studio running on Windows in a VM in the Cloud .

For more information, see Visual Studio for Mac retirement announcement .

Creating a console application

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.dotnet-maui
https://marketplace.visualstudio.com/items?itemName=visualstudiotoolsforunity.vstuc
https://aka.ms/devbox
https://devblogs.microsoft.com/visualstudio/visual-studio-for-mac-retirement-announcement

Let's get started by writing some code first. Make sure that the Program.fs file is open,
and then replace its contents with the following:

F#

In the previous code sample, a function square has been defined which takes an input
named x and multiplies it by itself. Because F# uses Type Inference, the type of x
doesn't need to be specified. The F# compiler understands the types where
multiplication is valid, and will assign a type to x based on how square is called. If you
hover over square , you should see the following:

Console

This is what is known as the function's type signature. It can be read like this: "Square is
a function which takes an integer named x and produces an integer". Note that the
compiler gave square the int type for now - this is because multiplication is not
generic across all types, but rather is generic across a closed set of types. The F#
compiler picked int at this point, but it will adjust the type signature if you call square
with a different input type, such as a float .

Another function, main , is defined, which is decorated with the EntryPoint attribute to
tell the F# compiler that program execution should start there. It follows the same
convention as other C-style programming languages , where command-line
arguments can be passed to this function, and an integer code is returned (typically 0).

It is in this function that we call the square function with an argument of 12 . The F#
compiler then assigns the type of square to be int -> int (that is, a function which
takes an int and produces an int). The call to printfn is a formatted printing function
which uses a format string, similar to C-style programming languages, parameters which

Writing your code

module HelloSquare

let square x = x * x

[<EntryPoint>]
let main argv =
 printfn "%d squared is: %d!" 12 (square 12)
 0 // Return an integer exit code

val square: x:int -> int

https://en.wikipedia.org/wiki/Entry_point#C_and_C.2B.2B

correspond to those specified in the format string, and then prints the result and a new
line.

You can run the code and see results by clicking on Run from the top level menu and
then Start Without Debugging. This will run the program without debugging and allows
you to see the results.

You should now see the following printed to the console window that Visual Studio for
Mac popped up:

Console

Congratulations! You've created your first F# project in Visual Studio for Mac, written an
F# function printed the results of calling that function, and run the project to see some
results.

One of the best features of F# tooling in Visual Studio for Mac is the F# Interactive
Window. It allows you to send code over to a process where you can call that code and
see the result interactively.

To begin using it, highlight the square function defined in your code. Next, click on Edit
from the top level menu. Next select Send selection to F# Interactive. This executes the
code in the F# Interactive Window. Alternatively, you can right click on the selection and
choose Send selection to F# Interactive. You should see the F# Interactive Window
appear with the following in it:

Console

This shows the same function signature for the square function, which you saw earlier
when you hovered over the function. Because square is now defined in the F#

Running your code

12 squared is 144!

Using F# Interactive

>

val square: x: int -> int

>

Interactive process, you can call it with different values:

Console

This executes the function, binds the result to a new name it , and displays the type and
value of it . Note that you must terminate each line with ;; . This is how F# Interactive
knows when your function call is finished. You can also define new functions in F#
Interactive:

Console

The above defines a new function, isOdd , which takes an int and checks to see if it's
odd! You can call this function to see what it returns with different inputs. You can call
functions within function calls:

Console

You can also use the pipe-forward operator to pipeline the value into the two functions:

Console

The pipe-forward operator, and more, are covered in later tutorials.

This is only a glimpse into what you can do with F# Interactive. To learn more, check out
Interactive Programming with F#.

> square 12;;
val it: int = 144
> square 13;;
val it: int = 169

> let isOdd x = x % 2 <> 0;;

val isOdd: x: int -> bool

> isOdd 12;;
val it: bool = false

> isOdd (square 15);;
val it: bool = true

> 15 |> square |> isOdd;;
val it: bool = true

If you haven't already, check out the Tour of F#, which covers some of the core features
of F#. It will give you an overview of some of the capabilities of F#, and provide ample
code samples that you can copy into Visual Studio for Mac and run. There are also some
great external resources you can use, showcased in the F# Guide.

F# guide
Tour of F#
F# language guide
Type inference
Symbol and operator reference

Next steps

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&title=&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Fget-started%2Fget-started-with-visual-studio-for-mac&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Fget-started%2Fget-started-with-visual-studio-for-mac.md&documentVersionIndependentId=57e79486-1045-2ac6-c575-701c492c3feb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp

F# Language Reference
Article • 06/01/2022

This section is a reference for F#, a multi-paradigm programming language targeting
.NET. F# supports functional, object-oriented, and imperative programming models.

The following table shows reference articles related to organizing your F# code.

Title Description

Namespaces Learn about namespace support in F#. A namespace lets you organize code into
areas of related functionality by enabling you to attach a name to a grouping of
program elements.

Modules Learn about modules. An F# module is like a namespace and can also include
values and functions. Grouping code in modules helps keep related code
together and helps avoid name conflicts in your program.

open
Declarations

Learn about how open works. An open declaration specifies a module,
namespace, or type whose elements you can reference without using a fully
qualified name.

Signatures Learn about signatures and signature files. A signature file contains information
about the public signatures of a set of F# program elements, such as types,
namespaces, and modules. It can be used to specify the accessibility of these
program elements.

Access Control Learn about access control in F#. Access control means declaring what clients
are able to use certain program elements, such as types, methods, functions,
and so on.

XML
Documentation

Learn about support for generating documentation files from XML doc
comments, also known as triple slash comments. You can produce
documentation from code comments in F# as in other .NET languages.

The following table shows reference articles that describe literals and strings in F#.

Title Description

Literals Learn about the syntax for literal values in F# and how to specify type information
for F# literals.

Organizing F# Code

Literals and Strings

Title Description

Strings Learn about strings in F#. The string type represents immutable text, as a
sequence of Unicode characters. string is an alias for System.String in .NET.

Interpolated
strings

Learn about interpolated strings, a special form of string that allows you to embed
F# expressions directly inside them.

The following table shows reference articles that describe language concepts related to
values, let -bindings, and functions.

Title Description

Values Learn about values, which are immutable quantities that have a specific type; values
can be integral or floating point numbers, characters or text, lists, sequences, arrays,
tuples, discriminated unions, records, class types, or function values.

Functions Functions are the fundamental unit of program execution in any programming
language. An F# function has a name, can have parameters and take arguments,
and has a body. F# also supports functional programming constructs such as
treating functions as values, using unnamed functions in expressions, composition
of functions to form new functions, curried functions, and the implicit definition of
functions by way of the partial application of function arguments.

Function
Expressions

Learn how to use the F# 'fun' keyword to define a lambda expression, which is an
anonymous function.

The following table lists articles that describe F# loops and conditionals.

Title Description

Conditional
Expressions:
if...then...else

Learn about the if...then...else expression, which runs different branches of
code and also evaluates to a different value depending on the Boolean expression
given.

Loops:
for...in
Expression

Learn about the for...in expression, a looping construct that is used to iterate
over the matches of a pattern in an enumerable collection such as a range
expression, sequence, list, array, or other construct that supports enumeration.

Loops:
for...to
Expression

Learn about the for...to expression, which is used to iterate in a loop over a
range of values of a loop variable.

Values and Functions

Loops and Conditionals

Title Description

Loops:
while...do
Expression

Learn about the while...do expression, which is used to perform iterative
execution (looping) while a specified test condition is true.

The following table shows reference articles that describe language concepts.

Title Description

Pattern
Matching

Learn about patterns, which are rules for transforming input data and are used
throughout F#. You can compare data with a pattern, decompose data into
constituent parts, or extract information from data in various ways.

Match
Expressions

Learn about the match expression, which provides branching control that is based
on the comparison of an expression with a set of patterns.

Active
Patterns

Learn about active patterns. Active patterns enable you to define named partitions
that subdivide input data. You can use active patterns to decompose data in a
customized manner for each partition.

The following table shows reference articles that describe language concepts related to
exception handling.

Title Description

Exception
Handling

Contains information about exception handling support in F#.

The
try...with
Expression

Learn about how to use the try...with expression for exception handling.

The
try...finally
Expression

Learn about how the F# try...finally expression enables you to execute clean-up
code even if a block of code throws an exception.

The use
Keyword

Learn about the keywords use and using , which can control the initialization and
release of resources.

Pattern Matching

Exception Handling

Title Description

Assertions Learn about the assert expression, which is a debugging feature that you can use to
test an expression. Upon failure in Debug mode, an assertion generates a system
error dialog box.

The following table shows reference articles that describe how types and type inference
work in F#.

Title Description

Types Learn about the types that are used in F# and how F# types are named and
described.

Basic Types Learn about the fundamental types that are used in F#. It also provides the
corresponding .NET types and the minimum and maximum values for each type.

Unit Type Learn about the unit type, which is a type that indicates the absence of a
specific value; the unit type has only a single value, which acts as a placeholder
when no other value exists or is needed.

Type
Abbreviations

Learn about type abbreviations, which are alternate names for types.

Type
Inference

Learn about how the F# compiler infers the types of values, variables,
parameters, and return values.

Casting and
Conversions

Learn about support for type conversions in F#.

Generics Learn about generic constructs in F#.

Automatic
Generalization

Learn about how F# automatically generalizes the arguments and types of
functions so that they work with multiple types when possible.

Constraints Learn about constraints that apply to generic type parameters to specify the
requirements for a type argument in a generic type or function.

Flexible Types Learn about flexible types. A flexible type annotation is an indication that a
parameter, variable, or value has a type that is compatible with type specified,
where compatibility is determined by position in an object-oriented hierarchy of
classes or interfaces.

Units of
Measure

Learn about units of measure. Floating point values in F# can have associated
units of measure, which are typically used to indicate length, volume, mass, and
so on.

Types and Type Inference

Title Description

Byrefs Learn about byref and byref-like types in F#, which are used for low-level
programming.

The following table shows reference articles that describe types supported by F#.

Title Description

Tuples Learn about tuples, which are groupings of unnamed but ordered values of possibly
different types.

Collections An overview of the F# functional collection types, including types for arrays, lists,
sequences (seq), maps, and sets.

Lists Learn about lists. A list in F# is an ordered, immutable series of elements all of the
same type.

Options Learn about the option type. An option in F# is used when a value may or may not
exist. An option has an underlying type and may either hold a value of that type or
it may not have a value.

Arrays Learn about arrays. Arrays are fixed-size, zero-based, mutable sequences of
consecutive data elements, all of the same type.

Sequences Learn about sequences. A sequence is a logical series of elements all of one type.
Individual sequence elements are only computed if necessary, so the representation
may be smaller than a literal element count indicates.

Sequence
Expressions

Learn about sequence expressions, which let you generate sequences of data on-
demand.

Reference
Cells

Learn about reference cells, which are storage locations that enable you to create
mutable variables with reference semantics.

The following table shows reference articles that describe record and discriminated
union type definitions supported by F#.

Title Description

Records Learn about records. Records represent simple aggregates of named values,
optionally with members.

Tuples, Lists, Collections, Options

Records and Discriminated Unions

Title Description

Anonymous
Records

Learn how to construct and use anonymous records, a language feature that
helps with the manipulation of data.

Discriminated
Unions

Learn about discriminated unions, which provide support for values that may be
one of a variety of named cases, each with possibly different values and types.

Structs Learn about structs, which are compact object types that can be more efficient
than a class for types that have a small amount of data and simple behavior.

Enumerations Enumerations are types that have a defined set of named values. You can use
them in place of literals to make code more readable and maintainable.

The following table shows reference articles that describe F# object programming.

Title Description

Classes Learn about classes, which are types that represent objects that can have
properties, methods, and events.

Interfaces Learn about interfaces, which specify sets of related members that other classes
implement.

Abstract
Classes

Learn about abstract classes, which are classes that leave some or all members
unimplemented, so that implementations can be provided by derived classes.

Type
Extensions

Learn about type extensions, which let you add new members to a previously
defined object type.

Delegates Learn about delegates, which represent a function call as an object.

Inheritance Learn about inheritance, which is used to model the "is-a" relationship, or
subtyping, in object-oriented programming.

Members Learn about members of F# object types.

Parameters
and
Arguments

Learn about language support for defining parameters and passing arguments to
functions, methods, and properties. It includes information about how to pass by
reference.

Operator
Overloading

Learn about how to overload arithmetic operators in a class or record type, and at
the global level.

Object
Expressions

Learn about object expressions, which are expressions that create new instances of
a dynamically created, anonymous object type that is based on an existing base
type, interface, or set of interfaces.

Object Programming

The following table lists topics that describe F# async, task and lazy expressions.

Title Description

Async
Expressions

Learn about async expressions, which let you write asynchronous code in a way that
is very close to the way you would naturally write synchronous code.

Task
Expressions

Learn about task expressions, which are an alternative way of writing asynchronous
code used when interoperating with .NET code that consumes or produces .NET
tasks.

Lazy
Expressions

Learn about lazy expressions, which are computations that are not evaluated
immediately, but are instead evaluated when the result is actually needed.

The following table lists topics that describe F# computation expressions and queries.

Title Description

Computation
Expressions

Learn about computation expressions in F#, which provide a convenient syntax for
writing computations that can be sequenced and combined using control flow
constructs and bindings. They can be used to manage data, control, and side
effects in functional programs.

Query
Expressions

Learn about query expressions, a language feature that implements LINQ for F#
and enables you to write queries against a data source or enumerable collection.

The following table lists articles that describe F# reflective features, including attributes,
quotations, nameof , and plain text formatting.

Title Description

Attributes Learn how F# Attributes enable metadata to be applied to a programming
construct.

nameof Learn about the nameof operator, a metaprogramming feature that allows you to
produce the name of any symbol in your source code.

Async, Tasks and Lazy

Computation expressions and Queries

Attributes, Reflection, Quotations and Plain
Text Formatting

Title Description

Caller
Information

Learn about how to use Caller Info Argument Attributes to obtain caller
information from a method.

Source Line,
File, and Path
Identifiers

Learn about the identifiers __LINE__ , __SOURCE_DIRECTORY__ , and
__SOURCE_FILE__ , which are built-in values that enable you to access the source
line number, directory, and file name in your code.

Code
Quotations

Learn about code quotations, a language feature that enables you to generate
and work with F# code expressions programmatically.

Plain Text
Formatting

Learn how to use sprintf and other plain text formatting in F# applications and
scripts.

The following table lists articles that describe F# type providers.

Title Description

Type
Providers

Learn about type providers and find links to walkthroughs on using the built-in
type providers to access databases and web services.

Create a
Type
Provider

Learn how to create your own F# type providers by examining several simple type
providers that illustrate the basic concepts.

F# Core Library (FSharp.Core) API reference is the reference for all F# Core Library
namespaces, modules, types, and functions.

The following table shows reference articles that provide tables of keywords, symbols,
and literals that are used as tokens in F#.

Title Description

Keyword Reference Contains links to information about all F# language keywords.

Symbol and Operator Reference Contains a table of symbols and operators that are used in F#.

Type Providers

F# Core Library API reference

Reference Tables

https://fsharp.github.io/fsharp-core-docs/

The following table lists topics that describe special compiler-supported constructs.

Topic Description

Compiler
Options

Describes the command-line options for the F# compiler.

Compiler
Directives

Describes the processor directives and compiler directives supported by the F#
compiler.

Compiler-supported Constructs

Literals
Article • 03/12/2024

This article provides a table that shows how to specify the type of a literal in F#.

The following table shows the literal types in F#. Characters that represent digits in
hexadecimal notation are not case-sensitive; characters that identify the type are case-
sensitive.

Type Description Suffix or
prefix

Examples

sbyte signed 8-bit integer y 86y

0b00000101y

byte unsigned 8-bit natural number uy 86uy

0b00000101uy

int16 signed 16-bit integer s 86s

uint16 unsigned 16-bit natural number us 86us

int

int32

signed 32-bit integer l or none 86

86l

uint

uint32

unsigned 32-bit natural number u or ul 86u

86ul

nativeint native pointer to a signed natural
number

n 123n

unativeint native pointer as an unsigned
natural number

un 0x00002D3Fun

int64 signed 64-bit integer L 86L

uint64 unsigned 64-bit natural number UL 86UL

Literal types

ﾉ Expand table

Type Description Suffix or
prefix

Examples

single,
float32

32-bit floating point number F or f 4.14F or 4.14f

lf 0x00000000lf

float;
double

64-bit floating point number none 4.14 or 2.3E+32 or 2.3e+32

LF 0x0000000000000000LF

bigint integer not limited to 64-bit
representation

I 9999999999999999999999999999I

decimal fractional number represented as
a fixed point or rational number

M or m 0.7833M or 0.7833m

Char Unicode character none 'a' or '\u0061'

String Unicode string none "text\n"

or

@"c:\filename"

or

"""<book title="Paradise

Lost">"""

or

"string1" + "string2"

See also Strings.

byte ASCII character B 'a'B

byte[] ASCII string B "text"B

String or
byte[]

verbatim string @ prefix @"\\server\share" (Unicode)

@"\\server\share"B (ASCII)

Values that are intended to be constants can be marked with the Literal attribute.

Named literals

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-literalattribute.html

This attribute has the effect of causing a value to be compiled as a constant. In the
following example, both x and y below are immutable values, but x is evaluated at
run-time, whereas y is a compile-time constant.

F#

For example, this distinction matters when calling an external function, because
DllImport is an attribute that needs to know the value of myDLL during compilation.
Without the [<Literal>] declaration, this code would fail to compile:

F#

In pattern matching expressions, identifiers that begin with lowercase characters are
always treated as variables to be bound, rather than as literals, so you should generally
use initial capitals when you define literals.

F#

let x = "a" + "b" // evaluated at run-time

[<Literal>]
let y = "a" + "b" // evaluated at compile-time

[<Literal>]
let myDLL = "foo.dll"

[<DllImport(myDLL, CallingConvention = CallingConvention.Cdecl)>]
extern void HelloWorld()

[<Literal>]
let SomeJson = """{"numbers":[1,2,3,4,5]}"""

[<Literal>]
let Literal1 = "a" + "b"

[<Literal>]
let FileLocation = __SOURCE_DIRECTORY__ + "/" + __SOURCE_FILE__

[<Literal>]
let Literal2 = 1 ||| 64

[<Literal>]
let Literal3 = System.IO.FileAccess.Read ||| System.IO.FileAccess.Write

Remarks

Named literals are useful for:

Pattern matching without a when clause.
Attribute arguments.
Static type provider arguments.

Unicode strings can contain explicit encodings that you can specify by using \u
followed by a 16-bit hexadecimal code (0000 - FFFF), or UTF-32 encodings that you can
specify by using \U followed by a 32-bit hexadecimal code that represents any Unicode
code point (00000000 - 0010FFFF).

The use of bitwise operators other than ||| isn't allowed.

Signed 32-bit integers can also be specified in hexadecimal, octal, or binary using a 0x ,
0o or 0b prefix, respectively.

F#

You can separate digits with the underscore character (_).

F#

Integers in other bases

let numbers = (0x9F, 0o77, 0b1010)
// Result: numbers : int * int * int = (159, 63, 10)

Underscores in numeric literals

let value = 0xDEAD_BEEF

let valueAsBits = 0b1101_1110_1010_1101_1011_1110_1110_1111

let exampleSSN = 123_456_7890

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

 Open a documentation issue

https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Fliterals&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Fliterals.md&documentVersionIndependentId=031fc9cd-677b-25a5-f708-f2c2f991e61a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+e3a3edd2-5887-40c7-4feb-0b0cd71f4b8a+%0A*+Service%3A+**dotnet-fsharp**

issues and pull requests. For
more information, see our
contributor guide.

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/fsharp

Strings
Article • 05/31/2023

The string type represents immutable text as a sequence of Unicode characters. string
is an alias for System.String in .NET.

String literals are delimited by the quotation mark (") character. The backslash character
(\) is used to encode certain special characters. The backslash and the next character
together are known as an escape sequence. Escape sequences supported in F# string
literals are shown in the following table.

Character Escape sequence

Alert \a

Backspace \b

Form feed \f

Newline \n

Carriage
return

\r

Tab \t

Vertical tab \v

Backslash \\

Quotation
mark

\"

Apostrophe \'

Unicode
character

\DDD (where D indicates a decimal digit; range of 000 - 255; for example, \231 =
"ç")

Unicode
character

\xHH (where H indicates a hexadecimal digit; range of 00 - FF; for example, \xE7 =
"ç")

Unicode
character

\uHHHH (UTF-16) (where H indicates a hexadecimal digit; range of 0000 - FFFF; for
example, \u00E7 = "ç")

Remarks

Character Escape sequence

Unicode
character

\U00HHHHHH (UTF-32) (where H indicates a hexadecimal digit; range of 000000 -
10FFFF; for example, \U0001F47D = "👽")

If preceded by the @ symbol, the literal is a verbatim string. Declaring a verbatim string
means that any escape sequences are ignored, except that two quotation mark
characters are interpreted as one quotation mark character.

Additionally, a string may be enclosed by triple quotes. In this case, all escape sequences
are ignored, including double quotation mark characters. To specify a string that
contains an embedded quoted string, you can either use a verbatim string or a triple-
quoted string. If you use a verbatim string, you must specify two quotation mark
characters to indicate a single quotation mark character. If you use a triple-quoted
string, you can use the single quotation mark characters without them being parsed as
the end of the string. This technique can be useful when you work with XML or other
structures that include embedded quotation marks.

F#

） Important

The \DDD escape sequence is decimal notation, not octal notation like in most
other languages. Therefore, digits 8 and 9 are valid, and a sequence of \032
represents a space (U+0020), whereas that same code point in octal notation would
be \040 .

７ Note

Being constrained to a range of 0 - 255 (0xFF), the \DDD and \x escape sequences
are effectively the ISO-8859-1 character set, since that matches the first 256
Unicode code points.

Verbatim Strings

Triple Quoted Strings

// Using a verbatim string
let xmlFragment1 = @"<book author=""Milton, John"" title=""Paradise Lost"">"

https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Code_page_layout

In code, strings that have line breaks are accepted and the line breaks are interpreted as
the newline encoding used in source, unless a backslash character is the last character
before the line break. Leading white space on the next line is ignored when the
backslash character is used. The following code produces a string str1 that has value
"abc\ndef" and a string str2 that has value "abcdef" .

F#

You can access individual characters in a string by using array-like syntax. The following
examples use [] to index strings. This syntax was introduced in F# 6.0. You can also use
.[] to index strings in all versions. The new syntax is preferred.

F#

The output is b .

Or you can extract substrings by using array slice syntax, as shown in the following code.

F#

The output is as follows.

Console

// Using a triple-quoted string
let xmlFragment2 = """<book author="Milton, John" title="Paradise Lost">"""

let str1 = "abc
def"
let str2 = "abc\
def"

String Indexing and Slicing

printfn "%c" str1[1]

printfn "%s" str1[0..2]
printfn "%s" str2[3..5]

abc
def

You can represent ASCII strings by arrays of unsigned bytes, type byte[] . You add the
suffix B to a string literal to indicate that it's an ASCII string. ASCII string literals used
with byte arrays support the same escape sequences as Unicode strings, except for the
Unicode escape sequences.

F#

The + operator can be used to concatenate strings, maintaining compatibility with the
.NET Framework string handling features. The following example illustrates string
concatenation.

F#

Because the string type in F# is actually a .NET Framework System.String type, all the
System.String members are available. System.String includes the + operator, which is
used to concatenate strings, the Length property, and the Chars property, which returns
the string as an array of Unicode characters. For more information about strings, see
System.String .

By using the Chars property of System.String , you can access the individual characters
in a string by specifying an index, as is shown in the following code.

F#

// "abc" interpreted as a Unicode string.
let str1 : string = "abc"
// "abc" interpreted as an ASCII byte array.
let bytearray : byte[] = "abc"B

String Operators

let string1 = "Hello, " + "world"

String Class

let printChar (str : string) (index : int) =
 printfn "First character: %c" (str.Chars(index))

String Module

Additional functionality for string handling is included in the String module in the
FSharp.Core namespace. For more information, see String Module .

Interpolated Strings
F# Language Reference

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-stringmodule.html

Interpolated strings
Article • 05/24/2023

Interpolated strings are strings that allow you to embed F# expressions into them. They
are helpful in a wide range of scenarios where the value of a string may change based
on the result of a value or expression.

F#

Interpolated strings let you write code in "holes" inside of a string literal. Here's a basic
example:

F#

The contents in between each {} brace pair can be any F# expression.

To escape a {} brace pair, write two of them like so:

F#

Interpolated strings can also have F# format specifiers to enforce type safety.

Syntax

$"string-text {expr}"
$"string-text %format-specifier{expr}"
$"""string-text {"embedded string literal"}"""
$$"""string-text %%format-specifier{{expr}}"""

Remarks

let name = "Phillip"
let age = 30
printfn $"Name: {name}, Age: {age}"

printfn $"I think {3.0 + 0.14} is close to {System.Math.PI}!"

let str = $"A pair of braces: {{}}"
// "A pair of braces: {}"

Typed interpolated strings

F#

In the previous example, the code mistakenly passes the age value where name should
be, and vice/versa. Because the interpolated strings use format specifiers, this is a
compile error instead of a subtle runtime bug.

F# supports verbatim interpolated strings with triple quotes so that you can embed
string literals.

F#

Format specifiers can either be printf-style or .NET-style. Printf-style specifiers are those
covered in plaintext formatting, placed before the braces. For example:

F#

The format specifier %A is particularly useful for producing diagnostic output of
structured F# data.

F#

let name = "Phillip"
let age = 30

printfn $"Name: %s{name}, Age: %d{age}"

// Error: type mismatch
printfn $"Name: %s{age}, Age: %d{name}"

Verbatim interpolated strings

let age = 30

printfn $"""Name: {"Phillip"}, Age: %d{age}"""

Format specifiers

let pi = $"%0.3f{System.Math.PI}" // "3.142"
let code = $"0x%08x{43962}" // "0x0000abba"

let data = [0..4]
let output = $"The data is %A{data}" // "The data is [0; 1; 2; 3; 4]"

.NET-style specifiers are those usable with String.Format, placed after a : within the
braces. For example:

F#

If a .NET-style specifier contains an unusual character, then it can be escaped using
double-backticks:

F#

You can left-align or right-align expressions inside interpolated strings with | and a
specification of how many spaces. The following interpolated string aligns the left and
right expressions to the left and right, respectively, by seven spaces.

F#

You can also apply formatting that adheres to the rules for FormattableString:

F#

Additionally, an interpolated string can also be type checked as a FormattableString via
a type annotation:

F#

let pi = $"{System.Math.PI:N4}" // "3.1416"
let now = $"{System.DateTime.UtcNow:``yyyyMMdd``}" // e.g. "20220210"

let nowDashes = $"{System.DateTime.UtcNow:``yyyy-MM-dd``}" // e.g. "2022-02-
10"

Aligning expressions in interpolated strings

printfn $"""|{"Left",-7}|{"Right",7}|"""
// |Left | Right|

Interpolated strings and FormattableString
formatting

let speedOfLight = 299792.458
printfn $"The speed of light is {speedOfLight:N3} km/s."
// "The speed of light is 299,792.458 km/s."

https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring

Note that the type annotation must be on the interpolated string expression itself. F#
does not implicitly convert an interpolated string into a FormattableString.

When you work with text containing multiple { , } or % characters already, you can use
extended string interpolation syntax to remove the need for escaping.

Triple quote string literals can start with multiple $ characters, which changes how many
braces are required to open and close interpolation. In these string literals, { and }
characters don't need to be escaped:

F#

The number of % characters needed for format specifiers is affected in the same way:

F#

Strings
F# RFC FS-1001 - Interpolated strings
F# RFC FS-1132 - Extended syntax for interpolated strings

let frmtStr = $"The speed of light is {speedOfLight:N3} km/s." :
FormattableString
// Type: FormattableString
// The speed of light is 299,792.458 km/s.

Extended syntax for string interpolation

let str = $$"""A string containing some {curly braces} and an {{"F#" + " " +
"expression"}}."""
// "A string containing some {curly braces} and an F# expression."
let another = $$$"""A string with pairs of {{ and }} characters and {{{ "an
F# expression" }}}."""
// "A string with pairs of {{ and }} characters and an F# expression."""

let percent = $$"""50% of 20 is %%.1f{{20m * 0.5m}}"""
// "50% of 20 is 10.0"

See also

https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1001-StringInterpolation.md
https://github.com/fsharp/fslang-design/blob/main/RFCs/FS-1132-better-interpolated-triple-quoted-strings.md

Values
Article • 09/15/2021

Values in F# are quantities that have a specific type; values can be integral or floating
point numbers, characters or text, lists, sequences, arrays, tuples, discriminated unions,
records, class types, or function values.

The term binding means associating a name with a definition. The let keyword binds a
value, as in the following examples:

F#

The type of a value is inferred from the definition. For a primitive type, such as an
integral or floating point number, the type is determined from the type of the literal.
Therefore, in the previous example, the compiler infers the type of b to be unsigned
int , whereas the compiler infers the type of a to be int . The type of a function value is
determined from the return value in the function body. For more information about
function value types, see Functions. For more information about literal types, see
Literals.

The compiler does not issue diagnostics about unused bindings by default. To receive
these messages, enable warning 1182 in your project file or when invoking the compiler
(see --warnon under Compiler Options).

Immutable values are values that cannot be changed throughout the course of a
program's execution. If you are used to languages such as C++, Visual Basic, or C#, you
might find it surprising that F# puts primacy over immutable values rather than variables
that can be assigned new values during the execution of a program. Immutable data is
an important element of functional programming. In a multithreaded environment,

Binding a Value

let a = 1
let b = 100u
let str = "text"

// A function value binding.

let f x = x + 1

Why Immutable?

shared mutable variables that can be changed by many different threads are difficult to
manage. Also, with mutable variables, it can sometimes be hard to tell if a variable might
be changed when it is passed to another function.

In pure functional languages, there are no variables, and functions behave strictly as
mathematical functions. Where code in a procedural language uses a variable
assignment to alter a value, the equivalent code in a functional language has an
immutable value that is the input, an immutable function, and different immutable
values as the output. This mathematical strictness allows for tighter reasoning about the
behavior of the program. This tighter reasoning is what enables compilers to check code
more stringently and to optimize more effectively, and helps make it easier for
developers to understand and write correct code. Functional code is therefore likely to
be easier to debug than ordinary procedural code.

F# is not a pure functional language, yet it fully supports functional programming. Using
immutable values is a good practice because doing this allows your code to benefit
from an important aspect of functional programming.

You can use the keyword mutable to specify a variable that can be changed. Mutable
variables in F# should generally have a limited scope, either as a field of a type or as a
local value. Mutable variables with a limited scope are easier to control and are less
likely to be modified in incorrect ways.

You can assign an initial value to a mutable variable by using the let keyword in the
same way as you would define a value. However, the difference is that you can
subsequently assign new values to mutable variables by using the <- operator, as in the
following example.

F#

Values marked mutable may be automatically promoted to 'a ref if captured by a
closure, including forms that create closures, such as seq builders. If you wish to be
notified when this occurs, enable warning 3180 in your project file or when invoking the
compiler.

Mutable Variables

let mutable x = 1
x <- x + 1

Related Topics

Title Description

let
Bindings

Provides information about using the let keyword to bind names to values and
functions.

Functions Provides an overview of functions in F#.

Null Values
F# Language Reference

See also

let Bindings
Article • 06/07/2022

A binding associates an identifier with a value or function. You use the let keyword to
bind a name to a value or function.

F#

The let keyword is used in binding expressions to define values or function values for
one or more names. The simplest form of the let expression binds a name to a simple
value, as follows.

F#

If you separate the expression from the identifier by using a new line, you must indent
each line of the expression, as in the following code.

F#

Instead of just a name, a pattern that contains names can be specified, for example, a
tuple, as shown in the following code.

F#

Syntax

// Binding a value:
let identifier-or-pattern [: type] =expressionbody-expression
// Binding a function value:
let identifier parameter-list [: return-type] =expressionbody-expression

Remarks

let i = 1

let someVeryLongIdentifier =
 // Note indentation below.
 3 * 4 + 5 * 6

let i, j, k = (1, 2, 3)

The body-expression is the expression in which the names are used. The body expression
appears on its own line, indented to line up exactly with the first character in the let
keyword:

F#

A let binding can appear at the module level, in the definition of a class type, or in
local scopes, such as in a function definition. A let binding at the top level in a module
or in a class type does not need to have a body expression, but at other scope levels,
the body expression is required. The bound names are usable after the point of
definition, but not at any point before the let binding appears, as is illustrated in the
following code.

F#

Function bindings follow the rules for value bindings, except that function bindings
include the function name and the parameters, as shown in the following code.

F#

In general, parameters are patterns, such as a tuple pattern:

F#

let result =

 let i, j, k = (1, 2, 3)

 // Body expression:
 i + 2*j + 3*k

// Error:
printfn "%d" x
let x = 100
// OK:
printfn "%d" x

Function Bindings

let function1 a =
 a + 1

let function2 (a, b) = a + b

A let binding expression evaluates to the value of the last expression. Therefore, in the
following code example, the value of result is computed from 100 * function3 (1, 2) ,
which evaluates to 300 .

F#

For more information, see Functions.

You can specify types for parameters by including a colon (:) followed by a type name,
all enclosed in parentheses. You can also specify the type of the return value by
appending the colon and type after the last parameter. The full type annotations for
function1 , with integers as the parameter types, would be as follows.

F#

When there are no explicit type parameters, type inference is used to determine the
types of parameters of functions. This can include automatically generalizing the type of
a parameter to be generic.

For more information, see Automatic Generalization and Type Inference.

A let binding can appear in a class type but not in a structure or record type. To use a
let binding in a class type, the class must have a primary constructor. Constructor
parameters must appear after the type name in the class definition. A let binding in a
class type defines private fields and members for that class type and, together with do
bindings in the type, forms the code for the primary constructor for the type. The
following code examples show a class MyClass with private fields field1 and field2 .

F#

let result =
 let function3 (a, b) = a + b
 100 * function3 (1, 2)

Type Annotations

let function1 (a: int) : int = a + 1

let Bindings in Classes

type MyClass(a) =
 let field1 = a

The scopes of field1 and field2 are limited to the type in which they are declared. For
more information, see let Bindings in Classes and Classes.

A let binding at the module level, in a type, or in a computation expression can have
explicit type parameters. A let binding in an expression, such as within a function
definition, cannot have type parameters. For more information, see Generics.

Attributes can be applied to top-level let bindings in a module, as shown in the
following code.

F#

The scope of an entity declared with a let binding is limited to the portion of the
containing scope (such as a function, module, file or class) after the binding appears.
Therefore, it can be said that a let binding introduces a name into a scope. In a module,
a let-bound value or function is accessible to clients of a module as long as the module
is accessible, since the let bindings in a module are compiled into public functions of the
module. By contrast, let bindings in a class are private to the class.

Normally, functions in modules must be qualified by the name of the module when used
by client code. For example, if a module Module1 has a function function1 , users would
specify Module1.function1 to refer to the function.

Users of a module may use an import declaration to make the functions within that
module available for use without being qualified by the module name. In the example
just mentioned, users of the module can in that case open the module by using the
import declaration open Module1 and thereafter refer to function1 directly.

 let field2 = "text"
 do printfn "%d %s" field1 field2
 member this.F input =
 printfn "Field1 %d Field2 %s Input %A" field1 field2 input

Type Parameters in let Bindings

Attributes on let Bindings

[<Obsolete>]
let function1 x y = x + y

Scope and Accessibility of Let Bindings

F#

Some modules have the attribute RequireQualifiedAccess , which means that the
functions that they expose must be qualified with the name of the module. For example,
the F# List module has this attribute.

For more information on modules and access control, see Modules and Access Control.

Functions
let Bindings in Classes

module Module1 =
 let function1 x = x + 1.0

module Module2 =
 let function2 x =
 Module1.function1 x

open Module1

let function3 x =
 function1 x

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-requirequalifiedaccessattribute.html

do Bindings
Article • 09/15/2021

A do binding is used to execute code without defining a function or value. Also, do
bindings can be used in classes, see do Bindings in Classes.

F#

Use a do binding when you want to execute code independently of a function or value
definition. The expression in a do binding must return unit . Code in a top-level do
binding is executed when the module is initialized. The keyword do is optional.

Attributes can be applied to a top-level do binding. For example, if your program uses
COM interop, you might want to apply the STAThread attribute to your program. You
can do this by using an attribute on a do binding, as shown in the following code.

F#

F# Language Reference
Functions

Syntax

[attributes]
[do]expression

Remarks

open System
open System.Windows.Forms

let form1 = new Form()
form1.Text <- "XYZ"

[<STAThread>]
do
 Application.Run(form1)

See also

The fixed keyword
Article • 06/07/2022

The fixed keyword allows you to "pin" a local onto the stack to prevent it from being
collected or moved during garbage-collection. It is used for low-level programming
scenarios.

F#

This extends the syntax of expressions to allow extracting a pointer and binding it to a
name which is prevented from being collected or moved during garbage-collection.

A pointer from an expression is fixed via the fixed keyword and is bound to an
identifier via the use keyword. The semantics of this are similar to resource
management via the use keyword. The pointer is fixed while it is in scope, and once it is
out of scope, it is no longer fixed. fixed cannot be used outside the context of a use
binding. You must bind the pointer to a name with use .

Use of fixed must occur within an expression in a function or a method. It cannot be
used at a script-level or module-level scope.

Like all pointer code, this is an unsafe feature and will emit a warning when used.

F#

Syntax

use ptr = fixed expression

Remarks

Example

open Microsoft.FSharp.NativeInterop

type Point = { mutable X: int; mutable Y: int}

let squareWithPointer (p: nativeptr<int>) =
 // Dereference the pointer at the 0th address.
 let mutable value = NativePtr.get p 0

NativePtr Module

 // Perform some work
 value <- value * value

 // Set the value in the pointer at the 0th address.
 NativePtr.set p 0 value

let pnt = { X = 1; Y = 2 }
printfn $"pnt before - X: %d{pnt.X} Y: %d{pnt.Y}" // prints 1 and 2

// Note that the use of 'fixed' is inside a function.
// You cannot fix a pointer at a script-level or module-level scope.
let doPointerWork() =
 use ptr = fixed &pnt.Y

 // Square the Y value
 squareWithPointer ptr
 printfn $"pnt after - X: %d{pnt.X} Y: %d{pnt.Y}" // prints 1 and 4

doPointerWork()

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-nativeinterop-nativeptrmodule.html

Functions
Article • 06/25/2022

Functions are the fundamental unit of program execution in any programming
language. As in other languages, an F# function has a name, can have parameters and
take arguments, and has a body. F# also supports functional programming constructs
such as treating functions as values, using unnamed functions in expressions,
composition of functions to form new functions, curried functions, and the implicit
definition of functions by way of the partial application of function arguments.

You define functions by using the let keyword, or, if the function is recursive, the let
rec keyword combination.

F#

The function-name is an identifier that represents the function. The parameter-list
consists of successive parameters that are separated by spaces. You can specify an
explicit type for each parameter, as described in the Parameters section. If you do not
specify a specific argument type, the compiler attempts to infer the type from the
function body. The function-body consists of an expression. The expression that makes
up the function body is typically a compound expression consisting of a number of
expressions that culminate in a final expression that is the return value. The return-type
is a colon followed by a type and is optional. If you do not specify the type of the return
value explicitly, the compiler determines the return type from the final expression.

A simple function definition resembles the following:

F#

Syntax

// Non-recursive function definition.
let [inline] function-name parameter-list [: return-type] = function-body
// Recursive function definition.
let rec function-name parameter-list = recursive-function-body

Remarks

let f x = x + 1

In the previous example, the function name is f , the argument is x , which has type int ,
the function body is x + 1 , and the return value is of type int .

Functions can be marked inline . For information about inline , see Inline Functions.

At any level of scope other than module scope, it is not an error to reuse a value or
function name. If you reuse a name, the name declared later shadows the name
declared earlier. However, at the top level scope in a module, names must be unique.
For example, the following code produces an error when it appears at module scope,
but not when it appears inside a function:

F#

But the following code is acceptable at any level of scope:

F#

Names of parameters are listed after the function name. You can specify a type for a
parameter, as shown in the following example:

F#

Scope

let list1 = [1; 2; 3]
// Error: duplicate definition.
let list1 = []

let function1 () =
 let list1 = [1; 2; 3]
 let list1 = []
 list1

let list1 = [1; 2; 3]

let sumPlus x =
 // OK: inner list1 hides the outer list1.
 let list1 = [1; 5; 10]
 x + List.sum list1

Parameters

let f (x: int) = x + 1

If you specify a type, it follows the name of the parameter and is separated from the
name by a colon. If you omit the type for the parameter, the parameter type is inferred
by the compiler. For example, in the following function definition, the argument x is
inferred to be of type int because 1 is of type int .

F#

However, the compiler will attempt to make the function as generic as possible. For
example, note the following code:

F#

The function creates a tuple from one argument of any type. Because the type is not
specified, the function can be used with any argument type. For more information, see
Automatic Generalization.

A function body can contain definitions of local variables and functions. Such variables
and functions are in scope in the body of the current function but not outside it. You
must use indentation to indicate that a definition is in a function body, as shown in the
following example:

F#

For more information, see Code Formatting Guidelines and Verbose Syntax.

The compiler uses the final expression in a function body to determine the return value
and type. The compiler might infer the type of the final expression from previous
expressions. In the function cylinderVolume , shown in the previous section, the type of

let f x = x + 1

let f x = (x, x)

Function Bodies

let cylinderVolume radius length =
 // Define a local value pi.
 let pi = 3.14159
 length * pi * radius * radius

Return Values

pi is determined from the type of the literal 3.14159 to be float . The compiler uses
the type of pi to determine the type of the expression length * pi * radius * radius
to be float . Therefore, the overall return type of the function is float .

To specify the return type explicitly, write the code as follows:

F#

As the code is written above, the compiler applies float to the entire function; if you
mean to apply it to the parameter types as well, use the following code:

F#

You call functions by specifying the function name followed by a space and then any
arguments separated by spaces. For example, to call the function cylinderVolume and
assign the result to the value vol, you write the following code:

F#

If you supply fewer than the specified number of arguments, you create a new function
that expects the remaining arguments. This method of handling arguments is referred to
as currying and is a characteristic of functional programming languages like F#. For
example, suppose you are working with two sizes of pipe: one has a radius of 2.0 and
the other has a radius of 3.0. You could create functions that determine the volume of
pipe as follows:

F#

let cylinderVolume radius length : float =
 // Define a local value pi.
 let pi = 3.14159
 length * pi * radius * radius

let cylinderVolume (radius: float) (length: float) : float

Calling a Function

let vol = cylinderVolume 2.0 3.0

Partial Application of Arguments

You would then supply the final argument as needed for various lengths of pipe of the
two different sizes:

F#

Recursive functions are functions that call themselves. They require that you specify the
rec keyword following the let keyword. Invoke the recursive function from within the
body of the function just as you would invoke any function call. The following recursive
function computes the n Fibonacci number. The Fibonacci number sequence has been
known since antiquity and is a sequence in which each successive number is the sum of
the previous two numbers in the sequence.

F#

Some recursive functions might overflow the program stack or perform inefficiently if
you do not write them with care and with awareness of special techniques, such as the
use of tail recursion, accumulators, and continuations.

In F#, all functions are considered values; in fact, they are known as function values.
Because functions are values, they can be used as arguments to other functions or in

let smallPipeRadius = 2.0
let bigPipeRadius = 3.0

// These define functions that take the length as a remaining
// argument:

let smallPipeVolume = cylinderVolume smallPipeRadius
let bigPipeVolume = cylinderVolume bigPipeRadius

let length1 = 30.0
let length2 = 40.0
let smallPipeVol1 = smallPipeVolume length1
let smallPipeVol2 = smallPipeVolume length2
let bigPipeVol1 = bigPipeVolume length1
let bigPipeVol2 = bigPipeVolume length2

Recursive Functions

th

let rec fib n =
 if n < 2 then 1 else fib (n - 1) + fib (n - 2)

Function Values

other contexts where values are used. Following is an example of a function that takes a
function value as an argument:

F#

You specify the type of a function value by using the -> token. On the left side of this
token is the type of the argument, and on the right side is the return value. In the
previous example, apply1 is a function that takes a function transform as an argument,
where transform is a function that takes an integer and returns another integer. The
following code shows how to use apply1 :

F#

The value of result will be 101 after the previous code runs.

Multiple arguments are separated by successive -> tokens, as shown in the following
example:

F#

The result is 200.

A lambda expression is an unnamed function. In the previous examples, instead of
defining named functions increment and mul, you could use lambda expressions as
follows:

F#

let apply1 (transform: int -> int) y = transform y

let increment x = x + 1

let result1 = apply1 increment 100

let apply2 (f: int -> int -> int) x y = f x y

let mul x y = x * y

let result2 = apply2 mul 10 20

Lambda Expressions

let result3 = apply1 (fun x -> x + 1) 100

You define lambda expressions by using the fun keyword. A lambda expression
resembles a function definition, except that instead of the = token, the -> token is used
to separate the argument list from the function body. As in a regular function definition,
the argument types can be inferred or specified explicitly, and the return type of the
lambda expression is inferred from the type of the last expression in the body. For more
information, see Lambda Expressions: The fun Keyword.

The pipe operator |> is used extensively when processing data in F#. This operator
allows you to establish "pipelines" of functions in a flexible manner. Pipelining enables
function calls to be chained together as successive operations:

F#

The following sample walks through how you can use these operators to build a simple
functional pipeline:

F#

The result is [2; 10; 26] . The previous sample uses list processing functions,
demonstrating how functions can be used to process data when building pipelines. The
pipeline operator itself is defined in the F# core library as follows:

F#

let result4 = apply2 (fun x y -> x * y) 10 20

Pipelines

let result = 100 |> function1 |> function2

/// Square the odd values of the input and add one, using F# pipe operators.
let squareAndAddOdd values =
 values |> List.filter (fun x -> x % 2 <> 0) |> List.map (fun x -> x * x
+ 1)

let numbers = [1; 2; 3; 4; 5]

let result = squareAndAddOdd numbers

let (|>) x f = f x

Function composition

Functions in F# can be composed from other functions. The composition of two
functions function1 and function2 is another function that represents the application of
function1 followed by the application of function2:

F#

The result is 202.

The composition operator >> takes two functions and returns a function; by contrast,
the pipeline operator |> takes a value and a function and returns a value. The following
code example shows the difference between the pipeline and composition operators by
showing the differences in the function signatures and usage.

F#

let function1 x = x + 1
let function2 x = x * 2
let h = function1 >> function2
let result5 = h 100

// Function composition and pipeline operators compared.
let addOne x = x + 1
let timesTwo x = 2 * x

// Composition operator
// (>>) : ('T1 -> 'T2) -> ('T2 -> 'T3) -> 'T1 -> 'T3
let Compose2 = addOne >> timesTwo

// Backward composition operator
// (<<) : ('T2 -> 'T3) -> ('T1 -> 'T2) -> 'T1 -> 'T3
let Compose1 = addOne << timesTwo

// Result is 5
let result1 = Compose1 2

// Result is 6
let result2 = Compose2 2

// Pipelining
// Pipeline operator
// (|>) : 'T1 -> ('T1 -> 'U) -> 'U
let Pipeline2 x = addOne x |> timesTwo

// Backward pipeline operator
// (<|) : ('T -> 'U) -> 'T -> 'U
let Pipeline1 x = addOne <| timesTwo x

// Result is 5
let result3 = Pipeline1 2

You can overload methods of a type but not functions. For more information, see
Methods.

Values
F# Language Reference

// Result is 6
let result4 = Pipeline2 2

Overloading Functions

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Ffunctions%2F&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Ffunctions%2Findex.md&documentVersionIndependentId=71e8487a-16d2-1b9e-9bbc-a48884196673&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+e16a9ad9-820d-c4cf-df83-d9c33a848d74+%0A*+Service%3A+**dotnet-fsharp**
https://github.com/dotnet/fsharp

Recursive Functions: The rec Keyword
Article • 10/24/2023

The rec keyword is used together with the let keyword to define a recursive function.

F#

Recursive functions - functions that call themselves - are identified explicitly in the F#
language with the rec keyword. The rec keyword makes the name of the let binding
available in its body.

The following example shows a recursive function that computes the n Fibonacci
number using the mathematical definition.

F#

Syntax

// Recursive function:
let rec function-name parameter-list =
 function-body

// Mutually recursive functions:
let rec function1-name parameter-list =
 function1-body

and function2-name parameter-list =
 function2-body
...

Remarks

th

let rec fib n =
 match n with
 | 0 | 1 -> n
 | n -> fib (n-1) + fib (n-2)

７ Note

Methods are implicitly recursive within the type they are defined in, meaning there is no
need to add the rec keyword. For example:

F#

let bindings within classes are not implicitly recursive, though. All let -bound functions
require the rec keyword.

For some recursive functions, it is necessary to refactor a more "pure" definition to one
that is tail recursive . This prevents unnecessary recomputations. For example, the
previous Fibonacci number generator can be rewritten like this:

F#

Generating a Fibonacci number is a great example of a "naive" algorithm that's
mathematically pure but inefficient in practice. While this is a more complicated
implementation, several aspects make it efficient in F# while still remaining recursively
defined:

A recursive inner function named loop , which is an idiomatic F# pattern.
Two accumulator parameters, which pass accumulated values to recursive calls.
A check on the value of n to return a specific accumulator.

In practice, code like the previous sample is not ideal because it unnecessarily
recomputes values that have already been computed. This is because it is not tail
recursive, which is explained further in this article.

type MyClass() =
 member this.Fib(n) =
 match n with
 | 0 | 1 -> n
 | n -> this.Fib(n-1) + this.Fib(n-2)

Tail recursion

let fib n =
 let rec loop acc1 acc2 n =
 match n with
 | 0 -> acc1
 | 1 -> acc2
 | _ ->
 loop acc2 (acc1 + acc2) (n - 1)
 loop 0 1 n

https://cs.stackexchange.com/questions/6230/what-is-tail-recursion

If this example were written iteratively with a loop, the code would look similar with two
different values accumulating numbers until a particular condition was met.

The reason why this is tail-recursive is because the recursive call does not need to save
any values on the call stack. All intermediate values being calculated are accumulated
via inputs to the inner function. This also allows the F# compiler to optimize the code to
be just as fast as if you had written something like a while loop.

It's common to write F# code that recursively processes something with an inner and
outer function, as the previous example shows. The inner function uses tail recursion,
while the outer function has a better interface for callers.

Starting with F# 8.0, you can use the TailCall attribute to explicitly state your intention
of defining a tail-recursive function to the compiler. The compiler will then warn you if
your function makes non-tail recursive calls. You can use the attribute on methods and
module-level functions.
For example, using it on the first fib definition:

F#

would trigger compiler warnings about the two non-tail recursive calls.

Sometimes functions are mutually recursive, meaning that calls form a circle, where one
function calls another which in turn calls the first, with any number of calls in between.
You must define such functions together in one let binding, using the and keyword to
link them together.

The following example shows two mutually recursive functions.

F#

[<TailCall>]
let rec fib n =
 match n with
 | 0 | 1 -> n
 | n -> fib (n-1) + fib (n-2)

Mutually Recursive Functions

let rec Even x = if x = 0 then true else Odd(x - 1)
and Odd x = if x = 0 then false else Even(x - 1)

You can also define a let -bound value to be recursive. This is sometimes done for
logging. With F# 5 and the nameof function, you can do this:

F#

Functions

Recursive values

let rec nameDoubles = nameof nameDoubles + nameof nameDoubles

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Ffunctions%2Frecursive-functions-the-rec-keyword&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Ffunctions%2Frecursive-functions-the-rec-keyword.md&documentVersionIndependentId=4aececf7-7876-3bc1-f722-1004b25fe05d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp

Inline Functions
Article • 06/25/2022

Inline functions are functions that are integrated directly into the calling code.

When you use static type parameters, any functions that are parameterized by type
parameters must be inline. This guarantees that the compiler can resolve these type
parameters. When you use ordinary generic type parameters, there is no such
restriction.

Other than enabling the use of member constraints, inline functions can be helpful in
optimizing code. However, overuse of inline functions can cause your code to be less
resistant to changes in compiler optimizations and the implementation of library
functions. For this reason, you should avoid using inline functions for optimization
unless you have tried all other optimization techniques. Making a function or method
inline can sometimes improve performance, but that is not always the case. Therefore,
you should also use performance measurements to verify that making any given
function inline does in fact have a positive effect.

The inline modifier can be applied to functions at the top level, at the module level, or
at the method level in a class.

The following code example illustrates an inline function at the top level, an inline
instance method, and an inline static method.

F#

The presence of inline affects type inference. This is because inline functions can have
statically resolved type parameters, whereas non-inline functions cannot. The following
code example shows a case where inline is helpful because you are using a function
that has a statically resolved type parameter, the float conversion operator.

Using Inline Functions

let inline increment x = x + 1
type WrapInt32() =
 member inline this.incrementByOne(x) = x + 1
 static member inline Increment(x) = x + 1

Inline Functions and Type Inference

F#

Without the inline modifier, type inference forces the function to take a specific type,
in this case int . But with the inline modifier, the function is also inferred to have a
statically resolved type parameter. With the inline modifier, the type is inferred to be
the following:

F#

This means that the function accepts any type that supports a conversion to float.

The F# compiler includes an optimizer that performs inlining of code. The
InlineIfLambda attribute allows code to optionally indicate that, if an argument is
determined to be a lambda function, then that argument should itself always be inlined
at call sites. For more information, see F# RFC FS-1098 .

For example, consider the following iterateTwice function to traverse an array:

F#

If the call site is:

F#

Then after inlining and other optimizations, the code becomes:

let inline printAsFloatingPoint number =
 printfn "%f" (float number)

^a -> unit when ^a : (static member op_Explicit : ^a -> float)

InlineIfLambda

let inline iterateTwice ([<InlineIfLambda>] action) (array: 'T[]) =
 for i = 0 to array.Length-1 do
 action array[i]
 for i = 0 to array.Length-1 do
 action array[i]

let arr = [| 1.. 100 |]
let mutable sum = 0
arr |> iterateTwice (fun x ->
 sum <- sum + x)

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1098-inline-if-lambda.md

F#

This optimization is applied regardless of the size of the lambda expression involved.
This feature can also be used to implement loop unrolling and similar transformations
more reliably.

An opt-in warning (/warnon:3517 or property <WarnOn>3517</WarnOn>) can be turned on
to indicate places in your code where InlineIfLambda arguments are not bound to
lambda expressions at call sites. In normal situations, this warning should not be
enabled. However, in certain kinds of high-performance programming, it can be useful
to ensure all code is inlined and flattened.

Functions
Constraints
Statically Resolved Type Parameters

let arr = [| 1..100 |]
let mutable sum = 0
for i = 0 to arr.Length - 1 do
 sum <- sum + arr[i]
for i = 0 to arr.Length - 1 do
 sum <- sum + arr[i]

See also

Lambda Expressions: The fun Keyword
(F#)
Article • 05/31/2023

The fun keyword is used to define a lambda expression, that is, an anonymous function.

F#

The parameter-list typically consists of names and, optionally, types of parameters. More
generally, the parameter-list can be composed of any F# patterns. For a full list of
possible patterns, see Pattern Matching. Lists of valid parameters include the following
examples.

F#

The expression is the body of the function, the last expression of which generates a
return value. Examples of valid lambda expressions include the following:

F#

Syntax

fun parameter-list -> expression

Remarks

// Lambda expressions with parameter lists.
fun a b c -> ...
fun (a: int) b c -> ...
fun (a : int) (b : string) (c:float) -> ...

// A lambda expression with a tuple pattern.
fun (a, b) -> …

// A lambda expression with a cons pattern.
// (note that this will generate an incomplete pattern match warning)
fun (head :: tail) -> …

// A lambda expression with a list pattern.
// (note that this will generate an incomplete pattern match warning)
fun [_; rest] -> …

Lambda expressions are especially useful when you want to perform operations on a list
or other collection and want to avoid the extra work of defining a function. Many F#
library functions take function values as arguments, and it can be especially convenient
to use a lambda expression in those cases. The following code applies a lambda
expression to elements of a list. In this case, the anonymous function adds 1 to every
element of a list.

F#

Functions

fun x -> x + 1
fun a b c -> printfn "%A %A %A" a b c
fun (a: int) (b: int) (c: int) -> a + b * c
fun x y -> let swap (a, b) = (b, a) in swap (x, y)

Using Lambda Expressions

let list = List.map (fun i -> i + 1) [1;2;3]
printfn "%A" list

See also

Conditional Expressions:
if...then...else

Article • 03/11/2022

The if...then...else expression runs different branches of code and also evaluates to
a different value depending on the Boolean expression given.

F#

In the previous syntax, expression1 runs when the Boolean expression evaluates to true ;
otherwise, expression2 runs.

Like other languages, the if...then...else construct can be used to conditionally
execute code. In F#, if...then...else is an expression and produces a value by the
branch that executes. The types of the expressions in each branch must match.

If there is no explicit else branch, the overall type is unit , and the type of the then
branch must also be unit .

When chaining if...then...else expressions together, you can use the keyword elif
instead of else if ; they are equivalent.

The following example illustrates how to use the if...then...else expression.

F#

Syntax

if boolean-expression then expression1 [else expression2]

Remarks

Example

let test x y =
 if x = y then "equals"
 elif x < y then "is less than"
 else "is greater than"

printfn "%d %s %d." 10 (test 10 20) 20

Console

F# Language Reference

printfn "What is your name? "
let nameString = System.Console.ReadLine()

printfn "What is your age? "
let ageString = System.Console.ReadLine()
let age = System.Int32.Parse(ageString)

if age < 10 then
 printfn "You are only %d years old and already learning F#? Wow!" age

10 is less than 20
What is your name? John
How old are you? 9
You are only 9 years old and already learning F#? Wow!

See also

Loops: for...in Expression
Article • 05/31/2023

This looping construct is used to iterate over the matches of a pattern in an enumerable
collection such as a range expression, sequence, list, array, or other construct that
supports enumeration.

F#

The for...in expression can be compared to the for each statement in other .NET
languages because it is used to loop over the values in an enumerable collection.
However, for...in also supports pattern matching over the collection instead of just
iteration over the whole collection.

The enumerable expression can be specified as an enumerable collection or, by using
the .. operator. Enumerable collections include lists, sequences, arrays, sets, maps, and
so on. Any type that implements System.Collections.IEnumerable can be used.

When you express a range by using the .. operator, you can use the following syntax.

start .. finish

You can also use a version that includes an increment called the skip, as in the following
code.

start .. skip .. finish

If the skip value is unspecified, then the next value generated in the collection is
incremented by 1. When skip is specified, it is incremented by that value.

Values matched in the pattern can also be used in the body expression.

The following code examples illustrate the use of the for...in expression.

F#

Syntax

for pattern in enumerable-expression do
 body-expression

Remarks

The output is as follows.

Console

The following example shows how to loop over a sequence, and how to use a tuple
pattern instead of a simple variable.

F#

The output is as follows.

Console

The following example shows how to loop over a simple integer range.

F#

// Looping over a list.
let list1 = [1; 5; 100; 450; 788]
for i in list1 do
 printfn "%d" i

1
5
100
450
788

let seq1 = seq { for i in 1 .. 10 -> (i, i*i) }
for (a, asqr) in seq1 do
 printfn "%d squared is %d" a asqr

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100

let function1() =
 for i in 1 .. 10 do
 printf "%d " i

The output of function1 is as follows.

Console

The following example shows how to loop over a range with a skip of 2, which includes
every other element of the range.

F#

The output of function2 is as follows.

Console

The following example shows how to use a character range.

F#

The output of function3 is as follows.

Console

The following example shows how to use a negative skip value for a reverse iteration.

F#

 printfn ""
function1()

1 2 3 4 5 6 7 8 9 10

let function2() =
 for i in 1 .. 2 .. 10 do
 printf "%d " i
 printfn ""
function2()

1 3 5 7 9

let function3() =
 for c in 'a' .. 'z' do
 printf "%c " c
 printfn ""
function3()

a b c d e f g h i j k l m n o p q r s t u v w x y z

The output of function4 is as follows.

Console

The beginning and ending of the range can also be expressions, such as functions, as in
the following code.

F#

The output of function5 with this input is as follows.

Console

The next example shows the use of a wildcard character (_) when the element is not
needed in the loop.

F#

The output is as follows.

let function4() =
 for i in 10 .. -1 .. 1 do
 printf "%d " i
 printfn " ... Lift off!"
function4()

10 9 8 7 6 5 4 3 2 1 ... Lift off!

let beginning x y = x - 2*y
let ending x y = x + 2*y

let function5 x y =
 for i in (beginning x y) .. (ending x y) do
 printf "%d " i
 printfn ""

function5 10 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

let mutable count = 0
for _ in list1 do
 count <- count + 1
printfn "Number of elements in list1: %d" count

Console

Note You can use for...in in sequence expressions and other computation
expressions, in which case a customized version of the for...in expression is used. For
more information, see Sequences, Async expressions, Task expressions, and
Computation Expressions.

F# Language Reference
Loops: for...to Expression
Loops: while...do Expression

Number of elements in list1: 5

See also

Loops: for...to Expression
Article • 09/15/2021

The for...to expression is used to iterate in a loop over a range of values of a loop
variable.

F#

The type of the identifier is inferred from the type of the start and finish expressions.
Types for these expressions must be 32-bit integers.

Although technically an expression, for...to is more like a traditional statement in an
imperative programming language. The return type for the body-expression must be
unit . The following examples show various uses of the for...to expression.

F#

Syntax

for identifier = start [to | downto] finish do
 body-expression

Remarks

// A simple for...to loop.
let function1() =
 for i = 1 to 10 do
 printf "%d " i
 printfn ""

// A for...to loop that counts in reverse.
let function2() =
 for i = 10 downto 1 do
 printf "%d " i
 printfn ""

function1()
function2()

// A for...to loop that uses functions as the start and finish expressions.
let beginning x y = x - 2*y
let ending x y = x + 2*y

let function3 x y =
 for i = (beginning x y) to (ending x y) do

The output of the previous code is as follows.

Console

F# Language Reference
Loops: for...in Expression
Loops: while...do Expression

 printf "%d " i
 printfn ""

function3 10 4

1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

See also

Loops: while...do Expression
Article • 11/04/2021

The while...do expression is used to perform iterative execution (looping) while a
specified test condition is true.

F#

The test-expression is evaluated; if it is true , the body-expression is executed and the
test expression is evaluated again. The body-expression must have type unit . If the test
expression is false , the iteration ends.

The following example illustrates the use of the while...do expression.

F#

The output of the previous code is a stream of random numbers between 1 and 20, the
last of which is 10.

Console

Syntax

while test-expression do
 body-expression

Remarks

open System

let lookForValue value maxValue =
 let mutable continueLooping = true
 let randomNumberGenerator = new Random()
 while continueLooping do
 // Generate a random number between 1 and maxValue.
 let rand = randomNumberGenerator.Next(maxValue)
 printf "%d " rand
 if rand = value then
 printfn "\nFound a %d!" value
 continueLooping <- false

lookForValue 10 20

F# Language Reference
Loops: for...in Expression
Loops: for...to Expression

13 19 8 18 16 2 10
Found a 10!

７ Note

You can use while...do in sequence expressions and other computation
expressions, in which case a customized version of the while...do expression is
used. For more information, see Sequences, Async expressions, Task expressions,
and Computation Expressions.

See also

Pattern Matching
Article • 11/05/2021

Patterns are rules for transforming input data. They are used throughout F# to compare
data with a logical structure or structures, decompose data into constituent parts, or
extract information from data in various ways.

Patterns are used in many language constructs, such as the match expression. They are
used when you are processing arguments for functions in let bindings, lambda
expressions, and in the exception handlers associated with the try...with expression.
For more information, see Match Expressions, let Bindings, Lambda Expressions: The fun
Keyword, and Exceptions: The try...with Expression.

For example, in the match expression, the pattern is what follows the pipe symbol.

F#

Each pattern acts as a rule for transforming input in some way. In the match expression,
each pattern is examined in turn to see if the input data is compatible with the pattern.
If a match is found, the result expression is executed. If a match is not found, the next
pattern rule is tested. The optional when condition part is explained in Match
Expressions.

Supported patterns are shown in the following table. At run time, the input is tested
against each of the following patterns in the order listed in the table, and patterns are
applied recursively, from first to last as they appear in your code, and from left to right
for the patterns on each line.

Name Description Example

Constant pattern Any numeric, character, or string literal, an
enumeration constant, or a defined literal identifier

1.0 , "test" ,
30 , Color.Red

Identifier pattern A case value of a discriminated union, an exception
label, or an active pattern case

Some(x)

Failure(msg)

Remarks

match expression with
| pattern [when condition] -> result-expression
...

Name Description Example

Variable pattern identifier a

as pattern pattern as identifier (a, b) as

tuple1

OR pattern pattern1 | pattern2 ([h] | [h; _])

AND pattern pattern1 & pattern2 (a, b) & (_,

"test")

Cons pattern identifier :: list-identifier h :: t

List pattern [pattern_1; ... ; pattern_n] [a; b; c]

Array pattern [| pattern_1; ..; pattern_n |] [| a; b; c |]

Parenthesized
pattern

(pattern) (a)

Tuple pattern (pattern_1, ... , pattern_n) (a, b)

Record pattern { identifier1 = pattern_1; ... ; identifier_n = pattern_n } { Name = name;

}

Wildcard pattern _ _

Pattern together with
type annotation

pattern : type a : int

Type test pattern :? type [as identifier] :?

System.DateTime

as dt

Null pattern null null

Nameof pattern nameof expr nameof str

Constant patterns are numeric, character, and string literals, enumeration constants
(with the enumeration type name included). A match expression that has only constant
patterns can be compared to a case statement in other languages. The input is
compared with the literal value and the pattern matches if the values are equal. The type
of the literal must be compatible with the type of the input.

Constant Patterns

The following example demonstrates the use of literal patterns, and also uses a variable
pattern and an OR pattern.

F#

Another example of a literal pattern is a pattern based on enumeration constants. You
must specify the enumeration type name when you use enumeration constants.

F#

If the pattern is a string of characters that forms a valid identifier, the form of the
identifier determines how the pattern is matched. If the identifier is longer than a single
character and starts with an uppercase character, the compiler tries to make a match to
the identifier pattern. The identifier for this pattern could be a value marked with the
Literal attribute, a discriminated union case, an exception identifier, or an active pattern

[<Literal>]
let Three = 3

let filter123 x =
 match x with
 // The following line contains literal patterns combined with an OR
pattern.
 | 1 | 2 | Three -> printfn "Found 1, 2, or 3!"
 // The following line contains a variable pattern.
 | var1 -> printfn "%d" var1

for x in 1..10 do filter123 x

type Color =
 | Red = 0
 | Green = 1
 | Blue = 2

let printColorName (color:Color) =
 match color with
 | Color.Red -> printfn "Red"
 | Color.Green -> printfn "Green"
 | Color.Blue -> printfn "Blue"
 | _ -> ()

printColorName Color.Red
printColorName Color.Green
printColorName Color.Blue

Identifier Patterns

case. If no matching identifier is found, the match fails and the next pattern rule, the
variable pattern, is compared to the input.

Discriminated union patterns can be simple named cases or they can have a value, or a
tuple containing multiple values. If there is a value, you must specify an identifier for the
value. In the case of a tuple, you must supply a tuple pattern with an identifier for each
element of the tuple or an identifier with a field name for one or more named union
fields. See the code examples in this section for examples.

The option type is a discriminated union that has two cases, Some and None . One case
(Some) has a value, but the other (None) is just a named case. Therefore, Some needs to
have a variable for the value associated with the Some case, but None must appear by
itself. In the following code, the variable var1 is given the value that is obtained by
matching to the Some case.

F#

In the following example, the PersonName discriminated union contains a mixture of
strings and characters that represent possible forms of names. The cases of the
discriminated union are FirstOnly , LastOnly , and FirstLast .

F#

For discriminated unions that have named fields, you use the equals sign (=) to extract
the value of a named field. For example, consider a discriminated union with a
declaration like the following.

F#

let printOption (data : int option) =
 match data with
 | Some var1 -> printfn "%d" var1
 | None -> ()

type PersonName =
 | FirstOnly of string
 | LastOnly of string
 | FirstLast of string * string

let constructQuery personName =
 match personName with
 | FirstOnly(firstName) -> printf "May I call you %s?" firstName
 | LastOnly(lastName) -> printf "Are you Mr. or Ms. %s?" lastName
 | FirstLast(firstName, lastName) -> printf "Are you %s %s?" firstName
lastName

You can use the named fields in a pattern matching expression as follows.

F#

The use of the named field is optional, so in the previous example, both Circle(r) and
Circle(radius = r) have the same effect.

When you specify multiple fields, use the semicolon (;) as a separator.

F#

Active patterns enable you to define more complex custom pattern matching. For more
information about active patterns, see Active Patterns.

The case in which the identifier is an exception is used in pattern matching in the
context of exception handlers. For information about pattern matching in exception
handling, see Exceptions: The try...with Expression.

The variable pattern assigns the value being matched to a variable name, which is then
available for use in the execution expression to the right of the -> symbol. A variable
pattern alone matches any input, but variable patterns often appear within other
patterns, therefore enabling more complex structures such as tuples and arrays to be
decomposed into variables.

The following example demonstrates a variable pattern within a tuple pattern.

F#

type Shape =
 | Rectangle of height : float * width : float
 | Circle of radius : float

let matchShape shape =
 match shape with
 | Rectangle(height = h) -> printfn $"Rectangle with length %f{h}"
 | Circle(r) -> printfn $"Circle with radius %f{r}"

match shape with
| Rectangle(height = h; width = w) -> printfn $"Rectangle with height %f{h}
and width %f{w}"
| _ -> ()

Variable Patterns

The as pattern is a pattern that has an as clause appended to it. The as clause binds
the matched value to a name that can be used in the execution expression of a match
expression, or, in the case where this pattern is used in a let binding, the name is
added as a binding to the local scope.

The following example uses an as pattern.

F#

The OR pattern is used when input data can match multiple patterns, and you want to
execute the same code as a result. The types of both sides of the OR pattern must be
compatible.

The following example demonstrates the OR pattern.

F#

let function1 x =
 match x with
 | (var1, var2) when var1 > var2 -> printfn "%d is greater than %d" var1
var2
 | (var1, var2) when var1 < var2 -> printfn "%d is less than %d" var1
var2
 | (var1, var2) -> printfn "%d equals %d" var1 var2

function1 (1,2)
function1 (2, 1)
function1 (0, 0)

as Pattern

let (var1, var2) as tuple1 = (1, 2)
printfn "%d %d %A" var1 var2 tuple1

OR Pattern

let detectZeroOR point =
 match point with
 | (0, 0) | (0, _) | (_, 0) -> printfn "Zero found."
 | _ -> printfn "Both nonzero."
detectZeroOR (0, 0)
detectZeroOR (1, 0)
detectZeroOR (0, 10)
detectZeroOR (10, 15)

The AND pattern requires that the input match two patterns. The types of both sides of
the AND pattern must be compatible.

The following example is like detectZeroTuple shown in the Tuple Pattern section later
in this topic, but here both var1 and var2 are obtained as values by using the AND
pattern.

F#

The cons pattern is used to decompose a list into the first element, the head, and a list
that contains the remaining elements, the tail.

F#

The list pattern enables lists to be decomposed into a number of elements. The list
pattern itself can match only lists of a specific number of elements.

AND Pattern

let detectZeroAND point =
 match point with
 | (0, 0) -> printfn "Both values zero."
 | (var1, var2) & (0, _) -> printfn "First value is 0 in (%d, %d)" var1
var2
 | (var1, var2) & (_, 0) -> printfn "Second value is 0 in (%d, %d)" var1
var2
 | _ -> printfn "Both nonzero."
detectZeroAND (0, 0)
detectZeroAND (1, 0)
detectZeroAND (0, 10)
detectZeroAND (10, 15)

Cons Pattern

let list1 = [1; 2; 3; 4]

// This example uses a cons pattern and a list pattern.
let rec printList l =
 match l with
 | head :: tail -> printf "%d " head; printList tail
 | [] -> printfn ""

printList list1

List Pattern

F#

The array pattern resembles the list pattern and can be used to decompose arrays of a
specific length.

F#

Parentheses can be grouped around patterns to achieve the desired associativity. In the
following example, parentheses are used to control associativity between an AND
pattern and a cons pattern.

F#

// This example uses a list pattern.
let listLength list =
 match list with
 | [] -> 0
 | [_] -> 1
 | [_; _] -> 2
 | [_; _; _] -> 3
 | _ -> List.length list

printfn "%d" (listLength [1])
printfn "%d" (listLength [1; 1])
printfn "%d" (listLength [1; 1; 1;])
printfn "%d" (listLength [])

Array Pattern

// This example uses array patterns.
let vectorLength vec =
 match vec with
 | [| var1 |] -> var1
 | [| var1; var2 |] -> sqrt (var1*var1 + var2*var2)
 | [| var1; var2; var3 |] -> sqrt (var1*var1 + var2*var2 + var3*var3)
 | _ -> failwith (sprintf "vectorLength called with an unsupported array
size of %d." (vec.Length))

printfn "%f" (vectorLength [| 1. |])
printfn "%f" (vectorLength [| 1.; 1. |])
printfn "%f" (vectorLength [| 1.; 1.; 1.; |])
printfn "%f" (vectorLength [| |])

Parenthesized Pattern

let countValues list value =
 let rec checkList list acc =

The tuple pattern matches input in tuple form and enables the tuple to be decomposed
into its constituent elements by using pattern matching variables for each position in
the tuple.

The following example demonstrates the tuple pattern and also uses literal patterns,
variable patterns, and the wildcard pattern.

F#

The record pattern is used to decompose records to extract the values of fields. The
pattern does not have to reference all fields of the record; any omitted fields just do not
participate in matching and are not extracted.

F#

 match list with
 | (elem1 & head) :: tail when elem1 = value -> checkList tail (acc +
1)
 | head :: tail -> checkList tail acc
 | [] -> acc
 checkList list 0

let result = countValues [for x in -10..10 -> x*x - 4] 0
printfn "%d" result

Tuple Pattern

let detectZeroTuple point =
 match point with
 | (0, 0) -> printfn "Both values zero."
 | (0, var2) -> printfn "First value is 0 in (0, %d)" var2
 | (var1, 0) -> printfn "Second value is 0 in (%d, 0)" var1
 | _ -> printfn "Both nonzero."
detectZeroTuple (0, 0)
detectZeroTuple (1, 0)
detectZeroTuple (0, 10)
detectZeroTuple (10, 15)

Record Pattern

// This example uses a record pattern.

type MyRecord = { Name: string; ID: int }

let IsMatchByName record1 (name: string) =
 match record1 with

The wildcard pattern is represented by the underscore (_) character and matches any
input, just like the variable pattern, except that the input is discarded instead of assigned
to a variable. The wildcard pattern is often used within other patterns as a placeholder
for values that are not needed in the expression to the right of the -> symbol. The
wildcard pattern is also frequently used at the end of a list of patterns to match any
unmatched input. The wildcard pattern is demonstrated in many code examples in this
topic. See the preceding code for one example.

Patterns can have type annotations. These behave like other type annotations and guide
inference like other type annotations. Parentheses are required around type annotations
in patterns. The following code shows a pattern that has a type annotation.

F#

The type test pattern is used to match the input against a type. If the input type is a
match to (or a derived type of) the type specified in the pattern, the match succeeds.

The following example demonstrates the type test pattern.

F#

 | { MyRecord.Name = nameFound; MyRecord.ID = _; } when nameFound = name
-> true
 | _ -> false

let recordX = { Name = "Parker"; ID = 10 }
let isMatched1 = IsMatchByName recordX "Parker"
let isMatched2 = IsMatchByName recordX "Hartono"

Wildcard Pattern

Patterns That Have Type Annotations

let detect1 x =
 match x with
 | 1 -> printfn "Found a 1!"
 | (var1 : int) -> printfn "%d" var1
detect1 0
detect1 1

Type Test Pattern

If you're only checking if an identifier is of a particular derived type, you don't need the
as identifier part of the pattern, as shown in the following example:

F#

The null pattern matches the null value that can appear when you are working with
types that allow a null value. Null patterns are frequently used when interoperating with
.NET Framework code. For example, the return value of a .NET API might be the input to
a match expression. You can control program flow based on whether the return value is
null, and also on other characteristics of the returned value. You can use the null pattern
to prevent null values from propagating to the rest of your program.

The following example uses the null pattern and the variable pattern.

F#

open System.Windows.Forms

let RegisterControl(control:Control) =
 match control with
 | :? Button as button -> button.Text <- "Registered."
 | :? CheckBox as checkbox -> checkbox.Text <- "Registered."
 | _ -> ()

type A() = class end
type B() = inherit A()
type C() = inherit A()

let m (a: A) =
 match a with
 | :? B -> printfn "It's a B"
 | :? C -> printfn "It's a C"
 | _ -> ()

Null Pattern

let ReadFromFile (reader : System.IO.StreamReader) =
 match reader.ReadLine() with
 | null -> printfn "\n"; false
 | line -> printfn "%s" line; true

let fs = System.IO.File.Open("..\..\Program.fs", System.IO.FileMode.Open)
let sr = new System.IO.StreamReader(fs)
while ReadFromFile(sr) = true do ()
sr.Close()

The nameof pattern matches against a string when its value is equal to the expression
that follows the nameof keyword. for example:

F#

See the nameof operator for information on what you can take a name of.

Match Expressions
Active Patterns
F# Language Reference

Nameof pattern

let f (str: string) =
 match str with
 | nameof str -> "It's 'str'!"
 | _ -> "It is not 'str'!"

f "str" // matches
f "asdf" // does not match

See also

Match expressions
Article • 10/04/2022

The match expression provides branching control that is based on the comparison of an
expression with a set of patterns.

F#

The pattern matching expressions allow for complex branching based on the
comparison of a test expression with a set of patterns. In the match expression, the test-
expression is compared with each pattern in turn, and when a match is found, the
corresponding result-expression is evaluated and the resulting value is returned as the
value of the match expression.

The pattern matching function shown in the previous syntax is a lambda expression in
which pattern matching is performed immediately on the argument. The pattern
matching function shown in the previous syntax is equivalent to the following.

F#

Syntax

// Match expression.
match test-expression with
| pattern1 [when condition] -> result-expression1
| pattern2 [when condition] -> result-expression2
| ...

// Pattern matching function.
function
| pattern1 [when condition] -> result-expression1
| pattern2 [when condition] -> result-expression2
| ...

Remarks

fun arg ->
 match arg with
 | pattern1 [when condition] -> result-expression1
 | pattern2 [when condition] -> result-expression2
 | ...

For more information about lambda expressions, see Lambda Expressions: The fun
Keyword.

The whole set of patterns should cover all the possible matches of the input variable.
Frequently, you use the wildcard pattern (_) as the last pattern to match any previously
unmatched input values.

The following code illustrates some of the ways in which the match expression is used.
For a reference and examples of all the possible patterns that can be used, see Pattern
Matching.

F#

You can use a when clause to specify an additional condition that the variable must
satisfy to match a pattern. Such a clause is referred to as a guard. The expression
following the when keyword is not evaluated unless a match is made to the pattern
associated with that guard.

The following example illustrates the use of a guard to specify a numeric range for a
variable pattern. Note that multiple conditions are combined by using Boolean
operators.

let list1 = [1; 5; 100; 450; 788]

// Pattern matching by using the cons pattern and a list
// pattern that tests for an empty list.
let rec printList listx =
 match listx with
 | head :: tail -> printf "%d " head; printList tail
 | [] -> printfn ""

printList list1

// Pattern matching with multiple alternatives on the same line.
let filter123 x =
 match x with
 | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
 | a -> printfn "%d" a

// The same function written with the pattern matching
// function syntax.
let filterNumbers =
 function | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
 | a -> printfn "%d" a

Guards on patterns

F#

Note that because values other than literals cannot be used in the pattern, you must use
a when clause if you have to compare some part of the input against a value. This is
shown in the following code:

F#

Note that when a union pattern is covered by a guard, the guard applies to all of the
patterns, not just the last one. For example, given the following code, the guard when a
> 41 applies to both A a and B a :

F#

let rangeTest testValue mid size =
 match testValue with
 | var1 when var1 >= mid - size/2 && var1 <= mid + size/2 -> printfn "The
test value is in range."
 | _ -> printfn "The test value is out of range."

rangeTest 10 20 5
rangeTest 10 20 10
rangeTest 10 20 40

// This example uses patterns that have when guards.
let detectValue point target =
 match point with
 | (a, b) when a = target && b = target -> printfn "Both values match
target %d." target
 | (a, b) when a = target -> printfn "First value matched target in (%d,
%d)" target b
 | (a, b) when b = target -> printfn "Second value matched target in (%d,
%d)" a target
 | _ -> printfn "Neither value matches target."
detectValue (0, 0) 0
detectValue (1, 0) 0
detectValue (0, 10) 0
detectValue (10, 15) 0

type Union =
 | A of int
 | B of int

let foo() =
 let test = A 42
 match test with
 | A a
 | B a when a > 41 -> a // the guard applies to both patterns
 | _ -> 1

F# Language Reference
Active Patterns
Pattern Matching

foo() // returns 42

See also

Active Patterns
Article • 11/04/2021

Active patterns enable you to define named partitions that subdivide input data, so that
you can use these names in a pattern matching expression just as you would for a
discriminated union. You can use active patterns to decompose data in a customized
manner for each partition.

F#

In the previous syntax, the identifiers are names for partitions of the input data that is
represented by arguments, or, in other words, names for subsets of the set of all values
of the arguments. There can be up to seven partitions in an active pattern definition. The
expression describes the form into which to decompose the data. You can use an active
pattern definition to define the rules for determining which of the named partitions the
values given as arguments belong to. The (| and |) symbols are referred to as banana
clips and the function created by this type of let binding is called an active recognizer.

As an example, consider the following active pattern with an argument.

F#

Syntax

// Active pattern of one choice.
let (|identifier|) [arguments] valueToMatch = expression

// Active Pattern with multiple choices.
// Uses a FSharp.Core.Choice<_,...,_> based on the number of case names. In
F#, the limitation n <= 7 applies.
let (|identifier1|identifier2|...|) valueToMatch = expression

// Partial active pattern definition.
// Uses a FSharp.Core.option<_> to represent if the type is satisfied at the
call site.
let (|identifier|_|) [arguments] valueToMatch = expression

Remarks

let (|Even|Odd|) input = if input % 2 = 0 then Even else Odd

You can use the active pattern in a pattern matching expression, as in the following
example.

F#

The output of this program is as follows:

Console

Another use of active patterns is to decompose data types in multiple ways, such as
when the same underlying data has various possible representations. For example, a
Color object could be decomposed into an RGB representation or an HSB
representation.

F#

let TestNumber input =
 match input with
 | Even -> printfn "%d is even" input
 | Odd -> printfn "%d is odd" input

TestNumber 7
TestNumber 11
TestNumber 32

7 is odd
11 is odd
32 is even

open System.Drawing

let (|RGB|) (col : System.Drawing.Color) =
 (col.R, col.G, col.B)

let (|HSB|) (col : System.Drawing.Color) =
 (col.GetHue(), col.GetSaturation(), col.GetBrightness())

let printRGB (col: System.Drawing.Color) =
 match col with
 | RGB(r, g, b) -> printfn " Red: %d Green: %d Blue: %d" r g b

let printHSB (col: System.Drawing.Color) =
 match col with
 | HSB(h, s, b) -> printfn " Hue: %f Saturation: %f Brightness: %f" h s b

let printAll col colorString =
 printfn "%s" colorString
 printRGB col
 printHSB col

The output of the above program is as follows:

Console

In combination, these two ways of using active patterns enable you to partition and
decompose data into just the appropriate form and perform the appropriate
computations on the appropriate data in the form most convenient for the computation.

The resulting pattern matching expressions enable data to be written in a convenient
way that is very readable, greatly simplifying potentially complex branching and data
analysis code.

Sometimes, you need to partition only part of the input space. In that case, you write a
set of partial patterns each of which match some inputs but fail to match other inputs.
Active patterns that do not always produce a value are called partial active patterns; they
have a return value that is an option type. To define a partial active pattern, you use a
wildcard character (_) at the end of the list of patterns inside the banana clips. The
following code illustrates the use of a partial active pattern.

F#

printAll Color.Red "Red"
printAll Color.Black "Black"
printAll Color.White "White"
printAll Color.Gray "Gray"
printAll Color.BlanchedAlmond "BlanchedAlmond"

Red
 Red: 255 Green: 0 Blue: 0
 Hue: 360.000000 Saturation: 1.000000 Brightness: 0.500000
Black
 Red: 0 Green: 0 Blue: 0
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.000000
White
 Red: 255 Green: 255 Blue: 255
 Hue: 0.000000 Saturation: 0.000000 Brightness: 1.000000
Gray
 Red: 128 Green: 128 Blue: 128
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.501961
BlanchedAlmond
 Red: 255 Green: 235 Blue: 205
 Hue: 36.000000 Saturation: 1.000000 Brightness: 0.901961

Partial Active Patterns

The output of the previous example is as follows:

Console

When using partial active patterns, sometimes the individual choices can be disjoint or
mutually exclusive, but they need not be. In the following example, the pattern Square
and the pattern Cube are not disjoint, because some numbers are both squares and
cubes, such as 64. The following program uses the AND pattern to combine the Square
and Cube patterns. It prints out all integers up to 1000 that are both squares and cubes,
as well as those which are only cubes.

F#

let (|Integer|_|) (str: string) =
 let mutable intvalue = 0
 if System.Int32.TryParse(str, &intvalue) then Some(intvalue)
 else None

let (|Float|_|) (str: string) =
 let mutable floatvalue = 0.0
 if System.Double.TryParse(str, &floatvalue) then Some(floatvalue)
 else None

let parseNumeric str =
 match str with
 | Integer i -> printfn "%d : Integer" i
 | Float f -> printfn "%f : Floating point" f
 | _ -> printfn "%s : Not matched." str

parseNumeric "1.1"
parseNumeric "0"
parseNumeric "0.0"
parseNumeric "10"
parseNumeric "Something else"

1.100000 : Floating point
0 : Integer
0.000000 : Floating point
10 : Integer
Something else : Not matched.

let err = 1.e-10

let isNearlyIntegral (x:float) = abs (x - round(x)) < err

let (|Square|_|) (x : int) =
 if isNearlyIntegral (sqrt (float x)) then Some(x)
 else None

The output is as follows:

Console

Active patterns always take at least one argument for the item being matched, but they
may take additional arguments as well, in which case the name parameterized active
pattern applies. Additional arguments allow a general pattern to be specialized. For
example, active patterns that use regular expressions to parse strings often include the
regular expression as an extra parameter, as in the following code, which also uses the
partial active pattern Integer defined in the previous code example. In this example,
strings that use regular expressions for various date formats are given to customize the
general ParseRegex active pattern. The Integer active pattern is used to convert the
matched strings into integers that can be passed to the DateTime constructor.

F#

let (|Cube|_|) (x : int) =
 if isNearlyIntegral ((float x) ** (1.0 / 3.0)) then Some(x)
 else None

let findSquareCubes x =
 match x with
 | Cube x & Square _ -> printfn "%d is a cube and a square" x
 | Cube x -> printfn "%d is a cube" x
 | _ -> ()

[1 .. 1000] |> List.iter (fun elem -> findSquareCubes elem)

1 is a cube and a square
8 is a cube
27 is a cube
64 is a cube and a square
125 is a cube
216 is a cube
343 is a cube
512 is a cube
729 is a cube and a square
1000 is a cube

Parameterized Active Patterns

open System.Text.RegularExpressions

// ParseRegex parses a regular expression and returns a list of the strings
that match each group in
// the regular expression.

The output of the previous code is as follows:

Console

Active patterns are not restricted only to pattern matching expressions, you can also use
them on let-bindings.

F#

// List.tail is called to eliminate the first element in the list, which is
the full matched expression,
// since only the matches for each group are wanted.
let (|ParseRegex|_|) regex str =
 let m = Regex(regex).Match(str)
 if m.Success
 then Some (List.tail [for x in m.Groups -> x.Value])
 else None

// Three different date formats are demonstrated here. The first matches
two-
// digit dates and the second matches full dates. This code assumes that if
a two-digit
// date is provided, it is an abbreviation, not a year in the first century.
let parseDate str =
 match str with
 | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{1,2})$" [Integer m; Integer d;
Integer y]
 -> new System.DateTime(y + 2000, m, d)
 | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{3,4})" [Integer m; Integer d;
Integer y]
 -> new System.DateTime(y, m, d)
 | ParseRegex "(\d{1,4})-(\d{1,2})-(\d{1,2})" [Integer y; Integer m;
Integer d]
 -> new System.DateTime(y, m, d)
 | _ -> new System.DateTime()

let dt1 = parseDate "12/22/08"
let dt2 = parseDate "1/1/2009"
let dt3 = parseDate "2008-1-15"
let dt4 = parseDate "1995-12-28"

printfn "%s %s %s %s" (dt1.ToString()) (dt2.ToString()) (dt3.ToString())
(dt4.ToString())

12/22/2008 12:00:00 AM 1/1/2009 12:00:00 AM 1/15/2008 12:00:00 AM 12/28/1995
12:00:00 AM

let (|Default|) onNone value =
 match value with
 | None -> onNone
 | Some e -> e

The output of the previous code is as follows:

Console

Note however that only single-case active patterns can be parameterized.

F#

By default, partial active patterns return an option value, which will involve an allocation
for the Some value on a successful match. Alternatively, you can use a value option as a
return value through the use of the Struct attribute:

F#

The attribute must be specified, because the use of a struct return is not inferred from
simply changing the return type to ValueOption . For more information, see RFC FS-
1039 .

let greet (Default "random citizen" name) =
 printfn "Hello, %s!" name

greet None
greet (Some "George")

Hello, random citizen!
Hello, George!

// A single-case partial active pattern can be parameterized
let (| Foo|_|) s x = if x = s then Some Foo else None
// A multi-case active patterns cannot be parameterized
// let (| Even|Odd|Special |) (s: int) (x: int) = if x = s then Special elif
x % 2 = 0 then Even else Odd

Struct Representations for Partial Active
Patterns

open System

[<return: Struct>]
let (|Int|_|) str =
 match Int32.TryParse(str) with
 | (true, n) -> ValueSome n
 | _ -> ValueNone

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1039-struct-representation-for-active-patterns.md

F# Language Reference
Match Expressions

See also

Exception Handling
Article • 11/05/2021

This section contains information about exception handling support in F#.

Exception handling is the standard way of handling error conditions in the .NET
Framework. Thus, any .NET language must support this mechanism, including F#. An
exception is an object that encapsulates information about an error. When errors occur,
exceptions are raised and regular execution stops. Instead, the runtime searches for an
appropriate handler for the exception. The search starts in the current function, and
proceeds up the stack through the layers of callers until a matching handler is found.
Then the handler is executed.

In addition, as the stack is unwound, the runtime executes any code in finally blocks,
to guarantee that objects are cleaned up correctly during the unwinding process.

Title Description

Exception Types Describes how to declare an exception type.

Exceptions: The
try...with Expression

Describes the language construct that supports exception handling.

Exceptions: The
try...finally
Expression

Describes the language construct that enables you to execute clean-up
code as the stack unwinds when an exception is thrown.

Exceptions: the raise
Function

Describes how to throw an exception object.

Exceptions: The
failwith Function

Describes how to generate a general F# exception.

Exceptions: The
invalidArg Function

Describes how to generate an invalid argument exception.

Exception Handling Basics

Related Topics

Exception Types
Article • 09/15/2021

There are two categories of exceptions in F#: .NET exception types and F# exception
types. This topic describes how to define and use F# exception types.

F#

In the previous syntax, exception-type is the name of a new F# exception type, and
argument-type represents the type of an argument that can be supplied when you raise
an exception of this type. You can specify multiple arguments by using a tuple type for
argument-type.

A typical definition for an F# exception resembles the following.

F#

You can generate an exception of this type by using the raise function, as follows.

F#

You can use an F# exception type directly in the filters in a try...with expression, as
shown in the following example.

F#

Syntax

exception exception-type of argument-type

Remarks

exception MyError of string

raise (MyError("Error message"))

exception Error1 of string
// Using a tuple type as the argument type.
exception Error2 of string * int

let function1 x y =

The exception type that you define with the exception keyword in F# is a new type that
inherits from System.Exception .

Exception Handling
Exceptions: the raise Function
Exception Hierarchy

 try
 if x = y then raise (Error1("x"))
 else raise (Error2("x", 10))
 with
 | Error1(str) -> printfn "Error1 %s" str
 | Error2(str, i) -> printfn "Error2 %s %d" str i

function1 10 10
function1 9 2

See also

https://learn.microsoft.com/en-us/dotnet/standard/exceptions/

Exceptions: The try...with Expression
Article • 11/05/2021

This topic describes the try...with expression, the expression that is used for exception
handling in F#.

F#

The try...with expression is used to handle exceptions in F#. It is similar to the
try...catch statement in C#. In the preceding syntax, the code in expression1 might
generate an exception. The try...with expression returns a value. If no exception is
thrown, the whole expression returns the value of expression1. If an exception is thrown,
each pattern is compared in turn with the exception, and for the first matching pattern,
the corresponding expression, known as the exception handler, for that branch is
executed, and the overall expression returns the value of the expression in that
exception handler. If no pattern matches, the exception propagates up the call stack
until a matching handler is found. The types of the values returned from each expression
in the exception handlers must match the type returned from the expression in the try
block.

Frequently, the fact that an error occurred also means that there is no valid value that
can be returned from the expressions in each exception handler. A frequent pattern is to
have the type of the expression be an option type. The following code example
illustrates this pattern.

F#

Syntax

try
 expression1
with
| pattern1 -> expression2
| pattern2 -> expression3
...

Remarks

let divide1 x y =
 try
 Some (x / y)

Exceptions can be .NET exceptions, or they can be F# exceptions. You can define F#
exceptions by using the exception keyword.

You can use a variety of patterns to filter on the exception type and other conditions;
the options are summarized in the following table.

Pattern Description

:? exception-type Matches the specified .NET exception type.

:? exception-type
as identifier

Matches the specified .NET exception type, but gives the exception a named
value.

exception-
name(arguments)

Matches an F# exception type and binds the arguments.

identifier Matches any exception and binds the name to the exception object.
Equivalent to :? System.Exception asidentifier

identifier when
condition

Matches any exception if the condition is true.

The following code examples illustrate the use of the various exception handler patterns.

F#

 with
 | :? System.DivideByZeroException -> printfn "Division by zero!"; None

let result1 = divide1 100 0

Examples

// This example shows the use of the as keyword to assign a name to a
// .NET exception.
let divide2 x y =
 try
 Some(x / y)
 with
 | :? System.DivideByZeroException as ex -> printfn "Exception! %s "
(ex.Message); None

// This version shows the use of a condition to branch to multiple paths
// with the same exception.
let divide3 x y flag =
 try
 x / y
 with
 | ex when flag -> printfn "TRUE: %s" (ex.ToString()); 0

Exception Handling
Exception Types
Exceptions: The try...finally Expression

 | ex when not flag -> printfn "FALSE: %s" (ex.ToString()); 1

let result2 = divide3 100 0 true

// This version shows the use of F# exceptions.
exception Error1 of string
exception Error2 of string * int

let function1 x y =
 try
 if x = y then raise (Error1("x"))
 else raise (Error2("x", 10))
 with
 | Error1(str) -> printfn "Error1 %s" str
 | Error2(str, i) -> printfn "Error2 %s %d" str i

function1 10 10
function1 9 2

７ Note

The try...with construct is a separate expression from the try...finally
expression. Therefore, if your code requires both a with block and a finally block,
you will have to nest the two expressions.

７ Note

You can use try...with in async expressions, task expressions, and other
computation expressions, in which case a customized version of the try...with
expression is used. For more information, see Async Expressions, Task Expressions,
and Computation Expressions.

See also

Exceptions: The try...finally Expression
Article • 11/04/2021

The try...finally expression enables you to execute clean-up code even if a block of
code throws an exception.

F#

The try...finally expression can be used to execute the code in expression2 in the
preceding syntax regardless of whether an exception is generated during the execution
of expression1.

The type of expression2 does not contribute to the value of the whole expression; the
type returned when an exception does not occur is the last value in expression1. When
an exception does occur, no value is returned and the flow of control transfers to the
next matching exception handler up the call stack. If no exception handler is found, the
program terminates. Before the code in a matching handler is executed or the program
terminates, the code in the finally branch is executed.

The following code demonstrates the use of the try...finally expression.

F#

Syntax

try
 expression1
finally
 expression2

Remarks

let divide x y =
 let stream : System.IO.FileStream = System.IO.File.Create("test.txt")
 let writer : System.IO.StreamWriter = new System.IO.StreamWriter(stream)
 try
 writer.WriteLine("test1")
 Some(x / y)
 finally
 writer.Flush()
 printfn "Closing stream"
 stream.Close()

The output to the console is as follows.

Console

As you can see from the output, the stream was closed before the outer exception was
handled, and the file test.txt contains the text test1 , which indicates that the buffers
were flushed and written to disk even though the exception transferred control to the
outer exception handler.

Note that the try...with construct is a separate construct from the try...finally
construct. Therefore, if your code requires both a with block and a finally block, you
have to nest the two constructs, as in the following code example.

F#

let result =
 try
 divide 100 0
 with
 | :? System.DivideByZeroException -> printfn "Exception handled."; None

Closing stream
Exception handled.

exception InnerError of string
exception OuterError of string

let function1 x y =
 try
 try
 if x = y then raise (InnerError("inner"))
 else raise (OuterError("outer"))
 with
 | InnerError(str) -> printfn "Error1 %s" str
 finally
 printfn "Always print this."

let function2 x y =
 try
 function1 x y
 with
 | OuterError(str) -> printfn "Error2 %s" str

function2 100 100
function2 100 10

In the context of computation expressions, including sequence expressions and async
expressions, try...finally expressions can have a custom implementation. For more
information, see Computation Expressions.

Exception Handling
Exceptions: The try...with Expression

See also

Resource Management: The use
Keyword
Article • 11/04/2021

This topic describes the keyword use and the using function, which can control the
initialization and release of resources.

The term resource is used in more than one way. Yes, resources can be data that an
application uses, such as strings, graphics, and the like, but in this context, resources
refers to software or operating system resources, such as graphics device contexts, file
handles, network and database connections, concurrency objects such as wait handles,
and so on. The use of these resources by applications involves the acquisition of the
resource from the operating system or other resource provider, followed by the later
release of the resource to the pool so that it can be provided to another application.
Problems occur when applications do not release resources back to the common pool.

To efficiently and responsibly manage resources in an application, you must release
resources promptly and in a predictable manner. The .NET Framework helps you do this
by providing the System.IDisposable interface. A type that implements
System.IDisposable has the System.IDisposable.Dispose method, which correctly frees
resources. Well-written applications guarantee that System.IDisposable.Dispose is called
promptly when any object that holds a limited resource is no longer needed.
Fortunately, most .NET languages provide support to make this easier, and F# is no
exception. There are two useful language constructs that support the dispose pattern:
the use binding and the using function.

The use keyword has a form that resembles that of the let binding:

use value = expression

It provides the same functionality as a let binding but adds a call to Dispose on the
value when the value goes out of scope. Note that the compiler inserts a null check on

Resources

Managing Resources

use Binding

the value, so that if the value is null , the call to Dispose is not attempted.

The following example shows how to close a file automatically by using the use
keyword.

F#

The using function has the following form:

using (expression1) function-or-lambda

In a using expression, expression1 creates the object that must be disposed. The result
of expression1 (the object that must be disposed) becomes an argument, value, to
function-or-lambda, which is either a function that expects a single remaining argument
of a type that matches the value produced by expression1, or a lambda expression that
expects an argument of that type. At the end of the execution of the function, the
runtime calls Dispose and frees the resources (unless the value is null , in which case
the call to Dispose is not attempted).

The following example demonstrates the using expression with a lambda expression.

F#

open System.IO

let writetofile filename obj =
 use file1 = File.CreateText(filename)
 file1.WriteLine("{0}", obj.ToString())
 // file1.Dispose() is called implicitly here.

writetofile "abc.txt" "Humpty Dumpty sat on a wall."

７ Note

You can use use in computation expressions, in which case a customized version of
the use expression is used. For more information, see Sequences, Async
expressions, Task expressions, and Computation Expressions.

using Function

open System.IO

let writetofile2 filename obj =
 using (System.IO.File.CreateText(filename)) (fun file1 ->

The next example shows the using expression with a function.

F#

Note that the function could be a function that has some arguments applied already.
The following code example demonstrates this. It creates a file that contains the string
XYZ .

F#

The using function and the use binding are nearly equivalent ways to accomplish the
same thing. The using keyword provides more control over when Dispose is called.
When you use using , Dispose is called at the end of the function or lambda expression;
when you use the use keyword, Dispose is called at the end of the containing code
block. In general, you should prefer to use use instead of the using function.

F# Language Reference

 file1.WriteLine("{0}", obj.ToString())
)

writetofile2 "abc2.txt" "The quick sly fox jumps over the lazy brown dog."

let printToFile (file1 : System.IO.StreamWriter) =
 file1.WriteLine("Test output");

using (System.IO.File.CreateText("test.txt")) printToFile

let printToFile2 obj (file1 : System.IO.StreamWriter) =
 file1.WriteLine(obj.ToString())

using (System.IO.File.CreateText("test.txt")) (printToFile2 "XYZ")

See also

Exceptions: raise and reraise functions
Article • 11/04/2021

The raise function is used to indicate that an error or exceptional condition has
occurred. Information about the error is captured in an exception object.
The reraise function is used to propagate a handled exception up the call chain.

F#

The raise function generates an exception object and initiates a stack unwinding
process. The stack unwinding process is managed by the common language runtime
(CLR), so the behavior of this process is the same as it is in any other .NET language. The
stack unwinding process is a search for an exception handler that matches the
generated exception. The search starts in the current try...with expression, if there is
one. Each pattern in the with block is checked, in order. When a matching exception
handler is found, the exception is considered handled; otherwise, the stack is unwound
and with blocks up the call chain are checked until a matching handler is found. Any
finally blocks that are encountered in the call chain are also executed in sequence as
the stack unwinds.

The raise function is the equivalent of throw in C# or C++.

The following code examples illustrate the use of the raise function to generate an
exception.

F#

Syntax

raise (expression)

Remarks

exception InnerError of string
exception OuterError of string

let function1 x y =
 try
 try
 if x = y then raise (InnerError("inner"))
 else raise (OuterError("outer"))

The raise function can also be used to raise .NET exceptions, as shown in the following
example.

F#

The reraise function can be used in a with block to propagate a handled exception up
the call chain. reraise does not take an exception operand. It's most useful when a
method passes on an argument from a caller to some other library method, and the
library method raises an exception that must be passed on to the caller.

The reraise function may not be used on the with block of try /with constructs in
computed lists, arrays, sequences, or computation expressions including task { .. } or
async { .. } .

F#

 with
 | InnerError(str) -> printfn "Error1 %s" str
 finally
 printfn "Always print this."

let function2 x y =
 try
 function1 x y
 with
 | OuterError(str) -> printfn "Error2 %s" str

function2 100 100
function2 100 10

let divide x y =
 if (y = 0) then raise (System.ArgumentException("Divisor cannot be
zero!"))
 else
 x / y

Reraising an exception

open System

let getFirstCharacter(value: string) =
 try
 value[0]
 with :? IndexOutOfRangeException as e ->
 reraise()

Exception Handling
Exception Types
Exceptions: The try...with Expression
Exceptions: The try...finally Expression
Exceptions: The failwith Function
Exceptions: The invalidArg Function

let s = getFirstCharacter("")
Console.WriteLine($"The first character is {s}")

// The example displays the following output:
// System.IndexOutOfRangeException: Index was outside the bounds of the
array.
// at System.String.get_Chars(Int32 index)
// at getFirstCharacter(String value)
// at <StartupCode>.main@()

See also

Exceptions: The failwith Function
Article • 09/15/2021

The failwith function generates an F# exception.

F#

The error-message-string in the previous syntax is a literal string or a value of type
string . It becomes the Message property of the exception.

The exception that is generated by failwith is a System.Exception exception, which is a
reference that has the name Failure in F# code. The following code illustrates the use
of failwith to throw an exception.

F#

Exception Handling
Exception Types
Exceptions: The try...with Expression
Exceptions: The try...finally Expression

Syntax

failwith error-message-string

Remarks

let divideFailwith x y =
 if (y = 0) then failwith "Divisor cannot be zero."
 else
 x / y

let testDivideFailwith x y =
 try
 divideFailwith x y
 with
 | Failure(msg) -> printfn "%s" msg; 0

let result1 = testDivideFailwith 100 0

See also

Exceptions: the raise Function

Exceptions: The invalidArg Function
Article • 10/12/2021

The invalidArg function generates an argument exception.

F#

The parameter-name in the previous syntax is a string with the name of the parameter
whose argument was invalid. The error-message-string is a literal string or a value of
type string . It becomes the Message property of the exception object.

The exception generated by invalidArg is a System.ArgumentException exception. The
following code illustrates the use of invalidArg to throw an exception.

F#

The output is the following, followed by a stack trace (not shown).

Console

Syntax

invalidArg parameter-name error-message-string

Remarks

let months = [| "January"; "February"; "March"; "April";
 "May"; "June"; "July"; "August"; "September";
 "October"; "November"; "December" |]

let lookupMonth month =
 if (month > 12 || month < 1)
 then invalidArg (nameof month) (sprintf "Value passed in was %d."
month)
 months[month - 1]

printfn "%s" (lookupMonth 12)
printfn "%s" (lookupMonth 1)
printfn "%s" (lookupMonth 13)

December
January
System.ArgumentException: Value passed in was 13. (Parameter 'month')

Exception Handling
Exception Types
Exceptions: The try...with Expression
Exceptions: The try...finally Expression
Exceptions: the raise Function
Exceptions: The failwith Function

See also

Assertions
Article • 09/15/2021

The assert expression is a debugging feature that you can use to test an expression.
Upon failure in Debug mode, an assertion generates a system error dialog box.

F#

The assert expression has type bool -> unit .

The assert function resolves to Debug.Assert. This means its behavior is identical to
having called Debug.Assert directly.

Assertion checking is enabled only when you compile in Debug mode; that is, if the
constant DEBUG is defined. In the project system, by default, the DEBUG constant is
defined in the Debug configuration but not in the Release configuration.

The assertion failure error cannot be caught by using F# exception handling.

The following code example illustrates the use of the assert expression.

F#

Syntax

assert condition

Remarks

Example

let subtractUnsigned (x : uint32) (y : uint32) =
 assert (x > y)
 let z = x - y
 z
// This code does not generate an assertion failure.
let result1 = subtractUnsigned 2u 1u
// This code generates an assertion failure.
let result2 = subtractUnsigned 1u 2u

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debug.assert
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debug.assert

F# Language Reference

See also

F# Types
Article • 11/05/2021

This topic describes the types that are used in F# and how F# types are named and
described.

Some types are considered primitive types, such as the Boolean type bool and integral
and floating point types of various sizes, which include types for bytes and characters.
These types are described in Primitive Types.

Other types that are built into the language include tuples, lists, arrays, sequences,
records, and discriminated unions. If you have experience with other .NET languages
and are learning F#, you should read the topics for each of these types. These F#-
specific types support styles of programming that are common to functional
programming languages. Many of these types have associated modules in the F# library
that support common operations on these types.

The type of a function includes information about the parameter types and return type.

The .NET Framework is the source of object types, interface types, delegate types, and
others. You can define your own object types just as you can in any other .NET language.

Also, F# code can define aliases, which are named type abbreviations, that are alternative
names for types. You might use type abbreviations when the type might change in the
future and you want to avoid changing the code that depends on the type. Or, you
might use a type abbreviation as a friendly name for a type that can make code easier to
read and understand.

F# provides useful collection types that are designed with functional programming in
mind. Using these collection types helps you write code that is more functional in style.
For more information, see F# Collection Types.

In F# code, you often have to write out the names of types. Every type has a syntactic
form, and you use these syntactic forms in type annotations, abstract method
declarations, delegate declarations, signatures, and other constructs. Whenever you
declare a new program construct in the interpreter, the interpreter prints the name of
the construct and the syntax for its type. This syntax might be just an identifier for a

Summary of F# Types

Syntax for Types

user-defined type or a built-in identifier such as for int or string , but for more
complex types, the syntax is more complex.

The following table shows aspects of the type syntax for F# types.

Type Type syntax Examples

primitive type type-name int

float

string

aggregate type (class,
structure, union, record, enum,
and so on)

type-name System.DateTime

Color

type abbreviation type-abbreviation-name bigint

fully qualified type namespaces.type-name

or

modules.type-name

or

namespaces.modules.type-
name

System.IO.StreamWriter

array type-name[] or

type-name array

int[]

array<int>

int array

two-dimensional array type-name[,] int[,]

float[,]

three-dimensional array type-name[,,] float[,,]

tuple type-name1 * type-name2
...

For example, (1,'b',3) has type
int * char * int

Type Type syntax Examples

generic type type-parameter generic-
type-name

or

generic-type-name<type-
parameter-list>

'a list

list<'a>

Dictionary<'key, 'value>

constructed type (a generic
type that has a specific type
argument supplied)

type-argument generic-
type-name

or

generic-type-name<type-
argument-list>

int option

string list

int ref

option<int>

list<string>

ref<int>

Dictionary<int, string>

function type that has a single
parameter

parameter-type1 ->
return-type

A function that takes an int and
returns a string has type int ->
string

function type that has
multiple parameters

parameter-type1 ->
parameter-type2 -> ... ->
return-type

A function that takes an int and a
float and returns a string has
type int -> float -> string

higher order function as a
parameter

(function-type) List.map has type ('a -> 'b) ->
'a list -> 'b list

delegate delegate of function-type delegate of unit -> int

flexible type #type-name #System.Windows.Forms.Control

#seq<int>

Topic Description

Primitive
Types

Describes built-in simple types such as integral types, the Boolean type, and
character types.

Related Topics

Topic Description

Unit Type Describes the unit type, a type that has one value and that is indicated by ();
equivalent to void in C# and Nothing in Visual Basic.

Tuples Describes the tuple type, a type that consists of associated values of any type
grouped in pairs, triples, quadruples, and so on.

Options Describes the option type, a type that may either have a value or be empty.

Lists Describes lists, which are ordered, immutable series of elements all of the same
type.

Arrays Describes arrays, which are ordered sets of mutable elements of the same type
that occupy a contiguous block of memory and are of fixed size.

Sequences Describes the sequence type, which represents a logical series of values;
individual values are computed only as necessary.

Records Describes the record type, a small aggregate of named values.

Discriminated
Unions

Describes the discriminated union type, a type whose values can be any one of a
set of possible types.

Functions Describes function values.

Classes Describes the class type, an object type that corresponds to a .NET reference
type. Class types can contain members, properties, implemented interfaces, and a
base type.

Structs Describes the struct type, an object type that corresponds to a .NET value type.
The struct type usually represents a small aggregate of data.

Interfaces Describes interface types, which are types that represent a set of members that
provide certain functionality but that contain no data. An interface type must be
implemented by an object type to be useful.

Delegates Describes the delegate type, which represents a function as an object.

Enumerations Describes enumeration types, whose values belong to a set of named values.

Attributes Describes attributes, which are used to specify metadata for another type.

Exception
Types

Describes exceptions, which specify error information.

Basic types
Article • 11/05/2021

This topic lists the basic types that are defined in F#. These types are the most
fundamental in F#, forming the basis of nearly every F# program. They are a superset of
.NET primitive types.

Type .NET
type

Description Example

bool Boolean Possible values are true and false . true / false

byte Byte Values from 0 to 255. 1uy

sbyte SByte Values from -128 to 127. 1y

int16 Int16 Values from -32768 to 32767. 1s

uint16 UInt16 Values from 0 to 65535. 1us

int Int32 Values from -2,147,483,648 to 2,147,483,647. 1

uint UInt32 Values from 0 to 4,294,967,295. 1u

int64 Int64 Values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

1L

uint64 UInt64 Values from 0 to 18,446,744,073,709,551,615. 1UL

nativeint IntPtr A native pointer as a signed integer. nativeint

1

unativeint UIntPtr A native pointer as an unsigned integer. unativeint

1

decimal Decimal A floating point data type that has at least 28 significant
digits.

1.0m

float ,
double

Double A 64-bit floating point type. 1.0

float32 ,
single

Single A 32-bit floating point type. 1.0f

char Char Unicode character values. 'c'

string String Unicode text. "str"

https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.byte
https://learn.microsoft.com/en-us/dotnet/api/system.sbyte
https://learn.microsoft.com/en-us/dotnet/api/system.int16
https://learn.microsoft.com/en-us/dotnet/api/system.uint16
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.uint32
https://learn.microsoft.com/en-us/dotnet/api/system.int64
https://learn.microsoft.com/en-us/dotnet/api/system.uint64
https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-us/dotnet/api/system.double
https://learn.microsoft.com/en-us/dotnet/api/system.single
https://learn.microsoft.com/en-us/dotnet/api/system.char
https://learn.microsoft.com/en-us/dotnet/api/system.string

Type .NET
type

Description Example

unit not
applicable

Indicates the absence of an actual value. The type has
only one formal value, which is denoted () . The unit
value, () , is often used as a placeholder where a value is
needed but no real value is available or makes sense.

()

F# Language Reference

７ Note

You can perform computations with integers too big for the 64-bit integer type by
using the bigint type. bigint is not considered a basic type; it is an abbreviation
for System.Numerics.BigInteger .

See also

Unit Type
Article • 09/15/2021

The unit type is a type that indicates the absence of a specific value; the unit type has
only a single value, which acts as a placeholder when no other value exists or is needed.

F#

Every F# expression must evaluate to a value. For expressions that do not generate a
value that is of interest, the value of type unit is used. The unit type resembles the
void type in languages such as C# and C++.

The unit type has a single value, and that value is indicated by the token () .

The value of the unit type is often used in F# programming to hold the place where a
value is required by the language syntax, but when no value is needed or desired. An
example might be the return value of a printf function. Because the important actions
of the printf operation occur in the function, the function does not have to return an
actual value. Therefore, the return value is of type unit .

Some constructs expect a unit value. For example, a do binding or any code at the top
level of a module is expected to evaluate to a unit value. The compiler reports a
warning when a do binding or code at the top level of a module produces a result other
than the unit value that is not used, as shown in the following example.

F#

Syntax

// The value of the unit type.
()

Remarks

let function1 x y = x + y
// The next line results in a compiler warning.
function1 10 20
// Changing the code to one of the following eliminates the warning.
// Use this when you do want the return value.
let result = function1 10 20
// Use this if you are only calling the function for its side effects,

This warning is a characteristic of functional programming; it does not appear in other
.NET programming languages. In a purely functional program, in which functions do not
have any side effects, the final return value is the only result of a function call. Therefore,
when the result is ignored, it is a possible programming error. Although F# is not a
purely functional programming language, it is a good practice to follow functional
programming style whenever possible.

Primitive
F# Language Reference

// and do not want the return value.
function1 10 20 |> ignore

See also

Type Inference
Article • 09/15/2021

This topic describes how the F# compiler infers the types of values, variables,
parameters and return values.

The idea of type inference is that you do not have to specify the types of F# constructs
except when the compiler cannot conclusively deduce the type. Omitting explicit type
information does not mean that F# is a dynamically typed language or that values in F#
are weakly typed. F# is a statically typed language, which means that the compiler
deduces an exact type for each construct during compilation. If there is not enough
information for the compiler to deduce the types of each construct, you must supply
additional type information, typically by adding explicit type annotations somewhere in
the code.

In a parameter list, you do not have to specify the type of each parameter. And yet, F# is
a statically typed language, and therefore every value and expression has a definite type
at compile time. For those types that you do not specify explicitly, the compiler infers
the type based on the context. If the type is not otherwise specified, it is inferred to be
generic. If the code uses a value inconsistently, in such a way that there is no single
inferred type that satisfies all the uses of a value, the compiler reports an error.

The return type of a function is determined by the type of the last expression in the
function.

For example, in the following code, the parameter types a and b and the return type
are all inferred to be int because the literal 100 is of type int .

F#

You can influence type inference by changing the literals. If you make the 100 a uint32
by appending the suffix u , the types of a , b , and the return value are inferred to be
uint32 .

Type Inference in General

Inference of Parameter and Return Types

let f a b = a + b + 100

You can also influence type inference by using other constructs that imply restrictions on
the type, such as functions and methods that work with only a particular type.

Also, you can apply explicit type annotations to function or method parameters or to
variables in expressions, as shown in the following examples. Errors result if conflicts
occur between different constraints.

F#

You can also explicitly specify the return value of a function by providing a type
annotation after all the parameters.

F#

A common case where a type annotation is useful on a parameter is when the
parameter is an object type and you want to use a member.

F#

If the function code is not dependent on the type of a parameter, the compiler
considers the parameter to be generic. This is called automatic generalization, and it can
be a powerful aid to writing generic code without increasing complexity.

For example, the following function combines two parameters of any type into a tuple.

F#

// Type annotations on a parameter.
let addu1 (x : uint32) y =
 x + y

// Type annotations on an expression.
let addu2 x y =
 (x : uint32) + y

let addu1 x y : uint32 =
 x + y

let replace(str: string) =
 str.Replace("A", "a")

Automatic Generalization

let makeTuple a b = (a, b)

The type is inferred to be

F#

Type inference is described in more detail in the F# Language Specification.

Automatic Generalization

'a -> 'b -> 'a * 'b

Additional Information

See also

Type abbreviations
Article • 04/20/2024

A type abbreviation is an alias or alternate name for a type.

F#

You can use type abbreviations to give a type a more meaningful name, in order to
make code easier to read. You can also use them to create an easy to use name for a
type that is otherwise cumbersome to write out. Additionally, you can use type
abbreviations to make it easier to change an underlying type without changing all the
code that uses the type. The following is a simple type abbreviation.

Accessibility of type abbreviations defaults to public .

F#

Type abbreviations can include generic parameters, as in the following code.

F#

In the previous code, Transform is a type abbreviation that represents a function that
takes a single argument of any type and that returns a single value of that same type.

Type abbreviations are not preserved in common intermediate language (CIL) code.
Therefore, when you use an F# assembly from another .NET language, you must use the
underlying type name for a type abbreviation.

Type abbreviations can also be used on units of measure. For more information, see
Units of Measure.

Syntax

type [accessibility-modifier] type-abbreviation = type-name

Remarks

type SizeType = uint32

type Transform<'a> = 'a -> 'a

F# Language Reference

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Ftype-abbreviations&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Ftype-abbreviations.md&documentVersionIndependentId=ba56baa3-7913-42ed-a88f-f278e89acb4d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+105f9300-8b09-128a-12dd-ef80add1ef27+%0A*+Service%3A+**dotnet-fsharp**
https://github.com/dotnet/fsharp

Casting and conversions (F#)
Article • 11/29/2021

This article describes support for type conversions in F#.

F# provides conversion operators for arithmetic conversions between various primitive
types, such as between integer and floating point types. The integral and char
conversion operators have checked and unchecked forms; the floating point operators
and the enum conversion operator do not. The unchecked forms are defined in
FSharp.Core.Operators and the checked forms are defined in
FSharp.Core.Operators.Checked . The checked forms check for overflow and generate a
runtime exception if the resulting value exceeds the limits of the target type.

Each of these operators has the same name as the name of the destination type. For
example, in the following code, in which the types are explicitly annotated, byte appears
with two different meanings. The first occurrence is the type and the second is the
conversion operator.

F#

The following table shows conversion operators defined in F#.

Operator Description

byte Convert to byte, an 8-bit unsigned type.

sbyte Convert to signed byte.

int16 Convert to a 16-bit signed integer.

uint16 Convert to a 16-bit unsigned integer.

int32, int Convert to a 32-bit signed integer.

uint32 Convert to a 32-bit unsigned integer.

int64 Convert to a 64-bit signed integer.

Arithmetic Types

let x : int = 5

let b : byte = byte x

Operator Description

uint64 Convert to a 64-bit unsigned integer.

nativeint Convert to a native integer.

unativeint Convert to an unsigned native integer.

float, double Convert to a 64-bit double-precision IEEE floating point number.

float32, single Convert to a 32-bit single-precision IEEE floating point number.

decimal Convert to System.Decimal .

char Convert to System.Char , a Unicode character.

enum Convert to an enumerated type.

In addition to built-in primitive types, you can use these operators with types that
implement op_Explicit or op_Implicit methods with appropriate signatures. For
example, the int conversion operator works with any type that provides a static
method op_Explicit that takes the type as a parameter and returns int . As a special
exception to the general rule that methods cannot be overloaded by return type, you
can do this for op_Explicit and op_Implicit .

The enum operator is a generic operator that takes one type parameter that represents
the type of the enum to convert to. When it converts to an enumerated type, type
inference attempts to determine the type of the enum that you want to convert to. In the
following example, the variable col1 is not explicitly annotated, but its type is inferred
from the later equality test. Therefore, the compiler can deduce that you are converting
to a Color enumeration. Alternatively, you can supply a type annotation, as with col2 in
the following example.

F#

Enumerated Types

type Color =
 | Red = 1
 | Green = 2
 | Blue = 3

// The target type of the conversion cannot be determined by type inference,
so the type parameter must be explicit.
let col1 = enum<Color> 1

You can also specify the target enumeration type explicitly as a type parameter, as in the
following code:

F#

Note that the enumeration casts work only if the underlying type of the enumeration is
compatible with the type being converted. In the following code, the conversion fails to
compile because of the mismatch between int32 and uint32 .

F#

For more information, see Enumerations.

Conversion between types in an object hierarchy is fundamental to object-oriented
programming. There are two basic types of conversions: casting up (upcasting) and
casting down (downcasting). Casting up a hierarchy means casting from a derived object
reference to a base object reference. Such a cast is guaranteed to work as long as the
base class is in the inheritance hierarchy of the derived class. Casting down a hierarchy,
from a base object reference to a derived object reference, succeeds only if the object
actually is an instance of the correct destination (derived) type or a type derived from
the destination type.

F# provides operators for these types of conversions. The :> operator casts up the
hierarchy, and the :?> operator casts down the hierarchy.

In many object-oriented languages, upcasting is implicit; in F#, the rules are slightly
different. Upcasting is applied automatically when you pass arguments to methods on
an object type. However, for let-bound functions in a module, upcasting is not

// The target type is supplied by a type annotation.
let col2 : Color = enum 2

let col3 = enum<Color> 3

// Error: types are incompatible
let col4 : Color = enum 2u

Casting Object Types

Upcasting

automatic, unless the parameter type is declared as a flexible type. For more
information, see Flexible Types.

The :> operator performs a static cast, which means that the success of the cast is
determined at compile time. If a cast that uses :> compiles successfully, it is a valid cast
and has no chance of failure at run time.

You can also use the upcast operator to perform such a conversion. The following
expression specifies a conversion up the hierarchy:

F#

When you use the upcast operator, the compiler attempts to infer the type you are
converting to from the context. If the compiler is unable to determine the target type,
the compiler reports an error. A type annotation may be required.

The :?> operator performs a dynamic cast, which means that the success of the cast is
determined at run time. A cast that uses the :?> operator is not checked at compile
time; but at run time, an attempt is made to cast to the specified type. If the object is
compatible with the target type, the cast succeeds. If the object is not compatible with
the target type, the runtime raises an InvalidCastException .

You can also use the downcast operator to perform a dynamic type conversion. The
following expression specifies a conversion down the hierarchy to a type that is inferred
from program context:

F#

As for the upcast operator, if the compiler cannot infer a specific target type from the
context, it reports an error. A type annotation may be required.

The following code illustrates the use of the :> and :?> operators. The code illustrates
that the :?> operator is best used when you know that conversion will succeed, because
it throws InvalidCastException if the conversion fails. If you do not know that a
conversion will succeed, a type test that uses a match expression is better because it
avoids the overhead of generating an exception.

upcast expression

Downcasting

downcast expression

F#

Because the generic operators downcast and upcast rely on type inference to determine
the argument and return type, you can replace let base1 = d1 :> Base1 in the previous
code example with let base1: Base1 = upcast d1 .

A type annotation is required, because upcast by itself could not determine the base
class.

Implicit upcasts are inserted in the following situations:

When providing a parameter to a function or method with a known named type.
This includes when a construct such as computation expressions or slicing
becomes a method call.

type Base1() =
 abstract member F : unit -> unit
 default u.F() =
 printfn "F Base1"

type Derived1() =
 inherit Base1()
 override u.F() =
 printfn "F Derived1"

let d1 : Derived1 = Derived1()

// Upcast to Base1.
let base1 = d1 :> Base1

// This might throw an exception, unless
// you are sure that base1 is really a Derived1 object, as
// is the case here.
let derived1 = base1 :?> Derived1

// If you cannot be sure that b1 is a Derived1 object,
// use a type test, as follows:
let downcastBase1 (b1 : Base1) =
 match b1 with
 | :? Derived1 as derived1 -> derived1.F()
 | _ -> ()

downcastBase1 base1

Implicit upcast conversions

When assigning to or mutating a record field or property that has a known named
type.

When a branch of an if/then/else or match expression has a known target type
arising from another branch or overall known type.

When an element of a list, array, or sequence expression has a known target type.

For example, consider the following code:

F#

Here the branches of the conditional compute a TextReader and StreamReader
respectively. On the second branch, the known target type is TextReader from the type
annotation on the method, and from the first branch. This means no upcast is needed
on the second branch.

To show a warning at every point an additional implicit upcast is used, you can enable
warning 3388 (/warnon:3388 or property <WarnOn>3388</WarnOn>).

F# uses explicit widening of numeric types in most cases via conversion operators. For
example, explicit widening is needed for most numeric types, such as int8 or int16 , or
from float32 to float64 , or when either source or destination type is unknown.

However, implicit widening is allowed for 32-bit integers widened to 64-bit integers, in
the same situations as implicit upcasts. For example, consider a typical API shape:

F#

open System
open System.IO

let findInputSource () : TextReader =
 if DateTime.Now.DayOfWeek = DayOfWeek.Monday then
 // On Monday a TextReader
 Console.In
 else
 // On other days a StreamReader
 File.OpenText("path.txt")

Implicit numeric conversions

type Tensor(…) =
 static member Create(sizes: seq<int64>) = Tensor(…)

Integer literals for int64 may be used:

F#

Or integer literals for int32:

F#

Widening happens automatically for int32 to int64 , int32 to nativeint , and int32 to
double , when both source and destination type are known during type inference. So in
cases such as the previous examples, int32 literals can be used:

F#

You can also optionally enable the warning 3389 (/warnon:3389 or property
<WarnOn>3389</WarnOn>) to show a warning at every point implicit numeric widening is
used.

.NET APIs allow the definition of op_Implicit static methods to provide implicit
conversions between types. These are applied automatically in F# code when passing
arguments to methods. For example, consider the following code making explicit calls to
op_Implicit methods:

F#

.NET-style op_Implicit conversions are applied automatically for argument expressions
when types are available for source expression and target type:

F#

Tensor.Create([100L; 10L; 10L])

Tensor.Create([int64 100; int64 10; int64 10])

Tensor.Create([100; 10; 10])

.NET-style implicit conversions

open System.Xml.Linq

let purchaseOrder = XElement.Load("PurchaseOrder.xml")
let partNos = purchaseOrder.Descendants(XName.op_Implicit "Item")

You can also optionally enable the warning 3395 (/warnon:3395 or property
<WarnOn>3395</WarnOn>) to show a warning at every point a .NET-style implicit
conversion is used.

.NET-style op_Implicit conversions are also applied automatically for non-method-
argument expressions in the same situations as implicit upcasts. However, when used
widely or inappropriately, implicit conversions can interact poorly with type inference
and lead to code that's harder to understand. For this reason, these always generate
warnings when used in non-argument positions.

To show a warning at every point that a .NET-style implicit conversion is used for a non-
method argument, you can enable warning 3391 (/warnon:3391 or property
<WarnOn>3391</WarnOn>).

The following optional warnings are provided for uses of implicit conversions:

/warnon:3388 (additional implicit upcast)
/warnon:3389 (implicit numeric widening)
/warnon:3391 (op_Implicit at non-method arguments, on by default)
/warnon:3395 (op_Implicit at method arguments)

F# Language Reference

open System.Xml.Linq

let purchaseOrder = XElement.Load("PurchaseOrder.xml")
let partNos = purchaseOrder.Descendants("Item")

Summary of warnings related to conversions

See also

Generics
Article • 10/12/2021

F# function values, methods, properties, and aggregate types such as classes, records,
and discriminated unions can be generic. Generic constructs contain at least one type
parameter, which is usually supplied by the user of the generic construct. Generic
functions and types enable you to write code that works with a variety of types without
repeating the code for each type. Making your code generic can be simple in F#,
because often your code is implicitly inferred to be generic by the compiler's type
inference and automatic generalization mechanisms.

F#

The declaration of an explicitly generic function or type is much like that of a non-
generic function or type, except for the specification (and use) of the type parameters, in
angle brackets after the function or type name.

Declarations are often implicitly generic. If you do not fully specify the type of every
parameter that is used to compose a function or type, the compiler attempts to infer the
type of each parameter, value, and variable from the code you write. For more
information, see Type Inference. If the code for your type or function does not otherwise
constrain the types of parameters, the function or type is implicitly generic. This process
is named automatic generalization. There are some limits on automatic generalization.
For example, if the F# compiler is unable to infer the types for a generic construct, the
compiler reports an error that refers to a restriction called the value restriction. In that

Syntax

// Explicitly generic function.
let function-name<type-parameters> parameter-list =
function-body

// Explicitly generic method.
[static] member object-identifier.method-name<type-parameters> parameter-
list [return-type] =
method-body

// Explicitly generic class, record, interface, structure,
// or discriminated union.
type type-name<type-parameters> type-definition

Remarks

case, you may have to add some type annotations. For more information about
automatic generalization and the value restriction, and how to change your code to
address the problem, see Automatic Generalization.

In the previous syntax, type-parameters is a comma-separated list of parameters that
represent unknown types, each of which starts with a single quotation mark, optionally
with a constraint clause that further limits what types may be used for that type
parameter. For the syntax for constraint clauses of various kinds and other information
about constraints, see Constraints.

The type-definition in the syntax is the same as the type definition for a non-generic
type. It includes the constructor parameters for a class type, an optional as clause, the
equal symbol, the record fields, the inherit clause, the choices for a discriminated
union, let and do bindings, member definitions, and anything else permitted in a non-
generic type definition.

The other syntax elements are the same as those for non-generic functions and types.
For example, object-identifier is an identifier that represents the containing object itself.

Properties, fields, and constructors cannot be more generic than the enclosing type.
Also, values in a module cannot be generic.

When the F# compiler infers the types in your code, it automatically treats any function
that can be generic as generic. If you specify a type explicitly, such as a parameter type,
you prevent automatic generalization.

In the following code example, makeList is generic, even though neither it nor its
parameters are explicitly declared as generic.

F#

The signature of the function is inferred to be 'a -> 'a -> 'a list . Note that a and b
in this example are inferred to have the same type. This is because they are included in a
list together, and all elements of a list must be of the same type.

You can also make a function generic by using the single quotation mark syntax in a
type annotation to indicate that a parameter type is a generic type parameter. In the

Implicitly Generic Constructs

let makeList a b =
 [a; b]

following code, function1 is generic because its parameters are declared in this manner,
as type parameters.

F#

You can also make a function generic by explicitly declaring its type parameters in angle
brackets (<type-parameter>). The following code illustrates this.

F#

When you use generic functions or methods, you might not have to specify the type
arguments. The compiler uses type inference to infer the appropriate type arguments. If
there is still an ambiguity, you can supply type arguments in angle brackets, separating
multiple type arguments with commas.

The following code shows the use of the functions that are defined in the previous
sections.

F#

let function1 (x: 'a) (y: 'a) =
 printfn "%A %A" x y

Explicitly Generic Constructs

let function2<'T> (x: 'T) (y: 'T) =
 printfn "%A, %A" x y

Using Generic Constructs

// In this case, the type argument is inferred to be int.
function1 10 20
// In this case, the type argument is float.
function1 10.0 20.0
// Type arguments can be specified, but should only be specified
// if the type parameters are declared explicitly. If specified,
// they have an effect on type inference, so in this example,
// a and b are inferred to have type int.
let function3 a b =
 // The compiler reports a warning:
 function1<int> a b
 // No warning.
 function2<int> a b

To specify that a type argument should be inferred by the compiler, you can use the
underscore, or wildcard symbol (_), instead of a named type argument. This is shown in
the following code.

F#

In a generic type or function definition, you can use only those constructs that are
known to be available on the generic type parameter. This is required to enable the
verification of function and method calls at compile time. If you declare your type
parameters explicitly, you can apply an explicit constraint to a generic type parameter to
notify the compiler that certain methods and functions are available. However, if you
allow the F# compiler to infer your generic parameter types, it will determine the
appropriate constraints for you. For more information, see Constraints.

There are two kinds of type parameters that can be used in F# programs. The first are
generic type parameters of the kind described in the previous sections. This first kind of
type parameter is equivalent to the generic type parameters that are used in languages
such as Visual Basic and C#. Another kind of type parameter is specific to F# and is
referred to as a statically resolved type parameter. For information about these
constructs, see Statically Resolved Type Parameters.

７ Note

There are two ways to refer to a generic type by name. For example, list<int> and
int list are two ways to refer to a generic type list that has a single type
argument int . The latter form is conventionally used only with built-in F# types
such as list and option . If there are multiple type arguments, you normally use
the syntax Dictionary<int, string> but you can also use the syntax (int, string)
Dictionary .

Wildcards as Type Arguments

let printSequence (sequence1: Collections.seq<_>) =
 Seq.iter (fun elem -> printf "%s " (elem.ToString())) sequence1

Constraints in Generic Types and Functions

Statically Resolved Type Parameters

F#

Language Reference
Types
Statically Resolved Type Parameters
Generics
Automatic Generalization
Constraints

Examples

// A generic function.
// In this example, the generic type parameter 'a makes function3 generic.
let function3 (x : 'a) (y : 'a) =
 printf "%A %A" x y

// A generic record, with the type parameter in angle brackets.
type GR<'a> =
 {
 Field1: 'a;
 Field2: 'a;
 }

// A generic class.
type C<'a>(a : 'a, b : 'a) =
 let z = a
 let y = b
 member this.GenericMethod(x : 'a) =
 printfn "%A %A %A" x y z

// A generic discriminated union.
type U<'a> =
 | Choice1 of 'a
 | Choice2 of 'a * 'a

type Test() =
 // A generic member
 member this.Function1<'a>(x, y) =
 printfn "%A, %A" x y

 // A generic abstract method.
 abstract abstractMethod<'a, 'b> : 'a * 'b -> unit
 override this.abstractMethod<'a, 'b>(x:'a, y:'b) =
 printfn "%A, %A" x y

See also

https://learn.microsoft.com/en-us/dotnet/standard/generics/

Automatic Generalization
Article • 11/30/2022

F# uses type inference to evaluate the types of functions and expressions. This topic
describes how F# automatically generalizes the arguments and types of functions so
that they work with multiple types when this is possible.

The F# compiler, when it performs type inference on a function, determines whether a
given parameter can be generic. The compiler examines each parameter and determines
whether the function has a dependency on the specific type of that parameter. If it does
not, the type is inferred to be generic.

The following code example illustrates a function that the compiler infers to be generic.

F#

The type is inferred to be 'a -> 'a -> 'a .

The type indicates that this is a function that takes two arguments of the same unknown
type and returns a value of that same type. One of the reasons that the previous
function can be generic is that the greater-than operator (>) is itself generic. The
greater-than operator has the signature 'a -> 'a -> bool . Not all operators are generic,
and if the code in a function uses a parameter type together with a non-generic function
or operator, that parameter type cannot be generalized.

Because max is generic, it can be used with types such as int , float , and so on, as
shown in the following examples.

F#

However, the two arguments must be of the same type. The signature is 'a -> 'a ->
'a , not 'a -> 'b -> 'a . Therefore, the following code produces an error because the
types do not match.

Automatic Generalization

let max a b = if a > b then a else b

let biggestFloat = max 2.0 3.0
let biggestInt = max 2 3

F#

The max function also works with any type that supports the greater-than operator.
Therefore, you could also use it on a string, as shown in the following code.

F#

The compiler performs automatic generalization only on complete function definitions
that have explicit arguments, and on simple immutable values.

This means that the compiler issues an error if you try to compile code that is not
sufficiently constrained to be a specific type, but is also not generalizable. The error
message for this problem refers to this restriction on automatic generalization for values
as the value restriction.

Typically, the value restriction error occurs either when you want a construct to be
generic but the compiler has insufficient information to generalize it, or when you
unintentionally omit sufficient type information in a nongeneric construct. The solution
to the value restriction error is to provide more explicit information to more fully
constrain the type inference problem, in one of the following ways:

Constrain a type to be nongeneric by adding an explicit type annotation to a value
or parameter.

If the problem is using a nongeneralizable construct to define a generic function,
such as a function composition or incompletely applied curried function
arguments, try to rewrite the function as an ordinary function definition.

If the problem is an expression that is too complex to be generalized, make it into
a function by adding an extra, unused parameter.

Add explicit generic type parameters. This option is rarely used.

The following code examples illustrate each of these scenarios.

// Error: type mismatch.
let biggestIntFloat = max 2.0 3

let testString = max "cab" "cat"

Value Restriction

Case 1: Too complex an expression. In this example, the list counter is intended to be
int option ref , but it is not defined as a simple immutable value.

F#

Case 2: Using a nongeneralizable construct to define a generic function. In this example,
the construct is nongeneralizable because it involves partial application of function
arguments.

F#

Case 3: Adding an extra, unused parameter. Because this expression is not simple
enough for generalization, the compiler issues the value restriction error.

F#

Case 4: Adding type parameters.

F#

In the last case, the value becomes a type function, which may be used to create values
of many different types, for example as follows:

F#

let counter = ref None
// Adding a type annotation fixes the problem:
let counter : int option ref = ref None

let maxhash = max << hash
// The following is acceptable because the argument for maxhash is explicit:
let maxhash obj = (max << hash) obj

let emptyList10 = Array.create 10 []
// Adding an extra (unused) parameter makes it a function, which is
generalizable.
let emptyList10 () = Array.create 10 []

let arrayOf10Lists = Array.create 10 []
// Adding a type parameter and type annotation lets you write a generic
value.
let arrayOf10Lists<'T> = Array.create 10 ([]:'T list)

let intLists = arrayOf10Lists<int>
let floatLists = arrayOf10Lists<float>

Type Inference
Generics
Statically Resolved Type Parameters
Constraints

See also

Constraints
Article • 03/10/2023

This topic describes constraints that you can apply to generic type parameters to specify
the requirements for a type argument in a generic type or function.

F#

There are several different constraints you can apply to limit the types that can be used
in a generic type. The following table lists and describes these constraints.

Constraint Syntax Description

Type
Constraint

type-parameter :>
type

The provided type must be equal to or derived from the type
specified, or, if the type is an interface, the provided type
must implement the interface.

Null
Constraint

type-parameter :
null

The provided type must support the null literal. This includes
all .NET object types but not F# list, tuple, function, class,
record, or union types.

Explicit
Member
Constraint

[(]type-parameter
[or ... or type-
parameter)] :
(member-
signature)

At least one of the type arguments provided must have a
member that has the specified signature; not intended for
common use. Members must be either explicitly defined on
the type or part of an implicit type extension to be valid
targets for an Explicit Member Constraint.

Constructor
Constraint

type-parameter : (
new : unit -> 'a)

The provided type must have a parameterless constructor.

Value Type
Constraint

type-parameter :
struct

The provided type must be a .NET value type.

Reference
Type
Constraint

type-parameter :
not struct

The provided type must be a .NET reference type.

Syntax

type-parameter-list when constraint1 [and constraint2]

Remarks

Constraint Syntax Description

Enumeration
Type
Constraint

type-parameter :
enum<underlying-
type>

The provided type must be an enumerated type that has the
specified underlying type; not intended for common use.

Delegate
Constraint

type-parameter :
delegate<tuple-
parameter-type,
return-type>

The provided type must be a delegate type that has the
specified arguments and return value; not intended for
common use.

Comparison
Constraint

type-parameter :
comparison

The provided type must support comparison.

Equality
Constraint

type-parameter :
equality

The provided type must support equality.

Unmanaged
Constraint

type-parameter :
unmanaged

The provided type must be an unmanaged type. Unmanaged
types are either certain primitive types (sbyte , byte , char ,
nativeint , unativeint , float32 , float , int16 , uint16 ,
int32 , uint32 , int64 , uint64 , or decimal), enumeration
types, nativeptr<_> , or a non-generic structure whose fields
are all unmanaged types.

You have to add a constraint when your code has to use a feature that is available on
the constraint type but not on types in general. For example, if you use the type
constraint to specify a class type, you can use any one of the methods of that class in
the generic function or type.

Specifying constraints is sometimes required when writing type parameters explicitly,
because without a constraint, the compiler has no way of verifying that the features that
you are using will be available on any type that might be supplied at run time for the
type parameter.

The most common constraints you use in F# code are type constraints that specify base
classes or interfaces. The other constraints are either used by the F# library to
implement certain functionality, such as the explicit member constraint, which is used to
implement operator overloading for arithmetic operators, or are provided mainly
because F# supports the complete set of constraints that is supported by the common
language runtime.

During the type inference process, some constraints are inferred automatically by the
compiler. For example, if you use the + operator in a function, the compiler infers an
explicit member constraint on variable types that are used in the expression.

The following code illustrates some constraint declarations:

F#

// Base Type Constraint
type Class1<'T when 'T :> System.Exception> =
 class end

// Interface Type Constraint
type Class2<'T when 'T :> System.IComparable> =
 class end

// Null constraint
type Class3<'T when 'T : null> =
 class end

// Member constraint with instance member
type Class5<'T when 'T : (member Method1 : 'T -> int)> =
 class end

// Member constraint with property
type Class6<'T when 'T : (member Property1 : int)> =
 class end

// Constructor constraint
type Class7<'T when 'T : (new : unit -> 'T)>() =
 member val Field = new 'T()

// Reference type constraint
type Class8<'T when 'T : not struct> =
 class end

// Enumeration constraint with underlying value specified
type Class9<'T when 'T : enum<uint32>> =
 class end

// 'T must implement IComparable, or be an array type with comparable
// elements, or be System.IntPtr or System.UIntPtr. Also, 'T must not have
// the NoComparison attribute.
type Class10<'T when 'T : comparison> =
 class end

// 'T must support equality. This is true for any type that does not
// have the NoEquality attribute.
type Class11<'T when 'T : equality> =
 class end

type Class12<'T when 'T : delegate<obj * System.EventArgs, unit>> =
 class end

type Class13<'T when 'T : unmanaged> =
 class end

// Member constraints with two type parameters
// Most often used with static type parameters in inline functions
let inline add(value1 : ^T when ^T : (static member (+) : ^T * ^T -> ^T),

Generics

value2: ^T) =
 value1 + value2

// ^T and ^U must support operator +
let inline heterogenousAdd(value1 : ^T when (^T or ^U) : (static member (+)
: ^T * ^U -> ^T), value2 : ^U) =
 value1 + value2

// If there are multiple constraints, use the and keyword to separate them.
type Class14<'T,'U when 'T : equality and 'U : equality> =
 class end

See also

Statically Resolved Type Parameters
Article • 10/31/2023

A statically resolved type parameter is a type parameter that is replaced with an actual
type at compile time instead of at run time.

F#

Up to version 7.0 of F#, one had to use the following syntax

F#

In F#, there are two distinct kinds of type parameters. The first kind is the standard
generic type parameter. They are equivalent to generic type parameters in other .Net
languages. The other kind is statically resolved and can only be used in inlined functions.

Statically resolved type parameters are primarily useful in conjunction with member
constraints, which are constraints that allow you to specify that a type argument must
have a particular member or members in order to be used. There is no way to create this
kind of constraint by using a regular generic type parameter.

The following table summarizes the similarities and differences between the two kinds
of type parameters.

Feature Generic Statically resolved

Resolution
time

Run time Compile time

Member
constraints

Cannot be used with member constraints. Can be used with member
constraints.

Code
generation

A type (or method) with standard generic type
parameters results in the generation of a single

Multiple instantiations of
types and methods are

Syntax

'type-parameter

^type-parameter

Remarks

Feature Generic Statically resolved

generic type or method. generated, one for each type
that is needed.

Use with
types

Can be used on types. Cannot be used on types.

Use with
inline
functions

An inline function cannot be parameterized with a
standard generic type parameter. If the inputs
aren't fully generic, the F# compiler specializes
them or, if there are no options to specialize, gives
an error.

Statically resolved type
parameters cannot be used
on functions or methods
that are not inline.

Many F# core library functions, especially operators, have statically resolved type
parameters. These functions and operators are inline, and result in efficient code
generation for numeric computations.

Inline methods and functions that use operators, or use other functions that have
statically resolved type parameters, can also use statically resolved type parameters
themselves. Often, type inference infers such inline functions to have statically resolved
type parameters. The following example illustrates an operator definition that is inferred
to have a statically resolved type parameter.

F#

The resolved type of (+@) is based on the use of both (+) and (*) , both of which
cause type inference to infer member constraints on the statically resolved type
parameters. The resolved type, as shown in the F# interpreter, is as follows.

F#

The output is as follows.

Console

let inline (+@) x y = x + x * y
// Call that uses int.
printfn "%d" (1 +@ 1)
// Call that uses float.
printfn "%f" (1.0 +@ 0.5)

'a -> 'c -> 'd
when ('a or 'b) : (static member (+) : 'a * 'b -> 'd) and
('a or 'c) : (static member (*) : 'a * 'c -> 'b)

The following example illustrates the usage of SRTPs with methods and static methods:

F#

Starting with F# 7.0, you can use 'a.Zero() instead of having to repeat the constraint as
in the example below.

Starting with F# 4.1, you can also specify concrete type names in statically resolved type
parameter signatures. In previous versions of the language, the type name was inferred
by the compiler, but could not be specified in the signature. As of F# 4.1, you may also
specify concrete type names in statically resolved type parameter signatures. Here's an
example (please not that in this example, ^ must still be used because the simplification
to use ' is not supported):

F#

2
1.500000

type Record =
 { Number: int }
 member this.Double() = { Number = this.Number * 2 }
 static member Zero() = { Number = 0 }

let inline double<'a when 'a:(member Double: unit -> 'a)> (x: 'a) =
x.Double()
let inline zero<'a when 'a:(static member Zero: unit -> 'a)> () = 'a.Zero()

let r: Record = zero ()
let doubleR = double r

let inline konst x _ = x

type CFunctor() =
 static member inline fmap (f: ^a -> ^b, a: ^a list) = List.map f a
 static member inline fmap (f: ^a -> ^b, a: ^a option) =
 match a with
 | None -> None
 | Some x -> Some (f x)

 // default implementation of replace
 static member inline replace< ^a, ^b, ^c, ^d, ^e when ^a :> CFunctor and
(^a or ^d): (static member fmap: (^b -> ^c) * ^d -> ^e) > (a, f) =
 ((^a or ^d) : (static member fmap : (^b -> ^c) * ^d -> ^e) (konst a,
f))

 // call overridden replace if present
 static member inline replace< ^a, ^b, ^c when ^b: (static member

Generics
Type Inference
Automatic Generalization
Constraints
Inline Functions

replace: ^a * ^b -> ^c)>(a: ^a, f: ^b) =
 (^b : (static member replace: ^a * ^b -> ^c) (a, f))

let inline replace_instance< ^a, ^b, ^c, ^d when (^a or ^c): (static member
replace: ^b * ^c -> ^d)> (a: ^b, f: ^c) =
 ((^a or ^c): (static member replace: ^b * ^c -> ^d) (a, f))

// Note the concrete type 'CFunctor' specified in the signature
let inline replace (a: ^a) (f: ^b): ^a0 when (CFunctor or ^b): (static
member replace: ^a * ^b -> ^a0) =
 replace_instance<CFunctor, _, _, _> (a, f)

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Fgenerics%2Fstatically-resolved-type-parameters&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Fgenerics%2Fstatically-resolved-type-parameters.md&documentVersionIndependentId=1abc963d-0fa8-a313-0637-e99dd67064ed&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp

Flexible Types
Article • 09/15/2021

A flexible type annotation indicates that a parameter, variable, or value has a type that is
compatible with a specified type, where compatibility is determined by position in an
object-oriented hierarchy of classes or interfaces. Flexible types are useful specifically
when the automatic conversion to types higher in the type hierarchy does not occur but
you still want to enable your functionality to work with any type in the hierarchy or any
type that implements an interface.

F#

In the previous syntax, type represents a base type or an interface.

A flexible type is equivalent to a generic type that has a constraint that limits the
allowed types to types that are compatible with the base or interface type. That is, the
following two lines of code are equivalent.

F#

Flexible types are useful in several types of situations. For example, when you have a
higher order function (a function that takes a function as an argument), it is often useful
to have the function return a flexible type. In the following example, the use of a flexible
type with a sequence argument in iterate2 enables the higher order function to work
with functions that generate sequences, arrays, lists, and any other enumerable type.

Consider the following two functions, one of which returns a sequence, the other of
which returns a flexible type.

F#

Syntax

#type

Remarks

#SomeType

'T when 'T :> SomeType

As another example, consider the Seq.concat library function:

F#

You can pass any of the following enumerable sequences to this function:

A list of lists
A list of arrays
An array of lists
An array of sequences
Any other combination of enumerable sequences

The following code uses Seq.concat to demonstrate the scenarios that you can support
by using flexible types.

F#

let iterate1 (f : unit -> seq<int>) =
 for e in f() do printfn "%d" e
let iterate2 (f : unit -> #seq<int>) =
 for e in f() do printfn "%d" e

// Passing a function that takes a list requires a cast.
iterate1 (fun () -> [1] :> seq<int>)

// Passing a function that takes a list to the version that specifies a
// flexible type as the return value is OK as is.
iterate2 (fun () -> [1])

val concat: sequences:seq<#seq<'T>> -> seq<'T>

let list1 = [1;2;3]
let list2 = [4;5;6]
let list3 = [7;8;9]

let concat1 = Seq.concat [list1; list2; list3]
printfn "%A" concat1

let array1 = [|1;2;3|]
let array2 = [|4;5;6|]
let array3 = [|7;8;9|]

let concat2 = Seq.concat [array1; array2; array3]
printfn "%A" concat2

let concat3 = Seq.concat [| list1; list2; list3 |]
printfn "%A" concat3

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#concat

The output is as follows.

Console

In F#, as in other object-oriented languages, there are contexts in which derived types or
types that implement interfaces are automatically converted to a base type or interface
type. These automatic conversions occur in direct arguments, but not when the type is
in a subordinate position, as part of a more complex type such as a return type of a
function type, or as a type argument. Thus, the flexible type notation is primarily useful
when the type you are applying it to is part of a more complex type.

F# Language Reference
Generics

let concat4 = Seq.concat [| array1; array2; array3 |]
printfn "%A" concat4

let seq1 = { 1 .. 3 }
let seq2 = { 4 .. 6 }
let seq3 = { 7 .. 9 }

let concat5 = Seq.concat [| seq1; seq2; seq3 |]

printfn "%A" concat5

seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]

See also

Units of Measure
Article • 10/14/2023

Floating point and signed integer values in F# can have associated units of measure,
which are typically used to indicate length, volume, mass, and so on. By using quantities
with units, you enable the compiler to verify that arithmetic relationships have the
correct units, which helps prevent programming errors.

F#

The previous syntax defines unit-name as a unit of measure. The optional part is used to
define a new measure in terms of previously defined units. For example, the following
line defines the measure cm (centimeter).

F#

The following line defines the measure ml (milliliter) as a cubic centimeter (cm^3).

F#

In the previous syntax, measure is a formula that involves units. In formulas that involve
units, integral powers are supported (positive and negative), spaces between units

７ Note

These examples demonstrates correctness in arithmetic computations involving
units of measure, the feature can also be leveraged for adding type safe annotation
with zero representation costs to other types, with approach such as
FSharp.UMX project.

Syntax

[<Measure>] type unit-name [= measure]

Remarks

[<Measure>] type cm

[<Measure>] type ml = cm^3

https://github.com/fsprojects/FSharp.UMX

indicate a product of the two units, * also indicates a product of units, and / indicates
a quotient of units. For a reciprocal unit, you can either use a negative integer power or
a / that indicates a separation between the numerator and denominator of a unit
formula. Multiple units in the denominator should be surrounded by parentheses. Units
separated by spaces after a / are interpreted as being part of the denominator, but any
units following a * are interpreted as being part of the numerator.

You can use 1 in unit expressions, either alone to indicate a dimensionless quantity, or
together with other units, such as in the numerator. For example, the units for a rate
would be written as 1/s , where s indicates seconds. Parentheses are not used in unit
formulas. You do not specify numeric conversion constants in the unit formulas;
however, you can define conversion constants with units separately and use them in
unit-checked computations.

Unit formulas that mean the same thing can be written in various equivalent ways.
Therefore, the compiler converts unit formulas into a consistent form, which converts
negative powers to reciprocals, groups units into a single numerator and a denominator,
and alphabetizes the units in the numerator and denominator.

For example, the unit formulas kg m s^-2 and m /s s * kg are both converted to kg
m/s^2 .

You use units of measure in floating point expressions. Using floating point numbers
together with associated units of measure adds another level of type safety and helps
avoid the unit mismatch errors that can occur in formulas when you use weakly typed
floating point numbers. If you write a floating point expression that uses units, the units
in the expression must match.

You can annotate literals with a unit formula in angle brackets, as shown in the following
examples.

F#

You do not put a space between the number and the angle bracket; however, you can
include a literal suffix such as f , as in the following example.

F#

1.0<cm>
55.0<miles/hour>

// The f indicates single-precision floating point.
55.0f<miles/hour>

Such an annotation changes the type of the literal from its primitive type (such as
float) to a dimensioned type, such as float<cm> or, in this case, float<miles/hour> . A
unit annotation of <1> indicates a dimensionless quantity, and its type is equivalent to
the primitive type without a unit parameter.

The type of a unit of measure is a floating point or signed integral type together with an
extra unit annotation, indicated in brackets. Thus, when you write the type of a
conversion from g (grams) to kg (kilograms), you describe the types as follows.

F#

Units of measure are used for compile-time unit checking but are not persisted in the
run-time environment. Therefore, they do not affect performance.

Units of measure can be applied to any type, not just floating point types; however, only
floating point types, signed integral types, and decimal types support dimensioned
quantities. Therefore, it only makes sense to use units of measure on the primitive types
and on aggregates that contain these primitive types.

The following example illustrates the use of units of measure.

F#

let convertg2kg (x : float<g>) = x / 1000.0<g/kg>

// Mass, grams.
[<Measure>] type g
// Mass, kilograms.
[<Measure>] type kg
// Weight, pounds.
[<Measure>] type lb

// Distance, meters.
[<Measure>] type m
// Distance, cm
[<Measure>] type cm

// Distance, inches.
[<Measure>] type inch
// Distance, feet
[<Measure>] type ft

// Time, seconds.
[<Measure>] type s

// Force, Newtons.
[<Measure>] type N = kg m / s^2

The following code example illustrates how to convert from a dimensionless floating
point number to a dimensioned floating point value. You just multiply by 1.0, applying
the dimensions to the 1.0. You can abstract this into a function like degreesFahrenheit .

Also, when you pass dimensioned values to functions that expect dimensionless floating
point numbers, you must cancel out the units or cast to float by using the float
operator. In this example, you divide by 1.0<degC> for the arguments to printf because
printf expects dimensionless quantities.

F#

// Pressure, bar.
[<Measure>] type bar
// Pressure, Pascals
[<Measure>] type Pa = N / m^2

// Volume, milliliters.
[<Measure>] type ml
// Volume, liters.
[<Measure>] type L

// Define conversion constants.
let gramsPerKilogram : float<g kg^-1> = 1000.0<g/kg>
let cmPerMeter : float<cm/m> = 100.0<cm/m>
let cmPerInch : float<cm/inch> = 2.54<cm/inch>

let mlPerCubicCentimeter : float<ml/cm^3> = 1.0<ml/cm^3>
let mlPerLiter : float<ml/L> = 1000.0<ml/L>

// Define conversion functions.
let convertGramsToKilograms (x : float<g>) = x / gramsPerKilogram
let convertCentimetersToInches (x : float<cm>) = x / cmPerInch

[<Measure>] type degC // temperature, Celsius/Centigrade
[<Measure>] type degF // temperature, Fahrenheit

let convertCtoF (temp : float<degC>) = 9.0<degF> / 5.0<degC> * temp +
32.0<degF>
let convertFtoC (temp: float<degF>) = 5.0<degC> / 9.0<degF> * (temp -
32.0<degF>)

// Define conversion functions from dimensionless floating point values.
let degreesFahrenheit temp = temp * 1.0<degF>
let degreesCelsius temp = temp * 1.0<degC>

printfn "Enter a temperature in degrees Fahrenheit."
let input = System.Console.ReadLine()
let parsedOk, floatValue = System.Double.TryParse(input)
if parsedOk
 then
 printfn "That temperature in Celsius is %8.2f degrees C."

The following example session shows the outputs from and inputs to this code.

Console

The following types or type abbreviation aliases support unit-of-measure annotations:

F# alias CLR Type

float32 / single System.Single

float / double System.Double

decimal System.Decimal

sbyte / int8 System.SByte

int16 System.Int16

int / int32 System.Int32

int64 System.Int64

byte / uint8 System.Byte

uint16 System.UInt16

uint / uint32 System.UInt32

uint64 System.UIn64

nativeint System.IntPtr

unativeint System.UIntPtr

For example, you can annotate an unsigned integer as follows:

F#

((convertFtoC (degreesFahrenheit floatValue))/(1.0<degC>))
 else
 printfn "Error parsing input."

Enter a temperature in degrees Fahrenheit.
90
That temperature in degrees Celsius is 32.22.

Primitive Types supporting Units of Measure

The addition of unsigned integer types to this feature is documented in F# RFC FS-
1091 .

A unit library is available in the FSharp.Data.UnitSystems.SI namespace. It includes SI
units in both their symbol form (like m for meter) in the UnitSymbols subnamespace,
and in their full name (like meter for meter) in the UnitNames subnamespace.

You can write generic functions that operate on data that has an associated unit of
measure. You do this by specifying a type together with a generic unit as a type
parameter, as shown in the following code example.

F#

[<Measure>]
type days

let better_age = 3u<days>

Pre-defined Units of Measure

Using Generic Units

// Distance, meters.
[<Measure>] type m
// Time, seconds.
[<Measure>] type s

let genericSumUnits (x : float<'u>) (y: float<'u>) = x + y

let v1 = 3.1<m/s>
let v2 = 2.7<m/s>
let x1 = 1.2<m>
let t1 = 1.0<s>

// OK: a function that has unit consistency checking.
let result1 = genericSumUnits v1 v2
// Error reported: mismatched units.
// Uncomment to see error.
// let result2 = genericSumUnits v1 x1

Creating Collection Types with Generic Units

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1091-Extend-Units-of-Measure.md

The following code shows how to create an aggregate type that consists of individual
floating point values that have units that are generic. This enables a single type to be
created that works with a variety of units. Also, generic units preserve type safety by
ensuring that a generic type that has one set of units is a different type than the same
generic type with a different set of units. The basis of this technique is that the Measure
attribute can be applied to the type parameter.

F#

Units of measure are used for static type checking. When floating point values are
compiled, the units of measure are eliminated, so the units are lost at run time.
Therefore, any attempt to implement functionality that depends on checking the units at
run time is not possible. For example, implementing a ToString function to print out the
units is not possible.

To convert a type that has units (for example, float<'u>) to a type that does not have
units, you can use the standard conversion function. For example, you can use float to
convert to a float value that does not have units, as shown in the following code.

F#

 // Distance, meters.
[<Measure>] type m
// Time, seconds.
[<Measure>] type s

// Define a vector together with a measure type parameter.
// Note the attribute applied to the type parameter.
type vector3D<[<Measure>] 'u> = { x : float<'u>; y : float<'u>; z :
float<'u>}

// Create instances that have two different measures.
// Create a position vector.
let xvec : vector3D<m> = { x = 0.0<m>; y = 0.0<m>; z = 0.0<m> }
// Create a velocity vector.
let v1vec : vector3D<m/s> = { x = 1.0<m/s>; y = -1.0<m/s>; z = 0.0<m/s> }

Units at Runtime

Conversions

[<Measure>]
type cm

To convert a unitless value to a value that has units, you can multiply by a 1 or 1.0 value
that is annotated with the appropriate units. However, for writing interoperability layers,
there are also some explicit functions that you can use to convert unitless values to
values with units. These are in the FSharp.Core.LanguagePrimitives module. For
example, to convert from a unitless float to a float<cm> , use FloatWithMeasure , as
shown in the following code.

F#

F# Language Reference

let length = 12.0<cm>
let x = float length

open Microsoft.FSharp.Core
let height:float<cm> = LanguagePrimitives.FloatWithMeasure x

See also

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

 Open a documentation issue

 Provide product feedback

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-languageprimitives.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-languageprimitives.html#FloatWithMeasure
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Funits-of-measure&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Funits-of-measure.md&documentVersionIndependentId=140f7aba-3cb3-f74b-09c1-514ee278f6c0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp

Byrefs
Article • 12/16/2021

F# has two major feature areas that deal in the space of low-level programming:

The byref /inref /outref types, which are managed pointers. They have
restrictions on usage so that you cannot compile a program that is invalid at run
time.
A byref -like struct, which is a struct that has similar semantics and the same
compile-time restrictions as byref<'T> . One example is Span<T>.

F#

There are three forms of byref :

inref<'T> , a managed pointer for reading the underlying value.
outref<'T> , a managed pointer for writing to the underlying value.
byref<'T> , a managed pointer for reading and writing the underlying value.

A byref<'T> can be passed where an inref<'T> is expected. Similarly, a byref<'T> can
be passed where an outref<'T> is expected.

Syntax

// Byref types as parameters
let f (x: byref<'T>) = ()
let g (x: inref<'T>) = ()
let h (x: outref<'T>) = ()

// Calling a function with a byref parameter
let mutable x = 3
f &x

// Declaring a byref-like struct
open System.Runtime.CompilerServices

[<Struct; IsByRefLike>]
type S(count1: int, count2: int) =
 member x.Count1 = count1
 member x.Count2 = count2

Byref, inref, and outref

https://learn.microsoft.com/en-us/dotnet/api/system.span-1

To use a inref<'T> , you need to get a pointer value with & :

F#

To write to the pointer by using an outref<'T> or byref<'T> , you must also make the
value you grab a pointer to mutable .

F#

If you are only writing the pointer instead of reading it, consider using outref<'T>
instead of byref<'T> .

Consider the following code:

F#

Semantically, this means the following:

The holder of the x pointer may only use it to read the value.

Using byrefs

open System

let f (dt: inref<DateTime>) =
 printfn $"Now: %O{dt}"

let usage =
 let dt = DateTime.Now
 f &dt // Pass a pointer to 'dt'

open System

let f (dt: byref<DateTime>) =
 printfn $"Now: %O{dt}"
 dt <- DateTime.Now

// Make 'dt' mutable
let mutable dt = DateTime.Now

// Now you can pass the pointer to 'dt'
f &dt

Inref semantics

let f (x: inref<SomeStruct>) = x.SomeField

Any pointer acquired to struct fields nested within SomeStruct are given type
inref<_> .

The following is also true:

There is no implication that other threads or aliases do not have write access to x .
There is no implication that SomeStruct is immutable by virtue of x being an
inref .

However, for F# value types that are immutable, the this pointer is inferred to be an
inref .

All of these rules together mean that the holder of an inref pointer may not modify the
immediate contents of the memory being pointed to.

The purpose of outref<'T> is to indicate that the pointer should only be written to.
Unexpectedly, outref<'T> permits reading the underlying value despite its name. This is
for compatibility purposes.

Semantically, outref<'T> is no different than byref<'T> , except for one difference:
methods with outref<'T> parameters are implicitly constructed into a tuple return type,
just like when calling a method with an [<Out>] parameter.

fs

C# supports the in ref and out ref keywords, in addition to ref returns. The
following table shows how F# interprets what C# emits:

C# construct F# infers

Outref semantics

type C =
 static member M1(x, y: _ outref) =
 y <- x
 true

match C.M1 1 with
| true, 1 -> printfn "Expected" // Fine with outref, error with byref
| _ -> printfn "Never matched"

Interop with C#

C# construct F# infers

ref return value outref<'T>

ref readonly return value inref<'T>

in ref parameter inref<'T>

out ref parameter outref<'T>

The following table shows what F# emits:

F# construct Emitted construct

inref<'T> argument [In] attribute on argument

inref<'T> return modreq attribute on value

inref<'T> in abstract slot or implementation modreq on argument or return

outref<'T> argument [Out] attribute on argument

An inref<'T> type is inferred by the F# compiler in the following cases:

1. A .NET parameter or return type that has an IsReadOnly attribute.
2. The this pointer on a struct type that has no mutable fields.
3. The address of a memory location derived from another inref<_> pointer.

When an implicit address of an inref is being taken, an overload with an argument of
type SomeType is preferred to an overload with an argument of type inref<SomeType> .
For example:

F#

Type inference and overloading rules

type C() =
 static member M(x: System.DateTime) = x.AddDays(1.0)
 static member M(x: inref<System.DateTime>) = x.AddDays(2.0)
 static member M2(x: System.DateTime, y: int) = x.AddDays(1.0)
 static member M2(x: inref<System.DateTime>, y: int) = x.AddDays(2.0)

let res = System.DateTime.Now
let v = C.M(res)
let v2 = C.M2(res, 4)

In both cases, the overloads taking System.DateTime are resolved rather than the
overloads taking inref<System.DateTime> .

In addition to the byref /inref /outref trio, you can define your own structs that can
adhere to byref -like semantics. This is done with the IsByRefLikeAttribute attribute:

F#

IsByRefLike does not imply Struct . Both must be present on the type.

A "byref -like" struct in F# is a stack-bound value type. It is never allocated on the
managed heap. A byref -like struct is useful for high-performance programming, as it is
enforced with set of strong checks about lifetime and non-capture. The rules are:

They can be used as function parameters, method parameters, local variables,
method returns.
They cannot be static or instance members of a class or normal struct.
They cannot be captured by any closure construct (async methods or lambda
expressions).
They cannot be used as a generic parameter.

This last point is crucial for F# pipeline-style programming, as |> is a generic function
that parameterizes its input types. This restriction may be relaxed for |> in the future, as
it is inline and does not make any calls to non-inlined generic functions in its body.

Although these rules strongly restrict usage, they do so to fulfill the promise of high-
performance computing in a safe manner.

Byref returns from F# functions or members can be produced and consumed. When
consuming a byref -returning method, the value is implicitly dereferenced. For example:

Byref-like structs

open System
open System.Runtime.CompilerServices

[<IsByRefLike; Struct>]
type S(count1: Span<int>, count2: Span<int>) =
 member x.Count1 = count1
 member x.Count2 = count2

Byref returns

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.isbyreflikeattribute

F#

To return a value byref, the variable that contains the value must live longer than the
current scope. Also, to return byref, use &value (where value is a variable that lives
longer than the current scope).

F#

To avoid the implicit dereference, such as passing a reference through multiple chained
calls, use &x (where x is the value).

You can also directly assign to a return byref . Consider the following (highly imperative)
program:

F#

let squareAndPrint (data : byref<int>) =
 let squared = data*data // data is implicitly dereferenced
 printfn $"%d{squared}"

let mutable sum = 0
let safeSum (bytes: Span<byte>) =
 for i in 0 .. bytes.Length - 1 do
 sum <- sum + int bytes[i]
 &sum // sum lives longer than the scope of this function.

type C() =
 let mutable nums = [| 1; 3; 7; 15; 31; 63; 127; 255; 511; 1023 |]

 override _.ToString() = String.Join(' ', nums)

 member _.FindLargestSmallerThan(target: int) =
 let mutable ctr = nums.Length - 1

 while ctr > 0 && nums[ctr] >= target do ctr <- ctr - 1

 if ctr > 0 then &nums[ctr] else &nums[0]

[<EntryPoint>]
let main argv =
 let c = C()
 printfn $"Original sequence: %O{c}"

 let v = &c.FindLargestSmallerThan 16

 v <- v*2 // Directly assign to the byref return

 printfn $"New sequence: %O{c}"

This is the output:

Console

A let -bound value cannot have its reference exceed the scope in which it was defined.
For example, the following is disallowed:

F#

This prevents you from getting different results depending on if you compile with
optimizations or not.

 0 // return an integer exit code

Original sequence: 1 3 7 15 31 63 127 255 511 1023
New sequence: 1 3 7 30 31 63 127 255 511 1023

Scoping for byrefs

let test2 () =
 let x = 12
 &x // Error: 'x' exceeds its defined scope!

let test () =
 let x =
 let y = 1
 &y // Error: `y` exceeds its defined scope!
 ()

Tuples
Article • 09/29/2022

A tuple is a grouping of unnamed but ordered values, possibly of different types. Tuples
can either be reference types or structs.

F#

Each element in the previous syntax can be any valid F# expression.

Examples of tuples include pairs, triples, and so on, of the same or different types. Some
examples are illustrated in the following code.

F#

Syntax

(element, ... , element)
struct(element, ... ,element)

Remarks

Examples

(1, 2)

// Triple of strings.
("one", "two", "three")

// Tuple of generic types.
(a, b)

// Tuple that has mixed types.
("one", 1, 2.0)

// Tuple of integer expressions.
(a + 1, b + 1)

// Struct Tuple of floats
struct (1.025f, 1.5f)

Obtaining Individual Values

You can use pattern matching to access and assign names for tuple elements, as shown
in the following code.

F#

You can also deconstruct a tuple via pattern matching outside of a match expression via
let binding:

F#

Or you can pattern match on tuples as inputs to functions:

F#

If you need only one element of the tuple, the wildcard character (the underscore) can
be used to avoid creating a new name for a value that you do not need.

F#

Copying elements from a reference tuple into a struct tuple is also simple:

F#

let print tuple1 =
 match tuple1 with
 | (a, b) -> printfn "Pair %A %A" a b

let (a, b) = (1, 2)

// Or as a struct
let struct (c, d) = struct (1, 2)

let getDistance ((x1,y1): float*float) ((x2,y2): float*float) =
 // Note the ability to work on individual elements
 (x1*x2 - y1*y2)
 |> abs
 |> sqrt

let (a, _) = (1, 2)

// Create a reference tuple
let (a, b) = (1, 2)

// Construct a struct tuple from it
let struct (c, d) = struct (a, b)

The functions fst and snd (reference tuples only) return the first and second elements
of a tuple, respectively.

F#

There is no built-in function that returns the third element of a triple, but you can easily
write one as follows.

F#

Generally, it is better to use pattern matching to access individual tuple elements.

Tuples provide a convenient way to return multiple values from a function, as shown in
the following example. This example performs integer division and returns the rounded
result of the operation as a first member of a tuple pair and the remainder as a second
member of the pair.

F#

Tuples can also be used as function arguments when you want to avoid the implicit
currying of function arguments that is implied by the usual function syntax.

F#

The usual syntax for defining the function let sum a b = a + b enables you to define a
function that is the partial application of the first argument of the function, as shown in
the following code.

F#

let c = fst (1, 2)
let d = snd (1, 2)

let third (_, _, c) = c

Using Tuples

let divRem a b =
 let x = a / b
 let y = a % b
 (x, y)

let sumNoCurry (a, b) = a + b

Using a tuple as the parameter disables currying. For more information, see "Partial
Application of Arguments" in Functions.

When you write out the name of a type that is a tuple, you use the * symbol to separate
elements. For a tuple that consists of an int , a float , and a string , such as (10, 10.0,
"ten") , the type would be written as follows.

F#

Note that outer parentheses are mandatory when creating a type alias for a struct tuple
type.

F#

Tuples in C# are structs, and are equivalent to struct tuples in F#. If you need to
interoperate with C#, you must use struct tuples.

This is easy to do. For example, imagine you have to pass a tuple to a C# class and then
consume its result, which is also a tuple:

C#

let sum a b = a + b

let addTen = sum 10
let result = addTen 95
// Result is 105.

Names of Tuple Types

int * float * string

type TupleAlias = string * float
type StructTupleAlias = (struct (string * float))

Interoperation with C# Tuples

namespace CSharpTupleInterop
{
 public static class Example
 {
 public static (int, int) AddOneToXAndY((int x, int y) a) =>
 (a.x + 1, a.y + 1);

In your F# code, you can then pass a struct tuple as the parameter and consume the
result as a struct tuple.

F#

Because Reference Tuples and Struct Tuples have a completely different underlying
representation, they are not implicitly convertible. That is, code such as the following
won't compile:

F#

You must pattern match on one tuple and construct the other with the constituent parts.
For example:

F#

 }
}

open TupleInterop

let struct (newX, newY) = Example.AddOneToXAndY(struct (1, 2))
// newX is now 2, and newY is now 3

Converting between Reference Tuples and Struct Tuples

// Will not compile!
let (a, b) = struct (1, 2)

// Will not compile!
let struct (c, d) = (1, 2)

// Won't compile!
let f(t: struct(int*int)): int*int = t

// Pattern match on the result.
let (a, b) = (1, 2)

// Construct a new tuple from the parts you pattern matched on.
let struct (c, d) = struct (a, b)

Compiled Form of Reference Tuples

This section explains the form of tuples when they're compiled. The information here
isn't necessary to read unless you are targeting .NET Framework 3.5 or lower.

Tuples are compiled into objects of one of several generic types, all named
System.Tuple , that are overloaded on the arity, or number of type parameters. Tuple
types appear in this form when you view them from another language, such as C# or
Visual Basic, or when you are using a tool that is not aware of F# constructs. The Tuple
types were introduced in .NET Framework 4. If you are targeting an earlier version of
.NET Framework, the compiler uses versions of System.Tuple from the 2.0 version of the
F# Core Library. The types in this library are used only for applications that target the
2.0, 3.0, and 3.5 versions of .NET Framework. Type forwarding is used to ensure binary
compatibility between .NET Framework 2.0 and .NET Framework 4 F# components.

Struct tuples (for example, struct (x, y)), are fundamentally different from reference
tuples. They are compiled into the ValueTuple type, overloaded by arity, or the number
of type parameters. They are equivalent to C# Tuples and Visual Basic Tuples, and
interoperate bidirectionally.

F# Language Reference
F# Types

Compiled Form of Struct Tuples

See also

https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/value-tuples
https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/tuples

Options
Article • 03/25/2023

The option type in F# is used when an actual value might not exist for a named value or
variable. An option has an underlying type and can hold a value of that type, or it might
not have a value.

The following code illustrates a function which generates an option type.

F#

As you can see, if the input a is greater than 0, Some(a) is generated. Otherwise, None is
generated.

The value None is used when an option does not have an actual value. Otherwise, the
expression Some(...) gives the option a value. The values Some and None are useful in
pattern matching, as in the following function exists , which returns true if the option
has a value and false if it does not.

F#

Options are commonly used when a search does not return a matching result, as shown
in the following code.

F#

Remarks

let keepIfPositive (a : int) = if a > 0 then Some(a) else None

let exists (x : int option) =
 match x with
 | Some(x) -> true
 | None -> false

Using Options

let rec tryFindMatch pred list =
 match list with
 | head :: tail -> if pred(head)
 then Some(head)
 else tryFindMatch pred tail

In the previous code, a list is searched recursively. The function tryFindMatch takes a
predicate function pred that returns a Boolean value, and a list to search. If an element
that satisfies the predicate is found, the recursion ends and the function returns the
value as an option in the expression Some(head) . The recursion ends when the empty list
is matched. At that point the value head has not been found, and None is returned.

Many F# library functions that search a collection for a value that may or may not exist
return the option type. By convention, these functions begin with the try prefix, for
example, Seq.tryFindIndex .

Options can also be useful when a value might not exist, for example if it is possible that
an exception will be thrown when you try to construct a value. The following code
example illustrates this.

F#

The openFile function in the previous example has type string -> File option because
it returns a File object if the file opens successfully and None if an exception occurs.
Depending on the situation, it may not be an appropriate design choice to catch an
exception rather than allowing it to propagate.

Additionally, it is still possible to pass null or a value that is null to the Some case of an
option. This is generally to be avoided, and typically is in routine F# programming, but is
possible due to the nature of reference types in .NET.

 | [] -> None

// result1 is Some 100 and its type is int option.
let result1 = tryFindMatch (fun elem -> elem = 100) [200; 100; 50; 25]

// result2 is None and its type is int option.
let result2 = tryFindMatch (fun elem -> elem = 26) [200; 100; 50; 25]

open System.IO
let openFile filename =
 try
 let file = File.Open (filename, FileMode.Create)
 Some(file)
 with
 | ex -> eprintf "An exception occurred with message %s" ex.Message
 None

Option Properties and Methods

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#tryFindIndex

The option type supports the following properties and methods.

Property or
method

Type Description

None 'T

option

A static member that creates an option value that has the None value.

IsNone bool Returns true if the option has the None value.

IsSome bool Returns true if the option has a value that is not None .

Some 'T

option

A static member that creates an option that has a value that is not
None .

Value 'T Returns the underlying value, or throws a
System.NullReferenceException if the value is None .

There is a module, Option , that contains useful functions that perform operations on
options. Some functions repeat the functionality of the properties but are useful in
contexts where a function is needed. Option.isSome and Option.isNone are both
module functions that test whether an option holds a value. Option.get obtains the
value, if there is one. If there is no value, it throws System.ArgumentException .

The Option.bind function executes a function on the value, if there is a value. The
function must take exactly one argument, and its parameter type must be the option
type. The return value of the function is another option type.

The option module also includes functions that correspond to the functions that are
available for lists, arrays, sequences, and other collection types. These functions include
Option.map , Option.iter , Option.forall , Option.exists , Option.foldBack ,
Option.fold , and Option.count . These functions enable options to be used like a
collection of zero or one elements. For more information and examples, see the
discussion of collection functions in Lists.

Options can be converted to lists or arrays. When an option is converted into either of
these data structures, the resulting data structure has zero or one element. To convert
an option to an array, use Option.toArray . To convert an option to a list, use
Option.toList .

Option Module

Converting to Other Types

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-option-1.html#IsNone
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-option-1.html#IsSome
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-option-1.html#Value
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#isSome
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#isNone
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#get
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#bind
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#map
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#iter
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#forall
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#exists
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#foldBack
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#fold
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#count
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#toArray
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-optionmodule.html#toList

F# Language Reference
F# Types

See also

Value Options
Article • 09/15/2021

The Value Option type in F# is used when the following two circumstances hold:

1. A scenario is appropriate for an F# Option.
2. Using a struct provides a performance benefit in your scenario.

Not all performance-sensitive scenarios are "solved" by using structs. You must consider
the additional cost of copying when using them instead of reference types. However,
large F# programs commonly instantiate many optional types that flow through hot
paths, and in such cases, structs can often yield better overall performance over the
lifetime of a program.

Value Option is defined as a struct discriminated union that is similar to the reference
option type. Its definition can be thought of this way:

F#

Value Option conforms to structural equality and comparison. The main difference is
that the compiled name, type name, and case names all indicate that it is a value type.

Value Options are used just like Options. ValueSome is used to indicate that a value is
present, and ValueNone is used when a value is not present:

F#

Definition

[<StructuralEquality; StructuralComparison>]
[<Struct>]
type ValueOption<'T> =
 | ValueNone
 | ValueSome of 'T

Using Value Options

let tryParseDateTime (s: string) =
 match System.DateTime.TryParse(s) with
 | (true, dt) -> ValueSome dt
 | (false, _) -> ValueNone

let possibleDateString1 = "1990-12-25"

As with Options, the naming convention for a function that returns ValueOption is to
prefix it with try .

There is one property for Value Options at this time: Value . An
InvalidOperationException is raised if no value is present when this property is invoked.

The ValueOption module in FSharp.Core contains equivalent functionality to the Option
module. There are a few differences in name, such as defaultValueArg :

F#

This acts just like defaultArg in the Option module, but operates on a Value Option
instead.

Options

let possibleDateString2 = "This is not a date"

let result1 = tryParseDateTime possibleDateString1
let result2 = tryParseDateTime possibleDateString2

match (result1, result2) with
| ValueSome d1, ValueSome d2 -> printfn "Both are dates!"
| ValueSome d1, ValueNone -> printfn "Only the first is a date!"
| ValueNone, ValueSome d2 -> printfn "Only the second is a date!"
| ValueNone, ValueNone -> printfn "None of them are dates!"

Value Option properties and methods

Value Option functions

val defaultValueArg : arg:'T voption -> defaultValue:'T -> 'T

See also

https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception

Results
Article • 09/15/2021

The Result<'T,'TFailure> type lets you write error-tolerant code that can be composed.

F#

See the Result module for the built-in combinators for the Result . type.

Note that the result type is a struct discriminated union. Structural equality semantics
apply here.

The Result type is typically used in monadic error-handling, which is often referred to
as Railway-oriented Programming within the F# community. The following trivial
example demonstrates this approach.

F#

Syntax

// The definition of Result in FSharp.Core
[<StructuralEquality; StructuralComparison>]
[<CompiledName("FSharpResult`2")>]
[<Struct>]
type Result<'T,'TError> =
 | Ok of ResultValue:'T
 | Error of ErrorValue:'TError

Remarks

// Define a simple type which has fields that can be validated
type Request =
 { Name: string
 Email: string }

// Define some logic for what defines a valid name.
//
// Generates a Result which is an Ok if the name validates;
// otherwise, it generates a Result which is an Error.
let validateName req =
 match req.Name with
 | null -> Error "No name found."
 | "" -> Error "Name is empty."
 | "bananas" -> Error "Bananas is not a name."
 | _ -> Ok req

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-resultmodule.html
https://swlaschin.gitbooks.io/fsharpforfunandprofit/content/posts/recipe-part2.html

As you can see, it's quite easy to chain together various validation functions if you force
them all to return a Result . This lets you break up functionality like this into small pieces
which are as composable as you need them to be. This also has the added value of
enforcing the use of pattern matching at the end of a round of validation, which in turns
enforces a higher degree of program correctness.

Discriminated Unions
Pattern Matching

// Similarly, define some email validation logic.
let validateEmail req =
 match req.Email with
 | null -> Error "No email found."
 | "" -> Error "Email is empty."
 | s when s.EndsWith("bananas.com") -> Error "No email from bananas.com
is allowed."
 | _ -> Ok req

let validateRequest reqResult =
 reqResult
 |> Result.bind validateName
 |> Result.bind validateEmail

let test() =
 // Now, create a Request and pattern match on the result.
 let req1 = { Name = "Phillip"; Email = "phillip@contoso.biz" }
 let res1 = validateRequest (Ok req1)
 match res1 with
 | Ok req -> printfn $"My request was valid! Name: {req.Name} Email
{req.Email}"
 | Error e -> printfn $"Error: {e}"
 // Prints: "My request was valid! Name: Phillip Email:
phillip@consoto.biz"

 let req2 = { Name = "Phillip"; Email = "phillip@bananas.com" }
 let res2 = validateRequest (Ok req2)
 match res2 with
 | Ok req -> printfn $"My request was valid! Name: {req.Name} Email
{req.Email}"
 | Error e -> printfn $"Error: {e}"
 // Prints: "Error: No email from bananas.com is allowed."

test()

See also

F# collection types
Article • 03/25/2023

By reviewing this topic, you can determine which F# collection type best suits a particular need. These collection types differ
from the collection types in .NET, such as those in the System.Collections.Generic namespace, in that the F# collection
types are designed from a functional programming perspective rather than an object-oriented perspective. More specifically,
only the array collection has mutable elements. Therefore, when you modify a collection, you create an instance of the
modified collection instead of altering the original collection.

Collection types also differ in the type of data structure in which objects are stored. Data structures such as hash tables,
linked lists, and arrays have different performance characteristics and a different set of available operations.

The following table shows F# collection types.

Type Description Related
Links

List An ordered, immutable series of elements of the same type. Implemented as a linked list. Lists

List
Module

Array A fixed-size, zero-based, mutable collection of consecutive data elements that are all of the same type. Arrays

Array
Module

Array2D
Module

Array3D
Module

seq A logical series of elements that are all of one type. Sequences are particularly useful when you have a large,
ordered collection of data but don't necessarily expect to use all the elements. Individual sequence elements are
computed only as required, so a sequence can perform better than a list if not all the elements are used. Sequences
are represented by the seq<'T> type, which is an alias for IEnumerable<T> . Therefore, any .NET Framework type that
implements System.Collections.Generic.IEnumerable<'T> can be used as a sequence.

Sequences

Seq
Module

Map An immutable dictionary of elements. Elements are accessed by key. Map
Module

Set An immutable set that's based on binary trees, where comparison is the F# structural comparison function, which
potentially uses implementations of the System.IComparable interface on key values.

Set
Module

This section compares the functions that are available on F# collection types. The computational complexity of the function
is given, where N is the size of the first collection, and M is the size of the second collection, if any. A dash (-) indicates that
this function isn't available on the collection. Because sequences are lazily evaluated, a function such as Seq.distinct may
be O(1) because it returns immediately, although it still affects the performance of the sequence when enumerated.

Function Array List Sequence Map Set Description

append O(N) O(N) O(N) - - Returns a new collection that contains the
elements of the first collection followed by
elements of the second collection.

add - - - O(log(N)) O(log(N)) Returns a new collection with the element added.

Table of collection types

Table of functions

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-array-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-array2dmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-array3dmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seq-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-fsharpmap-2.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-mapmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-fsharpset-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-setmodule.html

Function Array List Sequence Map Set Description

average O(N) O(N) O(N) - - Returns the average of the elements in the
collection.

averageBy O(N) O(N) O(N) - - Returns the average of the results of the provided
function applied to each element.

blit O(N) - - - - Copies a section of an array.

cache - - O(N) - - Computes and stores elements of a sequence.

cast - - O(N) - - Converts the elements to the specified type.

choose O(N) O(N) O(N) - - Applies the given function f to each element x of
the list. Returns the list that contains the results for
each element where the function returns
Some(f(x)) .

collect O(N) O(N) O(N) - - Applies the given function to each element of the
collection, concatenates all the results, and returns
the combined list.

compareWith - - O(N) - - Compares two sequences by using the given
comparison function, element by element.

concat O(N) O(N) O(N) - - Combines the given enumeration-of-enumerations
as a single concatenated enumeration.

contains - - - - O(log(N)) Returns true if the set contains the specified
element.

containsKey - - - O(log(N)) - Tests whether an element is in the domain of a
map.

count - - - - O(N) Returns the number of elements in the set.

countBy - - O(N) - - Applies a key-generating function to each element
of a sequence, and returns a sequence that yields
unique keys and their number of occurrences in
the original sequence.

copy O(N) - O(N) - - Copies the collection.

create O(N) - - - - Creates an array of whole elements that are all
initially the given value.

delay - - O(1) - - Returns a sequence that's built from the given
delayed specification of a sequence.

difference - - - - O(M*log(N)) Returns a new set with the elements of the second
set removed from the first set.

distinct O(1)* Returns a sequence that contains no duplicate
entries according to generic hash and equality
comparisons on the entries. If an element occurs
multiple times in the sequence, later occurrences
are discarded.

distinctBy O(1)* Returns a sequence that contains no duplicate
entries according to the generic hash and equality
comparisons on the keys that the given key-
generating function returns. If an element occurs
multiple times in the sequence, later occurrences
are discarded.

empty O(1) O(1) O(1) O(1) O(1) Creates an empty collection.

exists O(N) O(N) O(N) O(log(N)) O(log(N)) Tests whether any element of the sequence
satisfies the given predicate.

Function Array List Sequence Map Set Description

exists2 O(min(N,M)) - O(min(N,M)) Tests whether any pair of corresponding elements
of the input sequences satisfies the given
predicate.

fill O(N) Sets a range of elements of the array to the given
value.

filter O(N) O(N) O(N) O(N) O(N) Returns a new collection that contains only the
elements of the collection for which the given
predicate returns true .

find O(N) O(N) O(N) O(log(N)) - Returns the first element for which the given
function returns true . Returns
System.Collections.Generic.KeyNotFoundException

if no such element exists.

findIndex O(N) O(N) O(N) - - Returns the index of the first element in the array
that satisfies the given predicate. Raises
System.Collections.Generic.KeyNotFoundException

if no element satisfies the predicate.

findKey - - - O(log(N)) - Evaluates the function on each mapping in the
collection, and returns the key for the first
mapping where the function returns true . If no
such element exists, this function raises
System.Collections.Generic.KeyNotFoundException .

fold O(N) O(N) O(N) O(N) O(N) Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function is f
and the elements are i0...iN, this function
computes f (... (f s i0)...) iN.

fold2 O(N) O(N) - - - Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and j0...jN,
this function computes f (... (f s i0 j0)...) iN jN.

foldBack O(N) O(N) - O(N) O(N) Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function is f
and the elements are i0...iN, this function
computes f i0 (...(f iN s)).

foldBack2 O(N) O(N) - - - Applies a function to corresponding elements of
two collections, threading an accumulator
argument through the computation. The
collections must have identical sizes. If the input
function is f and the elements are i0...iN and j0...jN,
this function computes f i0 j0 (...(f iN jN s)).

forall O(N) O(N) O(N) O(N) O(N) Tests whether all elements of the collection satisfy
the given predicate.

forall2 O(N) O(N) O(N) - - Tests whether all corresponding elements of the
collection satisfy the given predicate pairwise.

get / nth O(1) O(N) O(N) - - Returns an element from the collection given its
index.

head - O(1) O(1) - - Returns the first element of the collection.

init O(N) O(N) O(1) - - Creates a collection given the dimension and a
generator function to compute the elements.

Function Array List Sequence Map Set Description

initInfinite - - O(1) - - Generates a sequence that, when iterated, returns
successive elements by calling the given function.

intersect - - - - O(log(N)*log(M)) Computes the intersection of two sets.

intersectMany - - - - O(N1*N2...) Computes the intersection of a sequence of sets.
The sequence must not be empty.

isEmpty O(1) O(1) O(1) O(1) - Returns true if the collection is empty.

isProperSubset - - - - O(M*log(N)) Returns true if all elements of the first set are in
the second set, and at least one element of the
second set isn't in the first set.

isProperSuperset - - - - O(M*log(N)) Returns true if all elements of the second set are
in the first set, and at least one element of the first
set isn't in the second set.

isSubset - - - - O(M*log(N)) Returns true if all elements of the first set are in
the second set.

isSuperset - - - - O(M*log(N)) Returns true if all elements of the second set are
in the first set.

iter O(N) O(N) O(N) O(N) O(N) Applies the given function to each element of the
collection.

iteri O(N) O(N) O(N) - - Applies the given function to each element of the
collection. The integer that's passed to the
function indicates the index of the element.

iteri2 O(N) O(N) - - - Applies the given function to a pair of elements
that are drawn from matching indices in two
arrays. The integer that's passed to the function
indicates the index of the elements. The two arrays
must have the same length.

iter2 O(N) O(N) O(N) - - Applies the given function to a pair of elements
that are drawn from matching indices in two
arrays. The two arrays must have the same length.

last O(1) O(N) O(N) - - Returns the last item in the applicable collection.

length O(1) O(N) O(N) - - Returns the number of elements in the collection.

map O(N) O(N) O(1) - - Builds a collection whose elements are the results
of applying the given function to each element of
the array.

map2 O(N) O(N) O(1) - - Builds a collection whose elements are the results
of applying the given function to the
corresponding elements of the two collections
pairwise. The two input arrays must have the same
length.

map3 - O(N) - - - Builds a collection whose elements are the results
of applying the given function to the
corresponding elements of the three collections
simultaneously.

mapi O(N) O(N) O(N) - - Builds an array whose elements are the results of
applying the given function to each element of the
array. The integer index that's passed to the
function indicates the index of the element that's
being transformed.

Function Array List Sequence Map Set Description

mapi2 O(N) O(N) - - - Builds a collection whose elements are the results
of applying the given function to the
corresponding elements of the two collections
pairwise, also passing the index of the elements.
The two input arrays must have the same length.

max O(N) O(N) O(N) - - Returns the greatest element in the collection,
compared by using the max operator.

maxBy O(N) O(N) O(N) - - Returns the greatest element in the collection,
compared by using max on the function result.

maxElement - - - - O(log(N)) Returns the greatest element in the set according
to the ordering that's used for the set.

min O(N) O(N) O(N) - - Returns the least element in the collection,
compared by using the min operator.

minBy O(N) O(N) O(N) - - Returns the least element in the collection,
compared by using the min operator on the
function result.

minElement - - - - O(log(N)) Returns the lowest element in the set according to
the ordering that's used for the set.

ofArray - O(N) O(1) O(N) O(N) Creates a collection that contains the same
elements as the given array.

ofList O(N) - O(1) O(N) O(N) Creates a collection that contains the same
elements as the given list.

ofSeq O(N) O(N) - O(N) O(N) Creates a collection that contains the same
elements as the given sequence.

pairwise - - O(N) - - Returns a sequence of each element in the input
sequence and its predecessor except for the first
element, which is returned only as the predecessor
of the second element.

partition O(N) O(N) - O(N) O(N) Splits the collection into two collections. The first
collection contains the elements for which the
given predicate returns true , and the second
collection contains the elements for which the
given predicate returns false .

permute O(N) O(N) - - - Returns an array with all elements permuted
according to the specified permutation.

pick O(N) O(N) O(N) O(log(N)) - Applies the given function to successive elements,
returning the first result where the function returns
Some. If the function never returns Some,
System.Collections.Generic.KeyNotFoundException

is raised.

readonly - - O(N) - - Creates a sequence object that delegates to the
given sequence object. This operation ensures that
a type cast can't rediscover and mutate the original
sequence. For example, if given an array, the
returned sequence will return the elements of the
array, but you can't cast the returned sequence
object to an array.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#max
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#max
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#min
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#min

Function Array List Sequence Map Set Description

reduce O(N) O(N) O(N) - - Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This function starts by
applying the function to the first two elements,
passes this result into the function along with the
third element, and so on. The function returns the
final result.

reduceBack O(N) O(N) - - - Applies a function to each element of the
collection, threading an accumulator argument
through the computation. If the input function is f
and the elements are i0...iN, this function
computes f i0 (...(f iN-1 iN)).

remove - - - O(log(N)) O(log(N)) Removes an element from the domain of the map.
No exception is raised if the element isn't present.

replicate - O(N) - - - Creates a list of a specified length with every
element set to the given value.

rev O(N) O(N) - - - Returns a new list with the elements in reverse
order.

scan O(N) O(N) O(N) - - Applies a function to each element of the
collection, threading an accumulator argument
through the computation. This operation applies
the function to the second argument and the first
element of the list. The operation then passes this
result into the function along with the second
element and so on. Finally, the operation returns
the list of intermediate results and the final result.

scanBack O(N) O(N) - - - Resembles the foldBack operation but returns both
the intermediate and final results.

singleton - - O(1) - O(1) Returns a sequence that yields only one item.

set O(1) - - - - Sets an element of an array to the specified value.

skip - - O(N) - - Returns a sequence that skips N elements of the
underlying sequence and then yields the remaining
elements of the sequence.

skipWhile - - O(N) - - Returns a sequence that, when iterated, skips
elements of the underlying sequence while the
given predicate returns true and then yields the
remaining elements of the sequence.

sort O(N*log(N))
average

O(N^2)
worst case

O(N*log(N)) O(N*log(N)) - - Sorts the collection by element value. Elements are
compared using compare .

sortBy O(N*log(N))
average

O(N^2)
worst case

O(N*log(N)) O(N*log(N)) - - Sorts the given list by using keys that the given
projection provides. Keys are compared using
compare .

sortInPlace O(N*log(N))
average

O(N^2)
worst case

- - - - Sorts the elements of an array by mutating it in
place and using the given comparison function.
Elements are compared by using compare .

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#compare
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#compare
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#compare

Function Array List Sequence Map Set Description

sortInPlaceBy O(N*log(N))
average

O(N^2)
worst case

- - - - Sorts the elements of an array by mutating it in
place and using the given projection for the keys.
Elements are compared by using compare .

sortInPlaceWith O(N*log(N))
average

O(N^2)
worst case

- - - - Sorts the elements of an array by mutating it in
place and using the given comparison function as
the order.

sortWith O(N*log(N))
average

O(N^2)
worst case

O(N*log(N)) - - - Sorts the elements of a collection, using the given
comparison function as the order and returning a
new collection.

sub O(N) - - - - Builds an array that contains the given subrange
that's specified by starting index and length.

sum O(N) O(N) O(N) - - Returns the sum of the elements in the collection.

sumBy O(N) O(N) O(N) - - Returns the sum of the results that are generated
by applying the function to each element of the
collection.

tail - O(1) - - - Returns the list without its first element.

take - - O(N) - - Returns the elements of the sequence up to a
specified count.

takeWhile - - O(1) - - Returns a sequence that, when iterated, yields
elements of the underlying sequence while the
given predicate returns true and then returns no
more elements.

toArray - O(N) O(N) O(N) O(N) Creates an array from the given collection.

toList O(N) - O(N) O(N) O(N) Creates a list from the given collection.

toSeq O(1) O(1) - O(1) O(1) Creates a sequence from the given collection.

truncate - - O(1) - - Returns a sequence that, when enumerated,
returns no more than N elements.

tryFind O(N) O(N) O(N) O(log(N)) - Searches for an element that satisfies a given
predicate.

tryFindIndex O(N) O(N) O(N) - - Searches for the first element that satisfies a given
predicate and returns the index of the matching
element, or None if no such element exists.

tryFindKey - - - O(log(N)) - Returns the key of the first mapping in the
collection that satisfies the given predicate, or
returns None if no such element exists.

tryPick O(N) O(N) O(N) O(log(N)) - Applies the given function to successive elements,
returning the first result where the function returns
Some for some value. If no such element exists, the
operation returns None .

unfold - - O(N) - - Returns a sequence that contains the elements that
the given computation generates.

union - - - - O(M*log(N)) Computes the union of the two sets.

unionMany - - - - O(N1*N2...) Computes the union of a sequence of sets.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#compare

Function Array List Sequence Map Set Description

unzip O(N) O(N) O(N) - - Splits a list of pairs into two lists.

unzip3 O(N) O(N) O(N) - - Splits a list of triples into three lists.

windowed - - O(N) - - Returns a sequence that yields sliding windows of
containing elements that are drawn from the input
sequence. Each window is returned as a fresh array.

zip O(N) O(N) O(N) - - Combines the two collections into a list of pairs.
The two lists must have equal lengths.

zip3 O(N) O(N) O(N) - - Combines the three collections into a list of triples.
The lists must have equal lengths.

F# Types
F# Language Reference

See also

Lists
Article • 09/15/2021

A list in F# is an ordered, immutable series of elements of the same type. To perform
basic operations on lists, use the functions in the List module .

You can define a list by explicitly listing out the elements, separated by semicolons and
enclosed in square brackets, as shown in the following line of code.

F#

You can also put line breaks between elements, in which case the semicolons are
optional. The latter syntax can result in more readable code when the element
initialization expressions are longer, or when you want to include a comment for each
element.

F#

Normally, all list elements must be the same type. An exception is that a list in which the
elements are specified to be a base type can have elements that are derived types. Thus
the following is acceptable, because both Button and CheckBox derive from Control .

F#

You can also define list elements by using a range indicated by integers separated by
the range operator (..), as shown in the following code.

F#

Creating and Initializing Lists

let list123 = [1; 2; 3]

let list123 = [
 1
 2
 3]

let myControlList : Control list = [new Button(); new CheckBox()]

let list1 = [1 .. 10]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

An empty list is specified by a pair of square brackets with nothing in between them.

F#

You can also use a sequence expression to create a list. See Sequence Expressions for
more information. For example, the following code creates a list of squares of integers
from 1 to 10.

F#

You can attach elements to a list by using the :: (cons) operator. If list1 is [2; 3; 4] ,
the following code creates list2 as [100; 2; 3; 4] .

F#

You can concatenate lists that have compatible types by using the @ operator, as in the
following code. If list1 is [2; 3; 4] and list2 is [100; 2; 3; 4] , this code creates
list3 as [2; 3; 4; 100; 2; 3; 4] .

F#

Functions for performing operations on lists are available in the List module .

Because lists in F# are immutable, any modifying operations generate new lists instead
of modifying existing lists.

Lists in F# are implemented as singly linked lists, which means that operations that
access only the head of the list are O(1), and element access is O(n).

// An empty list.
let listEmpty = []

let listOfSquares = [for i in 1 .. 10 -> i*i]

Operators for Working with Lists

let list2 = 100 :: list1

let list3 = list1 @ list2

Properties

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

The list type supports the following properties:

Property Type Description

Head 'T The first element.

Empty 'T list A static property that returns an empty list of the appropriate type.

IsEmpty bool true if the list has no elements.

Item 'T The element at the specified index (zero-based).

Length int The number of elements.

Tail 'T list The list without the first element.

Following are some examples of using these properties.

F#

Programming with lists enables you to perform complex operations with a small amount
of code. This section describes common operations on lists that are important to
functional programming.

Lists are uniquely suited to recursive programming techniques. Consider an operation
that must be performed on every element of a list. You can do this recursively by
operating on the head of the list and then passing the tail of the list, which is a smaller
list that consists of the original list without the first element, back again to the next level
of recursion.

To write such a recursive function, you use the cons operator (::) in pattern matching,
which enables you to separate the head of a list from the tail.

let list1 = [1; 2; 3]

// Properties
printfn "list1.IsEmpty is %b" (list1.IsEmpty)
printfn "list1.Length is %d" (list1.Length)
printfn "list1.Head is %d" (list1.Head)
printfn "list1.Tail.Head is %d" (list1.Tail.Head)
printfn "list1.Tail.Tail.Head is %d" (list1.Tail.Tail.Head)
printfn "list1.Item(1) is %d" (list1.Item(1))

Using Lists

Recursion with Lists

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Head
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Empty
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#IsEmpty
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Item
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Length
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Tail

The following code example shows how to use pattern matching to implement a
recursive function that performs operations on a list.

F#

The previous code works well for small lists, but for larger lists, it could overflow the
stack. The following code improves on this code by using an accumulator argument, a
standard technique for working with recursive functions. The use of the accumulator
argument makes the function tail recursive, which saves stack space.

F#

The function RemoveAllMultiples is a recursive function that takes two lists. The first list
contains the numbers whose multiples will be removed, and the second list is the list
from which to remove the numbers. The code in the following example uses this
recursive function to eliminate all the non-prime numbers from a list, leaving a list of
prime numbers as the result.

F#

let rec sum list =
 match list with
 | head :: tail -> head + sum tail
 | [] -> 0

let sum list =
 let rec loop list acc =
 match list with
 | head :: tail -> loop tail (acc + head)
 | [] -> acc
 loop list 0

let IsPrimeMultipleTest n x =
 x = n || x % n <> 0

let rec RemoveAllMultiples listn listx =
 match listn with
 | head :: tail -> RemoveAllMultiples tail (List.filter
(IsPrimeMultipleTest head) listx)
 | [] -> listx

let GetPrimesUpTo n =
 let max = int (sqrt (float n))
 RemoveAllMultiples [2 .. max] [1 .. n]

printfn "Primes Up To %d:\n %A" 100 (GetPrimesUpTo 100)

The output is as follows:

Console

The List module provides functions that access the elements of a list. The head
element is the fastest and easiest to access. Use the property Head or the module
function List.head . You can access the tail of a list by using the Tail property or the
List.tail function. To find an element by index, use the List.nth function. List.nth
traverses the list. Therefore, it is O(n). If your code uses List.nth frequently, you might
want to consider using an array instead of a list. Element access in arrays is O(1).

The List.isEmpty function determines whether a list has any elements.

The List.exists function applies a Boolean test to elements of a list and returns true if
any element satisfies the test. List.exists2 is similar but operates on successive pairs of
elements in two lists.

The following code demonstrates the use of List.exists .

F#

The output is as follows:

Console

Primes Up To 100:
[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71;
73; 79; 83; 89; 97]

Module Functions

Boolean Operations on Lists

// Use List.exists to determine whether there is an element of a list
satisfies a given Boolean expression.
// containsNumber returns true if any of the elements of the supplied list
match
// the supplied number.
let containsNumber number list = List.exists (fun elem -> elem = number)
list
let list0to3 = [0 .. 3]
printfn "For list %A, contains zero is %b" list0to3 (containsNumber 0
list0to3)

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Head
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#head
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-list-1.html#Tail
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#tail
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#nth
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#isEmpty
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#exists
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#exists2

The following example demonstrates the use of List.exists2 .

F#

The output is as follows:

Console

You can use List.forall if you want to test whether all the elements of a list meet a
condition.

F#

The output is as follows:

Console

Similarly, List.forall2 determines whether all elements in the corresponding positions
in two lists satisfy a Boolean expression that involves each pair of elements.

For list [0; 1; 2; 3], contains zero is true

// Use List.exists2 to compare elements in two lists.
// isEqualElement returns true if any elements at the same position in two
supplied
// lists match.
let isEqualElement list1 list2 = List.exists2 (fun elem1 elem2 -> elem1 =
elem2) list1 list2
let list1to5 = [1 .. 5]
let list5to1 = [5 .. -1 .. 1]
if (isEqualElement list1to5 list5to1) then
 printfn "Lists %A and %A have at least one equal element at the same
position." list1to5 list5to1
else
 printfn "Lists %A and %A do not have an equal element at the same
position." list1to5 list5to1

Lists [1; 2; 3; 4; 5] and [5; 4; 3; 2; 1] have at least one equal element at
the same position.

let isAllZeroes list = List.forall (fun elem -> elem = 0.0) list
printfn "%b" (isAllZeroes [0.0; 0.0])
printfn "%b" (isAllZeroes [0.0; 1.0])

true
false

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#forall
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#forall2

F#

The output is as follows:

Console

The List.sort , List.sortBy , and List.sortWith functions sort lists. The sorting function
determines which of these three functions to use. List.sort uses default generic
comparison. Generic comparison uses global operators based on the generic compare
function to compare values. It works efficiently with a wide variety of element types,
such as simple numeric types, tuples, records, discriminated unions, lists, arrays, and any
type that implements System.IComparable . For types that implement
System.IComparable , generic comparison uses the System.IComparable.CompareTo()
function. Generic comparison also works with strings, but uses a culture-independent
sorting order. Generic comparison should not be used on unsupported types, such as
function types. Also, the performance of the default generic comparison is best for small
structured types; for larger structured types that need to be compared and sorted
frequently, consider implementing System.IComparable and providing an efficient
implementation of the System.IComparable.CompareTo() method.

List.sortBy takes a function that returns a value that is used as the sort criterion, and
List.sortWith takes a comparison function as an argument. These latter two functions
are useful when you are working with types that do not support comparison, or when
the comparison requires more complex comparison semantics, as in the case of culture-
aware strings.

The following example demonstrates the use of List.sort .

F#

let listEqual list1 list2 = List.forall2 (fun elem1 elem2 -> elem1 = elem2)
list1 list2
printfn "%b" (listEqual [0; 1; 2] [0; 1; 2])
printfn "%b" (listEqual [0; 0; 0] [0; 1; 0])

true
false

Sort Operations on Lists

let sortedList1 = List.sort [1; 4; 8; -2; 5]
printfn "%A" sortedList1

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sort
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sortBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sortWith

The output is as follows:

Console

The following example demonstrates the use of List.sortBy .

F#

The output is as follows:

Console

The next example demonstrates the use of List.sortWith . In this example, the custom
comparison function compareWidgets is used to first compare one field of a custom type,
and then another when the values of the first field are equal.

F#

The output is as follows:

[-2; 1; 4; 5; 8]

let sortedList2 = List.sortBy (fun elem -> abs elem) [1; 4; 8; -2; 5]
printfn "%A" sortedList2

[1; -2; 4; 5; 8]

type Widget = { ID: int; Rev: int }

let compareWidgets widget1 widget2 =
 if widget1.ID < widget2.ID then -1 else
 if widget1.ID > widget2.ID then 1 else
 if widget1.Rev < widget2.Rev then -1 else
 if widget1.Rev > widget2.Rev then 1 else
 0

let listToCompare = [
 { ID = 92; Rev = 1 }
 { ID = 110; Rev = 1 }
 { ID = 100; Rev = 5 }
 { ID = 100; Rev = 2 }
 { ID = 92; Rev = 1 }
]

let sortedWidgetList = List.sortWith compareWidgets listToCompare
printfn "%A" sortedWidgetList

Console

Numerous search operations are supported for lists. The simplest, List.find , enables
you to find the first element that matches a given condition.

The following code example demonstrates the use of List.find to find the first number
that is divisible by 5 in a list.

F#

The result is 5.

If the elements must be transformed first, call List.pick , which takes a function that
returns an option, and looks for the first option value that is Some(x) . Instead of
returning the element, List.pick returns the result x . If no matching element is found,
List.pick throws System.Collections.Generic.KeyNotFoundException . The following
code shows the use of List.pick .

F#

The output is as follows:

Console

[{ID = 92;
Rev = 1;}; {ID = 92;
Rev = 1;}; {ID = 100;
Rev = 2;}; {ID = 100;
Rev = 5;}; {ID = 110;
Rev = 1;}]

Search Operations on Lists

let isDivisibleBy number elem = elem % number = 0
let result = List.find (isDivisibleBy 5) [1 .. 100]
printfn "%d " result

let valuesList = [("a", 1); ("b", 2); ("c", 3)]

let resultPick = List.pick (fun elem ->
 match elem with
 | (value, 2) -> Some value
 | _ -> None) valuesList
printfn "%A" resultPick

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#find
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#pick

Another group of search operations, List.tryFind and related functions, return an
option value. The List.tryFind function returns the first element of a list that satisfies a
condition if such an element exists, but the option value None if not. The variation
List.tryFindIndex returns the index of the element, if one is found, rather than the
element itself. These functions are illustrated in the following code.

F#

The output is as follows:

Console

Common arithmetic operations such as sum and average are built into the List
module . To work with List.sum , the list element type must support the + operator
and have a zero value. All built-in arithmetic types satisfy these conditions. To work with
List.average , the element type must support division without a remainder, which
excludes integral types but allows for floating point types. The List.sumBy and
List.averageBy functions take a function as a parameter, and this function's results are
used to calculate the values for the sum or average.

The following code demonstrates the use of List.sum , List.sumBy , and List.average .

F#

"b"

let list1d = [1; 3; 7; 9; 11; 13; 15; 19; 22; 29; 36]
let isEven x = x % 2 = 0
match List.tryFind isEven list1d with
| Some value -> printfn "The first even value is %d." value
| None -> printfn "There is no even value in the list."

match List.tryFindIndex isEven list1d with
| Some value -> printfn "The first even value is at position %d." value
| None -> printfn "There is no even value in the list."

The first even value is 22.
The first even value is at position 8.

Arithmetic Operations on Lists

// Compute the sum of the first 10 integers by using List.sum.
let sum1 = List.sum [1 .. 10]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#tryFind
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#tryFindIndex
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sum
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#average
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#sumBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#averageBy

The output is 1.000000 .

The following code shows the use of List.averageBy .

F#

The output is 5.5 .

Lists that contain tuples can be manipulated by zip and unzip functions. These functions
combine two lists of single values into one list of tuples or separate one list of tuples
into two lists of single values. The simplest List.zip function takes two lists of single
elements and produces a single list of tuple pairs. Another version, List.zip3 , takes
three lists of single elements and produces a single list of tuples that have three
elements. The following code example demonstrates the use of List.zip .

F#

The output is as follows:

Console

The following code example demonstrates the use of List.zip3 .

F#

// Compute the sum of the squares of the elements of a list by using
List.sumBy.
let sum2 = List.sumBy (fun elem -> elem*elem) [1 .. 10]

// Compute the average of the elements of a list by using List.average.
let avg1 = List.average [0.0; 1.0; 1.0; 2.0]

printfn "%f" avg1

let avg2 = List.averageBy (fun elem -> float elem) [1 .. 10]
printfn "%f" avg2

Lists and Tuples

let list1 = [1; 2; 3]
let list2 = [-1; -2; -3]
let listZip = List.zip list1 list2
printfn "%A" listZip

[(1, -1); (2, -2); (3; -3)]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#zip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#zip3

The output is as follows:

Console

The corresponding unzip versions, List.unzip and List.unzip3 , take lists of tuples and
return lists in a tuple, where the first list contains all the elements that were first in each
tuple, and the second list contains the second element of each tuple, and so on.

The following code example demonstrates the use of List.unzip .

F#

The output is as follows:

Console

The following code example demonstrates the use of List.unzip3 .

F#

The output is as follows:

Console

let list3 = [0; 0; 0]
let listZip3 = List.zip3 list1 list2 list3
printfn "%A" listZip3

[(1, -1, 0); (2, -2, 0); (3, -3, 0)]

let lists = List.unzip [(1,2); (3,4)]
printfn "%A" lists
printfn "%A %A" (fst lists) (snd lists)

([1; 3], [2; 4])
[1; 3] [2; 4]

let listsUnzip3 = List.unzip3 [(1,2,3); (4,5,6)]
printfn "%A" listsUnzip3

([1; 4], [2; 5], [3; 6])

Operating on List Elements

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#unzip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#unzip3
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#unzip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#unzip3

F# supports a variety of operations on list elements. The simplest is List.iter , which
enables you to call a function on every element of a list. Variations include List.iter2 ,
which enables you to perform an operation on elements of two lists, List.iteri , which is
like List.iter except that the index of each element is passed as an argument to the
function that is called for each element, and List.iteri2 , which is a combination of the
functionality of List.iter2 and List.iteri . The following code example illustrates
these functions.

F#

The output is as follows:

Console

Another frequently used function that transforms list elements is List.map , which
enables you to apply a function to each element of a list and put all the results into a
new list. List.map2 and List.map3 are variations that take multiple lists. You can also
use List.mapi and List.mapi2 , if, in addition to the element, the function needs to be
passed the index of each element. The only difference between List.mapi2 and
List.mapi is that List.mapi2 works with two lists. The following example illustrates
List.map .

let list1 = [1; 2; 3]
let list2 = [4; 5; 6]
List.iter (fun x -> printfn "List.iter: element is %d" x) list1
List.iteri(fun i x -> printfn "List.iteri: element %d is %d" i x) list1
List.iter2 (fun x y -> printfn "List.iter2: elements are %d %d" x y) list1
list2
List.iteri2 (fun i x y ->
 printfn "List.iteri2: element %d of list1 is %d element %d
of list2 is %d"
 i x i y)
 list1 list2

List.iter: element is 1
List.iter: element is 2
List.iter: element is 3
List.iteri: element 0 is 1
List.iteri: element 1 is 2
List.iteri: element 2 is 3
List.iter2: elements are 1 4
List.iter2: elements are 2 5
List.iter2: elements are 3 6
List.iteri2: element 0 of list1 is 1; element 0 of list2 is 4
List.iteri2: element 1 of list1 is 2; element 1 of list2 is 5
List.iteri2: element 2 of list1 is 3; element 2 of list2 is 6

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#iter
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#iter2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#iteri
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#iteri2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#map
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#map2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#map3
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#mapi
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#mapi2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#map

F#

The output is as follows:

Console

The following example shows the use of List.map2 .

F#

The output is as follows:

Console

The following example shows the use of List.map3 .

F#

The output is as follows:

Console

The following example shows the use of List.mapi .

F#

let list1 = [1; 2; 3]
let newList = List.map (fun x -> x + 1) list1
printfn "%A" newList

[2; 3; 4]

let list1 = [1; 2; 3]
let list2 = [4; 5; 6]
let sumList = List.map2 (fun x y -> x + y) list1 list2
printfn "%A" sumList

[5; 7; 9]

let newList2 = List.map3 (fun x y z -> x + y + z) list1 list2 [2; 3; 4]
printfn "%A" newList2

[7; 10; 13]

The output is as follows:

Console

The following example shows the use of List.mapi2 .

F#

The output is as follows:

Console

List.collect is like List.map , except that each element produces a list and all these lists
are concatenated into a final list. In the following code, each element of the list
generates three numbers. These are all collected into one list.

F#

The output is as follows:

Console

You can also use List.filter , which takes a Boolean condition and produces a new list
that consists only of elements that satisfy the given condition.

F#

let newListAddIndex = List.mapi (fun i x -> x + i) list1
printfn "%A" newListAddIndex

[1; 3; 5]

let listAddTimesIndex = List.mapi2 (fun i x y -> (x + y) * i) list1 list2
printfn "%A" listAddTimesIndex

[0; 7; 18]

let collectList = List.collect (fun x -> [for i in 1..3 -> x * i]) list1
printfn "%A" collectList

[1; 2; 3; 2; 4; 6; 3; 6; 9]

let evenOnlyList = List.filter (fun x -> x % 2 = 0) [1; 2; 3; 4; 5; 6]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#collect
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#filter

The resulting list is [2; 4; 6] .

A combination of map and filter, List.choose enables you to transform and select
elements at the same time. List.choose applies a function that returns an option to
each element of a list, and returns a new list of the results for elements when the
function returns the option value Some .

The following code demonstrates the use of List.choose to select capitalized words out
of a list of words.

F#

The output is as follows:

Console

Lists can be joined together. To join two lists into one, use List.append . To join more
than two lists, use List.concat .

F#

Some list operations involve interdependencies between all of the list elements. The fold
and scan operations are like List.iter and List.map in that you invoke a function on

let listWords = ["and"; "Rome"; "Bob"; "apple"; "zebra"]
let isCapitalized (string1:string) = System.Char.IsUpper string1[0]
let results = List.choose (fun elem ->
 match elem with
 | elem when isCapitalized elem -> Some(elem + "'s")
 | _ -> None) listWords
printfn "%A" results

["Rome's"; "Bob's"]

Operating on Multiple Lists

let list1to10 = List.append [1; 2; 3] [4; 5; 6; 7; 8; 9; 10]
let listResult = List.concat [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]]
List.iter (fun elem -> printf "%d " elem) list1to10
printfn ""
List.iter (fun elem -> printf "%d " elem) listResult

Fold and Scan Operations

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#choose
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#append
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#concat

each element, but these operations provide an additional parameter called the
accumulator that carries information through the computation.

Use List.fold to perform a calculation on a list.

The following code example demonstrates the use of List.fold to perform various
operations.

The list is traversed; the accumulator acc is a value that is passed along as the
calculation proceeds. The first argument takes the accumulator and the list element, and
returns the interim result of the calculation for that list element. The second argument is
the initial value of the accumulator.

F#

let sumList list = List.fold (fun acc elem -> acc + elem) 0 list
printfn "Sum of the elements of list %A is %d." [1 .. 3] (sumList [1 .. 3
])

// The following example computes the average of a list.
let averageList list = (List.fold (fun acc elem -> acc + float elem) 0.0
list / float list.Length)

// The following example computes the standard deviation of a list.
// The standard deviation is computed by taking the square root of the
// sum of the variances, which are the differences between each value
// and the average.
let stdDevList list =
 let avg = averageList list
 sqrt (List.fold (fun acc elem -> acc + (float elem - avg) ** 2.0) 0.0
list / float list.Length)

let testList listTest =
 printfn "List %A average: %f stddev: %f" listTest (averageList listTest)
(stdDevList listTest)

testList [1; 1; 1]
testList [1; 2; 1]
testList [1; 2; 3]

// List.fold is the same as to List.iter when the accumulator is not used.
let printList list = List.fold (fun acc elem -> printfn "%A" elem) () list
printList [0.0; 1.0; 2.5; 5.1]

// The following example uses List.fold to reverse a list.
// The accumulator starts out as the empty list, and the function uses the
cons operator
// to add each successive element to the head of the accumulator list,
resulting in a
// reversed form of the list.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#fold

The versions of these functions that have a digit in the function name operate on more
than one list. For example, List.fold2 performs computations on two lists.

The following example demonstrates the use of List.fold2 .

F#

List.fold and List.scan differ in that List.fold returns the final value of the extra
parameter, but List.scan returns the list of the intermediate values (along with the final
value) of the extra parameter.

Each of these functions includes a reverse variation, for example, List.foldBack , which
differs in the order in which the list is traversed and the order of the arguments. Also,
List.fold and List.foldBack have variations, List.fold2 and List.foldBack2 , that
take two lists of equal length. The function that executes on each element can use
corresponding elements of both lists to perform some action. The element types of the
two lists can be different, as in the following example, in which one list contains
transaction amounts for a bank account, and the other list contains the type of
transaction: deposit or withdrawal.

F#

let reverseList list = List.fold (fun acc elem -> elem::acc) [] list
printfn "%A" (reverseList [1 .. 10])

// Use List.fold2 to perform computations over two lists (of equal size) at
the same time.
// Example: Sum the greater element at each list position.
let sumGreatest list1 list2 = List.fold2 (fun acc elem1 elem2 ->
 acc + max elem1 elem2) 0 list1
list2

let sum = sumGreatest [1; 2; 3] [3; 2; 1]
printfn "The sum of the greater of each pair of elements in the two lists is
%d." sum

// Discriminated union type that encodes the transaction type.
type Transaction =
 | Deposit
 | Withdrawal

let transactionTypes = [Deposit; Deposit; Withdrawal]
let transactionAmounts = [100.00; 1000.00; 95.00]
let initialBalance = 200.00

// Use fold2 to perform a calculation on the list to update the account
balance.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#fold2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#scan
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#foldBack
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#fold2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#foldBack2

For a calculation like summation, List.fold and List.foldBack have the same effect
because the result does not depend on the order of traversal. In the following example,
List.foldBack is used to add the elements in a list.

F#

The following example returns to the bank account example. This time a new transaction
type is added: an interest calculation. The ending balance now depends on the order of
transactions.

F#

let endingBalance = List.fold2 (fun acc elem1 elem2 ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2)
 initialBalance
 transactionTypes
 transactionAmounts
printfn "%f" endingBalance

let sumListBack list = List.foldBack (fun elem acc -> acc + elem) list 0
printfn "%d" (sumListBack [1; 2; 3])

// For a calculation in which the order of traversal is important, fold and
foldBack have different
// results. For example, replacing fold with foldBack in the listReverse
function
// produces a function that copies the list, rather than reversing it.
let copyList list = List.foldBack (fun elem acc -> elem::acc) list []
printfn "%A" (copyList [1 .. 10])

type Transaction2 =
 | Deposit
 | Withdrawal
 | Interest

let transactionTypes2 = [Deposit; Deposit; Withdrawal; Interest]
let transactionAmounts2 = [100.00; 1000.00; 95.00; 0.05 / 12.0]
let initialBalance2 = 200.00

// Because fold2 processes the lists by starting at the head element,
// the interest is calculated last, on the balance of 1205.00.
let endingBalance2 = List.fold2 (fun acc elem1 elem2 ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2
 | Interest -> acc * (1.0 + elem2))
 initialBalance2
 transactionTypes2

The function List.reduce is somewhat like List.fold and List.scan , except that
instead of passing around a separate accumulator, List.reduce takes a function that
takes two arguments of the element type instead of just one, and one of those
arguments acts as the accumulator, meaning that it stores the intermediate result of the
computation. List.reduce starts by operating on the first two list elements, and then
uses the result of the operation along with the next element. Because there is not a
separate accumulator that has its own type, List.reduce can be used in place of
List.fold only when the accumulator and the element type have the same type. The
following code demonstrates the use of List.reduce . List.reduce throws an exception
if the list provided has no elements.

In the following code, the first call to the lambda expression is given the arguments 2
and 4, and returns 6, and the next call is given the arguments 6 and 10, so the result is
16.

F#

The List module provides functions for converting to and from both sequences and
arrays. To convert to or from a sequence, use List.toSeq or List.ofSeq . To convert to

 transactionAmounts2
printfn "%f" endingBalance2

// Because foldBack2 processes the lists by starting at end of the list,
// the interest is calculated first, on the balance of only 200.00.
let endingBalance3 = List.foldBack2 (fun elem1 elem2 acc ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2
 | Interest -> acc * (1.0 + elem2))
 transactionTypes2
 transactionAmounts2
 initialBalance2
printfn "%f" endingBalance3

let sumAList list =
 try
 List.reduce (fun acc elem -> acc + elem) list
 with
 | :? System.ArgumentException as exc -> 0

let resultSum = sumAList [2; 4; 10]
printfn "%d " resultSum

Converting Between Lists and Other Collection Types

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#reduce
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#toSeq
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#ofSeq

or from an array, use List.toArray or List.ofArray .

For information about additional operations on lists, see the library reference topic List
Module .

F# Language Reference
F# Types
Sequences
Arrays
Options

Additional Operations

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#toArray
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#ofArray
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

Arrays (F#)
Article • 10/28/2022

Arrays are fixed-size, zero-based, mutable collections of consecutive data elements that
are all of the same type.

You can create arrays in several ways. You can create a small array by listing consecutive
values between [| and |] and separated by semicolons, as shown in the following
examples.

F#

You can also put each element on a separate line, in which case the semicolon separator
is optional.

F#

The type of the array elements is inferred from the literals used and must be consistent.
The following code causes an error because 1.0 is a float and 2 and 3 are integers.

F#

You can also use sequence expressions to create arrays. Following is an example that
creates an array of squares of integers from 1 to 10.

F#

Create arrays

let array1 = [| 1; 2; 3 |]

let array1 =
 [|
 1
 2
 3
 |]

// Causes an error.
// let array2 = [| 1.0; 2; 3 |]

let array3 = [| for i in 1 .. 10 -> i * i |]

To create an array in which all the elements are initialized to zero, use Array.zeroCreate .

F#

You can access array elements by using brackets ([and]). The original dot syntax (.
[index]) is still supported but no longer recommended as of F# 6.0.

F#

Array indexes start at 0.

You can also access array elements by using slice notation, which enables you to specify
a subrange of the array. Examples of slice notation follow.

F#

When slice notation is used, a new copy of the array is created.

The type of all F# arrays is the .NET Framework type System.Array. Therefore, F# arrays
support all the functionality available in System.Array.

The Array module supports operations on one-dimensional arrays. The modules
Array2D , Array3D , and Array4D contain functions that support operations on arrays of

let arrayOfTenZeroes : int array = Array.zeroCreate 10

Access elements

array1[0]

// Accesses elements from 0 to 2.

array1[0..2]

// Accesses elements from the beginning of the array to 2.

array1[..2]

// Accesses elements from 2 to the end of the array.

array1[2..]

Array types and modules

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html

two, three, and four dimensions, respectively. You can create arrays of rank greater than
four by using System.Array.

Array.get gets an element. Array.length gives the length of an array. Array.set sets
an element to a specified value. The following code example illustrates the use of these
functions.

F#

The output is as follows.

Console

Several functions create arrays without requiring an existing array. Array.empty creates
a new array that does not contain any elements. Array.create creates an array of a
specified size and sets all the elements to provided values. Array.init creates an array,
given a dimension and a function to generate the elements. Array.zeroCreate creates
an array in which all the elements are initialized to the zero value for the array's type.
The following code demonstrates these functions.

F#

Simple functions

let array1 = Array.create 10 ""
for i in 0 .. array1.Length - 1 do
 Array.set array1 i (i.ToString())
for i in 0 .. array1.Length - 1 do
 printf "%s " (Array.get array1 i)

0 1 2 3 4 5 6 7 8 9

Functions that create arrays

let myEmptyArray = Array.empty
printfn "Length of empty array: %d" myEmptyArray.Length

printfn "Array of floats set to 5.0: %A" (Array.create 10 5.0)

printfn "Array of squares: %A" (Array.init 10 (fun index -> index * index))

let (myZeroArray : float array) = Array.zeroCreate 10

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#get
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#length
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#set
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#empty
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#create
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#init
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#zeroCreate

The output is as follows.

Console

Array.copy creates a new array that contains elements that are copied from an
existing array. Note that the copy is a shallow copy, which means that if the element
type is a reference type, only the reference is copied, not the underlying object. The
following code example illustrates this.

F#

The output of the preceding code is as follows:

Console

The string Test1 appears only in the first array because the operation of creating a new
element overwrites the reference in firstArray but does not affect the original
reference to an empty string that is still present in secondArray . The string Test2
appears in both arrays because the Insert operation on the System.Text.StringBuilder
type affects the underlying System.Text.StringBuilder object, which is referenced in both
arrays.

Array.sub generates a new array from a subrange of an array. You specify the
subrange by providing the starting index and the length. The following code

Length of empty array: 0
Area of floats set to 5.0: [|5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0;
5.0|]
Array of squares: [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]

open System.Text

let firstArray : StringBuilder array = Array.init 3 (fun index -> new
StringBuilder(""))
let secondArray = Array.copy firstArray
// Reset an element of the first array to a new value.
firstArray[0] <- new StringBuilder("Test1")
// Change an element of the first array.
firstArray[1].Insert(0, "Test2") |> ignore
printfn "%A" firstArray
printfn "%A" secondArray

[|Test1; Test2; |]
[|; Test2; |]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#copy
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sub

demonstrates the use of Array.sub .

F#

The output shows that the subarray starts at element 5 and contains 10 elements.

Console

Array.append creates a new array by combining two existing arrays.

The following code demonstrates Array.append.

F#

The output of the preceding code is as follows.

Console

Array.choose selects elements of an array to include in a new array. The following
code demonstrates Array.choose . Note that the element type of the array does not
have to match the type of the value returned in the option type. In this example, the
element type is int and the option is the result of a polynomial function, elem*elem -
1 , as a floating point number.

F#

The output of the preceding code is as follows.

Console

let a1 = [| 0 .. 99 |]
let a2 = Array.sub a1 5 10
printfn "%A" a2

[|5; 6; 7; 8; 9; 10; 11; 12; 13; 14|]

printfn "%A" (Array.append [| 1; 2; 3|] [| 4; 5; 6|])

[|1; 2; 3; 4; 5; 6|]

printfn "%A" (Array.choose (fun elem -> if elem % 2 = 0 then
 Some(float (elem*elem - 1))
 else
 None) [| 1 .. 10 |])

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#append
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#choose

Array.collect runs a specified function on each array element of an existing array and
then collects the elements generated by the function and combines them into a new
array. The following code demonstrates Array.collect .

F#

The output of the preceding code is as follows.

Console

Array.concat takes a sequence of arrays and combines them into a single array. The
following code demonstrates Array.concat .

F#

Array.filter takes a Boolean condition function and generates a new array that
contains only those elements from the input array for which the condition is true. The
following code demonstrates Array.filter .

F#

The output of the preceding code is as follows.

Console

Array.rev generates a new array by reversing the order of an existing array. The
following code demonstrates Array.rev .

[|3.0; 15.0; 35.0; 63.0; 99.0|]

printfn "%A" (Array.collect (fun elem -> [| 0 .. elem |]) [| 1; 5; 10|])

[|0; 1; 0; 1; 2; 3; 4; 5; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]

Array.concat [[|0..3|] ; [|4|]]
//output [|0; 1; 2; 3; 4|]

Array.concat [| [|0..3|] ; [|4|] |]
//output [|0; 1; 2; 3; 4|]

printfn "%A" (Array.filter (fun elem -> elem % 2 = 0) [| 1 .. 10|])

[|2; 4; 6; 8; 10|]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#collect
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#concat
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#filter
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#rev

F#

The output of the preceding code is as follows.

Console

You can easily combine functions in the array module that transform arrays by using the
pipeline operator (|>), as shown in the following example.

F#

The output is

Console

A multidimensional array can be created, but there is no syntax for writing a
multidimensional array literal. Use the operator array2D to create an array from a
sequence of sequences of array elements. The sequences can be array or list literals. For
example, the following code creates a two-dimensional array.

F#

You can also use the function Array2D.init to initialize arrays of two dimensions, and
similar functions are available for arrays of three and four dimensions. These functions

let stringReverse (s: string) =
 System.String(Array.rev (s.ToCharArray()))

printfn "%A" (stringReverse("!dlrow olleH"))

"Hello world!"

[| 1 .. 10 |]
|> Array.filter (fun elem -> elem % 2 = 0)
|> Array.choose (fun elem -> if (elem <> 8) then Some(elem*elem) else None)
|> Array.rev
|> printfn "%A"

[|100; 36; 16; 4|]

Multidimensional arrays

let my2DArray = array2D [[1; 0]; [0; 1]]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-array2dmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-array2dmodule.html#init

take a function that is used to create the elements. To create a two-dimensional array
that contains elements set to an initial value instead of specifying a function, use the
Array2D.create function, which is also available for arrays up to four dimensions. The
following code example first shows how to create an array of arrays that contain the
desired elements, and then uses Array2D.init to generate the desired two-dimensional
array.

F#

Array indexing and slicing syntax is supported for arrays up to rank 4. When you specify
an index in multiple dimensions, you use commas to separate the indexes, as illustrated
in the following code example.

F#

The type of a two-dimensional array is written out as <type>[,] (for example, int[,] ,
double[,]), and the type of a three-dimensional array is written as <type>[,,] , and so
on for arrays of higher dimensions.

Only a subset of the functions available for one-dimensional arrays is also available for
multidimensional arrays.

In a two-dimensional array (a matrix), you can extract a sub-matrix by specifying ranges
and using a wildcard (*) character to specify whole rows or columns.

F#

let arrayOfArrays = [| [| 1.0; 0.0 |]; [|0.0; 1.0 |] |]
let twoDimensionalArray = Array2D.init 2 2 (fun i j -> arrayOfArrays[i][j])

twoDimensionalArray[0, 1] <- 1.0

Array slicing and multidimensional arrays

// Get rows 1 to N from an NxM matrix (returns a matrix):
matrix[1.., *]

// Get rows 1 to 3 from a matrix (returns a matrix):
matrix[1..3, *]

// Get columns 1 to 3 from a matrix (returns a matrix):
matrix[*, 1..3]

// Get a 3x3 submatrix:
matrix[1..3, 1..3]

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-array2dmodule.html#create

You can decompose a multidimensional array into subarrays of the same or lower
dimension. For example, you can obtain a vector from a matrix by specifying a single
row or column.

F#

You can use this slicing syntax for types that implement the element access operators
and overloaded GetSlice methods. For example, the following code creates a Matrix
type that wraps the F# 2D array, implements an Item property to provide support for
array indexing, and implements three versions of GetSlice . If you can use this code as a
template for your matrix types, you can use all the slicing operations that this section
describes.

F#

// Get row 3 from a matrix as a vector:
matrix[3, *]

// Get column 3 from a matrix as a vector:
matrix[*, 3]

type Matrix<'T>(N: int, M: int) =
 let internalArray = Array2D.zeroCreate<'T> N M

 member this.Item
 with get(a: int, b: int) = internalArray[a, b]
 and set(a: int, b: int) (value:'T) = internalArray[a, b] <- value

 member this.GetSlice(rowStart: int option, rowFinish : int option,
colStart: int option, colFinish : int option) =
 let rowStart =
 match rowStart with
 | Some(v) -> v
 | None -> 0
 let rowFinish =
 match rowFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(0) - 1
 let colStart =
 match colStart with
 | Some(v) -> v
 | None -> 0
 let colFinish =
 match colFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(1) - 1
 internalArray[rowStart..rowFinish, colStart..colFinish]

The functions Array.exists and Array.exists2 test elements in either one or two
arrays, respectively. These functions take a test function and return true if there is an
element (or element pair for Array.exists2) that satisfies the condition.

The following code demonstrates the use of Array.exists and Array.exists2 . In these
examples, new functions are created by applying only one of the arguments, in these
cases, the function argument.

 member this.GetSlice(row: int, colStart: int option, colFinish: int
option) =
 let colStart =
 match colStart with
 | Some(v) -> v
 | None -> 0
 let colFinish =
 match colFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(1) - 1
 internalArray[row, colStart..colFinish]

 member this.GetSlice(rowStart: int option, rowFinish: int option, col:
int) =
 let rowStart =
 match rowStart with
 | Some(v) -> v
 | None -> 0
 let rowFinish =
 match rowFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(0) - 1
 internalArray[rowStart..rowFinish, col]

module test =
 let generateTestMatrix x y =
 let matrix = new Matrix<float>(3, 3)
 for i in 0..2 do
 for j in 0..2 do
 matrix[i, j] <- float(i) * x - float(j) * y
 matrix

 let test1 = generateTestMatrix 2.3 1.1
 let submatrix = test1[0..1, 0..1]
 printfn $"{submatrix}"

 let firstRow = test1[0,*]
 let secondRow = test1[1,*]
 let firstCol = test1[*,0]
 printfn $"{firstCol}"

Boolean functions on arrays

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#exists
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#exists2

F#

The output of the preceding code is as follows.

Console

Similarly, the function Array.forall tests an array to determine whether every element
satisfies a Boolean condition. The variation Array.forall2 does the same thing by using
a Boolean function that involves elements of two arrays of equal length. The following
code illustrates the use of these functions.

F#

The output for these examples is as follows.

Console

let allNegative = Array.exists (fun elem -> abs (elem) = elem) >> not
printfn "%A" (allNegative [| -1; -2; -3 |])
printfn "%A" (allNegative [| -10; -1; 5 |])
printfn "%A" (allNegative [| 0 |])

let haveEqualElement = Array.exists2 (fun elem1 elem2 -> elem1 = elem2)
printfn "%A" (haveEqualElement [| 1; 2; 3 |] [| 3; 2; 1|])

true
false
false
true

let allPositive = Array.forall (fun elem -> elem > 0)
printfn "%A" (allPositive [| 0; 1; 2; 3 |])
printfn "%A" (allPositive [| 1; 2; 3 |])

let allEqual = Array.forall2 (fun elem1 elem2 -> elem1 = elem2)
printfn "%A" (allEqual [| 1; 2 |] [| 1; 2 |])
printfn "%A" (allEqual [| 1; 2 |] [| 2; 1 |])

false
true
true
false

Search arrays

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#forall
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#forall2

Array.find takes a Boolean function and returns the first element for which the
function returns true , or raises a System.Collections.Generic.KeyNotFoundException if
no element that satisfies the condition is found. Array.findIndex is like Array.find ,
except that it returns the index of the element instead of the element itself.

The following code uses Array.find and Array.findIndex to locate a number that is
both a perfect square and perfect cube.

F#

The output is as follows.

Console

Array.tryFind is like Array.find , except that its result is an option type, and it returns
None if no element is found. Array.tryFind should be used instead of Array.find when
you do not know whether a matching element is in the array. Similarly,
Array.tryFindIndex is like Array.findIndex except that the option type is the return
value. If no element is found, the option is None .

The following code demonstrates the use of Array.tryFind . This code depends on the
previous code.

F#

let arrayA = [| 2 .. 100 |]
let delta = 1.0e-10
let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta
let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
let element = Array.find (fun elem -> isPerfectSquare elem && isPerfectCube
elem) arrayA
let index = Array.findIndex (fun elem -> isPerfectSquare elem &&
isPerfectCube elem) arrayA
printfn "The first element that is both a square and a cube is %d and its
index is %d." element index

The first element that is both a square and a cube is 64 and its index is
62.

let delta = 1.0e-10
let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#find
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.keynotfoundexception
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#findIndex
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#tryFind
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#tryFindIndex

The output is as follows.

Console

Use Array.tryPick when you need to transform an element in addition to finding it. The
result is the first element for which the function returns the transformed element as an
option value, or None if no such element is found.

The following code shows the use of Array.tryPick . In this case, instead of a lambda
expression, several local helper functions are defined to simplify the code.

F#

let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
let lookForCubeAndSquare array1 =
 let result = Array.tryFind (fun elem -> isPerfectSquare elem &&
isPerfectCube elem) array1
 match result with
 | Some x -> printfn "Found an element: %d" x
 | None -> printfn "Failed to find a matching element."

lookForCubeAndSquare [| 1 .. 10 |]
lookForCubeAndSquare [| 100 .. 1000 |]
lookForCubeAndSquare [| 2 .. 50 |]

Found an element: 1
Found an element: 729
Failed to find a matching element.

let findPerfectSquareAndCube array1 =
 let delta = 1.0e-10
 let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta
 let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
 // intFunction : (float -> float) -> int -> int
 // Allows the use of a floating point function with integers.
 let intFunction function1 number = int (round (function1 (float
number)))
 let cubeRoot x = System.Math.Pow(x, 1.0/3.0)
 // testElement: int -> (int * int * int) option
 // Test an element to see whether it is a perfect square and a perfect
 // cube, and, if so, return the element, square root, and cube root
 // as an option value. Otherwise, return None.
 let testElement elem =
 if isPerfectSquare elem && isPerfectCube elem then

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#tryPick

The output is as follows.

Console

The Array.average function returns the average of each element in an array. It is
limited to element types that support exact division by an integer, which includes
floating point types but not integral types. The Array.averageBy function returns the
average of the results of calling a function on each element. For an array of integral
type, you can use Array.averageBy and have the function convert each element to a
floating point type for the computation.

Use Array.max or Array.min to get the maximum or minimum element, if the
element type supports it. Similarly, Array.maxBy and Array.minBy allow a function to
be executed first, perhaps to transform to a type that supports comparison.

Array.sum adds the elements of an array, and Array.sumBy calls a function on each
element and adds the results together.

To execute a function on each element in an array without storing the return values, use
Array.iter . For a function involving two arrays of equal length, use Array.iter2 . If you
also need to keep an array of the results of the function, use Array.map or
Array.map2 , which operates on two arrays at a time.

 Some(elem, intFunction sqrt elem, intFunction cubeRoot elem)
 else None
 match Array.tryPick testElement array1 with
 | Some (n, sqrt, cuberoot) -> printfn "Found an element %d with square
root %d and cube root %d." n sqrt cuberoot
 | None -> printfn "Did not find an element that is both a perfect square
and a perfect cube."

findPerfectSquareAndCube [| 1 .. 10 |]
findPerfectSquareAndCube [| 2 .. 100 |]
findPerfectSquareAndCube [| 100 .. 1000 |]
findPerfectSquareAndCube [| 1000 .. 10000 |]
findPerfectSquareAndCube [| 2 .. 50 |]

Found an element 1 with square root 1 and cube root 1.
Found an element 64 with square root 8 and cube root 4.
Found an element 729 with square root 27 and cube root 9.
Found an element 4096 with square root 64 and cube root 16.
Did not find an element that is both a perfect square and a perfect cube.

Perform computations on arrays

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#average
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#averageBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#max
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#min
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#maxBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#minBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sum
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sumBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#iter
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#iter2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#map
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#map2

The variations Array.iteri and Array.iteri2 allow the index of the element to be
involved in the computation; the same is true for Array.mapi and Array.mapi2 .

The functions Array.fold , Array.foldBack , Array.reduce , Array.reduceBack ,
Array.scan , and Array.scanBack execute algorithms that involve all the elements of
an array. Similarly, the variations Array.fold2 and Array.foldBack2 perform
computations on two arrays.

These functions for performing computations correspond to the functions of the same
name in the List module . For usage examples, see Lists.

Array.set sets an element to a specified value. Array.fill sets a range of elements in
an array to a specified value. The following code provides an example of Array.fill .

F#

The output is as follows.

Console

You can use Array.blit to copy a subsection of one array to another array.

Array.ofList creates an array from a list. Array.ofSeq creates an array from a
sequence. Array.toList and Array.toSeq convert to these other collection types from
the array type.

Use Array.sort to sort an array by using the generic comparison function. Use
Array.sortBy to specify a function that generates a value, referred to as a key, to sort
by using the generic comparison function on the key. Use Array.sortWith if you want

Modify arrays

let arrayFill1 = [| 1 .. 25 |]
Array.fill arrayFill1 2 20 0
printfn "%A" arrayFill1

[|1; 2; 0; 23; 24;
25|]

Convert to and from other types

Sort arrays

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#iteri
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#iteri2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#mapi
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#mapi2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#fold
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#foldBack
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#reduce
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#reduceBack
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#scan
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#scanBack
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#fold2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#foldBack2
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#set
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#fill
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#blit
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#ofList
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#ofSeq
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#toList
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#toSeq
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sort
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sortBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sortWith

to provide a custom comparison function. Array.sort , Array.sortBy , and
Array.sortWith all return the sorted array as a new array. The variations
Array.sortInPlace , Array.sortInPlaceBy , and Array.sortInPlaceWith modify the
existing array instead of returning a new one.

The functions Array.zip and Array.unzip convert arrays of tuple pairs to tuples of
arrays and vice versa. Array.zip3 and Array.unzip3 are similar except that they work
with tuples of three elements or tuples of three arrays.

The module Array.Parallel contains functions for performing parallel computations on
arrays. This module is not available in applications that target versions of the .NET
Framework prior to version 4.

F# Language Reference
F# Types

Arrays and tuples

Parallel computations on arrays

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sortInPlace
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sortInPlaceBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#sortInPlaceWith
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#zip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#unzip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#zip3
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#unzip3
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule-parallel.html

Slices
Article • 11/04/2021

This article explains how to take slices from existing F# types and how to define your
own slices.

In F#, a slice is a subset of any data type. Slices are similar to indexers, but instead of
yielding a single value from the underlying data structure, they yield multiple ones.
Slices use the .. operator syntax to select the range of specified indices in a data type.
For more information, see the looping expression reference article.

F# currently has intrinsic support for slicing strings, lists, arrays, and multidimensional
(2D, 3D, 4D) arrays. Slicing is most commonly used with F# arrays and lists. You can add
slicing to your custom data types by using the GetSlice method in your type definition
or in an in-scope type extension.

The most common data types that are sliced are F# lists and arrays. The following
example demonstrates how to slice lists:

F#

Slicing arrays is just like slicing lists:

F#

Slicing F# lists and arrays

// Generate a list of 100 integers
let fullList = [1 .. 100]

// Create a slice from indices 1-5 (inclusive)
let smallSlice = fullList[1..5]
printfn $"Small slice: {smallSlice}"

// Create a slice from the beginning to index 5 (inclusive)
let unboundedBeginning = fullList[..5]
printfn $"Unbounded beginning slice: {unboundedBeginning}"

// Create a slice from an index to the end of the list
let unboundedEnd = fullList[94..]
printfn $"Unbounded end slice: {unboundedEnd}"

// Generate an array of 100 integers
let fullArray = [| 1 .. 100 |]

Prior to F# 6, slicing used the syntax expr.[start..finish] with the extra . . If you
choose, you can still use this syntax. For more information, see RFC FS-1110 .

F# supports multidimensional arrays in the F# core library. As with one-dimensional
arrays, slices of multidimensional arrays can also be useful. However, the introduction of
additional dimensions mandates a slightly different syntax so that you can take slices of
specific rows and columns.

The following examples demonstrate how to slice a 2D array:

F#

// Create a slice from indices 1-5 (inclusive)
let smallSlice = fullArray[1..5]
printfn $"Small slice: {smallSlice}"

// Create a slice from the beginning to index 5 (inclusive)
let unboundedBeginning = fullArray[..5]
printfn $"Unbounded beginning slice: {unboundedBeginning}"

// Create a slice from an index to the end of the list
let unboundedEnd = fullArray[94..]
printfn $"Unbounded end slice: {unboundedEnd}"

Slicing multidimensional arrays

// Generate a 3x3 2D matrix
let A = array2D [[1;2;3];[4;5;6];[7;8;9]]
printfn $"Full matrix:\n {A}"

// Take the first row
let row0 = A[0,*]
printfn $"{row0}"

// Take the first column
let col0 = A[*,0]
printfn $"{col0}"

// Take all rows but only two columns
let subA = A[*,0..1]
printfn $"{subA}"

// Take two rows and all columns
let subA' = A[0..1,*]
printfn $"{subA}"

// Slice a 2x2 matrix out of the full 3x3 matrix
let twoByTwo = A[0..1,0..1]
printfn $"{twoByTwo}"

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1110-index-syntax.md

The F# core library defines slices for a limited set of types. If you wish to define slices for
more data types, you can do so either in the type definition itself or in a type extension.

For example, here's how you might define slices for the ArraySegment<T> class to allow
for convenient data manipulation:

F#

Another example using the Span<T> and ReadOnlySpan<T> types:

F#

Defining slices for other data structures

open System

type ArraySegment<'TItem> with
 member segment.GetSlice(start, finish) =
 let start = defaultArg start 0
 let finish = defaultArg finish segment.Count
 ArraySegment(segment.Array, segment.Offset + start, finish - start)

let arr = ArraySegment [| 1 .. 10 |]
let slice = arr[2..5] //[3; 4; 5]

open System

type ReadOnlySpan<'T> with
 member sp.GetSlice(startIdx, endIdx) =
 let s = defaultArg startIdx 0
 let e = defaultArg endIdx sp.Length
 sp.Slice(s, e - s)

type Span<'T> with
 member sp.GetSlice(startIdx, endIdx) =
 let s = defaultArg startIdx 0
 let e = defaultArg endIdx sp.Length
 sp.Slice(s, e - s)

let printSpan (sp: Span<int>) =
 let arr = sp.ToArray()
 printfn $"{arr}"

let sp = [| 1; 2; 3; 4; 5 |].AsSpan()
printSpan sp[0..] // [|1; 2; 3; 4; 5|]
printSpan sp[..5] // [|1; 2; 3; 4; 5|]
printSpan sp[0..3] // [|1; 2; 3|]
printSpan sp[1..3] // |2; 3|]

https://learn.microsoft.com/en-us/dotnet/api/system.arraysegment-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1

All intrinsic slices in F# are end-inclusive; that is, the upper bound is included in the slice.
For a given slice with starting index x and ending index y , the resulting slice will include
the yth value.

F#

F# lists, arrays, sequences, strings, multidimensional (2D, 3D, 4D) arrays will all produce
an empty slice if the syntax could produce a slice that doesn't exist.

Consider the following example:

F#

Built-in F# slices are end-inclusive

// Define a new list
let xs = [1 .. 10]

printfn $"{xs[2..5]}" // Includes the 5th index

Built-in F# empty slices

let l = [1..10]
let a = [| 1..10 |]
let s = "hello!"

let emptyList = l[-2..(-1)]
let emptyArray = a[-2..(-1)]
let emptyString = s[-2..(-1)]

） Important

C# developers may expect these to throw an exception rather than produce an
empty slice. This is a design decision rooted in the fact that empty collections
compose in F#. An empty F# list can be composed with another F# list, an empty
string can be added to an existing string, and so on. It can be common to take
slices based on values passed in as parameters, and being tolerant of out-of-
bounds > by producing an empty collection fits with the compositional nature of
F# code.

Fixed-index slices for 3D and 4D arrays

For F# 3D and 4D arrays, you can "fix" a particular index and slice other dimensions with
that index fixed.

To illustrate this, consider the following 3D array:

z = 0

x\y 0 1

0 0 1

1 2 3

z = 1

x\y 0 1

0 4 5

1 6 7

If you want to extract the slice [| 4; 5 |] from the array, use a fixed-index slice.

F#

The last line fixes the y and z indices of the 3D array and takes the rest of the x values
that correspond to the matrix.

Indexed properties

let dim = 2
let m = Array3D.zeroCreate<int> dim dim dim

let mutable count = 0

for z in 0..dim-1 do
 for y in 0..dim-1 do
 for x in 0..dim-1 do
 m[x,y,z] <- count
 count <- count + 1

// Now let's get the [4;5] slice!
m[*, 0, 1]

See also

Sequences
Article • 06/07/2023

A sequence is a logical series of elements all of one type. Sequences are particularly
useful when you have a large, ordered collection of data but do not necessarily expect
to use all of the elements. Individual sequence elements are computed only as required,
so a sequence can provide better performance than a list in situations in which not all
the elements are used. Sequences are represented by the seq<'T> type, which is an alias
for IEnumerable<T>. Therefore, any .NET type that implements IEnumerable<T>
interface can be used as a sequence. The Seq module provides support for
manipulations involving sequences.

A sequence expression is an expression that evaluates to a sequence. Sequence
expressions can take a number of forms. The simplest form specifies a range. For
example, seq { 1 .. 5 } creates a sequence that contains five elements, including the
endpoints 1 and 5. You can also specify an increment (or decrement) between two
double periods. For example, the following code creates the sequence of multiples of
10.

F#

Sequence expressions are made up of F# expressions that produce values of the
sequence. You can also generate values programmatically:

F#

The previous sample uses the -> operator, which allows you to specify an expression
whose value will become a part of the sequence. You can only use -> if every part of the
code that follows it returns a value.

Alternatively, you can specify the do keyword, with an optional yield that follows:

F#

Sequence Expressions

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }

seq { for i in 1 .. 10 -> i * i }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html

The following code generates a list of coordinate pairs along with an index into an array
that represents the grid. Note that the first for expression requires a do to be specified.

F#

An if expression used in a sequence is a filter. For example, to generate a sequence of
only prime numbers, assuming that you have a function isprime of type int -> bool ,
construct the sequence as follows.

F#

As mentioned previously, do is required here because there is no else branch that goes
with the if . If you try to use -> , you'll get an error saying that not all branches return a
value.

Sometimes, you may wish to include a sequence of elements into another sequence. To
include a sequence within another sequence, you'll need to use the yield! keyword:

F#

seq { for i in 1 .. 10 do yield i * i }

// The 'yield' is implicit and doesn't need to be specified in most cases.
seq { for i in 1 .. 10 do i * i }

let (height, width) = (10, 10)

seq {
 for row in 0 .. width - 1 do
 for col in 0 .. height - 1 ->
 (row, col, row*width + col)
 }

seq { for n in 1 .. 100 do if isprime n then n }

The yield! keyword

// Repeats '1 2 3 4 5' ten times
seq {
 for _ in 1..10 do
 yield! seq { 1; 2; 3; 4; 5}
}

Another way of thinking of yield! is that it flattens an inner sequence and then includes
that in the containing sequence.

When yield! is used in an expression, all other single values must use the yield
keyword:

F#

The previous example will produce the value of x in addition to all values from 1 to x
for each x .

The first example uses a sequence expression that contains an iteration, a filter, and a
yield to generate an array. This code prints a sequence of prime numbers between 1 and
100 to the console.

F#

The following example creates a multiplication table that consists of tuples of three
elements, each consisting of two factors and the product:

F#

// Combine repeated values with their values
seq {
 for x in 1..10 do
 yield x
 yield! seq { for i in 1..x -> i}
}

Examples

// Recursive isprime function.
let isprime n =
 let rec check i =
 i > n/2 || (n % i <> 0 && check (i + 1))
 check 2

let aSequence =
 seq {
 for n in 1..100 do
 if isprime n then
 n
 }

for x in aSequence do
 printfn "%d" x

The following example demonstrates the use of yield! to combine individual
sequences into a single final sequence. In this case, the sequences for each subtree in a
binary tree are concatenated in a recursive function to produce the final sequence.

F#

Sequences support many of the same functions as lists. Sequences also support
operations such as grouping and counting by using key-generating functions.
Sequences also support more diverse functions for extracting subsequences.

Many data types, such as lists, arrays, sets, and maps are implicitly sequences because
they are enumerable collections. A function that takes a sequence as an argument works
with any of the common F# data types, in addition to any .NET data type that
implements System.Collections.Generic.IEnumerable<'T> . Contrast this to a function
that takes a list as an argument, which can only take lists. The type seq<'T> is a type
abbreviation for IEnumerable<'T> . This means that any type that implements the generic
System.Collections.Generic.IEnumerable<'T> , which includes arrays, lists, sets, and maps

let multiplicationTable =
 seq {
 for i in 1..9 do
 for j in 1..9 ->
 (i, j, i*j)
 }

// Yield the values of a binary tree in a sequence.
type Tree<'a> =
 | Tree of 'a * Tree<'a> * Tree<'a>
 | Leaf of 'a

// inorder : Tree<'a> -> seq<'a>
let rec inorder tree =
 seq {
 match tree with
 | Tree(x, left, right) ->
 yield! inorder left
 yield x
 yield! inorder right
 | Leaf x -> yield x
 }

let mytree = Tree(6, Tree(2, Leaf(1), Leaf(3)), Leaf(9))
let seq1 = inorder mytree
printfn "%A" seq1

Using Sequences

in F#, and also most .NET collection types, is compatible with the seq type and can be
used wherever a sequence is expected.

The Seq module in the FSharp.Collections namespace contains functions for
working with sequences. These functions work with lists, arrays, maps, and sets as well,
because all of those types are enumerable, and therefore can be treated as sequences.

You can create sequences by using sequence expressions, as described previously, or by
using certain functions.

You can create an empty sequence by using Seq.empty , or you can create a sequence
of just one specified element by using Seq.singleton .

F#

You can use Seq.init to create a sequence for which the elements are created by using
a function that you provide. You also provide a size for the sequence. This function is
just like List.init , except that the elements are not created until you iterate through the
sequence. The following code illustrates the use of Seq.init .

F#

The output is

Console

By using Seq.ofArray and Seq.ofList<'T> Function , you can create sequences from
arrays and lists. However, you can also convert arrays and lists to sequences by using a
cast operator. Both techniques are shown in the following code.

Module Functions

Creating Sequences

let seqEmpty = Seq.empty
let seqOne = Seq.singleton 10

let seqFirst5MultiplesOf10 = Seq.init 5 (fun n -> n * 10)
Seq.iter (fun elem -> printf "%d " elem) seqFirst5MultiplesOf10

0 10 20 30 40

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#empty
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#singleton
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#init
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#init
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#ofArray
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#ofList

F#

By using Seq.cast , you can create a sequence from a weakly typed collection, such as
those defined in System.Collections . Such weakly typed collections have the element
type System.Object and are enumerated by using the non-generic
System.Collections.Generic.IEnumerable`1 type. The following code illustrates the
use of Seq.cast to convert an System.Collections.ArrayList into a sequence.

F#

You can define infinite sequences by using the Seq.initInfinite function. For such a
sequence, you provide a function that generates each element from the index of the
element. Infinite sequences are possible because of lazy evaluation; elements are
created as needed by calling the function that you specify. The following code example
produces an infinite sequence of floating point numbers, in this case the alternating
series of reciprocals of squares of successive integers.

F#

Seq.unfold generates a sequence from a computation function that takes a state and
transforms it to produce each subsequent element in the sequence. The state is just a
value that is used to compute each element, and can change as each element is
computed. The second argument to Seq.unfold is the initial value that is used to start

// Convert an array to a sequence by using a cast.
let seqFromArray1 = [| 1 .. 10 |] :> seq<int>

// Convert an array to a sequence by using Seq.ofArray.
let seqFromArray2 = [| 1 .. 10 |] |> Seq.ofArray

open System

let arr = ResizeArray<int>(10)

for i in 1 .. 10 do
 arr.Add(10)

let seqCast = Seq.cast arr

let seqInfinite =
 Seq.initInfinite (fun index ->
 let n = float (index + 1)
 1.0 / (n * n * (if ((index + 1) % 2 = 0) then 1.0 else -1.0)))

printfn "%A" seqInfinite

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#cast
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#initInfinite
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#unfold

the sequence. Seq.unfold uses an option type for the state, which enables you to
terminate the sequence by returning the None value. The following code shows two
examples of sequences, seq1 and fib , that are generated by an unfold operation. The
first, seq1 , is just a simple sequence with numbers up to 20. The second, fib , uses
unfold to compute the Fibonacci sequence. Because each element in the Fibonacci
sequence is the sum of the previous two Fibonacci numbers, the state value is a tuple
that consists of the previous two numbers in the sequence. The initial value is (0,1) , the
first two numbers in the sequence.

F#

The output is as follows:

Console

let seq1 =
 0 // Initial state
 |> Seq.unfold (fun state ->
 if (state > 20) then
 None
 else
 Some(state, state + 1))

printfn "The sequence seq1 contains numbers from 0 to 20."

for x in seq1 do
 printf "%d " x

let fib =
 (0, 1)
 |> Seq.unfold (fun state ->
 let cur, next = state
 if cur < 0 then // overflow
 None
 else
 let next' = cur + next
 let state' = next, next'
 Some (cur, state'))

printfn "\nThe sequence fib contains Fibonacci numbers."
for x in fib do printf "%d " x

The sequence seq1 contains numbers from 0 to 20.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The sequence fib contains Fibonacci numbers.

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

The following code is an example that uses many of the sequence module functions
described here to generate and compute the values of infinite sequences. The code
might take a few minutes to run.

F#

// generateInfiniteSequence generates sequences of floating point
// numbers. The sequences generated are computed from the fDenominator
// function, which has the type (int -> float) and computes the
// denominator of each term in the sequence from the index of that
// term. The isAlternating parameter is true if the sequence has
// alternating signs.
let generateInfiniteSequence fDenominator isAlternating =
 if (isAlternating) then
 Seq.initInfinite (fun index ->
 1.0 /(fDenominator index) * (if (index % 2 = 0) then -1.0 else
1.0))
 else
 Seq.initInfinite (fun index -> 1.0 /(fDenominator index))

// The harmonic alternating series is like the harmonic series
// except that it has alternating signs.
let harmonicAlternatingSeries = generateInfiniteSequence (fun index -> float
index) true

// This is the series of reciprocals of the odd numbers.
let oddNumberSeries = generateInfiniteSequence (fun index -> float (2 *
index - 1)) true

// This is the series of recipocals of the squares.
let squaresSeries = generateInfiniteSequence (fun index -> float (index *
index)) false

// This function sums a sequence, up to the specified number of terms.
let sumSeq length sequence =
 (0, 0.0)
 |>
 Seq.unfold (fun state ->
 let subtotal = snd state + Seq.item (fst state + 1) sequence
 if (fst state >= length) then
 None
 else
 Some(subtotal, (fst state + 1, subtotal)))

// This function sums an infinite sequence up to a given value
// for the difference (epsilon) between subsequent terms,
// up to a maximum number of terms, whichever is reached first.
let infiniteSum infiniteSeq epsilon maxIteration =
 infiniteSeq
 |> sumSeq maxIteration
 |> Seq.pairwise
 |> Seq.takeWhile (fun elem -> abs (snd elem - fst elem) > epsilon)

Sequences support functionality available with lists: Seq.exists , Seq.exists2 ,
Seq.find , Seq.findIndex , Seq.pick , Seq.tryFind , and Seq.tryFindIndex . The
versions of these functions that are available for sequences evaluate the sequence only
up to the element that is being searched for. For examples, see Lists.

Seq.filter and Seq.choose are like the corresponding functions that are available for
lists, except that the filtering and choosing does not occur until the sequence elements
are evaluated.

Seq.truncate creates a sequence from another sequence, but limits the sequence to a
specified number of elements. Seq.take creates a new sequence that contains only a
specified number of elements from the start of a sequence. If there are fewer elements
in the sequence than you specify to take, Seq.take throws a
System.InvalidOperationException . The difference between Seq.take and Seq.truncate
is that Seq.truncate does not produce an error if the number of elements is fewer than
the number you specify.

The following code shows the behavior of and differences between Seq.truncate and
Seq.take .

F#

 |> List.ofSeq
 |> List.rev
 |> List.head
 |> snd

// Compute the sums for three sequences that converge, and compare
// the sums to the expected theoretical values.
let result1 = infiniteSum harmonicAlternatingSeries 0.00001 100000
printfn "Result: %f ln2: %f" result1 (log 2.0)

let pi = Math.PI
let result2 = infiniteSum oddNumberSeries 0.00001 10000
printfn "Result: %f pi/4: %f" result2 (pi/4.0)

// Because this is not an alternating series, a much smaller epsilon
// value and more terms are needed to obtain an accurate result.
let result3 = infiniteSum squaresSeries 0.0000001 1000000
printfn "Result: %f pi*pi/6: %f" result3 (pi*pi/6.0)

Searching and Finding Elements

Obtaining Subsequences

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#exists
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#exists
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#find
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#findIndex
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#pick
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#tryFind
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#tryFindIndex
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#filter
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#choose
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#truncate
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#take

The output, before the error occurs, is as follows.

Console

By using Seq.takeWhile , you can specify a predicate function (a Boolean function) and
create a sequence from another sequence made up of those elements of the original
sequence for which the predicate is true , but stop before the first element for which the
predicate returns false . Seq.skip returns a sequence that skips a specified number of
the first elements of another sequence and returns the remaining elements.
Seq.skipWhile returns a sequence that skips the first elements of another sequence as
long as the predicate returns true , and then returns the remaining elements, starting
with the first element for which the predicate returns false .

The following code example illustrates the behavior of and differences between
Seq.takeWhile , Seq.skip , and Seq.skipWhile .

F#

let mySeq = seq { for i in 1 .. 10 -> i*i }
let truncatedSeq = Seq.truncate 5 mySeq
let takenSeq = Seq.take 5 mySeq

let truncatedSeq2 = Seq.truncate 20 mySeq
let takenSeq2 = Seq.take 20 mySeq

let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""

// Up to this point, the sequences are not evaluated.
// The following code causes the sequences to be evaluated.
truncatedSeq |> printSeq
truncatedSeq2 |> printSeq
takenSeq |> printSeq
// The following line produces a run-time error (in printSeq):
takenSeq2 |> printSeq

1 4 9 16 25
1 4 9 16 25 36 49 64 81 100
1 4 9 16 25
1 4 9 16 25 36 49 64 81 100

// takeWhile
let mySeqLessThan10 = Seq.takeWhile (fun elem -> elem < 10) mySeq
mySeqLessThan10 |> printSeq

// skip
let mySeqSkipFirst5 = Seq.skip 5 mySeq
mySeqSkipFirst5 |> printSeq

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#takeWhile
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#skip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#skipWhile

The output is as follows.

Console

Seq.pairwise creates a new sequence in which successive elements of the input
sequence are grouped into tuples.

F#

Seq.windowed is like Seq.pairwise , except that instead of producing a sequence of
tuples, it produces a sequence of arrays that contain copies of adjacent elements (a
window) from the sequence. You specify the number of adjacent elements you want in
each array.

The following code example demonstrates the use of Seq.windowed . In this case the
number of elements in the window is 3. The example uses printSeq , which is defined in
the previous code example.

F#

// skipWhile
let mySeqSkipWhileLessThan10 = Seq.skipWhile (fun elem -> elem < 10) mySeq
mySeqSkipWhileLessThan10 |> printSeq

1 4 9
36 49 64 81 100
16 25 36 49 64 81 100

Transforming Sequences

let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""
let seqPairwise = Seq.pairwise (seq { for i in 1 .. 10 -> i*i })
printSeq seqPairwise

printfn ""
let seqDelta = Seq.map (fun elem -> snd elem - fst elem) seqPairwise
printSeq seqDelta

let seqNumbers = [1.0; 1.5; 2.0; 1.5; 1.0; 1.5] :> seq<float>
let seqWindows = Seq.windowed 3 seqNumbers
let seqMovingAverage = Seq.map Array.average seqWindows
printfn "Initial sequence: "
printSeq seqNumbers
printfn "\nWindows of length 3: "
printSeq seqWindows

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#pairwise
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#windowed

The output is as follows.

Initial sequence:

Console

Seq.zip and Seq.zip3 take two or three sequences and produce a sequence of
tuples. These functions are like the corresponding functions available for lists. There is
no corresponding functionality to separate one sequence into two or more sequences. If
you need this functionality for a sequence, convert the sequence to a list and use
List.unzip .

The sorting functions supported for lists also work with sequences. This includes
Seq.sort and Seq.sortBy . These functions iterate through the whole sequence.

You compare two sequences by using the Seq.compareWith function. The function
compares successive elements in turn, and stops when it encounters the first unequal
pair. Any additional elements do not contribute to the comparison.

The following code shows the use of Seq.compareWith .

F#

printfn "\nMoving average: "
printSeq seqMovingAverage

1.0 1.5 2.0 1.5 1.0 1.5

Windows of length 3:
[|1.0; 1.5; 2.0|] [|1.5; 2.0; 1.5|] [|2.0; 1.5; 1.0|] [|1.5; 1.0; 1.5|]

Moving average:
1.5 1.666666667 1.5 1.333333333

Operations with Multiple Sequences

Sorting, Comparing, and Grouping

let sequence1 = seq { 1 .. 10 }
let sequence2 = seq { 10 .. -1 .. 1 }

// Compare two sequences element by element.
let compareSequences =
 Seq.compareWith (fun elem1 elem2 ->
 if elem1 > elem2 then 1

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#zip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#zip3
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#unzip
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#sort
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#sortBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#compareWith

In the previous code, only the first element is computed and examined, and the result is
-1.

Seq.countBy takes a function that generates a value called a key for each element. A
key is generated for each element by calling this function on each element. Seq.countBy
then returns a sequence that contains the key values, and a count of the number of
elements that generated each value of the key.

F#

The output is as follows.

Console

The previous output shows that there were 34 elements of the original sequence that
produced the key 1, 33 values that produced the key 2, and 33 values that produced the
key 0.

You can group elements of a sequence by calling Seq.groupBy . Seq.groupBy takes a
sequence and a function that generates a key from an element. The function is executed
on each element of the sequence. Seq.groupBy returns a sequence of tuples, where the

 elif elem1 < elem2 then -1
 else 0)

let compareResult1 = compareSequences sequence1 sequence2
match compareResult1 with
| 1 -> printfn "Sequence1 is greater than sequence2."
| -1 -> printfn "Sequence1 is less than sequence2."
| 0 -> printfn "Sequence1 is equal to sequence2."
| _ -> failwith("Invalid comparison result.")

let mySeq1 = seq { 1.. 100 }

let printSeq seq1 = Seq.iter (printf "%A ") seq1

let seqResult =
 mySeq1
 |> Seq.countBy (fun elem ->
 if elem % 3 = 0 then 0
 elif elem % 3 = 1 then 1
 else 2)

printSeq seqResult

(1, 34) (2, 33) (0, 33)

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#countBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#groupBy

first element of each tuple is the key and the second is a sequence of elements that
produce that key.

The following code example shows the use of Seq.groupBy to partition the sequence of
numbers from 1 to 100 into three groups that have the distinct key values 0, 1, and 2.

F#

The output is as follows.

Console

You can create a sequence that eliminates duplicate elements by calling Seq.distinct .
Or you can use Seq.distinctBy , which takes a key-generating function to be called on
each element. The resulting sequence contains elements of the original sequence that
have unique keys; later elements that produce a duplicate key to an earlier element are
discarded.

The following code example illustrates the use of Seq.distinct . Seq.distinct is
demonstrated by generating sequences that represent binary numbers, and then
showing that the only distinct elements are 0 and 1.

F#

let sequence = seq { 1 .. 100 }

let printSeq seq1 = Seq.iter (printf "%A ") seq1

let sequences3 =
 sequences
 |> Seq.groupBy (fun index ->
 if (index % 3 = 0) then 0
 elif (index % 3 = 1) then 1
 else 2)

sequences3 |> printSeq

(1, seq [1; 4; 7; 10; ...]) (2, seq [2; 5; 8; 11; ...]) (0, seq [3; 6; 9;
12; ...])

let binary n =
 let rec generateBinary n =
 if (n / 2 = 0) then [n]
 else (n % 2) :: generateBinary (n / 2)

 generateBinary n
 |> List.rev

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#distinct
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#distinctBy

The following code demonstrates Seq.distinctBy by starting with a sequence that
contains negative and positive numbers and using the absolute value function as the
key-generating function. The resulting sequence is missing all the positive numbers that
correspond to the negative numbers in the sequence, because the negative numbers
appear earlier in the sequence and therefore are selected instead of the positive
numbers that have the same absolute value, or key.

F#

Seq.readonly creates a read-only copy of a sequence. Seq.readonly is useful when
you have a read-write collection, such as an array, and you do not want to modify the
original collection. This function can be used to preserve data encapsulation. In the
following code example, a type that contains an array is created. A property exposes the
array, but instead of returning an array, it returns a sequence that is created from the
array by using Seq.readonly .

F#

 |> Seq.ofList

printfn "%A" (binary 1024)

let resultSequence = Seq.distinct (binary 1024)
printfn "%A" resultSequence

let inputSequence = { -5 .. 10 }
let printSeq seq1 = Seq.iter (printf "%A ") seq1

printfn "Original sequence: "
printSeq inputSequence

printfn "\nSequence with distinct absolute values: "
let seqDistinctAbsoluteValue = Seq.distinctBy (fun elem -> abs elem)
inputSequence
printSeq seqDistinctAbsoluteValue

Readonly and Cached Sequences

type ArrayContainer(start, finish) =
 let internalArray = [| start .. finish |]
 member this.RangeSeq = Seq.readonly internalArray
 member this.RangeArray = internalArray

let newArray = new ArrayContainer(1, 10)
let rangeSeq = newArray.RangeSeq
let rangeArray = newArray.RangeArray

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#readonly

Seq.cache creates a stored version of a sequence. Use Seq.cache to avoid
reevaluation of a sequence, or when you have multiple threads that use a sequence, but
you must make sure that each element is acted upon only one time. When you have a
sequence that is being used by multiple threads, you can have one thread that
enumerates and computes the values for the original sequence, and remaining threads
can use the cached sequence.

Simple arithmetic operations are like those of lists, such as Seq.average , Seq.sum ,
Seq.averageBy , Seq.sumBy , and so on.

Seq.fold , Seq.reduce , and Seq.scan are like the corresponding functions that are
available for lists. Sequences support a subset of the full variations of these functions
that lists support. For more information and examples, see Lists.

F# Language Reference
F# Types

// These lines produce an error:
//let myArray = rangeSeq :> int array
//myArray[0] <- 0

// The following line does not produce an error.
// It does not preserve encapsulation.
rangeArray[0] <- 0

Performing Computations on Sequences

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#cache
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#average
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#sum
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#averageBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#sumBy
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#fold
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#reduce
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html#scan

Reference Cells
Article • 03/14/2023

Reference cells are storage locations that enable you to create mutable values with
reference semantics.

F#

You use the ref function to create a new reference cell with an initial value. You can
then change the underlying value because it is mutable. A reference cell holds an actual
value; it is not just an address.

The following code example illustrates the declaration and use of reference cells.

F#

The output is as follows.

Console

Reference cells are instances of the Ref generic record type, which is declared as
follows.

F#

Syntax

ref expression

Remarks

let xRef = ref 10

printfn "%d" xRef.Value

xRef.Value <- 11

printfn "%d" xRef.Value

10
11

The type 'a ref is a synonym for Ref<'a> . The compiler and IntelliSense in the IDE
display the former for this type, but the underlying definition is the latter.

The ref operator creates a new reference cell. The following code is the declaration of
the ref operator.

F#

The following table shows the features that are available on the reference cell.

Operator, member,
or field

Description Type Definition

ref (operator) Encapsulates a value into a new
reference cell.

'a -> 'a

ref

let ref x = {

contents = x }

Value (property) Gets or sets the underlying value. unit ->

'a

member x.Value =

x.contents

C# programmers should know that ref in C# is not the same thing as ref in F#. The
equivalent constructs in F# are byrefs, which are a different concept from reference cells.

Values marked as mutable may be automatically promoted to 'a ref if captured by a
closure; see Values.

Since F# 6.0, the following operators are deprecated and their use gives informational
warnings:

Operator, member, or
field

Description Type Definition

! (dereference operator,
deprecated)

Returns the underlying
value.

'a ref -> 'a let (!) r =

r.contents

:= (assignment operator,
deprecated)

Changes the underlying
value.

'a ref -> 'a -

> unit

let (:=) r x =

r.contents <- x

type Ref<'a> =
 { mutable contents: 'a }

let ref x = { contents = x }

Deprecated constructs

Operator, member, or
field

Description Type Definition

contents (record field) Gets or sets the
underlying value.

'a let ref x = {

contents = x }

Instead, the direct use of .Value is preferred; see F# RFC FS-1111 .

The field contents is provided for compatibility with other versions of ML and will
produce a warning during compilation. To disable the warning, use the --
mlcompatibility compiler option. For more information, see Compiler Options.

F# Language Reference
Parameters and Arguments
Symbol and Operator Reference
Values
F# RFC FS-1111

See also

https://aka.ms/fsharp-refcell-ops
https://aka.ms/fsharp-refcell-ops

Records (F#)
Article • 12/23/2021

Records represent simple aggregates of named values, optionally with members. They
can either be structs or reference types. They are reference types by default.

F#

In the previous syntax, typename is the name of the record type, label1 and label2 are
names of values, referred to as labels, and type1 and type2 are the types of these values.
member-list is the optional list of members for the type. You can use the [<Struct>]
attribute to create a struct record rather than a record which is a reference type.

Following are some examples.

F#

Syntax

[attributes]
type [accessibility-modifier] typename =
 { [mutable] label1 : type1;
 [mutable] label2 : type2;
 ... }
 [member-list]

Remarks

// Labels are separated by semicolons when defined on the same line.
type Point = { X: float; Y: float; Z: float; }

// You can define labels on their own line with or without a semicolon.
type Customer =
 { First: string
 Last: string;
 SSN: uint32
 AccountNumber: uint32; }

// A struct record.
[<Struct>]
type StructPoint =
 { X: float
 Y: float
 Z: float }

When each label is on a separate line, the semicolon is optional.

You can set values in expressions known as record expressions. The compiler infers the
type from the labels used (if the labels are sufficiently distinct from those of other record
types). Braces ({ }) enclose the record expression. The following code shows a record
expression that initializes a record with three float elements with labels x , y and z .

F#

Do not use the shortened form if there could be another type that also has the same
labels.

F#

The labels of the most recently declared type take precedence over those of the
previously declared type, so in the preceding example, mypoint3D is inferred to be
Point3D . You can explicitly specify the record type, as in the following code.

F#

Methods can be defined for record types just as for class types.

You can initialize records by using the labels that are defined in the record. An
expression that does this is referred to as a record expression. Use braces to enclose the
record expression and use the semicolon as a delimiter.

The following example shows how to create a record.

F#

let mypoint = { X = 1.0; Y = 1.0; Z = -1.0; }

type Point = { X: float; Y: float; Z: float; }
type Point3D = { X: float; Y: float; Z: float }
// Ambiguity: Point or Point3D?
let mypoint3D = { X = 1.0; Y = 1.0; Z = 0.0; }

let myPoint1 = { Point.X = 1.0; Y = 1.0; Z = 0.0; }

Creating Records by Using Record Expressions

type MyRecord =
 { X: int
 Y: int

The semicolons after the last field in the record expression and in the type definition are
optional, regardless of whether the fields are all in one line.

When you create a record, you must supply values for each field. You cannot refer to the
values of other fields in the initialization expression for any field.

In the following code, the type of myRecord2 is inferred from the names of the fields.
Optionally, you can specify the type name explicitly.

F#

Another form of record construction can be useful when you have to copy an existing
record, and possibly change some of the field values. The following line of code
illustrates this.

F#

This form of the record expression is called the copy and update record expression.

Records are immutable by default; however, you can easily create modified records by
using a copy and update expression. You can also explicitly specify a mutable field.

F#

Don't use the DefaultValue attribute with record fields. A better approach is to define
default instances of records with fields that are initialized to default values and then use
a copy and update record expression to set any fields that differ from the default values.

F#

 Z: int }

let myRecord1 = { X = 1; Y = 2; Z = 3; }

let myRecord2 = { MyRecord.X = 1; MyRecord.Y = 2; MyRecord.Z = 3 }

let myRecord3 = { myRecord2 with Y = 100; Z = 2 }

type Car =
 { Make : string
 Model : string
 mutable Odometer : int }

let myCar = { Make = "Fabrikam"; Model = "Coupe"; Odometer = 108112 }
myCar.Odometer <- myCar.Odometer + 21

Sometime when creating a record, you may want to have it depend on another type that
you would like to define afterwards. This is a compile error unless you define the record
types to be mutually recursive.

Defining mutually recursive records is done with the and keyword. This lets you link 2 or
more record types together.

For example, the following code defines a Person and Address type as mutually
recursive:

F#

To create instances of both, you do the following:

F#

// Rather than use [<DefaultValue>], define a default record.
type MyRecord =
 { Field1 : int
 Field2 : int }

let defaultRecord1 = { Field1 = 0; Field2 = 0 }
let defaultRecord2 = { Field1 = 1; Field2 = 25 }

// Use the with keyword to populate only a few chosen fields
// and leave the rest with default values.
let rr3 = { defaultRecord1 with Field2 = 42 }

Creating Mutually Recursive Records

// Create a Person type and use the Address type that is not defined
type Person =
 { Name: string
 Age: int
 Address: Address }
// Define the Address type which is used in the Person record
and Address =
 { Line1: string
 Line2: string
 PostCode: string
 Occupant: Person }

// Create a Person type and use the Address type that is not defined
let rec person =
 {
 Name = "Person name"
 Age = 12
 Address =

If you were to define the previous example without the and keyword, then it would not
compile. The and keyword is required for mutually recursive definitions.

Records can be used with pattern matching. You can specify some fields explicitly and
provide variables for other fields that will be assigned when a match occurs. The
following code example illustrates this.

F#

The output of this code is as follows.

Console

 {
 Line1 = "line 1"
 Line2 = "line 2"
 PostCode = "abc123"
 Occupant = person
 }
 }

Pattern Matching with Records

type Point3D = { X: float; Y: float; Z: float }
let evaluatePoint (point: Point3D) =
 match point with
 | { X = 0.0; Y = 0.0; Z = 0.0 } -> printfn "Point is at the origin."
 | { X = xVal; Y = 0.0; Z = 0.0 } -> printfn "Point is on the x-axis.
Value is %f." xVal
 | { X = 0.0; Y = yVal; Z = 0.0 } -> printfn "Point is on the y-axis.
Value is %f." yVal
 | { X = 0.0; Y = 0.0; Z = zVal } -> printfn "Point is on the z-axis.
Value is %f." zVal
 | { X = xVal; Y = yVal; Z = zVal } -> printfn "Point is at (%f, %f,
%f)." xVal yVal zVal

evaluatePoint { X = 0.0; Y = 0.0; Z = 0.0 }
evaluatePoint { X = 100.0; Y = 0.0; Z = 0.0 }
evaluatePoint { X = 10.0; Y = 0.0; Z = -1.0 }

Point is at the origin.
Point is on the x-axis. Value is 100.000000.
Point is at (10.000000, 0.000000, -1.000000).

Records and members

You can specify members on records much like you can with classes. There is no support
for fields. A common approach is to define a Default static member for easy record
construction:

F#

If you use a self identifier, that identifier refers to the instance of the record whose
member is called:

F#

Record fields differ from class fields in that they are automatically exposed as properties,
and they are used in the creation and copying of records. Record construction also
differs from class construction. In a record type, you cannot define a constructor.
Instead, the construction syntax described in this topic applies. Classes have no direct
relationship between constructor parameters, fields, and properties.

Like union and structure types, records have structural equality semantics. Classes have
reference equality semantics. The following code example demonstrates this.

F#

type Person =
 { Name: string
 Age: int
 Address: string }

 static member Default =
 { Name = "Phillip"
 Age = 12
 Address = "123 happy fun street" }

let defaultPerson = Person.Default

type Person =
 { Name: string
 Age: int
 Address: string }

 member this.WeirdToString() =
 this.Name + this.Address + string this.Age

let p = { Name = "a"; Age = 12; Address = "abc123" }
let weirdString = p.WeirdToString()

Differences Between Records and Classes

The output of this code is as follows:

Console

If you write the same code with classes, the two class objects would be unequal because
the two values would represent two objects on the heap and only the addresses would
be compared (unless the class type overrides the System.Object.Equals method).

If you need reference equality for records, add the attribute [<ReferenceEquality>]
above the record.

F# Types
Classes
F# Language Reference
Reference-Equality
Pattern Matching

type RecordTest = { X: int; Y: int }

let record1 = { X = 1; Y = 2 }
let record2 = { X = 1; Y = 2 }

if (record1 = record2) then
 printfn "The records are equal."
else
 printfn "The records are unequal."

The records are equal.

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-referenceequalityattribute.html

Copy and Update Record Expressions
Article • 09/15/2021

A copy and update record expression is an expression that copies an existing record,
updates specified fields, and returns the updated record.

F#

Records and anonymous records are immutable by default, so it is not possible to
update an existing record. To create an updated record all the fields of a record would
have to be specified again. To simplify this task a copy and update expression can be
used. This expression takes an existing record, creates a new one of the same type by
using specified fields from the expression and the missing field specified by the
expression.

This can be useful when you have to copy an existing record, and possibly change some
of the field values.

Take for instance a newly created record.

F#

To update only two fields in that record you can use the copy and update record
expression:

F#

Syntax

{ record-name with
 updated-labels }

{| anonymous-record-name with
 updated-labels |}

Remarks

let myRecord2 = { MyRecord.X = 1; MyRecord.Y = 2; MyRecord.Z = 3 }

let myRecord3 = { myRecord2 with Y = 100; Z = 2 }

Records
Anonymous Records
F# Language Reference

See also

Anonymous Records
Article • 11/05/2021

Anonymous records are simple aggregates of named values that don't need to be
declared before use. You can declare them as either structs or reference types. They're
reference types by default.

The following examples demonstrate the anonymous record syntax. Items delimited as
[item] are optional.

F#

Anonymous records are best thought of as F# record types that don't need to be
declared before instantiation.

For example, here how you can interact with a function that produces an anonymous
record:

F#

Syntax

// Construct an anonymous record
let value-name = [struct] {| Label1: Type1; Label2: Type2; ...|}

// Use an anonymous record as a type parameter
let value-name = Type-Name<[struct] {| Label1: Type1; Label2: Type2; ...|}>

// Define a parameter with an anonymous record as input
let function-name (arg-name: [struct] {| Label1: Type1; Label2: Type2;
...|}) ...

Basic usage

open System

let getCircleStats radius =
 let d = radius * 2.0
 let a = Math.PI * (radius ** 2.0)
 let c = 2.0 * Math.PI * radius

 {| Diameter = d; Area = a; Circumference = c |}

let r = 2.0
let stats = getCircleStats r

The following example expands on the previous one with a printCircleStats function
that takes an anonymous record as input:

F#

Calling printCircleStats with any anonymous record type that doesn't have the same
"shape" as the input type will fail to compile:

F#

Anonymous records can also be defined as struct with the optional struct keyword. The
following example augments the previous one by producing and consuming a struct
anonymous record:

F#

printfn "Circle with radius: %f has diameter %f, area %f, and circumference
%f"
 r stats.Diameter stats.Area stats.Circumference

open System

let getCircleStats radius =
 let d = radius * 2.0
 let a = Math.PI * (radius ** 2.0)
 let c = 2.0 * Math.PI * radius

 {| Diameter = d; Area = a; Circumference = c |}

let printCircleStats r (stats: {| Area: float; Circumference: float;
Diameter: float |}) =
 printfn "Circle with radius: %f has diameter %f, area %f, and
circumference %f"
 r stats.Diameter stats.Area stats.Circumference

let r = 2.0
let stats = getCircleStats r
printCircleStats r stats

printCircleStats r {| Diameter = 2.0; Area = 4.0; MyCircumference =
12.566371 |}
// Two anonymous record types have mismatched sets of field names
// '["Area"; "Circumference"; "Diameter"]' and '["Area"; "Diameter";
"MyCircumference"]'

Struct anonymous records

Struct anonymous records also allow for "structness inference" where you do not need
to specify the struct keyword at the call site. In this example, you elide the struct
keyword when calling printCircleStats :

F#

The reverse pattern - specifying struct when the input type is not a struct anonymous
record - will fail to compile.

open System

let getCircleStats radius =
 let d = radius * 2.0
 let a = Math.PI * (radius ** 2.0)
 let c = 2.0 * Math.PI * radius

 // Note that the keyword comes before the '{| |}' brace pair
 struct {| Area = a; Circumference = c; Diameter = d |}

// the 'struct' keyword also comes before the '{| |}' brace pair when
declaring the parameter type
let printCircleStats r (stats: struct {| Area: float; Circumference: float;
Diameter: float |}) =
 printfn "Circle with radius: %f has diameter %f, area %f, and
circumference %f"
 r stats.Diameter stats.Area stats.Circumference

let r = 2.0
let stats = getCircleStats r
printCircleStats r stats

Structness inference

let printCircleStats r (stats: struct {| Area: float; Circumference: float;
Diameter: float |}) =
 printfn "Circle with radius: %f has diameter %f, area %f, and
circumference %f"
 r stats.Diameter stats.Area stats.Circumference

printCircleStats r {| Area = 4.0; Circumference = 12.6; Diameter = 12.6 |}

Embedding anonymous records within other
types

It's useful to declare discriminated unions whose cases are records. But if the data in the
records is the same type as the discriminated union, you must define all types as
mutually recursive. Using anonymous records avoids this restriction. What follows is an
example type and function that pattern matches over it:

F#

Anonymous records support construction with copy and update expressions. For
example, here's how you can construct a new instance of an anonymous record that
copies an existing one's data:

F#

However, unlike named records, anonymous records allow you to construct entirely
different forms with copy and update expressions. The follow example takes the same
anonymous record from the previous example and expands it into a new anonymous
record:

F#

It is also possible to construct anonymous records from instances of named records:

type FullName = { FirstName: string; LastName: string }

// Note that using a named record for Manager and Executive would require
mutually recursive definitions.
type Employee =
 | Engineer of FullName
 | Manager of {| Name: FullName; Reports: Employee list |}
 | Executive of {| Name: FullName; Reports: Employee list; Assistant:
Employee |}

let getFirstName e =
 match e with
 | Engineer fullName -> fullName.FirstName
 | Manager m -> m.Name.FirstName
 | Executive ex -> ex.Name.FirstName

Copy and update expressions

let data = {| X = 1; Y = 2 |}
let data' = {| data with Y = 3 |}

let data = {| X = 1; Y = 2 |}
let expandedData = {| data with Z = 3 |} // Gives {| X=1; Y=2; Z=3 |}

F#

You can also copy data to and from reference and struct anonymous records:

F#

Anonymous records have a number of characteristics that are essential to fully
understanding how they can be used.

Anonymous records are nominal types . They are best thought as named record types
(which are also nominal) that do not require an up-front declaration.

Consider the following example with two anonymous record declarations:

F#

The x and y values have different types and are not compatible with one another. They
are not equatable and they are not comparable. To illustrate this, consider a named

type R = { X: int }
let data = { X = 1 }
let data' = {| data with Y = 2 |} // Gives {| X=1; Y=2 |}

// Copy data from a reference record into a struct anonymous record
type R1 = { X: int }
let r1 = { X = 1 }

let data1 = struct {| r1 with Y = 1 |}

// Copy data from a struct record into a reference anonymous record
[<Struct>]
type R2 = { X: int }
let r2 = { X = 1 }

let data2 = {| r1 with Y = 1 |}

// Copy the reference anonymous record data into a struct anonymous record
let data3 = struct {| data2 with Z = r2.X |}

Properties of anonymous records

Anonymous records are nominal

let x = {| X = 1 |}
let y = {| Y = 1 |}

https://en.wikipedia.org/wiki/Nominal_type_system

record equivalent:

F#

There isn't anything inherently different about anonymous records when compared with
their named record equivalents when concerning type equivalency or comparison.

Like record types, anonymous records are structurally equatable and comparable. This is
only true if all constituent types support equality and comparison, like with record types.
To support equality or comparison, two anonymous records must have the same
"shape".

F#

You can serialize anonymous records just as you can with named records. Here is an
example using Newtonsoft.Json :

F#

type X = { X: int }
type Y = { Y: int }

let x = { X = 1 }
let y = { Y = 1 }

Anonymous records use structural equality and
comparison

{| a = 1+1 |} = {| a = 2 |} // true
{| a = 1+1 |} > {| a = 1 |} // true

// error FS0001: Two anonymous record types have mismatched sets of field
names '["a"]' and '["a"; "b"]'
{| a = 1 + 1 |} = {| a = 2; b = 1|}

Anonymous records are serializable

open Newtonsoft.Json

let phillip' = {| name="Phillip"; age=28 |}
let philStr = JsonConvert.SerializeObject(phillip')

let phillip = JsonConvert.DeserializeObject<{|name: string; age: int|}>
(philStr)
printfn $"Name: {phillip.name} Age: %d{phillip.age}"

https://www.nuget.org/packages/Newtonsoft.Json/

Anonymous records are useful for sending lightweight data over a network without the
need to define a domain for your serialized/deserialized types up front.

It is possible to use a .NET API that requires the use of C# anonymous types. C#
anonymous types are trivial to interoperate with by using anonymous records. The
following example shows how to use anonymous records to call a LINQ overload that
requires an anonymous type:

F#

There are a multitude of other APIs used throughout .NET that require the use of
passing in an anonymous type. Anonymous records are your tool for working with them.

Anonymous records have some restrictions in their usage. Some are inherent to their
design, but others are amenable to change.

Anonymous records do not support pattern matching, unlike named records. There are
three reasons:

1. A pattern would have to account for every field of an anonymous record, unlike
named record types. This is because anonymous records do not support structural
subtyping – they are nominal types.

2. Because of (1), there is no ability to have additional patterns in a pattern match
expression, as each distinct pattern would imply a different anonymous record
type.

3. Because of (2), any anonymous record pattern would be more verbose than the
use of “dot” notation.

Anonymous records interoperate with C# anonymous
types

open System.Linq

let names = ["Ana"; "Felipe"; "Emilia"]
let nameGrouping = names.Select(fun n -> {| Name = n; FirstLetter = n[0] |})
for ng in nameGrouping do
 printfn $"{ng.Name} has first letter {ng.FirstLetter}"

Limitations

Limitations with pattern matching

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/anonymous-types
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

There is an open language suggestion to allow pattern matching in limited contexts .

It is not currently possible to define an anonymous record with mutable data. There is an
open language suggestion to allow mutable data.

It is not possible to declare struct anonymous records as IsByRefLike or IsReadOnly .
There is an open language suggestion to for IsByRefLike and IsReadOnly anonymous
records.

Limitations with mutability

Limitations with struct anonymous records

https://github.com/fsharp/fslang-suggestions/issues/713
https://github.com/fsharp/fslang-suggestions/issues/732
https://github.com/fsharp/fslang-suggestions/issues/712

Discriminated Unions
Article • 09/15/2021

Discriminated unions provide support for values that can be one of a number of named
cases, possibly each with different values and types. Discriminated unions are useful for
heterogeneous data; data that can have special cases, including valid and error cases;
data that varies in type from one instance to another; and as an alternative for small
object hierarchies. In addition, recursive discriminated unions are used to represent tree
data structures.

F#

Discriminated unions are similar to union types in other languages, but there are
differences. As with a union type in C++ or a variant type in Visual Basic, the data stored
in the value is not fixed; it can be one of several distinct options. Unlike unions in these
other languages, however, each of the possible options is given a case identifier. The
case identifiers are names for the various possible types of values that objects of this
type could be; the values are optional. If values are not present, the case is equivalent to
an enumeration case. If values are present, each value can either be a single value of a
specified type, or a tuple that aggregates multiple fields of the same or different types.
You can give an individual field a name, but the name is optional, even if other fields in
the same case are named.

Accessibility for discriminated unions defaults to public .

For example, consider the following declaration of a Shape type.

F#

Syntax

[attributes]
type [accessibility-modifier] type-name =
 | case-identifier1 [of [fieldname1 :] type1 [* [fieldname2 :] type2
...]
 | case-identifier2 [of [fieldname3 :]type3 [* [fieldname4 :]type4
...]

 [member-list]

Remarks

The preceding code declares a discriminated union Shape, which can have values of any
of three cases: Rectangle, Circle, and Prism. Each case has a different set of fields. The
Rectangle case has two named fields, both of type float , that have the names width
and length. The Circle case has just one named field, radius. The Prism case has three
fields, two of which (width and height) are named fields. Unnamed fields are referred to
as anonymous fields.

You construct objects by providing values for the named and anonymous fields
according to the following examples.

F#

This code shows that you can either use the named fields in the initialization, or you can
rely on the ordering of the fields in the declaration and just provide the values for each
field in turn. The constructor call for rect in the previous code uses the named fields,
but the constructor call for circ uses the ordering. You can mix the ordered fields and
named fields, as in the construction of prism .

The option type is a simple discriminated union in the F# core library. The option type
is declared as follows.

F#

The previous code specifies that the type Option is a discriminated union that has two
cases, Some and None . The Some case has an associated value that consists of one
anonymous field whose type is represented by the type parameter 'a . The None case
has no associated value. Thus the option type specifies a generic type that either has a
value of some type or no value. The type Option also has a lowercase type alias, option ,
that is more commonly used.

type Shape =
 | Rectangle of width : float * length : float
 | Circle of radius : float
 | Prism of width : float * float * height : float

let rect = Rectangle(length = 1.3, width = 10.0)
let circ = Circle (1.0)
let prism = Prism(5., 2.0, height = 3.0)

// The option type is a discriminated union.
type Option<'a> =
 | Some of 'a
 | None

The case identifiers can be used as constructors for the discriminated union type. For
example, the following code is used to create values of the option type.

F#

The case identifiers are also used in pattern matching expressions. In a pattern matching
expression, identifiers are provided for the values associated with the individual cases.
For example, in the following code, x is the identifier given the value that is associated
with the Some case of the option type.

F#

In pattern matching expressions, you can use named fields to specify discriminated
union matches. For the Shape type that was declared previously, you can use the named
fields as the following code shows to extract the values of the fields.

F#

Normally, the case identifiers can be used without qualifying them with the name of the
union. If you want the name to always be qualified with the name of the union, you can
apply the RequireQualifiedAccess attribute to the union type definition.

In F# Discriminated Unions are often used in domain-modeling for wrapping a single
type. It's easy to extract the underlying value via pattern matching as well. You don't
need to use a match expression for a single case:

F#

let myOption1 = Some(10.0)
let myOption2 = Some("string")
let myOption3 = None

let printValue opt =
 match opt with
 | Some x -> printfn "%A" x
 | None -> printfn "No value."

let getShapeWidth shape =
 match shape with
 | Rectangle(width = w) -> w
 | Circle(radius = r) -> 2. * r
 | Prism(width = w) -> w

Unwrapping Discriminated Unions

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-requirequalifiedaccessattribute.html

The following example demonstrates this:

F#

Pattern matching is also allowed directly in function parameters, so you can unwrap a
single case there:

F#

You can also represent Discriminated Unions as structs. This is done with the [<Struct>]
attribute.

F#

Because these are value types and not reference types, there are extra considerations
compared with reference discriminated unions:

1. They are copied as value types and have value type semantics.
2. You cannot use a recursive type definition with a multicase struct Discriminated

Union.

let ([UnionCaseIdentifier] [values]) = [UnionValue]

type ShaderProgram = | ShaderProgram of id:int

let someFunctionUsingShaderProgram shaderProgram =
 let (ShaderProgram id) = shaderProgram
 // Use the unwrapped value
 ...

let someFunctionUsingShaderProgram (ShaderProgram id) =
 // Use the unwrapped value
 ...

Struct Discriminated Unions

[<Struct>]
type SingleCase = Case of string

[<Struct>]
type Multicase =
 | Case1 of Case1 : string
 | Case2 of Case2 : int
 | Case3 of Case3 : double

3. You must provide unique case names for a multicase struct Discriminated Union.

You can often use a discriminated union as a simpler alternative to a small object
hierarchy. For example, the following discriminated union could be used instead of a
Shape base class that has derived types for circle, square, and so on.

F#

Instead of a virtual method to compute an area or perimeter, as you would use in an
object-oriented implementation, you can use pattern matching to branch to appropriate
formulas to compute these quantities. In the following example, different formulas are
used to compute the area, depending on the shape.

F#

Using Discriminated Unions Instead of Object
Hierarchies

type Shape =
 // The value here is the radius.
| Circle of float
 // The value here is the side length.
| EquilateralTriangle of double
 // The value here is the side length.
| Square of double
 // The values here are the height and width.
| Rectangle of double * double

let pi = 3.141592654

let area myShape =
 match myShape with
 | Circle radius -> pi * radius * radius
 | EquilateralTriangle s -> (sqrt 3.0) / 4.0 * s * s
 | Square s -> s * s
 | Rectangle (h, w) -> h * w

let radius = 15.0
let myCircle = Circle(radius)
printfn "Area of circle that has radius %f: %f" radius (area myCircle)

let squareSide = 10.0
let mySquare = Square(squareSide)
printfn "Area of square that has side %f: %f" squareSide (area mySquare)

let height, width = 5.0, 10.0
let myRectangle = Rectangle(height, width)

The output is as follows:

Console

Discriminated unions can be recursive, meaning that the union itself can be included in
the type of one or more cases. Recursive discriminated unions can be used to create tree
structures, which are used to model expressions in programming languages. In the
following code, a recursive discriminated union is used to create a binary tree data
structure. The union consists of two cases, Node , which is a node with an integer value
and left and right subtrees, and Tip , which terminates the tree.

F#

In the previous code, resultSumTree has the value 10. The following illustration shows
the tree structure for myTree .

printfn "Area of rectangle that has height %f and width %f is %f" height
width (area myRectangle)

Area of circle that has radius 15.000000: 706.858347
Area of square that has side 10.000000: 100.000000
Area of rectangle that has height 5.000000 and width 10.000000 is 50.000000

Using Discriminated Unions for Tree Data
Structures

type Tree =
 | Tip
 | Node of int * Tree * Tree

let rec sumTree tree =
 match tree with
 | Tip -> 0
 | Node(value, left, right) ->
 value + sumTree(left) + sumTree(right)
let myTree = Node(0, Node(1, Node(2, Tip, Tip), Node(3, Tip, Tip)), Node(4,
Tip, Tip))
let resultSumTree = sumTree myTree

Discriminated unions work well if the nodes in the tree are heterogeneous. In the
following code, the type Expression represents the abstract syntax tree of an expression
in a simple programming language that supports addition and multiplication of
numbers and variables. Some of the union cases are not recursive and represent either
numbers (Number) or variables (Variable). Other cases are recursive, and represent
operations (Add and Multiply), where the operands are also expressions. The Evaluate
function uses a match expression to recursively process the syntax tree.

F#

When this code is executed, the value of result is 5.

type Expression =
 | Number of int
 | Add of Expression * Expression
 | Multiply of Expression * Expression
 | Variable of string

let rec Evaluate (env:Map<string,int>) exp =
 match exp with
 | Number n -> n
 | Add (x, y) -> Evaluate env x + Evaluate env y
 | Multiply (x, y) -> Evaluate env x * Evaluate env y
 | Variable id -> env[id]

let environment = Map ["a", 1; "b", 2; "c", 3]

// Create an expression tree that represents
// the expression: a + 2 * b.
let expressionTree1 = Add(Variable "a", Multiply(Number 2, Variable "b"))

// Evaluate the expression a + 2 * b, given the
// table of values for the variables.
let result = Evaluate environment expressionTree1

Members

It is possible to define members on discriminated unions. The following example shows
how to define a property and implement an interface:

F#

The following attributes are commonly seen in discriminated unions:

[<RequireQualifiedAccess>]

[<NoEquality>]

[<NoComparison>]

[<Struct>]

F# Language Reference

open System

type IPrintable =
 abstract Print: unit -> unit

type Shape =
 | Circle of float
 | EquilateralTriangle of float
 | Square of float
 | Rectangle of float * float

 member this.Area =
 match this with
 | Circle r -> Math.PI * (r ** 2.0)
 | EquilateralTriangle s -> s * s * sqrt 3.0 / 4.0
 | Square s -> s * s
 | Rectangle(l, w) -> l * w

 interface IPrintable with
 member this.Print () =
 match this with
 | Circle r -> printfn $"Circle with radius %f{r}"
 | EquilateralTriangle s -> printfn $"Equilateral Triangle of
side %f{s}"
 | Square s -> printfn $"Square with side %f{s}"
 | Rectangle(l, w) -> printfn $"Rectangle with length %f{l} and
width %f{w}"

Common attributes

See also

Classes (F#)
Article • 11/05/2021

Classes are types that represent objects that can have properties, methods, and events.

F#

Classes represent the fundamental description of .NET object types; the class is the
primary type concept that supports object-oriented programming in F#.

In the preceding syntax, the type-name is any valid identifier. The type-params describes
optional generic type parameters. It consists of type parameter names and constraints
enclosed in angle brackets (< and >). For more information, see Generics and
Constraints. The parameter-list describes constructor parameters. The first access
modifier pertains to the type; the second pertains to the primary constructor. In both
cases, the default is public .

You specify the base class for a class by using the inherit keyword. You must supply
arguments, in parentheses, for the base class constructor.

You declare fields or function values that are local to the class by using let bindings,
and you must follow the general rules for let bindings. The do-bindings section
includes code to be executed upon object construction.

Syntax

// Class definition:
type [access-modifier] type-name [type-params] [access-modifier] (
parameter-list) [as identifier] =
[class]
[inherit base-type-name(base-constructor-args)]
[let-bindings]
[do-bindings]
member-list
...
[end]
// Mutually recursive class definitions:
type [access-modifier] type-name1 ...
and [access-modifier] type-name2 ...
...

Remarks

The member-list consists of additional constructors, instance and static method
declarations, interface declarations, abstract bindings, and property and event
declarations. These are described in Members.

The identifier that is used with the optional as keyword gives a name to the instance
variable, or self identifier, which can be used in the type definition to refer to the
instance of the type. For more information, see the section Self Identifiers later in this
topic.

The keywords class and end that mark the start and end of the definition are optional.

Mutually recursive types, which are types that reference each other, are joined together
with the and keyword just as mutually recursive functions are. For an example, see the
section Mutually Recursive Types.

The constructor is code that creates an instance of the class type. Constructors for
classes work somewhat differently in F# than they do in other .NET languages. In an F#
class, there is always a primary constructor whose arguments are described in the
parameter-list that follows the type name, and whose body consists of the let (and
let rec) bindings at the start of the class declaration and the do bindings that follow.
The arguments of the primary constructor are in scope throughout the class declaration.

You can add additional constructors by using the new keyword to add a member, as
follows:

new (argument-list) = constructor-body

The body of the new constructor must invoke the primary constructor that is specified at
the top of the class declaration.

The following example illustrates this concept. In the following code, MyClass has two
constructors, a primary constructor that takes two arguments and another constructor
that takes no arguments.

F#

Constructors

type MyClass1(x: int, y: int) =
 do printfn "%d %d" x y
 new() = MyClass1(0, 0)

The let and do bindings in a class definition form the body of the primary class
constructor, and therefore they run whenever a class instance is created. If a let
binding is a function, then it is compiled into a member. If the let binding is a value
that is not used in any function or member, then it is compiled into a variable that is
local to the constructor. Otherwise, it is compiled into a field of the class. The do
expressions that follow are compiled into the primary constructor and execute
initialization code for every instance. Because any additional constructors always call the
primary constructor, the let bindings and do bindings always execute regardless of
which constructor is called.

Fields that are created by let bindings can be accessed throughout the methods and
properties of the class; however, they cannot be accessed from static methods, even if
the static methods take an instance variable as a parameter. They cannot be accessed by
using the self identifier, if one exists.

A self identifier is a name that represents the current instance. Self identifiers resemble
the this keyword in C# or C++ or Me in Visual Basic. You can define a self identifier in
two different ways, depending on whether you want the self identifier to be in scope for
the whole class definition or just for an individual method.

To define a self identifier for the whole class, use the as keyword after the closing
parentheses of the constructor parameter list, and specify the identifier name.

To define a self identifier for just one method, provide the self identifier in the member
declaration, just before the method name and a period (.) as a separator.

The following code example illustrates the two ways to create a self identifier. In the first
line, the as keyword is used to define the self identifier. In the fifth line, the identifier
this is used to define a self identifier whose scope is restricted to the method
PrintMessage .

F#

let and do Bindings

Self Identifiers

type MyClass2(dataIn) as self =
 let data = dataIn
 do
 self.PrintMessage()
 member this.PrintMessage() =
 printf "Creating MyClass2 with Data %d" data

Unlike in other .NET languages, you can name the self identifier however you want; you
are not restricted to names such as self , Me , or this .

The self identifier that is declared with the as keyword is not initialized until after the
base constructor. Therefore, when used before or inside the base constructor,
System.InvalidOperationException: The initialization of an object or value resulted

in an object or value being accessed recursively before it was fully initialized.

will be raised during runtime. You can use the self identifier freely after the base
constructor, such as in let bindings or do bindings.

Generic type parameters are specified in angle brackets (< and >), in the form of a
single quotation mark followed by an identifier. Multiple generic type parameters are
separated by commas. The generic type parameter is in scope throughout the
declaration. The following code example shows how to specify generic type parameters.

F#

Type arguments are inferred when the type is used. In the following code, the inferred
type is a sequence of tuples.

F#

The inherit clause identifies the direct base class, if there is one. In F#, only one direct
base class is allowed. Interfaces that a class implements are not considered base classes.
Interfaces are discussed in the Interfaces topic.

You can access the methods and properties of the base class from the derived class by
using the language keyword base as an identifier, followed by a period (.) and the name
of the member.

For more information, see Inheritance.

Generic Type Parameters

type MyGenericClass<'a> (x: 'a) =
 do printfn "%A" x

let g1 = MyGenericClass(seq { for i in 1 .. 10 -> (i, i*i) })

Specifying Inheritance

You can define static or instance methods, properties, interface implementations,
abstract members, event declarations, and additional constructors in this section. Let
and do bindings cannot appear in this section. Because members can be added to a
variety of F# types in addition to classes, they are discussed in a separate topic,
Members.

When you define types that reference each other in a circular way, you string together
the type definitions by using the and keyword. The and keyword replaces the type
keyword on all except the first definition, as follows.

F#

The output is a list of all the files in the current directory.

Given the variety of types to choose from, you need to have a good understanding of
what each type is designed for to select the appropriate type for a particular situation.
Classes are designed for use in object-oriented programming contexts. Object-oriented
programming is the dominant paradigm used in applications that are written for the
.NET Framework. If your F# code has to work closely with the .NET Framework or

Members Section

Mutually Recursive Types

open System.IO

type Folder(pathIn: string) =
 let path = pathIn
 let filenameArray : string array = Directory.GetFiles(path)
 member this.FileArray = Array.map (fun elem -> new File(elem, this))
filenameArray

and File(filename: string, containingFolder: Folder) =
 member this.Name = filename
 member this.ContainingFolder = containingFolder

let folder1 = new Folder(".")
for file in folder1.FileArray do
 printfn "%s" file.Name

When to Use Classes, Unions, Records, and
Structures

another object-oriented library, and especially if you have to extend from an object-
oriented type system such as a UI library, classes are probably appropriate.

If you are not interoperating closely with object-oriented code, or if you are writing
code that is self-contained and therefore protected from frequent interaction with
object-oriented code, you should consider using a mix of classes, records and
discriminated unions. A single, well thought–out discriminated union, together with
appropriate pattern matching code, can often be used as a simpler alternative to an
object hierarchy. For more information about discriminated unions, see Discriminated
Unions.

Records have the advantage of being simpler than classes, but records are not
appropriate when the demands of a type exceed what can be accomplished with their
simplicity. Records are basically simple aggregates of values, without separate
constructors that can perform custom actions, without hidden fields, and without
inheritance or interface implementations. Although members such as properties and
methods can be added to records to make their behavior more complex, the fields
stored in a record are still a simple aggregate of values. For more information about
records, see Records.

Structures are also useful for small aggregates of data, but they differ from classes and
records in that they are .NET value types. Classes and records are .NET reference types.
The semantics of value types and reference types are different in that value types are
passed by value. This means that they are copied bit for bit when they are passed as a
parameter or returned from a function. They are also stored on the stack or, if they are
used as a field, embedded inside the parent object instead of stored in their own
separate location on the heap. Therefore, structures are appropriate for frequently
accessed data when the overhead of accessing the heap is a problem. For more
information about structures, see Structs.

F# Language Reference
Members
Inheritance
Interfaces

See also

Interfaces (F#)
Article • 05/31/2023

Interfaces specify sets of related members that other classes implement.

F#

Interface declarations resemble class declarations except that no members are
implemented. Instead, all the members are abstract, as indicated by the keyword
abstract . You do not provide a method body for abstract methods. F# cannot define a
default method implementation on an interface, but it is compatible with default
implementations defined by C#. Default implementations using the default keyword
are only supported when inheriting from a non-interface base class.

The default accessibility for interfaces is public .

You can optionally give each method parameter a name using normal F# syntax:

Syntax

// Interface declaration:
[attributes]
type [accessibility-modifier] interface-name =
 [interface] [inherit base-interface-name ...]
 abstract member1 : [argument-types1 ->] return-type1
 abstract member2 : [argument-types2 ->] return-type2
 ...
[end]

// Implementing, inside a class type definition:
interface interface-name with
 member self-identifier.member1argument-list = method-body1
 member self-identifier.member2argument-list = method-body2

// Implementing, by using an object expression:
[attributes]
let class-name (argument-list) =
 { new interface-name with
 member self-identifier.member1argument-list = method-body1
 member self-identifier.member2argument-list = method-body2
 [base-interface-definitions]
 }
 member-list

Remarks

F#

In the above ISprintable example, the Print method has a single parameter of the
type string with the name format .

There are two ways to implement interfaces: by using object expressions, and by using
types. In either case, the type or object expression provides method bodies for abstract
methods of the interface. Implementations are specific to each type that implements the
interface. Therefore, interface methods on different types might be different from each
other.

The keywords interface and end , which mark the start and end of the definition, are
optional when you use lightweight syntax. If you do not use these keywords, the
compiler attempts to infer whether the type is a class or an interface by analyzing the
constructs that you use. If you define a member or use other class syntax, the type is
interpreted as a class.

The .NET coding style is to begin all interfaces with a capital I .

You can specify multiple parameters in two ways: F#-style and .NET-style. Both will
compile the same way for .NET consumers, but F#-style will force F# callers to use F#-
style parameter application and .NET-style will force F# callers to use tupled argument
application.

F#

You can implement one or more interfaces in a class type by using the interface
keyword, the name of the interface, and the with keyword, followed by the interface
member definitions, as shown in the following code.

F#

type ISprintable =
 abstract member Print : format:string -> unit

type INumericFSharp =
 abstract Add: x: int -> y: int -> int

type INumericDotNet =
 abstract Add: x: int * y: int -> int

Implementing Interfaces by Using Class Types

Interface implementations are inherited, so any derived classes do not need to
reimplement them.

Interface methods can be called only through the interface, not through any object of
the type that implements the interface. Thus, you might have to upcast to the interface
type by using the :> operator or the upcast operator in order to call these methods.

To call the interface method when you have an object of type SomeClass , you must
upcast the object to the interface type, as shown in the following code.

F#

An alternative is to declare a method on the object that upcasts and calls the interface
method, as in the following example.

F#

Object expressions provide a short way to implement an interface. They are useful when
you do not have to create a named type, and you just want an object that supports the

type IPrintable =
 abstract member Print : unit -> unit

type SomeClass1(x: int, y: float) =
 interface IPrintable with
 member this.Print() = printfn "%d %f" x y

Calling Interface Methods

let x1 = new SomeClass1(1, 2.0)
(x1 :> IPrintable).Print()

type SomeClass2(x: int, y: float) =
 member this.Print() = (this :> IPrintable).Print()
 interface IPrintable with
 member this.Print() = printfn "%d %f" x y

let x2 = new SomeClass2(1, 2.0)
x2.Print()

Implementing Interfaces by Using Object
Expressions

interface methods, without any additional methods. An object expression is illustrated in
the following code.

F#

Interfaces can inherit from one or more base interfaces.

F#

C# supports defining interfaces with default implementations, like so:

C#

let makePrintable(x: int, y: float) =
 { new IPrintable with
 member this.Print() = printfn "%d %f" x y }
let x3 = makePrintable(1, 2.0)
x3.Print()

Interface Inheritance

type Interface1 =
 abstract member Method1 : int -> int

type Interface2 =
 abstract member Method2 : int -> int

type Interface3 =
 inherit Interface1
 inherit Interface2
 abstract member Method3 : int -> int

type MyClass() =
 interface Interface3 with
 member this.Method1(n) = 2 * n
 member this.Method2(n) = n + 100
 member this.Method3(n) = n / 10

Implementing interfaces with default
implementations

using System;

namespace CSharp
{
 public interface MyDim

These are directly consumable from F#:

F#

You can override a default implementation with override , like overriding any virtual
member.

Any members in an interface that do not have a default implementation must still be
explicitly implemented.

F# supports implementing the same interface at different generic instantiations like so:

F#

 {
 public int Z => 0;
 }
}

open CSharp

// You can implement the interface via a class
type MyType() =
 member _.M() = ()

 interface MyDim

let md = MyType() :> MyDim
printfn $"DIM from C#: %d{md.Z}"

// You can also implement it via an object expression
let md' = { new MyDim }
printfn $"DIM from C# but via Object Expression: %d{md'.Z}"

Implementing the same interface at different
generic instantiations

type IA<'T> =
 abstract member Get : unit -> 'T

type MyClass() =
 interface IA<int> with
 member x.Get() = 1
 interface IA<string> with
 member x.Get() = "hello"

let mc = MyClass()
let iaInt = mc :> IA<int>

F# Language Reference
Object Expressions
Classes

let iaString = mc :> IA<string>

iaInt.Get() // 1
iaString.Get() // "hello"

See also

Members
Article • 11/05/2021

This section describes members of F# object types.

Members are features that are part of a type definition and are declared with the member
keyword. F# object types such as records, classes, discriminated unions, interfaces, and
structures support members. For more information, see Records, Classes, Discriminated
Unions, Interfaces, and Structs.

Members typically make up the public interface for a type, which is why they are public
unless otherwise specified. Members can also be declared private or internal. For more
information, see Access Control. Signatures files can also be used to expose or not
expose certain members of a type. For more information, see Signatures.

Private fields and do bindings, which are used only with classes, are not true members,
because they are never part of the public interface of a type and are not declared with
the member keyword, but they are described in this section also.

Topic Description

let Bindings in Classes Describes the definition of private fields and functions in classes.

do Bindings in Classes Describes the specification of object initialization code.

Properties Describes property members in classes and other types.

Indexed Properties Describes array-like properties in classes and other types.

Methods Describes functions that are members of a type.

Constructors Describes special functions that initialize objects of a type.

Operator Overloading Describes the definition of customized operators for types.

Events Describes the definition of events and event handling support in F#.

Structs Describes the definition of structs in F#.

Explicit Fields Describes the definition of uninitialized fields in a type.

Remarks

Related Topics

Constructors
Article • 09/15/2021

This article describes how to define and use constructors to create and initialize class
and structure objects.

Objects of class types have constructors. There are two kinds of constructors. One is the
primary constructor, whose parameters appear in parentheses just after the type name.
You specify other, optional additional constructors by using the new keyword. Any such
additional constructors must call the primary constructor.

The primary constructor contains let and do bindings that appear at the start of the
class definition. A let binding declares private fields and methods of the class; a do
binding executes code. For more information about let bindings in class constructors,
see let Bindings in Classes. For more information about do bindings in constructors, see
do Bindings in Classes.

Regardless of whether the constructor you want to call is a primary constructor or an
additional constructor, you can create objects by using a new expression, with or
without the optional new keyword. You initialize your objects together with constructor
arguments, either by listing the arguments in order and separated by commas and
enclosed in parentheses, or by using named arguments and values in parentheses. You
can also set properties on an object during the construction of the object by using the
property names and assigning values just as you use named constructor arguments.

The following code illustrates a class that has a constructor and various ways of creating
objects:

F#

Construction of class objects

// This class has a primary constructor that takes three arguments
// and an additional constructor that calls the primary constructor.
type MyClass(x0, y0, z0) =
 let mutable x = x0
 let mutable y = y0
 let mutable z = z0
 do
 printfn "Initialized object that has coordinates (%d, %d, %d)" x y z
 member this.X with get() = x and set(value) = x <- value
 member this.Y with get() = y and set(value) = y <- value
 member this.Z with get() = z and set(value) = z <- value

The output is as follows:

Console

Structures follow all the rules of classes. Therefore, you can have a primary constructor,
and you can provide additional constructors by using new . However, there is one
important difference between structures and classes: structures can have a
parameterless constructor (that is, one with no arguments) even if no primary
constructor is defined. The parameterless constructor initializes all the fields to the
default value for that type, usually zero or its equivalent. Any constructors that you
define for structures must have at least one argument so that they do not conflict with
the parameterless constructor.

Also, structures often have fields that are created by using the val keyword; classes can
also have these fields. Structures and classes that have fields defined by using the val
keyword can also be initialized in additional constructors by using record expressions, as
shown in the following code.

F#

 new() = MyClass(0, 0, 0)

// Create by using the new keyword.
let myObject1 = new MyClass(1, 2, 3)
// Create without using the new keyword.
let myObject2 = MyClass(4, 5, 6)
// Create by using named arguments.
let myObject3 = MyClass(x0 = 7, y0 = 8, z0 = 9)
// Create by using the additional constructor.
let myObject4 = MyClass()

Initialized object that has coordinates (1, 2, 3)
Initialized object that has coordinates (4, 5, 6)
Initialized object that has coordinates (7, 8, 9)
Initialized object that has coordinates (0, 0, 0)

Construction of structures

type MyStruct =
 struct
 val X : int
 val Y : int
 val Z : int
 new(x, y, z) = { X = x; Y = y; Z = z }
 end

For more information, see Explicit Fields: The val Keyword.

A primary constructor in a class can execute code in a do binding. However, what if you
have to execute code in an additional constructor, without a do binding? To do this, you
use the then keyword.

F#

The side effects of the primary constructor still execute. Therefore, the output is as
follows:

Console

The reason why then is required instead of another do is that the do keyword has its
standard meaning of delimiting a unit -returning expression when present in the body
of an additional constructor. It only has special meaning in the context of primary
constructors.

let myStructure1 = new MyStruct(1, 2, 3)

Executing side effects in constructors

 // Executing side effects in the primary constructor and
// additional constructors.
type Person(nameIn : string, idIn : int) =
 let mutable name = nameIn
 let mutable id = idIn
 do printfn "Created a person object."
 member this.Name with get() = name and set(v) = name <- v
 member this.ID with get() = id and set(v) = id <- v
 new() =
 Person("Invalid Name", -1)
 then
 printfn "Created an invalid person object."

let person1 = new Person("Humberto Acevedo", 123458734)
let person2 = new Person()

Created a person object.
Created a person object.
Created an invalid person object.

Self identifiers in constructors

In other members, you provide a name for the current object in the definition of each
member. You can also put the self identifier on the first line of the class definition by
using the as keyword immediately following the constructor parameters. The following
example illustrates this syntax.

F#

In additional constructors, you can also define a self identifier by putting the as clause
right after the constructor parameters. The following example illustrates this syntax:

F#

Problems can occur when you try to use an object before it is fully defined. Therefore,
uses of the self identifier can cause the compiler to emit a warning and insert additional
checks to ensure the members of an object are not accessed before the object is
initialized. You should only use the self identifier in the do bindings of the primary
constructor, or after the then keyword in additional constructors.

The name of the self identifier does not have to be this . It can be any valid identifier.

You can assign values to the properties of a class object in the initialization code by
appending a list of assignments of the form property = value to the argument list for a
constructor. This is shown in the following code example:

F#

type MyClass1(x) as this =
 // This use of the self identifier produces a warning - avoid.
 let x1 = this.X
 // This use of the self identifier is acceptable.
 do printfn "Initializing object with X =%d" this.X
 member this.X = x

type MyClass2(x : int) =
 member this.X = x
 new() as this = MyClass2(0) then printfn "Initializing with X = %d"
this.X

Assigning values to properties at initialization

 type Account() =
 let mutable balance = 0.0
 let mutable number = 0
 let mutable firstName = ""
 let mutable lastName = ""

The following version of the previous code illustrates the combination of ordinary
arguments, optional arguments, and property settings in one constructor call:

F#

 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance +
amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance -
amount

let account1 = new Account(AccountNumber=8782108,
 FirstName="Darren", LastName="Parker",
 Balance=1543.33)

type Account(accountNumber : int, ?first: string, ?last: string, ?bal :
float) =
 let mutable balance = defaultArg bal 0.0
 let mutable number = accountNumber
 let mutable firstName = defaultArg first ""
 let mutable lastName = defaultArg last ""
 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance +
amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance -
amount

let account1 = new Account(8782108, bal = 543.33,
 FirstName="Raman", LastName="Iyer")

When inheriting from a base class that has a constructor, you must specify its arguments
in the inherit clause. For more information, see Constructors and inheritance.

In addition to specifying code for creating objects, static let and do bindings can be
authored in class types that execute before the type is first used to perform initialization
at the type level. For more information, see let Bindings in Classes and do Bindings in
Classes.

Members

Constructors in inherited class

Static constructors or type constructors

See also

let Bindings in Classes
Article • 09/15/2021

You can define private fields and private functions for F# classes by using let bindings
in the class definition.

F#

The previous syntax appears after the class heading and inheritance declarations but
before any member definitions. The syntax is like that of let bindings outside of classes,
but the names defined in a class have a scope that is limited to the class. A let binding
creates a private field or function; to expose data or functions publicly, declare a
property or a member method.

A let binding that is not static is called an instance let binding. Instance let bindings
execute when objects are created. Static let bindings are part of the static initializer for
the class, which is guaranteed to execute before the type is first used.

The code within instance let bindings can use the primary constructor's parameters.

Attributes and accessibility modifiers are not permitted on let bindings in classes.

The following code examples illustrate several types of let bindings in classes.

F#

Syntax

// Field.
[static] let [mutable] binding1 [and ... binding-n]

// Function.
[static] let [rec] binding1 [and ... binding-n]

Remarks

type PointWithCounter(a: int, b: int) =
 // A variable i.
 let mutable i = 0

 // A let binding that uses a pattern.
 let (x, y) = (a, b)

The output is as follows.

Console

You can also use the val keyword to create a private field. When using the val
keyword, the field is not given a value when the object is created, but instead is
initialized with a default value. For more information, see Explicit Fields: The val
Keyword.

You can also define private fields in a class by using a member definition and adding the
keyword private to the definition. This can be useful if you expect to change the
accessibility of a member without rewriting your code. For more information, see Access
Control.

Members
do Bindings in Classes
let Bindings

 // A private function binding.
 let privateFunction x y = x * x + 2*y

 // A static let binding.
 static let mutable count = 0

 // A do binding.
 do
 count <- count + 1

 member this.Prop1 = x
 member this.Prop2 = y
 member this.CreatedCount = count
 member this.FunctionValue = privateFunction x y

let point1 = PointWithCounter(10, 52)

printfn "%d %d %d %d" (point1.Prop1) (point1.Prop2) (point1.CreatedCount)
(point1.FunctionValue)

10 52 1 204

Alternative Ways to Create Fields

See also

do Bindings in Classes
Article • 09/15/2021

A do binding in a class definition performs actions when the object is constructed or, for
a static do binding, when the type is first used.

F#

A do binding appears together with or after let bindings but before member
definitions in a class definition. Although the do keyword is optional for do bindings at
the module level, it is not optional for do bindings in a class definition.

For the construction of every object of any given type, non-static do bindings and non-
static let bindings are executed in the order in which they appear in the class
definition. Multiple do bindings can occur in one type. The non-static let bindings and
the non-static do bindings become the body of the primary constructor. The code in the
non-static do bindings section can reference the primary constructor parameters and
any values or functions that are defined in the let bindings section.

Non-static do bindings can access members of the class as long as the class has a self
identifier that is defined by an as keyword in the class heading, and as long as all uses
of those members are qualified with the self identifier for the class.

Because let bindings initialize the private fields of a class, which is often necessary to
guarantee that members behave as expected, do bindings are usually put after let
bindings so that code in the do binding can execute with a fully initialized object. If your
code attempts to use a member before the initialization is complete, an
InvalidOperationException is raised.

Static do bindings can reference static members or fields of the enclosing class but not
instance members or fields. Static do bindings become part of the static initializer for
the class, which is guaranteed to execute before the class is first used.

Syntax

[static] do expression

Remarks

Attributes are ignored for do bindings in types. If an attribute is required for code that
executes in a do binding, it must be applied to the primary constructor.

In the following code, a class has a static do binding and a non-static do binding. The
object has a constructor that has two parameters, a and b , and two private fields are
defined in the let bindings for the class. Two properties are also defined. All of these
are in scope in the non-static do bindings section, as is illustrated by the line that prints
all those values.

F#

The output is as follows.

Console

Members
Classes
Constructors
let Bindings in Classes
do Bindings

open System

type MyType(a:int, b:int) as this =
 inherit Object()
 let x = 2*a
 let y = 2*b
 do printfn "Initializing object %d %d %d %d %d %d"
 a b x y (this.Prop1) (this.Prop2)
 static do printfn "Initializing MyType."
 member this.Prop1 = 4*x
 member this.Prop2 = 4*y
 override this.ToString() = System.String.Format("{0} {1}", this.Prop1,
this.Prop2)

let obj1 = new MyType(1, 2)

Initializing MyType.
Initializing object 1 2 2 4 8 16

See also

Properties (F#)
Article • 09/15/2021

Properties are members that represent values associated with an object.

F#

Syntax

// Property that has both get and set defined.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with [accessibility-modifier] get() =
 get-function-body
and [accessibility-modifier] set parameter =
 set-function-body

// Alternative syntax for a property that has get and set.
[attributes-for-get]
[static] member [accessibility-modifier-for-get] [self-
identifier.]PropertyName =
 get-function-body
[attributes-for-set]
[static] member [accessibility-modifier-for-set] [self-
identifier.]PropertyName
with set parameter =
 set-function-body

// Property that has get only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName =
 get-function-body

// Alternative syntax for property that has get only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with get() =
 get-function-body

// Property that has set only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with set parameter =
 set-function-body

// Automatically implemented properties.
[attributes]
[static] member val [accessibility-modifier] PropertyName =
initialization-expression [with get, set]

Properties represent the "has a" relationship in object-oriented programming,
representing data that is associated with object instances or, for static properties, with
the type.

You can declare properties in two ways, depending on whether you want to explicitly
specify the underlying value (also called the backing store) for the property, or if you
want to allow the compiler to automatically generate the backing store for you.
Generally, you should use the more explicit way if the property has a non-trivial
implementation and the automatic way when the property is just a simple wrapper for a
value or variable. To declare a property explicitly, use the member keyword. This
declarative syntax is followed by the syntax that specifies the get and set methods,
also named accessors. The various forms of the explicit syntax shown in the syntax
section are used for read/write, read-only, and write-only properties. For read-only
properties, you define only a get method; for write-only properties, define only a set
method. Note that when a property has both get and set accessors, the alternative
syntax enables you to specify attributes and accessibility modifiers that are different for
each accessor, as is shown in the following code.

F#

For read/write properties, which have both a get and set method, the order of get and
set can be reversed. Alternatively, you can provide the syntax shown for get only and
the syntax shown for set only instead of using the combined syntax. Doing this makes
it easier to comment out the individual get or set method, if that is something you
might need to do. This alternative to using the combined syntax is shown in the
following code.

F#

Remarks

// A read-only property.
member this.MyReadOnlyProperty = myInternalValue
// A write-only property.
member this.MyWriteOnlyProperty with set (value) = myInternalValue <- value
// A read-write property.
member this.MyReadWriteProperty
 with get () = myInternalValue
 and set (value) = myInternalValue <- value

member this.MyReadWriteProperty with get () = myInternalValue
member this.MyReadWriteProperty with set (value) = myInternalValue <- value

Private values that hold the data for properties are called backing stores. To have the
compiler create the backing store automatically, use the keywords member val , omit the
self-identifier, then provide an expression to initialize the property. If the property is to
be mutable, include with get, set . For example, the following class type includes two
automatically implemented properties. Property1 is read-only and is initialized to the
argument provided to the primary constructor, and Property2 is a settable property
initialized to an empty string:

F#

Automatically implemented properties are part of the initialization of a type, so they
must be included before any other member definitions, just like let bindings and do
bindings in a type definition. Note that the expression that initializes an automatically
implemented property is only evaluated upon initialization, and not every time the
property is accessed. This behavior is in contrast to the behavior of an explicitly
implemented property. What this effectively means is that the code to initialize these
properties is added to the constructor of a class. Consider the following code that shows
this difference:

F#

Output

Console

type MyClass(property1 : int) =
member val Property1 = property1
member val Property2 = "" with get, set

type MyClass() =
 let random = new System.Random()
 member val AutoProperty = random.Next() with get, set
 member this.ExplicitProperty = random.Next()

let class1 = new MyClass()

printfn $"class1.AutoProperty = %d{class1.AutoProperty}"
printfn $"class1.ExplicitProperty = %d{class1.ExplicitProperty}"

class1.AutoProperty = 1853799794
class1.AutoProperty = 1853799794
class1.ExplicitProperty = 978922705
class1.ExplicitProperty = 1131210765

The output of the preceding code shows that the value of AutoProperty is unchanged
when called repeatedly, whereas the ExplicitProperty changes each time it is called. This
demonstrates that the expression for an automatically implemented property is not
evaluated each time, as is the getter method for the explicit property.

Properties can be members of classes, structures, discriminated unions, records,
interfaces, and type extensions and can also be defined in object expressions.

Attributes can be applied to properties. To apply an attribute to a property, write the
attribute on a separate line before the property. For more information, see Attributes.

By default, properties are public. Accessibility modifiers can also be applied to
properties. To apply an accessibility modifier, add it immediately before the name of the
property if it is meant to apply to both the get and set methods; add it before the get
and set keywords if different accessibility is required for each accessor. The
accessibility-modifier can be one of the following: public , private , internal . For more
information, see Access Control.

Property implementations are executed each time a property is accessed.

Properties can be static or instance properties. Static properties can be invoked without
an instance and are used for values associated with the type, not with individual objects.
For static properties, omit the self-identifier. The self-identifier is required for instance
properties.

The following static property definition is based on a scenario in which you have a static
field myStaticValue that is the backing store for the property.

F#

２ Warning

There are some libraries, such as the Entity Framework (System.Data.Entity) that
perform custom operations in base class constructors that don't work well with the
initialization of automatically implemented properties. In those cases, try using
explicit properties.

Static and Instance Properties

static member MyStaticProperty
 with get() = myStaticValue
 and set(value) = myStaticValue <- value

Properties can also be array-like, in which case they are called indexed properties. For
more information, see Indexed Properties.

In many cases, the compiler has enough information to infer the type of a property from
the type of the backing store, but you can set the type explicitly by adding a type
annotation.

F#

You can set properties that provide set accessors by using the <- operator.

F#

The output is 20.

Properties can be abstract. As with methods, abstract just means that there is a virtual
dispatch associated with the property. Abstract properties can be truly abstract, that is,
without a definition in the same class. The class that contains such a property is
therefore an abstract class. Alternatively, abstract can just mean that a property is virtual,
and in that case, a definition must be present in the same class. Note that abstract
properties must not be private, and if one accessor is abstract, the other must also be
abstract. For more information about abstract classes, see Abstract Classes.

Type Annotation for Properties

// To apply a type annotation to a property that does not have an explicit
// get or set, apply the type annotation directly to the property.
member this.MyProperty1 : int = myInternalValue
// If there is a get or set, apply the type annotation to the get or set
method.
member this.MyProperty2 with get() : int = myInternalValue

Using Property set Accessors

// Assume that the constructor argument sets the initial value of the
// internal backing store.
let mutable myObject = new MyType(10)
myObject.MyProperty <- 20
printfn "%d" (myObject.MyProperty)

Abstract Properties

F#

Members
Methods

// Abstract property in abstract class.
// The property is an int type that has a get and
// set method
[<AbstractClass>]
type AbstractBase() =
 abstract Property1 : int with get, set

// Implementation of the abstract property
type Derived1() =
 inherit AbstractBase()
 let mutable value = 10
 override this.Property1 with get() = value and set(v : int) = value <- v

// A type with a "virtual" property.
 type Base1() =
 let mutable value = 10
 abstract Property1 : int with get, set
 default this.Property1 with get() = value and set(v : int) = value <- v

// A derived type that overrides the virtual property
type Derived2() =
 inherit Base1()
 let mutable value2 = 11
 override this.Property1 with get() = value2 and set(v) = value2 <- v

See also

Methods
Article • 05/31/2023

A method is a function that is associated with a type. In object-oriented programming,
methods are used to expose and implement the functionality and behavior of objects
and types.

F#

Syntax

// Instance method definition.
[attributes]
member [inline] self-identifier.method-name parameter-list [: return-type]
=
 method-body

// Static method definition.
[attributes]
static member [inline] method-name parameter-list [: return-type] =
 method-body

// Abstract method declaration or virtual dispatch slot.
[attributes]
abstract member method-name : type-signature

// Virtual method declaration and default implementation.
[attributes]
abstract member method-name : type-signature
[attributes]
default self-identifier.method-name parameter-list [: return-type] =
 method-body

// Override of inherited virtual method.
[attributes]
override self-identifier.method-name parameter-list [: return-type] =
 method-body

// Optional and DefaultParameterValue attributes on input parameters
[attributes]
[modifier] member [inline] self-identifier.method-name ([<Optional;
DefaultParameterValue(default-value)>] input) [: return-type]

Remarks

In the previous syntax, you can see the various forms of method declarations and
definitions. In longer method bodies, a line break follows the equal sign (=), and the
whole method body is indented.

Attributes can be applied to any method declaration. They precede the syntax for a
method definition and are usually listed on a separate line. For more information, see
Attributes.

Methods can be marked inline . For information about inline , see Inline Functions.

Non-inline methods can be used recursively within the type; there is no need to
explicitly use the rec keyword.

Instance methods are declared with the member keyword and a self-identifier, followed
by a period (.) and the method name and parameters. As is the case for let bindings,
the parameter-list can be a pattern. Typically, you enclose method parameters in
parentheses in a tuple form, which is the way methods appear in F# when they are
created in other .NET Framework languages. However, the curried form (parameters
separated by spaces) is also common, and other patterns are supported also.

The following example illustrates the definition and use of a non-abstract instance
method.

F#

Within instance methods, do not use the self identifier to access fields defined by using
let bindings. Use the self identifier when accessing other members and properties.

The keyword static is used to specify that a method can be called without an instance
and is not associated with an object instance. Otherwise, methods are instance methods.

Instance Methods

type SomeType(factor0: int) =
 let factor = factor0
 member this.SomeMethod(a, b, c) =
 (a + b + c) * factor

 member this.SomeOtherMethod(a, b, c) =
 this.SomeMethod(a, b, c) * factor

Static Methods

The example in the next section shows fields declared with the let keyword, property
members declared with the member keyword, and a static method declared with the
static keyword.

The following example illustrates the definition and use of static methods. Assume that
these method definitions are in the SomeType class in the previous section.

F#

The keyword abstract indicates that a method has a virtual dispatch slot and might not
have a definition in the class. A virtual dispatch slot is an entry in an internally
maintained table of functions that is used at run time to look up virtual function calls in
an object-oriented type. The virtual dispatch mechanism is the mechanism that
implements polymorphism, an important feature of object-oriented programming. A
class that has at least one abstract method without a definition is an abstract class,
which means that no instances can be created of that class. For more information about
abstract classes, see Abstract Classes.

Abstract method declarations do not include a method body. Instead, the name of the
method is followed by a colon (:) and a type signature for the method. The type
signature of a method is the same as that shown by IntelliSense when you pause the
mouse pointer over a method name in the Visual Studio Code Editor, except without
parameter names. Type signatures are also displayed by the interpreter, fsi.exe, when
you are working interactively. The type signature of a method is formed by listing out
the types of the parameters, followed by the return type, with appropriate separator
symbols. Curried parameters are separated by -> and tuple parameters are separated
by * . The return value is always separated from the arguments by a -> symbol.
Parentheses can be used to group complex parameters, such as when a function type is
a parameter, or to indicate when a tuple is treated as a single parameter rather than as
two parameters.

You can also give abstract methods default definitions by adding the definition to the
class and using the default keyword, as shown in the syntax block in this topic. An
abstract method that has a definition in the same class is equivalent to a virtual method

static member SomeStaticMethod(a, b, c) =
 (a + b + c)

static member SomeOtherStaticMethod(a, b, c) =
 SomeType.SomeStaticMethod(a, b, c) * 100

Abstract and Virtual Methods

in other .NET Framework languages. Whether or not a definition exists, the abstract
keyword creates a new dispatch slot in the virtual function table for the class.

Regardless of whether a base class implements its abstract methods, derived classes can
provide implementations of abstract methods. To implement an abstract method in a
derived class, define a method that has the same name and signature in the derived
class, except use the override or default keyword, and provide the method body. The
keywords override and default mean exactly the same thing. Use override if the new
method overrides a base class implementation; use default when you create an
implementation in the same class as the original abstract declaration. Do not use the
abstract keyword on the method that implements the method that was declared
abstract in the base class.

The following example illustrates an abstract method Rotate that has a default
implementation, the equivalent of a .NET Framework virtual method.

F#

The following example illustrates a derived class that overrides a base class method. In
this case, the override changes the behavior so that the method does nothing.

F#

Overloaded methods are methods that have identical names in a given type but that
have different arguments. In F#, optional arguments are usually used instead of
overloaded methods. However, overloaded methods are permitted in the language,
provided that the arguments are in tuple form, not curried form.

type Ellipse(a0 : float, b0 : float, theta0 : float) =
 let mutable axis1 = a0
 let mutable axis2 = b0
 let mutable rotAngle = theta0
 abstract member Rotate: float -> unit
 default this.Rotate(delta : float) = rotAngle <- rotAngle + delta

type Circle(radius : float) =
 inherit Ellipse(radius, radius, 0.0)
 // Circles are invariant to rotation, so do nothing.
 override this.Rotate(_) = ()

Overloaded Methods

Starting with F# 4.1, you can also have optional arguments with a default parameter
value in methods. This is to help facilitate interoperation with C# code. The following
example demonstrates the syntax:

F#

Note that the value passed in for DefaultParameterValue must match the input type. In
the above sample, it is an int . Attempting to pass a non-integer value into
DefaultParameterValue would result in a compile error.

The following example contains a type that has examples of fields, private functions,
properties, and a static method.

F#

Optional Arguments

open System.Runtime.InteropServices
// A class with a method M, which takes in an optional integer argument.
type C() =
 member _.M([<Optional; DefaultParameterValue(12)>] i) = i + 1

Example: Properties and Methods

type RectangleXY(x1 : float, y1: float, x2: float, y2: float) =
 // Field definitions.
 let height = y2 - y1
 let width = x2 - x1
 let area = height * width
 // Private functions.
 static let maxFloat (x: float) (y: float) =
 if x >= y then x else y
 static let minFloat (x: float) (y: float) =
 if x <= y then x else y
 // Properties.
 // Here, "this" is used as the self identifier,
 // but it can be any identifier.
 member this.X1 = x1
 member this.Y1 = y1
 member this.X2 = x2
 member this.Y2 = y2
 // A static method.
 static member intersection(rect1 : RectangleXY, rect2 : RectangleXY) =
 let x1 = maxFloat rect1.X1 rect2.X1
 let y1 = maxFloat rect1.Y1 rect2.Y1
 let x2 = minFloat rect1.X2 rect2.X2
 let y2 = minFloat rect1.Y2 rect2.Y2
 let result : RectangleXY option =

Members

 if (x2 > x1 && y2 > y1) then
 Some (RectangleXY(x1, y1, x2, y2))
 else
 None
 result

// Test code.
let testIntersection =
 let r1 = RectangleXY(10.0, 10.0, 20.0, 20.0)
 let r2 = RectangleXY(15.0, 15.0, 25.0, 25.0)
 let r3 : RectangleXY option = RectangleXY.intersection(r1, r2)
 match r3 with
 | Some(r3) -> printfn "Intersection rectangle: %f %f %f %f" r3.X1 r3.Y1
r3.X2 r3.Y2
 | None -> printfn "No intersection found."

testIntersection

See also

Parameters and Arguments
Article • 09/15/2021

This topic describes language support for defining parameters and passing arguments
to functions, methods, and properties. It includes information about how to pass by
reference, and how to define and use methods that can take a variable number of
arguments.

The term parameter is used to describe the names for values that are expected to be
supplied. The term argument is used for the values provided for each parameter.

Parameters can be specified in tuple or curried form, or in some combination of the two.
You can pass arguments by using an explicit parameter name. Parameters of methods
can be specified as optional and given a default value.

Parameters supplied to functions and methods are, in general, patterns separated by
spaces. This means that, in principle, any of the patterns described in Match Expressions
can be used in a parameter list for a function or member.

Methods usually use the tuple form of passing arguments. This achieves a clearer result
from the perspective of other .NET languages because the tuple form matches the way
arguments are passed in .NET methods.

The curried form is most often used with functions created by using let bindings.

The following pseudocode shows examples of tuple and curried arguments.

F#

Combined forms are possible when some arguments are in tuples and some are not.

F#

Parameters and Arguments

Parameter Patterns

// Tuple form.
member this.SomeMethod(param1, param2) = ...
// Curried form.
let function1 param1 param2 = ...

Other patterns can also be used in parameter lists, but if the parameter pattern does not
match all possible inputs, there might be an incomplete match at run time. The
exception MatchFailureException is generated when the value of an argument does not
match the patterns specified in the parameter list. The compiler issues a warning when a
parameter pattern allows for incomplete matches. At least one other pattern is
commonly useful for parameter lists, and that is the wildcard pattern. You use the
wildcard pattern in a parameter list when you simply want to ignore any arguments that
are supplied. The following code illustrates the use of the wildcard pattern in an
argument list.

F#

The wildcard pattern can be useful whenever you do not need the arguments passed in,
such as in the main entry point to a program, when you are not interested in the
command-line arguments that are normally supplied as a string array, as in the
following code.

F#

Other patterns that are sometimes used in arguments are the as pattern, and identifier
patterns associated with discriminated unions and active patterns. You can use the
single-case discriminated union pattern as follows.

F#

let function2 param1 (param2a, param2b) param3 = ...

let makeList _ = [for i in 1 .. 100 -> i * i]
// The arguments 100 and 200 are ignored.
let list1 = makeList 100
let list2 = makeList 200

[<EntryPoint>]
let main _ =
 printfn "Entry point!"
 0

type Slice = Slice of int * int * string

let GetSubstring1 (Slice(p0, p1, text)) =
 printfn "Data begins at %d and ends at %d in string %s" p0 p1 text
 text[p0..p1]

The output is as follows.

Console

Active patterns can be useful as parameters, for example, when transforming an
argument into a desired format, as in the following example:

F#

You can use the as pattern to store a matched value as a local value, as is shown in the
following line of code.

F#

Another pattern that is used occasionally is a function that leaves the last argument
unnamed by providing, as the body of the function, a lambda expression that
immediately performs a pattern match on the implicit argument. An example of this is
the following line of code.

F#

This code defines a function that takes a generic list and returns true if the list is empty,
and false otherwise. The use of such techniques can make code more difficult to read.

Occasionally, patterns that involve incomplete matches are useful, for example, if you
know that the lists in your program have only three elements, you might use a pattern

let substring = GetSubstring1 (Slice(0, 4, "Et tu, Brute?"))
printfn "Substring: %s" substring

Data begins at 0 and ends at 4 in string Et tu, Brute?
Et tu

type Point = { x : float; y : float }

let (| Polar |) { x = x; y = y} =
 (sqrt (x*x + y*y), System.Math.Atan (y/ x))

let radius (Polar(r, _)) = r
let angle (Polar(_, theta)) = theta

let GetSubstring2 (Slice(p0, p1, text) as s) = s

let isNil = function [] -> true | _::_ -> false

like the following in a parameter list.

F#

The use of patterns that have incomplete matches is best reserved for quick prototyping
and other temporary uses. The compiler will issue a warning for such code. Such
patterns cannot cover the general case of all possible inputs and therefore are not
suitable for component APIs.

Arguments for methods can be specified by position in a comma-separated argument
list, or they can be passed to a method explicitly by providing the name, followed by an
equal sign and the value to be passed in. If specified by providing the name, they can
appear in a different order from that used in the declaration.

Named arguments can make code more readable and more adaptable to certain types
of changes in the API, such as a reordering of method parameters.

Named arguments are allowed only for methods, not for let -bound functions, function
values, or lambda expressions.

The following code example demonstrates the use of named arguments.

F#

In a call to a class constructor, you can set the values of properties of the class by using
a syntax similar to that of named arguments. The following example shows this syntax.

F#

let sum [a; b; c;] = a + b + c

Named Arguments

type SpeedingTicket() =
 member this.GetMPHOver(speed: int, limit: int) = speed - limit

let CalculateFine (ticket : SpeedingTicket) =
 let delta = ticket.GetMPHOver(limit = 55, speed = 70)
 if delta < 20 then 50.0 else 100.0

let ticket1 : SpeedingTicket = SpeedingTicket()
printfn "%f" (CalculateFine ticket1)

 type Account() =
 let mutable balance = 0.0

For more information, see Constructors (F#).

You can specify an optional parameter for a method by using a question mark in front of
the parameter name. Optional parameters are interpreted as the F# option type, so you
can query them in the regular way that option types are queried, by using a match
expression with Some and None . Optional parameters are permitted only on members,
not on functions created by using let bindings.

You can pass existing optional values to method by parameter name, such as ?arg=None
or ?arg=Some(3) or ?arg=arg . This can be useful when building a method that passes
optional arguments to another method.

You can also use a function defaultArg , which sets a default value of an optional
argument. The defaultArg function takes the optional parameter as the first argument
and the default value as the second.

The following example illustrates the use of optional parameters.

F#

 let mutable number = 0
 let mutable firstName = ""
 let mutable lastName = ""
 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance +
amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance -
amount

let account1 = new Account(AccountNumber=8782108,
 FirstName="Darren", LastName="Parker",
 Balance=1543.33)

Optional Parameters

The output is as follows.

Console

For the purposes of C# and Visual Basic interop you can use the attributes [<Optional;
DefaultParameterValue<(...)>] in F#, so that callers will see an argument as optional.
This is equivalent to defining the argument as optional in C# as in MyMethod(int i = 3) .

F#

type DuplexType =
 | Full
 | Half

type Connection(?rate0 : int, ?duplex0 : DuplexType, ?parity0 : bool) =
 let duplex = defaultArg duplex0 Full
 let parity = defaultArg parity0 false
 let mutable rate = match rate0 with
 | Some rate1 -> rate1
 | None -> match duplex with
 | Full -> 9600
 | Half -> 4800
 do printfn "Baud Rate: %d Duplex: %A Parity: %b" rate duplex parity

let conn1 = Connection(duplex0 = Full)
let conn2 = Connection(duplex0 = Half)
let conn3 = Connection(300, Half, true)
let conn4 = Connection(?duplex0 = None)
let conn5 = Connection(?duplex0 = Some(Full))

let optionalDuplexValue : option<DuplexType> = Some(Half)
let conn6 = Connection(?duplex0 = optionalDuplexValue)

Baud Rate: 9600 Duplex: Full Parity: false
Baud Rate: 4800 Duplex: Half Parity: false
Baud Rate: 300 Duplex: Half Parity: true
Baud Rate: 9600 Duplex: Full Parity: false
Baud Rate: 9600 Duplex: Full Parity: false
Baud Rate: 4800 Duplex: Half Parity: false

open System
open System.Runtime.InteropServices
type C =
 static member Foo([<Optional; DefaultParameterValue("Hello world")>]
message) =
 printfn $"{message}"

You can also specify a new object as a default parameter value. For example, the Foo
member could have an optional CancellationToken as input instead:

F#

The value given as argument to DefaultParameterValue must match the type of the
parameter. For example, the following is not allowed:

F#

In this case, the compiler generates a warning and will ignore both attributes altogether.
Note that the default value null needs to be type-annotated, as otherwise the compiler
infers the wrong type, i.e. [<Optional; DefaultParameterValue(null:obj)>] o:obj .

Passing an F# value by reference involves byrefs, which are managed pointer types.
Guidance for which type to use is as follows:

Use inref<'T> if you only need to read the pointer.
Use outref<'T> if you only need to write to the pointer.
Use byref<'T> if you need to both read from and write to the pointer.

F#

open System.Threading
open System.Runtime.InteropServices
type C =
 static member Foo([<Optional;
DefaultParameterValue(CancellationToken())>] ct: CancellationToken) =
 printfn $"{ct}"

type C =
 static member Wrong([<Optional; DefaultParameterValue("string")>] i:int)
= ()

Passing by Reference

let example1 (x: inref<int>) = printfn $"It's %d{x}"

let example2 (x: outref<int>) = x <- x + 1

let example3 (x: byref<int>) =
 printfn $"It's %d{x}"
 x <- x + 1

let test () =
 // No need to make it mutable, since it's read-only

Because the parameter is a pointer and the value is mutable, any changes to the value
are retained after the execution of the function.

You can use a tuple as a return value to store any out parameters in .NET library
methods. Alternatively, you can treat the out parameter as a byref parameter. The
following code example illustrates both ways.

F#

Occasionally it is necessary to define a function that takes an arbitrary number of
parameters of heterogeneous type. It would not be practical to create all the possible
overloaded methods to account for all the types that could be used. The .NET
implementations provide support for such methods through the parameter array
feature. A method that takes a parameter array in its signature can be provided with an
arbitrary number of parameters. The parameters are put into an array. The type of the
array elements determines the parameter types that can be passed to the function. If
you define the parameter array with System.Object as the element type, then client
code can pass values of any type.

In F#, parameter arrays can only be defined in methods. They cannot be used in
standalone functions or functions that are defined in modules.

 let x = 1
 example1 &x

 // Needs to be mutable, since we write to it
 let mutable y = 2
 example2 &y
 example3 &y // Now 'y' is 3

// TryParse has a second parameter that is an out parameter
// of type System.DateTime.
let (b, dt) = System.DateTime.TryParse("12-20-04 12:21:00")

printfn "%b %A" b dt

// The same call, using an address of operator.
let mutable dt2 = System.DateTime.Now
let b2 = System.DateTime.TryParse("12-20-04 12:21:00", &dt2)

printfn "%b %A" b2 dt2

Parameter Arrays

You define a parameter array by using the ParamArray attribute. The ParamArray
attribute can only be applied to the last parameter.

The following code illustrates both calling a .NET method that takes a parameter array
and the definition of a type in F# that has a method that takes a parameter array.

F#

When run in a project, the output of the previous code is as follows:

Console

Members

open System

type X() =
 member this.F([<ParamArray>] args: Object[]) =
 for arg in args do
 printfn "%A" arg

[<EntryPoint>]
let main _ =
 // call a .NET method that takes a parameter array, passing values of
various types
 Console.WriteLine("a {0} {1} {2} {3} {4}", 1, 10.0, "Hello world", 1u,
true)

 let xobj = new X()
 // call an F# method that takes a parameter array, passing values of
various types
 xobj.F("a", 1, 10.0, "Hello world", 1u, true)
 0

a 1 10 Hello world 1 True
"a"
1
10.0
"Hello world"
1u
true

See also

Indexed Properties
Article • 05/05/2022

When defining a class that abstracts over ordered data, it can sometimes be helpful to
provide indexed access to that data without exposing the underlying implementation.
This is done with the Item member.

Syntax for expressions:

F#

Syntax for member declarations:

F#

The forms of the previous syntax show how to define indexed properties that have both
a get and a set method, have a get method only, or have a set method only. You can

Syntax

// Looking up an indexed property
expr[idx]

/// Assign to an indexed property
expr[idx] <- elementExpr

// Indexed property that can be read and written to
member self-identifier.Item
 with get(index-values) =
 get-member-body
 and set index-values values-to-set =
 set-member-body

// Indexed property can only be read
member self-identifier.Item
 with get(index-values) =
 get-member-body

// Indexed property that can only be set
member self-identifier.Item
 with set index-values values-to-set =
 set-member-body

Remarks

also combine both the syntax shown for get only and the syntax shown for set only, and
produce a property that has both get and set. This latter form allows you to put different
accessibility modifiers and attributes on the get and set methods.

By using the name Item , the compiler treats the property as a default indexed property.
A default indexed property is a property that you can access by using array-like syntax on
the object instance. For example, if o is an object of the type that defines this property,
the syntax o[index] is used to access the property.

The syntax for accessing a non-default indexed property is to provide the name of the
property and the index in parentheses, just like a regular member. For example, if the
property on o is called Ordinal , you write o.Ordinal(index) to access it.

Regardless of which form you use, you should always use the curried form for the set
method on an indexed property. For information about curried functions, see Functions.

Prior to F# 6, the syntax expr.[idx] was used for indexing. You can activate an optional
informational warning (/warnon:3566 or property <WarnOn>3566</WarnOn>) to report uses
of the expr.[idx] notation.

The following code example illustrates the definition and use of default and non-default
indexed properties that have get and set methods.

F#

Example

type NumberStrings() =
 let mutable ordinals = [| "one"; "two"; "three"; "four"; "five";
 "six"; "seven"; "eight"; "nine"; "ten" |]
 let mutable cardinals = [| "first"; "second"; "third"; "fourth";
 "fifth"; "sixth"; "seventh"; "eighth";
 "ninth"; "tenth" |]
 member this.Item
 with get(index) = ordinals[index]
 and set index value = ordinals[index] <- value
 member this.Ordinal
 with get(index) = ordinals[index]
 and set index value = ordinals[index] <- value
 member this.Cardinal
 with get(index) = cardinals[index]
 and set index value = cardinals[index] <- value

let nstrs = new NumberStrings()
nstrs[0] <- "ONE"
for i in 0 .. 9 do
 printf "%s " nstrs[i]

Console

Indexed properties can have more than one index value. In that case, the values are
separated by commas when the property is used. The set method in such a property
must have two curried arguments, the first of which is a tuple containing the keys, and
the second of which is the value to set.

The following code demonstrates the use of an indexed property with multiple index
values.

F#

printfn ""

nstrs.Cardinal(5) <- "6th"

for i in 0 .. 9 do
 printf "%s " (nstrs.Ordinal(i))
 printf "%s " (nstrs.Cardinal(i))
printfn ""

Output

ONE two three four five six seven eight nine ten
ONE first two second three third four fourth five fifth six 6th
seven seventh eight eighth nine ninth ten tenth

Indexed Properties with multiple index values

open System.Collections.Generic

/// Basic implementation of a sparse matrix based on a dictionary
type SparseMatrix() =
 let table = new Dictionary<(int * int), float>()
 member _.Item
 // Because the key is comprised of two values, 'get' has two index
values
 with get(key1, key2) = table[(key1, key2)]

 // 'set' has two index values and a new value to place in the key's
position
 and set (key1, key2) value = table[(key1, key2)] <- value

let sm = new SparseMatrix()
for i in 1..1000 do
 sm[i, i] <- float i * float i

Members

See also

Operator Overloading
Article • 03/11/2022

This topic describes how to overload arithmetic operators in a class or record type, and
at the global level.

F#

In the previous syntax, the operator-symbol is one of + , - , * , / , = , and so on. The
parameter-list specifies the operands in the order they appear in the usual syntax for
that operator. The method-body constructs the resulting value.

Operator overloads for operators must be static. Operator overloads for unary
operators, such as + and - , must use a tilde (~) in the operator-symbol to indicate that
the operator is a unary operator and not a binary operator, as shown in the following
declaration.

F#

The following code illustrates a vector class that has just two operators, one for unary
minus and one for multiplication by a scalar. In the example, two overloads for scalar
multiplication are needed because the operator must work regardless of the order in
which the vector and scalar appear.

F#

Syntax

// Overloading an operator as a class or record member.
static member (operator-symbols) (parameter-list) =
 method-body
// Overloading an operator at the global level
let [inline] (operator-symbols) parameter-list = function-body

Remarks

static member (~-) (v : Vector)

type Vector(x: float, y : float) =
 member this.x = x
 member this.y = y
 static member (~-) (v : Vector) =

You can overload all the standard operators, but you can also create new operators out
of sequences of certain characters. Allowed operator characters are ! , $, % , & , * , + , - ,
. , / , < , = , > , ? , @ , ^ , | , and ~ . The ~ character has the special meaning of making an
operator unary, and is not part of the operator character sequence. Not all operators
can be made unary.

Depending on the exact character sequence you use, your operator will have a certain
precedence and associativity. Associativity can be either left to right or right to left and
is used whenever operators of the same level of precedence appear in sequence without
parentheses.

The operator character . does not affect precedence, so that, for example, if you want
to define your own version of multiplication that has the same precedence and
associativity as ordinary multiplication, you could create operators such as .* .

The $ operator must stand alone and without additional symbols.

A table that shows the precedence of all operators in F# can be found in Symbol and
Operator Reference.

 Vector(-1.0 * v.x, -1.0 * v.y)
 static member (*) (v : Vector, a) =
 Vector(a * v.x, a * v.y)
 static member (*) (a, v: Vector) =
 Vector(a * v.x, a * v.y)
 override this.ToString() =
 this.x.ToString() + " " + this.y.ToString()

let v1 = Vector(1.0, 2.0)

let v2 = v1 * 2.0
let v3 = 2.0 * v1

let v4 = - v2

printfn "%s" (v1.ToString())
printfn "%s" (v2.ToString())
printfn "%s" (v3.ToString())
printfn "%s" (v4.ToString())

Creating New Operators

Overloaded Operator Names

When the F# compiler compiles an operator expression, it generates a method that has
a compiler-generated name for that operator. This is the name that appears in the
Microsoft intermediate language (MSIL) for the method, and also in reflection and
IntelliSense. You do not normally need to use these names in F# code.

The following table shows the standard operators and their corresponding generated
names.

Operator Generated name

[] op_Nil

:: op_Cons

+ op_Addition

- op_Subtraction

* op_Multiply

/ op_Division

@ op_Append

^ op_Concatenate

% op_Modulus

&&& op_BitwiseAnd

||| op_BitwiseOr

^^^ op_ExclusiveOr

<<< op_LeftShift

~~~ op_LogicalNot

>>> op_RightShift

~+ op_UnaryPlus

~- op_UnaryNegation

= op_Equality

<= op_LessThanOrEqual

>= op_GreaterThanOrEqual

< op_LessThan



Operator Generated name

> op_GreaterThan

? op_Dynamic

?<- op_DynamicAssignment

|> op_PipeRight

<| op_PipeLeft

! op_Dereference

>> op_ComposeRight

<< op_ComposeLeft

<@ @> op_Quotation

<@@ @@> op_QuotationUntyped

+= op_AdditionAssignment

-= op_SubtractionAssignment

*= op_MultiplyAssignment

/= op_DivisionAssignment

.. op_Range

.. .. op_RangeStep

Note that the not  operator in F# does not emit op_Inequality  because it is not a
symbolic operator. It is a function that emits IL that negates a boolean expression.

Other combinations of operator characters that are not listed here can be used as
operators and have names that are made up by concatenating names for the individual
characters from the following table. For example, +! becomes op_PlusBang .

Operator character Name

> Greater

< Less

+ Plus

- Minus



Operator character Name

* Multiply

/ Divide

= Equals

~ Twiddle

$ Dollar

% Percent

. Dot

& Amp

| Bar

@ At

^ Hat

! Bang

? Qmark

( LParen

, Comma

) RParen

[ LBrack

] RBrack

Prefix operators are expected to be placed in front of an operand or operands, much
like a function. Infix operators are expected to be placed between the two operands.

Only certain operators can be used as prefix operators. Some operators are always prefix
operators, others can be infix or prefix, and the rest are always infix operators. Operators
that begin with ! , except != , and the operator ~ , or repeated sequences of~ , are
always prefix operators. The operators + , - , +. , -. , & , && , % , and %%  can be prefix
operators or infix operators. You distinguish the prefix version of these operators from

Prefix and Infix Operators



the infix version by adding a ~  at the beginning of a prefix operator when it is defined.
The ~  is not used when you use the operator, only when it is defined.

The following code illustrates the use of operator overloading to implement a fraction
type. A fraction is represented by a numerator and a denominator. The function hcf  is
used to determine the highest common factor, which is used to reduce fractions.

F#

Example

// Determine the highest common factor between 
// two positive integers, a helper for reducing 
// fractions. 
let rec hcf a b = 
  if a = 0u then b 
  elif a<b then hcf a (b - a) 
  else hcf (a - b) b 

// type Fraction: represents a positive fraction 
// (positive rational number). 
type Fraction = 
   { 
      // n: Numerator of fraction. 
      n : uint32 
      // d: Denominator of fraction. 
      d : uint32 
   } 

   // Produce a string representation. If the 
   // denominator is "1", do not display it. 
   override this.ToString() = 
      if (this.d = 1u) 
        then this.n.ToString() 
        else this.n.ToString() + "/" + this.d.ToString() 

   // Add two fractions. 
   static member (+) (f1 : Fraction, f2 : Fraction) = 
      let nTemp = f1.n * f2.d + f2.n * f1.d 
      let dTemp = f1.d * f2.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // Adds a fraction and a positive integer. 
   static member (+) (f1: Fraction, i : uint32) = 
      let nTemp = f1.n + i * f1.d 
      let dTemp = f1.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // Adds a positive integer and a fraction. 



Output:

   static member (+) (i : uint32, f2: Fraction) = 
      let nTemp = f2.n + i * f2.d 
      let dTemp = f2.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // Subtract one fraction from another. 
   static member (-) (f1 : Fraction, f2 : Fraction) = 
      if (f2.n * f1.d > f1.n * f2.d) 
        then failwith "This operation results in a negative number, which is 
not supported." 
      let nTemp = f1.n * f2.d - f2.n * f1.d 
      let dTemp = f1.d * f2.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // Multiply two fractions. 
   static member (*) (f1 : Fraction, f2 : Fraction) = 
      let nTemp = f1.n * f2.n 
      let dTemp = f1.d * f2.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // Divide two fractions. 
   static member (/) (f1 : Fraction, f2 : Fraction) = 
      let nTemp = f1.n * f2.d 
      let dTemp = f2.n * f1.d 
      let hcfTemp = hcf nTemp dTemp 
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp } 

   // A full set of operators can be quite lengthy. For example, 
   // consider operators that support other integral data types, 
   // with fractions, on the left side and the right side for each. 
   // Also consider implementing unary operators. 

let fraction1 = { n = 3u; d = 4u } 
let fraction2 = { n = 1u; d = 2u } 
let result1 = fraction1 + fraction2 
let result2 = fraction1 - fraction2 
let result3 = fraction1 * fraction2 
let result4 = fraction1 / fraction2 
let result5 = fraction1 + 1u 
printfn "%s + %s = %s" (fraction1.ToString()) (fraction2.ToString()) 
(result1.ToString()) 
printfn "%s - %s = %s" (fraction1.ToString()) (fraction2.ToString()) 
(result2.ToString()) 
printfn "%s * %s = %s" (fraction1.ToString()) (fraction2.ToString()) 
(result3.ToString()) 
printfn "%s / %s = %s" (fraction1.ToString()) (fraction2.ToString()) 
(result4.ToString()) 
printfn "%s + 1 = %s" (fraction1.ToString()) (result5.ToString()) 



Console

You can also define operators at the global level. The following code defines an operator
+? .

F#

The output of the above code is 12 .

You can redefine the regular arithmetic operators in this manner because the scoping
rules for F# dictate that newly defined operators take precedence over the built-in
operators.

The keyword inline  is often used with global operators, which are often small functions
that are best integrated into the calling code. Making operator functions inline also
enables them to work with statically resolved type parameters to produce statically
resolved generic code. For more information, see Inline Functions and Statically
Resolved Type Parameters.

Members

3/4 + 1/2 = 5/4 
3/4 - 1/2 = 1/4 
3/4 * 1/2 = 3/8 
3/4 / 1/2 = 3/2 
3/4 + 1 = 7/4 

Operators at the Global Level

let inline (+?) (x: int) (y: int) = x + 2*y 
printf "%d" (10 +? 1) 

See also



Explicit Fields: The val Keyword
Article • 09/15/2021

The val  keyword is used to declare a location to store a value in a class or structure
type, without initializing it. Storage locations declared in this manner are called explicit
fields. Another use of the val  keyword is in conjunction with the member  keyword to
declare an auto-implemented property. For more information on auto-implemented
properties, see Properties.

F#

The usual way to define fields in a class or structure type is to use a let  binding.
However, let  bindings must be initialized as part of the class constructor, which is not
always possible, necessary, or desirable. You can use the val  keyword when you want a
field that is uninitialized.

Explicit fields can be static or non-static. The access-modifier can be public , private , or
internal . By default, explicit fields are public. This differs from let  bindings in classes,
which are always private.

The DefaultValue  attribute is required on explicit fields in class types that have a
primary constructor. This attribute specifies that the field is initialized to zero. The type
of the field must support zero-initialization. A type supports zero-initialization if it is one
of the following:

A primitive type that has a zero value.
A type that supports a null value, either as a normal value, as an abnormal value, or
as a representation of a value. This includes classes, tuples, records, functions,
interfaces, .NET reference types, the unit  type, and discriminated union types.
A .NET value type.
A structure whose fields all support a default zero value.

Syntax

val [ mutable ] [ access-modifier ] field-name : type-name 

Remarks

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-defaultvalueattribute.html


For example, an immutable field called someField  has a backing field in the .NET
compiled representation with the name someField@ , and you access the stored value
using a property named someField .

For a mutable field, the .NET compiled representation is a .NET field.

The following code shows the use of explicit fields and, for comparison, a let  binding in
a class that has a primary constructor. Note that the let -bound field myInt1  is private.
When the let -bound field myInt1  is referenced from a member method, the self
identifier this  is not required. But when you are referencing the explicit fields myInt2
and myString , the self identifier is required.

F#

The output is as follows:

Console

２ Warning

The .NET Framework namespace System.ComponentModel  contains an attribute that
has the same name. For information about this attribute, see
DefaultValueAttribute.

type MyType() = 
    let mutable myInt1 = 10 
    [<DefaultValue>] val mutable myInt2 : int 
    [<DefaultValue>] val mutable myString : string 
    member this.SetValsAndPrint( i: int, str: string) = 
       myInt1 <- i 
       this.myInt2 <- i + 1 
       this.myString <- str 
       printfn "%d %d %s" myInt1 (this.myInt2) (this.myString) 

let myObject = new MyType() 
myObject.SetValsAndPrint(11, "abc") 
// The following line is not allowed because let bindings are private. 
// myObject.myInt1 <- 20 
myObject.myInt2 <- 30 
myObject.myString <- "def" 

printfn "%d %s" (myObject.myInt2) (myObject.myString) 

11 12 abc 
30 def 

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.defaultvalueattribute


The following code shows the use of explicit fields in a class that does not have a
primary constructor. In this case, the DefaultValue  attribute is not required, but all the
fields must be initialized in the constructors that are defined for the type.

F#

The output is 35 22 .

The following code shows the use of explicit fields in a structure. Because a structure is a
value type, it automatically has a parameterless constructor that sets the values of its
fields to zero. Therefore, the DefaultValue  attribute is not required.

F#

The output is 11 xyz .

Beware, if you are going to initialize your structure with mutable  fields without mutable
keyword, your assignments will work on a copy of the structure which will be discarded
right after assignment. Therefore your structure won't change.

F#

type MyClass = 
    val a : int 
    val b : int 
    // The following version of the constructor is an error 
    // because b is not initialized. 
    // new (a0, b0) = { a = a0; }
    // The following version is acceptable because all fields are 
initialized. 
    new(a0, b0) = { a = a0; b = b0; } 

let myClassObj = new MyClass(35, 22) 
printfn "%d %d" (myClassObj.a) (myClassObj.b) 

type MyStruct = 
    struct 
        val mutable myInt : int 
        val mutable myString : string 
    end 

let mutable myStructObj = new MyStruct() 
myStructObj.myInt <- 11 
myStructObj.myString <- "xyz" 

printfn "%d %s" (myStructObj.myInt) (myStructObj.myString) 



Explicit fields are not intended for routine use. In general, when possible you should use
a let  binding in a class instead of an explicit field. Explicit fields are useful in certain
interoperability scenarios, such as when you need to define a structure that will be used
in a platform invoke call to a native API, or in COM interop scenarios. For more
information, see External Functions. Another situation in which an explicit field might be
necessary is when you are working with an F# code generator which emits classes
without a primary constructor. Explicit fields are also useful for thread-static variables or
similar constructs. For more information, see System.ThreadStaticAttribute .

When the keywords member val  appear together in a type definition, it is a definition of
an automatically implemented property. For more information, see Properties.

Properties
Members
let Bindings in Classes

[<Struct>] 
type Foo = 
    val mutable bar: string 
    member self.ChangeBar bar = self.bar <- bar 
    new (bar) = {bar = bar} 

let foo = Foo "1" 
foo.ChangeBar "2" //make implicit copy of Foo, changes the copy, discards 
the copy, foo remains unchanged 
printfn "%s" foo.bar //prints 1 

let mutable foo' = Foo "1" 
foo'.ChangeBar "2" //changes foo' 
printfn "%s" foo'.bar //prints 2 

See also



Object Expressions
Article • 09/15/2021

An object expression is an expression that creates a new instance of a dynamically
created, anonymous object type that is based on an existing base type, interface, or set
of interfaces.

F#

In the previous syntax, the typename represents an existing class type or interface type.
type-params describes the optional generic type parameters. The arguments are used
only for class types, which require constructor parameters. The member-definitions are
overrides of base class methods, or implementations of abstract methods from either a
base class or an interface.

The following example illustrates several different types of object expressions.

F#

Syntax

// When typename is a class: 
{ new typename [type-params]arguments with 
    member-definitions 
    [ additional-interface-definitions ] 
} 
// When typename is not a class: 
{ new typename [generic-type-args] with 
    member-definitions 
    [ additional-interface-definitions ] 
} 

Remarks

// This object expression specifies a System.Object but overrides the 
// ToString method. 
let obj1 = { new System.Object() with member x.ToString() = "F#" } 
printfn $"{obj1}" 

// This object expression implements the IFormattable interface. 
let delimiter(delim1: string, delim2: string, value: string) = 
    { new System.IFormattable with 
        member x.ToString(format: string, provider: System.IFormatProvider) 
= 



You use object expressions when you want to avoid the extra code and overhead that is
required to create a new, named type. If you use object expressions to minimize the
number of types created in a program, you can reduce the number of lines of code and
prevent the unnecessary proliferation of types. Instead of creating many types just to
handle specific situations, you can use an object expression that customizes an existing
type or provides an appropriate implementation of an interface for the specific case at
hand.

F# Language Reference

            if format = "D" then 
                delim1 + value + delim2 
            else 
                value } 

let obj2 = delimiter("{","}", "Bananas!"); 

printfn "%A" (System.String.Format("{0:D}", obj2)) 

// Define two interfaces 
type IFirst = 
  abstract F : unit -> unit 
  abstract G : unit -> unit 

type ISecond = 
  inherit IFirst 
  abstract H : unit -> unit 
  abstract J : unit -> unit 

// This object expression implements both interfaces. 
let implementer() = 
    { new ISecond with 
        member this.H() = () 
        member this.J() = () 
      interface IFirst with 
        member this.F() = () 
        member this.G() = () } 

Using Object Expressions

See also



Type extensions
Article • 04/19/2022

Type extensions (also called augmentations) are a family of features that let you add new
members to a previously defined object type. The three features are:

Intrinsic type extensions
Optional type extensions
Extension methods

Each can be used in different scenarios and has different tradeoffs.

F#

An intrinsic type extension is a type extension that extends a user-defined type.

Intrinsic type extensions must be defined in the same file and in the same namespace or
module as the type they're extending. Any other definition will result in them being
optional type extensions.

Intrinsic type extensions are sometimes a cleaner way to separate functionality from the
type declaration. The following example shows how to define an intrinsic type extension:

F#

Syntax

// Intrinsic and optional extensions 
type typename with 
    member self-identifier.member-name = 
        body 
    ... 

// Extension methods 
open System.Runtime.CompilerServices 

[<Extension>] 
type Extensions() = 
    [<Extension>] 
    static member extension-name (ty: typename, [args]) = 
        body 
    ... 

Intrinsic type extensions



Using a type extension allows you to separate each of the following:

The declaration of a Variant  type
Functionality to print the Variant  class depending on its "shape"
A way to access the printing functionality with object-style . -notation

This is an alternative to defining everything as a member on Variant . Although it is not
an inherently better approach, it can be a cleaner representation of functionality in some
situations.

Intrinsic type extensions are compiled as members of the type they augment, and
appear on the type when the type is examined by reflection.

An optional type extension is an extension that appears outside the original module,
namespace, or assembly of the type being extended.

Optional type extensions are useful for extending a type that you have not defined
yourself. For example:

F#

namespace Example 

type Variant = 
    | Num of int 
    | Str of string 
   
module Variant = 
    let print v = 
        match v with 
        | Num n -> printf "Num %d" n 
        | Str s -> printf "Str %s" s 

// Add a member to Variant as an extension 
type Variant with 
    member x.Print() = Variant.print x 

Optional type extensions

module Extensions 

type IEnumerable<'T> with 
    /// Repeat each element of the sequence n times 
    member xs.RepeatElements(n: int) = 
        seq { 
            for x in xs do 



You can now access RepeatElements  as if it's a member of IEnumerable<T> as long as
the Extensions  module is opened in the scope that you are working in.

Optional extensions do not appear on the extended type when examined by reflection.
Optional extensions must be in modules, and they're only in scope when the module
that contains the extension is open or is otherwise in scope.

Optional extension members are compiled to static members for which the object
instance is passed implicitly as the first parameter. However, they act as if they're
instance members or static members according to how they're declared.

Optional extension members are also not visible to C# or Visual Basic consumers. They
can only be consumed in other F# code.

It's possible to declare a type extension on a generic type where the type variable is
constrained. The requirement is that the constraint of the extension declaration matches
the constraint of the declared type.

However, even when constraints are matched between a declared type and a type
extension, it's possible for a constraint to be inferred by the body of an extended
member that imposes a different requirement on the type parameter than the declared
type. For example:

F#

There is no way to get this code to work with an optional type extension:

As is, the Sum  member has a different constraint on 'T  (static member get_Zero
and static member (+) ) than what the type extension defines.

                for _ in 1 .. n -> x 
        } 

Generic limitation of intrinsic and optional type
extensions

open System.Collections.Generic 

// NOT POSSIBLE AND FAILS TO COMPILE! 
// 
// The member 'Sum' has a different requirement on 'T than the type 
IEnumerable<'T> 
type IEnumerable<'T> with 
    member this.Sum() = Seq.sum this 

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1


Modifying the type extension to have the same constraint as Sum  will no longer
match the defined constraint on IEnumerable<'T> .
Changing member this.Sum  to member inline this.Sum  will give an error that type
constraints are mismatched.

What is desired are static methods that "float in space" and can be presented as if
they're extending a type. This is where extension methods become necessary.

Finally, extension methods (sometimes called "C# style extension members") can be
declared in F# as a static member method on a class.

Extension methods are useful for when you wish to define extensions on a generic type
that will constrain the type variable. For example:

F#

When used, this code will make it appear as if Sum  is defined on IEnumerable<T>, so
long as Extensions  has been opened or is in scope.

For the extension to be available to VB.NET code, an extra ExtensionAttribute  is
required at the assembly level:

F#

Type extensions also have the following attributes:

Extension methods

namespace Extensions 

open System.Collections.Generic 
open System.Runtime.CompilerServices 

[<Extension>] 
type IEnumerableExtensions = 
    [<Extension>] 
    static member inline Sum(xs: IEnumerable<'T>) = Seq.sum xs 

module AssemblyInfo 
open System.Runtime.CompilerServices 
[<assembly:Extension>] 
do () 

Other remarks

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1


Any type that can be accessed can be extended.
Intrinsic and optional type extensions can define any member type, not just
methods. So extension properties are also possible, for example.
The self-identifier  token in the syntax represents the instance of the type being
invoked, just like ordinary members.
Extended members can be static or instance members.
Type variables on a type extension must match the constraints of the declared
type.

The following limitations also exist for type extensions:

Type extensions do not support virtual or abstract methods.
Type extensions do not support override methods as augmentations.
Type extensions do not support Statically Resolved Type Parameters.
Optional Type extensions do not support constructors as augmentations.
Type extensions cannot be defined on type abbreviations.
Type extensions are not valid for byref<'T>  (though they can be declared).
Type extensions are not valid for attributes (though they can be declared).
You can define extensions that overload other methods of the same name, but the
F# compiler gives preference to non-extension methods if there is an ambiguous
call.

Finally, if multiple intrinsic type extensions exist for one type, all members must be
unique. For optional type extensions, members in different type extensions to the same
type can have the same names. Ambiguity errors occur only if client code opens two
different scopes that define the same member names.

F# Language Reference
Members

See also



Inheritance
Article • 09/15/2021

Inheritance is used to model the "is-a" relationship, or subtyping, in object-oriented
programming.

You specify inheritance relationships by using the inherit  keyword in a class
declaration. The basic syntactical form is shown in the following example.

F#

A class can have at most one direct base class. If you do not specify a base class by
using the inherit  keyword, the class implicitly inherits from System.Object .

If a class inherits from another class, the methods and members of the base class are
available to users of the derived class as if they were direct members of the derived
class.

Any let bindings and constructor parameters are private to a class and, therefore, cannot
be accessed from derived classes.

The keyword base  is available in derived classes and refers to the base class instance. It
is used like the self-identifier.

Virtual methods (and properties) work somewhat differently in F# as compared to other
.NET languages. To declare a new virtual member, you use the abstract  keyword. You
do this regardless of whether you provide a default implementation for that method.
Thus a complete definition of a virtual method in a base class follows this pattern:

F#

Specifying Inheritance Relationships

type MyDerived(...) = 
    inherit MyBase(...) 

Inherited Members

Virtual Methods and Overrides



And in a derived class, an override of this virtual method follows this pattern:

F#

If you omit the default implementation in the base class, the base class becomes an
abstract class.

The following code example illustrates the declaration of a new virtual method
function1  in a base class and how to override it in a derived class.

F#

The constructor for the base class must be called in the derived class. The arguments for
the base class constructor appear in the argument list in the inherit  clause. The values
that are used must be determined from the arguments supplied to the derived class
constructor.

The following code shows a base class and a derived class, where the derived class calls
the base class constructor in the inherit clause:

F#

abstract member [method-name] : [type] 

default [self-identifier].[method-name] [argument-list] = [method-body] 

override [self-identifier].[method-name] [argument-list] = [method-body] 

type MyClassBase1() = 
   let mutable z = 0 
   abstract member function1 : int -> int 
   default u.function1(a : int) = z <- z + a; z 

type MyClassDerived1() = 
   inherit MyClassBase1() 
   override u.function1(a: int) = a + 1 

Constructors and Inheritance

type MyClassBase2(x: int) = 
   let mutable z = x * x 
   do for i in 1..z do printf "%d " i 

type MyClassDerived2(y: int) = 



In the case of multiple constructors, the following code can be used. The first line of the
derived class constructors is the inherit  clause, and the fields appear as explicit fields
that are declared with the val  keyword. For more information, see Explicit Fields: The val
Keyword.

F#

In cases where a minor modification of a type is required, consider using an object
expression as an alternative to inheritance. The following example illustrates the use of
an object expression as an alternative to creating a new derived type:

F#

For more information about object expressions, see Object Expressions.

When you are creating object hierarchies, consider using a discriminated union instead
of inheritance. Discriminated unions can also model varied behavior of different objects
that share a common overall type. A single discriminated union can often eliminate the

   inherit MyClassBase2(y * 2) 
   do for i in 1..y do printf "%d " i 

type BaseClass = 
    val string1 : string 
    new (str) = { string1 = str } 
    new () = { string1 = "" } 

type DerivedClass = 
    inherit BaseClass 

    val string2 : string 
    new (str1, str2) = { inherit BaseClass(str1); string2 = str2 } 
    new (str2) = { inherit BaseClass(); string2 = str2 }

let obj1 = DerivedClass("A", "B") 
let obj2 = DerivedClass("A") 

Alternatives to Inheritance

open System 

let object1 = { new Object() with 
      override this.ToString() = "This overrides object.ToString()" 
      } 

printfn "%s" (object1.ToString())



need for a number of derived classes that are minor variations of each other. For
information about discriminated unions, see Discriminated Unions.

Object Expressions
F# Language Reference

See also



Abstract Classes
Article • 11/05/2021

Abstract classes are classes that leave some or all members unimplemented, so that
implementations can be provided by derived classes.

F#

In object-oriented programming, an abstract class is used as a base class of a hierarchy,
and represents common functionality of a diverse set of object types. As the name
"abstract" implies, abstract classes often do not correspond directly onto concrete
entities in the problem domain. However, they do represent what many different
concrete entities have in common.

Abstract classes must have the AbstractClass  attribute. They can have implemented
and unimplemented members. The use of the term abstract when applied to a class is
the same as in other .NET languages; however, the use of the term abstract when
applied to methods (and properties) is a little different in F# from its use in other .NET
languages. In F#, when a method is marked with the abstract  keyword, this indicates
that a member has an entry, known as a virtual dispatch slot, in the internal table of
virtual functions for that type. In other words, the method is virtual, although the
virtual  keyword is not used in F#. The keyword abstract  is used on virtual methods
regardless of whether the method is implemented. The declaration of a virtual dispatch
slot is separate from the definition of a method for that dispatch slot. Therefore, the F#
equivalent of a virtual method declaration and definition in another .NET language is a
combination of both an abstract method declaration and a separate definition, with

Syntax

// Abstract class syntax. 
[<AbstractClass>] 
type [ accessibility-modifier ] abstract-class-name = 
[ inherit base-class-or-interface-name ] 
[ abstract-member-declarations-and-member-definitions ] 

// Abstract member syntax. 
abstract member member-name : type-signature 

Remarks



either the default  keyword or the override  keyword. For more information and
examples, see Methods.

A class is considered abstract only if there are abstract methods that are declared but
not defined. Therefore, classes that have abstract methods are not necessarily abstract
classes. Unless a class has undefined abstract methods, do not use the AbstractClass
attribute.

In the previous syntax, accessibility-modifier can be public , private  or internal . For
more information, see Access Control.

As with other types, abstract classes can have a base class and one or more base
interfaces. Each base class or interface appears on a separate line together with the
inherit  keyword.

The type definition of an abstract class can contain fully defined members, but it can
also contain abstract members. The syntax for abstract members is shown separately in
the previous syntax. In this syntax, the type signature of a member is a list that contains
the parameter types in order and the return types, separated by ->  tokens and/or *
tokens as appropriate for curried and tupled parameters. The syntax for abstract
member type signatures is the same as that used in signature files and that shown by
IntelliSense in the Visual Studio Code Editor.

The following code illustrates an abstract class Shape, which has two non-abstract
derived classes, Square and Circle. The example shows how to use abstract classes,
methods, and properties. In the example, the abstract class Shape represents the
common elements of the concrete entities circle and square. The common features of all
shapes (in a two-dimensional coordinate system) are abstracted out into the Shape
class: the position on the grid, an angle of rotation, and the area and perimeter
properties. These can be overridden, except for position, the behavior of which
individual shapes cannot change.

The rotation method can be overridden, as in the Circle class, which is rotation invariant
because of its symmetry. So in the Circle class, the rotation method is replaced by a
method that does nothing.

F#

// An abstract class that has some methods and properties defined 
// and some left abstract. 
[<AbstractClass>] 
type Shape2D(x0 : float, y0 : float) = 
    let mutable x, y = x0, y0 
    let mutable rotAngle = 0.0 



    // These properties are not declared abstract. They 
    // cannot be overriden. 
    member this.CenterX with get() = x and set xval = x <- xval 
    member this.CenterY with get() = y and set yval = y <- yval 

    // These properties are abstract, and no default implementation 
    // is provided. Non-abstract derived classes must implement these. 
    abstract Area : float with get 
    abstract Perimeter : float  with get 
    abstract Name : string with get 

    // This method is not declared abstract. It cannot be 
    // overridden. 
    member this.Move dx dy = 
       x <- x + dx 
       y <- y + dy 

    // An abstract method that is given a default implementation 
    // is equivalent to a virtual method in other .NET languages. 
    // Rotate changes the internal angle of rotation of the square. 
    // Angle is assumed to be in degrees. 
    abstract member Rotate: float -> unit 
    default this.Rotate(angle) = rotAngle <- rotAngle + angle 

type Square(x, y, sideLengthIn) = 
    inherit Shape2D(x, y) 
    member this.SideLength = sideLengthIn 
    override this.Area = this.SideLength * this.SideLength 
    override this.Perimeter = this.SideLength * 4. 
    override this.Name = "Square"

type Circle(x, y, radius) = 
    inherit Shape2D(x, y) 
    let PI = 3.141592654 
    member this.Radius = radius 
    override this.Area = PI * this.Radius * this.Radius 
    override this.Perimeter = 2. * PI * this.Radius 
    // Rotating a circle does nothing, so use the wildcard 
    // character to discard the unused argument and 
    // evaluate to unit. 
    override this.Rotate(_) = () 
    override this.Name = "Circle"

let square1 = new Square(0.0, 0.0, 10.0) 
let circle1 = new Circle(0.0, 0.0, 5.0) 
circle1.CenterX <- 1.0 
circle1.CenterY <- -2.0 
square1.Move -1.0 2.0 
square1.Rotate 45.0 
circle1.Rotate 45.0 
printfn "Perimeter of square with side length %f is %f, %f" 
        (square1.SideLength) (square1.Area) (square1.Perimeter) 
printfn "Circumference of circle with radius %f is %f, %f" 
        (circle1.Radius) (circle1.Area) (circle1.Perimeter) 



Output:

Console

Classes
Members
Methods
Properties

let shapeList : list<Shape2D> = [ (square1 :> Shape2D); 
                                  (circle1 :> Shape2D) ] 
List.iter (fun (elem : Shape2D) -> 
              printfn "Area of %s: %f" (elem.Name) (elem.Area)) 
          shapeList 

Perimeter of square with side length 10.000000 is 40.000000 
Circumference of circle with radius 5.000000 is 31.415927 
Area of Square: 100.000000 
Area of Circle: 78.539816 

See also



Structures
Article • 11/05/2021

A structure is a compact object type that can be more efficient than a class for types that
have a small amount of data and simple behavior.

F#

Structures are value types, which means that they are stored directly on the stack or,
when they are used as fields or array elements, inline in the parent type. Unlike classes
and records, structures have pass-by-value semantics. This means that they are useful
primarily for small aggregates of data that are accessed and copied frequently.

In the previous syntax, two forms are shown. The first is not the lightweight syntax, but it
is nevertheless frequently used because, when you use the struct  and end  keywords,
you can omit the StructAttribute  attribute, which appears in the second form. You can
abbreviate StructAttribute  to just Struct .

The type-definition-elements-and-members in the previous syntax represents member
declarations and definitions. Structures can have constructors and mutable and
immutable fields, and they can declare members and interface implementations. For
more information, see Members.

Structures cannot participate in inheritance, cannot contain let  or do  bindings, and
cannot recursively contain fields of their own type (although they can contain reference
cells that reference their own type).

Syntax

[ attributes ] 
type [accessibility-modifier] type-name = 
    struct 
        type-definition-elements-and-members 
    end 
// or 
[ attributes ] 
[<StructAttribute>] 
type [accessibility-modifier] type-name = 
    type-definition-elements-and-members 

Remarks



Because structures do not allow let  bindings, you must declare fields in structures by
using the val  keyword. The val  keyword defines a field and its type but does not allow
initialization. Instead, val  declarations are initialized to zero or null. For this reason,
structures that have an implicit constructor (that is, parameters that are given
immediately after the structure name in the declaration) require that val  declarations
be annotated with the DefaultValue  attribute. Structures that have a defined
constructor still support zero-initialization. Therefore, the DefaultValue  attribute is a
declaration that such a zero value is valid for the field. Implicit constructors for
structures do not perform any actions because let  and do  bindings aren’t allowed on
the type, but the implicit constructor parameter values passed in are available as private
fields.

Explicit constructors might involve initialization of field values. When you have a
structure that has an explicit constructor, it still supports zero-initialization; however, you
do not use the DefaultValue  attribute on the val  declarations because it conflicts with
the explicit constructor. For more information about val  declarations, see Explicit Fields:
The val Keyword.

Attributes and accessibility modifiers are allowed on structures, and follow the same
rules as those for other types. For more information, see Attributes and Access Control.

The following code examples illustrate structure definitions.

F#

// In Point3D, three immutable values are defined. 
// x, y, and z will be initialized to 0.0. 
type Point3D = 
    struct 
        val x: float 
        val y: float 
        val z: float 
    end 

// In Point2D, two immutable values are defined. 
// It also has a member which computes a distance between itself and another 
Point2D. 
// Point2D has an explicit constructor. 
// You can create zero-initialized instances of Point2D, or you can 
// pass in arguments to initialize the values. 
type Point2D = 
    struct 
        val X: float 
        val Y: float 
        new(x: float, y: float) = { X = x; Y = y } 

        member this.GetDistanceFrom(p: Point2D) = 



You can define your own structs that can adhere to byref -like semantics: see Byrefs for
more information. This is done with the IsByRefLikeAttribute attribute:

F#

IsByRefLike  does not imply Struct . Both must be present on the type.

A "byref -like" struct in F# is a stack-bound value type. It is never allocated on the
managed heap. A byref -like struct is useful for high-performance programming, as it is
enforced with set of strong checks about lifetime and non-capture. The rules are:

They can be used as function parameters, method parameters, local variables,
method returns.
They cannot be static or instance members of a class or normal struct.
They cannot be captured by any closure construct (async  methods or lambda
expressions).
They cannot be used as a generic parameter.

Although these rules very strongly restrict usage, they do so to fulfill the promise of
high-performance computing in a safe manner.

You can annotate structs with the IsReadOnlyAttribute attribute. For example:

F#

            let dX = (p.X - this.X) ** 2.0 
            let dY = (p.Y - this.Y) ** 2.0 
             
            dX + dY 
            |> sqrt 
    end 

ByRefLike structs

open System 
open System.Runtime.CompilerServices 

[<IsByRefLike; Struct>] 
type S(count1: Span<int>, count2: Span<int>) = 
    member x.Count1 = count1 
    member x.Count2 = count2 

ReadOnly structs

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.isbyreflikeattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.isreadonlyattribute


IsReadOnly  does not imply Struct . You must add both to have an IsReadOnly  struct.

Use of this attribute emits metadata letting F# and C# know to treat it as inref<'T>  and
in ref , respectively.

Defining a mutable value inside of a readonly struct produces an error.

You can represent Records and Discriminated Unions as structs with the [<Struct>]
attribute. See each article to learn more.

F# Language Reference
Classes
Records
Members

[<IsReadOnly; Struct>] 
type S(count1: int, count2: int) = 
    member x.Count1 = count1 
    member x.Count2 = count2 

Struct Records and Discriminated Unions

See also



Computation Expressions
Article • 07/31/2023

Computation expressions in F# provide a convenient syntax for writing computations
that can be sequenced and combined using control flow constructs and bindings.
Depending on the kind of computation expression, they can be thought of as a way to
express monads, monoids, monad transformers, and applicative functors. However,
unlike other languages (such as do-notation in Haskell), they are not tied to a single
abstraction, and do not rely on macros or other forms of metaprogramming to
accomplish a convenient and context-sensitive syntax.

Computations can take many forms. The most common form of computation is single-
threaded execution, which is easy to understand and modify. However, not all forms of
computation are as straightforward as single-threaded execution. Some examples
include:

Non-deterministic computations
Asynchronous computations
Effectful computations
Generative computations

More generally, there are context-sensitive computations that you must perform in
certain parts of an application. Writing context-sensitive code can be challenging, as it is
easy to "leak" computations outside of a given context without abstractions to prevent
you from doing so. These abstractions are often challenging to write by yourself, which
is why F# has a generalized way to do so called computation expressions.

Computation expressions offer a uniform syntax and abstraction model for encoding
context-sensitive computations.

Every computation expression is backed by a builder type. The builder type defines the
operations that are available for the computation expression. See Creating a New Type
of Computation Expression, which shows how to create a custom computation
expression.

All computation expressions have the following form:

Overview

Syntax overview



F#

In this form, builder-expr  is the name of a builder type that defines the computation
expression, and cexper  is the expression body of the computation expression. For
example, async  computation expression code can look like this:

F#

There is a special, additional syntax available within a computation expression, as shown
in the previous example. The following expression forms are possible with computation
expressions:

F#

Each of these keywords, and other standard F# keywords are only available in a
computation expression if they have been defined in the backing builder type. The only
exception to this is match! , which is itself syntactic sugar for the use of let!  followed by
a pattern match on the result.

The builder type is an object that defines special methods that govern the way the
fragments of the computation expression are combined; that is, its methods control how
the computation expression behaves. Another way to describe a builder class is to say
that it enables you to customize the operation of many F# constructs, such as loops and
bindings.

builder-expr { cexper }

let fetchAndDownload url =
    async {
        let! data = downloadData url

        let processedData = processData data

        return processedData
    }

expr { let! ... }
expr { and! ... }
expr { do! ... }
expr { yield ... }
expr { yield! ... }
expr { return ... }
expr { return! ... }
expr { match! ... }



The let!  keyword binds the result of a call to another computation expression to a
name:

F#

If you bind the call to a computation expression with let , you will not get the result of
the computation expression. Instead, you will have bound the value of the unrealized
call to that computation expression. Use let!  to bind to the result.

let!  is defined by the Bind(x, f)  member on the builder type.

The and!  keyword allows you to bind the results of multiple computation expression
calls in a performant manner.

F#

Using a series of let! ... let! ...  forces re-execution of expensive binds, so using
let! ... and! ...  should be used when binding the results of numerous computation
expressions.

and!  is defined primarily by the MergeSources(x1, x2)  member on the builder type.

Optionally, MergeSourcesN(x1, x2 ..., xN)  can be defined to reduce the number of
tupling nodes, and BindN(x1, x2 ..., xN, f) , or BindNReturn(x1, x2, ..., xN, f)  can
be defined to bind computation expression results efficiently without tupling nodes.

let!

let doThingsAsync url =
    async {
        let! data = getDataAsync url
        ...
    }

and!

let doThingsAsync url =
    async {
        let! data = getDataAsync url
        and! moreData = getMoreDataAsync anotherUrl
        and! evenMoreData = getEvenMoreDataAsync someUrl
        ...
    }



The do!  keyword is for calling a computation expression that returns a unit -like type
(defined by the Zero  member on the builder):

F#

For the async workflow, this type is Async<unit> . For other computation expressions, the
type is likely to be CExpType<unit> .

do!  is defined by the Bind(x, f)  member on the builder type, where f  produces a
unit .

The yield  keyword is for returning a value from the computation expression so that it
can be consumed as an IEnumerable<T>:

F#

In most cases, it can be omitted by callers. The most common way to omit yield  is with
the ->  operator:

F#

do!

let doThingsAsync data url =
    async {
        do! submitData data url
        ...
    }

yield

let squares =
    seq {
        for i in 1..10 do
            yield i * i
    }

for sq in squares do
    printfn $"%d{sq}"

let squares =
    seq {
        for i in 1..10 -> i * i
    }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1


For more complex expressions that might yield many different values, and perhaps
conditionally, simply omitting the keyword can do:

F#

As with the yield keyword in C#, each element in the computation expression is yielded
back as it is iterated.

yield  is defined by the Yield(x)  member on the builder type, where x  is the item to
yield back.

The yield!  keyword is for flattening a collection of values from a computation
expression:

F#

for sq in squares do
    printfn $"%d{sq}"

let weekdays includeWeekend =
    seq {
        "Monday"
        "Tuesday"
        "Wednesday"
        "Thursday"
        "Friday"
        if includeWeekend then
            "Saturday"
            "Sunday"
    }

yield!

let squares =
    seq {
        for i in 1..3 -> i * i
    }

let cubes =
    seq {
        for i in 1..3 -> i * i * i
    }

let squaresAndCubes =
    seq {
        yield! squares
        yield! cubes
    }

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/yield


When evaluated, the computation expression called by yield!  will have its items
yielded back one-by-one, flattening the result.

yield!  is defined by the YieldFrom(x)  member on the builder type, where x  is a
collection of values.

Unlike yield , yield!  must be explicitly specified. Its behavior isn't implicit in
computation expressions.

The return  keyword wraps a value in the type corresponding to the computation
expression. Aside from computation expressions using yield , it is used to "complete" a
computation expression:

F#

return  is defined by the Return(x)  member on the builder type, where x  is the item to
wrap. For let! ... return  usage, BindReturn(x, f)  can be used for improved
performance.

The return!  keyword realizes the value of a computation expression and wraps that
result in the type corresponding to the computation expression:

F#

printfn $"{squaresAndCubes}"  // Prints - 1; 4; 9; 1; 8; 27

return

let req = // 'req' is of type 'Async<data>'
    async {
        let! data = fetch url
        return data
    }

// 'result' is of type 'data'
let result = Async.RunSynchronously req

return!

let req = // 'req' is of type 'Async<data>'
    async {
        return! fetch url
    }



return!  is defined by the ReturnFrom(x)  member on the builder type, where x  is
another computation expression.

The match!  keyword allows you to inline a call to another computation expression and
pattern match on its result:

F#

When calling a computation expression with match! , it will realize the result of the call
like let! . This is often used when calling a computation expression where the result is
an optional.

The F# core library defines four built-in computation expressions: Sequence Expressions,
Async expressions, Task expressions, and Query Expressions.

You can define the characteristics of your own computation expressions by creating a
builder class and defining certain special methods on the class. The builder class can
optionally define the methods as listed in the following table.

The following table describes methods that can be used in a workflow builder class.

Method Typical signature(s) Description

Bind M<'T> * ('T -> M<'U>) ->

M<'U>

Called for let!  and do!  in computation
expressions.

// 'result' is of type 'data'
let result = Async.RunSynchronously req

match!

let doThingsAsync url =
    async {
        match! callService url with
        | Some data -> ...
        | None -> ...
    }

Built-in computation expressions

Creating a New Type of Computation
Expression



Method Typical signature(s) Description

BindN (M<'T1> * M<'T2> * ... *

M<'TN> * ('T1 * 'T2 ... * 'TN

-> M<'U>)) -> M<'U>

Called for efficient let!  and and!  in
computation expressions without merging
inputs.

e.g. Bind3 , Bind4 .

Delay (unit -> M<'T>) ->

Delayed<'T>

Wraps a computation expression as a
function. Delayed<'T>  can be any type,
commonly M<'T>  or unit -> M<'T>  are used.
The default implementation returns a M<'T> .

Return 'T -> M<'T> Called for return  in computation expressions.

ReturnFrom M<'T> -> M<'T> Called for return!  in computation
expressions.

BindReturn (M<'T1> * ('T1 -> 'T2)) ->

M<'T2>

Called for an efficient let! ... return  in
computation expressions.

BindNReturn (M<'T1> * M<'T2> * ... *

M<'TN> * ('T1 * 'T2 ... * 'TN

-> M<'U>)) -> M<'U>

Called for efficient let! ... and! ... return
in computation expressions without merging
inputs.

e.g. Bind3Return , Bind4Return .

MergeSources (M<'T1> * M<'T2>) -> M<'T1 *

'T2>

Called for and!  in computation expressions.

MergeSourcesN (M<'T1> * M<'T2> * ... *

M<'TN>) -> M<'T1 * 'T2 * ... *

'TN>

Called for and!  in computation expressions,
but improves efficiency by reducing the
number of tupling nodes.

e.g. MergeSources3 , MergeSources4 .

Run Delayed<'T> -> M<'T>  or

M<'T> -> 'T

Executes a computation expression.

Combine M<'T> * Delayed<'T> -> M<'T>

or

M<unit> * M<'T> -> M<'T>

Called for sequencing in computation
expressions.

For seq<'T> * ('T -> M<'U>) ->

M<'U>  or

seq<'T> * ('T -> M<'U>) ->

seq<M<'U>>

Called for for...do  expressions in
computation expressions.



Method Typical signature(s) Description

TryFinally Delayed<'T> * (unit -> unit) -

> M<'T>

Called for try...finally  expressions in
computation expressions.

TryWith Delayed<'T> * (exn -> M<'T>) -

> M<'T>

Called for try...with  expressions in
computation expressions.

Using 'T * ('T -> M<'U>) -> M<'U>

when 'T :> IDisposable

Called for use  bindings in computation
expressions.

While (unit -> bool) * Delayed<'T> -

> M<'T>or

(unit -> bool) * Delayed<unit>

-> M<unit>

Called for while...do  expressions in
computation expressions.

Yield 'T -> M<'T> Called for yield  expressions in computation
expressions.

YieldFrom M<'T> -> M<'T> Called for yield!  expressions in computation
expressions.

Zero unit -> M<'T> Called for empty else  branches of if...then
expressions in computation expressions.

Quote Quotations.Expr<'T> ->

Quotations.Expr<'T>

Indicates that the computation expression is
passed to the Run  member as a quotation. It
translates all instances of a computation into
a quotation.

Many of the methods in a builder class use and return an M<'T>  construct, which is
typically a separately defined type that characterizes the kind of computations being
combined, for example, Async<'T>  for async expressions and Seq<'T>  for sequence
workflows. The signatures of these methods enable them to be combined and nested
with each other, so that the workflow object returned from one construct can be passed
to the next.

Many functions use the result of Delay  as an argument: Run , While , TryWith ,
TryFinally , and Combine . The Delayed<'T>  type is the return type of Delay  and
consequently the parameter to these functions. Delayed<'T>  can be an arbitrary type
that does not need to be related to M<'T> ; commonly M<'T>  or (unit -> M<'T>)  are
used. The default implementation is M<'T> . See here  for a more in-depth look.

The compiler, when it parses a computation expression, translates the expression into a
series of nested function calls by using the methods in the preceding table and the code
in the computation expression. The nested expression is of the following form:

https://fsharpforfunandprofit.com/posts/computation-expressions-builder-part3/#understanding-the-type-constraints


F#

In the above code, the calls to Run  and Delay  are omitted if they are not defined in the
computation expression builder class. The body of the computation expression, here
denoted as {{ cexpr }} , is translated into further calls to the methods of the builder
class. This process is defined recursively according to the translations in the following
table. Code within double brackets {{ ... }}  remains to be translated, expr  represents
an F# expression and cexpr  represents a computation expression.

Expression Translation

{{ let

binding in

cexpr }}

let binding in {{ cexpr }}

{{ let!

pattern =

expr in

cexpr }}

builder.Bind(expr, (fun pattern -> {{ cexpr }}))

{{ do! expr

in cexpr }}

builder.Bind(expr, (fun () -> {{ cexpr }}))

{{ yield

expr }}

builder.Yield(expr)

{{ yield!

expr }}

builder.YieldFrom(expr)

{{ return

expr }}

builder.Return(expr)

{{ return!

expr }}

builder.ReturnFrom(expr)

{{ use

pattern =

expr in

cexpr }}

builder.Using(expr, (fun pattern -> {{ cexpr }}))

{{ use!

value =

expr in

cexpr }}

builder.Bind(expr, (fun value -> builder.Using(value, (fun value -> {{ cexpr

}}))))

builder.Run(builder.Delay(fun () -> {{ cexpr }}))



Expression Translation

{{ if expr

then cexpr0

}}

if expr then {{ cexpr0 }} else builder.Zero()

{{ if expr

then cexpr0

else cexpr1

}}

if expr then {{ cexpr0 }} else {{ cexpr1 }}

{{ match

expr with |

pattern_i -

> cexpr_i

}}

match expr with | pattern_i -> {{ cexpr_i }}

{{ for

pattern in

enumerable-

expr do

cexpr }}

builder.For(enumerable-expr, (fun pattern -> {{ cexpr }}))

{{ for

identifier

= expr1 to

expr2 do

cexpr }}

builder.For([expr1..expr2], (fun identifier -> {{ cexpr }}))

{{ while

expr do

cexpr }}

builder.While(fun () -> expr, builder.Delay({{ cexpr }}))

{{ try

cexpr with

| pattern_i

-> expr_i

}}

builder.TryWith(builder.Delay({{ cexpr }}), (fun value -> match value with |

pattern_i -> expr_i | exn ->

System.Runtime.ExceptionServices.ExceptionDispatchInfo.Capture(exn).Throw()))

{{ try

cexpr

finally

expr }}

builder.TryFinally(builder.Delay({{ cexpr }}), (fun () -> expr))

{{ cexpr1;

cexpr2 }}

builder.Combine({{ cexpr1 }}, {{ cexpr2 }})

{{ other-

expr; cexpr

expr; {{ cexpr }}



Expression Translation

}}

{{ other-

expr }}

expr; builder.Zero()

In the previous table, other-expr  describes an expression that is not otherwise listed in
the table. A builder class does not need to implement all of the methods and support all
of the translations listed in the previous table. Those constructs that are not
implemented are not available in computation expressions of that type. For example, if
you do not want to support the use  keyword in your computation expressions, you can
omit the definition of Use  in your builder class.

The following code example shows a computation expression that encapsulates a
computation as a series of steps that can be evaluated one step at a time. A
discriminated union type, OkOrException , encodes the error state of the expression as
evaluated so far. This code demonstrates several typical patterns that you can use in
your computation expressions, such as boilerplate implementations of some of the
builder methods.

F#

/// Represents computations that can be run step by step
type Eventually<'T> =
    | Done of 'T
    | NotYetDone of (unit -> Eventually<'T>)

module Eventually =

    /// Bind a computation using 'func'.
    let rec bind func expr =
        match expr with
        | Done value -> func value
        | NotYetDone work -> NotYetDone (fun () -> bind func (work()))

    /// Return the final value
    let result value = Done value

    /// The catch for the computations. Stitch try/with throughout
    /// the computation, and return the overall result as an OkOrException.
    let rec catch expr =
        match expr with
        | Done value -> result (Ok value)
        | NotYetDone work ->
            NotYetDone (fun () ->
                let res = try Ok(work()) with | exn -> Error exn
                match res with
                | Ok cont -> catch cont // note, a tailcall



                | Error exn -> result (Error exn))

    /// The delay operator.
    let delay func = NotYetDone (fun () -> func())

    /// The stepping action for the computations.
    let step expr =
        match expr with
        | Done _ -> expr
        | NotYetDone func -> func ()

    /// The tryFinally operator.
    /// This is boilerplate in terms of "result", "catch", and "bind".
    let tryFinally expr compensation =
        catch (expr)
        |> bind (fun res ->
            compensation();
            match res with
            | Ok value -> result value
            | Error exn -> raise exn)

    /// The tryWith operator.
    /// This is boilerplate in terms of "result", "catch", and "bind".
    let tryWith exn handler =
        catch exn
        |> bind (function Ok value -> result value | Error exn -> handler 
exn)

    /// The whileLoop operator.
    /// This is boilerplate in terms of "result" and "bind".
    let rec whileLoop pred body =
        if pred() then body |> bind (fun _ -> whileLoop pred body)
        else result ()

    /// The sequential composition operator.
    /// This is boilerplate in terms of "result" and "bind".
    let combine expr1 expr2 =
        expr1 |> bind (fun () -> expr2)

    /// The using operator.
    /// This is boilerplate in terms of "tryFinally" and "Dispose".
    let using (resource: #System.IDisposable) func =
        tryFinally (func resource) (fun () -> resource.Dispose())

    /// The forLoop operator.
    /// This is boilerplate in terms of "catch", "result", and "bind".
    let forLoop (collection:seq<_>) func =
        let ie = collection.GetEnumerator()
        tryFinally
            (whileLoop
                (fun () -> ie.MoveNext())
                (delay (fun () -> let value = ie.Current in func value)))
            (fun () -> ie.Dispose())

/// The builder class.



A computation expression has an underlying type, which the expression returns. The
underlying type may represent a computed result or a delayed computation that can be
performed, or it may provide a way to iterate through some type of collection. In the
previous example, the underlying type was Eventually<_> . For a sequence expression,
the underlying type is System.Collections.Generic.IEnumerable<T>. For a query
expression, the underlying type is System.Linq.IQueryable. For an async expression, the
underlying type is Async . The Async  object represents the work to be performed to
compute the result. For example, you call Async.RunSynchronously  to execute a
computation and return the result.

type EventuallyBuilder() =
    member x.Bind(comp, func) = Eventually.bind func comp
    member x.Return(value) = Eventually.result value
    member x.ReturnFrom(value) = value
    member x.Combine(expr1, expr2) = Eventually.combine expr1 expr2
    member x.Delay(func) = Eventually.delay func
    member x.Zero() = Eventually.result ()
    member x.TryWith(expr, handler) = Eventually.tryWith expr handler
    member x.TryFinally(expr, compensation) = Eventually.tryFinally expr 
compensation
    member x.For(coll:seq<_>, func) = Eventually.forLoop coll func
    member x.Using(resource, expr) = Eventually.using resource expr

let eventually = new EventuallyBuilder()

let comp =
    eventually {
        for x in 1..2 do
            printfn $" x = %d{x}"
        return 3 + 4
    }

/// Try the remaining lines in F# interactive to see how this
/// computation expression works in practice.
let step x = Eventually.step x

// returns "NotYetDone <closure>"
comp |> step

// prints "x = 1"
// returns "NotYetDone <closure>"
comp |> step |> step

// prints "x = 1"
// prints "x = 2"
// returns "Done 7"
comp |> step |> step |> step |> step

Custom Operations

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#RunSynchronously


You can define a custom operation on a computation expression and use a custom
operation as an operator in a computation expression. For example, you can include a
query operator in a query expression. When you define a custom operation, you must
define the Yield and For methods in the computation expression. To define a custom
operation, put it in a builder class for the computation expression, and then apply the
CustomOperationAttribute . This attribute takes a string as an argument, which is the
name to be used in a custom operation. This name comes into scope at the start of the
opening curly brace of the computation expression. Therefore, you shouldn't use
identifiers that have the same name as a custom operation in this block. For example,
avoid the use of identifiers such as all  or last  in query expressions.

If you already have a builder class, its custom operations can be extended from outside
of this builder class. Extensions must be declared in modules. Namespaces cannot
contain extension members except in the same file and the same namespace declaration
group where the type is defined.

The following example shows the extension of the existing FSharp.Linq.QueryBuilder
class.

F#

Custom operations can be overloaded. For more information, see F# RFC FS-1056 -
Allow overloads of custom keywords in computation expressions .

F# computation expressions that suspend execution can be compiled to highly efficient
state machines through careful use of a low-level feature called resumable code.
Resumable code is documented in F# RFC FS-1087  and used for Task Expressions.

Extending existing Builders with new Custom Operations

open System
open FSharp.Linq

type QueryBuilder with

    [<CustomOperation("existsNot")>]
    member _.ExistsNot (source: QuerySource<'T, 'Q>, predicate) =
        System.Linq.Enumerable.Any (source.Source, Func<_,_>(predicate)) |> 
not

Compiling computation expressions efficiently

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-customoperationattribute.html
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1056-allow-custom-operation-overloads.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1087-resumable-code.md


F# computation expressions that are synchronous (that is, they don't suspend execution)
can alternatively be compiled to efficient state machines by using inline functions
including the InlineIfLambda  attribute. Examples are given in F# RFC FS-1098 .

List expressions, array expressions, and sequence expressions are given special
treatment by the F# compiler to ensure generation of high-performance code.

F# Language Reference
Sequences
Async expressions
Task expressions
Query Expressions
Series on Computation Expressions from F# for Fun and Profit

See also

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1098-inline-if-lambda.md
https://fsharpforfunandprofit.com/posts/computation-expressions-intro/


Async expressions
Article • 10/31/2023

This article describes support in F# for async expressions. Async expressions provide one
way of performing computations asynchronously, that is, without blocking execution of
other work. For example, asynchronous computations can be used to write apps that
have UIs that remain responsive to users as the application performs other work. The F#
Asynchronous Workflows programming model  allows you to write functional
programs while hiding the details of thread transition within a library.

Asynchronous code can also be authored using task expressions, which create .NET
tasks directly. Using task expressions is preferred when interoperating extensively with
.NET libraries that create or consume .NET tasks. When writing most asynchronous code
in F#, F# async expressions are preferred because they are more succinct, more
compositional, and avoid certain caveats associated with .NET tasks.

F#

In the previous syntax, the computation represented by expression  is set up to run
asynchronously, that is, without blocking the current computation thread when
asynchronous sleep operations, I/O, and other asynchronous operations are performed.
Asynchronous computations are often started on a background thread while execution
continues on the current thread. The type of the expression is Async<'T> , where 'T  is
the type returned by the expression when the return  keyword is used.

The Async  class provides methods that support several scenarios. The general
approach is to create Async  objects that represent the computation or computations
that you want to run asynchronously, and then start these computations by using one of
the triggering functions. The triggering you use depends on whether you want to use
the current thread, a background thread, or a .NET task object. For example, to start an
async computation on the current thread, you can use Async.StartImmediate . When
you start an async computation from the UI thread, you do not block the main event

Syntax

async { expression }

Remarks

https://www.microsoft.com/research/publication/the-f-asynchronous-programming-model
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#StartImmediate


loop that processes user actions such as keystrokes and mouse activity, so your
application remains responsive.

In an async expression, some expressions and operations are synchronous, and some
are asynchronous. When you call a method asynchronously, instead of an ordinary let
binding, you use let! . The effect of let!  is to enable execution to continue on other
computations or threads as the computation is being performed. After the right side of
the let!  binding returns, the rest of the async expression resumes execution.

The following code shows the difference between let  and let! . The line of code that
uses let  just creates an asynchronous computation as an object that you can run later
by using, for example, Async.StartImmediate  or Async.RunSynchronously . The line of
code that uses let!  starts the computation and performs an asynchronous wait: the
thread is suspended until the result is available, at which point execution continues.

F#

let!  can only be used to await F# async computations Async<T>  directly. You can
await other kinds of asynchronous operations indirectly:

.NET tasks, Task<TResult> and the non-generic Task, by combining with
Async.AwaitTask

.NET value tasks, ValueTask<TResult> and the non-generic ValueTask, by
combining with .AsTask()  and Async.AwaitTask
Any object following the "GetAwaiter" pattern specified in F# RFC FS-1097 , by
combining with task { return! expr } |> Async.AwaitTask .

Async expressions can include control-flow constructs, such as for .. in .. do , while
.. do , try .. with .. , try .. finally .. , if .. then .. else , and if .. then .. .
These may, in turn, include further async constructs, with the exception of the with  and
finally  handlers, which execute synchronously.

Asynchronous Binding by Using let!

// let just stores the result as an asynchronous operation.
let (result1 : Async<byte[]>) = stream.AsyncRead(bufferSize)
// let! completes the asynchronous operation and returns the data.
let! (result2 : byte[])  = stream.AsyncRead(bufferSize)

Control Flow

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#RunSynchronously
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1097-task-builder.md


F# async expressions don't support asynchronous try .. finally .. . You can use a task
expression for this case.

Within async expressions, use  bindings can bind to values of type IDisposable. For the
latter, the disposal cleanup operation is executed asynchronously.

In addition to let! , you can use use!  to perform asynchronous bindings. The difference
between let!  and use!  is the same as the difference between let  and use . For use! ,
the object is disposed of at the close of the current scope. Note that in the current
release of F#, use!  does not allow a value to be initialized to null, even though use
does.

A method that performs a single asynchronous task and returns the result is called an
asynchronous primitive, and these are designed specifically for use with let! . Several
asynchronous primitives are defined in the F# core library. Two such methods for Web
applications are defined in the module FSharp.Control.WebExtensions :
WebRequest.AsyncGetResponse  and WebClient.AsyncDownloadString . Both
primitives download data from a Web page, given a URL. AsyncGetResponse  produces a
System.Net.WebResponse  object, and AsyncDownloadString  produces a string that
represents the HTML for a Web page.

Several primitives for asynchronous I/O operations are included in the
FSharp.Control.CommonExtensions  module. These extension methods of the
System.IO.Stream  class are Stream.AsyncRead  and Stream.AsyncWrite .

You can also write your own asynchronous primitives by defining a function or method
whose body is an async expression.

To use asynchronous methods in the .NET Framework that are designed for other
asynchronous models with the F# asynchronous programming model, you create a
function that returns an F# Async  object. The F# library has functions that make this
easy to do.

One example of using async expressions is included here; there are many others in the
documentation for the methods of the Async class .

This example shows how to use async expressions to execute code in parallel.

use  and use!  bindings

Asynchronous Primitives

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-webextensions.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-webextensions.html#AsyncGetResponse
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-webextensions.html#AsyncDownloadString
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-commonextensions.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-commonextensions.html#AsyncRead
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-commonextensions.html#AsyncWrite
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html


In the following code example, a function fetchAsync  gets the HTML text returned from
a Web request. The fetchAsync  function contains an asynchronous block of code. When
a binding is made to the result of an asynchronous primitive, in this case
AsyncDownloadString , let!  is used instead of let .

You use the function Async.RunSynchronously  to execute an asynchronous operation
and wait for its result. As an example, you can execute multiple asynchronous operations
in parallel by using the Async.Parallel  function together with the
Async.RunSynchronously  function. The Async.Parallel  function takes a list of the Async
objects, sets up the code for each Async  task object to run in parallel, and returns an
Async  object that represents the parallel computation. Just as for a single operation, you
call Async.RunSynchronously  to start the execution.

The runAll  function launches three async expressions in parallel and waits until they
have all completed.

F#

open System.Net
open Microsoft.FSharp.Control.WebExtensions

let urlList = [ "Microsoft.com", "http://www.microsoft.com/"
                "MSDN", "http://msdn.microsoft.com/"
                "Bing", "http://www.bing.com"
              ]

let fetchAsync(name, url:string) =
    async {
        try
            let uri = new System.Uri(url)
            let webClient = new WebClient()
            let! html = webClient.AsyncDownloadString(uri)
            printfn "Read %d characters for %s" html.Length name
        with
            | ex -> printfn "%s" (ex.Message);
    }

let runAll() =
    urlList
    |> Seq.map fetchAsync
    |> Async.Parallel
    |> Async.RunSynchronously
    |> ignore

runAll()

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-webextensions.html#AsyncDownloadString
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#RunSynchronously
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#Parallel


Async programming in F#
F# Language Reference
Computation Expressions
Task expressions
Control.Async Class

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

  Open a documentation issue

  Provide product feedback

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Fasync-expressions&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Fasync-expressions.md&documentVersionIndependentId=ca52fed1-2956-1f51-e1c5-8a29e0a36679&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp


Tasks expressions
Article • 04/19/2022

This article describes support in F# for task expressions, which are similar to async
expressions but allow you to author .NET tasks directly. Like async expressions, task
expressions execute code asynchronously, that is, without blocking execution of other
work.

Asynchronous code is normally authored using async expressions. Using task
expressions is preferred when interoperating extensively with .NET libraries that create
or consume .NET tasks. Task expressions can also improve performance and the
debugging experience. However, task expressions come with some limitations, which are
described later in the article.

F#

In the previous syntax, the computation represented by expression  is set up to run as a
.NET task. The task is started immediately after this code is executed and runs on the
current thread until its first asynchronous operation is performed (for example, an
asynchronous sleep, asynchronous I/O, or other primitive asynchronous operation). The
type of the expression is Task<'T> , where 'T  is the type returned by the expression
when the return  keyword is used.

In a task expression, some expressions and operations are synchronous, and some are
asynchronous. When you await the result of an asynchronous operation, instead of an
ordinary let  binding, you use let! . The effect of let!  is to enable execution to
continue on other computations or threads as the computation is being performed.
After the right side of the let!  binding returns, the rest of the task resumes execution.

The following code shows the difference between let  and let! . The line of code that
uses let  just creates a task as an object that you can await later by using, for example,
task.Wait()  or task.Result . The line of code that uses let!  starts the task and awaits
its result.

Syntax

task { expression } 

Binding by using let!



F#

F# task { }  expressions can await the following kinds of asynchronous operations:

.NET tasks, Task<TResult> and the non-generic Task.

.NET value tasks, ValueTask<TResult> and the non-generic ValueTask.
F# async computations Async<T> .
Any object following the "GetAwaiter" pattern specified in F# RFC FS-1097 .

Within task expressions, return expr  is used to return the result of a task.

Within task expressions, return! expr  is used to return the result of another task. It is
equivalent to using let!  and then immediately returning the result.

Task expressions can include the control-flow constructs for .. in .. do , while .. do ,
try .. with .. , try .. finally .. , if .. then .. else , and if .. then .. . These may
in turn include further task constructs, except for the with  and finally  handlers, which
execute synchronously. If you need an asynchronous try .. finally .. , use a use
binding in combination with an object of type IAsyncDisposable .

Within task expressions, use  bindings can bind to values of type IDisposable or
IAsyncDisposable. For the latter, the disposal cleanup operation is executed
asynchronously.

// let just stores the result as a task. 
let (result1 : Task<int>) = stream.ReadAsync(buffer, offset, count, 
cancellationToken) 
// let! completes the asynchronous operation and returns the data. 
let! (result2 : int)  = stream.ReadAsync(buffer, offset, count, 
cancellationToken) 

return  expressions

return!  expressions

Control flow

use  and use!  bindings

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1097-task-builder.md
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable


In addition to let! , you can use use!  to perform asynchronous bindings. The difference
between let!  and use!  is the same as the difference between let  and use . For use! ,
the object is disposed of at the close of the current scope. Note that in F# 6, use!  does
not allow a value to be initialized to null, even though use  does.

Value tasks are structs used to avoid allocations in task-based programming. A value
task is an ephemeral value that's turned into a real task by using .AsTask() .

To create a value task from a task expression, use |> ValueTask<ReturnType>  or |>
ValueTask . For example:

F#

Unlike F# async expressions, task expressions do not implicitly pass a cancellation token
and don't implicitly perform cancellation checks. If your code requires a cancellation
token, you should specify the cancellation token as a parameter. For example:

F#

If you intend to correctly make your code cancelable, carefully check that you pass the
cancellation token through to all .NET library operations that support cancellation. For
example, Stream.ReadAsync  has multiple overloads, one of which accepts a cancellation
token. If you do not use this overload, that specific asynchronous read operation will not
be cancelable.

Value Tasks

let makeTask() = 
    task { return 1 } 

makeTask() |> ValueTask<int> 

Adding cancellation tokens and cancellation
checks

open System.Threading 

let someTaskCode (cancellationToken: CancellationToken) = 
    task { 
        cancellationToken.ThrowIfCancellationRequested() 
        printfn $"continuing..." 
    } 



By default, .NET tasks are scheduled using SynchronizationContext.Current if present.
This allows tasks to serve as cooperative, interleaved agents executing on a user
interface thread without blocking the UI. If not present, task continuations are scheduled
to the .NET thread pool.

In practice, it's often desirable that library code that generates tasks ignores the
synchronization context and instead always switches to the .NET thread pool, if
necessary. You can achieve this using backgroundTask { } :

F#

A background task ignores any SynchronizationContext.Current  in the following sense:
if started on a thread with non-null SynchronizationContext.Current , it switches to a
background thread in the thread pool using Task.Run . If started on a thread with null
SynchronizationContext.Current , it executes on that same thread.

Unlike F# async expressions, task expressions do not support tailcalls. That is, when
return!  is executed, the current task is registered as awaiting the task whose result is
being returned. This means that recursive functions and methods implemented using
task expressions may create unbounded chains of tasks, and these may use unbounded
stack or heap. For example, consider the following code:

F#

Background tasks

backgroundTask { expression } 

７ Note

In practice, this means that calls to ConfigureAwait(false)  are not typically needed
in F# task code. Instead, tasks that are intended to run in the background should be
authored using backgroundTask { ... } . Any outer task binding to a background
task will resynchronize to the SynchronizationContext.Current  on completion of
the background task.

Limitations of tasks regarding tailcalls

let rec taskLoopBad (count: int) : Task<string> = 
    task { 
        if count = 0 then 

https://learn.microsoft.com/en-us/dotnet/api/system.threading.synchronizationcontext.current


This coding style should not be used with task expressions—it will create a chain of
10000000 tasks and cause a StackOverflowException . If an asynchronous operation is
added on each loop invocation, the code will use an essentially unbounded heap.
Consider switching this code to use an explicit loop, for example:

F#

If asynchronous tailcalls are required, use an F# async expression, which does support
tailcalls. For example:

F#

Tasks are implemented using Resumable Code, a new feature in F# 6. Tasks are compiled
into "Resumable State Machines" by the F# compiler. These are described in detail in the

            return "done!" 
        else 
            printfn $"looping..., count = {count}" 
            return! taskLoopBad (count-1) 
    } 

let t = taskLoopBad 10000000 
t.Wait() 

let taskLoopGood (count: int) : Task<string> = 
    task { 
        for i in count .. 1 do 
            printfn $"looping... count = {count}" 
        return "done!" 
    } 

let t = taskLoopGood 10000000 
t.Wait() 

let rec asyncLoopGood (count: int) = 
    async { 
        if count = 0 then 
            return "done!" 
        else 
            printfn $"looping..., count = {count}" 
            return! asyncLoopGood (count-1) 
    } 

let t = asyncLoopGood 1000000 |> Async.StartAsTask 
t.Wait() 

Task implementation

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1087-resumable-code.md


Resumable code RFC , and in an F# compiler community session .

F# Language Reference
Computation Expressions
Async Expressions
Resumable State Machines - F# Compiler Community Session
Resumable Code - RFC FS-1087
Task
Task<TResult>
ValueTask
ValueTask<TResult>

See also

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1087-resumable-code.md
https://www.youtube.com/watch?v=GYi3ZMF8Pm0
https://www.youtube.com/watch?v=GYi3ZMF8Pm0
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1087-resumable-code.md
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1


Lazy Expressions
Article • 01/12/2022

Lazy expressions are expressions that are not evaluated immediately, but are instead
evaluated when the result is needed. This can help to improve the performance of your
code.

F#

In the previous syntax, expression is code that is evaluated only when a result is required,
and identifier is a value that stores the result. The value is of type Lazy<'T> , where the
actual type that is used for 'T  is determined from the result of the expression.

Lazy expressions enable you to improve performance by restricting the execution of an
expression to only those situations in which a result is needed.

To force the expressions to be performed, you call the method Force . Force  causes the
execution to be performed only one time. Subsequent calls to Force  return the same
result, but do not execute any code.

The following code illustrates the use of lazy expressions and the use of Force . In this
code, the type of result  is Lazy<int> , and the Force  method returns an int .

F#

Lazy evaluation, but not the Lazy  type, is also used for sequences. For more
information, see Sequences.

Syntax

let identifier = lazy ( expression ) 

Remarks

let x = 10 
let result = lazy (x + 10) 
printfn "%d" (result.Force()) 

See also



F# Language Reference
LazyExtensions module

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-lazyextensions.html


Namespaces (F#)
Article • 05/31/2023

A namespace lets you organize code into areas of related functionality by enabling you
to attach a name to a grouping of F# program elements. Namespaces are typically top-
level elements in F# files.

F#

If you want to put code in a namespace, the first declaration in the file must declare the
namespace. The contents of the entire file then become part of the namespace,
provided no other namespaces declaration exists further in the file. If that is the case,
then all code up until the next namespace declaration is considered to be within the first
namespace.

Namespaces cannot directly contain values and functions. Instead, values and functions
must be included in modules, and modules are included in namespaces. Namespaces
can contain types and modules.

XML doc comments can be declared above a namespace, but they're ignored. Compiler
directives can also be declared above a namespace.

Namespaces can be declared explicitly with the namespace keyword, or implicitly when
declaring a module. To declare a namespace explicitly, use the namespace keyword
followed by the namespace name. The following example shows a code file that declares
a namespace Widgets  with a type and a module included in that namespace.

F#

Syntax

namespace [rec] [parent-namespaces.]identifier 

Remarks

namespace Widgets 

type MyWidget1 = 
    member this.WidgetName = "Widget1" 

module WidgetsModule = 
    let widgetName = "Widget2" 



If the entire contents of the file are in one module, you can also declare namespaces
implicitly by using the module  keyword and providing the new namespace name in the
fully qualified module name. The following example shows a code file that declares a
namespace Widgets  and a module WidgetsModule , which contains a function.

F#

The following code is equivalent to the preceding code, but the module is a local
module declaration. In that case, the namespace must appear on its own line.

F#

If more than one module is required in the same file in one or more namespaces, you
must use local module declarations. When you use local module declarations, you
cannot use the qualified namespace in the module declarations. The following code
shows a file that has a namespace declaration and two local module declarations. In this
case, the modules are contained directly in the namespace; there is no implicitly created
module that has the same name as the file. Any other code in the file, such as a do
binding, is in the namespace but not in the inner modules, so you need to qualify the
module member widgetFunction  by using the module name.

F#

module Widgets.WidgetModule 

let widgetFunction x y = 
   printfn "%A %A" x y 

namespace Widgets 

module WidgetModule = 

    let widgetFunction x y = 
        printfn "%A %A" x y 

namespace Widgets 

module WidgetModule1 = 
   let widgetFunction x y = 
      printfn "Module1 %A %A" x y 
module WidgetModule2 = 
   let widgetFunction x y = 
      printfn "Module2 %A %A" x y 

module useWidgets = 



The output of this example is as follows.

F#

For more information, see Modules.

When you create a nested namespace, you must fully qualify it. Otherwise, you create a
new top-level namespace. Indentation is ignored in namespace declarations.

The following example shows how to declare a nested namespace.

F#

Namespaces can span multiple files in a single project or compilation. The term
namespace fragment describes the part of a namespace that is included in one file.
Namespaces can also span multiple assemblies. For example, the System  namespace
includes the whole .NET Framework, which spans many assemblies and contains many
nested namespaces.

  do 
     WidgetModule1.widgetFunction 10 20 
     WidgetModule2.widgetFunction 5 6 

Module1 10 20 
Module2 5 6 

Nested Namespaces

namespace Outer 

    // Full name: Outer.MyClass 
    type MyClass() = 
       member this.X(x) = x + 1 

// Fully qualify any nested namespaces. 
namespace Outer.Inner 

    // Full name: Outer.Inner.MyClass 
    type MyClass() = 
       member this.Prop1 = "X" 

Namespaces in Files and Assemblies



You use the predefined namespace global  to put names in the .NET top-level
namespace.

F#

You can also use global to reference the top-level .NET namespace, for example, to
resolve name conflicts with other namespaces.

F#

Namespaces can also be declared as recursive to allow for all contained code to be
mutually recursive. This is done via namespace rec . Use of namespace rec  can alleviate
some pains in not being able to write mutually referential code between types and
modules. The following is an example of this:

F#

Global Namespace

namespace global 

type SomeType() = 
    member this.SomeMember = 0 

global.System.Console.WriteLine("Hello World!") 

Recursive namespaces

namespace rec MutualReferences 

type Orientation = Up | Down 
type PeelState = Peeled | Unpeeled 

// This exception depends on the type below. 
exception DontSqueezeTheBananaException of Banana 

type Banana(orientation : Orientation) = 
    member val IsPeeled = false with get, set 
    member val Orientation = orientation with get, set 
    member val Sides: PeelState list = [ Unpeeled; Unpeeled; Unpeeled; 
Unpeeled] with get, set 

    member self.Peel() = BananaHelpers.peel self // Note the dependency on 
the BananaHelpers module. 
    member self.SqueezeJuiceOut() = raise (DontSqueezeTheBananaException 
self) // This member depends on the exception above. 



Note that the exception DontSqueezeTheBananaException  and the class Banana  both refer
to each other. Additionally, the module BananaHelpers  and the class Banana  also refer to
each other. This wouldn't be possible to express in F# if you removed the rec  keyword
from the MutualReferences  namespace.

This feature is also available for top-level Modules.

F# Language Reference
Modules
F# RFC FS-1009 - Allow mutually referential types and modules over larger scopes
within files

module BananaHelpers = 
    let peel (b: Banana) = 
        let flip (banana: Banana) = 
            match banana.Orientation with 
            | Up -> 
                banana.Orientation <- Down 
                banana 
            | Down -> banana 

        let peelSides (banana: Banana) = 
            banana.Sides 
            |> List.map (function
                         | Unpeeled -> Peeled 
                         | Peeled -> Peeled) 

        match b.Orientation with 
        | Up ->   b |> flip |> peelSides 
        | Down -> b |> peelSides 

See also

https://github.com/fsharp/fslang-design/blob/main/FSharp-4.1/FS-1009-mutually-referential-types-and-modules-single-scope.md


Modules
Article • 11/30/2021

In the context of F#, a module is a grouping of F# code, such as values, types, and
function values, in an F# program. Grouping code in modules helps keep related code
together and helps avoid name conflicts in your program.

F#

An F# module is a grouping of F# code constructs such as types, values, function values,
and code in do  bindings. It is implemented as a common language runtime (CLR) class
that has only static members. There are two types of module declarations, depending on
whether the whole file is included in the module: a top-level module declaration and a
local module declaration. A top-level module declaration includes the whole file in the
module. A top-level module declaration can appear only as the first declaration in a file.

In the syntax for the top-level module declaration, the optional qualified-namespace is
the sequence of nested namespace names that contains the module. The qualified
namespace does not have to be previously declared.

You do not have to indent declarations in a top-level module. You do have to indent all
declarations in local modules. In a local module declaration, only the declarations that
are indented under that module declaration are part of the module.

If a code file does not begin with a top-level module declaration or a namespace
declaration, the whole contents of the file, including any local modules, becomes part of
an implicitly created top-level module that has the same name as the file, without the
extension, with the first letter converted to uppercase. For example, consider the
following file.

Syntax

// Top-level module declaration. 
module [accessibility-modifier] [qualified-namespace.]module-name 
declarations 
// Local module declaration. 
module [accessibility-modifier] module-name = 
    declarations 

Remarks



F#

This file would be compiled as if it were written in this manner:

F#

If you have multiple modules in a file, you must use a local module declaration for each
module. If an enclosing namespace is declared, these modules are part of the enclosing
namespace. If an enclosing namespace is not declared, the modules become part of the
implicitly created top-level module. The following code example shows a code file that
contains multiple modules. The compiler implicitly creates a top-level module named
Multiplemodules , and MyModule1  and MyModule2  are nested in that top-level module.

F#

If you have multiple files in a project or in a single compilation, or if you are building a
library, you must include a namespace declaration or module declaration at the top of
the file. The F# compiler only determines a module name implicitly when there is only
one file in a project or compilation command line, and you are creating an application.

// In the file program.fs. 
let x = 40 

module Program 
let x = 40 

// In the file multiplemodules.fs. 
// MyModule1 
module MyModule1 = 
    // Indent all program elements within modules that are declared with an 
equal sign. 
    let module1Value = 100 

    let module1Function x = 
        x + 10 

// MyModule2 
module MyModule2 = 

    let module2Value = 121 

    // Use a qualified name to access the function. 
    // from MyModule1. 
    let module2Function x = 
        x * (MyModule1.module1Function module2Value) 



The accessibility-modifier can be one of the following: public , private , internal . For
more information, see Access Control. The default is public.

When you reference functions, types, and values from another module, you must either
use a qualified name or open the module. If you use a qualified name, you must specify
the namespaces, the module, and the identifier for the program element you want. You
separate each part of the qualified path with a dot (.), as follows.

Namespace1.Namespace2.ModuleName.Identifier

You can open the module or one or more of the namespaces to simplify the code. For
more information about opening namespaces and modules, see Import Declarations:
The open Keyword.

The following code example shows a top-level module that contains all the code up to
the end of the file.

F#

To use this code from another file in the same project, you either use qualified names or
you open the module before you use the functions, as shown in the following examples.

F#

Modules can be nested. Inner modules must be indented as far as outer module
declarations to indicate that they are inner modules, not new modules. For example,

Referencing Code in Modules

module Arithmetic 

let add x y = 
    x + y 

let sub x y = 
    x - y 

// Fully qualify the function name. 
let result1 = Arithmetic.add 5 9 
// Open the module. 
open Arithmetic 
let result2 = add 5 9 

Nested Modules



compare the following two examples. Module Z  is an inner module in the following
code.

F#

But module Z  is a sibling to module Y  in the following code.

F#

Module Z  is also a sibling module in the following code, because it is not indented as
far as other declarations in module Y .

F#

Finally, if the outer module has no declarations and is followed immediately by another
module declaration, the new module declaration is assumed to be an inner module, but
the compiler will warn you if the second module definition is not indented farther than
the first.

F#

To eliminate the warning, indent the inner module.

module Y = 
    let x = 1 

    module Z = 
        let z = 5 

module Y = 
    let x = 1 

module Z = 
    let z = 5 

module Y = 
        let x = 1 

    module Z = 
        let z = 5 

// This code produces a warning, but treats Z as a inner module. 
module Y = 
module Z = 
    let z = 5 



F#

If you want all the code in a file to be in a single outer module and you want inner
modules, the outer module does not require the equal sign, and the declarations,
including any inner module declarations, that will go in the outer module do not have to
be indented. Declarations inside the inner module declarations do have to be indented.
The following code shows this case.

F#

F# 4.1 introduces the notion of modules which allow for all contained code to be
mutually recursive. This is done via module rec . Use of module rec  can alleviate some
pains in not being able to write mutually referential code between types and modules.
The following is an example of this:

F#

module Y = 
    module Z = 
        let z = 5 

// The top-level module declaration can be omitted if the file is named 
// TopLevel.fs or topLevel.fs, and the file is the only file in an 
// application. 
module TopLevel 

let topLevelX = 5 

module Inner1 = 
    let inner1X = 1 
module Inner2 = 
    let inner2X = 5 

Recursive modules

module rec RecursiveModule = 
    type Orientation = Up | Down 
    type PeelState = Peeled | Unpeeled 

    // This exception depends on the type below. 
    exception DontSqueezeTheBananaException of Banana 

    type Banana(orientation : Orientation) = 
        member val IsPeeled = false with get, set 
        member val Orientation = orientation with get, set 
        member val Sides: PeelState list = [ Unpeeled; Unpeeled; Unpeeled; 
Unpeeled] with get, set 



Note that the exception DontSqueezeTheBananaException  and the class Banana  both refer
to each other. Additionally, the module BananaHelpers  and the class Banana  also refer to
each other. This would not be possible to express in F# if you removed the rec  keyword
from the RecursiveModule  module.

This capability is also possible in Namespaces with F# 4.1.

F# Language Reference
Namespaces
F# RFC FS-1009 - Allow mutually referential types and modules over larger scopes
within files

        member self.Peel() = BananaHelpers.peel self // Note the dependency 
on the BananaHelpers module. 
        member self.SqueezeJuiceOut() = raise (DontSqueezeTheBananaException 
self) // This member depends on the exception above. 

    module BananaHelpers = 
        let peel (b: Banana) = 
            let flip (banana: Banana) = 
                match banana.Orientation with 
                | Up -> 
                    banana.Orientation <- Down 
                    banana 
                | Down -> banana 

            let peelSides (banana: Banana) = 
                banana.Sides 
                |> List.map (function 
                             | Unpeeled -> Peeled 
                             | Peeled -> Peeled) 

            match b.Orientation with 
            | Up ->   b |> flip |> peelSides 
            | Down -> b |> peelSides 

See also

https://github.com/fsharp/fslang-design/blob/main/FSharp-4.1/FS-1009-mutually-referential-types-and-modules-single-scope.md


Import declarations: The open  keyword
Article • 11/05/2021

An import declaration specifies a module or namespace whose elements you can
reference without using a fully qualified name.

F#

Referencing code by using the fully qualified namespace or module path every time can
create code that is hard to write, read, and maintain. Instead, you can use the open
keyword for frequently used modules and namespaces so that when you reference a
member of that module or namespace, you can use the short form of the name instead
of the fully qualified name. This keyword is similar to the using  keyword in C#, using
namespace  in Visual C++, and Imports  in Visual Basic.

The module or namespace provided must be in the same project or in a referenced
project or assembly. If it is not, you can add a reference to the project, or use the -
reference  command-line option (or its abbreviation, -r ). For more information, see
Compiler Options.

The import declaration makes the names available in the code that follows the
declaration, up to the end of the enclosing namespace, module, or file.

When you use multiple import declarations, they should appear on separate lines.

The following code shows the use of the open  keyword to simplify code.

F#

Syntax

open module-or-namespace-name 
open type type-name 

Remarks

// Without the import declaration, you must include the full 
// path to .NET Framework namespaces such as System.IO. 
let writeToFile1 filename (text: string) = 
  let stream1 = new System.IO.FileStream(filename, 
System.IO.FileMode.Create) 
  let writer = new System.IO.StreamWriter(stream1) 



The F# compiler does not emit an error or warning when ambiguities occur when the
same name occurs in more than one open module or namespace. When ambiguities
occur, F# gives preference to the more recently opened module or namespace. For
example, in the following code, empty  means Seq.empty , even though empty  is located
in both the List  and Seq  modules.

F#

Therefore, be careful when you open modules or namespaces such as List  or Seq  that
contain members that have identical names; instead, consider using the qualified names.
You should avoid any situation in which the code is dependent upon the order of the
import declarations.

F# supports open  on a type like so:

F#

This will expose all accessible static fields and members on the type.

You can also open  F#-defined record and discriminated union types to expose static
members. In the case of discriminated unions, you can also expose the union cases. This

  writer.WriteLine(text) 

// Open a .NET Framework namespace. 
open System.IO 

// Now you do not have to include the full paths. 
let writeToFile2 filename (text: string) = 
  let stream1 = new FileStream(filename, FileMode.Create) 
  let writer = new StreamWriter(stream1) 
  writer.WriteLine(text) 

writeToFile2 "file1.txt" "Testing..." 

open List 
open Seq 
printfn %"{empty}" 

Open type declarations

open type System.Math 
PI 



can be helpful for accessing union cases in a type declared inside of a module that you
may not want to open, like so:

F#

Some namespaces are so frequently used in F# code that they are opened implicitly
without the need of an explicit import declaration. The following table shows the
namespaces that are open by default.

Namespace Description

FSharp.Core Contains basic F# type definitions for built-in types such as int  and
float .

FSharp.Core.Operators Contains basic arithmetic operations such as +  and * .

FSharp.Collections Contains immutable collection classes such as List  and Array .

FSharp.Control Contains types for control constructs such as lazy evaluation and async
expressions.

FSharp.Text Contains functions for formatted IO, such as the printf  function.

You can apply the AutoOpen  attribute to an assembly if you want to automatically open a
namespace or module when the assembly is referenced. You can also apply the
AutoOpen  attribute to a module to automatically open that module when the parent
module or namespace is opened. For more information, see AutoOpenAttribute .

module M = 
    type DU = A | B | C 

    let someOtherFunction x = x + 1 

// Open only the type inside the module 
open type M.DU 

printfn "%A" A 

Namespaces That Are Open by Default

AutoOpen Attribute

RequireQualifiedAccess Attribute

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-autoopenattribute.html


Some modules, records, or union types may specify the RequireQualifiedAccess
attribute. When you reference elements of those modules, records, or unions, you must
use a qualified name regardless of whether you include an import declaration. If you use
this attribute strategically on types that define commonly used names, you help avoid
name collisions and thereby make code more resilient to changes in libraries. For more
information, see RequireQualifiedAccessAttribute .

F# Language Reference
Namespaces
Modules

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-requirequalifiedaccessattribute.html


Signatures
Article • 09/15/2021

A signature file contains information about the public signatures of a set of F# program
elements, such as types, namespaces, and modules. It can be used to specify the
accessibility of these program elements.

For each F# code file, you can have a signature file, which is a file that has the same
name as the code file but with the extension .fsi instead of .fs. Signature files can also be
added to the compilation command-line if you are using the command line directly. To
distinguish between code files and signature files, code files are sometimes referred to
as implementation files. In a project, the signature file should precede the associated
code file.

A signature file describes the namespaces, modules, types, and members in the
corresponding implementation file. You use the information in a signature file to specify
what parts of the code in the corresponding implementation file can be accessed from
code outside the implementation file, and what parts are internal to the implementation
file. The namespaces, modules, and types that are included in the signature file must be
a subset of the namespaces, modules, and types that are included in the
implementation file. With some exceptions noted later in this topic, those language
elements that are not listed in the signature file are considered private to the
implementation file. If no signature file is found in the project or command line, the
default accessibility is used.

For more information about the default accessibility, see Access Control.

In a signature file, you do not repeat the definition of the types and the
implementations of each method or function. Instead, you use the signature for each
method and function, which acts as a complete specification of the functionality that is
implemented by a module or namespace fragment. The syntax for a type signature is
the same as that used in abstract method declarations in interfaces and abstract classes,
and is also shown by IntelliSense and by the F# interpreter fsi.exe when it displays
correctly compiled input.

If there is not enough information in the type signature to indicate whether a type is
sealed, or whether it is an interface type, you must add an attribute that indicates the
nature of the type to the compiler. Attributes that you use for this purpose are
described in the following table.

Remarks



Attribute Description

[<Sealed>] For a type that has no abstract members, or that should not be extended.

[<Interface>] For a type that is an interface.

The compiler produces an error if the attributes are not consistent between the
signature and the declaration in the implementation file.

Use the keyword val  to create a signature for a value or function value. The keyword
type  introduces a type signature.

You can generate a signature file by using the --sig  compiler option. Generally, you do
not write .fsi files manually. Instead, you generate .fsi files by using the compiler, add
them to your project, if you have one, and edit them by removing methods and
functions that you do not want to be accessible.

There are several rules for type signatures:

Type abbreviations in an implementation file must not match a type without an
abbreviation in a signature file.

Records and discriminated unions must expose either all or none of their fields and
constructors, and the order in the signature must match the order in the
implementation file. Classes can reveal some, all, or none of their fields and
methods in the signature.

Classes and structures that have constructors must expose the declarations of their
base classes (the inherits  declaration). Also, classes and structures that have
constructors must expose all of their abstract methods and interface declarations.

Interface types must reveal all their methods and interfaces.

The rules for value signatures are as follows:

Modifiers for accessibility (public , internal , and so on) and the inline  and
mutable  modifiers in the signature must match those in the implementation.

The number of generic type parameters (either implicitly inferred or explicitly
declared) must match, and the types and type constraints in generic type
parameters must match.

If the Literal  attribute is used, it must appear in both the signature and the
implementation, and the same literal value must be used for both.



The pattern of parameters (also known as the arity) of signatures and
implementations must be consistent.

If parameter names in a signature file differ from the corresponding
implementation file, the name in the signature file will be used instead, which may
cause issues when debugging or profiling. If you wish to be notified of such
mismatches, enable warning 3218 in your project file or when invoking the
compiler (see --warnon  under Compiler Options).

The following code example shows an example of a signature file that has namespace,
module, function value, and type signatures together with the appropriate attributes. It
also shows the corresponding implementation file.

F#

The following code shows the implementation file.

F#

// Module1.fsi 

namespace Library1 
  module Module1 = 
    val function1 : int -> int 
    type Type1 = 
        new : unit -> Type1 
        member method1 : unit -> unit 
        member method2 : unit -> unit 

    [<Sealed>] 
    type Type2 = 
        new : unit -> Type2 
        member method1 : unit -> unit 
        member method2 : unit -> unit 

    [<Interface>] 
    type InterfaceType1 = 
        abstract member method1 : int -> int 
        abstract member method2 : string -> unit 

namespace Library1 

module Module1 = 

    let function1 x = x + 1 

    type Type1() = 
        member type1.method1() = 



F# Language Reference
Access Control
Compiler Options

            printfn "type1.method1" 
        member type1.method2() = 
            printfn "type1.method2" 

    [<Sealed>] 
    type Type2() = 
        member type2.method1() = 
            printfn "type2.method1" 
        member type2.method2() = 
            printfn "type2.method2" 

    [<Interface>] 
    type InterfaceType1 = 
        abstract member method1 : int -> int 
        abstract member method2 : string -> unit 

See also



Access Control
Article • 05/31/2023

Access control refers to declaring which clients can use certain program elements, such
as types, methods, and functions.

In F#, the access control specifiers public , internal , and private  can be applied to
modules, types, methods, value definitions, functions, properties, and explicit fields.

public  indicates that the entity can be accessed by all callers.

internal  indicates that the entity can be accessed only from the same assembly.

private  indicates that the entity can be accessed only from the enclosing type or
module.

The access specifier is put in front of the name of the entity.

If no access specifier is used, the default is public , except for let  bindings in a type,
which are always private  to the type.

Signatures in F# provide another mechanism for controlling access to F# program
elements. Signatures are not required for access control. For more information, see
Signatures.

Access control is subject to the following rules:

Inheritance declarations (that is, the use of inherit  to specify a base class for a
class), interface declarations (that is, specifying that a class implements an

Basics of Access Control

７ Note

The access specifier protected  is not used in F#, although it is acceptable if you are
using types authored in languages that do support protected  access. Therefore, if
you override a protected method, your method remains accessible only within the
class and its descendents.

Rules for Access Control

https://learn.microsoft.com/en-us/dotnet/standard/assembly/


interface), and abstract members always have the same accessibility as the
enclosing type. Therefore, an access control specifier cannot be used on these
constructs.

Accessibility for individual cases in a discriminated union is determined by the
accessibility of the discriminated union itself. That is, a particular union case is no
less accessible than the union itself.

Accessibility for individual fields of a record type is determined by the accessibility
of the record itself. That is, a particular record label is no less accessible than the
record itself.

The following code illustrates the use of access control specifiers. There are two files in
the project, Module1.fs  and Module2.fs . Each file is implicitly a module. Therefore, there
are two modules, Module1  and Module2 . A private type and an internal type are defined
in Module1 . The private type cannot be accessed from Module2 , but the internal type can.

F#

Example

// Module1.fs 

module Module1 

// This type is not usable outside of this file 
type private MyPrivateType() = 
   // x is private since this is an internal let binding 
   let x = 5 
   // X is private and does not appear in the QuickInfo window 
   // when viewing this type in the Visual Studio editor 
   member private this.X() = 10 
   member this.Z() = x * 100 

type internal MyInternalType() = 
   let x = 5 
   member private this.X() = 10 
   member this.Z() = x * 100 

// Top-level let bindings are public by default, 
// so "private" and "internal" are needed here since a 
// value cannot be more accessible than its type. 
let private myPrivateObj = new MyPrivateType() 
let internal myInternalObj = new MyInternalType() 

// let bindings at the top level are public by default, 
// so result1 and result2 are public. 



The following code tests the accessibility of the types created in Module1.fs .

F#

F# Language Reference
Signatures

let result1 = myPrivateObj.Z 
let result2 = myInternalObj.Z 

// Module2.fs 
module Module2 

open Module1 

// The following line is an error because private means 
// that it cannot be accessed from another file or module 
// let private myPrivateObj = new MyPrivateType() 
let internal myInternalObj = new MyInternalType() 

let result = myInternalObj.Z 

See also



Document your code with XML
comments
Article • 03/07/2023

You can produce documentation from triple-slash (///) code comments in F#. XML
comments can precede declarations in code files (.fs) or signature (.fsi) files.

XML documentation comments are a special kind of comment, added above the
definition of any user-defined type or member. They are special because they can be
processed by the compiler to generate an XML documentation file at compile time. The
compiler-generated XML file can be distributed alongside your .NET assembly so that
IDEs can use tooltips to show quick information about types or members. Additionally,
the XML file can be run through tools like fsdocs  to generate API reference websites.

XML documentation comments, like all other comments, are ignored by the compiler,
unless the options described below are enabled to check the validity and completeness
of comments at compile time.

You can generate the XML file at compile time by doing one of the following:

You can add a GenerateDocumentationFile  element to the <PropertyGroup>  section
of your .fsproj  project file, which generates an XML file in the project directory
with the same root filename as the assembly. For example:

XML

For more information, see GenerateDocumentationFile property.

If you are developing an application using Visual Studio, right-click on the project
and select Properties. In the properties dialog, select the Build tab, and check XML
documentation file. You can also change the location to which the compiler writes
the file.

There are two ways to write XML documentation comments: with and without XML tags.
Both use triple-slash comments.

<GenerateDocumentationFile>true</GenerateDocumentationFile> 

Comments without XML tags

http://fsprojects.github.io/FSharp.Formatting/
https://learn.microsoft.com/en-us/dotnet/core/project-sdk/msbuild-props#generatedocumentationfile


If a ///  comment does not start with a < , then the entire comment text is taken as the
summary documentation for the code construct that immediately follows. Use this
method when you want to write only a brief summary for each construct.

The comment is encoded to XML during documentation preparation, so characters such
as < , > , and &  need not be escaped. If you don't specify a summary tag explicitly, you
should not specify other tags, such as param or returns tags.

The following example shows the alternative method, without XML tags. In this example,
the entire text in the comment is considered a summary.

F#

If a comment body begins with <  (normally <summary> ), then it is treated as an XML
formatted comment body using XML tags. This second way enables you to specify
separate notes for a short summary, additional remarks, documentation for each
parameter and type parameter and exceptions thrown, and a description of the return
value.

The following is a typical XML documentation comment in a signature file:

F#

/// Creates a new string whose characters are the result of applying 
/// the function mapping to each of the characters of the input string 
/// and concatenating the resulting strings. 
val collect : (char -> string) -> string -> string 

Comments with XML tags

/// <summary>Builds a new string whose characters are the results of 
applying the function <c>mapping</c> 
/// to each of the characters of the input string and concatenating the 
resulting 
/// strings.</summary> 
/// <param name="mapping">The function to produce a string from each 
character of the input string.</param> 
///<param name="str">The input string.</param> 
///<returns>The concatenated string.</returns> 
///<exception cref="System.ArgumentNullException">Thrown when the input 
string is null.</exception> 
val collect : (char -> string) -> string -> string 

Recommended Tags



If you are using XML tags, the following table describes the outer tags recognized in F#
XML code comments.

Tag syntax Description

<summary> text </summary> Specifies that text is a brief description of the program
element. The description is usually one or two
sentences.

<remarks> text </remarks> Specifies that text contains supplementary information
about the program element.

<param

name="name ">description </param>

Specifies the name and description for a function or
method parameter.

<typeparam

name="name ">description </typeparam>

Specifies the name and description for a type
parameter.

<returns> text </returns> Specifies that text describes the return value of a
function or method.

<exception

cref=" type ">description </exception>

Specifies the type of exception that can be generated
and the circumstances under which it is thrown.

<seealso cref=" reference "/> Specifies a See Also link to the documentation for
another type. The reference is the name as it appears in
the XML documentation file. See Also links usually
appear at the bottom of a documentation page.

The following table describes the tags for use inside description sections:

Tag syntax Description

<para> text </para> Specifies a paragraph of text. This is used to separate text inside
the remarks tag.

<code> text </code> Specifies that text is multiple lines of code. This tag can be used
by documentation generators to display text in a font that is
appropriate for code.

<paramref name="name "/> Specifies a reference to a parameter in the same documentation
comment.

<typeparamref

name="name "/>
Specifies a reference to a type parameter in the same
documentation comment.

<c> text </c> Specifies that text is inline code. This tag can be used by
documentation generators to display text in a font that is
appropriate for code.



Tag syntax Description

<see

cref=" reference "> text </see>
Specifies an inline link to another program element. The reference
is the name as it appears in the XML documentation file. The text
is the text shown in the link.

The previous tags represent those that are recognized by the F# compiler and typical F#
editor tooling. However, a user is free to define their own tags. Tools like fsdocs bring
support for extra tags like <namespacedoc> . Custom or in-house documentation
generation tools can also be used with the standard tags and multiple output formats
from HTML to PDF can be supported.

When --warnon:3390  is enabled, the compiler verifies the syntax of the XML and the
parameters referred to in <param>  and <paramref>  tags.

F# constructs such as modules, members, union cases, and record fields are
documented by a ///  comment immediately prior to their declaration. If needed,
implicit constructors of classes are documented by giving a ///  comment prior to the
argument list. For example:

F#

Some features of XML documentation in C# and other .NET languages are not
supported in F#.

User-defined tags

Compile-time checking

Documenting F# Constructs

/// This is the type 
type SomeType 
      /// This is the implicit constructor 
      (a: int, b: int) = 

    /// This is the member 
    member _.Sum() = a + b 

Limitations

https://github.com/fsharp/fslang-design/blob/main/tooling/FST-1031-xmldoc-extensions.md


In F#, cross-references must use the full XML signature of the corresponding
symbol, for example cref="T:System.Console" . Simple C#-style cross-references
such as cref="Console"  are not elaborated to full XML signatures and these
elements are not checked by the F# compiler. Some documentation tooling may
allow the use of these cross-references by subsequent processing, but the full
signatures should be used.

The tags <include> , <inheritdoc>  are not supported by the F# compiler. No error
is given if they are used, but they are simply copied to the generated
documentation file without otherwise affecting the documentation generated.

Cross-references are not checked by the F# compiler, even when -warnon:3390  is
used.

The names used in the tags <typeparam>  and <typeparamref>  are not checked by
the F# compiler, even when --warnon:3390  is used.

No warnings are given if documentation is missing, even when --warnon:3390  is
used.

Documenting code is recommended for many reasons. What follows are some best
practices, general use case scenarios, and things that you should know when using XML
documentation tags in your F# code.

Enable the option --warnon:3390  in your code to help ensure your XML
documentation is valid XML.

Consider adding signature files to separate long XML documentation comments
from your implementation.

For the sake of consistency, all publicly visible types and their members should be
documented. If you must do it, do it all.

At a bare minimum, modules, types, and their members should have a plain ///
comment or <summary>  tag. This will show in an autocompletion tooltip window in
F# editing tools.

Documentation text should be written using complete sentences ending with full
stops.

Recommendations



C# XML Documentation Comments (C# Programming Guide).
F# Language Reference
Compiler Options

See also

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/


Console Applications
Article • 11/06/2021

In this article, you learn how to structure an F# console application.

By default, F# applications use an implicit entry point. For example, for the following
program, the entry point is implicit and, when the program is run, the code executes
from the first line to the last:

F#

If you want, you can use an explicit entry point. This is usually done for one or all of the
following reasons:

You prefer to access the command-line arguments via an argument passed to a
function, rather than using System.Environment.GetCommandLineArgs() .

You want to return an error code via a return result, rather than using exit .

You want to unit test the code in the last file of your console application.

The following example illustrates a simple main  function with an explicit entry point.

F#

Implicit Entry Point

open System 

let printSomeText() = 
    let text = "Hello" + "World" 
    printfn $"text = {text}" 

let showCommandLineArgs() = 
    for arg in Environment.GetCommandLineArgs() do 
        printfn $"arg = {arg}" 

printSomeText() 
showCommandLineArgs() 
exit 100 

Explicit Entry Point



When this code is executed with the command line EntryPoint.exe 1 2 3 , the output is
as follows.

Console

F#

In the previous syntax, let-function-binding is the definition of a function in a let
binding.

The entry point to a program that is compiled as an executable file is where execution
formally starts. You specify the entry point to an F# application by applying the
EntryPoint  attribute to the program's main  function. This function (created by using a
let  binding) must be the last function in the last compiled file. The last compiled file is
the last file in the project or the last file that is passed to the command line.

The entry point function has type string array -> int . The arguments provided on the
command line are passed to the main  function in the array of strings. The first element
of the array is the first argument; the name of the executable file is not included in the
array, as it is in some other languages. The return value is used as the exit code for the
process. Zero usually indicates success; nonzero values indicate an error. There is no
convention for the specific meaning of nonzero return codes; the meanings of the return
codes are application-specific.

[<EntryPoint>] 
let main args = 
    printfn "Arguments passed to function : %A" args 
    // Return 0. This indicates success. 
    0 

Arguments passed to function : [|"1"; "2"; "3"|] 

Syntax

[<EntryPoint>] 
let-function-binding 

Remarks

See also



Tour of F#
Functions
let Bindings



Query expressions
Article • 09/15/2021

Query expressions enable you to query a data source and put the data in a desired form.
Query expressions provide support for LINQ in F#.

F#

Query expressions are a type of computation expression similar to sequence
expressions. Just as you specify a sequence by providing code in a sequence expression,
you specify a set of data by providing code in a query expression. In a sequence
expression, the yield  keyword identifies data to be returned as part of the resulting
sequence. In query expressions, the select  keyword performs the same function. In
addition to the select  keyword, F# also supports a number of query operators that are
much like the parts of a SQL SELECT statement. Here is an example of a simple query
expression, along with code that connects to the Northwind OData source.

F#

Syntax

query { expression } 

Remarks

// Use the OData type provider to create types that can be used to access 
the Northwind database. 
// Add References to FSharp.Data.TypeProviders and 
System.Data.Services.Client 
open Microsoft.FSharp.Data.TypeProviders 

type Northwind = 
ODataService<"http://services.odata.org/Northwind/Northwind.svc"> 
let db = Northwind.GetDataContext() 

// A query expression. 
let query1 = 
    query { 
        for customer in db.Customers do 
            select customer 
    } 

// Print results 
query1 



In the previous code example, the query expression is in curly braces. The meaning of
the code in the expression is, return every customer in the Customers table in the
database in the query results. Query expressions return a type that implements
IQueryable<T> and IEnumerable<T>, and so they can be iterated using the Seq
module  as the example shows.

Every computation expression type is built from a builder class. The builder class for the
query computation expression is QueryBuilder . For more information, see Computation
Expressions and QueryBuilder Class .

Query operators enable you to specify the details of the query, such as to put criteria on
records to be returned, or specify the sorting order of results. The query source must
support the query operator. If you attempt to use an unsupported query operator,
System.NotSupportedException  will be thrown.

Only expressions that can be translated to SQL are allowed in query expressions. For
example, no function calls are allowed in the expressions when you use the where  query
operator.

Table 1 shows available query operators. In addition, see Table2, which compares SQL
queries and the equivalent F# query expressions later in this topic. Some query
operators aren't supported by some type providers. In particular, the OData type
provider is limited in the query operators that it supports due to limitations in OData.

This table assumes a database in the following form:

|> Seq.iter (fun customer -> printfn "Company: %s Contact: %s" 
customer.CompanyName customer.ContactName) 

Query Operators

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-querybuilder.html


The code in the tables that follow also assumes the following database connection code.
Projects should add references to System.Data, System.Data.Linq, and
FSharp.Data.TypeProviders assemblies. The code that creates this database is included at
the end of this topic.

F#

Operator Description

contains Determines whether the selected elements include a specified
element. 

F#

open System 
open Microsoft.FSharp.Data.TypeProviders 
open System.Data.Linq.SqlClient 
open System.Linq 
open Microsoft.FSharp.Linq 

type schema = SqlDataConnection< @"Data Source=SERVER\INSTANCE;Initial 
Catalog=MyDatabase;Integrated Security=SSPI;" > 

let db = schema.GetDataContext() 

// Needed for some query operator examples: 
let data = [ 1; 5; 7; 11; 18; 21] 

Table 1. Query Operators



count Returns the number of selected elements. 

F#

last Selects the last element of those selected so far. 

F#

lastOrDefault Selects the last element of those selected so far, or a default value if
no element is found. 

F#

exactlyOne Selects the single, specific element selected so far. If multiple
elements are present, an exception is thrown. 

F#

query { 
    for student in db.Student do 
    select student.Age.Value 
    contains 11 
} 

query { 
    for student in db.Student do 
    select student 
    count 
} 

query { 
    for number in data do 
    last 
} 

query { 
    for number in data do 
    where (number < 0) 
    lastOrDefault 
} 

query { 
    for student in db.Student do 
    where (student.StudentID = 1) 



exactlyOneOrDefault Selects the single, specific element of those selected so far, or a
default value if that element is not found. 

F#

headOrDefault Selects the first element of those selected so far, or a default value if
the sequence contains no elements. 

F#

select Projects each of the elements selected so far. 

F#

where Selects elements based on a specified predicate. 

F#

    select student 
    exactlyOne 
} 

query { 
    for student in db.Student do 
    where (student.StudentID = 1) 
    select student 
    exactlyOneOrDefault 
} 

query { 
    for student in db.Student do 
    select student 
    headOrDefault 
} 

query { 
    for student in db.Student do 
    select student 
} 

query { 
    for student in db.Student do 
    where (student.StudentID > 4) 
    select student 
} 



minBy Selects a value for each element selected so far and returns the
minimum resulting value. 

F#

maxBy Selects a value for each element selected so far and returns the
maximum resulting value. 

F#

groupBy Groups the elements selected so far according to a specified key
selector. 

F#

sortBy Sorts the elements selected so far in ascending order by the given
sorting key. 

F#

sortByDescending Sorts the elements selected so far in descending order by the given

query { 
    for student in db.Student do 
    minBy student.StudentID 
} 

query { 
    for student in db.Student do 
    maxBy student.StudentID 
} 

query { 
    for student in db.Student do 
    groupBy student.Age into g 
    select (g.Key, g.Count()) 
} 

query { 
    for student in db.Student do 
    sortBy student.Name 
    select student 
} 



sorting key. 

F#

thenBy Performs a subsequent ordering of the elements selected so far in
ascending order by the given sorting key. This operator may only be
used after a sortBy , sortByDescending , thenBy , or thenByDescending . 

F#

thenByDescending Performs a subsequent ordering of the elements selected so far in
descending order by the given sorting key. This operator may only
be used after a sortBy , sortByDescending , thenBy , or
thenByDescending . 

F#

groupValBy Selects a value for each element selected so far and groups the
elements by the given key. 

F#

query { 
    for student in db.Student do 
    sortByDescending student.Name
    select student 
} 

query { 
    for student in db.Student do 
    where student.Age.HasValue 
    sortBy student.Age.Value 
    thenBy student.Name 
    select student 
} 

query { 
    for student in db.Student do 
    where student.Age.HasValue 
    sortBy student.Age.Value 
    thenByDescending student.Name
    select student 
} 



join Correlates two sets of selected values based on matching keys. Note
that the order of the keys around the = sign in a join expression is
significant. In all joins, if the line is split after the ->  symbol, the
indentation must be indented at least as far as the keyword for . 

F#

groupJoin Correlates two sets of selected values based on matching keys and
groups the results. Note that the order of the keys around the = sign
in a join expression is significant. 

F#

leftOuterJoin Correlates two sets of selected values based on matching keys and
groups the results. If any group is empty, a group with a single
default value is used instead. Note that the order of the keys around
the = sign in a join expression is significant. 

F#

query { 
    for student in db.Student do 
    groupValBy student.Name student.Age into g 
    select (g, g.Key, g.Count()) 
} 

query { 
    for student in db.Student do 
    join selection in db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) 
    select (student, selection) 
} 

query { 
    for student in db.Student do 
    groupJoin courseSelection in 
db.CourseSelection 
        on (student.StudentID = 
courseSelection.StudentID) into g
    for courseSelection in g do 
    join course in db.Course 
        on (courseSelection.CourseID = 
course.CourseID) 
    select (student.Name, course.CourseName) 
} 



sumByNullable Selects a nullable value for each element selected so far and returns
the sum of these values. If any nullable does not have a value, it is
ignored. 

F#

minByNullable Selects a nullable value for each element selected so far and returns
the minimum of these values. If any nullable does not have a value, it
is ignored. 

F#

maxByNullable Selects a nullable value for each element selected so far and returns
the maximum of these values. If any nullable does not have a value, it
is ignored. 

F#

averageByNullable Selects a nullable value for each element selected so far and returns
the average of these values. If any nullable does not have a value, it is

query { 
    for student in db.Student do 
    leftOuterJoin selection in db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) into result 
    for selection in result.DefaultIfEmpty() do 
    select (student, selection) 
} 

query { 
    for student in db.Student do 
    sumByNullable student.Age 
} 

query { 
    for student in db.Student do 
    minByNullable student.Age 
} 

query { 
    for student in db.Student do 
    maxByNullable student.Age 
} 



ignored. 

F#

averageBy Selects a value for each element selected so far and returns the
average of these values. 

F#

distinct Selects distinct elements from the elements selected so far. 

F#

exists Determines whether any element selected so far satisfies a condition. 

F#

query { 
    for student in db.Student do 
    averageByNullable (Nullable.float student.Age) 
} 

query { 
    for student in db.Student do 
    averageBy (float student.StudentID) 
} 

query { 
    for student in db.Student do 
    join selection in db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) 
    distinct 
} 

query { 
    for student in db.Student do 
    where 
        (query { 
            for courseSelection in 
db.CourseSelection do 
            exists (courseSelection.StudentID = 
student.StudentID) }) 
    select student 
} 



find Selects the first element selected so far that satisfies a specified
condition. 

F#

all Determines whether all elements selected so far satisfy a condition. 

F#

head Selects the first element from those selected so far. 

F#

nth Selects the element at a specified index amongst those selected so
far. 

F#

skip Bypasses a specified number of the elements selected so far and
then selects the remaining elements. 

F#

query { 
    for student in db.Student do 
    find (student.Name = "Abercrombie, Kim") 
} 

query { 
    for student in db.Student do 
    all (SqlMethods.Like(student.Name, "%,%")) 
} 

query { 
    for student in db.Student do 
    head 
} 

query { 
    for numbers in data do 
    nth 3 
} 



skipWhile Bypasses elements in a sequence as long as a specified condition is
true and then selects the remaining elements. 

F#

sumBy Selects a value for each element selected so far and returns the sum
of these values. 

F#

take Selects a specified number of contiguous elements from those
selected so far. 

F#

takeWhile Selects elements from a sequence as long as a specified condition is
true, and then skips the remaining elements. 

F#

query { 
    for student in db.Student do 
    skip 1 
} 

query { 
    for number in data do 
    skipWhile (number < 3) 
    select student 
} 

query { 
    for student in db.Student do 
    sumBy student.StudentID 
} 

query { 
    for student in db.Student do 
    select student 
    take 2 
} 

query { 
    for number in data do 



sortByNullable Sorts the elements selected so far in ascending order by the given
nullable sorting key. 

F#

sortByNullableDescending Sorts the elements selected so far in descending order by the given
nullable sorting key. 

F#

thenByNullable Performs a subsequent ordering of the elements selected so far in
ascending order by the given nullable sorting key. This operator may
only be used immediately after a sortBy , sortByDescending , thenBy ,
or thenByDescending , or their nullable variants. 

F#

thenByNullableDescending Performs a subsequent ordering of the elements selected so far in
descending order by the given nullable sorting key. This operator
may only be used immediately after a sortBy , sortByDescending ,
thenBy , or thenByDescending , or their nullable variants. 

    takeWhile (number < 10) 
} 

query { 
    for student in db.Student do 
    sortByNullable student.Age 
    select student 
} 

query { 
    for student in db.Student do 
    sortByNullableDescending student.Age 
    select student 
} 

query { 
    for student in db.Student do 
    sortBy student.Name 
    thenByNullable student.Age 
    select student 
} 



F#

The following table shows some common Transact-SQL queries and their equivalents in
F#. The code in this table also assumes the same database as the previous table and the
same initial code to set up the type provider.

Transact-SQL (not case sensitive) F# Query Expression (case sensitive)

Select all fields from table. 

SQL
F#

Count records in a table. 

SQL
F#

EXISTS   

SQL
F#

query { 
    for student in db.Student do 
    sortBy student.Name 
    thenByNullableDescending student.Age 
    select student 
} 

Comparison of Transact-SQL and F# Query
Expressions

Table 2. Transact-SQL and F# Query Expressions

SELECT * FROM Student 
// All students. 
query { 
    for student in db.Student do 
    select student 
} 

SELECT COUNT( * ) FROM 
Student 

// Count of students. 
query { 
    for student in db.Student do 
    count 
} 

SELECT * FROM Student 
WHERE EXISTS 
  (SELECT * FROM 

// Find students who have signed up 
at least one course. 
query { 
    for student in db.Student do 



Grouping 

SQL
F#

Grouping with condition. 

SQL
F#

Grouping with count condition. 

SQL
F#

CourseSelection 
   WHERE 
CourseSelection.StudentID = 
Student.StudentID) 

    where 
        (query { 
            for courseSelection in 
db.CourseSelection do 
            exists 
(courseSelection.StudentID = 
student.StudentID) }) 
    select student 
} 

SELECT Student.Age, COUNT( * 
) FROM Student 
GROUP BY Student.Age 

// Group by age and count. 
query { 
    for n in db.Student do 
    groupBy n.Age into g 
    select (g.Key, g.Count()) 
} 
// OR 
query { 
    for n in db.Student do 
    groupValBy n.Age n.Age into g
    select (g.Key, g.Count()) 
} 

SELECT Student.Age, COUNT( * 
) 
FROM Student 
GROUP BY Student.Age 
HAVING student.Age > 10 

// Group students by age where age > 
10. 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    where (g.Key.HasValue && 
g.Key.Value > 10) 
    select (g.Key, g.Count()) 
} 

SELECT Student.Age, COUNT( * 
) 
FROM Student 
GROUP BY Student.Age 
HAVING COUNT( * ) > 1 

// Group students by age and count 
number of students 
// at each age with more than 1 
student. 
query { 
    for student in db.Student do 
    groupBy student.Age into group 
    where (group.Count() > 1) 



Grouping, counting, and summing. 

SQL
F#

Grouping, counting, and ordering by
count. 

SQL

F#

IN  a set of specified values 

SQL
F#

    select (group.Key, group.Count()) 
} 

SELECT Student.Age, COUNT( * 
), SUM(Student.Age) as total 
FROM Student 
GROUP BY Student.Age 

// Group students by age and sum 
ages. 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    let total = 
        query { 
            for student in g do 
            sumByNullable student.Age 
        } 
    select (g.Key, g.Count(), total) 
} 

SELECT Student.Age, COUNT( * 
) as myCount 
FROM Student 
GROUP BY Student.Age 
HAVING COUNT( * ) > 1 
ORDER BY COUNT( * ) DESC 

// Group students by age, count 
number of students 
// at each age, and display all with 
count > 1 
// in descending order of count. 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    where (g.Count() > 1) 
    sortByDescending (g.Count()) 
    select (g.Key, g.Count()) 
} 

SELECT * 
FROM Student 
WHERE Student.StudentID IN 
(1, 2, 5, 10)

// Select students where studentID is 
one of a given list. 
let idQuery = 
    query { 
        for id in [1; 2; 5; 10] do 
        select id 
    } 
query { 
    for student in db.Student do 
    where 
(idQuery.Contains(student.StudentID)) 
    select student 
} 



LIKE  and TOP . 

SQL
F#

LIKE  with pattern match set. 

SQL
F#

LIKE  with set exclusion pattern. 

SQL
F#

LIKE  on one field, but select a different
field. 

SQL

F#

-- '_e%' matches strings 
where the second character is 
'e' 
SELECT TOP 2 * FROM Student 
WHERE Student.Name LIKE '_e%' 

// Look for students with Name match 
_e% pattern and take first two. 
query { 
    for student in db.Student do 
    where (SqlMethods.Like( 
student.Name, "_e%") ) 
    select student 
    take 2 
} 

-- '[abc]%' matches strings 
where the first character is 
-- 'a', 'b', 'c', 'A', 'B', 
or 'C' 
SELECT * FROM Student 
WHERE Student.Name LIKE 
'[abc]%' 

query { 
    for student in db.Student do 
    where (SqlMethods.Like( 
student.Name, "[abc]%") ) 
    select student 
} 

-- '[^abc]%' matches strings 
where the first character is 
-- not 'a', 'b', 'c', 'A', 
'B', or 'C' 
SELECT * FROM Student 
WHERE Student.Name LIKE 
'[^abc]%' 

// Look for students with name 
matching [^abc]%% pattern. 
query { 
    for student in db.Student do 
    where (SqlMethods.Like( 
student.Name, "[^abc]%") ) 
    select student 
} 

SELECT StudentID AS ID FROM 
Student 
WHERE Student.Name LIKE 
'[^abc]%' 

query { 
    for n in db.Student do 
    where (SqlMethods.Like( n.Name, "
[^abc]%") ) 
    select n.StudentID 
} 



LIKE , with substring search. 

SQL

F#

Simple JOIN  with two tables. 

SQL
F#

LEFT JOIN  with two tables. 

SQL
F#

JOIN  with COUNT  

SQL
F#

SELECT * FROM Student 
WHERE Student.Name like '%A%' 

// Using Contains as a query filter. 
query { 
    for student in db.Student do 
    where 
(student.Name.Contains("a")) 
    select student 
} 

SELECT * FROM Student 
JOIN CourseSelection 
ON Student.StudentID = 
CourseSelection.StudentID 

// Join Student and CourseSelection 
tables. 
query { 
    for student in db.Student do 
    join selection in 
db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) 
    select (student, selection) 
} 

SELECT * FROM Student 
LEFT JOIN CourseSelection 
ON Student.StudentID = 
CourseSelection.StudentID 

//Left Join Student and 
CourseSelection tables. 
query { 
    for student in db.Student do 
    leftOuterJoin selection in 
db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) into result 
    for selection in 
result.DefaultIfEmpty() do 
    select (student, selection) 
} 

SELECT COUNT( * ) FROM 
Student 
JOIN CourseSelection 
ON Student.StudentID = 
CourseSelection.StudentID 

// Join with count. 
query { 
    for n in db.Student do 
    join e in db.CourseSelection 
        on (n.StudentID = 
e.StudentID) 
    count 
} 



DISTINCT  

SQL
F#

Distinct count. 

SQL
F#

BETWEEN  

SQL
F#

OR  

SQL
F#

SELECT DISTINCT StudentID 
FROM CourseSelection 

// Join with distinct. 
query { 
    for student in db.Student do 
    join selection in 
db.CourseSelection 
        on (student.StudentID = 
selection.StudentID) 
    distinct 
} 

SELECT DISTINCT 
COUNT(StudentID) FROM 
CourseSelection 

// Join with distinct and count. 
query { 
    for n in db.Student do 
    join e in db.CourseSelection 
        on (n.StudentID = 
e.StudentID) 
    distinct 
    count 
} 

SELECT * FROM Student 
WHERE Student.Age BETWEEN 10 
AND 15 

// Selecting students with ages 
between 10 and 15. 
query { 
    for student in db.Student do 
    where (student.Age ?>= 10 && 
student.Age ?< 15) 
    select student 
} 

SELECT * FROM Student 
WHERE Student.Age = 11 OR 
Student.Age = 12 

// Selecting students with age that's 
either 11 or 12. 
query { 
    for student in db.Student do 
    where (student.Age.Value = 11 || 
student.Age.Value = 12) 
    select student 
} 



OR  with ordering 

SQL
F#

TOP , OR , and ordering. 

SQL
F#

UNION  of two queries. 

SQL
F#

SELECT * FROM Student 
WHERE Student.Age = 12 OR 
Student.Age = 13 
ORDER BY Student.Age DESC 

// Selecting students in a certain 
age range and sorting. 
query { 
    for n in db.Student do 
    where (n.Age.Value = 12 || 
n.Age.Value = 13) 
    sortByNullableDescending n.Age 
    select n 
} 

SELECT TOP 2 student.Name 
FROM Student 
WHERE Student.Age = 11 OR 
Student.Age = 12 
ORDER BY Student.Name DESC 

// Selecting students with certain 
ages, 
// taking account of the possibility 
of nulls. 
query { 
    for student in db.Student do 
    where 
        ((student.Age.HasValue && 
student.Age.Value = 11) || 
         (student.Age.HasValue && 
student.Age.Value = 12)) 
    sortByDescending student.Name
    select student.Name 
    take 2 
} 

SELECT * FROM Student 
UNION 
SELECT * FROM lastStudent 

let query1 = 
    query { 
        for n in db.Student do 
        select (n.Name, n.Age) 
    } 

let query2 = 
    query { 
        for n in db.LastStudent do 
        select (n.Name, n.Age) 
    } 

query2.Union (query1) 



Intersection of two queries. 

SQL
F#

CASE  condition. 

SQL
F#

Multiple cases. 

SQL
F#

SELECT * FROM Student 
INTERSECT 
SELECT * FROM LastStudent 

let query1 = 
    query { 
        for n in db.Student do 
        select (n.Name, n.Age) 
    } 

let query2 = 
    query { 
        for n in db.LastStudent do 
        select (n.Name, n.Age) 
    } 

query1.Intersect(query2) 

SELECT student.StudentID, 
CASE Student.Age 
  WHEN -1 THEN 100 
  ELSE Student.Age 
END, 
Student.Age 
FROM Student 

// Using if statement to alter 
results for special value. 
query { 
    for student in db.Student do 
    select 
        (if student.Age.HasValue && 
student.Age.Value = -1 then 
             (student.StudentID, 
System.Nullable<int>(100), 
student.Age) 
         else (student.StudentID, 
student.Age, student.Age)) 
} 

SELECT Student.StudentID, 
CASE Student.Age 
  WHEN -1 THEN 100 
  WHEN 0 THEN 1000 
  ELSE Student.Age 
END, 
Student.Age 
FROM Student 

// Using if statement to alter 
results for special values. 
query { 
    for student in db.Student do 
    select 
        (if student.Age.HasValue && 
student.Age.Value = -1 then 
             (student.StudentID, 
System.Nullable<int>(100), 
student.Age) 
         elif student.Age.HasValue && 
student.Age.Value = 0 then 
             (student.StudentID, 
System.Nullable<int>(1000), 



Multiple tables. 

SQL
F#

Multiple joins. 

SQL
F#

Multiple left outer joins. 

SQL
F#

student.Age) 
         else (student.StudentID, 
student.Age, student.Age)) 
} 

SELECT * FROM Student, Course 
// Multiple table select. 
query { 
    for student in db.Student do 
    for course in db.Course do 
    select (student, course) 
} 

SELECT Student.Name, 
Course.CourseName 
FROM Student 
JOIN CourseSelection 
ON CourseSelection.StudentID 
= Student.StudentID 
JOIN Course 
ON Course.CourseID = 
CourseSelection.CourseID 

// Multiple joins. 
query { 
    for student in db.Student do 
    join courseSelection in 
db.CourseSelection 
        on (student.StudentID = 
courseSelection.StudentID) 
    join course in db.Course 
        on (courseSelection.CourseID 
= course.CourseID) 
    select (student.Name, 
course.CourseName) 
} 

SELECT Student.Name, 
Course.CourseName 
FROM Student 
LEFT OUTER JOIN 
CourseSelection 
ON CourseSelection.StudentID 
= Student.StudentID 
LEFT OUTER JOIN Course 
ON Course.CourseID = 
CourseSelection.CourseID 

// Using leftOuterJoin with multiple 
joins. 
query { 
    for student in db.Student do 
    leftOuterJoin courseSelection in 
db.CourseSelection 
        on (student.StudentID = 
courseSelection.StudentID) into g1 
    for courseSelection in 
g1.DefaultIfEmpty() do 
    leftOuterJoin course in db.Course 
        on (courseSelection.CourseID 
= course.CourseID) into g2 
    for course in g2.DefaultIfEmpty() 
do 
    select (student.Name, 



The following code can be used to create the sample database for these examples.

SQL

course.CourseName) 
} 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 

USE [master]; 
GO 

IF EXISTS (SELECT * FROM sys.databases WHERE name = 'MyDatabase') 
DROP DATABASE MyDatabase; 
GO 

-- Create the MyDatabase database. 
CREATE DATABASE MyDatabase COLLATE SQL_Latin1_General_CP1_CI_AS; 
GO 

-- Specify a simple recovery model 
-- to keep the log growth to a minimum. 
ALTER DATABASE MyDatabase 
SET RECOVERY SIMPLE; 
GO 

USE MyDatabase; 
GO 

CREATE TABLE [dbo].[Course] ( 
[CourseID]   INT           NOT NULL, 
[CourseName] NVARCHAR (50) NOT NULL, 
PRIMARY KEY CLUSTERED ([CourseID] ASC) 
); 

CREATE TABLE [dbo].[Student] ( 
[StudentID] INT           NOT NULL, 
[Name]      NVARCHAR (50) NOT NULL, 
[Age]       INT           NULL, 
PRIMARY KEY CLUSTERED ([StudentID] ASC) 
); 

CREATE TABLE [dbo].[CourseSelection] ( 
[ID]        INT NOT NULL, 
[StudentID] INT NOT NULL, 
[CourseID]  INT NOT NULL, 
PRIMARY KEY CLUSTERED ([ID] ASC), 
CONSTRAINT [FK_CourseSelection_ToTable] FOREIGN KEY ([StudentID]) REFERENCES 
[dbo].[Student] ([StudentID]) ON DELETE NO ACTION ON UPDATE NO ACTION, 
CONSTRAINT [FK_CourseSelection_Course_1] FOREIGN KEY ([CourseID]) REFERENCES 



[dbo].[Course] ([CourseID]) ON DELETE NO ACTION ON UPDATE NO ACTION 
); 

CREATE TABLE [dbo].[LastStudent] ( 
[StudentID] INT           NOT NULL, 
[Name]      NVARCHAR (50) NOT NULL, 
[Age]       INT           NULL, 
PRIMARY KEY CLUSTERED ([StudentID] ASC) 
); 

-- Insert data into the tables. 
USE MyDatabase 
INSERT INTO Course (CourseID, CourseName) 
VALUES(1, 'Algebra I'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(2, 'Trigonometry'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(3, 'Algebra II'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(4, 'History'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(5, 'English'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(6, 'French'); 
INSERT INTO Course (CourseID, CourseName) 
VALUES(7, 'Chinese'); 

INSERT INTO Student (StudentID, Name, Age) 
VALUES(1, 'Abercrombie, Kim', 10); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(2, 'Abolrous, Hazen', 14); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(3, 'Hance, Jim', 12); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(4, 'Adams, Terry', 12); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(5, 'Hansen, Claus', 11); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(6, 'Penor, Lori', 13); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(7, 'Perham, Tom', 12); 
INSERT INTO Student (StudentID, Name, Age) 
VALUES(8, 'Peng, Yun-Feng', NULL); 

INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(1, 1, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(2, 1, 3); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(3, 1, 5); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(4, 2, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(5, 2, 5); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 



The following code contains the sample code that appears in this topic.

F#

VALUES(6, 2, 6); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(7, 2, 3); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(8, 3, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(9, 3, 1); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(10, 4, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(11, 4, 5); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(12, 4, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(13, 5, 3); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(14, 5, 2); 
INSERT INTO CourseSelection (ID, StudentID, CourseID) 
VALUES(15, 7, 3); 

#if INTERACTIVE 
#r "FSharp.Data.TypeProviders.dll" 
#r "System.Data.dll" 
#r "System.Data.Linq.dll" 
#endif 
open System 
open Microsoft.FSharp.Data.TypeProviders 
open System.Data.Linq.SqlClient 
open System.Linq 

type schema = SqlDataConnection<"Data Source=SERVER\INSTANCE;Initial 
Catalog=MyDatabase;Integrated Security=SSPI;"> 

let db = schema.GetDataContext() 

let data = [1; 5; 7; 11; 18; 21] 

type Nullable<'T when 'T : ( new : unit -> 'T) and 'T : struct and 'T :> 
ValueType > with 
    member this.Print() = 
        if this.HasValue then this.Value.ToString() 
        else "NULL" 

printfn "\ncontains query operator" 
query { 
    for student in db.Student do 
    select student.Age.Value 
    contains 11 
} 



|> printfn "Is at least one student age 11? %b" 

printfn "\ncount query operator" 
query { 
    for student in db.Student do 
    select student 
    count 
} 
|> printfn "Number of students: %d" 

printfn "\nlast query operator." 
let num = 
    query { 
        for number in data do 
        sortBy number 
        last 
    } 
printfn "Last number: %d" num 

open Microsoft.FSharp.Linq 

printfn "\nlastOrDefault query operator." 
query { 
    for number in data do 
    sortBy number 
    lastOrDefault 
} 
|> printfn "lastOrDefault: %d" 

printfn "\nexactlyOne query operator." 
let student2 = 
    query { 
        for student in db.Student do 
        where (student.StudentID = 1) 
        select student 
        exactlyOne 
    } 
printfn "Student with StudentID = 1 is %s" student2.Name 

printfn "\nexactlyOneOrDefault query operator." 
let student3 = 
    query { 
        for student in db.Student do 
        where (student.StudentID = 1) 
        select student 
        exactlyOneOrDefault 
    } 
printfn "Student with StudentID = 1 is %s" student3.Name 

printfn "\nheadOrDefault query operator." 
let student4 = 
    query { 
        for student in db.Student do 
        select student 
        headOrDefault 



    } 
printfn "head student is %s" student4.Name 

printfn "\nselect query operator." 
query { 
    for student in db.Student do 
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.StudentID student.Name) 

printfn "\nwhere query operator."
query { 
    for student in db.Student do 
    where (student.StudentID > 4) 
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.StudentID student.Name) 

printfn "\nminBy query operator."
let student5 = 
    query { 
        for student in db.Student do 
        minBy student.StudentID 
    } 

printfn "\nmaxBy query operator."
let student6 = 
    query { 
        for student in db.Student do 
        maxBy student.StudentID 
    } 

printfn "\ngroupBy query operator." 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    select (g.Key, g.Count()) 
} 
|> Seq.iter (fun (age, count) -> printfn "Age: %s Count at that age: %d" 
(age.Print()) count) 

printfn "\nsortBy query operator." 
query { 
    for student in db.Student do 
    sortBy student.Name 
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.StudentID student.Name) 

printfn "\nsortByDescending query operator." 
query { 
    for student in db.Student do 



    sortByDescending student.Name
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.StudentID student.Name) 

printfn "\nthenBy query operator." 
query { 
    for student in db.Student do 
    where student.Age.HasValue 
    sortBy student.Age.Value 
    thenBy student.Name 
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.Age.Value student.Name) 

printfn "\nthenByDescending query operator." 
query { 
    for student in db.Student do 
    where student.Age.HasValue 
    sortBy student.Age.Value 
    thenByDescending student.Name
    select student 
} 
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" 
student.Age.Value student.Name) 

printfn "\ngroupValBy query operator." 
query { 
    for student in db.Student do 
    groupValBy student.Name student.Age into g 
    select (g, g.Key, g.Count()) 
} 
|> Seq.iter (fun (group, age, count) -> 
    printfn "Age: %s Count at that age: %d" (age.Print()) count 
    group |> Seq.iter (fun name -> printfn "Name: %s" name)) 

printfn "\n sumByNullable query operator" 
query { 
    for student in db.Student do 
    sumByNullable student.Age 
} 
|> (fun sum -> printfn "Sum of ages: %s" (sum.Print())) 

printfn "\n minByNullable" 
query { 
    for student in db.Student do 
    minByNullable student.Age 
} 
|> (fun age -> printfn "Minimum age: %s" (age.Print())) 

printfn "\n maxByNullable" 
query { 
    for student in db.Student do 



    maxByNullable student.Age 
} 
|> (fun age -> printfn "Maximum age: %s" (age.Print())) 

printfn "\n averageBy" 
query { 
    for student in db.Student do 
    averageBy (float student.StudentID) 
} 
|> printfn "Average student ID: %f" 

printfn "\n averageByNullable" 
query { 
    for student in db.Student do 
    averageByNullable (Nullable.float student.Age) 
} 
|> (fun avg -> printfn "Average age: %s" (avg.Print())) 

printfn "\n find query operator" 
query { 
    for student in db.Student do 
    find (student.Name = "Abercrombie, Kim") 
} 
|> (fun student -> printfn "Found a match with StudentID = %d" 
student.StudentID) 

printfn "\n all query operator" 
query { 
    for student in db.Student do 
    all (SqlMethods.Like(student.Name, "%,%")) 
} 
|> printfn "Do all students have a comma in the name? %b" 

printfn "\n head query operator" 
query { 
    for student in db.Student do 
    head 
} 
|> (fun student -> printfn "Found the head student with StudentID = %d" 
student.StudentID) 

printfn "\n nth query operator" 
query { 
    for numbers in data do 
    nth 3 
} 
|> printfn "Third number is %d" 

printfn "\n skip query operator" 
query { 
    for student in db.Student do 
    skip 1 
} 
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID) 



printfn "\n skipWhile query operator" 
query { 
    for number in data do 
    skipWhile (number < 3) 
    select number 
} 
|> Seq.iter (fun number -> printfn "Number = %d" number) 

printfn "\n sumBy query operator"
query { 
    for student in db.Student do 
    sumBy student.StudentID 
} 
|> printfn "Sum of student IDs: %d" 

printfn "\n take query operator" 
query { 
    for student in db.Student do 
    select student 
    take 2 
} 
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID) 

printfn "\n takeWhile query operator" 
query { 
    for number in data do 
    takeWhile (number < 10) 
} 
|> Seq.iter (fun number -> printfn "Number = %d" number) 

printfn "\n sortByNullable query operator" 
query { 
    for student in db.Student do 
    sortByNullable student.Age 
    select student 
} 
|> Seq.iter (fun student -> 
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name 
(student.Age.Print())) 

printfn "\n sortByNullableDescending query operator" 
query { 
    for student in db.Student do 
    sortByNullableDescending student.Age 
    select student 
} 
|> Seq.iter (fun student -> 
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name 
(student.Age.Print())) 

printfn "\n thenByNullable query operator" 
query { 
    for student in db.Student do 
    sortBy student.Name 
    thenByNullable student.Age 



    select student 
} 
|> Seq.iter (fun student -> 
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name 
(student.Age.Print())) 

printfn "\n thenByNullableDescending query operator" 
query { 
    for student in db.Student do 
    sortBy student.Name 
    thenByNullableDescending student.Age 
    select student 
} 
|> Seq.iter (fun student -> 
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name 
(student.Age.Print())) 

printfn "All students: " 
query { 
    for student in db.Student do 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s %d %s" student.Name 
student.StudentID (student.Age.Print())) 

printfn "\nCount of students: " 
query { 
    for student in db.Student do 
    count 
} 
|> (fun count -> printfn "Student count: %d" count) 

printfn "\nExists." 
query { 
    for student in db.Student do 
    where 
        (query { 
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) }) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%A" student.Name) 

printfn "\n Group by age and count" 
query { 
    for n in db.Student do 
    groupBy n.Age into g 
    select (g.Key, g.Count()) 
} 
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count) 

printfn "\n Group value by age." 
query { 
    for n in db.Student do 
    groupValBy n.Age n.Age into g



    select (g.Key, g.Count()) 
} 
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count) 

printfn "\nGroup students by age where age > 10." 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    where (g.Key.HasValue && g.Key.Value > 10) 
    select (g, g.Key) 
} 
|> Seq.iter (fun (students, age) -> 
    printfn "Age: %s" (age.Value.ToString()) 
    students 
    |> Seq.iter (fun student -> printfn "%s" student.Name)) 

printfn "\nGroup students by age and print counts of number of students at 
each age with more than 1 student." 
query { 
    for student in db.Student do 
    groupBy student.Age into group 
    where (group.Count() > 1) 
    select (group.Key, group.Count()) 
} 
|> Seq.iter (fun (age, ageCount) -> 
    printfn "Age: %s Count: %d" (age.Print()) ageCount) 

printfn "\nGroup students by age and sum ages." 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    let total = query { for student in g do sumByNullable student.Age } 
    select (g.Key, g.Count(), total) 
} 
|> Seq.iter (fun (age, count, total) -> 
    printfn "Age: %d" (age.GetValueOrDefault()) 
    printfn "Count: %d" count 
    printfn "Total years: %s" (total.ToString())) 

printfn "\nGroup students by age and count number of students at each age, 
and display all with count > 1 in descending order of count." 
query { 
    for student in db.Student do 
    groupBy student.Age into g 
    where (g.Count() > 1) 
    sortByDescending (g.Count()) 
    select (g.Key, g.Count()) 
} 
|> Seq.iter (fun (age, myCount) -> 
    printfn "Age: %s" (age.Print()) 
    printfn "Count: %d" myCount) 

printfn "\n Select students from a set of IDs" 
let idList = [1; 2; 5; 10] 
let idQuery = 



    query { for id in idList do select id } 
query { 
    for student in db.Student do 
    where (idQuery.Contains(student.StudentID)) 
    select student 
} 
|> Seq.iter (fun student -> 
    printfn "Name: %s" student.Name) 

printfn "\nLook for students with Name match _e%% pattern and take first 
two." 
query { 
    for student in db.Student do 
    where (SqlMethods.Like( student.Name, "_e%") ) 
    select student 
    take 2 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\nLook for students with Name matching [abc]%% pattern." 
query { 
    for student in db.Student do 
    where (SqlMethods.Like( student.Name, "[abc]%") ) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\nLook for students with name matching [^abc]%% pattern." 
query { 
    for student in db.Student do 
    where (SqlMethods.Like( student.Name, "[^abc]%") ) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\nLook for students with name matching [^abc]%% pattern and select 
ID." 
query { 
    for n in db.Student do 
    where (SqlMethods.Like( n.Name, "[^abc]%") ) 
    select n.StudentID 
} 
|> Seq.iter (fun id -> printfn "%d" id) 

printfn "\n Using Contains as a query filter." 
query { 
    for student in db.Student do 
    where (student.Name.Contains("a")) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\nSearching for names from a list." 
let names = [|"a";"b";"c"|] 
query { 



    for student in db.Student do 
    if names.Contains (student.Name) then select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\nJoin Student and CourseSelection tables." 
query { 
    for student in db.Student do 
    join selection in db.CourseSelection 
        on (student.StudentID = selection.StudentID) 
    select (student, selection) 
} 
|> Seq.iter (fun (student, selection) -> printfn "%d %s %d" 
student.StudentID student.Name selection.CourseID) 

printfn "\nLeft Join Student and CourseSelection tables." 
query { 
    for student in db.Student do 
    leftOuterJoin selection in db.CourseSelection 
        on (student.StudentID = selection.StudentID) into result 
    for selection in result.DefaultIfEmpty() do 
    select (student, selection) 
} 
|> Seq.iter (fun (student, selection) -> 
    let selectionID, studentID, courseID = 
        match selection with 
        | null -> "NULL", "NULL", "NULL" 
        | sel -> (sel.ID.ToString(), sel.StudentID.ToString(), 
sel.CourseID.ToString()) 
    printfn "%d %s %d %s %s %s" student.StudentID student.Name 
(student.Age.GetValueOrDefault()) selectionID studentID courseID) 

printfn "\nJoin with count" 
query { 
    for n in db.Student do 
    join e in db.CourseSelection 
        on (n.StudentID = e.StudentID) 
    count 
} 
|> printfn "%d" 

printfn "\n Join with distinct." 
query { 
    for student in db.Student do 
    join selection in db.CourseSelection 
        on (student.StudentID = selection.StudentID) 
    distinct 
} 
|> Seq.iter (fun (student, selection) -> printfn "%s %d" student.Name 
selection.CourseID) 

printfn "\n Join with distinct and count." 
query { 
    for n in db.Student do 
    join e in db.CourseSelection 



        on (n.StudentID = e.StudentID) 
    distinct 
    count 
} 
|> printfn "%d" 

printfn "\n Selecting students with age between 10 and 15." 
query { 
    for student in db.Student do 
    where (student.Age.Value >= 10 && student.Age.Value < 15) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\n Selecting students with age either 11 or 12." 
query { 
    for student in db.Student do 
    where (student.Age.Value = 11 || student.Age.Value = 12) 
    select student 
} 
|> Seq.iter (fun student -> printfn "%s" student.Name) 

printfn "\n Selecting students in a certain age range and sorting." 
query { 
    for n in db.Student do 
    where (n.Age.Value = 12 || n.Age.Value = 13) 
    sortByNullableDescending n.Age 
    select n 
} 
|> Seq.iter (fun student -> printfn "%s %s" student.Name 
(student.Age.Print())) 

printfn "\n Selecting students with certain ages, taking account of 
possibility of nulls." 
query { 
    for student in db.Student do 
    where 
        ((student.Age.HasValue && student.Age.Value = 11) || 
         (student.Age.HasValue && student.Age.Value = 12)) 
    sortByDescending student.Name
    select student.Name 
    take 2 
} 
|> Seq.iter (fun name -> printfn "%s" name) 

printfn "\n Union of two queries." 
module Queries = 
    let query1 = query { 
        for n in db.Student do 
        select (n.Name, n.Age) 
    } 

    let query2 = query { 
        for n in db.LastStudent do 
        select (n.Name, n.Age) 



    } 

    query2.Union (query1) 
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print())) 

printfn "\n Intersect of two queries." 
module Queries2 = 
    let query1 = query { 
        for n in db.Student do 
        select (n.Name, n.Age) 
    } 

    let query2 = query { 
        for n in db.LastStudent do 
        select (n.Name, n.Age) 
    } 

    query1.Intersect(query2) 
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print())) 

printfn "\n Using if statement to alter results for special value." 
query { 
    for student in db.Student do 
    select 
        (if student.Age.HasValue && student.Age.Value = -1 then 
            (student.StudentID, System.Nullable<int>(100), student.Age) 
         else (student.StudentID, student.Age, student.Age)) 
} 
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) 
(age.Print())) 

printfn "\n Using if statement to alter results special values." 
query { 
    for student in db.Student do 
    select 
        (if student.Age.HasValue && student.Age.Value = -1 then 
            (student.StudentID, System.Nullable<int>(100), student.Age) 
         elif student.Age.HasValue && student.Age.Value = 0 then 
            (student.StudentID, System.Nullable<int>(100), student.Age) 
         else (student.StudentID, student.Age, student.Age)) 
} 
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) 
(age.Print())) 

printfn "\n Multiple table select." 
query { 
    for student in db.Student do 
    for course in db.Course do 
    select (student, course) 
} 
|> Seq.iteri (fun index (student, course) -> 
    if index = 0 then 
        printfn "StudentID Name Age CourseID CourseName" 
    printfn "%d %s %s %d %s" student.StudentID student.Name 
(student.Age.Print()) course.CourseID course.CourseName) 



And here is the full output when this code is run in F# Interactive.

Console

printfn "\nMultiple Joins" 
query { 
    for student in db.Student do 
    join courseSelection in db.CourseSelection 
        on (student.StudentID = courseSelection.StudentID) 
    join course in db.Course 
        on (courseSelection.CourseID = course.CourseID) 
    select (student.Name, course.CourseName) 
} 
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName 
courseName) 

printfn "\nMultiple Left Outer Joins" 
query { 
    for student in db.Student do 
    leftOuterJoin courseSelection in db.CourseSelection 
        on (student.StudentID = courseSelection.StudentID) into g1 
    for courseSelection in g1.DefaultIfEmpty() do 
    leftOuterJoin course in db.Course 
        on (courseSelection.CourseID = course.CourseID) into g2 
    for course in g2.DefaultIfEmpty() do 
    select (student.Name, course.CourseName) 
} 
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName 
courseName) 

--> Referenced 'C:\Program Files (x86)\Reference 
Assemblies\Microsoft\FSharp\3.0\Runtime\v4.0\Type 
Providers\FSharp.Data.TypeProviders.dll' 

--> Referenced 
'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.dll' 

--> Referenced 
'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.Linq.dll' 

contains query operator 
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp5E3C.dll'... 
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp611A.dll'... 
Is at least one student age 11? true 

count query operator 
Number of students: 8 

last query operator. 
Last number: 21 

lastOrDefault query operator. 



lastOrDefault: 21 

exactlyOne query operator. 
Student with StudentID = 1 is Abercrombie, Kim 

exactlyOneOrDefault query operator. 
Student with StudentID = 1 is Abercrombie, Kim 

headOrDefault query operator. 
head student is Abercrombie, Kim 

select query operator. 
StudentID, Name: 1 Abercrombie, Kim 
StudentID, Name: 2 Abolrous, Hazen 
StudentID, Name: 3 Hance, Jim 
StudentID, Name: 4 Adams, Terry 
StudentID, Name: 5 Hansen, Claus 
StudentID, Name: 6 Penor, Lori 
StudentID, Name: 7 Perham, Tom 
StudentID, Name: 8 Peng, Yun-Feng

where query operator. 
StudentID, Name: 5 Hansen, Claus 
StudentID, Name: 6 Penor, Lori 
StudentID, Name: 7 Perham, Tom 
StudentID, Name: 8 Peng, Yun-Feng

minBy query operator. 

maxBy query operator. 

groupBy query operator. 
Age: NULL Count at that age: 1 
Age: 10 Count at that age: 1 
Age: 11 Count at that age: 1 
Age: 12 Count at that age: 3 
Age: 13 Count at that age: 1 
Age: 14 Count at that age: 1 

sortBy query operator. 
StudentID, Name: 1 Abercrombie, Kim 
StudentID, Name: 2 Abolrous, Hazen 
StudentID, Name: 4 Adams, Terry 
StudentID, Name: 3 Hance, Jim 
StudentID, Name: 5 Hansen, Claus 
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 6 Penor, Lori 
StudentID, Name: 7 Perham, Tom 

sortByDescending query operator. 
StudentID, Name: 7 Perham, Tom 
StudentID, Name: 6 Penor, Lori 
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 5 Hansen, Claus 
StudentID, Name: 3 Hance, Jim 



StudentID, Name: 4 Adams, Terry 
StudentID, Name: 2 Abolrous, Hazen 
StudentID, Name: 1 Abercrombie, Kim 

thenBy query operator. 
StudentID, Name: 10 Abercrombie, Kim 
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Adams, Terry 
StudentID, Name: 12 Hance, Jim 
StudentID, Name: 12 Perham, Tom 
StudentID, Name: 13 Penor, Lori 
StudentID, Name: 14 Abolrous, Hazen 

thenByDescending query operator. 
StudentID, Name: 10 Abercrombie, Kim 
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Perham, Tom 
StudentID, Name: 12 Hance, Jim 
StudentID, Name: 12 Adams, Terry 
StudentID, Name: 13 Penor, Lori 
StudentID, Name: 14 Abolrous, Hazen 

groupValBy query operator. 
Age: NULL Count at that age: 1 
Name: Peng, Yun-Feng 
Age: 10 Count at that age: 1 
Name: Abercrombie, Kim 
Age: 11 Count at that age: 1 
Name: Hansen, Claus 
Age: 12 Count at that age: 3 
Name: Hance, Jim 
Name: Adams, Terry 
Name: Perham, Tom 
Age: 13 Count at that age: 1 
Name: Penor, Lori 
Age: 14 Count at that age: 1 
Name: Abolrous, Hazen 

sumByNullable query operator 
Sum of ages: 84 

minByNullable 
Minimum age: 10 

maxByNullable 
Maximum age: 14 

averageBy 
Average student ID: 4.500000 

averageByNullable 
Average age: 12 

find query operator 
Found a match with StudentID = 1 



all query operator 
Do all students have a comma in the name? true 

head query operator 
Found the head student with StudentID = 1 

nth query operator 
Third number is 11 

skip query operator 
StudentID = 2 
StudentID = 3 
StudentID = 4 
StudentID = 5 
StudentID = 6 
StudentID = 7 
StudentID = 8 

skipWhile query operator 
Number = 5 
Number = 7 
Number = 11 
Number = 18 
Number = 21 

sumBy query operator 
Sum of student IDs: 36 

take query operator 
StudentID = 1 
StudentID = 2 

takeWhile query operator 
Number = 1 
Number = 5 
Number = 7 

sortByNullable query operator 
StudentID, Name, Age: 8 Peng, Yun-Feng NULL 
StudentID, Name, Age: 1 Abercrombie, Kim 10 
StudentID, Name, Age: 5 Hansen, Claus 11 
StudentID, Name, Age: 7 Perham, Tom 12 
StudentID, Name, Age: 3 Hance, Jim 12 
StudentID, Name, Age: 4 Adams, Terry 12 
StudentID, Name, Age: 6 Penor, Lori 13 
StudentID, Name, Age: 2 Abolrous, Hazen 14 

sortByNullableDescending query operator 
StudentID, Name, Age: 2 Abolrous, Hazen 14 
StudentID, Name, Age: 6 Penor, Lori 13 
StudentID, Name, Age: 7 Perham, Tom 12 
StudentID, Name, Age: 3 Hance, Jim 12 
StudentID, Name, Age: 4 Adams, Terry 12 
StudentID, Name, Age: 5 Hansen, Claus 11 



StudentID, Name, Age: 1 Abercrombie, Kim 10 
StudentID, Name, Age: 8 Peng, Yun-Feng NULL 

thenByNullable query operator 
StudentID, Name, Age: 1 Abercrombie, Kim 10 
StudentID, Name, Age: 2 Abolrous, Hazen 14 
StudentID, Name, Age: 4 Adams, Terry 12 
StudentID, Name, Age: 3 Hance, Jim 12 
StudentID, Name, Age: 5 Hansen, Claus 11 
StudentID, Name, Age: 8 Peng, Yun-Feng NULL 
StudentID, Name, Age: 6 Penor, Lori 13 
StudentID, Name, Age: 7 Perham, Tom 12 

thenByNullableDescending query operator 
StudentID, Name, Age: 1 Abercrombie, Kim 10 
StudentID, Name, Age: 2 Abolrous, Hazen 14 
StudentID, Name, Age: 4 Adams, Terry 12 
StudentID, Name, Age: 3 Hance, Jim 12 
StudentID, Name, Age: 5 Hansen, Claus 11 
StudentID, Name, Age: 8 Peng, Yun-Feng NULL 
StudentID, Name, Age: 6 Penor, Lori 13 
StudentID, Name, Age: 7 Perham, Tom 12 
All students: 
Abercrombie, Kim 1 10 
Abolrous, Hazen 2 14 
Hance, Jim 3 12 
Adams, Terry 4 12 
Hansen, Claus 5 11 
Penor, Lori 6 13 
Perham, Tom 7 12 
Peng, Yun-Feng 8 NULL 

Count of students: 
Student count: 8 

Exists. 
"Abercrombie, Kim" 
"Abolrous, Hazen" 
"Hance, Jim" 
"Adams, Terry" 
"Hansen, Claus" 
"Perham, Tom" 

Group by age and count 
NULL 1 
10 1 
11 1 
12 3 
13 1 
14 1 

Group value by age. 
NULL 1 
10 1 
11 1 



12 3 
13 1 
14 1 

Group students by age where age > 10. 
Age: 11 
Hansen, Claus 
Age: 12 
Hance, Jim 
Adams, Terry 
Perham, Tom 
Age: 13 
Penor, Lori 
Age: 14 
Abolrous, Hazen 

Group students by age and print counts of number of students at each age 
with more than 1 student. 
Age: 12 Count: 3 

Group students by age and sum ages. 
Age: 0 
Count: 1 
Total years: 
Age: 10 
Count: 1 
Total years: 10 
Age: 11 
Count: 1 
Total years: 11 
Age: 12 
Count: 3 
Total years: 36 
Age: 13 
Count: 1 
Total years: 13 
Age: 14 
Count: 1 
Total years: 14 

Group students by age and count number of students at each age, and display 
all with count > 1 in descending order of count. 
Age: 12 
Count: 3 

Select students from a set of IDs
Name: Abercrombie, Kim 
Name: Abolrous, Hazen 
Name: Hansen, Claus 

Look for students with Name match _e% pattern and take first two. 
Penor, Lori 
Perham, Tom 

Look for students with Name matching [abc]% pattern. 



Abercrombie, Kim 
Abolrous, Hazen 
Adams, Terry 

Look for students with name matching [^abc]% pattern. 
Hance, Jim 
Hansen, Claus 
Penor, Lori 
Perham, Tom 
Peng, Yun-Feng 

Look for students with name matching [^abc]% pattern and select ID. 
3 
5 
6 
7 
8 

Using Contains as a query filter.
Abercrombie, Kim 
Abolrous, Hazen 
Hance, Jim 
Adams, Terry 
Hansen, Claus 
Perham, Tom 

Searching for names from a list. 

Join Student and CourseSelection tables. 
2 Abolrous, Hazen 2 
3 Hance, Jim 3 
5 Hansen, Claus 5 
2 Abolrous, Hazen 2 
5 Hansen, Claus 5 
6 Penor, Lori 6 
3 Hance, Jim 3 
2 Abolrous, Hazen 2 
1 Abercrombie, Kim 1 
2 Abolrous, Hazen 2 
5 Hansen, Claus 5 
2 Abolrous, Hazen 2 
3 Hance, Jim 3 
2 Abolrous, Hazen 2 
3 Hance, Jim 3 

Left Join Student and CourseSelection tables. 
1 Abercrombie, Kim 10 9 3 1 
2 Abolrous, Hazen 14 1 1 2 
2 Abolrous, Hazen 14 4 2 2 
2 Abolrous, Hazen 14 8 3 2 
2 Abolrous, Hazen 14 10 4 2 
2 Abolrous, Hazen 14 12 4 2 
2 Abolrous, Hazen 14 14 5 2 
3 Hance, Jim 12 2 1 3 
3 Hance, Jim 12 7 2 3 



3 Hance, Jim 12 13 5 3 
3 Hance, Jim 12 15 7 3 
4 Adams, Terry 12 NULL NULL NULL 
5 Hansen, Claus 11 3 1 5 
5 Hansen, Claus 11 5 2 5 
5 Hansen, Claus 11 11 4 5 
6 Penor, Lori 13 6 2 6 
7 Perham, Tom 12 NULL NULL NULL 
8 Peng, Yun-Feng 0 NULL NULL NULL

Join with count 
15 

Join with distinct. 
Abercrombie, Kim 2 
Abercrombie, Kim 3 
Abercrombie, Kim 5 
Abolrous, Hazen 2 
Abolrous, Hazen 5 
Abolrous, Hazen 6 
Abolrous, Hazen 3 
Hance, Jim 2 
Hance, Jim 1 
Adams, Terry 2 
Adams, Terry 5 
Adams, Terry 2 
Hansen, Claus 3 
Hansen, Claus 2 
Perham, Tom 3 

Join with distinct and count. 
15 

Selecting students with age between 10 and 15. 
Abercrombie, Kim 
Abolrous, Hazen 
Hance, Jim 
Adams, Terry 
Hansen, Claus 
Penor, Lori 
Perham, Tom 

Selecting students with age either 11 or 12. 
Hance, Jim 
Adams, Terry 
Hansen, Claus 
Perham, Tom 

Selecting students in a certain age range and sorting. 
Penor, Lori 13 
Perham, Tom 12 
Hance, Jim 12 
Adams, Terry 12 

Selecting students with certain ages, taking account of possibility of 



nulls. 
Hance, Jim 
Adams, Terry 

Union of two queries. 
Abercrombie, Kim 10 
Abolrous, Hazen 14 
Hance, Jim 12 
Adams, Terry 12 
Hansen, Claus 11 
Penor, Lori 13 
Perham, Tom 12 
Peng, Yun-Feng NULL 

Intersect of two queries. 

Using if statement to alter results for special value. 
1 10 10 
2 14 14 
3 12 12 
4 12 12 
5 11 11 
6 13 13 
7 12 12 
8 NULL NULL 

Using if statement to alter results special values. 
1 10 10 
2 14 14 
3 12 12 
4 12 12 
5 11 11 
6 13 13 
7 12 12 
8 NULL NULL 

Multiple table select. 
StudentID Name Age CourseID CourseName 
1 Abercrombie, Kim 10 1 Algebra I
2 Abolrous, Hazen 14 1 Algebra I 
3 Hance, Jim 12 1 Algebra I 
4 Adams, Terry 12 1 Algebra I 
5 Hansen, Claus 11 1 Algebra I 
6 Penor, Lori 13 1 Algebra I 
7 Perham, Tom 12 1 Algebra I 
8 Peng, Yun-Feng NULL 1 Algebra I
1 Abercrombie, Kim 10 2 Trigonometry 
2 Abolrous, Hazen 14 2 Trigonometry 
3 Hance, Jim 12 2 Trigonometry 
4 Adams, Terry 12 2 Trigonometry 
5 Hansen, Claus 11 2 Trigonometry
6 Penor, Lori 13 2 Trigonometry 
7 Perham, Tom 12 2 Trigonometry 
8 Peng, Yun-Feng NULL 2 Trigonometry 
1 Abercrombie, Kim 10 3 Algebra II 



2 Abolrous, Hazen 14 3 Algebra II
3 Hance, Jim 12 3 Algebra II 
4 Adams, Terry 12 3 Algebra II 
5 Hansen, Claus 11 3 Algebra II 
6 Penor, Lori 13 3 Algebra II 
7 Perham, Tom 12 3 Algebra II 
8 Peng, Yun-Feng NULL 3 Algebra II 
1 Abercrombie, Kim 10 4 History 
2 Abolrous, Hazen 14 4 History 
3 Hance, Jim 12 4 History 
4 Adams, Terry 12 4 History 
5 Hansen, Claus 11 4 History 
6 Penor, Lori 13 4 History 
7 Perham, Tom 12 4 History 
8 Peng, Yun-Feng NULL 4 History 
1 Abercrombie, Kim 10 5 English 
2 Abolrous, Hazen 14 5 English 
3 Hance, Jim 12 5 English 
4 Adams, Terry 12 5 English 
5 Hansen, Claus 11 5 English 
6 Penor, Lori 13 5 English 
7 Perham, Tom 12 5 English 
8 Peng, Yun-Feng NULL 5 English 
1 Abercrombie, Kim 10 6 French 
2 Abolrous, Hazen 14 6 French 
3 Hance, Jim 12 6 French 
4 Adams, Terry 12 6 French 
5 Hansen, Claus 11 6 French 
6 Penor, Lori 13 6 French 
7 Perham, Tom 12 6 French 
8 Peng, Yun-Feng NULL 6 French 
1 Abercrombie, Kim 10 7 Chinese 
2 Abolrous, Hazen 14 7 Chinese 
3 Hance, Jim 12 7 Chinese 
4 Adams, Terry 12 7 Chinese 
5 Hansen, Claus 11 7 Chinese 
6 Penor, Lori 13 7 Chinese 
7 Perham, Tom 12 7 Chinese 
8 Peng, Yun-Feng NULL 7 Chinese 

Multiple Joins 
Abercrombie, Kim Trigonometry 
Abercrombie, Kim Algebra II 
Abercrombie, Kim English 
Abolrous, Hazen Trigonometry 
Abolrous, Hazen English 
Abolrous, Hazen French 
Abolrous, Hazen Algebra II 
Hance, Jim Trigonometry 
Hance, Jim Algebra I 
Adams, Terry Trigonometry 
Adams, Terry English 
Adams, Terry Trigonometry 
Hansen, Claus Algebra II 
Hansen, Claus Trigonometry 



F# Language Reference
QueryBuilder Class

Perham, Tom Algebra II 

Multiple Left Outer Joins 
Abercrombie, Kim Trigonometry 
Abercrombie, Kim Algebra II 
Abercrombie, Kim English 
Abolrous, Hazen Trigonometry 
Abolrous, Hazen English 
Abolrous, Hazen French 
Abolrous, Hazen Algebra II 
Hance, Jim Trigonometry 
Hance, Jim Algebra I 
Adams, Terry Trigonometry 
Adams, Terry English 
Adams, Terry Trigonometry 
Hansen, Claus Algebra II 
Hansen, Claus Trigonometry 
Penor, Lori 
Perham, Tom Algebra II 
Peng, Yun-Feng 

type schema 
val db : schema.ServiceTypes.SimpleDataContextTypes.MyDatabase1 
val student : System.Data.Linq.Table<schema.ServiceTypes.Student> 
val data : int list = [1; 5; 7; 11; 18; 21] 
type Nullable<'T 
                when 'T : (new : unit ->  'T) and 'T : struct and 
                     'T :> System.ValueType> with 
  member Print : unit -> string 
val num : int = 21 
val student2 : schema.ServiceTypes.Student 
val student3 : schema.ServiceTypes.Student 
val student4 : schema.ServiceTypes.Student 
val student5 : int = 1 
val student6 : int = 8 
val idList : int list = [1; 2; 5; 10] 
val idQuery : seq<int> 
val names : string [] = [|"a"; "b"; "c"|] 
module Queries = begin 
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>> 
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>> 
end 
module Queries2 = begin 
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>> 
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>> 
end 

See also

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-querybuilder.html


Computation Expressions



Null Values
Article • 11/05/2021

This topic describes how the null value is used in F#.

The null value is not normally used in F# for values or variables. However, null appears
as an abnormal value in certain situations. If a type is defined in F#, null is not permitted
as a regular value unless the AllowNullLiteral  attribute is applied to the type. If a type
is defined in some other .NET language, null is a possible value, and when you are
interoperating with such types, your F# code might encounter null values.

For a type defined in F# and used strictly from F#, the only way to create a null value
using the F# library directly is to use Unchecked.defaultof  or Array.zeroCreate .
However, for an F# type that is used from other .NET languages, or if you are using that
type with an API that is not written in F#, such as the .NET Framework, null values can
occur.

You can use the option  type in F# when you might use a reference variable with a
possible null value in another .NET language. Instead of null, with an F# option  type,
you use the option value None  if there is no object. You use the option value Some(obj)
with an object obj  when there is an object. For more information, see Options. Note
that you can still pack a null  value into an Option if, for Some x , x  happens to be null .
Because of this, it is important you use None  when a value is null .

The null  keyword is a valid keyword in F#, and you have to use it when you are working
with .NET Framework APIs or other APIs that are written in another .NET language. The
two situations in which you might need a null value are when you call a .NET API and
pass a null value as an argument, and when you interpret the return value or an output
parameter from a .NET method call.

To pass a null value to a .NET method, just use the null  keyword in the calling code. The
following code example illustrates this.

F#

Null Value

open System 

// Pass a null value to a .NET method. 
let ParseDateTime (str: string) = 
    let (success, res) = DateTime.TryParse(str, null, 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-allownullliteralattribute.html#Value
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators-unchecked.html#defaultof
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html#zeroCreate


To interpret a null value that is obtained from a .NET method, use pattern matching if
you can. The following code example shows how to use pattern matching to interpret
the null value that is returned from ReadLine  when it tries to read past the end of an
input stream.

F#

Null values for F# types can also be generated in other ways, such as when you use
Array.zeroCreate , which calls Unchecked.defaultof . You must be careful with such code
to keep the null values encapsulated. In a library intended only for F#, you do not have
to check for null values in every function. If you are writing a library for interoperation
with other .NET languages, you might have to add checks for null input parameters and
throw an ArgumentNullException , just as you do in C# or Visual Basic code.

You can use the following code to check if an arbitrary value is null.

F#

System.Globalization.DateTimeStyles.AssumeUniversal) 
    if success then 
        Some(res) 
    else 
        None 

// Open a file and create a stream reader. 
let fileStream1 = 
    try 
        System.IO.File.OpenRead("TextFile1.txt") 
    with 
        | :? System.IO.FileNotFoundException -> printfn "Error: 
TextFile1.txt not found."; exit(1) 

let streamReader = new System.IO.StreamReader(fileStream1) 

// ProcessNextLine returns false when there is no more input; 
// it returns true when there is more input. 
let ProcessNextLine nextLine = 
    match nextLine with 
    | null -> false 
    | inputString -> 
        match ParseDateTime inputString with 
        | Some(date) -> printfn "%s" (date.ToLocalTime().ToString()) 
        | None -> printfn "Failed to parse the input." 
        true 

// A null value returned from .NET method ReadLine when there is 
// no more input. 
while ProcessNextLine (streamReader.ReadLine()) do () 



Values
Match Expressions

match box value with 
| null -> printf "The value is null." 
| _ -> printf "The value is not null." 

See also



Nullable value types
Article • 11/05/2021

A nullable value type Nullable<'T>  represents any struct type that could also be null .
This is helpful when interacting with libraries and components that may choose to
represent these kinds of types, like integers, with a null  value for efficiency reasons. The
underlying type that backs this construct is System.Nullable<T>.

F#

Declaring a nullable value type is just like declaring any wrapper-like type in F#:

F#

You can also elide the generic type parameter and allow type inference to resolve it:

F#

To assign to a nullable value type, you'll need to also be explicit. There is no implicit
conversion for F#-defined nullable value types:

F#

Syntax

Nullable<'T> 
Nullable value 

Declare and assign with values

open System 

let x = 12 
let nullableX = Nullable<int> x 

open System 

let x = 12 
let nullableX = Nullable x 

open System 

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1


You cannot directly assign null  to a nullable value type. Use Nullable()  instead:

F#

This is because Nullable<'T>  does not have null  as a proper value.

A key difference between working with members and F# values is that nullable value
types can be implicitly inferred when you're working with members. Consider the
following method that takes a nullable value type as input:

F#

In the previous example, you can pass 12  to the method M . You can also assign 12  to
the auto property NVT . If the input can be constructed as a nullable value type and it
matches the target type, the F# compiler will implicitly convert such calls or
assignments.

Unlike Options, which are a generalized construct for representing a possible value,
nullable value types are not used with pattern matching. Instead, you need to use an if
expression and check the HasValue  property.

To get the underlying value, use the Value  property after a HasValue  check, like so:

let mutable x = Nullable 12 
x <- Nullable 13 

Assign null

let mutable a = Nullable 42 
a <- Nullable() 

Pass and assign to members

type C() = 
    member _.M(x: Nullable<int>) = x.HasValue 
    member val NVT = Nullable 12 with get, set

let c = C() 
c.M(12) 
c.NVT <- 12 

Examine a nullable value type instance



F#

Operations on nullable value types, such as arithmetic or comparison, can require the
use of nullable operators.

You can convert from one nullable value type to another using conversion operators
from the FSharp.Linq  namespace:

F#

You can also use an appropriate non-nullable operator to convert to a primitive type,
risking an exception if it has no value:

F#

You can also use nullable operators as a short-hand for checking HasValue  and Value :

F#

open System 

let a = Nullable 42 

if a.HasValue then 
    printfn $"{a} is {a.Value}" 
else 
    printfn $"{a} has no value." 

Nullable operators

open System 
open FSharp.Linq 

let nullableInt = Nullable 10 
let nullableFloat = Nullable.float nullableInt 

open System 
open FSharp.Linq 

let nullableInt = Nullable 10 
let nullableFloat = Nullable.float nullableInt 

printfn $"value is %f{float nullableFloat}" 

open System 
open FSharp.Linq 



The ?>  comparison checks if the left-hand side is nullable and only succeeds if it has a
value. It is equivalent to the line that follows it.

Structs
F# Options

let nullableInt = Nullable 10 
let nullableFloat = Nullable.float nullableInt 

let isBigger = nullableFloat ?> 1.0 
let isBiggerLongForm = nullableFloat.HasValue && nullableFloat.Value > 1.0 

See also



Delegates (F#)
Article • 08/29/2023

A delegate represents a function call as an object. In F#, you ordinarily should use
function values to represent functions as first-class values; however, delegates are used
in the .NET Framework and so are needed when you interoperate with APIs that expect
them. They may also be used when authoring libraries designed for use from other .NET
Framework languages.

F#

In the previous syntax, type1  represents the argument type or types and type2
represents the return type. The argument types that are represented by type1  are
automatically curried. This suggests that for this type you use a tuple form if the
arguments of the target function are curried, and a parenthesized tuple for arguments
that are already in the tuple form. The automatic currying removes a set of parentheses,
leaving a tuple argument that matches the target method. Refer to the code example for
the syntax you should use in each case.

Delegates can be attached to F# function values, and static or instance methods. F#
function values can be passed directly as arguments to delegate constructors. For a
static method, you construct the delegate by using the name of the class and the
method. For an instance method, you provide the object instance and method in one
argument. In both cases, the member access operator ( . ) is used.

The Invoke  method on the delegate type calls the encapsulated function. Also,
delegates can be passed as function values by referencing the Invoke method name
without the parentheses.

The following code shows the syntax for creating delegates that represent various
methods in a class. Depending on whether the method is a static method or an instance
method, and whether it has arguments in the tuple form or the curried form, the syntax
for declaring and assigning the delegate is a little different.

Syntax

type delegate-typename = delegate of type1 -> type2

Remarks



F#

The following code shows some of the different ways you can work with delegates.

F#

type Test1() =
  static member add(a : int, b : int) =
     a + b
  static member add2 (a : int) (b : int) =
     a + b

  member x.Add(a : int, b : int) =
     a + b
  member x.Add2 (a : int) (b : int) =
     a + b

// Delegate1 works with tuple arguments.
type Delegate1 = delegate of (int * int) -> int
// Delegate2 works with curried arguments.
type Delegate2 = delegate of int * int -> int

let InvokeDelegate1 (dlg: Delegate1) (a: int) (b: int) =
   dlg.Invoke(a, b)
let InvokeDelegate2 (dlg: Delegate2) (a: int) (b: int) =
   dlg.Invoke(a, b)

// For static methods, use the class name, the dot operator, and the
// name of the static method.
let del1 = Delegate1(Test1.add)
let del2 = Delegate2(Test1.add2)

let testObject = Test1()

// For instance methods, use the instance value name, the dot operator, and 
the instance method name.
let del3 = Delegate1(testObject.Add)
let del4 = Delegate2(testObject.Add2)

for (a, b) in [ (100, 200); (10, 20) ] do
  printfn "%d + %d = %d" a b (InvokeDelegate1 del1 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate2 del2 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate1 del3 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate2 del4 a b)

type Delegate1 = delegate of int * char -> string

let replicate n c = String.replicate n (string c)

// An F# function value constructed from an unapplied let-bound function
let function1 = replicate



The output of the previous code example is as follows.

Console

Names can be added to delegate parameters like so:

fs

Delegate parameter names are optional and will be shown in the Invoke  method. They
are not required to match the parameter names in the implementation. They are only
allowed for the curried form but not the tupled form.

fs

// A delegate object constructed from an F# function value
let delObject = Delegate1(function1)

// An F# function value constructed from an unapplied .NET member
let functionValue = delObject.Invoke

List.map (fun c -> functionValue(5,c)) ['a'; 'b'; 'c']
|> List.iter (printfn "%s")

// Or if you want to get back the same curried signature
let replicate' n c =  delObject.Invoke(n,c)

// You can pass a lambda expression as an argument to a function expecting a 
compatible delegate type
// System.Array.ConvertAll takes an array and a converter delegate that 
transforms an element from
// one type to another according to a specified function.
let stringArray = System.Array.ConvertAll([|'a';'b'|], fun c -> replicate' 3 
c)
printfn "%A" stringArray

aaaaa
bbbbb
ccccc
[|"aaa"; "bbb"|]

// http://www.pinvoke.net/default.aspx/user32/WinEventDelegate.html
type WinEventDelegate = delegate of hWinEventHook:nativeint * 
eventType:uint32 * hWnd:nativeint * idObject:int * idChild:int * 
dwEventThread:uint32 * dwmsEventTime:uint32 -> unit

type D1 = delegate of item1: int * item2: string -> unit
let a = D1(fun a b -> printf "%s" b)
a.Invoke(item2 = "a", item1 = 1) // Calling with named arguments



The output of the previous code example is as follows.

Console

F# Language Reference
Parameters and Arguments
Events

type D2 = delegate of int * item2: string -> unit // Omitting one name
let b = D2(fun a b -> printf "%s" b)
b.Invoke(1, item2 = "a")

aa

See also



Enumerations
Article • 07/26/2022

Enumerations, also known as enums, are integral types where labels are assigned to a
subset of the values. You can use them in place of literals to make code more readable
and maintainable.

F#

An enumeration looks much like a discriminated union that has simple values, except
that the values can be specified. The values are typically integers that start at 0 or 1, or
integers that represent bit positions. If an enumeration is intended to represent bit
positions, you should also use the Flags attribute.

The underlying type of the enumeration is determined from the literal that is used, so
that, for example, you can use literals with a suffix, such as 1u , 2u , and so on, for an
unsigned integer (uint32 ) type.

When you refer to the named values, you must use the name of the enumeration type
itself as a qualifier, that is, enum-name.value1 , not just value1 . This behavior differs from
that of discriminated unions. This is because enumerations always have the
RequireQualifiedAccess  attribute.

The following code shows the declaration and use of an enumeration.

F#

Syntax

type enum-name = 
| value1 = integer-literal1 
| value2 = integer-literal2 
... 

Remarks

// Declaration of an enumeration.
type Color = 
   | Red = 0 
   | Green = 1 
   | Blue = 2 

https://learn.microsoft.com/en-us/dotnet/api/system.flagsattribute
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-requirequalifiedaccessattribute.html


You can easily convert enumerations to the underlying type by using the appropriate
operator, as shown in the following code.

F#

Enumerated types can have one of the following underlying types: sbyte , byte , int16 ,
uint16 , int32 , uint32 , int64 , uint64 , and char . Enumeration types are represented in
the .NET Framework as types that are inherited from System.Enum , which in turn is
inherited from System.ValueType . Thus, they are value types that are located on the
stack or inline in the containing object, and any value of the underlying type is a valid
value of the enumeration. This is significant when pattern matching on enumeration
values, because you have to provide a pattern that catches the unnamed values.

The enum  function in the F# library can be used to generate an enumeration value, even
a value other than one of the predefined, named values. You use the enum  function as
follows.

F#

The default enum  function works with type int32 . Therefore, it cannot be used with
enumeration types that have other underlying types. Instead, use the following.

F#

Additionally, cases for enums are always emitted as public . This is so that they align
with C# and the rest of the .NET platform.

// Use of an enumeration. 
let col1 : Color = Color.Red 

// Conversion to an integral type. 
let n = int col1 

let col2 = enum<Color>(3) 

type uColor = 
   | Red = 0u 
   | Green = 1u 
   | Blue = 2u 
let col3 = Microsoft.FSharp.Core.LanguagePrimitives.EnumOfValue<uint32, 
uColor>(2u) 



F# Language Reference
Casting and Conversions

See also



Events
Article • 09/15/2021

Events enable you to associate function calls with user actions and are important in GUI
programming. Events can also be triggered by your applications or by the operating
system.

When you use a GUI library like Windows Forms or Windows Presentation Foundation
(WPF), much of the code in your application runs in response to events that are
predefined by the library. These predefined events are members of GUI classes such as
forms and controls. You can add custom behavior to a preexisting event, such as a
button click, by referencing the specific named event of interest (for example, the Click
event of the Form  class) and invoking the Add  method, as shown in the following code.
If you run this from F# Interactive, omit the call to
System.Windows.Forms.Application.Run(System.Windows.Forms.Form) .

F#

The type of the Add  method is ('a -> unit) -> unit . Therefore, the event handler
method takes one parameter, typically the event arguments, and returns unit . The
previous example shows the event handler as a lambda expression. The event handler
can also be a function value, as in the following code example. The following code
example also shows the use of the event handler parameters, which provide information
specific to the type of event. For a MouseMove  event, the system passes a
System.Windows.Forms.MouseEventArgs  object, which contains the X  and Y  position of
the pointer.

F#

Handling Events

open System.Windows.Forms 

let form = new Form(Text="F# Windows Form", 
                    Visible = true, 
                    TopMost = true) 

form.Click.Add(fun evArgs -> System.Console.Beep()) 
Application.Run(form) 

open System.Windows.Forms 



F# events are represented by the F# Event  type, which implements the IEvent
interface. IEvent  is itself an interface that combines the functionality of two other
interfaces, System.IObservable<'T>  and IDelegateEvent . Therefore, Events have the
equivalent functionality of delegates in other languages, plus the additional functionality
from IObservable , which means that F# events support event filtering and using F# first-
class functions and lambda expressions as event handlers. This functionality is provided
in the Event module .

To create an event on a class that acts just like any other .NET Framework event, add to
the class a let  binding that defines an Event  as a field in a class. You can specify the
desired event argument type as the type argument, or leave it blank and have the
compiler infer the appropriate type. You also must define an event member that exposes
the event as a CLI event. This member should have the CLIEvent  attribute. It is
declared like a property and its implementation is just a call to the Publish  property of
the event. Users of your class can use the Add  method of the published event to add a
handler. The argument for the Add  method can be a lambda expression. You can use the
Trigger  property of the event to raise the event, passing the arguments to the handler
function. The following code example illustrates this. In this example, the inferred type
argument for the event is a tuple, which represents the arguments for the lambda
expression.

F#

let Beep evArgs = 
    System.Console.Beep( ) 

let form = new Form(Text = "F# Windows Form", 
                    Visible = true, 
                    TopMost = true) 

let MouseMoveEventHandler (evArgs : System.Windows.Forms.MouseEventArgs) = 
    form.Text <- System.String.Format("{0},{1}", evArgs.X, evArgs.Y) 

form.Click.Add(Beep) 
form.MouseMove.Add(MouseMoveEventHandler) 
Application.Run(form) 

Creating Custom Events

open System.Collections.Generic 

type MyClassWithCLIEvent() = 

    let event1 = new Event<string>() 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpevent-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-ievent-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-idelegateevent-1.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-eventmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-clieventattribute.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpevent-1.html#Publish


The output is as follows.

Console

The additional functionality provided by the Event  module is illustrated here. The
following code example illustrates the basic use of Event.create  to create an event and
a trigger method, add two event handlers in the form of lambda expressions, and then
trigger the event to execute both lambda expressions.

F#

The output of the previous code is as follows.

Console

    [<CLIEvent>] 
    member this.Event1 = event1.Publish 

    member this.TestEvent(arg) = 
        event1.Trigger(arg) 

let classWithEvent = new MyClassWithCLIEvent() 
classWithEvent.Event1.Add(fun arg -> 
        printfn "Event1 occurred! Object data: %s" arg) 

classWithEvent.TestEvent("Hello World!") 

System.Console.ReadLine() |> ignore 

Event1 occurred! Object data: Hello World! 

type MyType() = 
    let myEvent = new Event<_>() 

    member this.AddHandlers() = 
       Event.add (fun string1 -> printfn "%s" string1) myEvent.Publish 
       Event.add (fun string1 -> printfn "Given a value: %s" string1) 
myEvent.Publish 

    member this.Trigger(message) = 
       myEvent.Trigger(message) 

let myMyType = MyType() 
myMyType.AddHandlers() 
myMyType.Trigger("Event occurred.") 

Event occurred. 
Given a value: Event occurred. 



Instead of just adding an event handler for an event by using the Event.add  function,
you can use the functions in the Event  module to process streams of events in highly
customized ways. To do this, you use the forward pipe (|> ) together with the event as
the first value in a series of function calls, and the Event  module functions as
subsequent function calls.

The following code example shows how to set up an event for which the handler is only
called under certain conditions.

F#

The Observable module  contains similar functions that operate on observable objects.
Observable objects are similar to events but only actively subscribe to events if they
themselves are being subscribed to.

As you develop UI components, you often start by creating a new form or a new control
that inherits from an existing form or control. Events are frequently defined on an
interface, and, in that case, you must implement the interface to implement the event.
The System.ComponentModel.INotifyPropertyChanged  interface defines a single
System.ComponentModel.INotifyPropertyChanged.PropertyChanged  event. The following
code illustrates how to implement the event that this inherited interface defined:

F#

Processing Event Streams

let form = new Form(Text = "F# Windows Form", 
                    Visible = true, 
                    TopMost = true) 
form.MouseMove 
    |> Event.filter ( fun evArgs -> evArgs.X > 100 && evArgs.Y > 100) 
    |> Event.add ( fun evArgs -> 
        form.BackColor <- System.Drawing.Color.FromArgb( 
            evArgs.X, evArgs.Y, evArgs.X ^^^ evArgs.Y) ) 

Implementing an Interface Event

module CustomForm 

open System.Windows.Forms 
open System.ComponentModel 

type AppForm() as this = 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-eventmodule.html#add
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-observablemodule.html


If you want to hook up the event in the constructor, the code is a bit more complicated
because the event hookup must be in a then  block in an additional constructor, as in
the following example:

    inherit Form() 

    // Define the propertyChanged event. 
    let propertyChanged = Event<PropertyChangedEventHandler, 
PropertyChangedEventArgs>() 
    let mutable underlyingValue = "text0" 

    // Set up a click event to change the properties. 
    do 
        this.Click |> Event.add(fun evArgs -> 
            this.Property1 <- "text2" 
            this.Property2 <- "text3") 

    // This property does not have the property-changed event set.
    member val Property1 : string = "text" with get, set 

    // This property has the property-changed event set. 
    member this.Property2 
        with get() = underlyingValue 
        and set(newValue) = 
            underlyingValue <- newValue 
            propertyChanged.Trigger(this, new 
PropertyChangedEventArgs("Property2")) 

    // Expose the PropertyChanged event as a first class .NET event. 
    [<CLIEvent>] 
    member this.PropertyChanged = propertyChanged.Publish 

    // Define the add and remove methods to implement this interface. 
    interface INotifyPropertyChanged with 
        member this.add_PropertyChanged(handler) = 
propertyChanged.Publish.AddHandler(handler) 
        member this.remove_PropertyChanged(handler) = 
propertyChanged.Publish.RemoveHandler(handler) 

    // This is the event-handler method. 
    member this.OnPropertyChanged(args : PropertyChangedEventArgs) = 
        let newProperty = this.GetType().GetProperty(args.PropertyName) 
        let newValue = newProperty.GetValue(this :> obj) :?> string 
        printfn "Property {args.PropertyName} changed its value to 
{newValue}" 

// Create a form, hook up the event handler, and start the application. 
let appForm = new AppForm() 
let inpc = appForm :> INotifyPropertyChanged 
inpc.PropertyChanged.Add(appForm.OnPropertyChanged) 
Application.Run(appForm) 



F#

module CustomForm 

open System.Windows.Forms 
open System.ComponentModel 

// Create a private constructor with a dummy argument so that the public 
// constructor can have no arguments. 
type AppForm private (dummy) as this = 
    inherit Form() 

    // Define the propertyChanged event. 
    let propertyChanged = Event<PropertyChangedEventHandler, 
PropertyChangedEventArgs>() 
    let mutable underlyingValue = "text0" 

    // Set up a click event to change the properties. 
    do 
        this.Click |> Event.add(fun evArgs -> 
            this.Property1 <- "text2" 
            this.Property2 <- "text3") 

    // This property does not have the property changed event set.
    member val Property1 : string = "text" with get, set 

    // This property has the property changed event set. 
    member this.Property2 
        with get() = underlyingValue 
        and set(newValue) = 
            underlyingValue <- newValue 
            propertyChanged.Trigger(this, new 
PropertyChangedEventArgs("Property2")) 

    [<CLIEvent>] 
    member this.PropertyChanged = propertyChanged.Publish 

    // Define the add and remove methods to implement this interface. 
    interface INotifyPropertyChanged with 
        member this.add_PropertyChanged(handler) = 
this.PropertyChanged.AddHandler(handler) 
        member this.remove_PropertyChanged(handler) = 
this.PropertyChanged.RemoveHandler(handler) 

    // This is the event handler method. 
    member this.OnPropertyChanged(args : PropertyChangedEventArgs) = 
        let newProperty = this.GetType().GetProperty(args.PropertyName) 
        let newValue = newProperty.GetValue(this :> obj) :?> string 
        printfn "Property {args.PropertyName} changed its value to 
{newValue}" 

    new() as this = 
        new AppForm(0) 
        then 



Members
Handling and Raising Events
Lambda Expressions: The fun Keyword

            let inpc = this :> INotifyPropertyChanged 
            inpc.PropertyChanged.Add(this.OnPropertyChanged) 

// Create a form, hook up the event handler, and start the application. 
let appForm = new AppForm() 
Application.Run(appForm) 

See also

https://learn.microsoft.com/en-us/dotnet/standard/events/


External Functions
Article • 10/17/2023

This article describes F# language support for calling functions in native code.

F#

In the previous syntax, arguments  represents arguments that are supplied to the

System.Runtime.InteropServices.DllImportAttribute  attribute. The first argument is a
string that represents the name of the DLL that contains this function, without the .dll
extension. Additional arguments can be supplied for any of the public properties of the
System.Runtime.InteropServices.DllImportAttribute  class, such as the calling
convention.

Assume you have a native C++ DLL that contains the following exported function.

C++

You can call this function from F# by using the following code.

F#

Syntax

[<DllImport( arguments )>]
extern declaration

Remarks

#include <stdio.h>
extern "C" void __declspec(dllexport) HelloWorld()
{
    printf("Hello world, invoked by F#!\n");
}

open System.Runtime.InteropServices

module InteropWithNative =
    [<DllImport(@"C:\bin\nativedll", CallingConvention = 
CallingConvention.Cdecl)>]
    extern void HelloWorld()



Interoperability with native code is referred to as platform invoke and is a feature of the
CLR. For more information, see Interoperating with Unmanaged Code. The information
in that section is applicable to F#.

When you declare external functions with return values or parameters, you use a syntax
similar to C. You have the option to use the managed declarations (where the CLR will
perform some automatic conversions between native and .NET types) and unmanaged
declarations, which might offer better performance in some circumstances. For example,
the Windows function GetBinaryTypeW can be declared in two different ways:

fs

MarshalAs(UnmanagedType.LPWStr)  instructs the CLR to perform an automatic conversion
between a .NET string  and Windows native string representation when the function is
called. uint&  declares a uint  that will be passed byref , that is, as a managed pointer.
To obtain a managed pointer, you use the address of &  operator.

Alternately, you might want to manage the marshalling of data types manually and
declare the external functions using only unmanaged types.

fs

You could useMarshal.StringToHGlobalUni to convert a .NET string to native format and
receive a pointer ( nativeint ) to it that could be supplied to lpApplicationName .

To obtain a pointer to an integer, use the pointer of &&  operator or the fixed keyword.

InteropWithNative.HelloWorld()

Defining Parameters in External Functions

// Using automatic marshaling of managed types
[<DllImport("kernel32.dll",
    CallingConvention = CallingConvention.StdCall,
    CharSet = CharSet.Unicode,
    ExactSpelling = true)>]
extern bool GetBinaryTypeW([<MarshalAs(UnmanagedType.LPWStr)>] string 
lpApplicationName, uint& lpBinaryType);

// Using unmanaged types
[<DllImport("kernel32.dll", CallingConvention = CallingConvention.StdCall, 
ExactSpelling = true)>]
extern int GetBinaryTypeW(nativeint lpApplicationName, uint* lpBinaryType);

https://learn.microsoft.com/en-us/dotnet/framework/interop/
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getbinarytypew
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/unmanaged-types
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.stringtohglobaluni


Functions

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Flanguage-reference%2Ffunctions%2Fexternal-functions&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Flanguage-reference%2Ffunctions%2Fexternal-functions.md&documentVersionIndependentId=0dbafc1b-6d9e-8c2f-e837-45c8b5c3df5a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp


Attributes (F#)
Article • 09/15/2021

Attributes enable metadata to be applied to a programming construct.

F#

In the previous syntax, the target is optional and, if present, specifies the kind of
program entity that the attribute applies to. Valid values for target are shown in the
table that appears later in this document.

The attribute-name refers to the name (possibly qualified with namespaces) of a valid
attribute type, with or without the suffix Attribute  that is usually used in attribute type
names. For example, the type ObsoleteAttribute  can be shortened to just Obsolete  in
this context.

The arguments are the arguments to the constructor for the attribute type. If an
attribute has a parameterless constructor, the argument list and parentheses can be
omitted. Attributes support both positional arguments and named arguments. Positional
arguments are arguments that are used in the order in which they appear. Named
arguments can be used if the attribute has public properties. You can set these by using
the following syntax in the argument list.

F#

Such property initializations can be in any order, but they must follow any positional
arguments. The following is an example of an attribute that uses positional arguments
and property initializations:

F#

Syntax

[<target:attribute-name(arguments)>] 

Remarks

property-name = property-value 



In this example, the attribute is DllImportAttribute , here used in shortened form. The
first argument is a positional parameter and the second is a property.

Attributes are a .NET programming construct that enables an object known as an
attribute to be associated with a type or other program element. The program element
to which an attribute is applied is known as the attribute target. The attribute usually
contains metadata about its target. In this context, metadata could be any data about
the type other than its fields and members.

Attributes in F# can be applied to the following programming constructs: functions,
methods, assemblies, modules, types (classes, records, structures, interfaces, delegates,
enumerations, unions, and so on), constructors, properties, fields, parameters, type
parameters, and return values. Attributes are not allowed on let  bindings inside classes,
expressions, or workflow expressions.

Typically, the attribute declaration appears directly before the declaration of the
attribute target. Multiple attribute declarations can be used together, as follows:

F#

You can query attributes at run time by using .NET reflection.

You can declare multiple attributes individually, as in the previous code example, or you
can declare them in one set of brackets if you use a semicolon to separate the individual
attributes and constructors, as follows:

F#

Typically encountered attributes include the Obsolete  attribute, attributes for security
considerations, attributes for COM support, attributes that relate to ownership of code,

open System.Runtime.InteropServices 

[<DllImport("kernel32", SetLastError=true)>] 
extern bool CloseHandle(nativeint handle) 

[<Owner("Jason Carlson")>] 
[<Company("Microsoft")>] 
type SomeType1 = 

[<Owner("Darren Parker"); Company("Microsoft")>] 
type SomeType2 = 



and attributes indicating whether a type can be serialized. The following example
demonstrates the use of the Obsolete  attribute.

F#

For the attribute targets assembly  and module , you apply the attributes to a top-level do
binding in your assembly. You can include the word assembly  or ``module``  in the
attribute declaration, as follows:

F#

If you omit the attribute target for an attribute applied to a do  binding, the F# compiler
attempts to determine the attribute target that makes sense for that attribute. Many
attribute classes have an attribute of type System.AttributeUsageAttribute  that includes
information about the possible targets supported for that attribute. If the
System.AttributeUsageAttribute  indicates that the attribute supports functions as
targets, the attribute is taken to apply to the main entry point of the program. If the
System.AttributeUsageAttribute  indicates that the attribute supports assemblies as
targets, the compiler takes the attribute to apply to the assembly. Most attributes do
not apply to both functions and assemblies, but in cases where they do, the attribute is
taken to apply to the program's main function. If the attribute target is specified
explicitly, the attribute is applied to the specified target.

Although you do not usually need to specify the attribute target explicitly, valid values
for target in an attribute along with examples of usage are shown in the following table:

open System 

[<Obsolete("Do not use. Use newFunction instead.")>] 
let obsoleteFunction x y = 
  x + y 

let newFunction x y = 
  x + 2 * y 

// The use of the obsolete function produces a warning. 
let result1 = obsoleteFunction 10 100 
let result2 = newFunction 10 100 

open System.Reflection 
[<assembly:AssemblyVersionAttribute("1.0.0.0")>] 
[<``module``:MyCustomModuleAttribute>] 
do 
   printfn "Executing..." 



Attribute
target

Example

assembly
F#

module
F#

return
F#

field
F#

property
F#

param
F#

type
F#

[<assembly: AssemblyVersion("1.0.0.0")>]

[<``module``: MyCustomAttributeThatWorksOnModules>]

let function1 x : [<return: 
MyCustomAttributeThatWorksOnReturns>] int = x + 1

[<DefaultValue>] val mutable x: int

[<Obsolete>] this.MyProperty = x

member this.MyMethod([<Out>] x : ref<int>) = x := 10

[<type: StructLayout(LayoutKind.Sequential)>] 
type MyStruct = 
  struct 
    val x : byte 
    val y : int 
  end



F# Language Reference

See also



Code quotations
Article • 09/15/2021

This article describes code quotations, a language feature that enables you to generate
and work with F# code expressions programmatically. This feature lets you generate an
abstract syntax tree that represents F# code. The abstract syntax tree can then be
traversed and processed according to the needs of your application. For example, you
can use the tree to generate F# code or generate code in some other language.

A quoted expression is an F# expression in your code that is delimited in such a way that
it is not compiled as part of your program, but instead is compiled into an object that
represents an F# expression. You can mark a quoted expression in one of two ways:
either with type information or without type information. If you want to include type
information, you use the symbols <@  and @>  to delimit the quoted expression. If you do
not need type information, you use the symbols <@@  and @@> . The following code shows
typed and untyped quotations.

F#

Traversing a large expression tree is faster if you do not include type information. The
resulting type of an expression quoted with the typed symbols is Expr<'T> , where the
type parameter has the type of the expression as determined by the F# compiler's type
inference algorithm. When you use code quotations without type information, the type
of the quoted expression is the non-generic type Expr . You can call the Raw
property on the typed Expr  class to obtain the untyped Expr  object.

There are various static methods that allow you to generate F# expression objects
programmatically in the Expr  class without using quoted expressions.

A code quotation must include a complete expression. For a let  binding, for example,
you need both the definition of the bound name and another expression that uses the
binding. In verbose syntax, this is an expression that follows the in  keyword. At the top

Quoted expressions

open Microsoft.FSharp.Quotations 
// A typed code quotation. 
let expr : Expr<int> = <@ 1 + 1 @> 
// An untyped code quotation. 
let expr2 : Expr = <@@ 1 + 1 @@> 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-fsharpexpr.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-fsharpexpr-1.html#Raw


level in a module, this is just the next expression in the module, but in a quotation, it is
explicitly required.

Therefore, the following expression is not valid.

F#

But the following expressions are valid.

F#

To evaluate F# quotations, you must use the F# Quotation Evaluator . It provides
support for evaluating and executing F# expression objects.

F# quotations also retain type constraint information. Consider the following example:

F#

The constraint generated by the inline  function is retained in the code quotation. The
negate  function's quoted form can now be evaluated.

An instance of the Expr  type represents an F# expression. Both the generic and the
non-generic Expr  types are documented in the F# library documentation. For more

// Not valid: 
// <@ let f x = x + 1 @> 

// Valid: 
<@ let f x = x + 10 in f 20 @> 
// Valid: 
<@ 
    let f x = x + 10 
    f 20 
@> 

open FSharp.Linq.RuntimeHelpers 

let eval q = LeafExpressionConverter.EvaluateQuotation q 

let inline negate x = -x 
// val inline negate: x: ^a ->  ^a when  ^a : (static member ( ~- ) :  ^a ->  
^a) 

<@ negate 1.0 @>  |> eval 

Expr type

https://github.com/fsprojects/FSharp.Quotations.Evaluator


information, see FSharp.Quotations Namespace  and Quotations.Expr Class .

Splicing enables you to combine literal code quotations with expressions that you have
created programmatically or from another code quotation. The %  and %%  operators
enable you to add an F# expression object into a code quotation. You use the %
operator to insert a typed expression object into a typed quotation; you use the %%
operator to insert an untyped expression object into an untyped quotation. Both
operators are unary prefix operators. Thus if expr  is an untyped expression of type
Expr , the following code is valid.

F#

And if expr  is a typed quotation of type Expr<int> , the following code is valid.

F#

The following example illustrates the use of code quotations to put F# code into an
expression object and then print the F# code that represents the expression. A function
println  is defined that contains a recursive function print  that displays an F#
expression object (of type Expr ) in a friendly format. There are several active patterns in
the FSharp.Quotations.Patterns  and FSharp.Quotations.DerivedPatterns  modules
that can be used to analyze expression objects. This example does not include all the
possible patterns that might appear in an F# expression. Any unrecognized pattern
triggers a match to the wildcard pattern (_ ) and is rendered by using the ToString
method, which, on the Expr  type, lets you know the active pattern to add to your match
expression.

Splicing operators

<@@ 1 + %%expr @@> 

<@ 1 + %expr @> 

Example 1

Description

Code

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-fsharpexpr.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-patternsmodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-derivedpatternsmodule.html


F#

module Print 
open Microsoft.FSharp.Quotations 
open Microsoft.FSharp.Quotations.Patterns 
open Microsoft.FSharp.Quotations.DerivedPatterns 

let println expr = 
    let rec print expr = 
        match expr with 
        | Application(expr1, expr2) -> 
            // Function application. 
            print expr1 
            printf " " 
            print expr2 
        | SpecificCall <@@ (+) @@> (_, _, exprList) -> 
            // Matches a call to (+). Must appear before Call pattern. 
            print exprList.Head 
            printf " + " 
            print exprList.Tail.Head 
        | Call(exprOpt, methodInfo, exprList) -> 
            // Method or module function call. 
            match exprOpt with 
            | Some expr -> print expr 
            | None -> printf "%s" methodInfo.DeclaringType.Name 
            printf ".%s(" methodInfo.Name 
            if (exprList.IsEmpty) then printf ")" else 
            print exprList.Head 
            for expr in exprList.Tail do 
                printf "," 
                print expr 
            printf ")" 
        | Int32(n) -> 
            printf "%d" n 
        | Lambda(param, body) -> 
            // Lambda expression.
            printf "fun (%s:%s) -> " param.Name (param.Type.ToString()) 
            print body 
        | Let(var, expr1, expr2) -> 
            // Let binding. 
            if (var.IsMutable) then 
                printf "let mutable %s = " var.Name 
            else 
                printf "let %s = " var.Name 
            print expr1 
            printf " in " 
            print expr2 
        | PropertyGet(_, propOrValInfo, _) -> 
            printf "%s" propOrValInfo.Name 
        | String(str) -> 
            printf "%s" str 
        | Value(value, typ) -> 
            printf "%s" (value.ToString()) 
        | Var(var) -> 



F#

You can also use the three active patterns in the ExprShape module  to traverse
expression trees with fewer active patterns. These active patterns can be useful when
you want to traverse a tree but you do not need all the information in most of the
nodes. When you use these patterns, any F# expression matches one of the following
three patterns: ShapeVar  if the expression is a variable, ShapeLambda  if the expression is a
lambda expression, or ShapeCombination  if the expression is anything else. If you
traverse an expression tree by using the active patterns as in the previous code example,
you have to use many more patterns to handle all possible F# expression types, and
your code will be more complex. For more information, see
ExprShape.ShapeVar|ShapeLambda|ShapeCombination Active Pattern .

The following code example can be used as a basis for more complex traversals. In this
code, an expression tree is created for an expression that involves a function call, add .
The SpecificCall  active pattern is used to detect any call to add  in the expression tree.

            printf "%s" var.Name 
        | _ -> printf "%s" (expr.ToString()) 
    print expr 
    printfn "" 

let a = 2 

// exprLambda has type "(int -> int)". 
let exprLambda = <@ fun x -> x + 1 @> 
// exprCall has type unit. 
let exprCall = <@ a + 1 @> 

println exprLambda 
println exprCall 
println <@@ let f x = x + 10 in f 10 @@> 

Output

fun (x:System.Int32) -> x + 1 
a + 1 
let f = fun (x:System.Int32) -> x + 10 in f 10

Example 2

Description

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-exprshapemodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-exprshapemodule.html#(%20%7CShapeVar%7CShapeLambda%7CShapeCombination%7C%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-derivedpatternsmodule.html#(%20%7CSpecificCall%7C_%7C%20)


This active pattern assigns the arguments of the call to the exprList  value. In this case,
there are only two, so these are pulled out and the function is called recursively on the
arguments. The results are inserted into a code quotation that represents a call to mul
by using the splice operator (%% ). The println  function from the previous example is
used to display the results.

The code in the other active pattern branches just regenerates the same expression tree,
so the only change in the resulting expression is the change from add  to mul .

F#

F#

Code

module Module1 
open Print 
open Microsoft.FSharp.Quotations 
open Microsoft.FSharp.Quotations.DerivedPatterns 
open Microsoft.FSharp.Quotations.ExprShape 

let add x y = x + y 
let mul x y = x * y 

let rec substituteExpr expression = 
    match expression with 
    | SpecificCall <@@ add @@> (_, _, exprList) -> 
        let lhs = substituteExpr exprList.Head 
        let rhs = substituteExpr exprList.Tail.Head 
        <@@ mul %%lhs %%rhs @@> 
    | ShapeVar var -> Expr.Var var 
    | ShapeLambda (var, expr) -> Expr.Lambda (var, substituteExpr expr) 
    | ShapeCombination(shapeComboObject, exprList) -> 
        RebuildShapeCombination(shapeComboObject, List.map substituteExpr 
exprList) 

let expr1 = <@@ 1 + (add 2 (add 3 4)) @@> 
println expr1 
let expr2 = substituteExpr expr1 
println expr2 

Output

1 + Module1.add(2,Module1.add(3,4)) 
1 + Module1.mul(2,Module1.mul(3,4)) 



F# Language Reference

See also



Nameof
Article • 08/20/2022

The nameof  expression produces a string constant that matches the name in source for
nearly any F# construct in source.

F#

nameof  works by resolving the symbol passed to it and produces the name of that
symbol as it is declared in your source code. This is useful in various scenarios, such as
logging, and protects your logging against changes in source code.

F#

The last line will throw an exception and "month"  will be shown in the error message.

You can take a name of nearly every F# construct:

F#

Syntax

nameof symbol 
nameof<'TGeneric> 

Remarks

let months = 
    [ 
        "January"; "February"; "March"; "April"; 
        "May"; "June"; "July"; "August"; "September"; 
        "October"; "November"; "December" 
    ] 

let lookupMonth month = 
    if (month > 12 || month < 1) then 
        invalidArg (nameof month) ($"Value passed in was %d{month}.") 

    months[month-1] 

printfn "%s" (lookupMonth 12) 
printfn "%s" (lookupMonth 1) 
printfn "%s" (lookupMonth 13) 



nameof  is not a first-class function and cannot be used as such. That means it cannot be
partially applied and values cannot be piped into it via F# pipeline operators.

Operators in F# can be used in two ways, as an operator text itself, or a symbol
representing the compiled form. nameof  on an operator will produce the name of the
operator as it is declared in source. To get the compiled name, use the compiled name
in source:

F#

You can also take a name of a generic type parameter, but the syntax is different:

F#

nameof<'TGeneric>  will take the name of the symbol as defined in source, not the name
of the type substituted at a call site.

The reason why the syntax is different is to align with other F# intrinsic operators like
typeof<>  and typedefof<> . This makes F# consistent with respect to operators that act
on generic types and anything else in source.

The nameof pattern lets you use nameof  in a pattern match expression like so:

module M = 
    let f x = nameof x 

printfn $"{(M.f 12)}" 
printfn $"{(nameof M)}" 
printfn $"{(nameof M.f)}" 

Nameof on operators

nameof(+) // "+" 
nameof op_Addition // "op_Addition" 

Nameof on generics

let f<'a> () = nameof<'a> 
f() // "a" 

Nameof in pattern matching



F#

F# requires an instance in order to extract the name of an instance member with nameof .
If an instance is not easily available, then one can be obtained using
Unchecked.defaultof .

F#

let f (str: string) = 
    match str with 
    | nameof str -> "It's 'str'!"
    | _ -> "It is not 'str'!" 

f "str" // matches 
f "asdf" // does not match 

Nameof with instance members

type MyRecord = { MyField: int } 
type MyClass() = 
    member _.MyProperty = () 
    member _.MyMethod () = () 

nameof Unchecked.defaultof<MyRecord>.MyField   // MyField 
nameof Unchecked.defaultof<MyClass>.MyProperty // MyProperty 
nameof Unchecked.defaultof<MyClass>.MyMethod   // MyMethod 



Caller information
Article • 09/15/2021

By using Caller Info attributes, you can obtain information about the caller to a method.
You can obtain file path of the source code, the line number in the source code, and the
member name of the caller. This information is helpful for tracing, debugging, and
creating diagnostic tools.

To obtain this information, you use attributes that are applied to optional parameters,
each of which has a default value. The following table lists the Caller Info attributes that
are defined in the System.Runtime.CompilerServices namespace:

Attribute Description Type

CallerFilePath Full path of the source file that contains the caller. This is the file
path at compile time.

String

CallerLineNumber Line number in the source file at which the method is called. Integer

CallerMemberName Method or property name of the caller. See the Member Names
section later in this topic.

String

The following example shows how you might use these attributes to trace a caller.

F#

Example

open System.Diagnostics 
open System.Runtime.CompilerServices 
open System.Runtime.InteropServices 

type Tracer() = 
    member _.DoTrace(message: string, 
                      [<CallerMemberName; Optional; 
DefaultParameterValue("")>] memberName: string, 
                      [<CallerFilePath; Optional; 
DefaultParameterValue("")>] path: string, 
                      [<CallerLineNumber; Optional; 
DefaultParameterValue(0)>] line: int) = 
        Trace.WriteLine(sprintf $"Message: {message}") 
        Trace.WriteLine(sprintf $"Member name: {memberName}") 
        Trace.WriteLine(sprintf $"Source file path: {path}") 
        Trace.WriteLine(sprintf $"Source line number: {line}") 

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerlinenumberattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callermembernameattribute


Caller Info attributes can only be applied to optional parameters. The Caller Info
attributes cause the compiler to write the proper value for each optional parameter
decorated with a Caller Info attribute.

Caller Info values are emitted as literals into the Intermediate Language (IL) at compile
time. Unlike the results of the StackTrace property for exceptions, the results aren't
affected by obfuscation.

You can explicitly supply the optional arguments to control the caller information or to
hide caller information.

You can use the CallerMemberName attribute to avoid specifying the member name as
a String  argument to the called method. By using this technique, you avoid the
problem that Rename Refactoring doesn't change the String  values. This benefit is
especially useful for the following tasks:

Using tracing and diagnostic routines.
Implementing the INotifyPropertyChanged interface when binding data. This
interface allows the property of an object to notify a bound control that the
property has changed, so that the control can display the updated information.
Without the CallerMemberName attribute, you must specify the property name as
a literal.

The following chart shows the member names that are returned when you use the
CallerMemberName attribute.

Calls occurs within Member name result

Method, property, or
event

The name of the method, property, or event from which the call
originated.

Constructor The string ".ctor"

Static constructor The string ".cctor"

Destructor The string "Finalize"

User-defined operators
or conversions

The generated name for the member, for example, "op_Addition".

Remarks

Member names

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stacktrace
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callermembernameattribute


Calls occurs within Member name result

Attribute constructor The name of the member to which the attribute is applied. If the
attribute is any element within a member (such as a parameter, a
return value, or a generic type parameter), this result is the name of
the member that's associated with that element.

No containing member
(for example, assembly-
level or attributes that
are applied to types)

The default value of the optional parameter.

Attributes
Named arguments
Optional parameters

See also



Source Line, File, and Path Identifiers
Article • 09/15/2021

The identifiers __LINE__ , __SOURCE_DIRECTORY__  and __SOURCE_FILE__  are built-in values
that enable you to access the source line number, directory and file name in your code.

F#

Each of these values has type string .

The following table summarizes the source line, file, and path identifiers that are
available in F#. These identifiers are not preprocessor macros; they are built-in values
that are recognized by the compiler.

Predefined
identifier

Description

__LINE__ Evaluates to the current line number, considering #line  directives.

__SOURCE_DIRECTORY__ Evaluates to the current full path of the source directory, considering
#line  directives.

__SOURCE_FILE__ Evaluates to the current source file name, without its path, considering
#line  directives.

For more information about the #line  directive, see Compiler Directives.

The following code example demonstrates the use of these values.

F#

Syntax

__LINE__ 
__SOURCE_DIRECTORY__ 
__SOURCE_FILE__ 

Remarks

Example



Output:

Console

Compiler Directives
F# Language Reference

let printSourceLocation() = 
    printfn "Line: %s" __LINE__ 
    printfn "Source Directory: %s" __SOURCE_DIRECTORY__ 
    printfn "Source File: %s" __SOURCE_FILE__ 
printSourceLocation() 

Line: 4 
Source Directory: C:\Users\username\Documents\Visual Studio 
2017\Projects\SourceInfo\SourceInfo 
Source File: Program.fs 

See also



Plain text formatting
Article • 07/26/2022

F# supports type-checked formatting of plain text using printf , printfn , sprintf , and
related functions. For example,

Console

gives the output

F#

F# also allows structured values to be formatted as plain text. For example, consider the
following example that formats the output as a matrix-like display of tuples.

Console

Structured plain text formatting is activated when you use the %A  format in printf
formatting strings. It's also activated when formatting the output of values in F#
interactive, where the output includes extra information and is additionally
customizable. Plain text formatting is also observable through any calls to x.ToString()
on F# union and record values, including those that occur implicitly in debugging,
logging, and other tooling.

dotnet fsi 

> printfn "Hello %s, %d + %d is %d" "world" 2 2 (2+2);; 

Hello world, 2 + 2 is 4 

dotnet fsi 

> printfn "%A" [ for i in 1 .. 5 -> [ for j in 1 .. 5 -> (i, j) ] ];;

[[(1, 1); (1, 2); (1, 3); (1, 4); (1, 5)]; 
 [(2, 1); (2, 2); (2, 3); (2, 4); (2, 5)]; 
 [(3, 1); (3, 2); (3, 3); (3, 4); (3, 5)]; 
 [(4, 1); (4, 2); (4, 3); (4, 4); (4, 5)]; 
 [(5, 1); (5, 2); (5, 3); (5, 4); (5, 5)]] 

Checking of printf -format strings



A compile-time error will be reported if a printf  formatting function is used with an
argument that doesn't match the printf format specifiers in the format string. For
example,

F#

gives the output

Console

Technically speaking, when using printf  and other related functions, a special rule in
the F# compiler checks the string literal passed as the format string, ensuring the
subsequent arguments applied are of the correct type to match the format specifiers
used.

Format specifications for printf  formats are strings with %  markers that indicate
format. Format placeholders consist of %[flags][width][.precision][type]  where the
type is interpreted as follows:

Format
specifier

Type(s) Remarks

%b bool

( System.Boolean )
Formatted as true  or false

%s string

( System.String )
Formatted as its unescaped contents

%c char

( System.Char )
Formatted as the character literal

%d , %i a basic integer
type

Formatted as a decimal integer, signed if the basic integer type is
signed

%u a basic integer
type

Formatted as an unsigned decimal integer

sprintf "Hello %s" (2+2) 

  sprintf "Hello %s" (2+2) 
  ----------------------^ 

stdin(3,25): error FS0001: The type 'string' does not match the type 'int' 

Format specifiers for printf



Format
specifier

Type(s) Remarks

%x , %X a basic integer
type

Formatted as an unsigned hexadecimal number (a-f or A-F for hex
digits respectively)

%o a basic integer
type

Formatted as an unsigned octal number

%B a basic integer
type

Formatted as an unsigned binary number

%e , %E a basic floating
point type

Formatted as a signed value having the form [-]d.dddde[sign]ddd
where d is a single decimal digit, dddd is one or more decimal
digits, ddd is exactly three decimal digits, and sign is +  or -

%f , %F a basic floating
point type

Formatted as a signed value having the form [-]dddd.dddd , where
dddd  is one or more decimal digits. The number of digits before
the decimal point depends on the magnitude of the number, and
the number of digits after the decimal point depends on the
requested precision.

%g , %G a basic floating
point type

Formatted using as a signed value printed in %f  or %e  format,
whichever is more compact for the given value and precision.

%M a decimal
( System.Decimal )
value

Formatted using the "G"  format specifier for
System.Decimal.ToString(format)

%O any value Formatted by boxing the object and calling its
System.Object.ToString()  method

%A any value Formatted using structured plain text formatting with the default
layout settings

%a any value Requires two arguments: a formatting function accepting a context
parameter and the value, and the particular value to print

%t any value Requires one argument: a formatting function accepting a context
parameter that either outputs or returns the appropriate text

%% (none) Requires no arguments and prints a plain percent sign: %

Basic integer types are byte  (System.Byte ), sbyte  (System.SByte ), int16  (System.Int16 ),
uint16  (System.UInt16 ), int32  (System.Int32 ), uint32  (System.UInt32 ), int64
(System.Int64 ), uint64  (System.UInt64 ), nativeint  (System.IntPtr ), and unativeint
(System.UIntPtr ). Basic floating point types are float  (System.Double ), float32
(System.Single ), and decimal  (System.Decimal ).



The optional width is an integer indicating the minimal width of the result. For instance,
%6d  prints an integer, prefixing it with spaces to fill at least six characters. If width is * ,
then an extra integer argument is taken to specify the corresponding width.

Valid flags are:

Flag Effect Remarks

0 Add zeros instead of spaces to make up the required width

- Left justify the result within the specified width

+ Add a +  character if the number is positive (to match a -  sign for
negatives)

space
character

Add an extra space if the number is positive (to match a '-' sign for
negatives)

The printf #  flag is invalid and a compile-time error will be reported if it is used.

Values are formatted using invariant culture. Culture settings are irrelevant to printf
formatting except when they affect the results of %O  and %A  formatting. For more
information, see structured plain text formatting.

The %A  format specifier is used to format values in a human-readable way, and can also
be useful for reporting diagnostic information.

When formatting plain text using the %A  specifier, F# numeric values are formatted with
their suffix and invariant culture. Floating point values are formatted using 10 places of
floating point precision. For example,

F#

produces

Console

%A  formatting

Primitive values

printfn "%A" (1L, 3n, 5u, 7, 4.03f, 5.000000001, 5.0000000001) 

(1L, 3n, 5u, 7, 4.03000021f, 5.000000001, 5.0) 



When using the %A  specifier, strings are formatted using quotes. Escape codes are not
added and instead the raw characters are printed. For example,

F#

produces

Console

When formatting plain text using the %A  specifier, non-F# .NET objects are formatted by
using x.ToString()  using the default settings of .NET given by
System.Globalization.CultureInfo.CurrentCulture  and
System.Globalization.CultureInfo.CurrentUICulture . For example,

F#

produces

Console

printfn "%A" ("abc", "a\tb\nc\"d") 

("abc", "a      b 
c"d") 

.NET values

open System.Globalization 

let date = System.DateTime(1999, 12, 31) 

CultureInfo.CurrentCulture <- CultureInfo.GetCultureInfo("de-DE") 
printfn "Culture 1: %A" date 

CultureInfo.CurrentCulture <- CultureInfo.GetCultureInfo("en-US") 
printfn "Culture 2: %A" date 

Culture 1: 31.12.1999 00:00:00 
Culture 2: 12/31/1999 12:00:00 AM

Structured values



When formatting plain text using the %A  specifier, block indentation is used for F# lists
and tuples. This is shown in the previous example. The structure of arrays is also used,
including multi-dimensional arrays. Single-dimensional arrays are shown with [| ... |]
syntax. For example,

F#

produces

Console

The default print width is 80. This width can be customized by using a print width in the
format specifier. For example,

F#

produces

Console

Specifying a print width of 0 results in no print width being used. A single line of text will
result, except where embedded strings in the output contain line breaks. For example

printfn "%A" [| for i in 1 .. 20 -> (i, i*i) |] 

[|(1, 1); (2, 4); (3, 9); (4, 16); (5, 25); (6, 36); (7, 49); (8, 64); (9, 
81); 
  (10, 100); (11, 121); (12, 144); (13, 169); (14, 196); (15, 225); (16, 
256); 
  (17, 289); (18, 324); (19, 361); (20, 400)|] 

printfn "%10A" [| for i in 1 .. 5 -> (i, i*i) |] 

printfn "%20A" [| for i in 1 .. 5 -> (i, i*i) |] 

printfn "%50A" [| for i in 1 .. 5 -> (i, i*i) |] 

[|(1, 1); 
  (2, 4); 
  (3, 9); 
  (4, 16); 
  (5, 25)|] 
[|(1, 1); (2, 4); 
  (3, 9); (4, 16); 
  (5, 25)|] 
[|(1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|] 



F#

produces

Console

A depth limit of 4 is used for sequence (IEnumerable ) values, which are shown as seq {
...} . A depth limit of 100 is used for list and array values. For example,

F#

produces

Console

Block indentation is also used for the structure of public record and union values. For
example,

F#

produces

Console

printfn "%0A" [| for i in 1 .. 5 -> (i, i*i) |] 

printfn "%0A" [| for i in 1 .. 5 -> "abc\ndef" |] 

[|(1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|] 
[|"abc 
def"; "abc 
def"; "abc 
def"; "abc 
def"; "abc 
def"|] 

printfn "%A" (seq { for i in 1 .. 10 -> (i, i*i) }) 

seq [(1, 1); (2, 4); (3, 9); (4, 16); ...] 

type R = { X : int list; Y : string list } 

printfn "%A" { X =  [ 1;2;3 ]; Y = ["one"; "two"; "three"] } 



If %+A  is used, then the private structure of records and unions is also revealed by using
reflection. For example

F#

produces

Console

Large structured values are formatted to a maximum overall object node count of
10000. Deeply nested values are formatted to a depth of 100. In both cases ...  is used
to elide some of the output. For example,

F#

{ X = [1; 2; 3] 
  Y = ["one"; "two"; "three"] } 

type internal R = 
    { X : int list; Y : string list } 
    override _.ToString() = "R" 

let internal data = { X = [ 1;2;3 ]; Y = ["one"; "two"; "three"] } 

printfn "external view:\n%A" data

printfn "internal view:\n%+A" data 

external view: 
R 

internal view: 
{ X = [1; 2; 3] 
  Y = ["one"; "two"; "three"] } 

Large, cyclic, or deeply nested values

type Tree = 
    | Tip 
    | Node of Tree * Tree 

let rec make n = 
    if n = 0 then 
        Tip 
    else 
        Node(Tip, make (n-1)) 



produces a large output with some parts elided:

Console

Cycles are detected in the object graphs and ...  is used at places where cycles are
detected. For example

F#

produces

Console

Lazy values are printed as Value is not created  or equivalent text when the value has
not yet been evaluated.

Null values are printed as null  unless the static type of the value is determined to be a
union type where null  is a permitted representation.

F# function values are printed as their internally generated closure name, for example,
<fun:it@43-7> .

When using the %A  specifier, the presence of the StructuredFormatDisplay  attribute on
type declarations is respected. This can be used to specify surrogate text and property
to display a value. For example:

printfn "%A" (make 1000) 

Node(Tip, Node(Tip, ....Node (..., ...)...)) 

type R = { mutable Links: R list } 
let r = { Links = [] } 
r.Links <- [r] 
printfn "%A" r 

{ Links = [...] } 

Lazy, null, and function values

Customize plain text formatting with
StructuredFormatDisplay



F#

produces

Console

The default implementation of ToString  is observable in F# programming. Often, the
default results aren't suitable for use in either programmer-facing information display or
user output, and as a result it is common to override the default implementation.

By default, F# record and union types override the implementation of ToString  with an
implementation that uses sprintf "%+A" . For example,

F#

produces

Console

For class types, no default implementation of ToString  is provided and the .NET default
is used, which reports the name of the type. For example,

F#

[<StructuredFormatDisplay("Counts({Clicks})")>] 
type Counts = { Clicks:int list} 

printfn "%20A" {Clicks=[0..20]} 

Counts([0; 1; 2; 3; 
        4; 5; 6; 7; 
        8; 9; 10; 11; 
        12; 13; 14; 
        15; 16; 17; 
        18; 19; 20]) 

Customize plain text formatting by overriding ToString

type Counts = { Clicks:int list } 

printfn "%s" ({Clicks=[0..10]}.ToString()) 

{ Clicks = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10] } 



produces

Console

Adding an override for ToString  can give better formatting.

F#

produces

Console

To achieve consistent formatting for %A  and %O  format specifiers, combine the use of
StructuredFormatDisplay  with an override of ToString . For example,

F#

type MyClassType(clicks: int list) = 
   member _.Clicks = clicks 

let data = [ MyClassType([1..5]); MyClassType([1..5]) ] 
printfn "Default structured print gives this:\n%A" data 
printfn "Default ToString gives:\n%s" (data.ToString()) 

Default structured print gives this: 
[MyClassType; MyClassType] 
Default ToString gives: 
[MyClassType; MyClassType] 

type MyClassType(clicks: int list) = 
   member _.Clicks = clicks 
   override _.ToString() = sprintf "MyClassType(%0A)" clicks 

let data = [ MyClassType([1..5]); MyClassType([1..5]) ] 
printfn "Now structured print gives this:\n%A" data 
printfn "Now ToString gives:\n%s" (data.ToString()) 

Now structured print gives this: 
[MyClassType([1; 2; 3; 4; 5]); MyClassType([1; 2; 3; 4; 5])] 
Now ToString gives: 
[MyClassType([1; 2; 3; 4; 5]); MyClassType([1; 2; 3; 4; 5])] 

Customize plain text formatting with
StructuredFormatDisplay  and ToString



Evaluating the following definitions

F#

gives the text

The use of StructuredFormatDisplay  with the supporting DisplayText  property means
the fact that the myRec  is a structural record type is ignored during structured printing,
and the override of ToString()  is preferred in all circumstances.

An implementation of the System.IFormattable  interface can be added for further
customization in the presence of .NET format specifications.

F# Interactive (dotnet fsi ) uses an extended version of structured plain text formatting
to report values and allows additional customizability. For more information, see F#
Interactive.

[<StructuredFormatDisplay("{DisplayText}")>] 
type MyRecord = 
    { 
        a: int 
    } 
    member this.DisplayText = this.ToString() 

    override _.ToString() = "Custom ToString" 

let myRec = { a = 10 } 
let myTuple = (myRec, myRec) 
let s1 = sprintf $"{myRec}" 
let s2 = sprintf $"{myTuple}" 
let s3 = sprintf $"%A{myTuple}" 
let s4 = sprintf $"{[myRec; myRec]}" 
let s5 = sprintf $"%A{[myRec; myRec]}" 

val myRec: MyRecord = Custom ToString 
val myTuple: MyRecord * MyRecord = (Custom ToString, Custom ToString) 
val s1: string = "Custom ToString" 
val s2: string = "(Custom ToString, Custom ToString)" 
val s3: string = "(Custom ToString, Custom ToString)" 
val s4: string = "[Custom ToString; Custom ToString]" 
val s5: string = "[Custom ToString; Custom ToString]" 

F# Interactive structured printing



Debuggers for .NET respect the use of attributes such as DebuggerDisplay  and
DebuggerTypeProxy , and these affect the structured display of objects in debugger
inspection windows. The F# compiler automatically generated these attributes for
discriminated union and record types, but not class, interface, or struct types.

These attributes are ignored in F# plain text formatting, but it can be useful to
implement these methods to improve displays when debugging F# types.

Strings
Records
Discriminated Unions
F# Interactive

Customize debug displays

See also



Type Providers
Article • 09/15/2021

An F# type provider is a component that provides types, properties, and methods for
use in your program. Type Providers generate what are known as Provided Types, which
are generated by the F# compiler and are based on an external data source.

For example, an F# Type Provider for SQL can generate types representing tables and
columns in a relational database. In fact, this is what the SQLProvider  Type Provider
does.

Provided Types depend on input parameters to a Type Provider. Such input can be a
sample data source (such as a JSON schema file), a URL pointing directly to an external
service, or a connection string to a data source. A Type Provider can also ensure that
groups of types are only expanded on demand; that is, they are expanded if the types
are actually referenced by your program. This allows for the direct, on-demand
integration of large-scale information spaces such as online data markets in a strongly
typed way.

Type Providers come in two forms: Generative and Erased.

Generative Type Providers produce types that can be written as .NET types into the
assembly in which they are produced. This allows them to be consumed from code in
other assemblies. This means that the typed representation of the data source must
generally be one that is feasible to represent with .NET types.

Erasing Type Providers produce types that can only be consumed in the assembly or
project they are generated from. The types are ephemeral; that is, they are not written
into an assembly and cannot be consumed by code in other assemblies. They can
contain delayed members, allowing you to use provided types from a potentially infinite
information space. They are useful for using a small subset of a large and
interconnected data source.

The following widely-used libraries contain Type Providers for different uses:

FSharp.Data includes Type Providers for JSON, XML, CSV, and HTML document
formats and resources.

Generative and Erased Type Providers

Commonly used Type Providers

https://fsprojects.github.io/SQLProvider/


SQLProvider  provides strongly typed access to relation databases through object
mapping and F# LINQ queries against these data sources.
FSharp.Data.SqlClient  has a set of type providers for compile-time checked
embedding of T-SQL in F#.
Azure Storage Type provider  provides types for Azure Blobs, Tables, and Queues,
allowing you to access these resources without needing to specify resource names
as strings throughout your program.
FSharp.Data.GraphQL  contains the GraphQLProvider, which provides types
based on a GraphQL server specified by URL.

Where necessary, you can create your own custom type providers, or reference type
providers that have been created by others. For example, assume your organization has
a data service providing a large and growing number of named data sets, each with its
own stable data schema. You may choose to create a type provider that reads the
schemas and presents the latest available data sets to the programmer in a strongly
typed way.

Tutorial: Create a Type Provider
F# Language Reference

See also

https://fsprojects.github.io/SQLProvider/
https://fsprojects.github.io/FSharp.Data.SqlClient/
https://fsprojects.github.io/AzureStorageTypeProvider/
https://fsprojects.github.io/FSharp.Data.GraphQL/index.html


Tutorial: Create a Type Provider
Article • 07/26/2022

The type provider mechanism in F# is a significant part of its support for information
rich programming. This tutorial explains how to create your own type providers by
walking you through the development of several simple type providers to illustrate the
basic concepts. For more information about the type provider mechanism in F#, see
Type Providers.

The F# ecosystem contains a range of type providers for commonly used Internet and
enterprise data services. For example:

FSharp.Data  includes type providers for JSON, XML, CSV and HTML document
formats.

SwaggerProvider  includes two generative type providers that generate object
model and HTTP clients for APIs described by OpenApi 3.0 and Swagger 2.0
schemas.

FSharp.Data.SqlClient  has a set of type providers for compile-time checked
embedding of T-SQL in F#.

You can create custom type providers, or you can reference type providers that others
have created. For example, your organization could have a data service that provides a
large and growing number of named data sets, each with its own stable data schema.
You can create a type provider that reads the schemas and presents the current data
sets to the programmer in a strongly typed way.

The type provider mechanism is primarily designed for injecting stable data and service
information spaces into the F# programming experience.

This mechanism isn’t designed for injecting information spaces whose schema changes
during program execution in ways that are relevant to program logic. Also, the
mechanism isn't designed for intra-language meta-programming, even though that
domain contains some valid uses. You should use this mechanism only where necessary
and where the development of a type provider yields very high value.

You should avoid writing a type provider where a schema isn't available. Likewise, you
should avoid writing a type provider where an ordinary (or even an existing) .NET library
would suffice.

Before You Start

https://fsprojects.github.io/FSharp.Data/
https://fsprojects.github.io/SwaggerProvider/
https://fsprojects.github.io/FSharp.Data.SqlClient/


Before you start, you might ask the following questions:

Do you have a schema for your information source? If so, what’s the mapping into
the F# and .NET type system?

Can you use an existing (dynamically typed) API as a starting point for your
implementation?

Will you and your organization have enough uses of the type provider to make
writing it worthwhile? Would a normal .NET library meet your needs?

How much will your schema change?

Will it change during coding?

Will it change between coding sessions?

Will it change during program execution?

Type providers are best suited to situations where the schema is stable at run time and
during the lifetime of compiled code.

This sample is Samples.HelloWorldTypeProvider, similar to the samples in the examples
directory of the F# Type Provider SDK . The provider makes available a "type space"
that contains 100 erased types, as the following code shows by using F# signature
syntax and omitting the details for all except Type1 . For more information about erased
types, see Details About Erased Provided Types later in this topic.

F#

A Simple Type Provider

namespace Samples.HelloWorldTypeProvider 

type Type1 = 
    /// This is a static property. 
    static member StaticProperty : string 

    /// This constructor takes no arguments. 
    new : unit -> Type1 

    /// This constructor takes one argument. 
    new : data:string -> Type1 

    /// This is an instance property. 
    member InstanceProperty : int 

    /// This is an instance method. 

https://github.com/fsprojects/FSharp.TypeProviders.SDK/


Note that the set of types and members provided is statically known. This example
doesn't leverage the ability of providers to provide types that depend on a schema. The
implementation of the type provider is outlined in the following code, and the details
are covered in later sections of this topic.

F#

    member InstanceMethod : x:int -> char 

    nested type NestedType = 
        /// This is StaticProperty1 on NestedType. 
        static member StaticProperty1 : string 
        … 
        /// This is StaticProperty100 on NestedType. 
        static member StaticProperty100 : string 

type Type2 = 
… 
… 

type Type100 = 
… 

２ Warning

There may be differences between this code and the online samples.

namespace Samples.FSharp.HelloWorldTypeProvider 

open System 
open System.Reflection 
open ProviderImplementation.ProvidedTypes 
open FSharp.Core.CompilerServices
open FSharp.Quotations 

// This type defines the type provider. When compiled to a DLL, it can be 
added 
// as a reference to an F# command-line compilation, script, or project. 
[<TypeProvider>] 
type SampleTypeProvider(config: TypeProviderConfig) as this = 

  // Inheriting from this type provides implementations of ITypeProvider 
  // in terms of the provided types below. 
  inherit TypeProviderForNamespaces(config) 

  let namespaceName = "Samples.HelloWorldTypeProvider" 
  let thisAssembly = Assembly.GetExecutingAssembly() 

  // Make one provided type, called TypeN. 
  let makeOneProvidedType (n:int) = 



To use this provider, open a separate instance of Visual Studio, create an F# script, and
then add a reference to the provider from your script by using #r as the following code
shows:

F#

Then look for the types under the Samples.HelloWorldTypeProvider  namespace that the
type provider generated.

Before you recompile the provider, make sure that you have closed all instances of
Visual Studio and F# Interactive that are using the provider DLL. Otherwise, a build error
will occur because the output DLL will be locked.

To debug this provider by using print statements, make a script that exposes a problem
with the provider, and then use the following code:

Console

To debug this provider by using Visual Studio, open the Developer Command Prompt
for Visual Studio with administrative credentials, and run the following command:

  … 
  // Now generate 100 types 
  let types = [ for i in 1 .. 100 -> makeOneProvidedType i ] 

  // And add them to the namespace 
  do this.AddNamespace(namespaceName, types) 

[<assembly:TypeProviderAssembly>]
do() 

#r @".\bin\Debug\Samples.HelloWorldTypeProvider.dll" 

let obj1 = Samples.HelloWorldTypeProvider.Type1("some data") 

let obj2 = Samples.HelloWorldTypeProvider.Type1("some other data") 

obj1.InstanceProperty 
obj2.InstanceProperty 

[ for index in 0 .. obj1.InstanceProperty-1 -> obj1.InstanceMethod(index) ] 
[ for index in 0 .. obj2.InstanceProperty-1 -> obj2.InstanceMethod(index) ] 

let data1 = Samples.HelloWorldTypeProvider.Type1.NestedType.StaticProperty35 

fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll script.fsx 



Console

As an alternative, open Visual Studio, open the Debug menu, choose Debug/Attach to
process… , and attach to another devenv  process where you’re editing your script. By
using this method, you can more easily target particular logic in the type provider by
interactively typing expressions into the second instance (with full IntelliSense and other
features).

You can disable Just My Code debugging to better identify errors in generated code. For
information about how to enable or disable this feature, see Navigating through Code
with the Debugger. Also, you can also set first-chance exception catching by opening
the Debug  menu and then choosing Exceptions  or by choosing the Ctrl+Alt+E keys to
open the Exceptions  dialog box. In that dialog box, under Common Language Runtime
Exceptions , select the Thrown  check box.

This section walks you through the principal sections of the type provider
implementation. First, you define the type for the custom type provider itself:

F#

This type must be public, and you must mark it with the TypeProvider  attribute so that
the compiler will recognize the type provider when a separate F# project references the
assembly that contains the type. The config parameter is optional, and, if present,
contains contextual configuration information for the type provider instance that the F#
compiler creates.

Next, you implement the ITypeProvider  interface. In this case, you use the
TypeProviderForNamespaces  type from the ProvidedTypes  API as a base type. This helper
type can provide a finite collection of eagerly provided namespaces, each of which
directly contains a finite number of fixed, eagerly provided types. In this context, the
provider eagerly generates types even if they aren't needed or used.

F#

devenv.exe /debugexe fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll 
script.fsx 

Implementation of the Type Provider

[<TypeProvider>] 
type SampleTypeProvider(config: TypeProviderConfig) as this = 

https://learn.microsoft.com/en-us/visualstudio/debugger/navigating-through-code-with-the-debugger
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-compilerservices-typeproviderattribute.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-compilerservices-itypeprovider.html


Next, define local private values that specify the namespace for the provided types, and
find the type provider assembly itself. This assembly is used later as the logical parent
type of the erased types that are provided.

F#

Next, create a function to provide each of the types Type1…Type100. This function is
explained in more detail later in this topic.

F#

Next, generate the 100 provided types:

F#

Next, add the types as a provided namespace:

F#

Finally, add an assembly attribute that indicates that you are creating a type provider
DLL:

F#

The makeOneProvidedType  function does the real work of providing one of the types.

inherit TypeProviderForNamespaces(config) 

let namespaceName = "Samples.HelloWorldTypeProvider" 
let thisAssembly = Assembly.GetExecutingAssembly() 

let makeOneProvidedType (n:int) = … 

let types = [ for i in 1 .. 100 -> makeOneProvidedType i ] 

do this.AddNamespace(namespaceName, types) 

[<assembly:TypeProviderAssembly>]
do() 

Providing One Type And Its Members



F#

This step explains the implementation of this function. First, create the provided type
(for example, Type1, when n = 1, or Type57, when n = 57).

F#

You should note the following points:

This provided type is erased. Because you indicate that the base type is obj ,
instances will appear as values of type obj  in compiled code.

When you specify a non-nested type, you must specify the assembly and
namespace. For erased types, the assembly should be the type provider assembly
itself.

Next, add XML documentation to the type. This documentation is delayed, that is,
computed on-demand if the host compiler needs it.

F#

Next you add a provided static property to the type:

F#

Getting this property will always evaluate to the string "Hello!". The GetterCode  for the
property uses an F# quotation, which represents the code that the host compiler

let makeOneProvidedType (n:int) = 
… 

// This is the provided type. It is an erased provided type and, in compiled 
code, 
// will appear as type 'obj'. 
let t = ProvidedTypeDefinition(thisAssembly, namespaceName, 
                               "Type" + string n, 
                               baseType = Some typeof<obj>) 

t.AddXmlDocDelayed (fun () -> $"""This provided type {"Type" + string n}""") 

let staticProp = ProvidedProperty(propertyName = "StaticProperty", 
                                  propertyType = typeof<string>, 
                                  isStatic = true, 
                                  getterCode = (fun args -> <@@ "Hello!" 
@@>)) 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-obj.html


generates for getting the property. For more information about quotations, see Code
Quotations (F#).

Add XML documentation to the property.

F#

Now attach the provided property to the provided type. You must attach a provided
member to one and only one type. Otherwise, the member will never be accessible.

F#

Now create a provided constructor that takes no parameters.

F#

The InvokeCode  for the constructor returns an F# quotation, which represents the code
that the host compiler generates when the constructor is called. For example, you can
use the following constructor:

F#

An instance of the provided type will be created with underlying data "The object data".
The quoted code includes a conversion to obj  because that type is the erasure of this
provided type (as you specified when you declared the provided type).

Add XML documentation to the constructor, and add the provided constructor to the
provided type:

F#

staticProp.AddXmlDocDelayed(fun () -> "This is a static property") 

t.AddMember staticProp 

let ctor = ProvidedConstructor(parameters = [ ], 
                               invokeCode = (fun args -> <@@ "The object 
data" :> obj @@>)) 

new Type10() 

ctor.AddXmlDocDelayed(fun () -> "This is a constructor")

t.AddMember ctor 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-obj.html


Create a second provided constructor that takes one parameter:

F#

The InvokeCode  for the constructor again returns an F# quotation, which represents the
code that the host compiler generated for a call to the method. For example, you can
use the following constructor:

F#

An instance of the provided type is created with underlying data "ten". You may have
already noticed that the InvokeCode  function returns a quotation. The input to this
function is a list of expressions, one per constructor parameter. In this case, an
expression that represents the single parameter value is available in args[0] . The code
for a call to the constructor coerces the return value to the erased type obj . After you
add the second provided constructor to the type, you create a provided instance
property:

F#

Getting this property will return the length of the string, which is the representation
object. The GetterCode  property returns an F# quotation that specifies the code that the
host compiler generates to get the property. Like InvokeCode , the GetterCode  function
returns a quotation. The host compiler calls this function with a list of arguments. In this
case, the arguments include just the single expression that represents the instance upon
which the getter is being called, which you can access by using args[0] . The
implementation of GetterCode  then splices into the result quotation at the erased type
obj , and a cast is used to satisfy the compiler's mechanism for checking types that the

let ctor2 = 
ProvidedConstructor(parameters = [ ProvidedParameter("data",typeof<string>) 
], 
                    invokeCode = (fun args -> <@@ (%%(args[0]) : string) :> 
obj @@>)) 

new Type10("ten") 

let instanceProp = 
    ProvidedProperty(propertyName = "InstanceProperty", 
                     propertyType = typeof<int>, 
                     getterCode= (fun args -> 
                        <@@ ((%%(args[0]) : obj) :?> string).Length @@>)) 
instanceProp.AddXmlDocDelayed(fun () -> "This is an instance property") 
t.AddMember instanceProp 



object is a string. The next part of makeOneProvidedType  provides an instance method
with one parameter.

F#

Finally, create a nested type that contains 100 nested properties. The creation of this
nested type and its properties is delayed, that is, computed on-demand.

F#

let instanceMeth = 
    ProvidedMethod(methodName = "InstanceMethod", 
                   parameters = [ProvidedParameter("x",typeof<int>)], 
                   returnType = typeof<char>, 
                   invokeCode = (fun args -> 
                       <@@ ((%%(args[0]) : obj) :?> string).Chars(%%
(args[1]) : int) @@>)) 

instanceMeth.AddXmlDocDelayed(fun () -> "This is an instance method") 
// Add the instance method to the type. 
t.AddMember instanceMeth 

t.AddMembersDelayed(fun () -> 
  let nestedType = ProvidedTypeDefinition("NestedType", Some typeof<obj>) 

  nestedType.AddMembersDelayed (fun () -> 
    let staticPropsInNestedType = 
      [ 
          for i in 1 .. 100 -> 
              let valueOfTheProperty = "I am string "  + string i 

              let p = 
                ProvidedProperty(propertyName = "StaticProperty" + string i, 
                  propertyType = typeof<string>, 
                  isStatic = true, 
                  getterCode= (fun args -> <@@ valueOfTheProperty @@>)) 

              p.AddXmlDocDelayed(fun () -> 
                  $"This is StaticProperty{i} on NestedType") 

              p 
      ] 

    staticPropsInNestedType) 

  [nestedType]) 

Details about Erased Provided Types



The example in this section provides only erased provided types, which are particularly
useful in the following situations:

When you are writing a provider for an information space that contains only data
and methods.

When you are writing a provider where accurate runtime-type semantics aren't
critical for practical use of the information space.

When you are writing a provider for an information space that is so large and
interconnected that it isn’t technically feasible to generate real .NET types for the
information space.

In this example, each provided type is erased to type obj , and all uses of the type will
appear as type obj  in compiled code. In fact, the underlying objects in these examples
are strings, but the type will appear as System.Object  in .NET compiled code. As with all
uses of type erasure, you can use explicit boxing, unboxing, and casting to subvert
erased types. In this case, a cast exception that isn’t valid may result when the object is
used. A provider runtime can define its own private representation type to help protect
against false representations. You can’t define erased types in F# itself. Only provided
types may be erased. You must understand the ramifications, both practical and
semantic, of using either erased types for your type provider or a provider that provides
erased types. An erased type has no real .NET type. Therefore, you cannot do accurate
reflection over the type, and you might subvert erased types if you use runtime casts
and other techniques that rely on exact runtime type semantics. Subversion of erased
types frequently results in type cast exceptions at run time.

For some uses of erased provided types, no representation is required. For example, the
erased provided type might contain only static properties and members and no
constructors, and no methods or properties would return an instance of the type. If you
can reach instances of an erased provided type, you must consider the following
questions:

What is the erasure of a provided type?

The erasure of a provided type is how the type appears in compiled .NET code.

The erasure of a provided erased class type is always the first non-erased base type
in the inheritance chain of the type.

The erasure of a provided erased interface type is always System.Object .

Choosing Representations for Erased Provided Types



What are the representations of a provided type?

The set of possible objects for an erased provided type are called its
representations. In the example in this document, the representations of all the
erased provided types Type1..Type100  are always string objects.

All representations of a provided type must be compatible with the erasure of the
provided type. (Otherwise, either the F# compiler will give an error for a use of the type
provider, or unverifiable .NET code that isn't valid will be generated. A type provider isn’t
valid if it returns code that gives a representation that isn't valid.)

You can choose a representation for provided objects by using either of the following
approaches, both of which are very common:

If you're simply providing a strongly typed wrapper over an existing .NET type, it
often makes sense for your type to erase to that type, use instances of that type as
representations, or both. This approach is appropriate when most of the existing
methods on that type still make sense when using the strongly typed version.

If you want to create an API that differs significantly from any existing .NET API, it
makes sense to create runtime types that will be the type erasure and
representations for the provided types.

The example in this document uses strings as representations of provided objects.
Frequently, it may be appropriate to use other objects for representations. For example,
you may use a dictionary as a property bag:

F#

As an alternative, you may define a type in your type provider that will be used at run
time to form the representation, along with one or more runtime operations:

F#

Provided members can then construct instances of this object type:

F#

ProvidedConstructor(parameters = [], 
    invokeCode= (fun args -> <@@ (new Dictionary<string,obj>()) :> obj @@>)) 

type DataObject() = 
    let data = Dictionary<string,obj>() 
    member x.RuntimeOperation() = data.Count 



In this case, you may (optionally) use this type as the type erasure by specifying this type
as the baseType  when constructing the ProvidedTypeDefinition :

F#

The previous section explained how to create a simple erasing type provider that
provides a range of types, properties, and methods. This section also explained the
concept of type erasure, including some of the advantages and disadvantages of
providing erased types from a type provider, and discussed representations of erased
types.

The ability to parameterize type providers by static data enables many interesting
scenarios, even in cases when the provider doesn't need to access any local or remote
data. In this section, you’ll learn some basic techniques for putting together such a
provider.

Imagine that you want to implement a type provider for regular expressions that wraps
the .NET Regex libraries in an interface that provides the following compile-time
guarantees:

Verifying whether a regular expression is valid.

Providing named properties on matches that are based on any group names in the
regular expression.

This section shows you how to use type providers to create a RegexTyped  type that the
regular expression pattern parameterizes to provide these benefits. The compiler will

ProvidedConstructor(parameters = [], 
    invokeCode= (fun args -> <@@ (new DataObject()) :> obj @@>)) 

ProvidedTypeDefinition(…, baseType = Some typeof<DataObject> ) 
… 
ProvidedConstructor(…, InvokeCode = (fun args -> <@@ new DataObject() @@>), 
…) 

Key Lessons

A Type Provider That Uses Static Parameters

Type Checked Regex Provider

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex


report an error if the supplied pattern isn't valid, and the type provider can extract the
groups from the pattern so that you can access them by using named properties on
matches. When you design a type provider, you should consider how its exposed API
should look to end users and how this design will translate to .NET code. The following
example shows how to use such an API to get the components of the area code:

F#

The following example shows how the type provider translates these calls:

F#

Note the following points:

The standard Regex type represents the parameterized RegexTyped  type.

The RegexTyped  constructor results in a call to the Regex constructor, passing in
the static type argument for the pattern.

The results of the Match  method are represented by the standard Match type.

Each named group results in a provided property, and accessing the property
results in a use of an indexer on a match's Groups  collection.

The following code is the core of the logic to implement such a provider, and this
example omits the addition of all members to the provided type. For information about
each added member, see the appropriate section later in this topic.

F#

type T = RegexTyped< @"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)"> 
let reg = T() 
let result = T.IsMatch("425-555-2345") 
let r = reg.Match("425-555-2345").Group_AreaCode.Value //r equals "425" 

let reg = new Regex(@"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)") 
let result = reg.IsMatch("425-123-2345") 
let r = reg.Match("425-123-2345").Groups["AreaCode"].Value //r equals "425" 

namespace Samples.FSharp.RegexTypeProvider 

open System.Reflection 
open Microsoft.FSharp.Core.CompilerServices 
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions 

[<TypeProvider>] 

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match


Note the following points:

The type provider takes two static parameters: the pattern , which is mandatory,
and the options , which are optional (because a default value is provided).

type public CheckedRegexProvider() as this = 
    inherit TypeProviderForNamespaces() 

    // Get the assembly and namespace used to house the provided types 
    let thisAssembly = Assembly.GetExecutingAssembly() 
    let rootNamespace = "Samples.FSharp.RegexTypeProvider" 
    let baseTy = typeof<obj> 
    let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)] 

    let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, 
"RegexTyped", Some baseTy) 

    do regexTy.DefineStaticParameters( 
        parameters=staticParams, 
        instantiationFunction=(fun typeName parameterValues -> 

          match parameterValues with 
          | [| :? string as pattern|] -> 

            // Create an instance of the regular expression. 
            // 
            // This will fail with System.ArgumentException if the regular 
expression is not valid. 
            // The exception will escape the type provider and be reported 
in client code. 
            let r = System.Text.RegularExpressions.Regex(pattern) 

            // Declare the typed regex provided type. 
            // The type erasure of this type is 'obj', even though the 
representation will always be a Regex 
            // This, combined with hiding the object methods, makes the 
IntelliSense experience simpler. 
            let ty = 
              ProvidedTypeDefinition( 
                thisAssembly, 
                rootNamespace, 
                typeName, 
                baseType = Some baseTy) 

            ... 

            ty 
          | _ -> failwith "unexpected parameter values")) 

    do this.AddNamespace(rootNamespace, [regexTy]) 

[<TypeProviderAssembly>] 
do () 



After the static arguments are supplied, you create an instance of the regular
expression. This instance will throw an exception if the Regex is malformed, and
this error will be reported to users.

Within the DefineStaticParameters  callback, you define the type that will be
returned after the arguments are supplied.

This code sets HideObjectMethods  to true so that the IntelliSense experience will
remain streamlined. This attribute causes the Equals , GetHashCode , Finalize , and
GetType  members to be suppressed from IntelliSense lists for a provided object.

You use obj  as the base type of the method, but you’ll use a Regex  object as the
runtime representation of this type, as the next example shows.

The call to the Regex  constructor throws an ArgumentException when a regular
expression isn’t valid. The compiler catches this exception and reports an error
message to the user at compile time or in the Visual Studio editor. This exception
enables regular expressions to be validated without running an application.

The type defined above isn't useful yet because it doesn’t contain any meaningful
methods or properties. First, add a static IsMatch  method:

F#

The previous code defines a method IsMatch , which takes a string as input and returns
a bool . The only tricky part is the use of the args  argument within the InvokeCode
definition. In this example, args  is a list of quotations that represents the arguments to
this method. If the method is an instance method, the first argument represents the
this  argument. However, for a static method, the arguments are all just the explicit
arguments to the method. Note that the type of the quoted value should match the
specified return type (in this case, bool ). Also note that this code uses the AddXmlDoc

let isMatch = 
    ProvidedMethod( 
        methodName = "IsMatch", 
        parameters = [ProvidedParameter("input", typeof<string>)],
        returnType = typeof<bool>, 
        isStatic = true, 
        invokeCode = fun args -> <@@ Regex.IsMatch(%%args[0], pattern) @@>) 

isMatch.AddXmlDoc "Indicates whether the regular expression finds a match in 
the specified input string." 
ty.AddMember isMatch 

https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception


method to make sure that the provided method also has useful documentation, which
you can supply through IntelliSense.

Next, add an instance Match method. However, this method should return a value of a
provided Match  type so that the groups can be accessed in a strongly typed fashion.
Thus, you first declare the Match  type. Because this type depends on the pattern that
was supplied as a static argument, this type must be nested within the parameterized
type definition:

F#

You then add one property to the Match type for each group. At run time, a match is
represented as a Match value, so the quotation that defines the property must use the
Groups indexed property to get the relevant group.

F#

Again, note that you’re adding XML documentation to the provided property. Also note
that a property can be read if a GetterCode  function is provided, and the property can
be written if a SetterCode  function is provided, so the resulting property is read only.

Now you can create an instance method that returns a value of this Match  type:

F#

let matchTy = 
    ProvidedTypeDefinition( 
        "MatchType", 
        baseType = Some baseTy, 
        hideObjectMethods = true) 

ty.AddMember matchTy 

for group in r.GetGroupNames() do 
    // Ignore the group named 0, which represents all input. 
    if group <> "0" then 
    let prop = 
      ProvidedProperty( 
        propertyName = group, 
        propertyType = typeof<Group>, 
        getterCode = fun args -> <@@ ((%%args[0]:obj) :?> 
Match).Groups[group] @@>) 
        prop.AddXmlDoc($"""Gets the ""{group}"" group from this match""") 
    matchTy.AddMember prop 

let matchMethod = 
    ProvidedMethod( 

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.match.groups#system-text-regularexpressions-match-groups


Because you are creating an instance method, args[0]  represents the RegexTyped
instance on which the method is being called, and args[1]  is the input argument.

Finally, provide a constructor so that instances of the provided type can be created.

F#

The constructor merely erases to the creation of a standard .NET Regex instance, which
is again boxed to an object because obj  is the erasure of the provided type. With that
change, the sample API usage that specified earlier in the topic works as expected. The
following code is complete and final:

F#

        methodName = "Match", 
        parameters = [ProvidedParameter("input", typeof<string>)],
        returnType = matchTy, 
        invokeCode = fun args -> <@@ ((%%args[0]:obj) :?> 
Regex).Match(%%args[1]) :> obj @@>) 

matchMeth.AddXmlDoc "Searches the specified input string for the first 
occurrence of this regular expression" 

ty.AddMember matchMeth 

let ctor = 
    ProvidedConstructor( 
        parameters = [], 
        invokeCode = fun args -> <@@ Regex(pattern, options) :> obj @@>) 

ctor.AddXmlDoc("Initializes a regular expression instance.") 

ty.AddMember ctor 

namespace Samples.FSharp.RegexTypeProvider 

open System.Reflection 
open Microsoft.FSharp.Core.CompilerServices 
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions 

[<TypeProvider>] 
type public CheckedRegexProvider() as this = 
    inherit TypeProviderForNamespaces() 

    // Get the assembly and namespace used to house the provided types. 
    let thisAssembly = Assembly.GetExecutingAssembly() 
    let rootNamespace = "Samples.FSharp.RegexTypeProvider" 
    let baseTy = typeof<obj> 
    let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)] 



    let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, 
"RegexTyped", Some baseTy) 

    do regexTy.DefineStaticParameters( 
        parameters=staticParams, 
        instantiationFunction=(fun typeName parameterValues -> 

            match parameterValues with 
            | [| :? string as pattern|] -> 

                // Create an instance of the regular expression. 

                let r = System.Text.RegularExpressions.Regex(pattern) 

                // Declare the typed regex provided type. 

                let ty = 
                    ProvidedTypeDefinition( 
                        thisAssembly, 
                        rootNamespace, 
                        typeName,
                        baseType = Some baseTy) 

                ty.AddXmlDoc "A strongly typed interface to the regular 
expression '%s'" 

                // Provide strongly typed version of Regex.IsMatch static 
method. 
                let isMatch = 
                    ProvidedMethod( 
                        methodName = "IsMatch", 
                        parameters = [ProvidedParameter("input", 
typeof<string>)], 
                        returnType = typeof<bool>, 
                        isStatic = true, 
                        invokeCode = fun args -> <@@ 
Regex.IsMatch(%%args[0], pattern) @@>) 

                isMatch.AddXmlDoc "Indicates whether the regular expression 
finds a match in the specified input string" 

                ty.AddMember isMatch 

                // Provided type for matches 
                // Again, erase to obj even though the representation will 
always be a Match 
                let matchTy = 
                    ProvidedTypeDefinition( 
                        "MatchType", 
                        baseType = Some baseTy, 
                        hideObjectMethods = true) 

                // Nest the match type within parameterized Regex type. 
                ty.AddMember matchTy 



                // Add group properties to match type 
                for group in r.GetGroupNames() do 
                    // Ignore the group named 0, which represents all input. 
                    if group <> "0" then 
                        let prop = 
                          ProvidedProperty( 
                            propertyName = group, 
                            propertyType = typeof<Group>, 
                            getterCode = fun args -> <@@ ((%%args[0]:obj) :?
> Match).Groups[group] @@>) 
                        prop.AddXmlDoc(sprintf @"Gets the ""%s"" group from 
this match" group) 
                        matchTy.AddMember(prop) 

                // Provide strongly typed version of Regex.Match instance 
method. 
                let matchMeth = 
                  ProvidedMethod(
                    methodName = "Match", 
                    parameters = [ProvidedParameter("input", 
typeof<string>)], 
                    returnType = matchTy, 
                    invokeCode = fun args -> <@@ ((%%args[0]:obj) :?> 
Regex).Match(%%args[1]) :> obj @@>) 
                matchMeth.AddXmlDoc "Searches the specified input string for 
the first occurrence of this regular expression" 

                ty.AddMember matchMeth 

                // Declare a constructor. 
                let ctor = 
                  ProvidedConstructor( 
                    parameters = [], 
                    invokeCode = fun args -> <@@ Regex(pattern) :> obj @@>) 

                // Add documentation to the constructor. 
                ctor.AddXmlDoc "Initializes a regular expression instance" 

                ty.AddMember ctor

                ty 
            | _ -> failwith "unexpected parameter values")) 

    do this.AddNamespace(rootNamespace, [regexTy]) 

[<TypeProviderAssembly>] 
do () 

Key Lessons



This section explained how to create a type provider that operates on its static
parameters. The provider checks the static parameter and provides operations based on
its value.

Frequently you might want type providers to present APIs based on not only static
parameters but also information from local or remote systems. This section discusses
type providers that are based on local data, such as local data files.

As a simple example, consider a type provider for accessing scientific data in Comma
Separated Value (CSV) format. This section assumes that the CSV files contain a header
row followed by floating point data, as the following table illustrates:

Distance (meter) Time (second)

50.0 3.7

100.0 5.2

150.0 6.4

This section shows how to provide a type that you can use to get rows with a Distance
property of type float<meter>  and a Time  property of type float<second> . For
simplicity, the following assumptions are made:

Header names are either unit-less or have the form "Name (unit)" and don't
contain commas.

Units are all System International (SI) units as the
FSharp.Data.UnitSystems.SI.UnitNames Module (F#)  module defines.

Units are all simple (for example, meter) rather than compound (for example,
meter/second).

All columns contain floating point data.

A more complete provider would loosen these restrictions.

Again the first step is to consider how the API should look. Given an info.csv  file with
the contents from the previous table (in comma-separated format), users of the provider
should be able to write code that resembles the following example:

A Type Provider That Is Backed By Local Data

Simple CSV File Provider

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-data-unitsystems-si-unitnames.html


F#

In this case, the compiler should convert these calls into something like the following
example:

F#

The optimal translation will require the type provider to define a real CsvFile  type in the
type provider's assembly. Type providers often rely on a few helper types and methods
to wrap important logic. Because measures are erased at run time, you can use a
float[]  as the erased type for a row. The compiler will treat different columns as having
different measure types. For example, the first column in our example has type
float<meter> , and the second has float<second> . However, the erased representation
can remain quite simple.

The following code shows the core of the implementation.

F#

let info = new MiniCsv<"info.csv">() 
for row in info.Data do
let time = row.Time 
printfn $"{float time}" 

let info = new CsvFile("info.csv") 
for row in info.Data do
let (time:float) = row[1] 
printfn $"%f{float time}" 

// Simple type wrapping CSV data 
type CsvFile(filename) = 
    // Cache the sequence of all data lines (all lines but the first) 
    let data = 
        seq { 
            for line in File.ReadAllLines(filename) |> Seq.skip 1 -> 
                line.Split(',') |> Array.map float 
        } 
        |> Seq.cache 
    member _.Data = data 

[<TypeProvider>] 
type public MiniCsvProvider(cfg:TypeProviderConfig) as this = 
    inherit TypeProviderForNamespaces(cfg) 

    // Get the assembly and namespace used to house the provided types. 
    let asm = System.Reflection.Assembly.GetExecutingAssembly() 
    let ns = "Samples.FSharp.MiniCsvProvider" 



    // Create the main provided type. 
    let csvTy = ProvidedTypeDefinition(asm, ns, "MiniCsv", 
Some(typeof<obj>)) 

    // Parameterize the type by the file to use as a template. 
    let filename = ProvidedStaticParameter("filename", typeof<string>) 
    do csvTy.DefineStaticParameters([filename], fun tyName [| :? string as 
filename |] -> 

        // Resolve the filename relative to the resolution folder. 
        let resolvedFilename = Path.Combine(cfg.ResolutionFolder, filename) 

        // Get the first line from the file. 
        let headerLine = File.ReadLines(resolvedFilename) |> Seq.head 

        // Define a provided type for each row, erasing to a float[]. 
        let rowTy = ProvidedTypeDefinition("Row", Some(typeof<float[]>)) 

        // Extract header names from the file, splitting on commas. 
        // use Regex matching to get the position in the row at which the 
field occurs 
        let headers = Regex.Matches(headerLine, "[^,]+") 

        // Add one property per CSV field. 
        for i in 0 .. headers.Count - 1 do 
            let headerText = headers[i].Value 

            // Try to decompose this header into a name and unit. 
            let fieldName, fieldTy = 
                let m = Regex.Match(headerText, @"(?<field>.+) \((?
<unit>.+)\)") 
                if m.Success then 

                    let unitName = m.Groups["unit"].Value 
                    let units = ProvidedMeasureBuilder.Default.SI unitName 
                    m.Groups["field"].Value, 
ProvidedMeasureBuilder.Default.AnnotateType(typeof<float>,[units]) 

                else 
                    // no units, just treat it as a normal float 
                    headerText, typeof<float> 

            let prop = 
                ProvidedProperty(fieldName, fieldTy, 
                    getterCode = fun [row] -> <@@ (%%row:float[])[i] @@>) 

            // Add metadata that defines the property's location in the 
referenced file. 
            prop.AddDefinitionLocation(1, headers[i].Index + 1, filename) 
            rowTy.AddMember(prop)

        // Define the provided type, erasing to CsvFile. 
        let ty = ProvidedTypeDefinition(asm, ns, tyName, 
Some(typeof<CsvFile>)) 



Note the following points about the implementation:

Overloaded constructors allow either the original file or one that has an identical
schema to be read. This pattern is common when you write a type provider for
local or remote data sources, and this pattern allows a local file to be used as the
template for remote data.

You can use the TypeProviderConfig  value that’s passed in to the type provider
constructor to resolve relative file names.

You can use the AddDefinitionLocation  method to define the location of the
provided properties. Therefore, if you use Go To Definition  on a provided
property, the CSV file will open in Visual Studio.

You can use the ProvidedMeasureBuilder  type to look up the SI units and to
generate the relevant float<_>  types.

        // Add a parameterless constructor that loads the file that was used 
to define the schema. 
        let ctor0 = 
            ProvidedConstructor([], 
                invokeCode = fun [] -> <@@ CsvFile(resolvedFilename) @@>) 
        ty.AddMember ctor0 

        // Add a constructor that takes the file name to load. 
        let ctor1 = ProvidedConstructor([ProvidedParameter("filename", 
typeof<string>)], 
            invokeCode = fun [filename] -> <@@ CsvFile(%%filename) @@>) 
        ty.AddMember ctor1 

        // Add a more strongly typed Data property, which uses the existing 
property at run time. 
        let prop = 
            ProvidedProperty("Data", 
typedefof<seq<_>>.MakeGenericType(rowTy), 
                getterCode = fun [csvFile] -> <@@ (%%csvFile:CsvFile).Data 
@@>) 
        ty.AddMember prop 

        // Add the row type as a nested type. 
        ty.AddMember rowTy 
        ty) 

    // Add the type to the namespace. 
    do this.AddNamespace(ns, [csvTy]) 

Key Lessons

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-compilerservices-typeproviderconfig.html


This section explained how to create a type provider for a local data source with a
simple schema that's contained in the data source itself.

The following sections include suggestions for further study.

To give you some idea of how the use of the type provider corresponds to the code
that's emitted, look at the following function by using the HelloWorldTypeProvider  that's
used earlier in this topic.

F#

Here’s an image of the resulting code decompiled by using ildasm.exe:

il

Going Further

A Look at the Compiled Code for Erased Types

let function1 () = 
    let obj1 = Samples.HelloWorldTypeProvider.Type1("some data") 
    obj1.InstanceProperty 

.class public abstract auto ansi sealed Module1 
extends [mscorlib]System.Object 
{ 
.custom instance void 
[FSharp.Core]Microsoft.FSharp.Core.CompilationMappingAtt 
ribute::.ctor(valuetype 
[FSharp.Core]Microsoft.FSharp.Core.SourceConstructFlags) 
= ( 01 00 07 00 00 00 00 00 ) 
.method public static int32  function1() cil managed 
{ 
// Code size       24 (0x18) 
.maxstack  3 
.locals init ([0] object obj1) 
IL_0000:  nop 
IL_0001:  ldstr      "some data" 
IL_0006:  unbox.any  [mscorlib]System.Object 
IL_000b:  stloc.0 
IL_000c:  ldloc.0 
IL_000d:  call       !!0 [FSharp.Core_2]Microsoft.FSharp.Core.LanguagePrimit 
ives/IntrinsicFunctions::UnboxGeneric<string>(object) 
IL_0012:  callvirt   instance int32 [mscorlib_3]System.String::get_Length() 
IL_0017:  ret 
} // end of method Module1::function1 

} // end of class Module1 



As the example shows, all mentions of the type Type1  and the InstanceProperty
property have been erased, leaving only operations on the runtime types involved.

Observe the following conventions when authoring type providers.

Providers for Connectivity Protocols In general, names of most provider DLLs for data
and service connectivity protocols, such as OData or SQL connections, should end in
TypeProvider  or TypeProviders . For example, use a DLL name that resembles the
following string:

Fabrikam.Management.BasicTypeProviders.dll

Ensure that your provided types are members of the corresponding namespace, and
indicate the connectivity protocol that you implemented:

F#

Utility Providers for General Coding. For a utility type provider such as that for regular
expressions, the type provider may be part of a base library, as the following example
shows:

F#

In this case, the provided type would appear at an appropriate point according to
normal .NET design conventions:

F#

Singleton Data Sources. Some type providers connect to a single dedicated data source
and provide only data. In this case, you should drop the TypeProvider  suffix and use
normal conventions for .NET naming:

Design and Naming Conventions for Type Providers

  Fabrikam.Management.BasicTypeProviders.WmiConnection<…> 
  Fabrikam.Management.BasicTypeProviders.DataProtocolConnection<…> 

#r "Fabrikam.Core.Text.Utilities.dll" 

  open Fabrikam.Core.Text.RegexTyped 

  let regex = new RegexTyped<"a+b+a+b+">() 



F#

For more information, see the GetConnection  design convention that's described later in
this topic.

The following sections describe design patterns you can use when authoring type
providers.

Most type providers should be written to use the GetConnection  pattern that's used by
the type providers in FSharp.Data.TypeProviders.dll, as the following example shows:

F#

Before you create a type provider that's backed by remote data and services, you must
consider a range of issues that are inherent in connected programming. These issues
include the following considerations:

schema mapping

liveness and invalidation in the presence of schema change

schema caching

asynchronous implementations of data access operations

supporting queries, including LINQ queries

#r "Fabrikam.Data.Freebase.dll" 

let data = Fabrikam.Data.Freebase.Astronomy.Asteroids 

Design Patterns for Type Providers

The GetConnection Design Pattern

#r "Fabrikam.Data.WebDataStore.dll" 

type Service = Fabrikam.Data.WebDataStore<…static connection parameters…> 

let connection = Service.GetConnection(…dynamic connection parameters…) 

let data = connection.Astronomy.Asteroids 

Type Providers Backed By Remote Data and Services



credentials and authentication

This topic doesn't explore these issues further.

When you write your own type providers, you might want to use the following
additional techniques.

The ProvidedType API has delayed versions of AddMember.

F#

These versions are used to create on-demand spaces of types.

You make provided members (whose signatures include array types, byref types, and
instantiations of generic types) by using the normal MakeArrayType , MakePointerType ,
and MakeGenericType  on any instance of Type, including ProvidedTypeDefinitions .

The ProvidedTypes API provides helpers for providing measure annotations. For
example, to provide the type float<kg> , use the following code:

F#

Additional Authoring Techniques

Creating Types and Members On-Demand

  type ProvidedType = 
      member AddMemberDelayed  : (unit -> MemberInfo)      -> unit 
      member AddMembersDelayed : (unit -> MemberInfo list) -> unit 

Providing Array types and Generic Type Instantiations

７ Note

In some cases you may have to use the helper in
ProvidedTypeBuilder.MakeGenericType . See the Type Provider SDK
documentation  for more details.

Providing Unit of Measure Annotations

  let measures = ProvidedMeasureBuilder.Default 
  let kg = measures.SI "kilogram" 

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://github.com/fsprojects/FSharp.TypeProviders.SDK/blob/master/README.md#explicit-construction-of-code-makegenerictype-makegenericmethod-and-uncheckedquotations


To provide the type Nullable<decimal<kg/m^2>> , use the following code:

F#

Each instance of a type provider can be given a TypeProviderConfig  value during
construction. This value contains the "resolution folder" for the provider (that is, the
project folder for the compilation or the directory that contains a script), the list of
referenced assemblies, and other information.

Providers can raise invalidation signals to notify the F# language service that the schema
assumptions may have changed. When invalidation occurs, a typecheck is redone if the
provider is being hosted in Visual Studio. This signal will be ignored when the provider is
hosted in F# Interactive or by the F# Compiler (fsc.exe).

Providers must often cache access to schema information. The cached data should be
stored by using a file name that's given as a static parameter or as user data. An
example of schema caching is the LocalSchemaFile  parameter in the type providers in
the FSharp.Data.TypeProviders  assembly. In the implementation of these providers, this
static parameter directs the type provider to use the schema information in the specified
local file instead of accessing the data source over the network. To use cached schema
information, you must also set the static parameter ForceUpdate  to false . You could use
a similar technique to enable online and offline data access.

When you compile a .dll  or .exe  file, the backing .dll file for generated types is
statically linked into the resulting assembly. This link is created by copying the

  let m = measures.SI "meter" 
  let float_kg = measures.AnnotateType(typeof<float>,[kg]) 

  let kgpm2 = measures.Ratio(kg, measures.Square m) 
  let dkgpm2 = measures.AnnotateType(typeof<decimal>,[kgpm2]) 
  let nullableDecimal_kgpm2 = typedefof<System.Nullable<_>>.MakeGenericType 
[|dkgpm2 |] 

Accessing Project-Local or Script-Local Resources

Invalidation

Caching Schema Information

Backing Assembly



Intermediate Language (IL) type definitions and any managed resources from the
backing assembly into the final assembly. When you use F# Interactive, the backing .dll
file isn't copied and is instead loaded directly into the F# Interactive process.

All uses of all members from provided types may throw exceptions. In all cases, if a type
provider throws an exception, the host compiler attributes the error to a specific type
provider.

Type provider exceptions should never result in internal compiler errors.

Type providers can't report warnings.

When a type provider is hosted in the F# compiler, an F# development
environment, or F# Interactive, all exceptions from that provider are caught. The
Message property is always the error text, and no stack trace appears. If you’re
going to throw an exception, you can throw the following examples:
System.NotSupportedException , System.IO.IOException , System.Exception .

So far, this document has explained how to provide erased types. You can also use the
type provider mechanism in F# to provide generated types, which are added as real
.NET type definitions into the users' program. You must refer to generated provided
types by using a type definition.

F#

The ProvidedTypes-0.2 helper code that is part of the F# 3.0 release has only limited
support for providing generated types. The following statements must be true for a
generated type definition:

isErased  must be set to false .

The generated type must be added to a newly constructed ProvidedAssembly() ,
which represents a container for generated code fragments.

Exceptions and Diagnostics from Type Providers

Providing Generated Types

open Microsoft.FSharp.TypeProviders 

type Service = 
ODataService<"http://services.odata.org/Northwind/Northwind.svc/">



The provider must have an assembly that has an actual backing .NET .dll file with a
matching .dll file on disk.

When you write type providers, keep the following rules and limitations in mind.

All provided types should be reachable from the non-nested types. The non-nested
types are given in the call to the TypeProviderForNamespaces  constructor or a call to
AddNamespace . For example, if the provider provides a type StaticClass.P : T , you must
ensure that T is either a non-nested type or nested under one.

For example, some providers have a static class such as DataTypes  that contain these
T1, T2, T3, ...  types. Otherwise, the error says that a reference to type T in assembly
A was found, but the type couldn't be found in that assembly. If this error appears, verify
that all your subtypes can be reached from the provider types. Note: These T1, T2,
T3...  types are referred to as the on-the-fly types. Remember to put them in an
accessible namespace or a parent type.

The type provider mechanism in F# has the following limitations:

The underlying infrastructure for type providers in F# doesn't support provided
generic types or provided generic methods.

The mechanism doesn't support nested types with static parameters.

You might find the following tips helpful during the development process:

You can develop the type provider in one instance and test the provider in the other
because the test IDE will take a lock on the .dll file that prevents the type provider from
being rebuilt. Thus, you must close the second instance of Visual Studio while the

Rules and Limitations

Provided types must be reachable

Limitations of the Type Provider Mechanism

Development Tips

Run two instances of Visual Studio



provider is built in the first instance, and then you must reopen the second instance
after the provider is built.

You can invoke type providers by using the following tools:

fsc.exe (The F# command line compiler)

fsi.exe (The F# Interactive compiler)

devenv.exe (Visual Studio)

You can often debug type providers most easily by using fsc.exe on a test script file (for
example, script.fsx). You can launch a debugger from a command prompt.

Console

You can use print-to-stdout logging.

Type Providers
The Type Provider SDK

Debug type providers by using invocations of fsc.exe

devenv /debugexe fsc.exe script.fsx 

See also

https://github.com/fsprojects/FSharp.TypeProviders.SDK


Type Provider Security
Article • 09/15/2021

Type providers are assemblies (DLLs) referenced by your F# project or script that contain
code to connect to external data sources and surface this type information to the F#
type environment. Typically, code in referenced assemblies is only run when you compile
and then execute the code (or in the case of a script, send the code to F# Interactive).
However, a type provider assembly will run inside Visual Studio when the code is merely
browsed in the editor. This happens because type providers need to run to add extra
information to the editor, such as Quick Info tooltips, IntelliSense completions, and so
on. As a result, there are extra security considerations for type provider assemblies, since
they run automatically inside the Visual Studio process.

When using a particular type provider assembly for the first time, Visual Studio displays
a security dialog that warns you that the type provider is about to run. Before Visual
Studio loads the type provider, it gives you the opportunity to decide if you trust this
particular provider. If you trust the source of the type provider, then select "I trust this
type provider." If you do not trust the source of the type provider, then select "I do not
trust this type provider." Trusting the provider enables it to run inside Visual Studio and
provide IntelliSense and build features. But if the type provider itself is malicious,
running its code could compromise your machine.

If your project contains code that references type providers that you chose in the dialog
not to trust, then at compile time, the compiler will report an error that indicates that
the type provider is untrusted. Any types that are dependent on the untrusted type
provider are indicated by red squiggles. It is safe to browse the code in the editor.

If you decide to change the trust setting directly in Visual Studio, perform the following
steps.

1. On the Tools  menu, select Options , and expand the F# Tools  node.

2. Select Type Providers , and in the list of type providers, select the check box for
type providers you trust, and clear the check box for those you don't trust.

Security Warning Dialog

To change the trust settings for type providers



Type Providers

See also



Troubleshooting Type Providers
Article • 03/30/2023

This topic describes and provides potential solutions for the problems that you are most
likely to encounter when you use type providers.

If you encounter a problem when you work with type providers, you can review the
following table for the most common solutions.

Problem Suggested Actions

Schema Changes. Type
providers work best when the
data source schema is stable. If
you add a data table or column
or make another change to
that schema, the type provider
doesn’t automatically
recognize these changes.

Clean or rebuild the project. To clean the project, choose Build,
Clean ProjectName on the menu bar. To rebuild the project,
choose Build, Rebuild ProjectName on the menu bar. These
actions reset all type provider state and force the provider to
reconnect to the data source and obtain updated schema
information.

Connection Failure. The URL or
connection string is incorrect,
the network is down, or the
data source or service is
unavailable.

For a web service or OData service, you can try the URL in a
browser to verify whether the URL is correct and the service is
available. For a database connection string, you can use the
data connection tools in Server Explorer to verify whether the
connection string is valid and the database is available. After
you restore your connection, you should then clean or rebuild
the project so that the type provider will reconnect to the
network.

Not Valid Credentials. You
must have valid permissions for
the data source or web service.

For a SQL connection, the username and the password that are
specified in the connection string or configuration file must be
valid for the database. If you are using Windows Authentication,
you must have access to the database. The database
administrator can identify what permissions you need for access
to each database and each element within a database.

For a web service or a data service, you must have appropriate
credentials. Most type providers provide a DataContext object,
which contains a Credentials property that you can set with the
appropriate username and access key.

Not Valid Path. A path to a file
was not valid.

Verify whether the path is correct and the file exists. In addition,
you must either quote any backslashes in the path
appropriately or use a verbatim string or triple-quoted string.

Possible Problems with Type Providers



Type Providers

See also



Compiler Directives
Article • 09/24/2022

This topic describes processor directives and compiler directives.

For F# Interactive (dotnet fsi ) directives, see Interactive Programming with F#.

A preprocessor directive is prefixed with the # symbol and appears on a line by itself. It
is interpreted by the preprocessor, which runs before the compiler itself.

The following table lists the preprocessor directives that are available in F#.

Directive Description

#if  symbol Supports conditional compilation. Code in the section after the #if  is included if
the symbol is defined. The symbol can also be negated with ! .

#else Supports conditional compilation. Marks a section of code to include if the symbol
used with the previous #if  is not defined.

#endif Supports conditional compilation. Marks the end of a conditional section of code.

# [line] int, 
# [line] int
string, 
# [line] int
verbatim-
string

Indicates the original source code line and file name, for debugging. This feature is
provided for tools that generate F# source code.

#nowarn

warningcode
Disables a compiler warning or warnings. To disable a warning, find its number
from the compiler output and include it in quotation marks. Omit the "FS" prefix.
To disable multiple warning numbers on the same line, include each number in
quotation marks, and separate each string by a space.  
For example: #nowarn "9" "40"

The effect of disabling a warning applies to the entire file, including portions of the file
that precede the directive.|

Code that is deactivated by one of these directives appears dimmed in the Visual Studio
Code Editor.

Preprocessor Directives

Conditional Compilation Directives



The following code illustrates the use of the #if , #else , and #endif  directives. In this
example, the code contains two versions of the definition of function1 . When VERSION1
is defined by using the -define compiler option, the code between the #if  directive and
the #else  directive is activated. Otherwise, the code between #else  and #endif  is
activated.

F#

There is no #define  preprocessor directive in F#. You must use the compiler option or
project settings to define the symbols used by the #if  directive.

Conditional compilation directives can be nested. Indentation is not significant for
preprocessor directives.

You can also negate a symbol with ! . In this example, a string's value is something only
when not debugging:

F#

７ Note

The behavior of the conditional compilation directives is not the same as it is in
other languages. For example, you cannot use Boolean expressions involving
symbols, and true  and false  have no special meaning. Symbols that you use in
the if  directive must be defined by the command line or in the project settings;
there is no define  preprocessor directive.

#if VERSION1 
let function1 x y = 
   printfn "x: %d y: %d" x y 
   x + 2 * y 
#else 
let function1 x y = 
   printfn "x: %d y: %d" x y 
   x - 2*y 
#endif 

let result = function1 10 20 

#if !DEBUG 
let str = "Not debugging!" 
#else 
let str = "Debugging!" 
#endif 



When building, the compiler reports errors in F# code by referencing line numbers on
which each error occurs. These line numbers start at 1 for the first line in a file. However,
if you are generating F# source code from another tool, the line numbers in the
generated code are generally not of interest, because the errors in the generated F#
code most likely arise from another source. The #line  directive provides a way for
authors of tools that generate F# source code to pass information about the original
line numbers and source files to the generated F# code.

When you use the #line  directive, file names must be enclosed in quotation marks.
Unless the verbatim token (@ ) appears in front of the string, you must escape backslash
characters by using two backslash characters instead of one in order to use them in the
path. The following are valid line tokens. In these examples, assume that the original file
Script1  results in an automatically generated F# code file when it is run through a tool,
and that the code at the location of these directives is generated from some tokens at
line 25 in file Script1 .

F#

These tokens indicate that the F# code generated at this location is derived from some
constructs at or near line 25  in Script1 .

F# Language Reference
Compiler Options

Line Directives

# 25 
#line 25 
#line 25 "C:\\Projects\\MyProject\\MyProject\\Script1" 
#line 25 @"C:\Projects\MyProject\MyProject\Script1" 
# 25 @"C:\Projects\MyProject\MyProject\Script1" 

See also



Keyword Reference
Article • 04/07/2022

This topic contains links to information about all F# language keywords.

The following table shows all F# keywords in alphabetical order, together with brief
descriptions and links to relevant topics that contain more information.

Keyword Link Description

abstract Members 

Abstract
Classes

Indicates a method that either has no implementation in the type in
which it is declared or that is virtual and has a default
implementation.

and let Bindings 

Records

Members 

Constraints

Used in mutually recursive bindings and records, in property
declarations, and with multiple constraints on generic parameters.

as Classes 

Pattern
Matching

Used to give the current class object an object name. Also used to
give a name to a whole pattern within a pattern match.

assert Assertions Used to verify code during debugging.

base Classes 

Inheritance

Used as the name of the base class object.

begin Verbose
Syntax

In verbose syntax, indicates the start of a code block.

class Classes In verbose syntax, indicates the start of a class definition.

default Members Indicates an implementation of an abstract method; used together
with an abstract method declaration to create a virtual method.

delegate Delegates Used to declare a delegate.

F# Keyword Table



Keyword Link Description

do do Bindings 

Loops: for...to
Expression 

Loops: for...in
Expression 

Loops:
while...do
Expression

Used in looping constructs or to execute imperative code.

done Verbose
Syntax

In verbose syntax, indicates the end of a block of code in a looping
expression.

downcast Casting and
Conversions

Used to convert to a type that is lower in the inheritance chain.

downto Loops: for...to
Expression

In a for  expression, used when counting in reverse.

elif Conditional
Expressions:
if...then...else

Used in conditional branching. A short form of else if .

else Conditional
Expressions:
if...then...else

Used in conditional branching.

end Structs 

Discriminated
Unions 

Records

Type
Extensions 

Verbose
Syntax

In type definitions and type extensions, indicates the end of a
section of member definitions. 

In verbose syntax, used to specify the end of a code block that starts
with the begin  keyword.

exception Exception
Handling 

Exception
Types

Used to declare an exception type.



Keyword Link Description

extern External
Functions

Indicates that a declared program element is defined in another
binary or assembly.

false Primitive
Types

Used as a Boolean literal.

finally Exceptions:
The
try...finally
Expression

Used together with try  to introduce a block of code that executes
regardless of whether an exception occurs.

fixed Fixed Used to "pin" a pointer on the stack to prevent it from being
garbage collected.

for Loops: for...to
Expression 

Loops: for...in
Expression

Used in looping constructs.

fun Lambda
Expressions:
The fun
Keyword

Used in lambda expressions, also known as anonymous functions.

function Match
Expressions 

Lambda
Expressions:
The fun
Keyword

Used as a shorter alternative to the fun  keyword and a match
expression in a lambda expression that has pattern matching on a
single argument.

global Namespaces Used to reference the top-level .NET namespace.

if Conditional
Expressions:
if...then...else

Used in conditional branching constructs.

in Loops: for...in
Expression 

Verbose
Syntax

Used for sequence expressions and, in verbose syntax, to separate
expressions from bindings.

inherit Inheritance Used to specify a base class or base interface.



Keyword Link Description

inline Functions 

Inline
Functions

Used to indicate a function that should be integrated directly into
the caller's code.

interface Interfaces Used to declare and implement interfaces.

internal Access
Control

Used to specify that a member is visible inside an assembly but not
outside it.

lazy Lazy
Expressions

Used to specify an expression that is to be performed only when a
result is needed.

let let Bindings Used to associate, or bind, a name to a value or function.

let! Async
expressions 

Task
expressions 

Computation
Expressions

Used in async expressions to bind a name to the result of an
asynchronous computation, or, in other computation expressions,
used to bind a name to a result, which is of the computation type.

match Match
Expressions

Used to branch by comparing a value to a pattern.

match! Computation
Expressions

Used to inline a call to a computation expression and pattern match
on its result.

member Members Used to declare a property or method in an object type.

module Modules Used to associate a name with a group of related types, values, and
functions, to logically separate it from other code.

mutable let Bindings Used to declare a variable, that is, a value that can be changed.

namespace Namespaces Used to associate a name with a group of related types and
modules, to logically separate it from other code.

new Constructors 

Constraints

Used to declare, define, or invoke a constructor that creates or that
can create an object. 

Also used in generic parameter constraints to indicate that a type
must have a certain constructor.



Keyword Link Description

not Symbol and
Operator
Reference 

Constraints

Not actually a keyword. However, not struct  in combination is used
as a generic parameter constraint.

null Null Values 

Constraints

Indicates the absence of an object. 

Also used in generic parameter constraints.

of Discriminated
Unions 

Delegates 

Exception
Types

Used in discriminated unions to indicate the type of categories of
values, and in delegate and exception declarations.

open Import
Declarations:
The open
Keyword

Used to make the contents of a namespace or module available
without qualification.

or Symbol and
Operator
Reference 

Constraints

Used with Boolean conditions as a Boolean or  operator. Equivalent
to || . 

Also used in member constraints.

override Members Used to implement a version of an abstract or virtual method that
differs from the base version.

private Access
Control

Restricts access to a member to code in the same type or module.

public Access
Control

Allows access to a member from outside the type.

rec Functions Used to indicate that a function is recursive.

return [Computation
Expressions 

Async
expressions 

Task
expressions

Used to indicate a value to provide as the result of a computation
expression.



Keyword Link Description

return! Computation
Expressions 

Async
expressions 

Task
expressions

Used to indicate a computation expression that, when evaluated,
provides the result of the containing computation expression.

select Query
Expressions

Used in query expressions to specify what fields or columns to
extract. Note that this is a contextual keyword, which means that it is
not actually a reserved word and it only acts like a keyword in
appropriate context.

static Members Used to indicate a method or property that can be called without an
instance of a type, or a value member that is shared among all
instances of a type.

struct Structs 

Tuples 

Constraints

Used to declare a structure type.

Used to specify a struct tuple. 

Also used in generic parameter constraints. 

Used for OCaml compatibility in module definitions.

then Conditional
Expressions:
if...then...else 

Constructors

Used in conditional expressions. 

Also used to perform side effects after object construction.

to Loops: for...to
Expression

Used in for  loops to indicate a range.

true Primitive
Types

Used as a Boolean literal.

try Exceptions:
The try...with
Expression 

Exceptions:
The
try...finally
Expression

Used to introduce a block of code that might generate an exception.
Used together with with  or finally .



Keyword Link Description

type F# Types 

Classes 

Records

Structs 

Enumerations 

Discriminated
Unions 

Type
Abbreviations 

Units of
Measure

Used to declare a class, record, structure, discriminated union,
enumeration type, unit of measure, or type abbreviation.

upcast Casting and
Conversions

Used to convert to a type that is higher in the inheritance chain.

use Resource
Management:
The use
Keyword

Used instead of let  for values that require Dispose  to be called to
free resources.

use! Computation
Expressions 

Async
expressions 

Task
expressions

Used instead of let!  in async expressions and other computation
expressions for values that require Dispose  to be called to free
resources.

val Explicit Fields:
The val
Keyword 

Signatures 

Members

Used in a signature to indicate a value, or in a type to declare a
member, in limited situations.

void Primitive
Types

Indicates the .NET void  type. Used when interoperating with other
.NET languages.



Keyword Link Description

when Constraints Used for Boolean conditions (when guards) on pattern matches and
to introduce a constraint clause for a generic type parameter.

while Loops:
while...do
Expression

Introduces a looping construct.

with Match
Expressions 

Object
Expressions 

Copy and
Update
Record
Expressions 

Type
Extensions 

Exceptions:
The try...with
Expression

Used together with the match  keyword in pattern matching
expressions. Also used in object expressions, record copying
expressions, and type extensions to introduce member definitions,
and to introduce exception handlers.

yield Lists, Arrays,
Sequences

Used in a list, array, or sequence expression to produce a value for a
sequence. Typically can be omitted, as it is implicit in most
situations.

yield! Computation
Expressions 

Async
expressions 

Task
expressions

Used in a computation expression to append the result of a given
computation expression to a collection of results for the containing
computation expression.

const Type
Providers

Type Providers allow the use of const  as a keyword to specify a
constant literal as a type parameter argument.

The following tokens are reserved in F# because they are keywords in the OCaml
language:

asr

land

lor



lsl

lsr

lxor

mod

sig

If you use the --mlcompatibility  compiler option, the above keywords are available for
use as identifiers.

The following tokens are reserved as keywords for future expansion of F#:

break

checked

component

const

constraint

continue

event

external

include

mixin

parallel

process

protected

pure

sealed

tailcall

trait

virtual

The following tokens were once reserved as keywords but were released  in F# 4.1, so
now you can use them as identifiers:

Keyword Reason

method the F# community are happy with member  to introduce methods

constructor the F# community are happy with new  to introduce constructors

atomic this was related to the fad for transactional memory circa 2006. In F# this would
now be a library-defined computation expression

https://github.com/fsharp/fslang-design/blob/main/FSharp-4.1/FS-1016-unreserve-keywords.md


Keyword Reason

eager this is no longer needed, it was initially designed to be let eager  to match a
potential let lazy

object there is no need to reserve this

recursive F# is happy using rec

functor If F# added parameterized modules, we would use module M(args) = ...

measure There is no specific reason to reserve this these days, the [<Measure>]  attribute
suffices

volatile There is no specific reason to reserve this these days, the [<Volatile>]  attribute
suffices

F# Language Reference
Symbol and Operator Reference
Compiler Options

See also



Verbose Syntax
Article • 11/05/2021

There are two forms of syntax available for many constructs in F#: verbose syntax and
lightweight syntax. The verbose syntax is not as commonly used, but has the advantage
of being less sensitive to indentation. The lightweight syntax is shorter and uses
indentation to signal the beginning and end of constructs, rather than additional
keywords like begin , end , in , and so on. The default syntax is the lightweight syntax.
This topic describes the syntax for F# constructs when lightweight syntax is not enabled.
Verbose syntax is always enabled, so even if you enable lightweight syntax, you can still
use verbose syntax for some constructs.

The following table shows the lightweight and verbose syntax for F# language
constructs in contexts where there is a difference between the two forms. In this table,
angle brackets (<>) enclose user-supplied syntax elements. Refer to the documentation
for each language construct for more detailed information about the syntax used within
these constructs.

Language
construct

Lightweight syntax Verbose syntax

compound
expressions F# F#

nested let
bindings F# F#

code block
F# F#

Table of Constructs

<expression1> 
<expression2> 

<expression1>; 
<expression2> 

let f x = 
    let a = 1 
    let b = 2 
    x + a + b 

let f x = 
    let a = 1 in 
    let b = 2 in 
    x + a + b 

( 
    <expression1> 

begin 
    <expression1>; 



`for...do`
F# F#

`while...do`
F# F#

`for...in`
F# F#

`do`
F# F#

record
F# F#

class
F# F#

    <expression2> 
) 

    <expression2>; 
end 

for counter = start to 
finish do 
    ... 

for counter = start to 
finish do 
    ... 
done 

while <condition> do 
    ... 

while <condition> do 
    ... 
done 

for var in start .. 
finish do 
    ... 

for var in start .. 
finish do 
    ... 
done 

do 
    ... 

do 
    ... 
in 

type <record-name> = 
    { 
        <field-
declarations> 
    } 
    <value-or-member-
definitions> 

type <record-name> = 
    { 
        <field-
declarations> 
    } 
    with 
        <value-or-member-
definitions> 
    end 



structure
F# F#

discriminated
union F# F#

interface
F# F#

object expression
F# F#

interface

type <class-name>
(<params>) = 
    ... 

type <class-name>
(<params>) = 
    class 
        ... 
    end 

[<StructAttribute>] 
type <structure-name> = 
    ... 

type <structure-name> = 
    struct 
        ... 
    end 

type <union-name> = 
    | ... 
    | ... 
    ... 
    <value-or-member 
definitions> 

type <union-name> = 
    | ... 
    | ... 
    ... 
    with 
        <value-or-member-
definitions> 
    end 

type <interface-name> = 
    ... 

type <interface-name> = 
    interface 
        ... 
    end 

{ new <type-name> 
    with 
        <value-or-member-
definitions> 
        <interface-
implementations> 
} 

{ new <type-name> 
    with 
        <value-or-member-
definitions> 
    end 
    <interface-
implementations> 
} 



implementation F# F#

type extension
F# F#

module
F# F#

F# Language Reference
Compiler Directives
Code Formatting Guidelines

interface <interface-
name> 
    with 
        <value-or-member-
definitions> 

interface <interface-
name> 
    with 
        <value-or-member-
definitions> 
    end 

type <type-name> 
    with 
        <value-or-member-
definitions> 

type <type-name> 
    with 
        <value-or-member-
definitions> 
    end 

module <module-name> = 
    ... 

module <module-name> = 
    begin 
        ... 
    end 

See also



Symbol and operator reference
Article • 05/31/2023

This article includes tables describing the symbols and operators that are used in F# and
provides a brief description of each. Some symbols and operators have two or more
entries when used in multiple roles.

The following table describes symbols related to comments, compiler directives and
attributes.

Symbol or operator Links Description

(*...*) Delimits a comment that could span multiple lines.

// Indicates the beginning of a single-line comment.

/// XML Documentation Indicates an XML comment.

# Compiler Directives Prefixes a preprocessor or compiler directive.

[<...>] Attributes Delimits an attribute.

The following table describes symbols related to strings.

Symbol or
operator

Links Description

" Strings Delimits a text string.

@" Strings Starts a verbatim text string, which may include backslashes and
other characters.

""" Strings Delimits a triple-quoted text string, which may include backslashes,
double quotation marks and other characters.

$" Interpolated
Strings

Starts an interpolated string.

' Literals Delimits a single-character literal.

Comment, compiler directive and attribute
symbols

String and identifier symbols



Symbol or
operator

Links Description

``...`` Delimits an identifier that would otherwise not be a legal identifier,
such as a language keyword.

\ Strings Escapes the next character; used in character and string literals.

The following table describes the arithmetic operators.

Symbol
or
operator

Links Description

+ Arithmetic
Operators

When used as a binary operator, adds the left and right sides.
When used as a unary operator, indicates a positive quantity.
(Formally, it produces the same value with the sign unchanged.)

- Arithmetic
Operators

When used as a binary operator, subtracts the right side from the
left side.
When used as a unary operator, performs a negation operation.

* Arithmetic
Operators 

Tuples 

Units of
Measure

When used as a binary operator, multiplies the left and right
sides.
In types, indicates pairing in a tuple.
Used in units of measure types.

/ Arithmetic
Operators 

Units of
Measure

Divides the left side (numerator) by the right side (denominator).
Used in units of measure types.

% Arithmetic
Operators

Computes the integer remainder.

** Arithmetic
Operators

Computes the exponentiation operation ( x ** y  means x  to the power
of y ).

Arithmetic operators

Comparison operators



The following table describes the comparison operators.

Symbol or
operator

Links Description

< Arithmetic
Operators

Computes the less-than operation.

<> Arithmetic
Operators

Returns true  if the left side is not equal to the right side;
otherwise, returns false.

<= Arithmetic
Operators

Returns true  if the left side is less than or equal to the right side;
otherwise, returns false .

= Arithmetic
Operators

Returns true  if the left side is equal to the right side; otherwise,
returns false .

> Arithmetic
Operators

Returns true  if the left side is greater than the right side;
otherwise, returns false .

>= Arithmetic
Operators

Returns true  if the left side is greater than or equal to the right
side; otherwise, returns false .

The following table describes the arithmetic and boolean operators symbols.

Symbol or operator Links Description

&& Boolean Operators Computes the Boolean AND operation.

|| Boolean Operators Computes the Boolean OR operation.

The following table describes bitwise operators.

Symbol or
operator

Links Description

&&& Bitwise
Operators

Computes the bitwise AND operation.

<<< Bitwise
Operators

Shifts bits in the quantity on the left side to the left by the number of
bits specified on the right side.

Boolean operators

Bitwise operators



Symbol or
operator

Links Description

>>> Bitwise
Operators

Shifts bits in the quantity on the left side to the right by the number
of places specified on the right side.

^^^ Bitwise
Operators

Computes the bitwise exclusive OR operation.

||| Bitwise
Operators

Computes the bitwise OR operation.

~~~ Bitwise
Operators

Computes the bitwise NOT operation.

The following table describes the operators and symbols related to functions.

Symbol or
operator

Links Description

-> Functions In function expressions, separates the input pattern from the
output expression.

|> Functions Passes the result of the left side to the function on the right
side (forward pipe operator).

||> (||>)<'T1,'T2,'U>
Function

Passes the tuple of two arguments on the left side to the
function on the right side.

|||> (|||>)
<'T1,'T2,'T3,'U>
Function

Passes the tuple of three arguments on the left side to the
function on the right side.

>> Functions Composes two functions (forward composition operator).

<< Functions Composes two functions in reverse order; the second one is
executed first (backward composition operator).

<| Functions Passes the result of the expression on the right side to the
function on left side (backward pipe operator).

<|| (<||)<'T1,'T2,'U>
Function

Passes the tuple of two arguments on the right side to the
function on left side.

<||| (<|||)
<'T1,'T2,'T3,'U>
Function

Passes the tuple of three arguments on the right side to the
function on left side.

Function symbols and operators

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#(%20%7C%7C%3E%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#(%20%7C%7C%7C%3E%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#(%20%3C%7C%7C%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-operators.html#(%20%3C%7C%7C%7C%20)

The following table describes symbols related to type annotation and type tests.

Symbol
or
operator

Links Description

-> Functions In function types, delimits arguments and return values, also yields a
result in sequence expressions.

: Functions In a type annotation, separates a parameter or member name from
its type.

:> Casting and
Conversions

Converts a type to type that is higher in the hierarchy.

:? Match
Expressions

Returns true if the value matches the specified type (including if it is
a subtype); otherwise, returns false (type test operator).

:?> Casting and
Conversions

Converts a type to a type that is lower in the hierarchy.

Flexible Types When used with a type, indicates a flexible type, which refers to a
type or any one of its derived types.

' Automatic
Generalization

Indicates a generic type parameter.

<...> Automatic
Generalization

Delimits type parameters.

^ Statically
Resolved Type
Parameters

Strings

Specifies type parameters that must be resolved at compile
time, not at run time.
Concatenates strings.

{} Class or
Record

When used with the type keyword, delimits a class or record. The
type is a class when members are declared or the class keyword is
used. Otherwise, it's a record.

{||} Anonymous
record

Denotes an anonymous record

Type symbols and operators

Symbols used in member lookup and slice
expressions

The following table describes additional symbols used in member lookup and slice
expressions.

Symbol or
operator

Links Description

. Members Accesses a member, and separates individual names in a fully
qualified name.

[...] or .[...] Arrays

Indexed
Properties

Slice
Expressions

Indexes into an array, string or collection, or takes a slice of a
collection.

The following table describes symbols related to tuples, lists, unit values and arrays.

Symbol or
operator

Links Description

() Unit Type Represents the single value of the unit type.

, Tuples Separates the elements of a tuple, or type parameters.

:: Lists

Match
Expressions

Creates a list. The element on the left side is prepended to
the list on the right side.
Used in pattern matching to separate the parts of a list.

@ Lists Concatenates two lists.

[...] Lists Delimits the elements of a list.

[|...|] Arrays Delimits the elements of an array.

The following table describes additional symbols used in expressions.

Symbols used in tuple, list, array, unit
expressions and patterns

Symbols used in imperative expressions

Symbol or
operator

Links DescriptionSymbol or
operator

Links Description

<- Values Assigns a value to a variable.

; Verbose
Syntax

Separates expressions (used mostly in verbose syntax). Also separates
elements of a list or fields of a record.

The following table describes additional symbols used in Sequences and Computation
Expressions.

Symbol or
operator

Links Description

-> Sequences Yields an expression (in sequence expressions); equivalent to the do
yield keywords.

! Computation
Expressions

After a keyword, indicates a modified version of the keyword's
behavior as controlled by a computation expression.

The following table describes symbols related to pattern matching.

Symbol or
operator

Links Description

-> Match
Expressions

Used in match expressions.

& Pattern
Matching

Computes the address of a mutable value, for use when
interoperating with other languages.
Used in AND patterns.

_ Match
Expressions

Generics

Indicates a wildcard pattern.
Specifies an anonymous generic parameter.

Additional symbols used in sequences and
computation expressions

Additional symbols used in match patterns

Symbol or
operator

Links Description

| Match
Expressions

Delimits individual match cases, individual discriminated union
cases, and enumeration values.

The following table describes symbols related to declarations.

Symbol or
operator

Links Description

(|...|) Active Patterns Delimits an active pattern name. Also called banana
clips.

? Parameters and
Arguments

Specifies an optional argument.

~~ Operator Overloading Used to declare an overload for the unary negation
operator.

~- Operator Overloading Used to declare an overload for the unary minus
operator.

~+ Operator Overloading Used to declare an overload for the unary plus
operator.

The following table describes symbols related to Code Quotations.

Symbol or
operator

Links Description

<@...@> Code
Quotations

Delimits a typed code quotation.

<@@...@@> Code
Quotations

Delimits an untyped code quotation.

% Code
Quotations

Used for splicing expressions into typed code
quotations.

%% Code
Quotations

Used for splicing expressions into untyped code
quotations.

Additional symbols used in declarations

Additional symbols used in quotations

The following table describes additional symbols used in dynamic lookup expressions.
They are not generally used in routine F# programming and no implementations of
these operator are provided in the F# core library.

Symbol or operator Links Description

? Used as an operator for dynamic method and property calls.

? ... <- ... Used as an operator for setting dynamic properties.

Nullable Operators are defined for use in Query Expressions. The following table shows
these operators.

Symbol or operator Links Description

%? Nullable
Operators

Computes the integer remainder, when the right side is a
nullable type.

*? Nullable
Operators

Multiplies the left and right sides, when the right side is a
nullable type.

+? Nullable
Operators

Adds the left and right sides, when the right side is a
nullable type.

-? Nullable
Operators

Subtracts the right side from the left side, when the right
side is a nullable type.

/? Nullable
Operators

Divides the left side by the right side, when the right side
is a nullable type.

<? Nullable
Operators

Computes the less than operation, when the right side is
a nullable type.

<>? Nullable
Operators

Computes the "not equal" operation when the right side
is a nullable type.

<=? Nullable
Operators

Computes the "less than or equal to" operation when the
right side is a nullable type.

=? Nullable
Operators

Computes the "equal" operation when the right side is a
nullable type.

>? Nullable
Operators

Computes the "greater than" operation when the right
side is a nullable type.

Dynamic lookup operators

Nullable operators in queries

Symbol or operator Links Description

>=? Nullable
Operators

Computes the "greater than or equal" operation when
the right side is a nullable type.

?>= , ?> , ?<= , ?< , ?= , ?
<> , ?+ , ?- , ?* , ?/

Nullable
Operators

Equivalent to the corresponding operators without the ?
prefix, where a nullable type is on the left.

>=? , >? , <=? , <? , =? ,
<>? , +? , -? , *? , /?

Nullable
Operators

Equivalent to the corresponding operators without the ?
suffix, where a nullable type is on the right.

?>=? , ?>? , ?<=? , ?<? , ?
=? , ?<>? , ?+? , ?-? , ?*? ,
?/?

Nullable
Operators

Equivalent to the corresponding operators without the
surrounding question marks, where both sides are
nullable types.

The following table describes symbols related to Reference Cells. The use of these
operators generates advisory messages as of F# 6. For more information, see Reference
cell operation advisory messages .

Symbol or operator Links Description

! Reference Cells Dereferences a reference cell.

:= Reference Cells Assigns a value to a reference cell.

The following table shows the order of precedence of operators and other expression
keywords in F#, in order from lowest precedence to the highest precedence. Also listed
is the associativity, if applicable.

Operator Associativity

as Right

when Right

| (pipe) Left

; Right

let Nonassociative

function , fun , match , try Nonassociative

Reference cell operators (deprecated)

Operator precedence

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1111-refcell-op-information-messages.md#summary

Operator Associativity

if Nonassociative

not Right

-> Right

:= Right

, Nonassociative

or , || Left

& , && Left

:> , :?> Right

<op, >op, = , |op, &op, & , $

(including <<< , >>> , ||| , &&&)

Left

^op

(including ^^^)

Right

:: Right

:? Not associative

-op, +op Applies to infix uses of these symbols

*op, /op, %op Left

**op Right

f x (function application)

(including lazy x , assert x)

Left

| (pattern match) Right

prefix operators (+op, -op, % , %% , & , && , !op, ~op) Left

. Left

f(x) Left

f< types > Left

F# supports custom operator overloading. This means that you can define your own
operators. In the previous table, op can be any valid (possibly empty) sequence of
operator characters, either built-in or user-defined. Thus, you can use this table to
determine what sequence of characters to use for a custom operator to achieve the
desired level of precedence. Leading . characters are ignored when the compiler
determines precedence.

F# Language Reference
Operator Overloading

See also

Arithmetic Operators
Article • 11/05/2021

This topic describes arithmetic operators that are available in F#.

The following table summarizes the binary arithmetic operators that are available for
unboxed integral and floating-point types.

Binary
operator

Notes

+ (addition,
plus)

Unchecked. Possible overflow condition when numbers are added together
and the sum exceeds the maximum absolute value supported by the type.

- (subtraction,
minus)

Unchecked. Possible underflow condition when unsigned types are subtracted,
or when floating-point values are too small to be represented by the type.

*

(multiplication,
times)

Unchecked. Possible overflow condition when numbers are multiplied and the
product exceeds the maximum absolute value supported by the type.

/ (division,
divided by)

Division by zero causes a DivideByZeroException for integral types. For
floating-point types, division by zero gives you the special floating-point
values +Infinity or -Infinity . There is also a possible underflow condition
when a floating-point number is too small to be represented by the type.

% (remainder,
rem)

Returns the remainder of a division operation. The sign of the result is the
same as the sign of the first operand.

**

(exponentiation,
to the power of)

Possible overflow condition when the result exceeds the maximum absolute
value for the type.

The exponentiation operator works only with floating-point types.

The following table summarizes the unary arithmetic operators that are available for
integral and floating-point types.

Unary operator Notes

Summary of Binary Arithmetic Operators

Summary of Unary Arithmetic Operators

https://learn.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception

Unary operator Notes

+ (positive) Can be applied to any arithmetic expression. Does not change the sign of
the value.

- (negation,
negative)

Can be applied to any arithmetic expression. Changes the sign of the value.

The behavior at overflow or underflow for integral types is to wrap around. This causes
an incorrect result. Integer overflow is a potentially serious problem that can contribute
to security issues when software is not written to account for it. If this is a concern for
your application, consider using the checked operators in
Microsoft.FSharp.Core.Operators.Checked .

The following table shows the binary comparison operators that are available for
integral and floating-point types. These operators return values of type bool .

Floating-point numbers should never be directly compared for equality, because the
IEEE floating-point representation does not support an exact equality operation. Two
numbers that you can easily verify to be equal by inspecting the code might actually
have different bit representations.

Operator Notes

= (equality, equals) This is not an assignment operator. It is used only for comparison. This is
a generic operator.

> (greater than) This is a generic operator.

< (less than) This is a generic operator.

>= (greater than or
equals)

This is a generic operator.

<= (less than or
equals)

This is a generic operator.

<> (not equal) This is a generic operator.

Summary of Binary Comparison Operators

Overloaded and Generic Operators

All of the operators discussed in this topic are defined in the
Microsoft.FSharp.Core.Operators namespace. Some of the operators are defined by
using statically resolved type parameters. This means that there are individual definitions
for each specific type that works with that operator. All of the unary and binary
arithmetic and bitwise operators are in this category. The comparison operators are
generic and therefore work with any type, not just primitive arithmetic types.
Discriminated union and record types have their own custom implementations that are
generated by the F# compiler. Class types use the method Equals.

The generic operators are customizable. To customize the comparison functions,
override Equals to provide your own custom equality comparison, and then implement
IComparable. The System.IComparable interface has a single method, the CompareTo
method.

The use of an operator in an expression constrains type inference on that operator. Also,
the use of operators prevents automatic generalization, because the use of operators
implies an arithmetic type. In the absence of any other information, the F# compiler
infers int as the type of arithmetic expressions. You can override this behavior by
specifying another type. Thus the argument types and return type of function1 in the
following code are inferred to be int , but the types for function2 are inferred to be
float .

F#

Symbol and Operator Reference
Operator Overloading
Bitwise Operators
Boolean Operators

Operators and Type Inference

// x, y and return value inferred to be int
// function1: int -> int -> int
let function1 x y = x + y

// x, y and return value inferred to be float
// function2: float -> float -> float
let function2 (x: float) y = x + y

See also

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable.compareto

Boolean Operators
Article • 11/05/2021

This topic describes the support for Boolean operators in F#.

The following table summarizes the Boolean operators that are available in F#. The only
type supported by these operators is the bool type.

Operator Description

not Boolean negation

|| Boolean OR

&& Boolean AND

The Boolean AND and OR operators perform short-circuit evaluation, that is, they
evaluate the expression on the right of the operator only when it is necessary to
determine the overall result of the expression. The second expression of the && operator
is evaluated only if the first expression evaluates to true ; the second expression of the
|| operator is evaluated only if the first expression evaluates to false .

Bitwise Operators
Arithmetic Operators
Symbol and Operator Reference

Summary of Boolean Operators

See also

Bitwise Operators
Article • 11/05/2021

This topic describes bitwise operators that are available in F#.

The following table describes the bitwise operators that are supported for unboxed
integral types in F#.

Operator Notes

&&& Bitwise AND operator. Bits in the result have the value 1 if and only if the
corresponding bits in both source operands are 1.

||| Bitwise OR operator. Bits in the result have the value 1 if either of the corresponding
bits in the source operands are 1.

^^^ Bitwise exclusive OR operator. Bits in the result have the value 1 if and only if bits in
the source operands have unequal values.

~~~ Bitwise negation operator. This is a unary operator and produces a result in which all
0 bits in the source operand are converted to 1 bits and all 1 bits are converted to 0
bits.

<<< Bitwise left-shift operator. The result is the first operand with bits shifted left by the
number of bits in the second operand. Bits shifted off the most significant position
are not rotated into the least significant position. The least significant bits are padded
with zeros. The type of the second argument is int32 .

>>> Bitwise right-shift operator. The result is the first operand with bits shifted right by
the number of bits in the second operand. Bits shifted off the least significant position
are not rotated into the most significant position. For unsigned types, the most
significant bits are padded with zeros. For signed types with negative values, the most
significant bits are padded with ones. The type of the second argument is int32 .

The following types can be used with bitwise operators: byte , sbyte , int16 , uint16 ,
int32 (int) , uint32 , int64 , uint64 , nativeint , and unativeint .

Symbol and Operator Reference
Arithmetic Operators
Boolean Operators

Summary of Bitwise Operators

See also





Nullable Operators in Queries
Article • 11/05/2021

Nullable operators are binary arithmetic or comparison operators that work with
nullable arithmetic types on one or both sides. Nullable types arise when you work with
data from sources such as databases that allow nulls in place of actual values. Nullable
operators are used in query expressions. In addition to nullable operators for arithmetic
and comparison, conversion operators can be used to convert between nullable types.
There are also nullable versions of certain query operators.

The following table lists nullable operators supported in F#.

Nullable on left Nullable on right Both sides nullable

?>= >=? ?>=?

?> >? ?>?

?<= <=? ?<=?

?< <? ?<?

?= =? ?=?

?<> <>? ?<>?

?+ +? ?+?

?- -? ?-?

?* *? ?*?

?/ /? ?/?

?% %? ?%?

７ Note

Nullable operators are generally only used in query expressions. If you don't use
query expressions, you don't need to know or use these operators.

Table of Nullable Operators

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3E=%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%3E=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3E=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3E%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%3E?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3E?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C=%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%3C=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%3C?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?=%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?=?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C%3E%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%3C%3E?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%3C%3E?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?+%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20+?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?+?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?-%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20-?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?-?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?*%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20*?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?*?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?/%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20/?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?/?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20%?%20)
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html#(%20?%?%20)


The nullable operators are included in the NullableOperators  module in the
namespace FSharp.Linq . The type for nullable data is System.Nullable<'T> .

In query expressions, nullable types arise when selecting data from a data source that
allows nulls instead of values. In a SQL Server database, each data column in a table has
an attribute that indicates whether nulls are allowed. If nulls are allowed, the data
returned from the database can contain nulls that cannot be represented by a primitive
data type such as int , float , and so on. Therefore, the data is returned as a
System.Nullable<int>  instead of int , and System.Nullable<float>  instead of float .
The actual value can be obtained from a System.Nullable<'T>  object by using the Value
property, and you can determine if a System.Nullable<'T>  object has a value by calling
the HasValue  method. Another useful method is the
System.Nullable<'T>.GetValueOrDefault  method, which allows you to get the value or a
default value of the appropriate type. The default value is some form of "zero" value,
such as 0, 0.0, or false .

Nullable types may be converted to non-nullable primitive types using the usual
conversion operators such as int  or float . It is also possible to convert from one
nullable type to another nullable type by using the conversion operators for nullable
types. The appropriate conversion operators have the same name as the standard ones,
but they are in a separate module, the Nullable  module in the FSharp.Linq
namespace. Typically, you open this namespace when working with query expressions.
In that case, you can use the nullable conversion operators by adding the prefix
Nullable.  to the appropriate conversion operator, as shown in the following code.

F#

The output is 10.000000 .

Remarks

open Microsoft.FSharp.Linq 

let nullableInt = new System.Nullable<int>(10) 

// Use the Nullable.float conversion operator to convert from one nullable 
type to another nullable type. 
let nullableFloat = Nullable.float nullableInt 

// Use the regular non-nullable float operator to convert to a non-nullable 
float. 
printfn $"%f{float nullableFloat}" 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullableoperators.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq-nullablemodule.html
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-linq.html


Query operators on nullable data fields, such as sumByNullable , also exist for use in
query expressions. The query operators for non-nullable types are not type-compatible
with nullable types, so you must use the nullable version of the appropriate query
operator when you are working with nullable data values. For more information, see
Query Expressions.

The following example shows the use of nullable operators in an F# query expression.
The first query shows how you would write a query without a nullable operator; the
second query shows an equivalent query that uses a nullable operator. For the full
context, including how to set up the database to use this sample code, see Walkthrough:
Accessing a SQL Database by Using Type Providers.

F#

Type Providers
Query Expressions

open System 
open System.Data 
open System.Data.Linq 
open Microsoft.FSharp.Data.TypeProviders 
open Microsoft.FSharp.Linq 

[<Generate>] 
type dbSchema = SqlDataConnection<"Data Source=MYSERVER\INSTANCE;Initial 
Catalog=MyDatabase;Integrated Security=SSPI;"> 

let db = dbSchema.GetDataContext() 

query { 
    for row in db.Table2 do 
    where (row.TestData1.HasValue && row.TestData1.Value > 2) 
    select row 
} |> Seq.iter (fun row -> printfn $"%d{row.TestData1.Value} %s{row.Name}") 

query { 
    for row in db.Table2 do 
    // Use a nullable operator ?>
    where (row.TestData1 ?> 2) 
    select row 
} |> Seq.iter (fun row -> printfn "%d{row.TestData1.GetValueOrDefault()} 
%s{row.Name}") 

See also



Compiler options
Article • 05/31/2023

This article describes compiler command-line options for the F# compiler. The
command dotnet build  invokes the F# compiler on F# project files. F# project files are
noted with the .fsproj  extension.

The compilation environment can also be controlled by setting the project properties.
For projects targeting .NET Core, the "Other flags" property, <OtherFlags>...
</OtherFlags>  in .fsproj , is used for specifying extra command-line options.

The following table shows compiler options listed alphabetically. Some of the F#
compiler options are similar to the C# compiler options. If that is the case, a link to the
C# compiler options topic is provided.

Compiler Option Description

--allsigs Generates a new (or regenerates an existing) signature file for
each source file in the compilation. For more information about
signature files, see Signatures.

-a filename.fs Generates a library from the specified file. This option is a short
form of --target:library filename.fs .

--baseaddress:address Specifies the preferred base address at which to load a DLL. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /baseaddress (C#
Compiler Options).

--codepage:id Specifies which code page to use during compilation if the
required page isn't the current default code page for the system. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /code pages (C#
Compiler Options).

--consolecolors Specifies that errors and warnings use color-coded text on the
console.

--crossoptimize[+|-] Enables or disables cross-module optimizations.

Compiler Options Listed Alphabetically

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#baseaddress
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#codepage


Compiler Option Description

--delaysign[+|-] Delay-signs the assembly using only the public portion of the
strong name key. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /delaysign (C#
Compiler Options).

--checked[+|-] Enables or disables the generation of overflow checks. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /checked (C# Compiler
Options).

--debug[+|-]  

-g[+|-]  

--debug:[full|pdbonly]  

-g: [full|pdbonly]

Enables or disables the generation of debug information, or
specifies the type of debug information to generate. The default is
full , which allows attaching to a running program. Choose
pdbonly  to get limited debugging information stored in a pdb
(program database) file. 

Equivalent to the C# compiler option of the same name. For more
information, see 

/debug (C# Compiler Options).

--define:symbol  

-d:symbol

Defines a symbol for use in conditional compilation.

--deterministic[+|-] Produces a deterministic assembly (including module version
GUID and timestamp). This option cannot be used with wildcard
version numbers, and only supports embedded and portable
debugging types

--doc:xmldoc-filename Instructs the compiler to generate XML documentation comments
to the file specified. For more information, see XML
Documentation. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /doc (C# Compiler
Options).

--fullpaths Instructs the compiler to generate fully qualified paths. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /fullpaths (C# Compiler
Options).

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/security#delaysign
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/language#checkforoverflowunderflow
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/code-generation#debugtype
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/output#documentationfile
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#generatefullpaths


Compiler Option Description

--help  

-?

Displays usage information, including a brief description of all the
compiler options.

--highentropyva[+|-] Enable or disable high-entropy address space layout
randomization (ASLR), an enhanced security feature. The OS
randomizes the locations in memory where infrastructure for
applications (such as the stack and heap) are loaded. If you enable
this option, operating systems can use this randomization to use
the full 64-bit address-space on a 64-bit machine.

--keycontainer:key-

container-name

Specifies a strong name key container.

--keyfile:filename Specifies the name of a public key file for signing the generated
assembly.

--lib:folder-name  

-I:folder-name

Specifies a directory to be searched for assemblies that are
referenced. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /lib (C# Compiler
Options).

--linkresource:resource-

info

Links a specified resource to the assembly. The format of
resource-info is filename[name[public|private]]  

Linking a single resource with this option is an alternative to
embedding an entire resource file with the --resource  option. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /linkresource (C#
Compiler Options).

--mlcompatibility Ignores warnings that appear when you use features that are
designed for compatibility with other versions of ML.

--noframework Disables the default reference to the .NET Framework assembly.

--nointerfacedata Instructs the compiler to omit the resource it normally adds to an
assembly that includes F#-specific metadata.

--nologo Doesn't show the banner text when launching the compiler.

--nooptimizationdata Instructs the compiler to only include optimization essential for
implementing inlined constructs. Inhibits cross-module inlining
but improves binary compatibility.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#additionallibpaths
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/resources#linkresources


Compiler Option Description

--nowin32manifest Instructs the compiler to omit the default Win32 manifest.

--nowarn:warning-number-

list

Disables specific warnings listed by number. Separate each
warning number by a comma. You can discover the warning
number for any warning from the compilation output. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /nowarn (C# Compiler
Options).

--optimize[+|-]

[optimization-option-list]  

-O[+|-] [optimization-

option-list]

Enables or disables optimizations. Some optimization options can
be disabled or enabled selectively by listing them. These are:
nojitoptimize , nojittracking , nolocaloptimize , nocrossoptimize ,
notailcalls .

--out:output-filename  

-o:output-filename

Specifies the name of the compiled assembly or module. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /out (C# Compiler
Options).

--

pathmap:path=sourcePath,...

Specifies how to map physical paths to source path names output
by the compiler. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /pathmap (C#
Compiler Options).

--pdb:pdb-filename Names the output debug PDB (program database) file. This option
only applies when --debug  is also enabled. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /pdb (C# Compiler
Options).

--platform:platform-name Specifies that the generated code will only run on the specified
platform ( x86 , Itanium , or x64 ), or, if the platform-name anycpu
is chosen, specifies that the generated code can run on any
platform. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /platform (C# Compiler
Options).

--preferreduilang:lang Specifies the preferred output language culture name (for
example, es-ES , ja-JP ).

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/errors-warnings#nowarn
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/output#outputassembly
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#pathmap
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/advanced#pdbfile
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/output#platformtarget


Compiler Option Description

--quotations-debug Specifies that extra debugging information should be emitted for
expressions that are derived from F# quotation literals and
reflected definitions. The debug information is added to the
custom attributes of an F# expression tree node. See Code
Quotations and Expr.CustomAttributes .

--reference:assembly-

filename  

-r:assembly-filename

Makes code from an F# or .NET Framework assembly available to
the code being compiled. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /reference (C#
Compiler Options).

--resource:resource-

filename

Embeds a managed resource file into the generated assembly. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /resource (C# Compiler
Options).

--sig:signature-filename Generates a signature file based on the generated assembly. For
more information about signature files, see Signatures.

--simpleresolution Specifies that assembly references should be resolved using
directory-based Mono rules rather than MSBuild resolution. The
default is to use MSBuild resolution except when running under
Mono.

--standalone Specifies to produce an assembly that contains all of its
dependencies so that it runs by itself without the need for
additional assemblies, such as the F# library.

--staticlink:assembly-name Statically links the given assembly and all referenced DLLs that
depend on this assembly. Use the assembly name, not the DLL
name.

--subsystemversion Specifies the version of the OS subsystem to be used by the
generated executable. Use 6.02 for Windows 8.1, 6.01 for
Windows 7, 6.00 for Windows Vista. This option only applies to
executables, not DLLs, and need only be used if your application
depends on specific security features available only on certain
versions of the OS. If this option is used, and a user attempts to
execute your application on a lower version of the OS, it will fail
with an error message.

--tailcalls[+|-] Enables or disables the use of the tail IL instruction, which causes
the stack frame to be reused for tail recursive functions. This
option is enabled by default.

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-fsharpexpr.html#CustomAttributes
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/inputs#references
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/resources#resources


Compiler Option Description

--target:

[exe|winexe|library|module]

filename

Specifies the type and file name of the generated compiled code.
exe  means a console application. 
winexe  means a Windows application, which differs from
the console application in that it does not have standard
input/output streams (stdin, stdout, and stderr) defined. 
library  is an assembly without an entry point. 
module  is a .NET Framework module (.netmodule), which
can later be combined with other modules into an
assembly. 

This compiler option is equivalent to the C# compiler
option of the same name. For more information, see
/target (C# Compiler Options).

--times Displays timing information for compilation.

--utf8output Enables printing compiler output in the UTF-8 encoding.

--warn:warning-level Sets a warning level (0 to 5). The default level is 3. Each warning is
given a level based on its severity. Level 5 gives more, but less
severe, warnings than level 1. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /warn (C# Compiler
Options).

--warnon:warning-number-

list

Enable specific warnings that might be off by default or disabled
by another command-line option.

--warnaserror[+|-]

[warning-number-list]

Enables or disables the option to report warnings as errors. You
can provide specific warning numbers to be disabled or enabled.
Options later in the command line override options earlier in the
command line. For example, to specify the warnings that you
don't want reported as errors, specify --warnaserror+  --
warnaserror-:warning-number-list . 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /warnaserror (C#
Compiler Options).

--win32manifest:manifest-

filename

Adds a Win32 manifest file to the compilation. This compiler
option is equivalent to the C# compiler option of the same name.
For more information, see /win32manifest (C# Compiler Options).

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/output#targettype
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/errors-warnings#warninglevel
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/errors-warnings#treatwarningsaserrors
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/resources#win32manifest


Compiler Option Description

--win32res:resource-

filename

Adds a Win32 resource file to the compilation. 

This compiler option is equivalent to the C# compiler option of
the same name. For more information, see /win32res ((C#)
Compiler Options).

The F# compiler supports several opt-in warnings:

Number Summary Level Description

21 Recursion checked
at run time

5 Warn when a recursive use is checked for initialization-
soundness at run time.

22 Bindings executed
out of order

5 Warn when a recursive binding may be executed out-
of-order because of a forward reference.

52 Implicit copies of
structs

5 Warn when an immutable struct is copied to ensure the
original is not mutated by an operation.

1178 Implicit
equality/comparison

5 Warn when an F# type declaration is implicitly inferred
to be NoEquality  or NoComparison  but the attribute is
not present on the type.

1182 Unused variables n/a Warn for unused variables.

3180 Implicit heap
allocations

n/a Warn when a mutable local is implicitly allocated as a
reference cell because it has been captured by a
closure.

3366 Index notation n/a Warn when the F# 5 index notation expr.[idx]  is used.

3517 InlineIfLambda
failure

n/a Warn when the F# optimizer fails to inline an
InlineIfLambda  value, for example if a computed
function value has been provided instead of an explicit
lambda.

3387 op_Implicit

conversion
n/a Warn when a .NET implicit conversion is used at a

method argument.

3388 Additional implicit
upcast

n/a Warn when an additional upcast is implicitly used,
added in F# 6.

3389 Implicit widening n/a Warn when an implicit numeric widening is used.

Opt-in warnings

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/resources#win32resource


Number Summary Level Description

3390 Malformed XML doc
comments

n/a Warn when XML doc comments are malformed in
various ways.

You can enable these warnings by using /warnon:NNNN  or <WarnOn>NNNN</WarnOn>  where
NNNN  is the relevant warning number.

Title Description

F# Interactive Options Describes command-line options supported by the F# interpreter, fsi.exe.

Project Properties
Reference

Describes the UI for projects, including project property pages that
provide build options.

Related articles

https://learn.microsoft.com/en-us/visualstudio/ide/reference/project-properties-reference


F# Interactive options
Article • 09/15/2021

This article describes the command-line options supported by F# Interactive, fsi.exe .
F# Interactive accepts many of the same command-line options as the F# compiler, but
also accepts some additional options.

F# Interactive, dotnet fsi , can be launched interactively, or it can be launched from the
command line to run a script. The command-line syntax is

.NET CLI

The file extension for F# script files is .fsx .

The following table summarizes the options supported by F# Interactive. You can set
these options on the command line or through the Visual Studio IDE. To set these
options in the Visual Studio IDE, open the Tools menu, select Options, expand the F#
Tools node, and then select F# Interactive.

Where lists appear in F# Interactive option arguments, list elements are separated by
semicolons (; ).

Option Description

-- Used to instruct F# Interactive to treat remaining
arguments as command-line arguments to the F#
program or script, which you can access in code by
using the list fsi.CommandLineArgs.

--checked[+|-] Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--codepage:<int> Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--consolecolors[+|-] Outputs warning and error messages in color.

Use F# Interactive for scripting

dotnet fsi [options] [ script-file [arguments] ] 

Table of F# Interactive Options



Option Description

--crossoptimize[+|-] Enable or disable cross-module optimizations.

--debug[+|-] 

--debug:
[full|pdbonly|portable|embedded] 

-g[+|-] 

-g:[full|pdbonly|portable|embedded]

Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--define:<string> Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--deterministic[+|-] Produces a deterministic assembly (including module
version GUID and timestamp).

--exec Instructs F# interactive to exit after loading the files
or running the script file given on the command line.

--fullpaths Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--gui[+|-] Enables or disables the Windows Forms event loop.
The default is enabled.

--help 

-?

Used to display the command-line syntax and a brief
description of each option.

--lib:<folder-list> 

-I:<folder-list>

Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--load:<filename> Compiles the given source code at startup and loads
the compiled F# constructs into the session.

--mlcompatibility Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--noframework Same as the fsc.exe compiler option. For more
information, see Compiler Options

--nologo Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--nowarn:<warning-list> Same as the fsc.exe compiler option. For more
information, see Compiler Options.



Option Description

--optimize[+|-] Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--preferreduilang:<lang> Specifies the preferred output language culture name
(for example, es-ES, ja-JP).

--quiet Suppress F# Interactive's output to the stdout
stream.

--quotations-debug Specifies that extra debugging information should be
emitted for expressions that are derived from F#
quotation literals and reflected definitions. The
debug information is added to the custom attributes
of an F# expression tree node. See Code Quotations
and Expr.CustomAttributes .

--readline[+|-] Enable or disable tab completion in interactive mode.

--reference:<filename> 

-r:<filename>

Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--tailcalls[+|-] Enable or disable the use of the tail IL instruction,
which causes the stack frame to be reused for tail
recursive functions. This option is enabled by default.

--targetprofile:<string> Specifies target framework profile of this assembly.
Valid values are mscorlib , netcore , or netstandard .
The default is mscorlib .

--use:<filename> Tells the interpreter to use the given file on startup as
initial input.

--utf8output Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--warn:<warning-level> Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--warnaserror[+|-] Same as the fsc.exe compiler option. For more
information, see Compiler Options.

--warnaserror[+|-]:<int-list> Same as the fsc.exe compiler option. For more
information, see Compiler Options.

F# Interactive structured printing

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-quotations-fsharpexpr.html#CustomAttributes


F# Interactive (dotnet fsi ) uses an extended version of structured plain text formatting
to report values.

1. All features of %A  plain text formatting are supported, and some are additionally
customizable.

2. Printing is colorized if colors are supported by the output console.

3. A limit is placed on the length of strings shown, unless you explicitly evaluate that
string.

4. A set of user-definable settings is available via the fsi  object.

The available settings to customize plain text printing for reported values are:

F#

Printing in F# Interactive outputs can be customized by using fsi.AddPrinter  and
fsi.AddPrintTransformer . The first function gives text to replace the printing of an
object. The second function returns a surrogate object to display instead. For example,
consider the following F# code:

F#

open System.Globalization 

fsi.FormatProvider <- CultureInfo("de-DE")  // control the default culture 
for primitives 

fsi.PrintWidth <- 120        // Control the width used for structured 
printing 

fsi.PrintDepth <- 10         // Control the maximum depth of nested printing 

fsi.PrintLength <- 10        // Control the length of lists and arrays 

fsi.PrintSize <- 100         // Control the maximum overall object count 

fsi.ShowProperties <- false  // Control whether properties of .NET objects 
are shown by default 

fsi.ShowIEnumerable <- false // Control whether sequence values are expanded 
by default 

fsi.ShowDeclarationValues <- false // Control whether values are shown for 
declaration outputs 

Customize with AddPrinter  and AddPrintTransformer



If you execute the example in F# Interactive, it outputs based on the formatting option
set. In this case, it affects the formatting of date and time:

Console

fsi.AddPrintTransformer  can be used to give a surrogate object for printing:

F#

This outputs:

Console

If the transformer function passed to fsi.AddPrintTransformer  returns null , then the
print transformer is ignored. This can be used to filter any input value by starting with
type obj . For example:

F#

open System 

fsi.AddPrinter<DateTime>(fun dt -> dt.ToString("s")) 

type DateAndLabel = 
    { Date: DateTime 
      Label: string  } 

let newYearsDay1999 = 
    { Date = DateTime(1999, 1, 1) 
      Label = "New Year" } 

type DateAndLabel = 
  { Date: DateTime 
    Label: string } 
val newYearsDay1999 : DateAndLabel = { Date = 1999-01-01T00:00:00 
                                       Label = "New Year" } 

type MyList(values: int list) = 
    member _.Values = values 

fsi.AddPrintTransformer(fun (x:MyList) -> box x.Values) 

let x = MyList([1..10])

val x : MyList = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] 



This outputs:

Console

Title Description

Compiler Options Describes command-line options available for the F# compiler, fsc.exe.

fsi.AddPrintTransformer(fun (x:obj) -> 
    match x with 
    | :? string as s when s = "beep" -> box ["quack"; "quack"; "quack"] 
    | _ -> null) 

let y = "beep" 

val y : string = ["quack"; "quack"; "quack"] 

Related topics



F# compiler messages
Article • 09/15/2021

This section details compiler errors and warnings that the F# compiler will emit for
certain constructs. The default sets of errors can be changed by:

Treating specific warnings as if they were errors by using the -warnaserror+
compiler option,

Ignoring specific warnings by using the -nowarn  compiler option

If a particular warning or error is not yet recorded in this section:

Go to the end of this page and send feedback that includes the number or text of
the error, or
Add it yourself by following the instructions in create-new-fsharp-compiler-
message.fsx  and opening a pull request for this repository.

F# Compiler Options

See also

https://github.com/dotnet/docs/blob/main/docs/fsharp/language-reference/compiler-messages/util/create-new-fsharp-compiler-message.fsx


Tour of F#
Article • 01/26/2022

The best way to learn about F# is to read and write F# code. This article will act as a tour
through some of the key features of F# and give you some code snippets that you can
execute on your machine. To learn about setting up a development environment, check
out Getting Started.

There are two primary concepts in F#: functions and types. This tour emphasizes
features of the language that fall into these two concepts.

If you don't have F# installed on your machine, you can execute all of the samples in
your browser with Try F# in Fable . Fable is a dialect of F# that executes directly in your
browser. To view the samples that follow in the REPL, check out Samples > Learn > Tour
of F# in the left-hand menu bar of the Fable REPL.

The most fundamental pieces of any F# program are functions organized into modules.
Functions perform work on inputs to produce outputs, and they are organized under
Modules, which are the primary way you group things in F#. They are defined using the
let binding, which give the function a name and define its arguments.

F#

Executing the code online

Functions and Modules

module BasicFunctions = 

    /// You use 'let' to define a function. This one accepts an integer 
argument and returns an integer. 
    /// Parentheses are optional for function arguments, except for when you 
use an explicit type annotation. 
    let sampleFunction1 x = x*x + 3 

    /// Apply the function, naming the function return result using 'let'. 
    /// The variable type is inferred from the function return type. 
    let result1 = sampleFunction1 4573 

    // This line uses '%d' to print the result as an integer. This is type-
safe. 
    // If 'result1' were not of type 'int', then the line would fail to 
compile. 
    printfn $"The result of squaring the integer 4573 and adding 3 is 

https://fable.io/repl3/


let  bindings are also how you bind a value to a name, similar to a variable in other
languages. let  bindings are immutable by default, which means that once a value or
function is bound to a name, it cannot be changed in-place. This is in contrast to
variables in other languages, which are mutable, meaning their values can be changed
at any point in time. If you require a mutable binding, you can use let mutable ...
syntax.

F#

%d{result1}" 

    /// When needed, annotate the type of a parameter name using 
'(argument:type)'.  Parentheses are required. 
    let sampleFunction2 (x:int) = 2*x*x - x/5 + 3 

    let result2 = sampleFunction2 (7 + 4) 
    printfn $"The result of applying the 2nd sample function to (7 + 4) is 
%d{result2}" 

    /// Conditionals use if/then/elif/else. 
    /// 
    /// Note that F# uses white space indentation-aware syntax, similar to 
languages like Python. 
    let sampleFunction3 x = 
        if x < 100.0 then 
            2.0*x*x - x/5.0 + 3.0 
        else 
            2.0*x*x + x/5.0 - 37.0 

    let result3 = sampleFunction3 (6.5 + 4.5) 

    // This line uses '%f' to print the result as a float.  As with '%d' 
above, this is type-safe. 
    printfn $"The result of applying the 3rd sample function to (6.5 + 4.5) 
is %f{result3}" 

module Immutability = 

    /// Binding a value to a name via 'let' makes it immutable. 
    /// 
    /// The second line of code compiles, but 'number' from that point 
onward will shadow the previous definition. 
    /// There is no way to access the previous definition of 'number' due to 
shadowing. 
    let number = 2 
    // let number = 3 

    /// A mutable binding.  This is required to be able to mutate the value 
of 'otherNumber'. 
    let mutable otherNumber = 2 



As a .NET language, F# supports the same underlying primitive types that exist in .NET.

Here is how various numeric types are represented in F#:

F#

Here's what Boolean values and performing basic conditional logic looks like:

F#

    printfn $"'otherNumber' is {otherNumber}" 

    // When mutating a value, use '<-' to assign a new value. 
    // 
    // Note that '=' is not the same as this.  Outside binding values via 
'let', '=' is used to test equality. 
    otherNumber <- otherNumber + 1 

    printfn $"'otherNumber' changed to be {otherNumber}" 

Numbers, Booleans, and Strings

module IntegersAndNumbers = 

    /// This is a sample integer.
    let sampleInteger = 176 

    /// This is a sample floating point number. 
    let sampleDouble = 4.1 

    /// This computed a new number by some arithmetic.  Numeric types are 
converted using 
    /// functions 'int', 'double' and so on. 
    let sampleInteger2 = (sampleInteger/4 + 5 - 7) * 4 + int sampleDouble 

    /// This is a list of the numbers from 0 to 99. 
    let sampleNumbers = [ 0 .. 99 ] 

    /// This is a list of all tuples containing all the numbers from 0 to 99 
and their squares. 
    let sampleTableOfSquares = [ for i in 0 .. 99 -> (i, i*i) ] 

    // The next line prints a list that includes tuples, using an 
interpolated string. 
    printfn $"The table of squares from 0 to 99 is:\n{sampleTableOfSquares}" 

module Booleans = 

    /// Booleans values are 'true' and 'false'. 
    let boolean1 = true



And here's what basic string manipulation looks like:

F#

Tuples are a big deal in F#. They are a grouping of unnamed but ordered values that can
be treated as values themselves. Think of them as values which are aggregated from
other values. They have many uses, such as conveniently returning multiple values from
a function, or grouping values for some ad-hoc convenience.

F#

    let boolean2 = false 

    /// Operators on booleans are 'not', '&&' and '||'. 
    let boolean3 = not boolean1 && (boolean2 || false) 

    // This line uses '%b'to print a boolean value.  This is type-safe. 
    printfn $"The expression 'not boolean1 && (boolean2 || false)' is 
%b{boolean3}" 

module StringManipulation = 

    /// Strings use double quotes. 
    let string1 = "Hello" 
    let string2  = "world" 

    /// Strings can also use @ to create a verbatim string literal. 
    /// This will ignore escape characters such as '\', '\n', '\t', etc. 
    let string3 = @"C:\Program Files\" 

    /// String literals can also use triple-quotes. 
    let string4 = """The computer said "hello world" when I told it to!""" 

    /// String concatenation is normally done with the '+' operator. 
    let helloWorld = string1 + " " + string2 

    // This line uses '%s' to print a string value.  This is type-safe. 
    printfn "%s" helloWorld 

    /// Substrings use the indexer notation.  This line extracts the first 7 
characters as a substring. 
    /// Note that like many languages, Strings are zero-indexed in F#. 
    let substring = helloWorld[0..6] 
    printfn $"{substring}" 

Tuples

module Tuples = 



You can also create struct  tuples. These also interoperate fully with C#7/Visual Basic 15
tuples, which are also struct  tuples:

F#

It's important to note that because struct  tuples are value types, they cannot be
implicitly converted to reference tuples, or vice versa. You must explicitly convert
between a reference and struct tuple.

    /// A simple tuple of integers. 
    let tuple1 = (1, 2, 3) 

    /// A function that swaps the order of two values in a tuple. 
    /// 
    /// F# Type Inference will automatically generalize the function to have 
a generic type, 
    /// meaning that it will work with any type. 
    let swapElems (a, b) = (b, a) 

    printfn $"The result of swapping (1, 2) is {(swapElems (1,2))}" 

    /// A tuple consisting of an integer, a string, 
    /// and a double-precision floating point number. 
    let tuple2 = (1, "fred", 3.1415) 

    printfn $"tuple1: {tuple1}\ttuple2: {tuple2}" 

/// Tuples are normally objects, but they can also be represented as 
structs. 
/// 
/// These interoperate completely with structs in C# and Visual Basic.NET; 
however, 
/// struct tuples are not implicitly convertible with object tuples (often 
called reference tuples). 
/// 
/// The second line below will fail to compile because of this.  Uncomment 
it to see what happens. 
let sampleStructTuple = struct (1, 2) 
//let thisWillNotCompile: (int*int) = struct (1, 2) 

// Although you can 
let convertFromStructTuple (struct(a, b)) = (a, b) 
let convertToStructTuple (a, b) = struct(a, b) 

printfn $"Struct Tuple: {sampleStructTuple}\nReference tuple made from the 
Struct Tuple: {(sampleStructTuple |> convertFromStructTuple)}" 

Pipelines



The pipe operator |>  is used extensively when processing data in F#. This operator
allows you to establish "pipelines" of functions in a flexible manner. The following
example walks through how you can take advantage of these operators to build a
simple functional pipeline:

F#

module PipelinesAndComposition = 

    /// Squares a value. 
    let square x = x * x 

    /// Adds 1 to a value. 
    let addOne x = x + 1 

    /// Tests if an integer value is odd via modulo. 
    /// 
    /// '<>' is a binary comparison operator that means "not equal to". 
    let isOdd x = x % 2 <> 0 

    /// A list of 5 numbers.  More on lists later. 
    let numbers = [ 1; 2; 3; 4; 5 ] 

    /// Given a list of integers, it filters out the even numbers,
    /// squares the resulting odds, and adds 1 to the squared odds. 
    let squareOddValuesAndAddOne values = 
        let odds = List.filter isOdd values 
        let squares = List.map square odds 
        let result = List.map addOne squares 
        result 

    printfn $"processing {numbers} through 'squareOddValuesAndAddOne' 
produces: {squareOddValuesAndAddOne numbers}" 

    /// A shorter way to write 'squareOddValuesAndAddOne' is to nest each 
    /// sub-result into the function calls themselves. 
    /// 
    /// This makes the function much shorter, but it's difficult to see the 
    /// order in which the data is processed. 
    let squareOddValuesAndAddOneNested values = 
        List.map addOne (List.map square (List.filter isOdd values)) 

    printfn $"processing {numbers} through 'squareOddValuesAndAddOneNested' 
produces: {squareOddValuesAndAddOneNested numbers}" 

    /// A preferred way to write 'squareOddValuesAndAddOne' is to use F# 
pipe operators. 
    /// This allows you to avoid creating intermediate results, but is much 
more readable 
    /// than nesting function calls like 'squareOddValuesAndAddOneNested' 
    let squareOddValuesAndAddOnePipeline values = 
        values 
        |> List.filter isOdd 



        |> List.map square 
        |> List.map addOne 

    printfn $"processing {numbers} through 
'squareOddValuesAndAddOnePipeline' produces: 
{squareOddValuesAndAddOnePipeline numbers}" 

    /// You can shorten 'squareOddValuesAndAddOnePipeline' by moving the 
second `List.map` call 
    /// into the first, using a Lambda Function. 
    /// 
    /// Note that pipelines are also being used inside the lambda function.  
F# pipe operators 
    /// can be used for single values as well.  This makes them very 
powerful for processing data. 
    let squareOddValuesAndAddOneShorterPipeline values = 
        values 
        |> List.filter isOdd 
        |> List.map(fun x -> x |> square |> addOne) 

    printfn $"processing {numbers} through 
'squareOddValuesAndAddOneShorterPipeline' produces: 
{squareOddValuesAndAddOneShorterPipeline numbers}" 

    /// Lastly, you can eliminate the need to explicitly take 'values' in as 
a parameter by using '>>' 
    /// to compose the two core operations: filtering out even numbers, then 
squaring and adding one. 
    /// Likewise, the 'fun x -> ...' bit of the lambda expression is also 
not needed, because 'x' is simply
    /// being defined in that scope so that it can be passed to a functional 
pipeline.  Thus, '>>' can be used
    /// there as well. 
    /// 
    /// The result of 'squareOddValuesAndAddOneComposition' is itself 
another function which takes a 
    /// list of integers as its input.  If you execute 
'squareOddValuesAndAddOneComposition' with a list 
    /// of integers, you'll notice that it produces the same results as 
previous functions. 
    /// 
    /// This is using what is known as function composition.  This is 
possible because functions in F# 
    /// use Partial Application and the input and output types of each data 
processing operation match 
    /// the signatures of the functions we're using. 
    let squareOddValuesAndAddOneComposition = 
        List.filter isOdd >> List.map (square >> addOne) 

    printfn $"processing {numbers} through 
'squareOddValuesAndAddOneComposition' produces: 
{squareOddValuesAndAddOneComposition numbers}" 



The previous sample made use of many features of F#, including list processing
functions, first-class functions, and partial application. Although these are advanced
concepts, it should be clear how easily functions can be used to process data when
building pipelines.

Lists, Arrays, and Sequences are three primary collection types in the F# core library.

Lists are ordered, immutable collections of elements of the same type. They are singly
linked lists, which means they are meant for enumeration, but a poor choice for random
access and concatenation if they're large. This is in contrast to Lists in other popular
languages, which typically do not use a singly linked list to represent Lists.

F#

Lists, Arrays, and Sequences

module Lists = 

    /// Lists are defined using [ ... ].  This is an empty list. 
    let list1 = [ ] 

    /// This is a list with 3 elements.  ';' is used to separate elements on 
the same line. 
    let list2 = [ 1; 2; 3 ] 

    /// You can also separate elements by placing them on their own lines. 
    let list3 = [ 
        1 
        2 
        3 
    ] 

    /// This is a list of integers from 1 to 1000 
    let numberList = [ 1 .. 1000 ] 

    /// Lists can also be generated by computations. This is a list 
containing 
    /// all the days of the year.
    /// 
    /// 'yield' is used for on-demand evaluation. More on this later in 
Sequences. 
    let daysList = 
        [ for month in 1 .. 12 do 
              for day in 1 .. System.DateTime.DaysInMonth(2017, month) do 
                  yield System.DateTime(2017, month, day) ] 

    // Print the first 5 elements of 'daysList' using 'List.take'.
    printfn $"The first 5 days of 2017 are: {daysList |> List.take 5}" 

    /// Computations can include conditionals.  This is a list containing 



Arrays are fixed-size, mutable collections of elements of the same type. They support
fast random access of elements, and are faster than F# lists because they are just
contiguous blocks of memory.

F#

the tuples 
    /// which are the coordinates of the black squares on a chess board. 
    let blackSquares = 
        [ for i in 0 .. 7 do 
              for j in 0 .. 7 do 
                  if (i+j) % 2 = 1 then 
                      yield (i, j) ] 

    /// Lists can be transformed using 'List.map' and other functional 
programming combinators. 
    /// This definition produces a new list by squaring the numbers in 
numberList, using the pipeline 
    /// operator to pass an argument to List.map. 
    let squares = 
        numberList 
        |> List.map (fun x -> x*x) 

    /// There are many other list combinations. The following computes the 
sum of the squares of the 
    /// numbers divisible by 3. 
    let sumOfSquares = 
        numberList 
        |> List.filter (fun x -> x % 3 = 0) 
        |> List.sumBy (fun x -> x * x) 

    printfn $"The sum of the squares of numbers up to 1000 that are 
divisible by 3 is: %d{sumOfSquares}" 

module Arrays = 

    /// This is The empty array.  Note that the syntax is similar to that of 
Lists, but uses `[| ... |]` instead. 
    let array1 = [| |] 

    /// Arrays are specified using the same range of constructs as lists. 
    let array2 = [| "hello"; "world"; "and"; "hello"; "world"; "again" |] 

    /// This is an array of numbers from 1 to 1000. 
    let array3 = [| 1 .. 1000 |] 

    /// This is an array containing only the words "hello" and "world". 
    let array4 = 
        [| for word in array2 do 
               if word.Contains("l") then 
                   yield word |] 



Sequences are a logical series of elements, all of the same type. These are a more
general type than Lists and Arrays, capable of being your "view" into any logical series of
elements. They also stand out because they can be lazy, which means that elements can
be computed only when they are needed.

F#

    /// This is an array initialized by index and containing the even 
numbers from 0 to 2000. 
    let evenNumbers = Array.init 1001 (fun n -> n * 2) 

    /// Sub-arrays are extracted using slicing notation. 
    let evenNumbersSlice = evenNumbers[0..500] 

    /// You can loop over arrays and lists using 'for' loops. 
    for word in array4 do 
        printfn $"word: {word}" 

    // You can modify the contents of an array element by using the left 
arrow assignment operator. 
    // 
    // To learn more about this operator, see: 
https://learn.microsoft.com/dotnet/fsharp/language-
reference/values/index#mutable-variables 
    array2[1] <- "WORLD!" 

    /// You can transform arrays using 'Array.map' and other functional 
programming operations. 
    /// The following calculates the sum of the lengths of the words that 
start with 'h'. 
    /// 
    /// Note that in this case, similar to Lists, array2 is not mutated by 
Array.filter. 
    let sumOfLengthsOfWords = 
        array2 
        |> Array.filter (fun x -> x.StartsWith "h") 
        |> Array.sumBy (fun x -> x.Length) 

    printfn $"The sum of the lengths of the words in Array 2 is: 
%d{sumOfLengthsOfWords}" 

module Sequences = 

    /// This is the empty sequence. 
    let seq1 = Seq.empty 

    /// This a sequence of values. 
    let seq2 = seq { yield "hello"; yield "world"; yield "and"; yield 
"hello"; yield "world"; yield "again" } 

    /// This is an on-demand sequence from 1 to 1000. 
    let numbersSeq = seq { 1 .. 1000 } 



Processing collections or sequences of elements is typically done with recursion in F#.
Although F# has support for loops and imperative programming, recursion is preferred
because it is easier to guarantee correctness.

F#

    /// This is a sequence producing the words "hello" and "world"
    let seq3 = 
        seq { for word in seq2 do 
                  if word.Contains("l") then 
                      yield word } 

    /// This is a sequence producing the even numbers up to 2000. 
    let evenNumbers = Seq.init 1001 (fun n -> n * 2) 

    let rnd = System.Random() 

    /// This is an infinite sequence which is a random walk. 
    /// This example uses yield! to return each element of a subsequence. 
    let rec randomWalk x = 
        seq { yield x 
              yield! randomWalk (x + rnd.NextDouble() - 0.5) } 

    /// This example shows the first 100 elements of the random walk. 
    let first100ValuesOfRandomWalk = 
        randomWalk 5.0 
        |> Seq.truncate 100 
        |> Seq.toList 

    printfn $"First 100 elements of a random walk: 
{first100ValuesOfRandomWalk}" 

Recursive Functions

７ Note

The following example makes use of the pattern matching via the match
expression. This fundamental construct is covered later in this article.

module RecursiveFunctions = 

    /// This example shows a recursive function that computes the factorial 
of an 
    /// integer. It uses 'let rec' to define a recursive function.
    let rec factorial n = 
        if n = 0 then 1 else n * factorial (n-1) 



F# also has full support for Tail Call Optimization, which is a way to optimize recursive
calls so that they are just as fast as a loop construct.

Record and Union types are two fundamental data types used in F# code, and are
generally the best way to represent data in an F# program. Although this makes them
similar to classes in other languages, one of their primary differences is that they have

    printfn $"Factorial of 6 is: %d{factorial 6}" 

    /// Computes the greatest common factor of two integers. 
    /// 
    /// Since all of the recursive calls are tail calls, 
    /// the compiler will turn the function into a loop, 
    /// which improves performance and reduces memory consumption.
    let rec greatestCommonFactor a b = 
        if a = 0 then b
        elif a < b then greatestCommonFactor a (b - a) 
        else greatestCommonFactor (a - b) b 

    printfn $"The Greatest Common Factor of 300 and 620 is 
%d{greatestCommonFactor 300 620}"

    /// This example computes the sum of a list of integers using recursion. 
    /// 
    /// '::' is used to split a list into the head and tail of the list, 
    /// the head being the first element and the tail being the rest of the 
list. 
    let rec sumList xs = 
        match xs with 
        | []    -> 0 
        | y::ys -> y + sumList ys

    /// This makes 'sumList' tail recursive, using a helper function with a 
result accumulator. 
    let rec private sumListTailRecHelper accumulator xs = 
        match xs with 
        | []    -> accumulator 
        | y::ys -> sumListTailRecHelper (accumulator+y) ys 

    /// This invokes the tail recursive helper function, providing '0' as a 
seed accumulator. 
    /// An approach like this is common in F#. 
    let sumListTailRecursive xs = sumListTailRecHelper 0 xs 

    let oneThroughTen = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] 

    printfn $"The sum 1-10 is %d{sumListTailRecursive oneThroughTen}" 

Record and Discriminated Union Types



structural equality semantics. This means that they are "natively" comparable and
equality is straightforward - just check if one is equal to the other.

Records are an aggregate of named values, with optional members (such as methods). If
you're familiar with C# or Java, then these should feel similar to POCOs or POJOs - just
with structural equality and less ceremony.

F#

module RecordTypes = 

    /// This example shows how to define a new record type. 
    type ContactCard = 
        { Name     : string 
          Phone    : string 
          Verified : bool } 

    /// This example shows how to instantiate a record type. 
    let contact1 = 
        { Name = "Alf" 
          Phone = "(206) 555-0157" 
          Verified = false } 

    /// You can also do this on the same line with ';' separators.
    let contactOnSameLine = { Name = "Alf"; Phone = "(206) 555-0157"; 
Verified = false } 

    /// This example shows how to use "copy-and-update" on record values. It 
creates 
    /// a new record value that is a copy of contact1, but has different 
values for 
    /// the 'Phone' and 'Verified' fields. 
    /// 
    /// To learn more, see: 
https://learn.microsoft.com/dotnet/fsharp/language-reference/copy-and-
update-record-expressions 
    let contact2 = 
        { contact1 with 
            Phone = "(206) 555-0112" 
            Verified = true } 

    /// This example shows how to write a function that processes a record 
value. 
    /// It converts a 'ContactCard' object to a string. 
    let showContactCard (c: ContactCard) = 
        c.Name + " Phone: " + c.Phone + (if not c.Verified then " 
(unverified)" else "") 

    printfn $"Alf's Contact Card: {showContactCard contact1}" 

    /// This is an example of a Record with a member. 
    type ContactCardAlternate = 
        { Name     : string 



You can also represent Records as structs. This is done with the [<Struct>]  attribute:

F#

Discriminated Unions (DUs) are values that could be a number of named forms or cases.
Data stored in the type can be one of several distinct values.

F#

          Phone    : string 
          Address  : string 
          Verified : bool } 

        /// Members can implement object-oriented members. 
        member this.PrintedContactCard = 
            this.Name + " Phone: " + this.Phone + (if not this.Verified then 
" (unverified)" else "") + this.Address 

    let contactAlternate = 
        { Name = "Alf" 
          Phone = "(206) 555-0157" 
          Verified = false 
          Address = "111 Alf Street" } 

    // Members are accessed via the '.' operator on an instantiated type. 
    printfn $"Alf's alternate contact card is 
{contactAlternate.PrintedContactCard}" 

[<Struct>] 
type ContactCardStruct = 
    { Name     : string 
      Phone    : string 
      Verified : bool } 

module DiscriminatedUnions = 

    /// The following represents the suit of a playing card. 
    type Suit = 
        | Hearts 
        | Clubs 
        | Diamonds 
        | Spades 

    /// A Discriminated Union can also be used to represent the rank of a 
playing card. 
    type Rank = 
        /// Represents the rank of cards 2 .. 10 
        | Value of int 
        | Ace 
        | King 
        | Queen 



You can also use DUs as Single-Case Discriminated Unions, to help with domain
modeling over primitive types. Often, strings and other primitive types are used to
represent something, and are thus given a particular meaning. However, using only the
primitive representation of the data can result in mistakenly assigning an incorrect
value! Representing each type of information as a distinct single-case union can enforce
correctness in this scenario.

F#

        | Jack 

        /// Discriminated Unions can also implement object-oriented members. 
        static member GetAllRanks() = 
            [ yield Ace 
              for i in 2 .. 10 do yield Value i 
              yield Jack 
              yield Queen 
              yield King ] 

    /// This is a record type that combines a Suit and a Rank. 
    /// It's common to use both Records and Discriminated Unions when 
representing data. 
    type Card = { Suit: Suit; Rank: Rank } 

    /// This computes a list representing all the cards in the deck. 
    let fullDeck = 
        [ for suit in [ Hearts; Diamonds; Clubs; Spades] do 
              for rank in Rank.GetAllRanks() do 
                  yield { Suit=suit; Rank=rank } ] 

    /// This example converts a 'Card' object to a string. 
    let showPlayingCard (c: Card) = 
        let rankString = 
            match c.Rank with 
            | Ace -> "Ace" 
            | King -> "King" 
            | Queen -> "Queen" 
            | Jack -> "Jack" 
            | Value n -> string n
        let suitString = 
            match c.Suit with 
            | Clubs -> "clubs" 
            | Diamonds -> "diamonds" 
            | Spades -> "spades" 
            | Hearts -> "hearts" 
        rankString  + " of " + suitString 

    /// This example prints all the cards in a playing deck. 
    let printAllCards() = 
        for card in fullDeck do 
            printfn $"{showPlayingCard card}" 



As the above sample demonstrates, to get the underlying value in a single-case
Discriminated Union, you must explicitly unwrap it.

Additionally, DUs also support recursive definitions, allowing you to easily represent
trees and inherently recursive data. For example, here's how you can represent a Binary
Search Tree with exists  and insert  functions.

F#

// Single-case DUs are often used for domain modeling.  This can buy you 
extra type safety 
// over primitive types such as strings and ints. 
// 
// Single-case DUs cannot be implicitly converted to or from the type they 
wrap. 
// For example, a function which takes in an Address cannot accept a string 
as that input, 
// or vice versa. 
type Address = Address of string 
type Name = Name of string 
type SSN = SSN of int 

// You can easily instantiate a single-case DU as follows. 
let address = Address "111 Alf Way" 
let name = Name "Alf" 
let ssn = SSN 1234567890 

/// When you need the value, you can unwrap the underlying value with a 
simple function. 
let unwrapAddress (Address a) = a 
let unwrapName (Name n) = n 
let unwrapSSN (SSN s) = s 

// Printing single-case DUs is simple with unwrapping functions. 
printfn $"Address: {address |> unwrapAddress}, Name: {name |> unwrapName}, 
and SSN: {ssn |> unwrapSSN}" 

/// Discriminated Unions also support recursive definitions. 
/// 
/// This represents a Binary Search Tree, with one case being the Empty 
tree, 
/// and the other being a Node with a value and two subtrees. 
/// 
/// Note 'T here is a type parameter, indicating that 'BST' is a generic 
type. 
/// More on generics later. 
type BST<'T> = 
    | Empty 
    | Node of value:'T * left: BST<'T> * right: BST<'T> 

/// Check if an item exists in the binary search tree. 
/// Searches recursively using Pattern Matching.  Returns true if it exists; 



Because DUs allow you to represent the recursive structure of the tree in the data type,
operating on this recursive structure is straightforward and guarantees correctness. It is
also supported in pattern matching, as shown below.

Pattern Matching is the F# feature that enables correctness for operating on F# types. In
the above samples, you probably noticed quite a bit of match x with ...  syntax. This
construct allows the compiler, which can understand the "shape" of data types, to force
you to account for all possible cases when using a data type through what is known as
Exhaustive Pattern Matching. This is incredibly powerful for correctness, and can be
cleverly used to "lift" what would normally be a run-time concern into a compile-time
concern.

F#

otherwise, false. 
let rec exists item bst = 
    match bst with 
    | Empty -> false 
    | Node (x, left, right) -> 
        if item = x then true 
        elif item < x then (exists item left) // Check the left subtree. 
        else (exists item right) // Check the right subtree. 

/// Inserts an item in the Binary Search Tree. 
/// Finds the place to insert recursively using Pattern Matching, then 
inserts a new node. 
/// If the item is already present, it does not insert anything. 
let rec insert item bst = 
    match bst with 
    | Empty -> Node(item, Empty, Empty) 
    | Node(x, left, right) as node -> 
        if item = x then node // No need to insert, it already exists; 
return the node. 
        elif item < x then Node(x, insert item left, right) // Call into 
left subtree. 
        else Node(x, left, insert item right) // Call into right subtree. 

Pattern Matching

module PatternMatching = 

    /// A record for a person's first and last name 
    type Person = { 
        First : string 
        Last  : string 
    } 

    /// A Discriminated Union of 3 different kinds of employees 



Something you may have noticed is the use of the _  pattern. This is known as the
Wildcard Pattern, which is a way of saying "I don't care what something is". Although
convenient, you can accidentally bypass Exhaustive Pattern Matching and no longer
benefit from compile-time enforcements if you aren't careful in using _ . It is best used
when you don't care about certain pieces of a decomposed type when pattern
matching, or the final clause when you have enumerated all meaningful cases in a
pattern matching expression.

In the following example, the _  case is used when a parse operation fails.

F#

    type Employee = 
        | Engineer of engineer: Person 
        | Manager of manager: Person * reports: List<Employee> 
        | Executive of executive: Person * reports: List<Employee> * 
assistant: Employee 

    /// Count everyone underneath the employee in the management hierarchy, 
    /// including the employee. The matches bind names to the properties 
    /// of the cases so that those names can be used inside the match 
branches. 
    /// Note that the names used for binding do not need to be the same as 
the 
    /// names given in the DU definition above. 
    let rec countReports(emp : Employee) = 
        1 + match emp with 
            | Engineer(person) ->
                0 
            | Manager(person, reports) -> 
                reports |> List.sumBy countReports 
            | Executive(person, reports, assistant) -> 
                (reports |> List.sumBy countReports) + countReports 
assistant 

/// Find all managers/executives named "Dave" who do not have any reports. 
/// This uses the 'function' shorthand to as a lambda expression. 
let findDaveWithOpenPosition(emps : List<Employee>) = 
    emps 
    |> List.filter(function 
                   | Manager({First = "Dave"}, []) -> true // [] matches an 
empty list. 
                   | Executive({First = "Dave"}, [], _) -> true 
                   | _ -> false) // '_' is a wildcard pattern that matches 
anything. 
                                 // This handles the "or else" case. 

/// You can also use the shorthand function construct for pattern matching, 
/// which is useful when you're writing functions which make use of Partial 
Application. 
let private parseHelper (f: string -> bool * 'T) = f >> function 



Active Patterns are another powerful construct to use with pattern matching. They allow
you to partition input data into custom forms, decomposing them at the pattern match
call site. They can also be parameterized, thus allowing to define the partition as a
function. Expanding the previous example to support Active Patterns looks something
like this:

F#

One special case of Discriminated Union types is the Option Type, which is so useful that
it's a part of the F# core library.

    | (true, item) -> Some item 
    | (false, _) -> None 

let parseDateTimeOffset = parseHelper DateTimeOffset.TryParse 

let result = parseDateTimeOffset "1970-01-01" 
match result with 
| Some dto -> printfn "It parsed!" 
| None -> printfn "It didn't parse!" 

// Define some more functions which parse with the helper function. 
let parseInt = parseHelper Int32.TryParse 
let parseDouble = parseHelper Double.TryParse 
let parseTimeSpan = parseHelper TimeSpan.TryParse 

let (|Int|_|) = parseInt 
let (|Double|_|) = parseDouble 
let (|Date|_|) = parseDateTimeOffset 
let (|TimeSpan|_|) = parseTimeSpan 

/// Pattern Matching via 'function' keyword and Active Patterns often looks 
like this. 
let printParseResult = function 
    | Int x -> printfn $"%d{x}" 
    | Double x -> printfn $"%f{x}" 
    | Date d -> printfn $"%O{d}" 
    | TimeSpan t -> printfn $"%O{t}" 
    | _ -> printfn "Nothing was parse-able!" 

// Call the printer with some different values to parse. 
printParseResult "12" 
printParseResult "12.045" 
printParseResult "12/28/2016" 
printParseResult "9:01PM" 
printParseResult "banana!" 

Options



The Option Type is a type that represents one of two cases: a value, or nothing at all. It is
used in any scenario where a value may or may not result from a particular operation.
This then forces you to account for both cases, making it a compile-time concern rather
than a runtime concern. These are often used in APIs where null  is used to represent
"nothing" instead, thus eliminating the need to worry about NullReferenceException  in
many circumstances.

F#

F#'s type system includes the ability to provide context for numeric literals through
Units of Measure. Units of measure allow you to associate a numeric type to a unit, such
as Meters, and have functions perform work on units rather than numeric literals. This
enables the compiler to verify that the types of numeric literals passed in make sense
under a certain context, thus eliminating run-time errors associated with that kind of
work.

F#

module OptionValues = 

    /// First, define a zip code defined via Single-case Discriminated 
Union. 
    type ZipCode = ZipCode of string 

    /// Next, define a type where the ZipCode is optional. 
    type Customer = { ZipCode: ZipCode option } 

    /// Next, define an interface type that represents an object to compute 
the shipping zone for the customer's zip code, 
    /// given implementations for the 'getState' and 'getShippingZone' 
abstract methods. 
    type IShippingCalculator = 
        abstract GetState : ZipCode -> string option 
        abstract GetShippingZone : string -> int 

    /// Next, calculate a shipping zone for a customer using a calculator 
instance. 
    /// This uses combinators in the Option module to allow a functional 
pipeline for 
    /// transforming data with Optionals. 
    let CustomerShippingZone (calculator: IShippingCalculator, customer: 
Customer) = 
        customer.ZipCode 
        |> Option.bind calculator.GetState 
        |> Option.map calculator.GetShippingZone 

Units of Measure



The F# Core library defines many SI unit types and unit conversions. To learn more,
check out the FSharp.Data.UnitSystems.SI.UnitSymbols Namespace .

F# has full support for object programming through classes, Interfaces, Abstract Classes,
Inheritance, and so on.

Classes are types that represent .NET objects, which can have properties, methods, and
events as its Members.

F#

module UnitsOfMeasure = 

    /// First, open a collection of common unit names 
    open Microsoft.FSharp.Data.UnitSystems.SI.UnitNames 

    /// Define a unitized constant 
    let sampleValue1 = 1600.0<meter> 

    /// Next, define a new unit type 
    [<Measure>] 
    type mile = 
        /// Conversion factor mile to meter. 
        static member asMeter = 1609.34<meter/mile> 

    /// Define a unitized constant 
    let sampleValue2  = 500.0<mile> 

    /// Compute  metric-system constant 
    let sampleValue3 = sampleValue2 * mile.asMeter 

    // Values using Units of Measure can be used just like the primitive 
numeric type for things like printing. 
    printfn $"After a %f{sampleValue1} race I would walk %f{sampleValue2} 
miles which would be %f{sampleValue3} meters" 

Object Programming

module DefiningClasses = 

    /// A simple two-dimensional Vector class. 
    /// 
    /// The class's constructor is on the first line, 
    /// and takes two arguments: dx and dy, both of type 'double'.
    type Vector2D(dx : double, dy : double) = 

        /// This internal field stores the length of the vector, computed 
when the 
        /// object is constructed
        let length = sqrt (dx*dx + dy*dy) 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-data-unitsystems-si-unitsymbols.html


Defining generic classes is also straightforward.

F#

        // 'this' specifies a name for the object's self-identifier. 
        // In instance methods, it must appear before the member name. 
        member this.DX = dx 

        member this.DY = dy 

        member this.Length = length 

        /// This member is a method.  The previous members were properties. 
        member this.Scale(k) = Vector2D(k * this.DX, k * this.DY) 

    /// This is how you instantiate the Vector2D class. 
    let vector1 = Vector2D(3.0, 4.0) 

    /// Get a new scaled vector object, without modifying the original 
object. 
    let vector2 = vector1.Scale(10.0) 

    printfn $"Length of vector1: %f{vector1.Length}\nLength of vector2: 
%f{vector2.Length}" 

module DefiningGenericClasses = 

    type StateTracker<'T>(initialElement: 'T) = 

        /// This internal field store the states in a list. 
        let mutable states = [ initialElement ] 

        /// Add a new element to the list of states. 
        member this.UpdateState newState = 
            states <- newState :: states  // use the '<-' operator to mutate 
the value. 

        /// Get the entire list of historical states. 
        member this.History = states 

        /// Get the latest state.
        member this.Current = states.Head 

    /// An 'int' instance of the state tracker class. Note that the type 
parameter is inferred. 
    let tracker = StateTracker 10 

    // Add a state 
    tracker.UpdateState 17 



To implement an Interface, you can use either interface ... with  syntax or an Object
Expression.

F#

The presence of Classes, Records, Discriminated Unions, and Tuples leads to an
important question: which should you use? Like most everything in life, the answer
depends on your circumstances.

Tuples are great for returning multiple values from a function, and using an ad-hoc
aggregate of values as a value itself.

Records are a "step up" from Tuples, having named labels and support for optional
members. They are great for a low-ceremony representation of data in-transit through
your program. Because they have structural equality, they are easy to use with
comparison.

Discriminated Unions have many uses, but the core benefit is to be able to utilize them
in conjunction with Pattern Matching to account for all possible "shapes" that a data can
have.

module ImplementingInterfaces = 

    /// This is a type that implements IDisposable. 
    type ReadFile() = 

        let file = new System.IO.StreamReader("readme.txt") 

        member this.ReadLine() = file.ReadLine() 

        // This is the implementation of IDisposable members. 
        interface System.IDisposable with 
            member this.Dispose() = file.Close() 

    /// This is an object that implements IDisposable via an Object 
Expression 
    /// Unlike other languages such as C# or Java, a new type definition is 
not needed 
    /// to implement an interface. 
    let interfaceImplementation = 
        { new System.IDisposable with 
            member this.Dispose() = printfn "disposed" } 

Which Types to Use



Classes are great for a huge number of reasons, such as when you need to represent
information and also tie that information to functionality. As a rule of thumb, when you
have functionality that is conceptually tied to some data, using Classes and the
principles of Object-Oriented Programming is a significant benefit. Classes are also the
preferred data type when interoperating with C# and Visual Basic, as these languages
use classes for nearly everything.

Now that you've seen some of the primary features of the language, you should be
ready to write your first F# programs! Check out Getting Started to learn how to set up
your development environment and write some code.

Also, check out the F# Language Reference to see a comprehensive collection of
conceptual content on F#.

Next Steps



Introduction to Functional
Programming Concepts in F#
Article • 11/05/2021

Functional programming is a style of programming that emphasizes the use of functions
and immutable data. Typed functional programming is when functional programming is
combined with static types, such as with F#. In general, the following concepts are
emphasized in functional programming:

Functions as the primary constructs you use
Expressions instead of statements
Immutable values over variables
Declarative programming over imperative programming

Throughout this series, you'll explore concepts and patterns in functional programming
using F#. Along the way, you'll learn some F# too.

Functional programming, like other programming paradigms, comes with a vocabulary
that you will eventually need to learn. Here are some common terms you'll see all of the
time:

Function - A function is a construct that will produce an output when given an
input. More formally, it maps an item from one set to another set. This formalism is
lifted into the concrete in many ways, especially when using functions that operate
on collections of data. It is the most basic (and important) concept in functional
programming.
Expression - An expression is a construct in code that produces a value. In F#, this
value must be bound or explicitly ignored. An expression can be trivially replaced
by a function call.
Purity - Purity is a property of a function such that its return value is always the
same for the same arguments, and that its evaluation has no side effects. A pure
function depends entirely on its arguments.
Referential Transparency - Referential Transparency is a property of expressions
such that they can be replaced with their output without affecting a program's
behavior.
Immutability - Immutability means that a value cannot be changed in-place. This is
in contrast with variables, which can change in place.

Terminology



The following examples demonstrate these core concepts.

The most common and fundamental construct in functional programming is the
function. Here's a simple function that adds 1 to an integer:

F#

Its type signature is as follows:

F#

The signature can be read as, "addOne  accepts an int  named x  and will produce an
int ". More formally, addOne  is mapping a value from the set of integers to the set of
integers. The ->  token signifies this mapping. In F#, you can usually look at the function
signature to get a sense for what it does.

So, why is the signature important? In typed functional programming, the
implementation of a function is often less important than the actual type signature! The
fact that addOne  adds the value 1 to an integer is interesting at run time, but when you
are constructing a program, the fact that it accepts and returns an int  is what informs
how you will actually use this function. Furthermore, once you use this function correctly
(with respect to its type signature), diagnosing any problems can be done only within
the body of the addOne  function. This is the impetus behind typed functional
programming.

Expressions are constructs that evaluate to a value. In contrast to statements, which
perform an action, expressions can be thought of performing an action that gives back a
value. Expressions are almost always used in functional programming instead of
statements.

Consider the previous function, addOne . The body of addOne  is an expression:

Examples

Functions

let addOne x = x + 1 

val addOne: x:int -> int 

Expressions



F#

It is the result of this expression that defines the result type of the addOne  function. For
example, the expression that makes up this function could be changed to be a different
type, such as a string :

F#

The signature of the function is now:

F#

Since any type in F# can have ToString()  called on it, the type of x  has been made
generic (called Automatic Generalization), and the resultant type is a string .

Expressions are not just the bodies of functions. You can have expressions that produce
a value you use elsewhere. A common one is if :

F#

The if  expression produces a value called result . Note that you could omit result
entirely, making the if  expression the body of the addOneIfOdd  function. The key thing
to remember about expressions is that they produce a value.

There is a special type, unit , that is used when there is nothing to return. For example,
consider this simple function:

// 'x + 1' is an expression! 
let addOne x = x + 1 

let addOne x = x.ToString() + "1" 

val addOne: x:'a -> string 

// Checks if 'x' is odd by using the mod operator 
let isOdd x = x % 2 <> 0 

let addOneIfOdd input = 
    let result = 
        if isOdd input then 
            input + 1 
        else 
            input 

    result 



F#

The signature looks like this:

F#

The unit  type indicates that there is no actual value being returned. This is useful when
you have a routine that must "do work" despite having no value to return as a result of
that work.

This is in sharp contrast to imperative programming, where the equivalent if  construct
is a statement, and producing values is often done with mutating variables. For example,
in C#, the code might be written like this:

C#

It's worth noting that C# and other C-style languages do support the ternary expression,
which allows for expression-based conditional programming.

In functional programming, it is rare to mutate values with statements. Although some
functional languages support statements and mutation, it is not common to use these
concepts in functional programming.

As previously mentioned, pure functions are functions that:

let printString (str: string) = 
    printfn $"String is: {str}" 

val printString: str:string -> unit 

bool IsOdd(int x) => x % 2 != 0; 

int AddOneIfOdd(int input) 
{ 
    var result = input; 

    if (IsOdd(input)) 
    { 
        result = input + 1; 
    } 

    return result; 
} 

Pure functions

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/conditional-operator


Always evaluate to the same value for the same input.
Have no side effects.

It is helpful to think of mathematical functions in this context. In mathematics, functions
depend only on their arguments and do not have any side effects. In the mathematical
function f(x) = x + 1 , the value of f(x)  depends only on the value of x . Pure
functions in functional programming are the same way.

When writing a pure function, the function must depend only on its arguments and not
perform any action that results in a side effect.

Here is an example of a non-pure function because it depends on global, mutable state:

F#

The addOneToValue  function is clearly impure, because value  could be changed at any
time to have a different value than 1. This pattern of depending on a global value is to
be avoided in functional programming.

Here is another example of a non-pure function, because it performs a side effect:

F#

Although this function does not depend on a global value, it writes the value of x  to the
output of the program. Although there is nothing inherently wrong with doing this, it
does mean that the function is not pure. If another part of your program depends on
something external to the program, such as the output buffer, then calling this function
can affect that other part of your program.

Removing the printfn  statement makes the function pure:

F#

let mutable value = 1 

let addOneToValue x = x + value 

let addOneToValue x = 
    printfn $"x is %d{x}" 
    x + 1 

let addOneToValue x = x + 1 



Although this function is not inherently better than the previous version with the
printfn  statement, it does guarantee that all this function does is return a value. Calling
this function any number of times produces the same result: it just produces a value.
The predictability given by purity is something many functional programmers strive for.

Finally, one of the most fundamental concepts of typed functional programming is
immutability. In F#, all values are immutable by default. That means they cannot be
mutated in-place unless you explicitly mark them as mutable.

In practice, working with immutable values means that you change your approach to
programming from, "I need to change something", to "I need to produce a new value".

For example, adding 1 to a value means producing a new value, not mutating the
existing one:

F#

In F#, the following code does not mutate the value  function; instead, it performs an
equality check:

F#

Some functional programming languages do not support mutation at all. In F#, it is
supported, but it is not the default behavior for values.

This concept extends even further to data structures. In functional programming,
immutable data structures such as sets (and many more) have a different
implementation than you might initially expect. Conceptually, something like adding an
item to a set does not change the set, it produces a new set with the added value. Under
the covers, this is often accomplished by a different data structure that allows for
efficiently tracking a value so that the appropriate representation of the data can be
given as a result.

This style of working with values and data structures is critical, as it forces you to treat
any operation that modifies something as if it creates a new version of that thing. This

Immutability

let value = 1 
let secondValue = value + 1 

let value = 1 
value = value + 1 // Produces a 'bool' value! 



allows for things like equality and comparability to be consistent in your programs.

The next section will thoroughly cover functions, exploring different ways you can use
them in functional programming.

Using functions in F# explores functions deeply, showing how you can use them in
various contexts.

The Thinking Functionally  series is another great resource to learn about functional
programming with F#. It covers fundamentals of functional programming in a pragmatic
and easy-to-read way, using F# features to illustrate the concepts.

Next steps

Further reading

https://fsharpforfunandprofit.com/posts/thinking-functionally-intro/


Async programming in F#
Article • 05/03/2023

Asynchronous programming is a mechanism that is essential to modern applications for
diverse reasons. There are two primary use cases that most developers will encounter:

Presenting a server process that can service a significant number of concurrent
incoming requests, while minimizing the system resources occupied while request
processing awaits inputs from systems or services external to that process
Maintaining a responsive UI or main thread while concurrently progressing
background work

Although background work often does involve the utilization of multiple threads, it's
important to consider the concepts of asynchrony and multi-threading separately. In
fact, they are separate concerns, and one does not imply the other. This article describes
the separate concepts in more detail.

The previous point - that asynchrony is independent of the utilization of multiple
threads - is worth explaining a bit further. There are three concepts that are sometimes
related, but strictly independent of one another:

Concurrency; when multiple computations execute in overlapping time periods.
Parallelism; when multiple computations or several parts of a single computation
run at exactly the same time.
Asynchrony; when one or more computations can execute separately from the
main program flow.

All three are orthogonal concepts, but can be easily conflated, especially when they are
used together. For example, you may need to execute multiple asynchronous
computations in parallel. This relationship does not mean that parallelism or asynchrony
imply one another.

If you consider the etymology of the word "asynchronous", there are two pieces
involved:

"a", meaning "not".
"synchronous", meaning "at the same time".

When you put these two terms together, you'll see that "asynchronous" means "not at
the same time". That's it! There is no implication of concurrency or parallelism in this

Asynchrony defined



definition. This is also true in practice.

In practical terms, asynchronous computations in F# are scheduled to execute
independently of the main program flow. This independent execution doesn't imply
concurrency or parallelism, nor does it imply that a computation always happens in the
background. In fact, asynchronous computations can even execute synchronously,
depending on the nature of the computation and the environment the computation is
executing in.

The main takeaway you should have is that asynchronous computations are
independent of the main program flow. Although there are few guarantees about when
or how an asynchronous computation executes, there are some approaches to
orchestrating and scheduling them. The rest of this article explores core concepts for F#
asynchrony and how to use the types, functions, and expressions built into F#.

In F#, asynchronous programming is centered around two core concepts: async
computations and tasks.

The Async<'T>  type with async { } expressions, which represents a composable
asynchronous computation that can be started to form a task.
The Task<'T>  type, with task { } expressions, which represents an executing .NET
task.

In general, you should consider using task {…}  over async {…}  in new code if you're
interoperating with .NET libraries that use tasks, and if you don't rely on asynchronous
code tailcalls or implicit cancellation token propagation.

You can see the basic concepts of "async" programming in the following example:

F#

Core concepts

Core concepts of async

open System 
open System.IO 

// Perform an asynchronous read of a file using 'async' 
let printTotalFileBytesUsingAsync (path: string) = 
    async { 
        let! bytes = File.ReadAllBytesAsync(path) |> Async.AwaitTask 
        let fileName = Path.GetFileName(path) 
        printfn $"File {fileName} has %d{bytes.Length} bytes" 



In the example, the printTotalFileBytesUsingAsync  function is of type string ->
Async<unit> . Calling the function does not actually execute the asynchronous
computation. Instead, it returns an Async<unit>  that acts as a specification of the work
that is to execute asynchronously. It calls Async.AwaitTask  in its body, which converts
the result of ReadAllBytesAsync to an appropriate type.

Another important line is the call to Async.RunSynchronously . This is one of the Async
module starting functions that you'll need to call if you want to actually execute an F#
asynchronous computation.

This is a fundamental difference with the C#/Visual Basic style of async  programming. In
F#, asynchronous computations can be thought of as Cold tasks. They must be explicitly
started to actually execute. This has some advantages, as it allows you to combine and
sequence asynchronous work much more easily than in C# or Visual Basic.

Here is an example that builds upon the previous one by combining computations:

F#

    } 

[<EntryPoint>] 
let main argv = 
    printTotalFileBytesUsingAsync "path-to-file.txt" 
    |> Async.RunSynchronously 

    Console.Read() |> ignore 
    0 

Combine asynchronous computations

open System 
open System.IO 

let printTotalFileBytes path = 
    async { 
        let! bytes = File.ReadAllBytesAsync(path) |> Async.AwaitTask 
        let fileName = Path.GetFileName(path) 
        printfn $"File {fileName} has %d{bytes.Length} bytes" 
    } 

[<EntryPoint>] 
let main argv = 
    argv 
    |> Seq.map printTotalFileBytes 
    |> Async.Parallel 
    |> Async.Ignore 

https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readallbytesasync


As you can see, the main  function has quite a few more elements. Conceptually, it does
the following:

1. Transform the command-line arguments into a sequence of Async<unit>
computations with Seq.map .

2. Create an Async<'T[]>  that schedules and runs the printTotalFileBytes
computations in parallel when it runs.

3. Create an Async<unit>  that will run the parallel computation and ignore its result
(which is a unit[] ).

4. Explicitly run the overall composed computation with Async.RunSynchronously ,
blocking until it completes.

When this program runs, printTotalFileBytes  runs in parallel for each command-line
argument. Because asynchronous computations execute independently of program flow,
there is no defined order in which they print their information and finish executing. The
computations will be scheduled in parallel, but their order of execution is not
guaranteed.

Because Async<'T>  is a specification of work rather than an already-running task, you
can perform more intricate transformations easily. Here is an example that sequences a
set of Async computations so they execute one after another.

F#

    |> Async.RunSynchronously 

    0 

Sequence asynchronous computations

let printTotalFileBytes path = 
    async { 
        let! bytes = File.ReadAllBytesAsync(path) |> Async.AwaitTask 
        let fileName = Path.GetFileName(path) 
        printfn $"File {fileName} has %d{bytes.Length} bytes" 
    } 

[<EntryPoint>] 
let main argv = 
    argv 
    |> Seq.map printTotalFileBytes 
    |> Async.Sequential 
    |> Async.Ignore 
    |> Async.RunSynchronously 
    |> ignore 



This will schedule printTotalFileBytes  to execute in the order of the elements of argv
rather than scheduling them in parallel. Because each successive operation will not be
scheduled until after the preceding computation has finished executing, the
computations are sequenced such that there is no overlap in their execution.

When you write async code in F#, you'll usually interact with a framework that handles
scheduling of computations for you. However, this is not always the case, so it is good
to understand the various functions that can be used to schedule asynchronous work.

Because F# asynchronous computations are a specification of work rather than a
representation of work that is already executing, they must be explicitly started with a
starting function. There are many Async starting methods  that are helpful in different
contexts. The following section describes some of the more common starting functions.

Starts a child computation within an asynchronous computation. This allows multiple
asynchronous computations to be executed concurrently. The child computation shares
a cancellation token with the parent computation. If the parent computation is canceled,
the child computation is also canceled.

Signature:

F#

When to use:

When you want to execute multiple asynchronous computations concurrently
rather than one at a time, but not have them scheduled in parallel.
When you wish to tie the lifetime of a child computation to that of a parent
computation.

What to watch out for:

Starting multiple computations with Async.StartChild  isn't the same as scheduling
them in parallel. If you wish to schedule computations in parallel, use
Async.Parallel .

Important Async module functions

Async.StartChild

computation: Async<'T> * ?millisecondsTimeout: int -> Async<Async<'T>> 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-control-fsharpasync.html#section0


Canceling a parent computation will trigger cancellation of all child computations
it started.

Runs an asynchronous computation, starting immediately on the current operating
system thread. This is helpful if you need to update something on the calling thread
during the computation. For example, if an asynchronous computation must update a UI
(such as updating a progress bar), then Async.StartImmediate  should be used.

Signature:

F#

When to use:

When you need to update something on the calling thread in the middle of an
asynchronous computation.

What to watch out for:

Code in the asynchronous computation will run on whatever thread one happens
to be scheduled on. This can be problematic if that thread is in some way sensitive,
such as a UI thread. In such cases, Async.StartImmediate  is likely inappropriate to
use.

Executes a computation in the thread pool. Returns a Task<TResult> that will be
completed on the corresponding state once the computation terminates (produces the
result, throws exception, or gets canceled). If no cancellation token is provided, then the
default cancellation token is used.

Signature:

F#

When to use:

Async.StartImmediate

computation: Async<unit> * ?cancellationToken: CancellationToken -> unit 

Async.StartAsTask

computation: Async<'T> * ?taskCreationOptions: TaskCreationOptions * ?
cancellationToken: CancellationToken -> Task<'T> 

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1


When you need to call into a .NET API that yields a Task<TResult> to represent the
result of an asynchronous computation.

What to watch out for:

This call will allocate an additional Task  object, which can increase overhead if it is
used often.

Schedules a sequence of asynchronous computations to be executed in parallel, yielding
an array of results in the order they were supplied. The degree of parallelism can be
optionally tuned/throttled by specifying the maxDegreeOfParallelism  parameter.

Signature:

F#

When to use it:

If you need to run a set of computations at the same time and have no reliance on
their order of execution.
If you don't require results from computations scheduled in parallel until they have
all completed.

What to watch out for:

You can only access the resulting array of values once all computations have
finished.
Computations will be run whenever they end up getting scheduled. This behavior
means you cannot rely on their order of their execution.

Schedules a sequence of asynchronous computations to be executed in the order that
they are passed. The first computation will be executed, then the next, and so on. No
computations will be executed in parallel.

Signature:

F#

Async.Parallel

computations: seq<Async<'T>> * ?maxDegreeOfParallelism: int -> Async<'T[]> 

Async.Sequential

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1


When to use it:

If you need to execute multiple computations in order.

What to watch out for:

You can only access the resulting array of values once all computations have
finished.
Computations will be run in the order that they are passed to this function, which
can mean that more time will elapse before the results are returned.

Returns an asynchronous computation that waits for the given Task<TResult> to
complete and returns its result as an Async<'T>

Signature:

F#

When to use:

When you are consuming a .NET API that returns a Task<TResult> within an F#
asynchronous computation.

What to watch out for:

Exceptions are wrapped in AggregateException following the convention of the
Task Parallel Library; this behavior is different from how F# async generally surfaces
exceptions.

Creates an asynchronous computation that executes a given Async<'T> , returning an
Async<Choice<'T, exn>> . If the given Async<'T>  completes successfully, then a
Choice1Of2  is returned with the resultant value. If an exception is thrown before it
completes, then a Choice2of2  is returned with the raised exception. If it is used on an
asynchronous computation that is itself composed of many computations, and one of

computations: seq<Async<'T>> -> Async<'T[]> 

Async.AwaitTask

task: Task<'T> -> Async<'T> 

Async.Catch

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.aggregateexception


those computations throws an exception, the encompassing computation will be
stopped entirely.

Signature:

F#

When to use:

When you are performing asynchronous work that may fail with an exception and
you want to handle that exception in the caller.

What to watch out for:

When using combined or sequenced asynchronous computations, the
encompassing computation will fully stop if one of its "internal" computations
throws an exception.

Creates an asynchronous computation that runs the given computation but drops its
result.

Signature:

F#

When to use:

When you have an asynchronous computation whose result is not needed. This is
analogous to the ignore  function for non-asynchronous code.

What to watch out for:

If you must use Async.Ignore  because you wish to use Async.Start  or another
function that requires Async<unit> , consider if discarding the result is okay. Avoid
discarding results just to fit a type signature.

computation: Async<'T> -> Async<Choice<'T, exn>> 

Async.Ignore

computation: Async<'T> -> Async<unit> 

Async.RunSynchronously



Runs an asynchronous computation and awaits its result on the calling thread.
Propagates an exception should the computation yield one. This call is blocking.

Signature:

F#

When to use it:

If you need it, use it only once in an application - at the entry point for an
executable.
When you don't care about performance and want to execute a set of other
asynchronous operations at once.

What to watch out for:

Calling Async.RunSynchronously  blocks the calling thread until the execution
completes.

Starts an asynchronous computation that returns unit  in the thread pool. Doesn't wait
for its completion and/or observe an exception outcome. Nested computations started
with Async.Start  are started independently of the parent computation that called them;
their lifetime is not tied to any parent computation. If the parent computation is
canceled, no child computations are canceled.

Signature:

F#

Use only when:

You have an asynchronous computation that doesn't yield a result and/or require
processing of one.
You don't need to know when an asynchronous computation completes.
You don't care which thread an asynchronous computation runs on.

computation: Async<'T> * ?timeout: int * ?cancellationToken: 
CancellationToken -> 'T 

Async.Start

computation: Async<unit> * ?cancellationToken: CancellationToken -> unit 



You don't have any need to be aware of or report exceptions resulting from the
execution.

What to watch out for:

Exceptions raised by computations started with Async.Start  aren't propagated to
the caller. The call stack will be completely unwound.
Any work (such as calling printfn ) started with Async.Start  won't cause the effect
to happen on the main thread of a program's execution.

If using async { }  programming, you may need to interoperate with a .NET library or C#
codebase that uses async/await-style asynchronous programming. Because C# and the
majority of .NET libraries use the Task<TResult> and Task types as their core abstractions
this may change how you write your F# asynchronous code.

One option is to switch to writing .NET tasks directly using task { } . Alternatively, you
can use the Async.AwaitTask  function to await a .NET asynchronous computation:

F#

You can use the Async.StartAsTask  function to pass an asynchronous computation to a
.NET caller:

F#

To work with APIs that use Task (that is, .NET async computations that do not return a
value), you may need to add an additional function that will convert an Async<'T>  to a
Task:

F#

Interoperate with .NET

let getValueFromLibrary param = 
    async { 
        let! value = DotNetLibrary.GetValueAsync param |> Async.AwaitTask 
        return value 
    } 

let computationForCaller param = 
    async { 
        let! result = getAsyncResult param 
        return result 
    } |> Async.StartAsTask 

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task


There is already an Async.AwaitTask  that accepts a Task as input. With this and the
previously defined startTaskFromAsyncUnit  function, you can start and await Task types
from an F# async computation.

In F#, you can write tasks directly using task { } , for example:

F#

In the example, the printTotalFileBytesUsingTasks  function is of type string ->
Task<unit> . Calling the function starts to execute the task. The call to task.Wait()  waits
for the task to complete.

Although threading is mentioned throughout this article, there are two important things
to remember:

1. There is no affinity between an asynchronous computation and a thread, unless
explicitly started on the current thread.

module Async = 
    // Async<unit> -> Task 
    let startTaskFromAsyncUnit (comp: Async<unit>) = 
        Async.StartAsTask comp :> Task 

Writing .NET tasks directly in F#

open System 
open System.IO 

/// Perform an asynchronous read of a file using 'task' 
let printTotalFileBytesUsingTasks (path: string) = 
    task { 
        let! bytes = File.ReadAllBytesAsync(path) 
        let fileName = Path.GetFileName(path) 
        printfn $"File {fileName} has %d{bytes.Length} bytes" 
    } 

[<EntryPoint>] 
let main argv = 
    let task = printTotalFileBytesUsingTasks "path-to-file.txt" 
    task.Wait() 

    Console.Read() |> ignore 
    0 

Relationship to multi-threading

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task


2. Asynchronous programming in F# is not an abstraction for multi-threading.

For example, a computation may actually run on its caller's thread, depending on the
nature of the work. A computation could also "jump" between threads, borrowing them
for a small amount of time to do useful work in between periods of "waiting" (such as
when a network call is in transit).

Although F# provides some abilities to start an asynchronous computation on the
current thread (or explicitly not on the current thread), asynchrony generally is not
associated with a particular threading strategy.

The F# Asynchronous Programming Model
Leo Gorodinski's F# Async Guide
F# for fun and profit's Asynchronous Programming guide
Async in C# and F#: Asynchronous gotchas in C#

See also

https://www.microsoft.com/research/publication/the-f-asynchronous-programming-model
https://medium.com/jettech/f-async-guide-eb3c8a2d180a
https://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/
http://tomasp.net/blog/csharp-async-gotchas.aspx/


Using functions in F#
Article • 11/04/2021

A simple function definition resembles the following:

F#

In the previous example, the function name is f , the argument is x , which has type int ,
the function body is x + 1 , and the return value is of type int .

A defining characteristic of F# is that functions have first-class status. You can do with a
function whatever you can do with values of the other built-in types, with a comparable
degree of effort.

You can give function values names.

You can store functions in data structures, such as in a list.

You can pass a function as an argument in a function call.

You can return a function from a function call.

If a function is a first-class value, you must be able to name it, just as you can name
integers, strings, and other built-in types. This is referred to in functional programming
literature as binding an identifier to a value. F# uses let bindings to bind names to
values: let <identifier> = <value> . The following code shows two examples.

F#

You can name a function just as easily. The following example defines a function named
squareIt  by binding the identifier squareIt  to the lambda expression fun n -> n * n .
Function squareIt  has one parameter, n , and it returns the square of that parameter.

F#

let f x = x + 1 

Give the Value a Name

// Integer and string. 
let num = 10 
let str = "F#" 



F# provides the following more concise syntax to achieve the same result with less
typing.

F#

The examples that follow mostly use the first style, let <function-name> = <lambda-
expression> , to emphasize the similarities between the declaration of functions and the
declaration of other types of values. However, all the named functions can also be
written with the concise syntax. Some of the examples are written in both ways.

A first-class value can be stored in a data structure. The following code shows examples
that store values in lists and in tuples.

F#

let squareIt = fun n -> n * n 

let squareIt2 n = n * n 

Store the Value in a Data Structure

// Lists. 

// Storing integers and strings. 
let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 
let stringList = [ "one"; "two"; "three" ] 

// You cannot mix types in a list. The following declaration causes a 
// type-mismatch compiler error. 
//let failedList = [ 5; "six" ] 

// In F#, functions can be stored in a list, as long as the functions 
// have the same signature. 

// Function doubleIt has the same signature as squareIt, declared 
previously. 
//let squareIt = fun n -> n * n 
let doubleIt = fun n -> 2 * n 

// Functions squareIt and doubleIt can be stored together in a list. 
let funList = [ squareIt; doubleIt ] 

// Function squareIt cannot be stored in a list together with a function 
// that has a different signature, such as the following body mass 
// index (BMI) calculator. 
let BMICalculator = fun ht wt -> 
                    (float wt / float (squareIt ht)) * 703.0 



To verify that a function name stored in a tuple does in fact evaluate to a function, the
following example uses the fst  and snd  operators to extract the first and second
elements from tuple funAndArgTuple . The first element in the tuple is squareIt  and the
second element is num . Identifier num  is bound in a previous example to integer 10, a
valid argument for the squareIt  function. The second expression applies the first
element in the tuple to the second element in the tuple: squareIt num .

F#

Similarly, just as identifier num  and integer 10 can be used interchangeably, so can
identifier squareIt  and lambda expression fun n -> n * n .

F#

// The following expression causes a type-mismatch compiler error. 
//let failedFunList = [ squareIt; BMICalculator ] 

// Tuples. 

// Integers and strings. 
let integerTuple = ( 1, -7 ) 
let stringTuple = ( "one", "two", "three" ) 

// A tuple does not require its elements to be of the same type. 
let mixedTuple = ( 1, "two", 3.3 ) 

// Similarly, function elements in tuples can have different signatures. 
let funTuple = ( squareIt, BMICalculator ) 

// Functions can be mixed with integers, strings, and other types in 
// a tuple. Identifier num was declared previously. 
//let num = 10 
let moreMixedTuple = ( num, "two", 3.3, squareIt ) 

// You can pull a function out of a tuple and apply it. Both squareIt and 
num 
// were defined previously. 
let funAndArgTuple = (squareIt, num) 

// The following expression applies squareIt to num, returns 100, and 
// then displays 100. 
System.Console.WriteLine((fst funAndArgTuple)(snd funAndArgTuple)) 

// Make a tuple of values instead of identifiers. 
let funAndArgTuple2 = ((fun n -> n * n), 10) 

// The following expression applies a squaring function to 10, returns 



If a value has first-class status in a language, you can pass it as an argument to a
function. For example, it is common to pass integers and strings as arguments. The
following code shows integers and strings passed as arguments in F#.

F#

If functions have first-class status, you must be able to pass them as arguments in the
same way. Remember that this is the first characteristic of higher-order functions.

In the following example, function applyIt  has two parameters, op  and arg . If you send
in a function that has one parameter for op  and an appropriate argument for the
function to arg , the function returns the result of applying op  to arg . In the following
example, both the function argument and the integer argument are sent in the same
way, by using their names.

F#

// 100, and then displays 100. 
System.Console.WriteLine((fst funAndArgTuple2)(snd funAndArgTuple2)) 

Pass the Value as an Argument

// An integer is passed to squareIt. Both squareIt and num are defined in 
// previous examples. 
//let num = 10 
//let squareIt = fun n -> n * n 
System.Console.WriteLine(squareIt num) 

// String. 
// Function repeatString concatenates a string with itself. 
let repeatString = fun s -> s + s 

// A string is passed to repeatString. HelloHello is returned and displayed. 
let greeting = "Hello" 
System.Console.WriteLine(repeatString greeting) 

// Define the function, again using lambda expression syntax. 
let applyIt = fun op arg -> op arg 

// Send squareIt for the function, op, and num for the argument you want to 
// apply squareIt to, arg. Both squareIt and num are defined in previous 
// examples. The result returned and displayed is 100. 
System.Console.WriteLine(applyIt squareIt num) 

// The following expression shows the concise syntax for the previous 
function 
// definition. 



The ability to send a function as an argument to another function underlies common
abstractions in functional programming languages, such as map or filter operations. A
map operation, for example, is a higher-order function that captures the computation
shared by functions that step through a list, do something to each element, and then
return a list of the results. You might want to increment each element in a list of
integers, or to square each element, or to change each element in a list of strings to
uppercase. The error-prone part of the computation is the recursive process that steps
through the list and builds a list of the results to return. That part is captured in the
mapping function. All you have to write for a particular application is the function that
you want to apply to each list element individually (adding, squaring, changing case).
That function is sent as an argument to the mapping function, just as squareIt  is sent to
applyIt  in the previous example.

F# provides map methods for most collection types, including lists, arrays, and
sequences. The following examples use lists. The syntax is List.map <the function> <the
list> .

F#

For more information, see Lists.

let applyIt2 op arg = op arg 
// The following line also displays 100. 
System.Console.WriteLine(applyIt2 squareIt num) 

// List integerList was defined previously: 
//let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 

// You can send the function argument by name, if an appropriate function 
// is available. The following expression uses squareIt. 
let squareAll = List.map squareIt integerList 

// The following line displays [1; 4; 9; 16; 25; 36; 49] 
printfn "%A" squareAll 

// Or you can define the action to apply to each list element inline. 
// For example, no function that tests for even integers has been defined, 
// so the following expression defines the appropriate function inline. 
// The function returns true if n is even; otherwise it returns false. 
let evenOrNot = List.map (fun n -> n % 2 = 0) integerList 

// The following line displays [false; true; false; true; false; true; 
false] 
printfn "%A" evenOrNot 



Finally, if a function has first-class status in a language, you must be able to return it as
the value of a function call, just as you return other types, such as integers and strings.

The following function calls return integers and display them.

F#

The following function call returns a string.

F#

The following function call, declared inline, returns a Boolean value. The value displayed
is True .

F#

The ability to return a function as the value of a function call is the second characteristic
of higher-order functions. In the following example, checkFor  is defined to be a function
that takes one argument, item , and returns a new function as its value. The returned
function takes a list as its argument, lst , and searches for item  in lst . If item  is
present, the function returns true . If item  is not present, the function returns false . As
in the previous section, the following code uses a provided list function, List.exists , to
search the list.

F#

Return the Value from a Function Call

// Function doubleIt is defined in a previous example. 
//let doubleIt = fun n -> 2 * n 
System.Console.WriteLine(doubleIt 3) 
System.Console.WriteLine(squareIt 4) 

// str is defined in a previous section. 
//let str = "F#" 
let lowercase = str.ToLower() 

System.Console.WriteLine((fun n -> n % 2 = 1) 15) 

let checkFor item = 
    let functionToReturn = fun lst -> 
                           List.exists (fun a -> a = item) lst 
    functionToReturn 

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#exists


The following code uses checkFor  to create a new function that takes one argument, a
list, and searches for 7 in the list.

F#

The following example uses the first-class status of functions in F# to declare a function,
compose , that returns a composition of two function arguments.

F#

// integerList and stringList were defined earlier. 
//let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 
//let stringList = [ "one"; "two"; "three" ] 

// The returned function is given the name checkFor7. 
let checkFor7 = checkFor 7 

// The result displayed when checkFor7 is applied to integerList is True. 
System.Console.WriteLine(checkFor7 integerList) 

// The following code repeats the process for "seven" in stringList. 
let checkForSeven = checkFor "seven" 

// The result displayed is False.
System.Console.WriteLine(checkForSeven stringList) 

// Function compose takes two arguments. Each argument is a function 
// that takes one argument of the same type. The following declaration 
// uses lambda expression syntax.
let compose = 
    fun op1 op2 -> 
        fun n -> 
            op1 (op2 n) 

// To clarify what you are returning, use a nested let expression: 
let compose2 = 
    fun op1 op2 -> 
        // Use a let expression to build the function that will be returned. 
        let funToReturn = fun n -> 
                            op1 (op2 n) 
        // Then just return it. 
        funToReturn 

// Or, integrating the more concise syntax: 
let compose3 op1 op2 = 
    let funToReturn = fun n -> 
                        op1 (op2 n) 
    funToReturn 



The following code sends two functions as arguments to compose , both of which take a
single argument of the same type. The return value is a new function that is a
composition of the two function arguments.

F#

The following example of returning a function as the value of a function call creates a
simple guessing game. To create a game, call makeGame  with the value that you want
someone to guess sent in for target . The return value from function makeGame  is a
function that takes one argument (the guess) and reports whether the guess is correct.

F#

７ Note

For an even shorter version, see the following section, "Curried Functions."

// Functions squareIt and doubleIt were defined in a previous example. 
let doubleAndSquare = compose squareIt doubleIt 
// The following expression doubles 3, squares 6, and returns and 
// displays 36. 
System.Console.WriteLine(doubleAndSquare 3) 

let squareAndDouble = compose doubleIt squareIt 
// The following expression squares 3, doubles 9, returns 18, and 
// then displays 18. 
System.Console.WriteLine(squareAndDouble 3) 

７ Note

F# provides two operators, <<  and >> , that compose functions. For example, let
squareAndDouble2 = doubleIt << squareIt  is equivalent to let squareAndDouble =
compose doubleIt squareIt  in the previous example.

let makeGame target = 
    // Build a lambda expression that is the function that plays the game. 
    let game = fun guess -> 
                   if guess = target then 
                      System.Console.WriteLine("You win!") 
                   else 
                      System.Console.WriteLine("Wrong. Try again.") 
    // Now just return it. 
    game 



The following code calls makeGame , sending the value 7  for target . Identifier playGame  is
bound to the returned lambda expression. Therefore, playGame  is a function that takes
as its one argument a value for guess .

F#

Many of the examples in the previous section can be written more concisely by taking
advantage of the implicit currying in F# function declarations. Currying is a process that
transforms a function that has more than one parameter into a series of embedded
functions, each of which has a single parameter. In F#, functions that have more than
one parameter are inherently curried. For example, compose  from the previous section
can be written as shown in the following concise style, with three parameters.

F#

However, the result is a function of one parameter that returns a function of one
parameter that in turn returns another function of one parameter, as shown in

let playGame = makeGame 7 
// Send in some guesses. 
playGame 2 
playGame 9 
playGame 7 

// Output: 
// Wrong. Try again. 
// Wrong. Try again. 
// You win! 

// The following game specifies a character instead of an integer for 
target. 
let alphaGame = makeGame 'q' 
alphaGame 'c' 
alphaGame 'r' 
alphaGame 'j' 
alphaGame 'q' 

// Output: 
// Wrong. Try again. 
// Wrong. Try again. 
// Wrong. Try again. 
// You win! 

Curried Functions

let compose4 op1 op2 n = op1 (op2 n) 



compose4curried .

F#

You can access this function in several ways. Each of the following examples returns and
displays 18. You can replace compose4  with compose4curried  in any of the examples.

F#

To verify that the function still works as it did before, try the original test cases again.

F#

The following example uses implicit currying to write a shorter version of makeGame . The
details of how makeGame  constructs and returns the game  function are less explicit in this
format, but you can verify by using the original test cases that the result is the same.

let compose4curried = 
    fun op1 -> 
        fun op2 -> 
            fun n -> op1 (op2 n) 

// Access one layer at a time. 
System.Console.WriteLine(((compose4 doubleIt) squareIt) 3) 

// Access as in the original compose examples, sending arguments for 
// op1 and op2, then applying the resulting function to a value. 
System.Console.WriteLine((compose4 doubleIt squareIt) 3) 

// Access by sending all three arguments at the same time. 
System.Console.WriteLine(compose4 doubleIt squareIt 3) 

let doubleAndSquare4 = compose4 squareIt doubleIt 
// The following expression returns and displays 36. 
System.Console.WriteLine(doubleAndSquare4 3) 

let squareAndDouble4 = compose4 doubleIt squareIt 
// The following expression returns and displays 18. 
System.Console.WriteLine(squareAndDouble4 3) 

７ Note

You can restrict currying by enclosing parameters in tuples. For more information,
see "Parameter Patterns" in Parameters and Arguments.



F#

For more information about currying, see "Partial Application of Arguments" in
Functions.

The variable name num  in the previous examples evaluates to the integer 10, and it is no
surprise that where num  is valid, 10 is also valid. The same is true of function identifiers
and their values: anywhere the name of the function can be used, the lambda expression
to which it is bound can be used.

The following example defines a Boolean  function called isNegative , and then uses the
name of the function and the definition of the function interchangeably. The next three
examples all return and display False .

F#

let makeGame2 target guess = 
    if guess = target then 
       System.Console.WriteLine("You win!") 
    else 
       System.Console.WriteLine("Wrong. Try again.") 

let playGame2 = makeGame2 7 
playGame2 2 
playGame2 9 
playGame2 7 

let alphaGame2 = makeGame2 'q' 
alphaGame2 'c' 
alphaGame2 'r' 
alphaGame2 'j' 
alphaGame2 'q' 

Identifier and Function Definition Are
Interchangeable

let isNegative = fun n -> n < 0 

// This example uses the names of the function argument and the integer 
// argument. Identifier num is defined in a previous example. 
//let num = 10 
System.Console.WriteLine(applyIt isNegative num) 

// This example substitutes the value that num is bound to for num, and the 
// value that isNegative is bound to for isNegative. 
System.Console.WriteLine(applyIt (fun n -> n < 0) 10) 



To take it one step further, substitute the value that applyIt  is bound to for applyIt .

F#

The examples in the previous sections demonstrate that functions in F# satisfy the
criteria for being first-class values in F#:

You can bind an identifier to a function definition.

F#

You can store a function in a data structure.

F#

You can pass a function as an argument.

F#

You can return a function as the value of a function call.

F#

For more information about F#, see the F# Language Reference.

System.Console.WriteLine((fun op arg -> op arg) (fun n -> n < 0)  10) 

Functions Are First-Class Values in F#

let squareIt = fun n -> n * n 

let funTuple2 = ( BMICalculator, fun n -> n * n ) 

let increments = List.map (fun n -> n + 1) [ 1; 2; 3; 4; 5; 6; 7 ] 

let checkFor item = 
    let functionToReturn = fun lst -> 
                           List.exists (fun a -> a = item) lst 
    functionToReturn 

Example



The following code contains all the examples in this topic.

F#

Description

Code

// ** GIVE THE VALUE A NAME ** 

// Integer and string. 
let num = 10 
let str = "F#" 

let squareIt = fun n -> n * n 

let squareIt2 n = n * n 

// ** STORE THE VALUE IN A DATA STRUCTURE ** 

// Lists. 

// Storing integers and strings. 
let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 
let stringList = [ "one"; "two"; "three" ] 

// You cannot mix types in a list. The following declaration causes a 
// type-mismatch compiler error. 
//let failedList = [ 5; "six" ] 

// In F#, functions can be stored in a list, as long as the functions 
// have the same signature. 

// Function doubleIt has the same signature as squareIt, declared 
previously. 
//let squareIt = fun n -> n * n 
let doubleIt = fun n -> 2 * n 

// Functions squareIt and doubleIt can be stored together in a list. 
let funList = [ squareIt; doubleIt ] 

// Function squareIt cannot be stored in a list together with a function 
// that has a different signature, such as the following body mass 
// index (BMI) calculator. 



let BMICalculator = fun ht wt -> 
                    (float wt / float (squareIt ht)) * 703.0 

// The following expression causes a type-mismatch compiler error. 
//let failedFunList = [ squareIt; BMICalculator ] 

// Tuples. 

// Integers and strings. 
let integerTuple = ( 1, -7 ) 
let stringTuple = ( "one", "two", "three" ) 

// A tuple does not require its elements to be of the same type. 
let mixedTuple = ( 1, "two", 3.3 ) 

// Similarly, function elements in tuples can have different signatures. 
let funTuple = ( squareIt, BMICalculator ) 

// Functions can be mixed with integers, strings, and other types in 
// a tuple. Identifier num was declared previously. 
//let num = 10 
let moreMixedTuple = ( num, "two", 3.3, squareIt ) 

// You can pull a function out of a tuple and apply it. Both squareIt and 
num 
// were defined previously. 
let funAndArgTuple = (squareIt, num) 

// The following expression applies squareIt to num, returns 100, and 
// then displays 100. 
System.Console.WriteLine((fst funAndArgTuple)(snd funAndArgTuple)) 

// Make a list of values instead of identifiers. 
let funAndArgTuple2 = ((fun n -> n * n), 10) 

// The following expression applies a squaring function to 10, returns 
// 100, and then displays 100. 
System.Console.WriteLine((fst funAndArgTuple2)(snd funAndArgTuple2)) 

// ** PASS THE VALUE AS AN ARGUMENT ** 

// An integer is passed to squareIt. Both squareIt and num are defined in 
// previous examples. 
//let num = 10 
//let squareIt = fun n -> n * n 
System.Console.WriteLine(squareIt num) 



// String. 
// Function repeatString concatenates a string with itself. 
let repeatString = fun s -> s + s 

// A string is passed to repeatString. HelloHello is returned and displayed. 
let greeting = "Hello" 
System.Console.WriteLine(repeatString greeting) 

// Define the function, again using lambda expression syntax. 
let applyIt = fun op arg -> op arg 

// Send squareIt for the function, op, and num for the argument you want to 
// apply squareIt to, arg. Both squareIt and num are defined in previous 
// examples. The result returned and displayed is 100. 
System.Console.WriteLine(applyIt squareIt num) 

// The following expression shows the concise syntax for the previous 
function 
// definition. 
let applyIt2 op arg = op arg 
// The following line also displays 100. 
System.Console.WriteLine(applyIt2 squareIt num) 

// List integerList was defined previously: 
//let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 

// You can send the function argument by name, if an appropriate function 
// is available. The following expression uses squareIt. 
let squareAll = List.map squareIt integerList 

// The following line displays [1; 4; 9; 16; 25; 36; 49] 
printfn "%A" squareAll 

// Or you can define the action to apply to each list element inline. 
// For example, no function that tests for even integers has been defined, 
// so the following expression defines the appropriate function inline. 
// The function returns true if n is even; otherwise it returns false. 
let evenOrNot = List.map (fun n -> n % 2 = 0) integerList 

// The following line displays [false; true; false; true; false; true; 
false] 
printfn "%A" evenOrNot 

// ** RETURN THE VALUE FROM A FUNCTION CALL ** 

// Function doubleIt is defined in a previous example. 
//let doubleIt = fun n -> 2 * n 
System.Console.WriteLine(doubleIt 3) 



System.Console.WriteLine(squareIt 4) 

// The following function call returns a string: 

// str is defined in a previous section. 
//let str = "F#" 
let lowercase = str.ToLower() 

System.Console.WriteLine((fun n -> n % 2 = 1) 15) 

let checkFor item = 
    let functionToReturn = fun lst -> 
                           List.exists (fun a -> a = item) lst 
    functionToReturn 

// integerList and stringList were defined earlier. 
//let integerList = [ 1; 2; 3; 4; 5; 6; 7 ] 
//let stringList = [ "one"; "two"; "three" ] 

// The returned function is given the name checkFor7. 
let checkFor7 = checkFor 7 

// The result displayed when checkFor7 is applied to integerList is True. 
System.Console.WriteLine(checkFor7 integerList) 

// The following code repeats the process for "seven" in stringList. 
let checkForSeven = checkFor "seven" 

// The result displayed is False.
System.Console.WriteLine(checkForSeven stringList) 

// Function compose takes two arguments. Each argument is a function 
// that takes one argument of the same type. The following declaration 
// uses lambda expression syntax.
let compose = 
    fun op1 op2 -> 
        fun n -> 
            op1 (op2 n) 

// To clarify what you are returning, use a nested let expression: 
let compose2 = 
    fun op1 op2 -> 
        // Use a let expression to build the function that will be returned. 
        let funToReturn = fun n -> 
                            op1 (op2 n) 
        // Then just return it. 



        funToReturn 

// Or, integrating the more concise syntax: 
let compose3 op1 op2 = 
    let funToReturn = fun n -> 
                        op1 (op2 n) 
    funToReturn 

// Functions squareIt and doubleIt were defined in a previous example. 
let doubleAndSquare = compose squareIt doubleIt 
// The following expression doubles 3, squares 6, and returns and 
// displays 36. 
System.Console.WriteLine(doubleAndSquare 3) 

let squareAndDouble = compose doubleIt squareIt 
// The following expression squares 3, doubles 9, returns 18, and 
// then displays 18. 
System.Console.WriteLine(squareAndDouble 3) 

let makeGame target = 
    // Build a lambda expression that is the function that plays the game. 
    let game = fun guess -> 
                   if guess = target then 
                      System.Console.WriteLine("You win!") 
                   else 
                      System.Console.WriteLine("Wrong. Try again.") 
    // Now just return it. 
    game 

let playGame = makeGame 7 
// Send in some guesses. 
playGame 2 
playGame 9 
playGame 7 

// Output: 
// Wrong. Try again. 
// Wrong. Try again. 
// You win! 

// The following game specifies a character instead of an integer for 
target. 
let alphaGame = makeGame 'q' 
alphaGame 'c' 
alphaGame 'r' 
alphaGame 'j' 
alphaGame 'q' 

// Output: 



// Wrong. Try again. 
// Wrong. Try again. 
// Wrong. Try again. 
// You win! 

// ** CURRIED FUNCTIONS ** 

let compose4 op1 op2 n = op1 (op2 n) 

let compose4curried = 
    fun op1 -> 
        fun op2 -> 
            fun n -> op1 (op2 n) 

// Access one layer at a time. 
System.Console.WriteLine(((compose4 doubleIt) squareIt) 3) 

// Access as in the original compose examples, sending arguments for 
// op1 and op2, then applying the resulting function to a value. 
System.Console.WriteLine((compose4 doubleIt squareIt) 3) 

// Access by sending all three arguments at the same time. 
System.Console.WriteLine(compose4 doubleIt squareIt 3) 

let doubleAndSquare4 = compose4 squareIt doubleIt 
// The following expression returns and displays 36. 
System.Console.WriteLine(doubleAndSquare4 3) 

let squareAndDouble4 = compose4 doubleIt squareIt 
// The following expression returns and displays 18. 
System.Console.WriteLine(squareAndDouble4 3) 

let makeGame2 target guess = 
    if guess = target then 
       System.Console.WriteLine("You win!") 
    else 
       System.Console.WriteLine("Wrong. Try again.") 

let playGame2 = makeGame2 7 
playGame2 2 
playGame2 9 
playGame2 7 

let alphaGame2 = makeGame2 'q' 



Lists
Tuples
Functions
let Bindings
Lambda Expressions: The fun Keyword

alphaGame2 'c' 
alphaGame2 'r' 
alphaGame2 'j' 
alphaGame2 'q' 

// ** IDENTIFIER AND FUNCTION DEFINITION ARE INTERCHANGEABLE ** 

let isNegative = fun n -> n < 0 

// This example uses the names of the function argument and the integer 
// argument. Identifier num is defined in a previous example. 
//let num = 10 
System.Console.WriteLine(applyIt isNegative num) 

// This example substitutes the value that num is bound to for num, and the 
// value that isNegative is bound to for isNegative. 
System.Console.WriteLine(applyIt (fun n -> n < 0) 10) 

System.Console.WriteLine((fun op arg -> op arg) (fun n -> n < 0)  10) 

// ** FUNCTIONS ARE FIRST-CLASS VALUES IN F# ** 

//let squareIt = fun n -> n * n 

let funTuple2 = ( BMICalculator, fun n -> n * n ) 

let increments = List.map (fun n -> n + 1) [ 1; 2; 3; 4; 5; 6; 7 ] 

//let checkFor item = 
//    let functionToReturn = fun lst -> 
//                           List.exists (fun a -> a = item) lst 
//    functionToReturn 

See also





What's new in F# 8
Article • 11/17/2023

For information on F# 8, please see Announcing F# 8 .

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

  Open a documentation issue

  Provide product feedback

https://devblogs.microsoft.com/dotnet/announcing-fsharp-8
https://devblogs.microsoft.com/dotnet/announcing-fsharp-8
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Fwhats-new%2Ffsharp-8&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Fwhats-new%2Ffsharp-8.md&documentVersionIndependentId=43f609fa-e57e-f371-33bd-af977aba6247&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+f5833d6a-bb2f-5d9f-25ae-309f4f173034+%0A*+Service%3A+**dotnet-fsharp**
https://github.com/dotnet/fsharp


What's new in F# 7
Article • 11/17/2023

For information on F# 7, please see Announcing F# 7 .

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

  Open a documentation issue

  Provide product feedback

https://devblogs.microsoft.com/dotnet/announcing-fsharp-7
https://devblogs.microsoft.com/dotnet/announcing-fsharp-7
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Fwhats-new%2Ffsharp-7&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Fwhats-new%2Ffsharp-7.md&documentVersionIndependentId=3472c35e-ebe0-7639-cf3f-00a91c8ddd2a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+afdb1f84-5d82-d99b-5b63-cb058157afcd+%0A*+Service%3A+**dotnet-fsharp**
https://github.com/dotnet/fsharp


What's new in F# 6
Article • 03/10/2023

F# 6 adds several improvements to the F# language and F# Interactive. It is released
with .NET 6.

You can download the latest .NET SDK from the .NET downloads page .

F# 6 is available in all .NET Core distributions and Visual Studio tooling. For more
information, see Get started with F#.

F# 6 includes native support for authoring .NET tasks in F# code. For example, consider
the following F# code to create a .NET-compatible task:

F#

Using F# 6, this code can be rewritten as follows.

F#

Task support was available for F# 5 through the excellent TaskBuilder.fs and Ply libraries.
It should be straightforward to migrate code to the built-in support. However, there are
some differences: namespaces and type inference differ slightly between the built-in
support and these libraries, and some additional type annotations may be needed. If

Get started

task {…}

let readFilesTask (path1, path2) = 
   async { 
        let! bytes1 = File.ReadAllBytesAsync(path1) |> Async.AwaitTask 
        let! bytes2 = File.ReadAllBytesAsync(path2) |> Async.AwaitTask 
        return Array.append bytes1 bytes2 
   } |> Async.StartAsTask 

let readFilesTask (path1, path2) = 
   task { 
        let! bytes1 = File.ReadAllBytesAsync(path1) 
        let! bytes2 = File.ReadAllBytesAsync(path2) 
        return Array.append bytes1 bytes2 
   } 

https://dotnet.microsoft.com/download


necessary, you can still use these community libraries with F# 6 if you reference them
explicitly and open the correct namespaces in each file.

Using task {…}  is very similar to using async {…} . Using task {…}  has several
advantages over async {…} :

The overhead of task {...}  is lower, possibly improving performance in hot code
paths where the asynchronous work executes quickly.
Debugging stepping and stack traces for task {…}  is better.
Interoperating with .NET packages that expect or produce tasks is easier.

If you’re familiar with async {…} , there are some differences to be aware of:

task {…}  immediately executes the task to the first await point.
task {…}  does not implicitly propagate a cancellation token.
task {…}  does not perform implicit cancellation checks.
task {…}  does not support asynchronous tailcalls. This means using return! ..
recursively may result in stack overflows if there are no intervening asynchronous
waits.

In general, you should consider using task {…}  over async {…}  in new code if you're
interoperating with .NET libraries that use tasks, and if you don't rely on asynchronous
code tailcalls or implicit cancellation token propagation. In existing code, you should
only switch to task {…}  once you have reviewed your code to ensure you are not
relying on the previously mentioned characteristics of async {…} .

This feature implements F# RFC FS-1097 .

F# 6 allows the syntax expr[idx]  for indexing and slicing collections.

Up to and including F# 5, F# has used expr.[idx]  as indexing syntax. Allowing the use
of expr[idx]  is based on repeated feedback from those learning F# or seeing F# for the
first time that the use of dot-notation indexing comes across as an unnecessary
divergence from standard industry practice.

This is not a breaking change because by default, no warnings are emitted on the use of
expr.[idx] . However, some informational messages that suggest code clarifications are
emitted. You can optionally activate further informational messages as well. For example,
you can activate an optional informational warning (/warnon:3566 ) to start reporting
uses of the expr.[idx]  notation. For more information, see Indexer Notation .

Simpler indexing syntax with expr[idx]

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1097-task-builder.md
https://aka.ms/fsharp-index-notation


In new code, we recommend the systematic use of expr[idx]  as the indexing syntax.

This feature implements F# RFC FS-1110 .

F# 6 augments the "active patterns" feature with optional struct representations for
partial active patterns. This allows you to use an attribute to constrain a partial active
pattern to return a value option:

F#

The use of the attribute is required. At usage sites, code doesn't change. The net result is
that allocations are reduced.

This feature implements F# RFC FS-1039 .

F# 6 lets you use CustomOperationAttribute  on the overloaded methods.

Consider the following use of a computation expression builder content :

F#

Struct representations for partial active
patterns

[<return: Struct>] 
let (|Int|_|) str = 
   match System.Int32.TryParse(str) with 
   | true, int -> ValueSome(int) 
   | _ -> ValueNone 

Overloaded custom operations in computation
expressions

let mem = new System.IO.MemoryStream("Stream"B) 
let content = ContentBuilder() 
let ceResult = 
    content { 
        body "Name" 
        body (ArraySegment<_>("Email"B, 0, 5)) 
        body "Password"B 2 4 
        body "BYTES"B 
        body mem 
        body "Description" "of" "content" 
    } 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1110-index-syntax.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1039-struct-representation-for-active-patterns.md
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-core-customoperationattribute.html


Here the body  custom operation takes a varying number of arguments of different
types. This is supported by the implementation of the following builder, which uses
overloading:

F#

This feature implements F# RFC FS-1056 .

In F# 6, the right-hand side of an as  pattern can now itself be a pattern. This is
important when a type test has given a stronger type to an input. For example, consider
the following code:

type Content = ArraySegment<byte> list 

type ContentBuilder() =
    member _.Run(c: Content) = 
        let crlf = "\r\n"B 
        [|for part in List.rev c do 
            yield! part.Array[part.Offset..(part.Count+part.Offset-1)] 
            yield! crlf |] 

    member _.Yield(_) = [] 

    [<CustomOperation("body")>] 
    member _.Body(c: Content, segment: ArraySegment<byte>) = 
        segment::c 

    [<CustomOperation("body")>] 
    member _.Body(c: Content, bytes: byte[]) = 
        ArraySegment<byte>(bytes, 0, bytes.Length)::c 

    [<CustomOperation("body")>] 
    member _.Body(c: Content, bytes: byte[], offset, count) = 
        ArraySegment<byte>(bytes, offset, count)::c 

    [<CustomOperation("body")>] 
    member _.Body(c: Content, content: System.IO.Stream) = 
        let mem = new System.IO.MemoryStream() 
        content.CopyTo(mem) 
        let bytes = mem.ToArray() 
        ArraySegment<byte>(bytes, 0, bytes.Length)::c 

    [<CustomOperation("body")>] 
    member _.Body(c: Content, [<ParamArray>] contents: string[]) = 
        List.rev [for c in contents -> let b = Text.Encoding.ASCII.GetBytes 
c in ArraySegment<_>(b,0,b.Length)] @ c 

“as” patterns

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1056-allow-custom-operation-overloads.md


F#

In each pattern case, the input object is type-tested. The right-hand side of the as
pattern is now allowed to be a further pattern, which can itself match the object at the
stronger type.

This feature implements F# RFC FS-1105 .

F# 6 removes a number of inconsistencies and limitations in its use of indentation-aware
syntax. See RFC FS-1108 . This resolves 10 significant issues highlighted by F# users
since F# 4.0.

For example, in F# 5 the following code was allowed:

F#

However, the following code was not allowed (it produced a warning):

F#

In F# 6, both are allowed. This makes F# simpler and easier to learn. The F# community
contributor Hadrian Tang  has led the way on this, including remarkable and highly
valuable systematic testing of the feature.

type Pair = Pair of int * int 

let analyzeObject (input: obj) = 
    match input with 
    | :? (int * int) as (x, y) -> printfn $"A tuple: {x}, {y}" 
    | :? Pair as Pair (x, y) -> printfn $"A DU: {x}, {y}" 
    | _ -> printfn "Nope" 

let input = box (1, 2) 

Indentation syntax revisions

let c = ( 
    printfn "aaaa" 
    printfn "bbbb" 
) 

let c = [ 
    1 
    2 
] 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1105-Non-variable-patterns-to-the-right-of-as-patterns.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1108-undentation-frenzy.md
https://github.com/Happypig375


This feature implements F# RFC FS-1108 .

In F# 6, we've activated support for additional “implicit” and “type-directed”
conversions, as described in RFC FS-1093 .

This change brings three advantages:

1. Fewer explicit upcasts are required
2. Fewer explicit integer conversions are required
3. First-class support for .NET-style implicit conversions is added

This feature implements F# RFC FS-1093 .

F# 6 implements additional implicit upcast conversions. For example, in F# 5 and earlier
versions, upcasts were needed for the return expression when implementing a function
where the expressions had different subtypes on different branches, even when a type
annotation was present. Consider the following F# 5 code:

F#

Here the branches of the conditional compute a TextReader  and StreamReader
respectively, and the upcast was added to make both branches have type StreamReader.
In F# 6, these upcasts are now added automatically. This means the code is simpler:

F#

Additional implicit conversions

Additional implicit upcast conversions

open System 
open System.IO 

let findInputSource () : TextReader = 
    if DateTime.Now.DayOfWeek = DayOfWeek.Monday then 
        // On Monday a TextReader
        Console.In 
    else 
        // On other days a StreamReader 
        File.OpenText("path.txt") :> TextReader 

let findInputSource () : TextReader = 
    if DateTime.Now.DayOfWeek = DayOfWeek.Monday then 
        // On Monday a TextReader
        Console.In 
    else 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1108-undentation-frenzy.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1093-additional-conversions.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1093-additional-conversions.md


You may optionally enable the warning /warnon:3388  to show a warning at every point
an additional implicit upcast is used, as described in Optional warnings for implicit
conversions.

In F# 6, 32-bit integers are widened to 64-bit integers when both types are known. For
example, consider a typical API shape:

F#

In F# 5, integer literals for int64 must be used:

F#

or

F#

In F# 6, widening happens automatically for int32  to int64 , int32  to nativeint , and
int32  to double , when both source and destination type are known during type
inference. So in cases such as the previous examples, int32  literals can be used:

F#

Despite this change, F# continues to use explicit widening of numeric types in most
cases. For example, implicit widening does not apply to other numeric types, such as
int8  or int16 , or from float32  to float64 , or when either source or destination type is
unknown. You can also optionally enable the warning /warnon:3389  to show a warning

        // On other days a StreamReader 
        File.OpenText("path.txt") 

Implicit integer conversions

type Tensor(…) = 
    static member Create(sizes: seq<int64>) = Tensor(…) 

Tensor.Create([100L; 10L; 10L]) 

Tensor.Create([int64 100; int64 10; int64 10]) 

Tensor.Create([100; 10; 10]) 



at every point implicit numeric widening is used, as described in Optional warnings for
implicit conversions.

In F# 6, .NET “op_Implicit” conversions are applied automatically in F# code when calling
methods. For example, in F# 5 it was necessary to use XName.op_Implicit  when working
with .NET APIs for XML:

F#

In F# 6, op_Implicit  conversions are applied automatically for argument expressions
when types are available for source expression and target type:

F#

You may optionally enable the warning /warnon:3395  to show a warning at every point
op_Implicit  conversions widening is used at method arguments, as described in
Optional warnings for implicit conversions.

Type-directed and implicit conversions can interact poorly with type inference and lead
to code that's harder to understand. For this reason, some mitigations exist to help
ensure this feature is not abused in F# code. First, both source and destination type
must be strongly known, with no ambiguity or additional type inference arising.
Secondly, opt-in warnings can be activated to report any use of implicit conversions,
with one warning on by default:

First-class support for .NET-style implicit conversions

open System.Xml.Linq 
let purchaseOrder = XElement.Load("PurchaseOrder.xml") 
let partNos = purchaseOrder.Descendants(XName.op_Implicit "Item") 

open System.Xml.Linq 
let purchaseOrder = XElement.Load("PurchaseOrder.xml") 
let partNos = purchaseOrder.Descendants("Item") 

７ Note

In the first release of F# 6, this warning number was /warnon:3390 . Due to a
conflict, the warning number was later updated to /warnon:3395 .

Optional warnings for implicit conversions



/warnon:3388  (additional implicit upcast)
/warnon:3389  (implicit numeric widening)
/warnon:3391  (op_Implicit at non-method arguments, on by default)
/warnon:3395  (op_Implicit at method arguments)

If your team wants to ban all uses of implicit conversions, you can also specify
/warnaserror:3388 , /warnaserror:3389 , /warnaserror:3391 , and /warnaserror:3395 .

F# 6 adds the %B  pattern to the available format specifiers for binary number formats.
Consider the following F# code:

fs

This code prints the following output:

This feature implements F# RFC FS-1100 .

F# 6 allows _  to be used in a use  binding, for example:

F#

This feature implements F# RFC FS-1102 .

Formatting for binary numbers

printf "%o" 123 
printf "%B" 123 

173 
1111011 

Discards on use bindings

let doSomething () = 
    use _ = System.IO.File.OpenText("input.txt") 
    printfn "reading the file" 

InlineIfLambda

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1100-Printf-binary.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1102-discards-on-use-bindings.md


The F# compiler includes an optimizer that performs inlining of code. In F# 6 we've
added a new declarative feature that allows code to optionally indicate that, if an
argument is determined to be a lambda function, then that argument should itself
always be inlined at call sites.

For example, consider the following iterateTwice  function to traverse an array:

F#

If the call site is:

F#

Then after inlining and other optimizations, the code becomes:

F#

Unlike previous versions of F#, this optimization is applied regardless of the size of the
lambda expression involved. This feature can also be used to implement loop unrolling
and similar transformations more reliably.

An opt-in warning (/warnon:3517 , off by default) can be turned on to indicate places in
your code where InlineIfLambda  arguments are not bound to lambda expressions at
call sites. In normal situations, this warning should not be enabled. However, in certain
kinds of high-performance programming, it can be useful to ensure all code is inlined
and flattened.

This feature implements F# RFC FS-1098 .

let inline iterateTwice ([<InlineIfLambda>] action) (array: 'T[]) = 
    for j = 0 to array.Length-1 do 
        action array[j] 
    for j = 0 to array.Length-1 do 
        action array[j] 

let arr = [| 1.. 100 |] 
let mutable sum = 0 
arr  |> iterateTwice (fun x -> 
    sum <- sum + x) 

let arr = [| 1.. 100 |] 
let mutable sum = 0 
for j = 0 to arr.Length-1 do 
    sum <- sum + arr[j] 
for j = 0 to arr.Length-1 do 
    sum <- sum + arr[j] 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1098-inline-if-lambda.md


The task {…}  support of F# 6 is built on a foundation called resumable code RFC FS-
1087 . Resumable code is a technical feature that can be used to build many kinds of
high-performance asynchronous and yielding state machines.

FSharp.Core 6.0.0 adds five new operations to the core collection functions. These
functions are:

List/Array/Seq.insertAt
List/Array/Seq.removeAt
List/Array/Seq.updateAt
List/Array/Seq.insertManyAt
List/Array/Seq.removeManyAt

These functions all perform copy-and-update operations on the corresponding
collection type or sequence. This type of operation is a form of a “functional update”.
For examples of using these functions, see the corresponding documentation, for
example, List.insertAt .

As an example, consider the model, message, and update logic for a simple "Todo List"
application written in the Elmish style. Here the user interacts with the application,
generating messages, and the update  function processes these messages, producing a
new model:

F#

Resumable code

Additional collection functions

type Model = 
    { ToDo: string list } 

type Message = 
    | InsertToDo of index: int * what: string 
    | RemoveToDo of index: int 
    | LoadedToDos of index: int * what: string list 

let update (model: Model) (message: Message) = 
    match message with 
    | InsertToDo (index, what) ->
        { model with ToDo = model.ToDo |> List.insertAt index what } 
    | RemoveToDo index -> 
        { model with ToDo = model.ToDo |> List.removeAt index } 
    | LoadedToDos (index, what) -> 
        { model with ToDo = model.ToDo |> List.insertManyAt index what } 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1087-resumable-code.md
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html#insertAt


With these new functions, the logic is clear and simple and relies only on immutable
data.

This feature implements F# RFC FS-1113 .

In FSharp.Core 6.0.0, the Map  type now supports the Keys  and Values  properties.
These properties do not copy the underlying collection.

This feature is documented in F# RFC FS-1113 .

FSharp.Core 6.0.0 adds new intrinsics to the NativePtr  module:

NativePtr.nullPtr

NativePtr.isNullPtr

NativePtr.initBlock

NativePtr.clear

NativePtr.copy

NativePtr.copyBlock

NativePtr.ofILSigPtr

NativePtr.toILSigPtr

As with other functions in NativePtr , these functions are inlined, and their use emits
warnings unless /nowarn:9  is used. The use of these functions is restricted to
unmanaged types.

This feature is documented in F# RFC FS-1109 .

In F# 6, the following types or type abbreviation aliases now support unit-of-measure
annotations. The new additions are shown in bold:

F# alias CLR Type

float32 / single System.Single

float / double System.Double

Map has Keys and Values

Additional intrinsics for NativePtr

Additional numeric types with unit annotations

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1113-insert-remove-update-functions.md
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-fsharpmap-2.html#Keys
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-fsharpmap-2.html#Values
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1113-insert-remove-update-functions.md
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-nativeinterop-nativeptrmodule.html
https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1109-Additional-intrinsics-for-the-NativePtr-module.md


F# alias CLR Type

decimal System.Decimal

sbyte / int8 System.SByte

int16 System.Int16

int / int32 System.Int32

int64 System.Int64

byte / uint8 System.Byte

uint16 System.UInt16

uint / uint32 System.UInt32

uint64 System.UIn64

nativeint System.IntPtr

unativeint System.UIntPtr

For example, you can annotate an unsigned integer as follows:

F#

This feature is documented in F# RFC FS-1091 .

F# 6 adds soft guidance that de-normalizes the use of := , ! , incr , and decr  in F# 6
and beyond. Using these operators and functions produces informational messages that
ask you to replace your code with explicit use of the Value  property.

In F# programming, reference cells can be used for heap-allocated mutable registers.
While they are occasionally useful, they're rarely needed in modern F# coding, because
let mutable  can be used instead. The F# core library includes two operators :=  and !
and two functions incr  and decr  specifically related to reference calls. The presence of

[<Measure>] 
type days 

let better_age = 3u<days> 

Informational warnings for rarely used
symbolic operators

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1091-Extend-Units-of-Measure.md


these operators makes reference cells more central to F# programming than they need
to be, requiring all F# programmers to know these operators. Further, the !  operator
can be easily confused with the not  operation in C# and other languages, a potentially
subtle source of bugs when translating code.

The rationale for this change is to reduce the number of operators the F# programmer
needs to know, and thus simplify F# for beginners.

For example, consider the following F# 5 code:

F#

First, reference cells are rarely needed in modern F# coding, as let mutable  can
normally be used instead:

F#

If you use reference cells, F# 6 emits an informational warning asking you to change the
last line to r.Value <- r.Value + 1 , and linking you to further guidance on the
appropriate use of reference cells.

F#

These messages are not warnings; they are "informational messages" shown in the IDE
and compiler output. F# remains backwards-compatible.

This feature implements F# RFC FS-1111 .

let r = ref 0 

let doSomething() = 
    printfn "doing something" 
    r := !r + 1 

let mutable r = 0 

let doSomething() = 
    printfn "doing something" 
    r <- r + 1 

let r = ref 0 

let doSomething() = 
    printfn "doing something" 
    r.Value <- r.Value + 1 

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1111-refcell-op-information-messages.md


If you open or execute an F# Script (.fsx ) in Visual Studio, by default the script will be
analyzed and executed using .NET 6 with 64-bit execution. This functionality was in
preview in the later releases of Visual Studio 2019 and is now enabled by default.

To enable .NET Framework scripting, select Tools > Options > F# Tools > F# Interactive.
Set Use .NET Core Scripting to false, and then restart the F# Interactive window. This
setting affects both script editing and script execution. To enable 32-bit execution for
.NET Framework scripting, also set 64-bit F# Interactive to false. There is no 32-bit
option for .NET Core scripting.

If you execute a script using dotnet fsi  in a directory containing a global.json file with a
.NET SDK setting, then the listed version of the .NET SDK will be used to execute and
edit the script. This feature has been available in the later versions of F# 5.

For example, assume there's a script in a directory with the following global.json file
specifying a .NET SDK version policy:

JSON

If you now execute the script using dotnet fsi , from this directory, the SDK version will
be respected. This is a powerful feature that lets you "lock down" the SDK used to
compile, analyze, and execute your scripts.

If you open and edit your script in Visual Studio and other IDEs, the tooling will respect
this setting when analyzing and checking your script. If the SDK is not found, you will
need to install it on your development machine.

On Linux and other Unix systems, you can combine this with a shebang  to also specify
a language version for direct execution of the script. A simple shebang for script.fsx  is:

F# tooling: .NET 6 the default for scripting in
Visual Studio

F# tooling: Pin the SDK version of your F#
scripts

{ 
  "sdk": { 
    "version": "5.0.200", 
    "rollForward": "minor" 
  } 
} 

https://en.wikipedia.org/wiki/Shebang_(Unix)


F#

Now the script can be executed directly with script.fsx . You can combine this with a
specific, non-default language version like this:

F#

Since F# 2.0, some deprecated legacy features have long given warnings. Using these
features in F# 6 gives errors unless you explicitly use /langversion:5.0 . The features
that give errors are:

Multiple generic parameters using a postfix type name, for example (int, int)
Dictionary . This becomes an error in F# 6. The standard syntax
Dictionary<int,int>  should be used instead.
#indent "off" . This becomes an error.
x.(expr) . This becomes an error.
module M = struct … end  . This becomes an error.
Use of inputs *.ml  and *.mli . This becomes an error.
Use of (*IF-CAML*)  or (*IF-OCAML*) . This becomes an error.
Use of land , lor , lxor , lsl , lsr , or asr  as infix operators. These are infix
keywords in F# because they were infix keywords in OCaml and are not defined in
FSharp.Core. Using these keywords will now emit a warning.

This implements F# RFC FS-1114 .

#!/usr/bin/env -S dotnet fsi 

printfn "Hello, world" 

#!/usr/bin/env -S dotnet fsi --langversion:5.0 

７ Note

This setting is ignored by editing tools, which will analyze the script assuming latest
language version.

Removing legacy features

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1114-ml-compat-revisions.md


What's new in F# 5
Article • 03/18/2023

F# 5 adds several improvements to the F# language and F# Interactive. It is released
with .NET 5.

You can download the latest .NET SDK from the .NET downloads page .

F# 5 is available in all .NET Core distributions and Visual Studio tooling. For more
information, see Get started with F# to learn more.

F# 5 brings support for package references in F# scripts with #r "nuget:..."  syntax. For
example, consider the following package reference:

F#

You can also supply an explicit version after the name of the package like this:

F#

Package references support packages with native dependencies, such as ML.NET.

Package references also support packages with special requirements about referencing
dependent .dlls. For example, the FParsec  package used to require that users
manually ensure that its dependent FParsecCS.dll  was referenced first before
FParsec.dll  was referenced in F# Interactive. This is no longer needed, and you can
reference the package as follows:

Get started

Package references in F# scripts

#r "nuget: Newtonsoft.Json" 

open Newtonsoft.Json 

let o = {| X = 2; Y = "Hello" |} 

printfn $"{JsonConvert.SerializeObject o}" 

#r "nuget: Newtonsoft.Json,11.0.1" 

https://dotnet.microsoft.com/download
https://www.nuget.org/packages/FParsec/


F#

This feature implements F# Tooling RFC FST-1027 . For more information on package
references, see the F# Interactive tutorial.

F# interpolated strings are fairly similar to C# or JavaScript interpolated strings, in that
they let you write code in "holes" inside of a string literal. Here's a basic example:

F#

However, F# interpolated strings also allow for typed interpolations, just like the
sprintf  function, to enforce that an expression inside of an interpolated context
conforms to a particular type. It uses the same format specifiers.

F#

In the preceding typed interpolation example, the %s  requires the interpolation to be of
type string , whereas the %d  requires the interpolation to be an integer .

#r "nuget: FParsec" 

open FParsec 

let test p str = 
    match run p str with 
    | Success(result, _, _)   -> printfn $"Success: {result}" 
    | Failure(errorMsg, _, _) -> printfn $"Failure: {errorMsg}" 

test pfloat "1.234" 

String interpolation

let name = "Phillip" 
let age = 29 
printfn $"Name: {name}, Age: {age}" 

printfn $"I think {3.0 + 0.14} is close to {System.Math.PI}!" 

let name = "Phillip" 
let age = 29 

printfn $"Name: %s{name}, Age: %d{age}" 

// Error: type mismatch 
printfn $"Name: %s{age}, Age: %d{name}" 

https://github.com/fsharp/fslang-design/blob/main/tooling/FST-1027-fsi-references.md


Additionally, any arbitrary F# expression (or expressions) can be placed in side of an
interpolation context. It is even possible to write a more complicated expression, like so:

F#

Although we don't recommend doing this too much in practice.

This feature implements F# RFC FS-1001 .

F# 5 supports the nameof  operator, which resolves the symbol it's being used for and
produces its name in F# source. This is useful in various scenarios, such as logging, and
protects your logging against changes in source code.

F#

The last line will throw an exception and "month" will be shown in the error message.

let str = 
    $"""The result of squaring each odd item in {[1..10]} is: 
{ 
    let square x = x * x 
    let isOdd x = x % 2 <> 0 
    let oddSquares xs = 
        xs 
        |> List.filter isOdd 
        |> List.map square 
    oddSquares [1..10] 
} 
""" 

Support for nameof

let months = 
    [ 
        "January"; "February"; "March"; "April"; 
        "May"; "June"; "July"; "August"; "September"; 
        "October"; "November"; "December" 
    ] 

let lookupMonth month = 
    if (month > 12 || month < 1) then 
        invalidArg (nameof month) (sprintf "Value passed in was %d." month) 

    months[month-1] 

printfn $"{lookupMonth 12}" 
printfn $"{lookupMonth 1}" 
printfn $"{lookupMonth 13}" 

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1001-StringInterpolation.md


You can take a name of nearly every F# construct:

F#

Three final additions are changes to how operators work: the addition of the
nameof<'type-parameter>  form for generic type parameters, and the ability to use
nameof  as a pattern in a pattern match expression.

Taking a name of an operator gives its source string. If you need the compiled form, use
the compiled name of an operator:

F#

Taking the name of a type parameter requires a slightly different syntax:

F#

This is similar to the typeof<'T>  and typedefof<'T>  operators.

F# 5 also adds support for a nameof  pattern that can be used in match  expressions:

F#

module M = 
    let f x = nameof x 

printfn $"{M.f 12}" 
printfn $"{nameof M}" 
printfn $"{nameof M.f}" 

nameof(+) // "+" 
nameof op_Addition // "op_Addition" 

type C<'TType> = 
    member _.TypeName = nameof<'TType> 

[<Struct; IsByRefLike>] 
type RecordedEvent = { EventType: string; Data: ReadOnlySpan<byte> } 

type MyEvent = 
    | AData of int 
    | BData of string 

let deserialize (e: RecordedEvent) : MyEvent = 
    match e.EventType with 
    | nameof AData -> AData (JsonSerializer.Deserialize<int> e.Data) 



The preceding code uses 'nameof' instead of the string literal in the match expression.

This feature implements F# RFC FS-1003 .

F# 5 also adds support for open type declarations. An open type declaration is like
opening a static class in C#, except with some different syntax and some slightly
different behavior to fit F# semantics.

With open type declarations, you can open  any type to expose static contents inside of
it. Additionally, you can open  F#-defined unions and records to expose their contents.
For example, this can be useful if you have a union defined in a module and want to
access its cases, but don't want to open the entire module.

F#

Unlike C#, when you open type  on two types that expose a member with the same
name, the member from the last type being opened shadows the other name. This is
consistent with F# semantics around shadowing that exist already.

This feature implements F# RFC FS-1068 .

    | nameof BData -> BData (JsonSerializer.Deserialize<string> e.Data) 
    | t -> failwithf "Invalid EventType: %s" t 

Open type declarations

open type System.Math 

let x = Min(1.0, 2.0) 

module M = 
    type DU = A | B | C 

    let someOtherFunction x = x + 1 

// Open only the type inside the module 
open type M.DU 

printfn $"{A}" 

Consistent slicing behavior for built-in data
types

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1003-nameof-operator.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1068-open-type-declaration.md


Behavior for slicing the built-in FSharp.Core  data types (array, list, string, 2D array, 3D
array, 4D array) used to not be consistent prior to F# 5. Some edge-case behavior threw
an exception and some wouldn't. In F# 5, all built-in types now return empty slices for
slices that are impossible to generate:

F#

This feature implements F# RFC FS-1077 .

F# 5 brings support for slicing with a fixed index in the built-in 3D and 4D array types.

To illustrate this, consider the following 3D array:

z = 0

x\y 0 1

0 0 1

1 2 3

z = 1

x\y 0 1

0 4 5

1 6 7

let l = [ 1..10 ] 
let a = [| 1..10 |] 
let s = "hello!" 

// Before: would return empty list 
// F# 5: same 
let emptyList = l[-2..(-1)] 

// Before: would throw exception 
// F# 5: returns empty array 
let emptyArray = a[-2..(-1)] 

// Before: would throw exception 
// F# 5: returns empty string 
let emptyString = s[-2..(-1)] 

Fixed-index slices for 3D and 4D arrays in
FSharp.Core

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1077-tolerant-slicing.md


What if you wanted to extract the slice [| 4; 5 |]  from the array? This is now very
simple!

F#

This feature implements F# RFC FS-1077b .

F# code quotations now have the ability to retain type constraint information. Consider
the following example:

F#

The constraint generated by the inline  function is retained in the code quotation. The
negate  function's quoted form can now be evaluated.

This feature implements F# RFC FS-1071 .

// First, create a 3D array to slice 

let dim = 2 
let m = Array3D.zeroCreate<int> dim dim dim 

let mutable count = 0 

for z in 0..dim-1 do 
    for y in 0..dim-1 do 
        for x in 0..dim-1 do 
            m[x,y,z] <- count 
            count <- count + 1 

// Now let's get the [4;5] slice!
m[*, 0, 1] 

F# quotations improvements

open FSharp.Linq.RuntimeHelpers 

let eval q = LeafExpressionConverter.EvaluateQuotation q 

let inline negate x = -x 
// val inline negate: x: ^a ->  ^a when  ^a : (static member ( ~- ) :  ^a ->  
^a) 

<@ negate 1.0 @>  |> eval 

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1077-3d-4d-fixed-index-slicing.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1071-witness-passing-quotations.md


Computation expressions (CEs) are used today to model "contextual computations", or
in more functional programming-friendly terminology, monadic computations.

F# 5 introduces applicative CEs, which offer a different computational model. Applicative
CEs allow for more efficient computations provided that every computation is
independent, and their results are accumulated at the end. When computations are
independent of one another, they are also trivially parallelizable, allowing CE authors to
write more efficient libraries. This benefit comes at a restriction, though: computations
that depend on previously computed values are not allowed.

The follow example shows a basic applicative CE for the Result  type.

F#

Applicative Computation Expressions

// First, define a 'zip' function
module Result = 
    let zip x1 x2 = 
        match x1,x2 with 
        | Ok x1res, Ok x2res -> Ok (x1res, x2res) 
        | Error e, _ -> Error e 
        | _, Error e -> Error e 

// Next, define a builder with 'MergeSources' and 'BindReturn' 
type ResultBuilder() = 
    member _.MergeSources(t1: Result<'T,'U>, t2: Result<'T1,'U>) = 
Result.zip t1 t2 
    member _.BindReturn(x: Result<'T,'U>, f) = Result.map f x 

let result = ResultBuilder() 

let run r1 r2 r3 = 
    // And here is our applicative! 
    let res1: Result<int, string> = 
        result { 
            let! a = r1 
            and! b = r2 
            and! c = r3 
            return a + b - c 
        } 

    match res1 with 
    | Ok x -> printfn $"{nameof res1} is: %d{x}" 
    | Error e -> printfn $"{nameof res1} is: {e}" 

let printApplicatives () = 
    let r1 = Ok 2 
    let r2 = Ok 3 // Error "fail!" 
    let r3 = Ok 4 



If you're a library author who exposes CEs in their library today, there are some
additional considerations you'll need to be aware of.

This feature implements F# RFC FS-1063 .

You can now implement the same interface at different generic instantiations:

F#

This feature implements F# RFC FS-1031 .

F# 5 lets you consume interfaces with default implementations.

Consider an interface defined in C# like this:

C#

    run r1 r2 r3 
    run r1 (Error "failure!") r3 

Interfaces can be implemented at different
generic instantiations

type IA<'T> = 
    abstract member Get : unit -> 'T 

type MyClass() = 
    interface IA<int> with 
        member x.Get() = 1 
    interface IA<string> with 
        member x.Get() = "hello" 

let mc = MyClass() 
let iaInt = mc :> IA<int> 
let iaString = mc :> IA<string> 

iaInt.Get() // 1 
iaString.Get() // "hello" 

Default interface member consumption

using System; 

namespace CSharp 
{ 
    public interface MyDim 

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1063-support-letbang-andbang-for-applicative-functors.md
https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1031-Allow%20implementing%20the%20same%20interface%20at%20different%20generic%20instantiations%20in%20the%20same%20type.md
https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/interface-implementation/default-interface-methods-versions


You can consume it in F# through any of the standard means of implementing an
interface:

F#

This lets you safely take advantage of C# code and .NET components written in modern
C# when they expect users to be able to consume a default implementation.

This feature implements F# RFC FS-1074 .

Nullable (value) types (called Nullable Types historically) have long been supported by
F#, but interacting with them has traditionally been somewhat of a pain since you'd
have to construct a Nullable  or Nullable<SomeType>  wrapper every time you wanted to
pass a value. Now the compiler will implicitly convert a value type into a
Nullable<ThatValueType>  if the target type matches. The following code is now possible:

F#

    { 
        public int Z => 0; 
    } 
} 

open CSharp 

// You can implement the interface via a class 
type MyType() = 
    member _.M() = () 

    interface MyDim 

let md = MyType() :> MyDim 
printfn $"DIM from C#: %d{md.Z}" 

// You can also implement it via an object expression 
let md' = { new MyDim }
printfn $"DIM from C# but via Object Expression: %d{md'.Z}" 

Simplified interop with nullable value types

#r "nuget: Microsoft.Data.Analysis" 

open Microsoft.Data.Analysis 

let dateTimes = PrimitiveDataFrameColumn<DateTime>("DateTimes") 

// The following line used to fail to compile 

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1074-default-interface-member-consumption.md
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1


This feature implements F# RFC FS-1075 .

F# 5 also introduces a preview for allowing reverse indexes. The syntax is ^idx . Here's
how you can an element 1 value from the end of a list:

F#

You can also define reverse indexes for your own types. To do so, you'll need to
implement the following method:

F#

Here's an example for the Span<'T>  type:

F#

dateTimes.Append(DateTime.Parse("2019/01/01")) 

// The previous line is now equivalent to this line 
dateTimes.Append(Nullable<DateTime>(DateTime.Parse("2019/01/01"))) 

Preview: reverse indexes

let xs = [1..10] 

// Get element 1 from the end: 
xs[^1] 

// From the end slices 

let lastTwoOldStyle = xs[(xs.Length-2)..] 

let lastTwoNewStyle = xs[^1..] 

lastTwoOldStyle = lastTwoNewStyle // true 

GetReverseIndex: dimension: int -> offset: int 

open System 

type Span<'T> with 
    member sp.GetSlice(startIdx, endIdx) = 
        let s = defaultArg startIdx 0 
        let e = defaultArg endIdx sp.Length 
        sp.Slice(s, e - s) 

    member sp.GetReverseIndex(_, offset: int) = 

https://github.com/fsharp/fslang-design/blob/main/FSharp-5.0/FS-1075-nullable-interop.md


This feature implements F# RFC FS-1076 .

Computation expressions are a powerful feature for library and framework authors. They
allow you to greatly improve the expressiveness of your components by letting you
define well-known members and form a DSL for the domain you're working in.

F# 5 adds preview support for overloading custom operations in Computation
Expressions. It allows the following code to be written and consumed:

F#

        sp.Length - offset 

let printSpan (sp: Span<int>) = 
    let arr = sp.ToArray() 
    printfn $"{arr}" 

let run () = 
    let sp = [| 1; 2; 3; 4; 5 |].AsSpan() 

    // Pre-# 5.0 slicing on a Span<'T> 
    printSpan sp[0..] // [|1; 2; 3; 4; 5|] 
    printSpan sp[..3] // [|1; 2; 3|] 
    printSpan sp[1..3] // |2; 3|] 

    // Same slices, but only using from-the-end index 
    printSpan sp[..^0] // [|1; 2; 3; 4; 5|] 
    printSpan sp[..^2] // [|1; 2; 3|] 
    printSpan sp[^4..^2] // [|2; 3|] 

run() // Prints the same thing twice 

Preview: overloads of custom keywords in
computation expressions

open System 

type InputKind = 
    | Text of placeholder:string option 
    | Password of placeholder: string option 

type InputOptions = 
  { Label: string option 
    Kind : InputKind 
    Validators : (string -> bool) array } 

type InputBuilder() = 
    member t.Yield(_) = 
      { Label = None 

https://github.com/fsharp/fslang-design/blob/main/preview/FS-1076-from-the-end-slicing.md


Prior to this change, you could write the InputBuilder  type as it is, but you couldn't use
it the way it's used in the example. Since overloads, optional parameters, and now
System.ParamArray  types are allowed, everything just works as you'd expect it to.

        Kind = Text None 
        Validators = [||] } 

    [<CustomOperation("text")>] 
    member this.Text(io, ?placeholder) = 
        { io with Kind = Text placeholder } 

    [<CustomOperation("password")>] 
    member this.Password(io, ?placeholder) = 
        { io with Kind = Password placeholder } 

    [<CustomOperation("label")>] 
    member this.Label(io, label) = 
        { io with Label = Some label } 

    [<CustomOperation("with_validators")>] 
    member this.Validators(io, [<ParamArray>] validators) = 
        { io with Validators = validators } 

let input = InputBuilder() 

let name = 
    input { 
    label "Name" 
    text 
    with_validators 
        (String.IsNullOrWhiteSpace >> not) 
    } 

let email = 
    input { 
    label "Email" 
    text "Your email" 
    with_validators 
        (String.IsNullOrWhiteSpace >> not) 
        (fun s -> s.Contains "@") 
    } 

let password = 
    input { 
    label "Password" 
    password "Must contains at least 6 characters, one number and one 
uppercase" 
    with_validators 
        (String.exists Char.IsUpper) 
        (String.exists Char.IsDigit) 
        (fun s -> s.Length >= 6) 
    } 



This feature implements F# RFC FS-1056 .

https://github.com/fsharp/fslang-design/blob/main/FSharp-6.0/FS-1056-allow-custom-operation-overloads.md


What's new in F# 4.7
Article • 09/15/2021

F# 4.7 adds multiple improvements to the F# language.

F# 4.7 is available in all .NET Core distributions and Visual Studio tooling. Get started
with F# to learn more.

The F# 4.7 compiler introduces the ability to set your effective language version via a
property in your project file:

XML

You can set it to the values 4.6 , 4.7 , latest , and preview . The default is latest .

If you set it to preview , your compiler will activate all F# preview features that are
implemented in your compiler.

You no longer need to apply the yield  keyword in arrays, lists, sequences, or
computation expressions where the type can be inferred. In the following example, both
expressions required the yield  statement for each entry prior to F# 4.7:

F#

Get started

Language version

<PropertyGroup> 
    <LangVersion>preview</LangVersion> 
</PropertyGroup> 

Implicit yields

let s = seq { 1; 2; 3; 4; 5 } 

let daysOfWeek includeWeekend = 
    [ 
        "Monday" 
        "Tuesday" 
        "Wednesday" 
        "Thursday" 



If you introduce a single yield  keyword, every other item must also have yield  applied
to it.

Implicit yields are not activated when used in an expression that also uses yield!  to do
something like flatten a sequence. You must continue to use yield  today in these cases.

In F# code involving classes, the self-identifier needs to always be explicit in member
declarations. But in cases where the self-identifier is never used, it has traditionally been
convention to use a double-underscore to indicate a nameless self-identifiers. You can
now use a single underscore:

F#

This also applies for for  loops:

F#

Prior to F# 4.7, the indentation requirements for primary constructor and static member
arguments required excessive indentation. They now only require a single indentation
scope:

F#

        "Friday" 
        if includeWeekend then 
            "Saturday" 
            "Sunday" 
    ] 

Wildcard identifiers

type C() = 
    member _.M() = () 

for _ in 1..10 do printfn "Hello!" 

Indentation relaxations

type OffsideCheck(a:int, 
    b:int, c:int, 
    d:int) = class end 

type C() = 
    static member M(a:int, 



        b:int, c:int, 
        d:int) = 1 



What's new in F# 4.6
Article • 09/15/2021

F# 4.6 adds multiple improvements to the F# language.

F# 4.6 is available in all .NET Core distributions and Visual Studio tooling. Get started
with F# to learn more.

Anonymous records are a new kind of F# type introduced in F# 4.6. They are simple
aggregates of named values that don't need to be declared before use. You can declare
them as either structs or reference types. They're reference types by default.

F#

They can also be declared as structs for when you want to group value types and are
operating in performance-sensitive scenarios:

F#

Get started

Anonymous records

open System 

let getCircleStats radius = 
    let d = radius * 2.0 
    let a = Math.PI * (radius ** 2.0) 
    let c = 2.0 * Math.PI * radius 

    {| Diameter = d; Area = a; Circumference = c |} 

let r = 2.0 
let stats = getCircleStats r 
printfn "Circle with radius: %f has diameter %f, area %f, and circumference 
%f" 
    r stats.Diameter stats.Area stats.Circumference 

open System 

let getCircleStats radius = 
    let d = radius * 2.0 
    let a = Math.PI * (radius ** 2.0) 
    let c = 2.0 * Math.PI * radius 



They're quite powerful and can be used in numerous scenarios. Learn more at
Anonymous records.

The ValueOption type added in F# 4.5 now has "module-bound function parity" with the
Option type. Some of the more commonly-used examples are as follows:

F#

This allows for ValueOption to be used just like Option in scenarios where having a value
type improves performance.

    struct {| Diameter = d; Area = a; Circumference = c |} 

let r = 2.0 
let stats = getCircleStats r 
printfn "Circle with radius: %f has diameter %f, area %f, and circumference 
%f" 
    r stats.Diameter stats.Area stats.Circumference 

ValueOption functions

// Multiply a value option by 2 if it has  value 
let xOpt = ValueSome 99 
let result = xOpt |> ValueOption.map (fun v -> v * 2) 

// Reverse a string if it exists 
let strOpt = ValueSome "Mirror image" 
let reverse (str: string) = 
    match str with 
    | null 
    | "" -> ValueNone 
    | s -> 
        str.ToCharArray() 
        |> Array.rev 
        |> string 
        |> ValueSome 

let reversedString = strOpt |> ValueOption.bind reverse 



What's new in F# 4.5
Article • 11/05/2021

F# 4.5 adds multiple improvements to the F# language. Many of these features were
added together to enable you to write efficient code in F# while also ensuring this code
is safe. Doing so means adding a few concepts to the language and a significant amount
of compiler analysis when using these constructs.

F# 4.5 is available in all .NET Core distributions and Visual Studio tooling. Get started
with F# to learn more.

The Span<T> type introduced in .NET Core allows you to represent buffers in memory in
a strongly typed manner, which is now allowed in F# starting with F# 4.5. The following
example shows how you can re-use a function operating on a Span<T> with different
buffer representations:

F#

Get started

Span and byref-like structs

let safeSum (bytes: Span<byte>) = 
    let mutable sum = 0 
    for i in 0 .. bytes.Length - 1 do 
        sum <- sum + int bytes[i]
    sum 

// managed memory 
let arrayMemory = Array.zeroCreate<byte>(100) 
let arraySpan = new Span<byte>(arrayMemory) 

safeSum(arraySpan) |> printfn "res = %d" 

// native memory 
let nativeMemory = Marshal.AllocHGlobal(100); 
let nativeSpan = new Span<byte>(nativeMemory.ToPointer(), 100) 

safeSum(nativeSpan) |> printfn "res = %d" 
Marshal.FreeHGlobal(nativeMemory)

// stack memory 
let mem = NativePtr.stackalloc<byte>(100) 
let mem2 = mem |> NativePtr.toVoidPtr 
let stackSpan = Span<byte>(mem2, 100) 

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1


An important aspect to this is that Span and other byref-like structs have very rigid static
analysis performed by the compiler that restrict their usage in ways you might find to be
unexpected. This is the fundamental tradeoff between performance, expressiveness, and
safety that is introduced in F# 4.5.

Prior to F# 4.5, Byrefs in F# were unsafe and unsound for numerous applications.
Soundness issues around byrefs have been addressed in F# 4.5 and the same static
analysis done for span and byref-like structs was also applied.

To represent the notion of a read-only, write-only, and read/write managed pointer, F#
4.5 introduces the inref<'T> , outref<'T>  types to represent read-only and write-only
pointers, respectively. Each have different semantics. For example, you cannot write to
an inref<'T> :

F#

By default, type inference will infer managed pointers as inref<'T>  to be in line with the
immutable nature of F# code, unless something has already been declared as mutable.
To make something writable, you'll need to declare a type as mutable  before passing its
address to a function or member that manipulates it. To learn more, see Byrefs.

Starting with F# 4.5, you can annotate a struct with IsReadOnlyAttribute as such:

F#

safeSum(stackSpan) |> printfn "res = %d" 

Revamped byrefs

inref<'T> and outref<'T>

let f (dt: inref<DateTime>) = 
    dt <- DateTime.Now // ERROR - cannot write to an inref! 

Readonly structs

[<IsReadOnly; Struct>] 
type S(count1: int, count2: int) = 
    member x.Count1 = count1 
    member x.Count2 = count2 

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.isreadonlyattribute


This disallows you from declaring a mutable member in the struct and emits metadata
that allows F# and C# to treat it as readonly when consumed from an assembly. To learn
more, see ReadOnly structs.

The voidptr  type is added to F# 4.5, as are the following functions:

NativePtr.ofVoidPtr  to convert a void pointer into a native int pointer
NativePtr.toVoidPtr  to convert a native int pointer to a void pointer

This is helpful when interoperating with a native component that makes use of void
pointers.

The match!  keyword enhances pattern matching when inside a computation expression:

F#

This allows you to shorten code that often involves mixing options (or other types) with
computation expressions such as async. To learn more, see match!.

Void pointers

The match!  keyword

// Code that returns an asynchronous option 
let checkBananaAsync (s: string) = 
    async { 
        if s = "banana" then 
            return Some s 
        else 
            return None 
    } 

// Now you can use 'match!' 
let funcWithString (s: string) = 
    async { 
        match! checkBananaAsync s with 
        | Some bananaString -> printfn "It's banana!" 
        | None -> printfn "%s" s 
} 

Relaxed upcasting requirements in array, list,
and sequence expressions



Mixing types where one may inherit from another inside of array, list, and sequence
expressions has traditionally required you to upcast any derived type to its parent type
with :>  or upcast . This is now relaxed, demonstrated as follows:

F#

Prior to F# 4.5, you needed to excessively indent array and list expressions when passed
as arguments to method calls. This is no longer required:

F#

let x0 : obj list  = [ "a" ] // ok pre-F# 4.5 
let x1 : obj list  = [ "a"; "b" ] // ok pre-F# 4.5 
let x2 : obj list  = [ yield "a" :> obj ] // ok pre-F# 4.5 

let x3 : obj list  = [ yield "a" ] // Now ok for F# 4.5, and can replace x2 

Indentation relaxation for array and list
expressions

module NoExcessiveIndenting = 
    System.Console.WriteLine(format="{0}", arg = [| 
        "hello" 
    |]) 
    System.Console.WriteLine([| 
        "hello" 
    |]) 



F# Development Tools
Article • 11/05/2021

This article describes some of the primary development tools used with F#.

You can install command-line tools for F# in multiple ways, depending on your
environment. See Install F#.

F# can be installed as part of Visual Studio . See Getting Started with F# in Visual
Studio.

F# can be installed as part of Visual Studio Code . See Getting Started with F# in Visual
Studio Code.

F# can be installed as part of Visual Studio for Mac . See Getting Started with F# in
Visual Studio for Mac.

Other IDEs are available for F#, see F# Tools

Many tools and libraries for F# are provided by the F# community. These include:

Fantomas  - The F# code formatting tool
FSharpLint  - An F# code checking tool
FAKE  - An F# build automation tool

.NET Command-line Tools

Integrated Development Environments (IDEs)

F# with Visual Studio

F# with Visual Studio Code

F# with Visual Studio for Mac

Other development environments

Community Tools

https://visualstudio.microsoft.com/
https://code.visualstudio.com/
https://visualstudio.microsoft.com/vs/mac/
https://dotnet.microsoft.com/languages/fsharp/tools
https://github.com/fsprojects/fantomas#fantomas
https://fsprojects.github.io/FSharpLint/
https://fsprojects.github.io/FAKE/


For more comprehensive lists, see the F# Software Foundation's Guide to F# Community
Projects , or search on the web.

https://fsharp.org/community/projects/


Interactive programming with F#
Article • 07/21/2023

F# Interactive (dotnet fsi) is used to run F# code interactively at the console, or to
execute F# scripts. In other words, F# interactive executes a REPL (Read, Evaluate, Print
Loop) for F#.

To run F# Interactive from the console, run dotnet fsi . You will find dotnet fsi  in any
.NET SDK.

For information about available command-line options, see F# Interactive Options.

Because F# Interactive is a REPL (read-eval-print loop), you can execute code
interactively in it. Here is an example of an interactive session after executing dotnet
fsi  from the command line:

Console

７ Note

If you intend to use F# interactive under .NET Framework runtime, you'll need the
Visual Studio Build Tools  or an edition of Visual Studio installed, and invoke the
FsiAnyCPU.exe  command from a "Developer Command Prompt" or simply make

FsiAnyCPU.exe  available in the PATH  environment variable, in place of dotnet fsi
command line.

Tooling supports defining version F# Interactive runtime:

In Visual Studio: In the menu bar, Tools / Options then F# Tools / F#

Interactive, and adjust Use .NET Core Scripting.
In Visual Studio Code (ionide extension): In the command palette,

Preferences: Open User Settings, then Extensions / F# / FSharp: Fsi Sdk File

Path.

Executing code directly in F# Interactive

Microsoft (R) F# Interactive version 11.0.0.0 for F# 5.0
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

https://visualstudio.microsoft.com/downloads/?q=build+tools


You'll notice two main things:

1. All code must be terminated with a double semicolon ( ;; ) to be evaluated
2. Code is evaluated and stored in an it  value. You can reference it  interactively.

F# Interactive also supports multi-line input. You just need to terminate your submission
with a double semicolon ( ;; ). Consider the following snippet that has been pasted into
and evaluated by F# Interactive:

Console

The code's formatting is preserved, and there is a double semicolon ( ;; ) terminating
the input. F# Interactive then evaluated the code and printed the results!

Evaluating code interactively in F# Interactive can be a great learning tool, but you'll
quickly find that it's not as productive as writing code in a normal editor. To support
normal code editing, you can write F# scripts.

Scripts use the file extension .fsx. Instead of compiling source code and then later
running the compiled assembly, you can just run dotnet fsi and specify the filename of

> let square x = x *  x;;
val square : x:int -> int

> square 12;;
val it : int = 144

> printfn "Hello, FSI!"
- ;;
Hello, FSI!
val it : unit = ()

> let getOddSquares xs =
-     xs
-     |> List.filter (fun x -> x % 2 <> 0)
-     |> List.map (fun x -> x * x)
-
- printfn "%A" (getOddSquares [1..10]);;
[1; 9; 25; 49; 81]
val getOddSquares : xs:int list -> int list
val it : unit = ()

>

Scripting with F#



the script of F# source code, and F# interactive reads the code and executes it in real
time. For example, consider the following script called Script.fsx :

F#

When this file is created in your machine, you can run it with dotnet fsi  and see the
output directly in your terminal window:

Console

F# scripting is natively supported in Visual Studio, Visual Studio Code, and Visual Studio
for Mac.

Since 5.0 release of the language, F# Interactive supports referencing packages through
an extensibility mechanism; out of the box, it can reference NuGet packages with the #r
"nuget:"  syntax and an optional version:

F#

let getOddSquares xs =
    xs
    |> List.filter (fun x -> x % 2 <> 0)
    |> List.map (fun x -> x * x)

printfn "%A" (getOddSquares [1..10])

dotnet fsi Script.fsx
[1; 9; 25; 49; 81]

Referencing packages in F# Interactive

７ Note

Package management system is extensible, see more about the plugins and
extension mechanism .

#r "nuget: Newtonsoft.Json"
open Newtonsoft.Json

let data = {| Name = "Don Syme"; Occupation = "F# Creator" |}
JsonConvert.SerializeObject(data)

https://aka.ms/dotnetdepmanager


If a version is not specified, the highest available non-preview package is taken. To
reference a specific version, introduce the version via a comma. This can be handy when
referencing a preview version of a package. For example, consider this script using a
preview version of DiffSharp :

F#

You can also specify a package source with the #i  command. The following example
specifies a remote and a local source:

F#

This will tell the resolution engine under the covers to also take into account the remote
and/or local sources added to a script.

You can specify as many package references as you like in a script.

#r "nuget: DiffSharp-lite, 1.0.0-preview-328097867"
open DiffSharp

// A 1D tensor
let t1 = dsharp.tensor [ 0.0 .. 0.2 .. 1.0 ]

// A 2x2 tensor
let t2 = dsharp.tensor [ [ 0; 1 ]; [ 2; 2 ] ]

// Define a scalar-to-scalar function
let f (x: Tensor) = sin (sqrt x)

printfn $"{f (dsharp.tensor 1.2)}"

Specifying a package source

#i "nuget: https://my-remote-package-source/index.json"
#i """nuget: C:\path\to\my\local\source"""

７ Note

There's currently a limitation for scripts that use framework references
(e.g. Microsoft.NET.Sdk.Web  or Microsoft.NET.Sdk.WindowsDesktop ). Packages like
Saturn, Giraffe, WinForms are not available. This is being tracked in issue #9417 .
WinForms, still works in the .NET Framework version of F# Interactive.

To load additional extensions beside those shipped with the SDK and/or with your
tooling, use the --compilertool:<extensionsfolderpath>  flag as argument for F#

https://diffsharp.github.io/
https://github.com/dotnet/fsharp/issues/9417


Alternatively, if you have an assembly on disk and wish to reference that in a script, you
can use the #r  syntax to specify an assembly. Consider the following code in a project
compiled into MyAssembly.dll :

F#

Once compiled, you can reference it in a file called Script.fsx  like so:

F#

The output is as follows:

Console

You can specify as many assembly references as you like in a script.

When scripting, it can often be helpful to use different scripts for different tasks.
Sometimes you may want to reuse code from one script in another. Rather than copy-
pasting its contents into your file, you can simply load and evaluate it with #load .

Consider the following Script1.fsx :

F#

Interactive session (or in your tooling settings).

Referencing assemblies on disk with F#
interactive

// MyAssembly.fs
module MyAssembly
let myFunction x y = x + 2 * y

#r "path/to/MyAssembly.dll"

printfn $"{MyAssembly.myFunction 10 40}"

dotnet fsi Script.fsx
90

Loading other scripts



And the consuming file, Script2.fsx :

F#

You can evaluate Script2.fsx  like so:

Console

You can specify as many #load  directives as you like in a script.

F# scripts have access to a custom fsi  object that represents the F# Interactive session.
It allows you to customize things like output formatting. It is also how you can access
command-line arguments.

The following example shows how to get and use command-line arguments:

let square x = x * x

#load "Script1.fsx"
open Script1

printfn $"%d{square 12}"

dotnet fsi Script2.fsx
144

７ Note

The open Script1  declaration is required. This is because constructs in an F# script
are compiled into a top-level module that is the name of the script file it is in. If the
script file has a lowercase name such as script3.fsx  then the implied module
name is automatically capitalized, and you will need to use open Script3 . If you
would like a loadable-script to define constructs in a specific namespace of module
you can include a namespace of module declaration, for example:

F#

module MyScriptLibrary

Using the fsi  object in F# code



F#

When evaluated, it prints all arguments. The first argument is always the name of the
script that is evaluated:

.NET CLI

You can also use System.Environment.GetCommandLineArgs()  to access the same
arguments.

The #r  and #load  directives seen previously are only available in F# Interactive. There
are several directives only available in F# Interactive:

Directive Description

#r "nuget:..." References a package from NuGet

#r "extname:..." Reference a package from extname  extension[^1] (such as paket )

#r "assembly-

name.dll"

References an assembly on disk

#load "file-

name.fsx"

Reads a source file, compiles it, and runs it.

#help Displays information about available directives.

#I Specifies an assembly search path in quotation marks.

#quit Terminates an F# Interactive session.

let args = fsi.CommandLineArgs

for arg in args do
    printfn $"{arg}"

dotnet fsi Script1.fsx hello world from fsi
Script1.fsx
hello
world
from
fsi

F# Interactive directive reference

ﾉ Expand table



Directive Description

#time "on"  or
#time "off"

By itself, #time  toggles whether to display performance information. When it
is "on" , F# Interactive measures real time, CPU time, and garbage collection
information for each section of code that is interpreted and executed.

[^1]: More about F# Interactive extensions .

When you specify files or paths in F# Interactive, a string literal is expected. Therefore,
files and paths must be in quotation marks, and the usual escape characters apply. You
can use the @  character to cause F# Interactive to interpret a string that contains a path
as a verbatim string. This causes F# Interactive to ignore any escape characters.

When you compile code in F# Interactive, whether you are running interactively or
running a script, the symbol INTERACTIVE is defined. When you compile code in the
compiler, the symbol COMPILED is defined. Thus, if code needs to be different in
compiled and interactive modes, you can use these preprocessor directives for
conditional compilation to determine which to use. For example:

F#

To run F# Interactive through Visual Studio, you can click the appropriate toolbar button
labeled F# Interactive, or use the keys Ctrl+Alt+F. Doing this will open the interactive
window, a tool window running an F# Interactive session. You can also select some code
that you want to run in the interactive window and hit the key combination Alt+Enter.
F# Interactive starts in a tool window labeled F# Interactive. When you use this key
combination, make sure that the editor window has the focus.

Whether you are using the console or Visual Studio, a command prompt appears and
the interpreter awaits your input. You can enter code just as you would in a code file. To

Interactive and compiled preprocessor
directives

#if INTERACTIVE
// Some code that executes only in FSI
// ...
#endif

Using F# Interactive in Visual Studio

https://aka.ms/dotnetdepmanager


compile and execute the code, enter two semicolons (;;) to terminate a line or several
lines of input.

F# Interactive attempts to compile the code and, if successful, it executes the code and
prints the signature of the types and values that it compiled. If errors occur, the
interpreter prints the error messages.

Code entered in the same session has access to any constructs entered previously, so
you can build up programs. An extensive buffer in the tool window allows you to copy
the code into a file if needed.

When run in Visual Studio, F# Interactive runs independently of your project, so, for
example, you cannot use constructs defined in your project in F# Interactive unless you
copy the code for the function into the interactive window.

You can control the F# Interactive command-line arguments (options) by adjusting the
settings. On the Tools menu, select Options..., and then expand F# Tools. The two
settings that you can change are the F# Interactive options and the 64-bit F# Interactive
setting, which is relevant only if you are running F# Interactive on a 64-bit machine. This
setting determines whether you want to run the dedicated 64-bit version of fsi.exe or
fsianycpu.exe, which uses the machine architecture to determine whether to run as a
32-bit or 64-bit process.

Title Description

F# Interactive Options Describes command-line syntax and options for the F# Interactive, fsi.exe.

Related articles

ﾉ Expand table

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback

.NET is an open source project.
Select a link to provide feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=z-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Ftools%2Ffsharp-interactive%2F&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Ftools%2Ffsharp-interactive%2Findex.md&documentVersionIndependentId=400ddb93-a841-963b-58cc-21f506b13b61&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40KathleenDollard&metadata=*+ID%3A+db36a87c-0928-52ce-38f3-1555e450cce1+%0A*+Service%3A+**dotnet-fsharp**
https://github.com/dotnet/fsharp


F# notebooks
Article • 11/05/2021

F# is well suited to notebook programming because of its ordered declarations and
scripting constructs.

.NET Interactive  F# notebooks can be used with Jupyter , Visual Studio Code , and
Visual Studio .

Machine Learning with F#
.NET Interactive
A Guide to Data Access with F#
A Guide to Data Science with F#

See also

https://github.com/dotnet/interactive/#net-interactive-
https://github.com/dotnet/interactive/#jupyter-and-nteract
https://github.com/dotnet/interactive#notebooks-with-net
https://marketplace.visualstudio.com/items?itemName=MLNET.notebook
https://github.com/dotnet/interactive/
https://fsharp.org/guides/data-access/
https://fsharp.org/guides/data-science/


F# for JavaScript
Article • 11/05/2021

F# can execute as JavaScript code through two community-provided open source
toolchains. This allows F# code to be used for client-side and full-stack web
development.

Fable  is a compiler that brings F# into the JavaScript ecosystem. It generates modern
JavaScript output, interoperates with JavaScript packages, and supports multiple
development models including React.

WebSharper  - Provides full-stack, functional reactive web programming for .NET,
allowing you to develop microservices, client-server web applications, reactive SPAs, and
more in C# or F#.

F# for Web Development
A Guide to Web Programming with F#

Fable

WebSharper

See also

https://fable.io/
https://github.com/dotnet-websharper/core
https://fsharp.org/guides/web/


F# style guide
Article • 09/15/2021

The following articles describe guidelines for formatting F# code and topical guidance
for features of the language and how they should be used.

This guidance has been formulated based on the use of F# in large codebases with a
diverse group of programmers. This guidance generally leads to successful use of F#
and minimizes frustrations when requirements for programs change over time.

Keep the following principles in mind any time you write F# code, especially in systems
that will change over time. Every piece of guidance in further articles stems from these
five points.

1. Good F# code is succinct, expressive, and composable

F# has many features that allow you to express actions in fewer lines of code and
reuse generic functionality. The F# core library also contains many useful types and
functions for working with common collections of data. Composition of your own
functions and those in the F# core library (or other libraries) is a part of routine
idiomatic F# programming. As a general rule, if you can express a solution to a
problem in fewer lines of code, other developers (or your future self) will be
appreciative. It's also highly recommended that you use a library such as
FSharp.Core, the vast .NET libraries that F# runs on, or a third-party package on
NuGet  when you need to do a nontrivial task.

2. Good F# code is interoperable

Interoperation can take multiple forms, including consuming code in different
languages. The boundaries of your code that other callers interoperate with are
critical pieces to get right, even if the callers are also in F#. When writing F#, you
should always be thinking about how other code will call into the code you're
writing, including if they do so from another language like C#. The F# Component
Design Guidelines describe interoperability in detail.

3. Good F# code makes use of object programming, not object orientation

F# has full support for programming with objects in .NET, including classes,
interfaces, access modifiers, abstract classes, and so on. For more complicated
functional code, such as functions that must be context-aware, objects can easily

Five principles of good F# code

https://learn.microsoft.com/en-us/dotnet/api/
https://www.nuget.org/


encapsulate contextual information in ways that functions cannot. Features such as
optional parameters and careful use of overloading can make consumption of this
functionality easier for callers.

4. Good F# code performs well without exposing mutation

It's no secret that to write high-performance code, you must use mutation. It's how
computers work, after all. Such code is often error-prone and difficult to get right.
Avoid exposing mutation to callers. Instead, build a functional interface that hides
a mutation-based implementation when performance is critical.

5. Good F# code is toolable

Tools are invaluable for working in large codebases, and you can write F# code
such that it can be used more effectively with F# language tooling. One example is
making sure you don't overdo it with a point-free style of programming, so that
intermediate values can be inspected with a debugger. Another example is using
XML documentation comments describing constructs such that tooltips in editors
can display those comments at the call site. Always think about how your code will
be read, navigated, debugged, and manipulated by other programmers with their
tools.

The F# code formatting guidelines provide guidance on how to format code so that it is
easy to read.

The F# coding conventions provide guidance for F# programming idioms that will help
the long-term maintenance of larger F# codebases.

The F# component design guidelines provide guidance for authoring F# components,
such as libraries.

Next steps



F# code formatting guidelines
Article • 11/01/2023

This article offers guidelines for how to format your code so that your F# code is:

More legible
In accordance with conventions applied by formatting tools in Visual Studio Code
and other editors
Similar to other code online

See also Coding conventions and Component design guidelines, which also covers
naming conventions.

The Fantomas code formatter  is the F# community standard tool for automatic code
formatting. The default settings correspond to this style guide.

We strongly recommend the use of this code formatter. Within F# teams, code
formatting specifications should be agreed and codified in terms of an agreed settings
file for the code formatter checked into the team repository.

F# uses significant white space by default and is white space sensitive. The following
guidelines are intended to provide guidance as to how to juggle some challenges this
can impose.

When indentation is required, you must use spaces, not tabs. F# code doesn't use tabs,
and the compiler will give an error if a tab character is encountered outside a string
literal or comment.

When indenting, at least one space is required. Your organization can create coding
standards to specify the number of spaces to use for indentation; two, three, or four
spaces of indentation at each level where indentation occurs is typical.

Automatic code formatting

General rules for formatting

Use spaces not tabs

Use consistent indentation

https://github.com/fsprojects/fantomas/#fantomas


We recommend four spaces per indentation.

That said, indentation of programs is a subjective matter. Variations are OK, but the first
rule you should follow is consistency of indentation. Choose a generally accepted style of
indentation and use it systematically throughout your codebase.

Seek to avoid indentation and alignment that is sensitive to naming:

F#

The primary reasons for avoiding this are:

Avoid formatting that is sensitive to name length

// ✔  OK
let myLongValueName =
    someExpression
    |> anotherExpression

// ❌ Not OK
let myLongValueName = someExpression
                      |> anotherExpression

// ✔  OK
let myOtherVeryLongValueName =
    match
        someVeryLongExpressionWithManyParameters
            parameter1
            parameter2
            parameter3
        with
    | Some _ -> ()
    | ...

// ❌ Not OK
let myOtherVeryLongValueName =
    match someVeryLongExpressionWithManyParameters parameter1
                                                   parameter2
                                                   parameter3 with
    | Some _ -> ()
    | ...

// ❌ Still Not OK
let myOtherVeryLongValueName =
    match someVeryLongExpressionWithManyParameters
              parameter1
              parameter2
              parameter3 with
    | Some _ -> ()
    | ...



Important code is moved far to the right
There's less width left for the actual code
Renaming can break the alignment

Avoid extraneous white space in F# code, except where described in this style guide.

F#

Prefer multiple double-slash comments over block comments.

F#

Comments should capitalize the first letter and be well-formed phrases or sentences.

F#

For formatting XML doc comments, see "Formatting declarations" below.

Avoid extraneous white space

// ✔  OK
spam (ham 1)

// ❌ Not OK
spam ( ham 1 )

Formatting comments

// Prefer this style of comments when you want
// to express written ideas on multiple lines.

(*
    Block comments can be used, but use sparingly.
    They are useful when eliding code sections.
*)

// ✔  A good comment.
let f x = x + 1 // Increment by one.

// ❌ two poor comments
let f x = x + 1 // plus one

Formatting expressions



This section discusses formatting expressions of different kinds.

String literals and interpolated strings can just be left on a single line, regardless of how
long the line is.

F#

Multi-line interpolated expressions are discouraged. Instead, bind the expression result
to a value and use that in the interpolated string.

A tuple instantiation should be parenthesized, and the delimiting commas within it
should be followed by a single space, for example: (1, 2) , (x, y, z) .

F#

It's commonly accepted to omit parentheses in pattern matching of tuples:

F#

It's also commonly accepted to omit parentheses if the tuple is the return value of a
function:

Formatting string expressions

let serviceStorageConnection =
    
$"DefaultEndpointsProtocol=https;AccountName=%s{serviceStorageAccount.Name};
AccountKey=%s{serviceStorageAccountKey.Value}"

Formatting tuple expressions

// ✔  OK
let pair = (1, 2)
let triples = [ (1, 2, 3); (11, 12, 13) ]

// ✔  OK
let (x, y) = z
let x, y = z

// ✔  OK
match x, y with
| 1, _ -> 0
| x, 1 -> 0
| x, y -> 1



F#

In summary, prefer parenthesized tuple instantiations, but when using tuples for pattern
matching or a return value, it's considered fine to avoid parentheses.

When formatting a function or method application, arguments are provided on the
same line when line-width allows:

F#

Omit parentheses unless arguments require them:

F#

Don't omit spaces when invoking with multiple curried arguments:

F#

// ✔  OK
let update model msg =
    match msg with
    | 1 -> model + 1, []
    | _ -> model, [ msg ]

Formatting application expressions

// ✔  OK
someFunction1 x.IngredientName x.Quantity

// ✔  OK
someFunction1 x.IngredientName

// ❌ Not preferred - parentheses should be omitted unless required
someFunction1 (x.IngredientName)

// ✔  OK - parentheses are required
someFunction1 (convertVolumeToLiter x)

// ✔  OK
someFunction1 (convertVolumeToLiter x) (convertVolumeUSPint x)
someFunction2 (convertVolumeToLiter y) y
someFunction3 z (convertVolumeUSPint z)

// ❌ Not preferred - spaces should not be omitted between arguments
someFunction1(convertVolumeToLiter x)(convertVolumeUSPint x)



In default formatting conventions, a space is added when applying lower-case functions
to tupled or parenthesized arguments (even when a single argument is used):

F#

In default formatting conventions, no space is added when applying capitalized
methods to tupled arguments. This is because these are often used with fluent
programming:

F#

You may need to pass arguments to a function on a new line as a matter of readability
or because the list of arguments or the argument names are too long. In that case,
indent one level:

F#

someFunction2(convertVolumeToLiter y) y
someFunction3 z(convertVolumeUSPint z)

// ✔  OK
someFunction2 ()

// ✔  OK
someFunction3 (x.Quantity1 + x.Quantity2)

// ❌ Not OK, formatting tools will add the extra space by default
someFunction2()

// ❌ Not OK, formatting tools will add the extra space by default
someFunction3(x.IngredientName, x.Quantity)

// ✔  OK - Methods accepting parenthesize arguments are applied without a 
space
SomeClass.Invoke()

// ✔  OK - Methods accepting tuples are applied without a space
String.Format(x.IngredientName, x.Quantity)

// ❌ Not OK, formatting tools will remove the extra space by default
SomeClass.Invoke ()

// ❌ Not OK, formatting tools will remove the extra space by default
String.Format (x.IngredientName, x.Quantity)

// ✔  OK
someFunction2
    x.IngredientName x.Quantity



When the function takes a single multi-line tupled argument, place each argument on a
new line:

F#

If argument expressions are short, separate arguments with spaces and keep it in one
line.

F#

// ✔  OK
someFunction3
    x.IngredientName1 x.Quantity2
    x.IngredientName2 x.Quantity2

// ✔  OK
someFunction4
    x.IngredientName1
    x.Quantity2
    x.IngredientName2
    x.Quantity2

// ✔  OK
someFunction5
    (convertVolumeToLiter x)
    (convertVolumeUSPint x)
    (convertVolumeImperialPint x)

// ✔  OK
someTupledFunction (
    478815516,
    "A very long string making all of this multi-line",
    1515,
    false
)

// OK, but formatting tools will reformat to the above
someTupledFunction
    (478815516,
     "A very long string making all of this multi-line",
     1515,
     false)

// ✔  OK
let person = new Person(a1, a2)

// ✔  OK
let myRegexMatch = Regex.Match(input, regex)



If argument expressions are long, use newlines and indent one level, rather than
indenting to the left-parenthesis.

F#

The same rules apply even if there is only a single multi-line argument, including multi-
line strings:

F#

// ✔  OK
let untypedRes = checker.ParseFile(file, source, opts)

// ✔  OK
let person =
    new Person(
        argument1,
        argument2
    )

// ✔  OK
let myRegexMatch =
    Regex.Match(
        "my longer input string with some interesting content in it",
        "myRegexPattern"
    )

// ✔  OK
let untypedRes =
    checker.ParseFile(
        fileName,
        sourceText,
        parsingOptionsWithDefines
    )

// ❌ Not OK, formatting tools will reformat to the above
let person =
    new Person(argument1,
               argument2)

// ❌ Not OK, formatting tools will reformat to the above
let untypedRes =
    checker.ParseFile(fileName,
                      sourceText,
                      parsingOptionsWithDefines)

// ✔  OK
let poemBuilder = StringBuilder()
poemBuilder.AppendLine(
    """
The last train is nearly due



When using multiple lines, pipeline |>  operators should go underneath the expressions
they operate on.

F#

The Underground is closing soon
And in the dark, deserted station
Restless in anticipation
A man waits in the shadows
    """
)

Option.traverse(
    create
    >> Result.setError [ invalidHeader "Content-Checksum" ]
)

Formatting pipeline expressions

// ✔  OK
let methods2 =
    System.AppDomain.CurrentDomain.GetAssemblies()
    |> List.ofArray
    |> List.map (fun assm -> assm.GetTypes())
    |> Array.concat
    |> List.ofArray
    |> List.map (fun t -> t.GetMethods())
    |> Array.concat

// ❌ Not OK, add a line break after "=" and put multi-line pipelines on 
multiple lines.
let methods2 = System.AppDomain.CurrentDomain.GetAssemblies()
            |> List.ofArray
            |> List.map (fun assm -> assm.GetTypes())
            |> Array.concat
            |> List.ofArray
            |> List.map (fun t -> t.GetMethods())
            |> Array.concat

// ❌ Not OK either
let methods2 = System.AppDomain.CurrentDomain.GetAssemblies()
               |> List.ofArray
               |> List.map (fun assm -> assm.GetTypes())
               |> Array.concat
               |> List.ofArray
               |> List.map (fun t -> t.GetMethods())
               |> Array.concat

Formatting lambda expressions



When a lambda expression is used as an argument in a multi-line expression, and is
followed by other arguments, place the body of a lambda expression on a new line,
indented by one level:

F#

If the lambda argument is the last argument in a function application, place all
arguments until the arrow on the same line.

F#

Treat match lambda's in a similar fashion.

F#

When there are many leading or multi-line arguments before the lambda indent all
arguments with one level.

F#

// ✔  OK
let printListWithOffset a list1 =
    List.iter
        (fun elem ->
             printfn $"A very long line to format the value: %d{a + elem}")
        list1

// ✔  OK
Target.create "Build" (fun ctx ->
    // code
    // here
    ())

// ✔  OK
let printListWithOffsetPiped a list1 =
    list1
    |> List.map (fun x -> x + 1)
    |> List.iter (fun elem ->
        printfn $"A very long line to format the value: %d{a + elem}")

// ✔  OK
functionName arg1 arg2 arg3 (function
    | Choice1of2 x -> 1
    | Choice2of2 y -> 2)

// ✔  OK
functionName
    arg1



If the body of a lambda expression is multiple lines long, you should consider
refactoring it into a locally scoped function.

When pipelines include lambda expressions, each lambda expression is typically the last
argument at each stage of the pipeline:

F#

In case the arguments of a lambda do not fit on a single line, or are multiline
themselves, put them on the next line, indented by one level.

F#

    arg2
    arg3
    (fun arg4 ->
        bodyExpr)

// ✔  OK
functionName
    arg1
    arg2
    arg3
    (function
     | Choice1of2 x -> 1
     | Choice2of2 y -> 2)

// ✔  OK, with 4 spaces indentation
let printListWithOffsetPiped list1 =
    list1
    |> List.map (fun elem -> elem + 1)
    |> List.iter (fun elem ->
        // one indent starting from the pipe
        printfn $"A very long line to format the value: %d{elem}")

// ✔  OK, with 2 spaces indentation
let printListWithOffsetPiped list1 =
  list1
  |> List.map (fun elem -> elem + 1)
  |> List.iter (fun elem ->
    // one indent starting from the pipe
    printfn $"A very long line to format the value: %d{elem}")

// ✔  OK
fun
    (aVeryLongParameterName: AnEquallyLongTypeName)
    (anotherVeryLongParameterName: AnotherLongTypeName)
    (yetAnotherLongParameterName: LongTypeNameAsWell)
    (youGetTheIdeaByNow: WithLongTypeNameIncluded) ->
    // code starts here



Always use white space around binary arithmetic expressions:

F#

Failing to surround a binary -  operator, when combined with certain formatting choices,
could lead to interpreting it as a unary - . Unary -  operators should always be
immediately followed by the value they negate:

F#

    ()

// ❌ Not OK, code formatters will reformat to the above to respect the 
maximum line length.
fun (aVeryLongParameterName: AnEquallyLongTypeName) 
(anotherVeryLongParameterName: AnotherLongTypeName) 
(yetAnotherLongParameterName: LongTypeNameAsWell) (youGetTheIdeaByNow: 
WithLongTypeNameIncluded) ->
    ()

// ✔  OK
let useAddEntry () =
    fun
        (input:
            {| name: string
               amount: Amount
               isIncome: bool
               created: string |}) ->
         // foo
         bar ()

// ❌ Not OK, code formatters will reformat to the above to avoid reliance 
on whitespace alignment that is contingent to length of an identifier.
let useAddEntry () =
    fun (input: {| name: string
                   amount: Amount
                   isIncome: bool
                   created: string |}) ->
        // foo
        bar ()

Formatting arithmetic and binary expressions

// ✔  OK
let subtractThenAdd x = x - 1 + 3

// ✔  OK
let negate x = -x



Adding a white-space character after the -  operator can lead to confusion for others.

Separate binary operators by spaces. Infix expressions are OK to lineup on same column:

F#

This rule also applies to units of measures in types and constant annotations:

F#

The following operators are defined in the F# standard library and should be used
instead of defining equivalents. Using these operators is recommended as it tends to
make code more readable and idiomatic. The following list summarizes the
recommended F# operators.

F#

// ❌ Not OK
let negateBad x = - x

// ✔  OK
let function1 () =
    acc +
    (someFunction
         x.IngredientName x.Quantity)

// ✔  OK
let function1 arg1 arg2 arg3 arg4 =
    arg1 + arg2 +
    arg3 + arg4

// ✔  OK
type Test =
    { WorkHoursPerWeek: uint<hr / (staff weeks)> }
    static member create = { WorkHoursPerWeek = 40u<hr / (staff weeks)> }

// ❌ Not OK
type Test =
    { WorkHoursPerWeek: uint<hr/(staff weeks)> }
    static member create = { WorkHoursPerWeek = 40u<hr/(staff weeks)> }

// ✔  OK
x |> f // Forward pipeline
f >> g // Forward composition
x |> ignore // Discard away a value
x + y // Overloaded addition (including string concatenation)
x - y // Overloaded subtraction
x * y // Overloaded multiplication
x / y // Overloaded division



Only add spaces around the ..  when all expressions are non-atomic. Integers and
single word identifiers are considered atomic.

F#

These rules also apply to slicing:

F#

Indentation of conditionals depends on the size and complexity of the expressions that
make them up. Write them on one line when:

x % y // Overloaded modulus
x && y // Lazy/short-cut "and"
x || y // Lazy/short-cut "or"
x <<< y // Bitwise left shift
x >>> y // Bitwise right shift
x ||| y // Bitwise or, also for working with “flags” enumeration
x &&& y // Bitwise and, also for working with “flags” enumeration
x ^^^ y // Bitwise xor, also for working with “flags” enumeration

Formatting range operator expressions

// ✔  OK
let a = [ 2..7 ] // integers
let b = [ one..two ] // identifiers
let c = [ ..9 ] // also when there is only one expression
let d = [ 0.7 .. 9.2 ] // doubles
let e = [ 2L .. number / 2L ] // complex expression
let f = [| A.B .. C.D |] // identifiers with dots
let g = [ .. (39 - 3) ] // complex expression
let h = [| 1 .. MyModule.SomeConst |] // not all expressions are atomic

for x in 1..2 do
    printfn " x = %d" x

let s = seq { 0..10..100 }

// ❌ Not OK
let a = [ 2 .. 7 ]
let b = [ one .. two ]

// ✔  OK
arr[0..10]
list[..^1]

Formatting if expressions



cond , e1 , and e2  are short.
e1  and e2  are not if/then/else  expressions themselves.

F#

If the else expression is absent, it's recommended to never write the entire expression in
one line. This is to differentiate the imperative code from the functional.

F#

If any of the expressions are multi-line, each conditional branch should be multi-line.

F#

Multiple conditionals with elif  and else  are indented at the same scope as the if
when they follow the rules of the one line if/then/else  expressions.

F#

// ✔  OK
if cond then e1 else e2

// ✔  OK
if a then
    ()

// ❌ Not OK, code formatters will reformat to the above by default
if a then ()

// ✔  OK
if cond then
    let e1 = something()
    e1
else
    e2
    
// ❌ Not OK
if cond then
    let e1 = something()
    e1
else e2

// ✔  OK
if cond1 then e1
elif cond2 then e2
elif cond3 then e3
else e4



If any of the conditions or expressions is multi-line, the entire if/then/else  expression
is multi-line:

F#

If a condition is multiline or exceeds the default tolerance of the single-line, the
condition expression should use one indentation and a new line. The if  and then
keyword should align when encapsulating the long condition expression.

F#

// ✔  OK
if cond1 then
    let e1 = something()
    e1
elif cond2 then
    e2
elif cond3 then
    e3
else
    e4

// ❌ Not OK
if cond1 then
    let e1 = something()
    e1
elif cond2 then e2
elif cond3 then e3
else e4

// ✔  OK, but better to refactor, see below
if
    complexExpression a b && env.IsDevelopment()
    || someFunctionToCall
        aVeryLongParameterNameOne
        aVeryLongParameterNameTwo
        aVeryLongParameterNameThree 
then
        e1
    else
        e2

// ✔ The same applies to nested `elif` or `else if` expressions
if a then
    b
elif
    someLongFunctionCall
        argumentOne
        argumentTwo
        argumentThree
        argumentFour



It is, however, better style to refactor long conditions to a let binding or separate
function:

F#

Applying discriminated union cases follows the same rules as function and method
applications. That is, because the name is capitalized, code formatters will remove a
space before a tuple:

F#

Like function applications, constructions that split across multiple lines should use
indentation:

F#

then
    c
else if
    someOtherLongFunctionCall
        argumentOne
        argumentTwo
        argumentThree
        argumentFour
then
    d

// ✔  OK
let performAction =
    complexExpression a b && env.IsDevelopment()
    || someFunctionToCall
        aVeryLongParameterNameOne
        aVeryLongParameterNameTwo
        aVeryLongParameterNameThree

if performAction then
    e1
else
    e2

Formatting union case expressions

// ✔  OK
let opt = Some("A", 1)

// OK, but code formatters will remove the space
let opt = Some ("A", 1)



Write x :: l  with spaces around the ::  operator ( ::  is an infix operator, hence
surrounded by spaces).

List and arrays declared on a single line should have a space after the opening bracket
and before the closing bracket:

F#

Always use at least one space between two distinct brace-like operators. For example,
leave a space between a [  and a { .

F#

The same guideline applies for lists or arrays of tuples.

Lists and arrays that split across multiple lines follow a similar rule as records do:

// ✔  OK
let tree1 =
    BinaryNode(
        BinaryNode (BinaryValue 1, BinaryValue 2),
        BinaryNode (BinaryValue 3, BinaryValue 4)
    )

Formatting list and array expressions

// ✔  OK
let xs = [ 1; 2; 3 ]

// ✔  OK
let ys = [| 1; 2; 3; |]

// ✔  OK
[ { Ingredient = "Green beans"; Quantity = 250 }
  { Ingredient = "Pine nuts"; Quantity = 250 }
  { Ingredient = "Feta cheese"; Quantity = 250 }
  { Ingredient = "Olive oil"; Quantity = 10 }
  { Ingredient = "Lemon"; Quantity = 1 } ]

// ❌ Not OK
[{ Ingredient = "Green beans"; Quantity = 250 }
 { Ingredient = "Pine nuts"; Quantity = 250 }
 { Ingredient = "Feta cheese"; Quantity = 250 }
 { Ingredient = "Olive oil"; Quantity = 10 }
 { Ingredient = "Lemon"; Quantity = 1 }]



F#

As with records, declaring the opening and closing brackets on their own line will make
moving code around and piping into functions easier:

F#

If a list or array expression is the right-hand side of a binding, you may prefer to use
Stroustrup  style:

F#

// ✔  OK
let pascalsTriangle =
    [| [| 1 |]
       [| 1; 1 |]
       [| 1; 2; 1 |]
       [| 1; 3; 3; 1 |]
       [| 1; 4; 6; 4; 1 |]
       [| 1; 5; 10; 10; 5; 1 |]
       [| 1; 6; 15; 20; 15; 6; 1 |]
       [| 1; 7; 21; 35; 35; 21; 7; 1 |]
       [| 1; 8; 28; 56; 70; 56; 28; 8; 1 |] |]

// ✔  OK
let pascalsTriangle =
    [| 
        [| 1 |]
        [| 1; 1 |]
        [| 1; 2; 1 |]
        [| 1; 3; 3; 1 |]
        [| 1; 4; 6; 4; 1 |]
        [| 1; 5; 10; 10; 5; 1 |]
        [| 1; 6; 15; 20; 15; 6; 1 |]
        [| 1; 7; 21; 35; 35; 21; 7; 1 |]
        [| 1; 8; 28; 56; 70; 56; 28; 8; 1 |] 
    |]

// ✔  OK
let pascalsTriangle = [| 
   [| 1 |]
   [| 1; 1 |]
   [| 1; 2; 1 |]
   [| 1; 3; 3; 1 |]
   [| 1; 4; 6; 4; 1 |]
   [| 1; 5; 10; 10; 5; 1 |]
   [| 1; 6; 15; 20; 15; 6; 1 |]
   [| 1; 7; 21; 35; 35; 21; 7; 1 |]



However, when a list or array expression is not the right-hand side of a binding, such as
when it's inside of another list or array, if that inner expression needs to span multiple
lines, the brackets should go on their own lines:

F#

The same rule applies for record types inside of arrays/lists:

F#

   [| 1; 8; 28; 56; 70; 56; 28; 8; 1 |] 
|]

// ✔  OK - The outer list follows `Stroustrup` style, while the inner lists 
place their brackets on separate lines
let fn a b = [ 
    [
        someReallyLongValueThatWouldForceThisListToSpanMultipleLines
        a
    ]
    [ 
        b
        someReallyLongValueThatWouldForceThisListToSpanMultipleLines 
    ]
]

// ❌ Not okay
let fn a b = [ [
    someReallyLongValueThatWouldForceThisListToSpanMultipleLines
    a
]; [
    b
    someReallyLongValueThatWouldForceThisListToSpanMultipleLines
] ]

// ✔  OK - The outer list follows `Stroustrup` style, while the inner lists 
place their brackets on separate lines
let fn a b = [ 
    {
        Foo = someReallyLongValueThatWouldForceThisListToSpanMultipleLines
        Bar = a
    }
    { 
        Foo = b
        Bar = someReallyLongValueThatWouldForceThisListToSpanMultipleLines 
    }
]

// ❌ Not okay
let fn a b = [ {
    Foo = someReallyLongValueThatWouldForceThisListToSpanMultipleLines



When generating arrays and lists programmatically, prefer ->  over do ... yield  when a
value is always generated:

F#

Older versions of F# required specifying yield  in situations where data may be
generated conditionally, or there may be consecutive expressions to be evaluated.
Prefer omitting these yield  keywords unless you must compile with an older F#
language version:

F#

    Bar = a
}; {
    Foo = b
    Bar = someReallyLongValueThatWouldForceThisListToSpanMultipleLines
} ]

// ✔  OK
let squares = [ for x in 1..10 -> x * x ]

// ❌ Not preferred, use "->" when a value is always generated
let squares' = [ for x in 1..10 do yield x * x ]

// ✔  OK
let daysOfWeek includeWeekend =
    [
        "Monday"
        "Tuesday"
        "Wednesday"
        "Thursday"
        "Friday"
        if includeWeekend then
            "Saturday"
            "Sunday"
    ]

// ❌ Not preferred - omit yield instead
let daysOfWeek' includeWeekend =
    [
        yield "Monday"
        yield "Tuesday"
        yield "Wednesday"
        yield "Thursday"
        yield "Friday"
        if includeWeekend then
            yield "Saturday"
            yield "Sunday"
    ]



In some cases, do...yield  may aid in readability. These cases, though subjective, should
be taken into consideration.

Short records can be written in one line:

F#

Records that are longer should use new lines for labels:

F#

For records that span multiple lines, there are three commonly used formatting styles:
Cramped , Aligned , and Stroustrup . The Cramped  style has been the default style for F#
code, as it tends to favor styles that allow the compiler to easily parse code. Both
Aligned  and Stroustrup  styles allow for easier reordering of members, leading to code
that may be easier to refactor, with the drawback that certain situations may require
slightly more verbose code.

Cramped : The historical standard, and default F# record format. Opening brackets
go on the same line as the first member, closing bracket on the same line as the
last member.

F#

Aligned : Brackets each get their own line, aligned on the same column.

Formatting record expressions

// ✔  OK
let point = { X = 1.0; Y = 0.0 }

// ✔  OK
let rainbow =
    { Boss = "Jeffrey"
      Lackeys = ["Zippy"; "George"; "Bungle"] }

Multiline bracket formatting styles

let rainbow = 
    { Boss1 = "Jeffrey"
      Boss2 = "Jeffrey"
      Boss3 = "Jeffrey"
      Lackeys = [ "Zippy"; "George"; "Bungle" ] }



F#

Stroustrup : Opening bracket goes on the same line as the binding, closing bracket
gets its own line.

F#

The same formatting style rules apply for list and array elements.

A copy-and-update record expression is still a record, so similar guidelines apply.

Short expressions can fit on one line:

F#

Longer expressions should use new lines, and format based on one of the above-named
conventions:

F#

let rainbow =
    {
        Boss1 = "Jeffrey"
        Boss2 = "Jeffrey"
        Boss3 = "Jeffrey"
        Lackeys = ["Zippy"; "George"; "Bungle"]
    }

let rainbow = {
    Boss1 = "Jeffrey"
    Boss2 = "Jeffrey"
    Boss3 = "Jeffrey"
    Lackeys = [ "Zippy"; "George"; "Bungle" ]
}

Formatting copy-and-update record expressions

// ✔  OK
let point2 = { point with X = 1; Y = 2 }

// ✔  OK - Cramped
let newState =
    { state with
        Foo =
            Some
                { F1 = 0
                  F2 = "" } }



Note: If using Stroustrup  style for copy-and-update expressions, you must indent
members further than the copied record name:

F#

Use a |  for each clause of a match with no indentation. If the expression is short, you
can consider using a single line if each subexpression is also simple.

        
// ✔  OK - Aligned
let newState = 
    {
        state with
            Foo =
                Some
                    {
                        F1 = 0
                        F2 = ""
                    }
    }

// ✔  OK - Stroustrup
let newState = { 
    state with
        Foo =
            Some { 
                F1 = 0
                F2 = ""
            }
}

// ✔  OK
let bilbo = {
    hobbit with 
        Name = "Bilbo"
        Age = 111
        Region = "The Shire" 
}

// ❌ Not OK - Results in compiler error: "Possible incorrect indentation: 
this token is offside of context started at position"
let bilbo = {
    hobbit with 
    Name = "Bilbo"
    Age = 111
    Region = "The Shire" 
}

Formatting pattern matching



F#

If the expression on the right of the pattern matching arrow is too large, move it to the
following line, indented one step from the match / | .

F#

Similar to large if conditions, if a match expression is multiline or exceeds the default
tolerance of the single-line, the match expression should use one indentation and a new
line. The match  and with  keyword should align when encapsulating the long match
expression.

F#

It is, however, better style to refactor long match expressions to a let binding or
separate function:

// ✔  OK
match l with
| { him = x; her = "Posh" } :: tail -> x
| _ :: tail -> findDavid tail
| [] -> failwith "Couldn't find David"

// ❌ Not OK, code formatters will reformat to the above by default
match l with
    | { him = x; her = "Posh" } :: tail -> x
    | _ :: tail -> findDavid tail
    | [] -> failwith "Couldn't find David"

// ✔  OK
match lam with
| Var v -> 1
| Abs(x, body) ->
    1 + sizeLambda body
| App(lam1, lam2) ->
    sizeLambda lam1 + sizeLambda lam2

// ✔  OK, but better to refactor, see below
match
    complexExpression a b && env.IsDevelopment()
    || someFunctionToCall
        aVeryLongParameterNameOne
        aVeryLongParameterNameTwo
        aVeryLongParameterNameThree 
with
| X y -> y
| _ -> 0



F#

Aligning the arrows of a pattern match should be avoided.

F#

Pattern matching introduced by using the keyword function  should indent one level
from the start of the previous line:

F#

The use of function  in functions defined by let  or let rec  should in general be
avoided in favor of a match . If used, the pattern rules should align with the keyword
function :

F#

// ✔  OK
let performAction =
    complexExpression a b && env.IsDevelopment()
    || someFunctionToCall
        aVeryLongParameterNameOne
        aVeryLongParameterNameTwo
        aVeryLongParameterNameThree

match performAction with
| X y -> y
| _ -> 0

// ✔  OK
match lam with
| Var v -> v.Length
| Abstraction _ -> 2

// ❌ Not OK, code formatters will reformat to the above by default
match lam with
| Var v         -> v.Length
| Abstraction _ -> 2

// ✔  OK
lambdaList
|> List.map (function
    | Abs(x, body) -> 1 + sizeLambda 0 body
    | App(lam1, lam2) -> sizeLambda (sizeLambda 0 lam1) lam2
    | Var v -> 1)

// ✔  OK
let rec sizeLambda acc =



Pattern matching on the exception type should be indented at the same level as with .

F#

Add a |  for each clause, except when there is only a single clause:

F#

    function
    | Abs(x, body) -> sizeLambda (succ acc) body
    | App(lam1, lam2) -> sizeLambda (sizeLambda acc lam1) lam2
    | Var v -> succ acc

Formatting try/with expressions

// ✔  OK
try
    if System.DateTime.Now.Second % 3 = 0 then
        raise (new System.Exception())
    else
        raise (new System.ApplicationException())
with
| :? System.ApplicationException ->
    printfn "A second that was not a multiple of 3"
| _ ->
    printfn "A second that was a multiple of 3"

// ✔  OK
try
    persistState currentState
with ex ->
    printfn "Something went wrong: %A" ex

// ✔  OK
try
    persistState currentState
with :? System.ApplicationException as ex ->
    printfn "Something went wrong: %A" ex

// ❌ Not OK, see above for preferred formatting
try
    persistState currentState
with
| ex ->
    printfn "Something went wrong: %A" ex

// ❌ Not OK, see above for preferred formatting
try
    persistState currentState
with



Named arguments should have spaces surrounding the = :

F#

When pattern matching using discriminated unions, named patterns are formatted
similarly, for example.

F#

Mutation expressions location <- expr  are normally formatted on one line. If multi-line
formatting is required, place the right-hand-side expression on a new line.

F#

| :? System.ApplicationException as ex ->
    printfn "Something went wrong: %A" ex

Formatting named arguments

// ✔  OK
let makeStreamReader x = new System.IO.StreamReader(path = x)

// ❌ Not OK, spaces are necessary around '=' for named arguments
let makeStreamReader x = new System.IO.StreamReader(path=x)

type Data =
    | TwoParts of part1: string * part2: string
    | OnePart of part1: string

// ✔  OK
let examineData x =
    match data with
    | OnePartData(part1 = p1) -> p1
    | TwoPartData(part1 = p1; part2 = p2) -> p1 + p2

// ❌ Not OK, spaces are necessary around '=' for named pattern access
let examineData x =
    match data with
    | OnePartData(part1=p1) -> p1
    | TwoPartData(part1=p1; part2=p2) -> p1 + p2

Formatting mutation expressions

// ✔  OK
ctx.Response.Headers[HeaderNames.ContentType] <-
    Constants.jsonApiMediaType |> StringValues



Object expression members should be aligned with member  being indented by one level.

F#

You may also prefer to use Stroustrup  style:

F#

Empty type definitions may be formatted on one line:

F#

Regardless of the chosen page width, = class end  should always be on the same line.

ctx.Response.Headers[HeaderNames.ContentLength] <-
    bytes.Length |> string |> StringValues

// ❌ Not OK, code formatters will reformat to the above by default
ctx.Response.Headers[HeaderNames.ContentType] <- Constants.jsonApiMediaType
                                                 |> StringValues
ctx.Response.Headers[HeaderNames.ContentLength] <- bytes.Length
                                                   |> string
                                                   |> StringValues

Formatting object expressions

// ✔  OK
let comparer =
    { new IComparer<string> with
          member x.Compare(s1, s2) =
              let rev (s: String) = new String (Array.rev (s.ToCharArray()))
              let reversed = rev s1
              reversed.CompareTo (rev s2) }

let comparer = { 
    new IComparer<string> with
        member x.Compare(s1, s2) =
            let rev (s: String) = new String(Array.rev (s.ToCharArray()))
            let reversed = rev s1
            reversed.CompareTo(rev s2)
}

type AnEmptyType = class end

Formatting index/slice expressions



Index expressions shouldn't contain any spaces around the opening and closing
brackets.

F#

This also applies for the older expr.[idx]  syntax.

F#

The delimiter symbols ( <@  , @> , <@@ , @@> ) should be placed on separate lines if the
quoted expression is a multi-line expression.

F#

In single-line expressions the delimiter symbols should be placed on the same line as
the expression itself.

F#

// ✔  OK
let v = expr[idx]
let y = myList[0..1]

// ❌ Not OK
let v = expr[ idx ]
let y = myList[ 0 .. 1 ]

// ✔  OK
let v = expr.[idx]
let y = myList.[0..1]

// ❌ Not OK
let v = expr.[ idx ]
let y = myList.[ 0 .. 1 ]

Formatting quoted expressions

// ✔  OK
<@
    let f x = x + 10
    f 20
@>

// ❌ Not OK
<@ let f x = x + 10
   f 20
@>



When chained expressions (function applications intertwined with . ) are long, put each
application invocation on the next line. Indent the subsequent links in the chain by one
level after the leading link.

F#

The leading link can be composed out of multiple links if they are simple identifiers. For
example, the addition of a fully qualified namespace.

F#

Subsequent links should also contain simple identifiers.

F#

// ✔  OK
<@ 1 + 1 @>

// ❌ Not OK
<@
    1 + 1
@>

Formatting chained expressions

// ✔  OK
Host
    .CreateDefaultBuilder(args)
    .ConfigureWebHostDefaults(fun webBuilder -> 
webBuilder.UseStartup<Startup>())

// ✔  OK
Cli
    .Wrap("git")
    .WithArguments(arguments)
    .WithWorkingDirectory(__SOURCE_DIRECTORY__)
    .ExecuteBufferedAsync()
    .Task

// ✔  OK
Microsoft.Extensions.Hosting.Host
    .CreateDefaultBuilder(args)
    .ConfigureWebHostDefaults(fun webBuilder -> 
webBuilder.UseStartup<Startup>())

// ✔  OK
configuration.MinimumLevel



When the arguments inside a function application don't fit on the rest of the line, put
each argument on the next line.

F#

Lambda arguments inside a function application should start on the same line as the
opening ( .

F#

    .Debug()
    // Notice how `.WriteTo` does not need its own line.
    .WriteTo.Logger(fun loggerConfiguration ->
        loggerConfiguration.Enrich
            .WithProperty("host", Environment.MachineName)
            .Enrich.WithProperty("user", Environment.UserName)
            .Enrich.WithProperty("application", 
context.HostingEnvironment.ApplicationName))

// ✔  OK
WebHostBuilder()
    .UseKestrel()
    .UseUrls("http://*:5000/")
    .UseCustomCode(
        longArgumentOne,
        longArgumentTwo,
        longArgumentThree,
        longArgumentFour
    )
    .UseContentRoot(Directory.GetCurrentDirectory())
    .UseStartup<Startup>()
    .Build()

// ✔  OK
Cache.providedTypes
    .GetOrAdd(cacheKey, addCache)
    .Value

// ❌ Not OK, formatting tools will reformat to the above
Cache
    .providedTypes
    .GetOrAdd(
        cacheKey,
        addCache
    )
    .Value

// ✔  OK
builder
    .WithEnvironment()
    .WithLogger(fun loggerConfiguration ->



This section discusses formatting declarations of different kinds.

Separate top-level function and class definitions with a single blank line. For example:

F#

If a construct has XML doc comments, add a blank line before the comment.

F#

        // ...
        ())

// ❌ Not OK, formatting tools will reformat to the above
builder
    .WithEnvironment()
    .WithLogger(
        fun loggerConfiguration ->
        // ...
        ())

Formatting declarations

Add blank lines between declarations

// ✔  OK
let thing1 = 1+1

let thing2 = 1+2

let thing3 = 1+3

type ThisThat = This | That

// ❌ Not OK
let thing1 = 1+1
let thing2 = 1+2
let thing3 = 1+3
type ThisThat = This | That

// ✔  OK

/// This is a function
let thisFunction() =
    1 + 1

/// This is another function, note the blank line before this line



When formatting let  and member  declarations, typically the right-hand side of a binding
either goes on one line, or (if it's too long) goes on a new line indented one level.

For example, the following examples are compliant:

F#

These are non-compliant:

F#

let thisFunction() =
    1 + 1

Formatting let and member declarations

// ✔  OK
let a =
    """
foobar, long string
"""

// ✔  OK
type File =
    member this.SaveAsync(path: string) : Async<unit> =
        async {
            // IO operation
            return ()
        }

// ✔  OK
let c =
    { Name = "Bilbo"
      Age = 111
      Region = "The Shire" }

// ✔  OK
let d =
    while f do
        printfn "%A" x

// ❌ Not OK, code formatters will reformat to the above by default
let a = """
foobar, long string
"""

let d = while f do
    printfn "%A" x



Record type instantiations may also place the brackets on their own lines:

F#

You may also prefer to use Stroustrup  style, with the opening {  on the same line as the
binding name:

F#

Separate members with a single blank line and document and add a documentation
comment:

F#

Extra blank lines may be used (sparingly) to separate groups of related functions. Blank
lines may be omitted between a bunch of related one-liners (for example, a set of
dummy implementations). Use blank lines in functions, sparingly, to indicate logical
sections.

// ✔  OK
let bilbo =
    { 
        Name = "Bilbo"
        Age = 111
        Region = "The Shire" 
    }

// ✔  OK
let bilbo = {
    Name = "Bilbo"
    Age = 111
    Region = "The Shire"
}

// ✔  OK

/// This is a thing
type ThisThing(value: int) =

    /// Gets the value
    member _.Value = value

    /// Returns twice the value
    member _.TwiceValue() = value*2

Formatting function and member arguments



When defining a function, use white space around each argument.

F#

If you have a long function definition, place the parameters on new lines and indent
them to match the indentation level of the subsequent parameter.

F#

This also applies to members, constructors, and parameters using tuples:

F#

// ✔  OK
let myFun (a: decimal) (b: int) c = a + b + c

// ❌ Not OK, code formatters will reformat to the above by default
let myFunBad (a:decimal)(b:int)c = a + b + c

// ✔  OK
module M =
    let longFunctionWithLotsOfParameters
        (aVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        =
        // ... the body of the method follows

    let longFunctionWithLotsOfParametersAndReturnType
        (aVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        : ReturnType =
        // ... the body of the method follows

    let longFunctionWithLongTupleParameter
        (
            aVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse
        ) =
        // ... the body of the method follows

    let longFunctionWithLongTupleParameterAndReturnType
        (
            aVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse
        ) : ReturnType =
        // ... the body of the method follows



If the parameters are curried, place the =  character along with any return type on a new
line:

F#

This is a way to avoid too long lines (in case return type might have long name) and
have less line-damage when adding parameters.

Optionally use white space to surround an operator definition:

F#

// ✔  OK
type TypeWithLongMethod() =
    member _.LongMethodWithLotsOfParameters
        (
            aVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse,
            aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse
        ) =
        // ... the body of the method

// ✔  OK
type TypeWithLongConstructor
    (
        aVeryLongCtorParam: AVeryLongTypeThatYouNeedToUse,
        aSecondVeryLongCtorParam: AVeryLongTypeThatYouNeedToUse,
        aThirdVeryLongCtorParam: AVeryLongTypeThatYouNeedToUse
    ) =
    // ... the body of the class follows

// ✔  OK
type TypeWithLongCurriedMethods() =
    member _.LongMethodWithLotsOfCurriedParamsAndReturnType
        (aVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        : ReturnType =
        // ... the body of the method

    member _.LongMethodWithLotsOfCurriedParams
        (aVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aSecondVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        (aThirdVeryLongParam: AVeryLongTypeThatYouNeedToUse)
        =
        // ... the body of the method

Formatting operator declarations



For any custom operator that starts with *  and that has more than one character, you
need to add a white space to the beginning of the definition to avoid a compiler
ambiguity. Because of this, we recommend that you simply surround the definitions of
all operators with a single white-space character.

For record declarations, by default you should indent the {  in the type definition by
four spaces, start the label list on the same line, and align members, if any, with the {
token:

F#

It is also common to prefer putting brackets on their own line, with labels indented by
an additional four spaces:

F#

You can also put the {  at the end of the first line of the type definition ( Stroustrup
style):

F#

// ✔  OK
let ( !> ) x f = f x

// ✔  OK
let (!>) x f = f x

Formatting record declarations

// ✔  OK
type PostalAddress =
    { Address: string
      City: string
      Zip: string }

// ✔  OK
type PostalAddress =
    { 
        Address: string
        City: string
        Zip: string 
    }

// ✔  OK
type PostalAddress = {



If additional members are needed, don't use with / end  whenever possible:

F#

The exception to this style rule is if you format records according to the Stroustrup
style. In this situation, due to compiler rules, the with  keyword is required if you want to
implement an interface or add additional members:

F#

    Address: string
    City: string
    Zip: string
}

// ✔  OK
type PostalAddress =
    { Address: string
      City: string
      Zip: string }
    member x.ZipAndCity = $"{x.Zip} {x.City}"

// ❌ Not OK, code formatters will reformat to the above by default
type PostalAddress =
    { Address: string
      City: string
      Zip: string }
  with
    member x.ZipAndCity = $"{x.Zip} {x.City}"
  end
  
// ✔  OK
type PostalAddress =
    { 
        Address: string
        City: string
        Zip: string 
    }
    member x.ZipAndCity = $"{x.Zip} {x.City}"
    
// ❌ Not OK, code formatters will reformat to the above by default
type PostalAddress =
    { 
        Address: string
        City: string
        Zip: string 
    }
    with
        member x.ZipAndCity = $"{x.Zip} {x.City}"
    end



When XML documentation is added for record fields, Aligned  or Stroustrup  style is
preferred, and additional whitespace should be added between members:

F#

// ✔  OK
type PostalAddress = {
    Address: string
    City: string
    Zip: string
} with
    member x.ZipAndCity = $"{x.Zip} {x.City}"
   
// ❌ Not OK, this is currently invalid F# code
type PostalAddress = {
    Address: string
    City: string
    Zip: string
} 
member x.ZipAndCity = $"{x.Zip} {x.City}"

// ❌ Not OK - putting { and comments on the same line should be avoided
type PostalAddress =
    { /// The address
      Address: string

      /// The city
      City: string

      /// The zip code
      Zip: string }

    /// Format the zip code and the city
    member x.ZipAndCity = $"{x.Zip} {x.City}"

// ✔  OK
type PostalAddress =
    {
        /// The address
        Address: string

        /// The city
        City: string

        /// The zip code
        Zip: string
    }

    /// Format the zip code and the city
    member x.ZipAndCity = $"{x.Zip} {x.City}"

// ✔  OK - Stroustrup Style



Placing the opening token on a new line and the closing token on a new line is
preferable if you're declaring interface implementations or members on the record:

F#

These same rules apply for anonymous record type aliases.

For discriminated union declarations, indent |  in type definition by four spaces:

F#

type PostalAddress = {
    /// The address
    Address: string

    /// The city
    City: string

    /// The zip code
    Zip: string
} with
    /// Format the zip code and the city
    member x.ZipAndCity = $"{x.Zip} {x.City}"

// ✔  OK
// Declaring additional members on PostalAddress
type PostalAddress =
    {
        /// The address
        Address: string

        /// The city
        City: string

        /// The zip code
        Zip: string
    }

    member x.ZipAndCity = $"{x.Zip} {x.City}"

// ✔  OK
type MyRecord =
    {
        /// The record field
        SomeField: int
    }
    interface IMyInterface

Formatting discriminated union declarations



When there is a single short union, you can omit the leading | .

F#

For a longer or multi-line union, keep the |  and place each union field on a new line,
with the separating *  at the end of each line.

F#

When documentation comments are added, use an empty line before each ///
comment.

F#

// ✔  OK
type Volume =
    | Liter of float
    | FluidOunce of float
    | ImperialPint of float

// ❌ Not OK
type Volume =
| Liter of float
| USPint of float
| ImperialPint of float

// ✔  OK
type Address = Address of string

// ✔  OK
[<NoEquality; NoComparison>]
type SynBinding =
    | SynBinding of
        accessibility: SynAccess option *
        kind: SynBindingKind *
        mustInline: bool *
        isMutable: bool *
        attributes: SynAttributes *
        xmlDoc: PreXmlDoc *
        valData: SynValData *
        headPat: SynPat *
        returnInfo: SynBindingReturnInfo option *
        expr: SynExpr *
        range: range *
        seqPoint: DebugPointAtBinding

// ✔  OK



F# literals using the Literal  attribute should place the attribute on its own line and use
PascalCase naming:

F#

Avoid placing the attribute on the same line as the value.

Code in a local module must be indented relative to the module, but code in a top-level
module should not be indented. Namespace elements do not have to be indented.

F#

F#

/// The volume
type Volume =

    /// The volume in liters
    | Liter of float

    /// The volume in fluid ounces
    | FluidOunce of float

    /// The volume in imperial pints
    | ImperialPint of float

Formatting literal declarations

// ✔  OK

[<Literal>]
let Path = __SOURCE_DIRECTORY__ + "/" + __SOURCE_FILE__

[<Literal>]
let MyUrl = "www.mywebsitethatiamworkingwith.com"

Formatting module declarations

// ✔  OK - A is a top-level module.
module A

let function1 a b = a - b * b

// ✔  OK - A1 and A2 are local modules.
module A1 =
    let function1 a b = a * a + b * b



In type declarations, module declarations and computation expressions, the use of do  or
do!  is sometimes required for side-effecting operations. When these span multiple
lines, use indentation and a new line to keep the indentation consistent with let / let! .
Here's an example using do  in a class:

F#

Here's an example with do!  using two spaces of indentation (because with do!  there is
coincidentally no difference between the approaches when using four spaces of
indentation):

F#

module A2 =
    let function2 a b = a * a - b * b

Formatting do declarations

// ✔  OK
type Foo() =
    let foo =
        fooBarBaz
        |> loremIpsumDolorSitAmet
        |> theQuickBrownFoxJumpedOverTheLazyDog

    do
        fooBarBaz
        |> loremIpsumDolorSitAmet
        |> theQuickBrownFoxJumpedOverTheLazyDog

// ❌ Not OK - notice the "do" expression is indented one space less than 
the `let` expression
type Foo() =
    let foo =
        fooBarBaz
        |> loremIpsumDolorSitAmet
        |> theQuickBrownFoxJumpedOverTheLazyDog
    do fooBarBaz
       |> loremIpsumDolorSitAmet
       |> theQuickBrownFoxJumpedOverTheLazyDog

// ✔  OK
async {
  let! foo =
    fooBarBaz
    |> loremIpsumDolorSitAmet
    |> theQuickBrownFoxJumpedOverTheLazyDog



When creating custom operations for computation expressions, it is recommended to
use camelCase naming:

F#

  do!
    fooBarBaz
    |> loremIpsumDolorSitAmet
    |> theQuickBrownFoxJumpedOverTheLazyDog
}

// ❌ Not OK - notice the "do!" expression is indented two spaces more than 
the `let!` expression
async {
  let! foo =
    fooBarBaz
    |> loremIpsumDolorSitAmet
    |> theQuickBrownFoxJumpedOverTheLazyDog
  do! fooBarBaz
      |> loremIpsumDolorSitAmet
      |> theQuickBrownFoxJumpedOverTheLazyDog
}

Formatting computation expression operations

// ✔  OK
type MathBuilder() =
    member _.Yield _ = 0

    [<CustomOperation("addOne")>]
    member _.AddOne (state: int) =
        state + 1

    [<CustomOperation("subtractOne")>]
    member _.SubtractOne (state: int) =
        state - 1

    [<CustomOperation("divideBy")>]
    member _.DivideBy (state: int, divisor: int) =
        state / divisor

    [<CustomOperation("multiplyBy")>]
    member _.MultiplyBy (state: int, factor: int) =
        state * factor

let math = MathBuilder()

let myNumber =
    math {
        addOne
        addOne
        addOne



The domain that's being modeled should ultimately drive the naming convention. If it's
idiomatic to use a different convention, that convention should be used instead.

If the return value of an expression is a computation expression, prefer putting the
computation expression keyword name on its own line:

F#

You may also prefer to put the computation expression on the same line as the binding
name:

F#

Whichever your preference, you should aim to remain consistent throughout your
codebase. Formatters may allow you to specify this preference to remain consistent.

This section discusses formatting types and type annotations. This includes formatting
signature files with the .fsi  extension.

        subtractOne
        divideBy 2
        multiplyBy 10
    }

// ✔  OK
let foo () = 
    async {
        let! value = getValue()
        do! somethingElse()
        return! anotherOperation value 
    }

// ✔  OK
let foo () = async {
    let! value = getValue()
    do! somethingElse()
    return! anotherOperation value 
}

Formatting types and type annotations

For types, prefer prefix syntax for generics ( Foo<T> ), with
some specific exceptions



F# allows both postfix style of writing generic types (for example, int list ) and the
prefix style (for example, list<int> ). Postfix style can only be used with a single type
argument. Always prefer the .NET style, except for five specific types:

1. For F# Lists, use the postfix form: int list  rather than list<int> .
2. For F# Options, use the postfix form: int option  rather than option<int> .
3. For F# Value Options, use the postfix form: int voption  rather than voption<int> .
4. For F# arrays, use the postfix form: int array  rather than array<int>  or int[] .
5. For Reference Cells, use int ref  rather than ref<int>  or Ref<int> .

For all other types, use the prefix form.

When defining the signature of a function, use white space around the ->  symbol:

F#

When defining values or arguments with type annotations, use white space after the :
symbol, but not before:

F#

Formatting function types

// ✔  OK
type MyFun = int -> int -> string

// ❌ Not OK
type MyFunBad = int->int->string

Formatting value and argument type annotations

// ✔  OK
let complexFunction (a: int) (b: int) c = a + b + c

let simpleValue: int = 0 // Type annotation for let-bound value

type C() =
    member _.Property: int = 1

// ❌ Not OK
let complexFunctionPoorlyAnnotated (a :int) (b :int) (c:int) = a + b + c
let simpleValuePoorlyAnnotated1:int = 1
let simpleValuePoorlyAnnotated2 :int = 2



When a type annotation is long or multiline, put them on the next line, indented by one
level.

F#

For inline anonymous record types, you may also use Stroustrup  style:

Formatting multiline type annotations

type ExprFolder<'State> =
    { exprIntercept: 
        ('State -> Expr -> 'State) -> ('State -> Expr -> 'State -> 'State -> 
Exp -> 'State }
        
let UpdateUI
    (model:
#if NETCOREAPP2_1
        ITreeModel
#else
        TreeModel
#endif
    )
    (info: FileInfo) =
    // code
    ()

let f
    (x:
        {|
            a: Second
            b: Metre
            c: Kilogram
            d: Ampere
            e: Kelvin
            f: Mole
            g: Candela
        |})
    =
    x.a

type Sample
    (
        input: 
            LongTupleItemTypeOneThing * 
            LongTupleItemTypeThingTwo * 
            LongTupleItemTypeThree * 
            LongThingFour * 
            LongThingFiveYow
    ) =
    class
    end



F#

In function or member return type annotations, use white space before and after the :
symbol:

F#

When writing full function types in signatures, it's sometimes necessary to split the
arguments over multiple lines. The return type is always indented.

For a tupled function, the arguments are separated by * , placed at the end of each line.

For example, consider a function with the following implementation:

F#

In the corresponding signature file ( .fsi  extension) the function can be formatted as
follows when multi-line formatting is required:

let f
    (x: {|
        x: int
        y: AReallyLongTypeThatIsMuchLongerThan40Characters
     |})
    =
    x

Formatting return type annotations

// ✔  OK
let myFun (a: decimal) b c : decimal = a + b + c

type C() =
    member _.SomeMethod(x: int) : int = 1

// ❌ Not OK
let myFunBad (a: decimal) b c:decimal = a + b + c

let anotherFunBad (arg: int): unit = ()

type C() =
    member _.SomeMethodBad(x: int): int = 1

Formatting types in signatures

let SampleTupledFunction(arg1, arg2, arg3, arg4) = ...



F#

Likewise consider a curried function:

F#

In the corresponding signature file, the ->  are placed at the end of each line:

F#

Likewise, consider a function that takes a mix of curried and tupled arguments:

F#

In the corresponding signature file, the types preceded by a tuple are indented

F#

// ✔  OK
val SampleTupledFunction:
    arg1: string *
    arg2: string *
    arg3: int *
    arg4: int ->
        int list

let SampleCurriedFunction arg1 arg2 arg3 arg4 = ...

// ✔  OK
val SampleCurriedFunction:
    arg1: string ->
    arg2: string ->
    arg3: int ->
    arg4: int ->
        int list

// Typical call syntax:
let SampleMixedFunction
        (arg1, arg2)
        (arg3, arg4, arg5)
        (arg6, arg7)
        (arg8, arg9, arg10) = ..

// ✔  OK
val SampleMixedFunction:
    arg1: string *
    arg2: string ->
        arg3: string *



The same rules apply for members in type signatures:

F#

The guidelines below apply to function definitions, member definitions, type definitions,
and function applications.

Keep generic type arguments and constraints on a single line if it’s not too long:

F#

If both generic type arguments/constraints and function parameters don’t fit, but the
type parameters/constraints alone do, place the parameters on new lines:

F#

If the type parameters or constraints are too long, break and align them as shown
below. Keep the list of type parameters on the same line as the function, regardless of

        arg4: string *
        arg5: TType ->
            arg6: TType *
            arg7: TType ->
                arg8: TType *
                arg9: TType *
                arg10: TType ->
                    TType list

type SampleTypeName =
    member ResolveDependencies:
        arg1: string *
        arg2: string ->
            string

Formatting explicit generic type arguments and
constraints

// ✔  OK
let f<'T1, 'T2 when 'T1: equality and 'T2: comparison> param =
    // function body

// ✔  OK
let f<'T1, 'T2 when 'T1: equality and 'T2: comparison>
    param
    =
    // function body



its length. For constraints, place when  on the first line, and keep each constraint on a
single line regardless of its length. Place >  at the end of the last line. Indent the
constraints by one level.

F#

If the type parameters/constraints are broken up, but there are no normal function
parameters, place the =  on a new line regardless:

f#

The same rules apply for function applications:

F#

// ✔  OK
let inline f< ^T1, ^T2
    when ^T1: (static member Foo1: unit -> ^T2)
    and ^T2: (member Foo2: unit -> int)
    and ^T2: (member Foo3: string -> ^T1 option)>
    arg1
    arg2
    =
    // function body

// ✔  OK
let inline f< ^T1, ^T2
    when ^T1: (static member Foo1: unit -> ^T2)
    and ^T2: (member Foo2: unit -> int)
    and ^T2: (member Foo3: string -> ^T1 option)>
    =
    // function body

// ✔  OK
myObj
|> Json.serialize<
    {| child: {| displayName: string; kind: string |}
       newParent: {| id: string; displayName: string |}
       requiresApproval: bool |}>

// ✔  OK
Json.serialize<
    {| child: {| displayName: string; kind: string |}
       newParent: {| id: string; displayName: string |}
       requiresApproval: bool |}>
    myObj



The arguments for the base class constructor appear in the argument list in the inherit
clause. Put the inherit  clause on a new line, indented by one level.

F#

When the constructor is long or multiline, put them on the next line, indented by one
level.
Format this multiline constructor according to the rules of multiline function
applications.

F#

Formatting inheritance

type MyClassBase(x: int) =
   class
   end

// ✔  OK
type MyClassDerived(y: int) =
   inherit MyClassBase(y * 2)

// ❌ Not OK
type MyClassDerived(y: int) = inherit MyClassBase(y * 2)

type MyClassBase(x: string) =
   class
   end

// ✔  OK
type MyClassDerived(y: string) =
    inherit 
        MyClassBase(
            """
            very long
            string example
            """
        )
        
// ❌ Not OK
type MyClassDerived(y: string) =
    inherit MyClassBase(
        """
        very long
        string example
        """)

Formatting the primary constructor



In default formatting conventions, no space is added between the type name and the
parentheses for the primary constructor.

F#

When the inherit  clause is part of a record, put it on the same line if it is short. And put
it on the next line, indented by one level, if it is long or multiline.

F#

// ✔  OK
type MyClass() =
    class
    end

type MyClassWithParams(x: int, y: int) =
    class
    end
        
// ❌ Not OK
type MyClass () =
    class
    end

type MyClassWithParams (x: int, y: int) =
    class
    end

Multiple constructors

type BaseClass =
    val string1: string
    new () = { string1 = "" }
    new (str) = { string1 = str }

type DerivedClass =
    inherit BaseClass

    val string2: string
    new (str1, str2) = { inherit BaseClass(str1); string2 = str2 }
    new () = 
        { inherit 
            BaseClass(
                """
                very long
                string example
                """
            )
          string2 = str2 }



Attributes are placed above a construct:

F#

They should go after any XML documentation:

F#

Attributes can also be placed on parameters. In this case, place then on the same line as
the parameter and before the name:

F#

Formatting attributes

// ✔  OK
[<SomeAttribute>]
type MyClass() = ...

// ✔  OK
[<RequireQualifiedAccess>]
module M =
    let f x = x

// ✔  OK
[<Struct>]
type MyRecord =
    { Label1: int
      Label2: string }

// ✔  OK

/// Module with some things in it.
[<RequireQualifiedAccess>]
module M =
    let f x = x

Formatting attributes on parameters

// ✔  OK - defines a class that takes an optional value as input defaulting 
to false.
type C() =
    member _.M([<Optional; DefaultParameterValue(false)>] doSomething: bool)

Formatting multiple attributes



When multiple attributes are applied to a construct that's not a parameter, place each
attribute on a separate line:

F#

When applied to a parameter, place attributes on the same line and separate them with
a ;  separator.

These guidelines are based on A comprehensive guide to F# Formatting Conventions
by Anh-Dung Phan .

// ✔  OK

[<Struct>]
[<IsByRefLike>]
type MyRecord =
    { Label1: int
      Label2: string }

Acknowledgments

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

.NET feedback
The .NET documentation is open
source. Provide feedback here.

  Open a documentation issue

  Provide product feedback

https://github.com/dungpa/fantomas/blob/master/docs-old/FormattingConventions.md
https://github.com/dungpa
https://learn.microsoft.com/contribute/content/dotnet/dotnet-contribute
https://github.com/dotnet/docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fdotnet%2Ffsharp%2Fstyle-guide%2Fformatting&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2Fdotnet%2Fdocs%2Fblob%2Fmain%2Fdocs%2Ffsharp%2Fstyle-guide%2Fformatting.md&documentVersionIndependentId=1efdd523-8552-6421-e149-74f76826ef8f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=cartermp
https://github.com/dotnet/fsharp


F# coding conventions
Article • 05/18/2023

The following conventions are formulated from experience working with large F#
codebases. The Five principles of good F# code are the foundation of each
recommendation. They are related to the F# component design guidelines, but are
applicable for any F# code, not just components such as libraries.

F# features two primary ways to organize code: modules and namespaces. These are
similar, but do have the following differences:

Namespaces are compiled as .NET namespaces. Modules are compiled as static
classes.
Namespaces are always top level. Modules can be top-level and nested within
other modules.
Namespaces can span multiple files. Modules cannot.
Modules can be decorated with [<RequireQualifiedAccess>]  and [<AutoOpen>] .

The following guidelines will help you use these to organize your code.

For any publicly consumable code, namespaces are preferential to modules at the top
level. Because they are compiled as .NET namespaces, they are consumable from C#
with no issue.

F#

Using a top-level module may not appear different when called only from F#, but for C#
consumers, callers may be surprised by having to qualify MyClass  with the MyCode
module.

F#

Organizing code

Prefer namespaces at the top level

// Good! 
namespace MyCode 

type MyClass() = 
    ... 



The [<AutoOpen>]  construct can pollute the scope of what is available to callers, and the
answer to where something comes from is "magic". This is not a good thing. An
exception to this rule is the F# Core Library itself (though this fact is also a bit
controversial).

However, it is a convenience if you have helper functionality for a public API that you
wish to organize separately from that public API.

F#

This lets you cleanly separate implementation details from the public API of a function
without having to fully qualify a helper each time you call it.

Additionally, exposing extension methods and expression builders at the namespace
level can be neatly expressed with [<AutoOpen>] .

Adding the [<RequireQualifiedAccess>]  attribute to a module indicates that the module
may not be opened and that references to the elements of the module require explicit
qualified access. For example, the Microsoft.FSharp.Collections.List  module has this
attribute.

// Bad! 
module MyCode 

type MyClass() = 
    ... 

Carefully apply [<AutoOpen>]

module MyAPI = 
    [<AutoOpen>] 
    module private Helpers = 
        let helper1 x y z = 
            ... 

    let myFunction1 x = 
        let y = ... 
        let z = ... 

        helper1 x y z 

Use [<RequireQualifiedAccess>]  whenever names could
conflict or you feel it helps with readability



This is useful when functions and values in the module have names that are likely to
conflict with names in other modules. Requiring qualified access can greatly increase
long-term maintainability and the ability of a library to evolve.

F#

In F#, the order of declarations matters, including with open  statements. This is unlike
C#, where the effect of using  and using static  is independent of the ordering of those
statements in a file.

In F#, elements opened into a scope can shadow others already present. This means
that reordering open  statements could alter the meaning of code. As a result, any
arbitrary sorting of all open  statements (for example, alphanumerically) is not
recommended, lest you generate different behavior that you might expect.

Instead, we recommend that you sort them topologically ; that is, order your open
statements in the order in which layers of your system are defined. Doing alphanumeric
sorting within different topological layers may also be considered.

As an example, here is the topological sorting for the F# compiler service public API file:

F#

[<RequireQualifiedAccess>] 
module StringTokenization = 
    let parse s = ... 

... 

let s = getAString() 
let parsed = StringTokenization.parse s // Must qualify to use 'parse' 

Sort open  statements topologically

namespace Microsoft.FSharp.Compiler.SourceCodeServices 

open System 
open System.Collections.Generic 
open System.Collections.Concurrent 
open System.Diagnostics 
open System.IO 
open System.Reflection 
open System.Text 

open FSharp.Compiler 
open FSharp.Compiler.AbstractIL 
open FSharp.Compiler.AbstractIL.Diagnostics 

https://en.wikipedia.org/wiki/Topological_sorting


A line break separates topological layers, with each layer being sorted alphanumerically
afterwards. This cleanly organizes code without accidentally shadowing values.

There are many times when initializing a value can have side effects, such as
instantiating a context to a database or other remote resource. It is tempting to initialize
such things in a module and use it in subsequent functions:

F#

This is frequently a bad idea for a few reasons:

First, application configuration is pushed into the codebase with dep1  and dep2 . This is
difficult to maintain in larger codebases.

Second, statically initialized data should not include values that are not thread safe if
your component will itself use multiple threads. This is clearly violated by dep3 .

open FSharp.Compiler.AbstractIL.IL 
open FSharp.Compiler.AbstractIL.ILBinaryReader 
open FSharp.Compiler.AbstractIL.Internal 
open FSharp.Compiler.AbstractIL.Internal.Library 

open FSharp.Compiler.AccessibilityLogic 
open FSharp.Compiler.Ast 
open FSharp.Compiler.CompileOps 
open FSharp.Compiler.CompileOptions 
open FSharp.Compiler.Driver 

open Internal.Utilities 
open Internal.Utilities.Collections 

Use classes to contain values that have side
effects

// This is bad! 
module MyApi = 
    let dep1 = File.ReadAllText "/Users/<name>/connectionstring.txt" 
    let dep2 = Environment.GetEnvironmentVariable "DEP_2" 

    let private r = Random() 
    let dep3() = r.Next() // Problematic if multiple threads use this 

    let function1 arg = doStuffWith dep1 dep2 dep3 arg 
    let function2 arg = doStuffWith dep1 dep2 dep3 arg 



Finally, module initialization compiles into a static constructor for the entire compilation
unit. If any error occurs in let-bound value initialization in that module, it manifests as a
TypeInitializationException  that is then cached for the entire lifetime of the
application. This can be difficult to diagnose. There is usually an inner exception that you
can attempt to reason about, but if there is not, then there is no telling what the root
cause is.

Instead, just use a simple class to hold dependencies:

F#

This enables the following:

1. Pushing any dependent state outside of the API itself.
2. Configuration can now be done outside of the API.
3. Errors in initialization for dependent values are not likely to manifest as a

TypeInitializationException .
4. The API is now easier to test.

Error management in large systems is a complex and nuanced endeavor, and there are
no silver bullets in ensuring your systems are fault-tolerant and behave well. The
following guidelines should offer guidance in navigating this difficult space.

With Discriminated Unions, F# gives you the ability to represent faulty program state in
your type system. For example:

F#

type MyParametricApi(dep1, dep2, dep3) = 
    member _.Function1 arg1 = doStuffWith dep1 dep2 dep3 arg1 
    member _.Function2 arg2 = doStuffWith dep1 dep2 dep3 arg2 

Error management

Represent error cases and illegal state in types intrinsic to
your domain

type MoneyWithdrawalResult = 
    | Success of amount:decimal 
    | InsufficientFunds of balance:decimal 
    | CardExpired of DateTime 
    | UndisclosedFailure 



In this case, there are three known ways that withdrawing money from a bank account
can fail. Each error case is represented in the type, and can thus be dealt with safely
throughout the program.

F#

In general, if you can model the different ways that something can fail in your domain,
then error handling code is no longer treated as something you must deal with in
addition to regular program flow. It is simply a part of normal program flow, and not
considered exceptional. There are two primary benefits to this:

1. It is easier to maintain as your domain changes over time.
2. Error cases are easier to unit test.

Not all errors can be represented in a problem domain. These kinds of faults are
exceptional in nature, hence the ability to raise and catch exceptions in F#.

First, it is recommended that you read the Exception Design Guidelines. These are also
applicable to F#.

The main constructs available in F# for the purposes of raising exceptions should be
considered in the following order of preference:

Function Syntax Purpose

nullArg nullArg "argumentName" Raises a System.ArgumentNullException  with the
specified argument name.

invalidArg invalidArg "argumentName"

"message"

Raises a System.ArgumentException  with a specified
argument name and message.

invalidOp invalidOp "message" Raises a System.InvalidOperationException  with the
specified message.

let handleWithdrawal amount = 
    let w = withdrawMoney amount 
    match w with 
    | Success am -> printfn $"Successfully withdrew %f{am}" 
    | InsufficientFunds balance -> printfn $"Failed: balance is %f{balance}" 
    | CardExpired expiredDate -> printfn $"Failed: card expired on 
{expiredDate}" 
    | UndisclosedFailure -> printfn "Failed: unknown" 

Use exceptions when errors cannot be represented with
types

https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions


Function Syntax Purpose

raise raise

(ExceptionType("message"))

General-purpose mechanism for throwing
exceptions.

failwith failwith "message" Raises a System.Exception  with the specified
message.

failwithf failwithf "format string"

argForFormatString

Raises a System.Exception  with a message
determined by the format string and its inputs.

Use nullArg , invalidArg , and invalidOp  as the mechanism to throw
ArgumentNullException , ArgumentException , and InvalidOperationException  when
appropriate.

The failwith  and failwithf  functions should generally be avoided because they raise
the base Exception  type, not a specific exception. As per the Exception Design
Guidelines, you want to raise more specific exceptions when you can.

F# supports exception patterns via the try...with  syntax:

F#

Reconciling functionality to perform in the face of an exception with pattern matching
can be a bit tricky if you wish to keep the code clean. One such way to handle this is to
use active patterns as a means to group functionality surrounding an error case with an
exception itself. For example, you may be consuming an API that, when it throws an
exception, encloses valuable information in the exception metadata. Unwrapping a
useful value in the body of the captured exception inside the Active Pattern and
returning that value can be helpful in some situations.

Exceptions are often seen as taboo in functional programming. Indeed, exceptions
violate purity, so it's safe to consider them not-quite functional. However, this ignores

Use exception-handling syntax

try 
    tryGetFileContents() 
with 
| :? System.IO.FileNotFoundException as e -> // Do something with it here 
| :? System.Security.SecurityException as e -> // Do something with it here 

Do not use monadic error handling to replace exceptions

https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions


the reality of where code must run, and that runtime errors can occur. In general, write
code on the assumption that most things aren't pure or total, to minimize unpleasant
surprises.

It is important to consider the following core strengths/aspects of Exceptions with
respect to their relevance and appropriateness in the .NET runtime and cross-language
ecosystem as a whole:

They contain detailed diagnostic information, which is helpful when debugging an
issue.
They are well understood by the runtime and other .NET languages.
They can reduce significant boilerplate when compared with code that goes out of
its way to avoid exceptions by implementing some subset of their semantics on an
ad-hoc basis.

This third point is critical. For nontrivial complex operations, failing to use exceptions
can result in dealing with structures like this:

F#

Which can easily lead to fragile code like pattern matching on "stringly typed" errors:

F#

Additionally, it can be tempting to swallow any exception in the desire for a "simple"
function that returns a "nicer" type:

F#

Result<Result<MyType, string>, string list> 

let result = doStuff() 
match result with 
| Ok r -> ... 
| Error e -> 
    if e.Contains "Error string 1" then ... 
    elif e.Contains "Error string 2" then ... 
    else ... // Who knows? 

// This is bad! 
let tryReadAllText (path : string) = 
    try System.IO.File.ReadAllText path |> Some 
    with _ -> None 



Unfortunately, tryReadAllText  can throw numerous exceptions based on the myriad of
things that can happen on a file system, and this code discards away any information
about what might actually be going wrong in your environment. If you replace this code
with a result type, then you're back to "stringly typed" error message parsing:

F#

And placing the exception object itself in the Error  constructor just forces you to
properly deal with the exception type at the call site rather than in the function. Doing
this effectively creates checked exceptions, which are notoriously unfun to deal with as a
caller of an API.

A good alternative to the above examples is to catch specific exceptions and return a
meaningful value in the context of that exception. If you modify the tryReadAllText
function as follows, None  has more meaning:

F#

Instead of functioning as a catch-all, this function will now properly handle the case
when a file was not found and assign that meaning to a return. This return value can
map to that error case, while not discarding any contextual information or forcing callers
to deal with a case that may not be relevant at that point in the code.

Types such as Result<'Success, 'Error>  are appropriate for basic operations where
they aren't nested, and F# optional types are perfect for representing when something
could either return something or nothing. They are not a replacement for exceptions,
though, and should not be used in an attempt to replace exceptions. Rather, they
should be applied judiciously to address specific aspects of exception and error
management policy in targeted ways.

// This is bad! 
let tryReadAllText (path : string) = 
    try System.IO.File.ReadAllText path |> Ok 
    with e -> Error e.Message 

let r = tryReadAllText "path-to-file" 
match r with 
| Ok text -> ... 
| Error e -> 
    if e.Contains "uh oh, here we go again..." then ... 
    else ... 

let tryReadAllTextIfPresent (path : string) = 
    try System.IO.File.ReadAllText path |> Some 
    with :? FileNotFoundException -> None 



F# supports partial application, and thus, various ways to program in a point-free style.
This can be beneficial for code reuse within a module or the implementation of
something, but it is not something to expose publicly. In general, point-free
programming is not a virtue in and of itself, and can add a significant cognitive barrier
for people who are not immersed in the style.

With little exception, the use of partial application in public APIs can be confusing for
consumers. Usually, let -bound values in F# code are values, not function values.
Mixing together values and function values can result in saving a few lines of code in
exchange for quite a bit of cognitive overhead, especially if combined with operators
such as >>  to compose functions.

Curried functions do not label their arguments. This has tooling implications. Consider
the following two functions:

F#

Both are valid functions, but funcWithApplication  is a curried function. When you hover
over their types in an editor, you see this:

F#

At the call site, tooltips in tooling such as Visual Studio will give you the type signature,
but since there are no names defined, it won't display names. Names are critical to good

Partial application and point-free programming

Do not use partial application and currying in public APIs

Consider the tooling implications for point-free
programming

let func name age = 
    printfn $"My name is {name} and I am %d{age} years old!" 

let funcWithApplication = 
    printfn "My name is %s and I am %d years old!" 

val func : name:string -> age:int -> unit 

val funcWithApplication : (string -> int -> unit) 



API design because they help callers better understanding the meaning behind the API.
Using point-free code in the public API can make it harder for callers to understand.

If you encounter point-free code like funcWithApplication  that is publicly consumable, it
is recommended to do a full η-expansion so that tooling can pick up on meaningful
names for arguments.

Furthermore, debugging point-free code can be challenging, if not impossible.
Debugging tools rely on values bound to names (for example, let  bindings) so that you
can inspect intermediate values midway through execution. When your code has no
values to inspect, there is nothing to debug. In the future, debugging tools may evolve
to synthesize these values based on previously executed paths, but it's not a good idea
to hedge your bets on potential debugging functionality.

In contrast to the previous point, partial application is a wonderful tool for reducing
boilerplate inside of an application or the deeper internals of an API. It can be helpful for
unit testing the implementation of more complicated APIs, where boilerplate is often a
pain to deal with. For example, the following code shows how you can accomplish what
most mocking frameworks give you without taking an external dependency on such a
framework and having to learn a related bespoke API.

For example, consider the following solution topography:

ImplementationLogic.fsproj  might expose code such as:

F#

Consider partial application as a technique to reduce
internal boilerplate

MySolution.sln 
|_/ImplementationLogic.fsproj 
|_/ImplementationLogic.Tests.fsproj 
|_/API.fsproj 

module Transactions = 
    let doTransaction txnContext txnType balance = 
        ... 

type Transactor(ctx, currentBalance) = 
    member _.ExecuteTransaction(txnType) = 
        Transactions.doTransaction ctx txnType currentBalance 
        ... 



Unit testing Transactions.doTransaction  in ImplementationLogic.Tests.fsproj  is easy:

F#

Partially applying doTransaction  with a mocking context object lets you call the function
in all of your unit tests without needing to construct a mocked context each time:

F#

Don't apply this technique universally to your entire codebase, but it is a good way to
reduce boilerplate for complicated internals and unit testing those internals.

F# has multiple options for Access control, inherited from what is available in the .NET
runtime. These are not just usable for types - you can use them for functions, too.

namespace TransactionsTestingUtil

open Transactions 

module TransactionsTestable = 
    let getTestableTransactionRoutine mockContext = 
Transactions.doTransaction mockContext 

module TransactionTests 

open Xunit 
open TransactionTypes 
open TransactionsTestingUtil 
open TransactionsTestingUtil.TransactionsTestable 

let testableContext = 
    { new ITransactionContext with 
        member _.TheFirstMember() = ... 
        member _.TheSecondMember() = ... } 

let transactionRoutine = getTestableTransactionRoutine testableContext 

[<Fact>] 
let ``Test withdrawal transaction with 0.0 for balance``() = 
    let expected = ... 
    let actual = transactionRoutine TransactionType.Withdraw 0.0 
    Assert.Equal(expected, actual) 

Access control



Prefer non-public  types and members until you need them to be publicly
consumable. This also minimizes what consumers couple to.
Strive to keep all helper functionality private .
Consider the use of [<AutoOpen>]  on a private module of helper functions if they
become numerous.

Type inference can save you from typing a lot of boilerplate. And automatic
generalization in the F# compiler can help you write more generic code with almost no
extra effort on your part. However, these features are not universally good.

Consider labeling argument names with explicit types in public APIs and do not
rely on type inference for this.

The reason for this is that you should be in control of the shape of your API, not
the compiler. Although the compiler can do a fine job at inferring types for you, it
is possible to have the shape of your API change if the internals it relies on have
changed types. This may be what you want, but it will almost certainly result in a
breaking API change that downstream consumers will then have to deal with.
Instead, if you explicitly control the shape of your public API, then you can control
these breaking changes. In DDD terms, this can be thought of as an Anti-
corruption layer.

Consider giving a meaningful name to your generic arguments.

Unless you are writing truly generic code that is not specific to a particular domain,
a meaningful name can help other programmers understanding the domain
they're working in. For example, a type parameter named 'Document  in the context
of interacting with a document database makes it clearer that generic document
types can be accepted by the function or member you are working with.

Consider naming generic type parameters with PascalCase.

This is the general way to do things in .NET, so it's recommended that you use
PascalCase rather than snake_case or camelCase.

Finally, automatic generalization is not always a boon for people who are new to F# or a
large codebase. There is cognitive overhead in using components that are generic.
Furthermore, if automatically generalized functions are not used with different input
types (let alone if they are intended to be used as such), then there is no real benefit to

Type inference and generics



them being generic then. Always consider if the code you are writing will actually benefit
from being generic.

Using structs (also called Value Types) can often result in higher performance for some
code because it typically avoids allocating objects. However, structs are not always a "go
faster" button: if the size of the data in a struct exceeds 16 bytes, copying the data can
often result in more CPU time spend than using a reference type.

To determine if you should use a struct, consider the following conditions:

If the size of your data is 16 bytes or smaller.
If you're likely to have many instances of these types resident in memory in a
running program.

If the first condition applies, you should generally use a struct. If both apply, you should
almost always use a struct. There may be some cases where the previous conditions
apply, but using a struct is no better or worse than using a reference type, but they are
likely to be rare. It's important to always measure when making changes like this,
though, and not operate on assumption or intuition.

Consider the following two functions:

F#

Performance

Consider structs for small types with high allocation rates

Consider struct tuples when grouping small value types with high
allocation rates

let rec runWithTuple t offset times = 
    let offsetValues x y z offset = 
        (x + offset, y + offset, z + offset) 

    if times <= 0 then 
        t 
    else 
        let (x, y, z) = t 
        let r = offsetValues x y z offset 
        runWithTuple r offset (times - 1) 

let rec runWithStructTuple t offset times = 
    let offsetValues x y z offset = 
        struct(x + offset, y + offset, z + offset) 



When you benchmark these functions with a statistical benchmarking tool like
BenchmarkDotNet , you'll find that the runWithStructTuple  function that uses struct
tuples runs 40% faster and allocates no memory.

However, these results won't always be the case in your own code. If you mark a
function as inline , code that uses reference tuples may get some additional
optimizations, or code that would allocate could simply be optimized away. You should
always measure results whenever performance is concerned, and never operate based
on assumption or intuition.

The rule of thumb described earlier also holds for F# record types. Consider the
following data types and functions that process them:

F#

    if times <= 0 then 
        t 
    else 
        let struct(x, y, z) = t 
        let r = offsetValues x y z offset 
        runWithStructTuple r offset (times - 1) 

Consider struct records when the type is small and has high
allocation rates

type Point = { X: float; Y: float; Z: float } 

[<Struct>] 
type SPoint = { X: float; Y: float; Z: float } 

let rec processPoint (p: Point) offset times = 
    let inline offsetValues (p: Point) offset = 
        { p with X = p.X + offset; Y = p.Y + offset; Z = p.Z + offset } 

    if times <= 0 then 
        p 
    else 
        let r = offsetValues p offset 
        processPoint r offset (times - 1) 

let rec processStructPoint (p: SPoint) offset times = 
    let inline offsetValues (p: SPoint) offset = 
        { p with X = p.X + offset; Y = p.Y + offset; Z = p.Z + offset } 

    if times <= 0 then 
        p 
    else 

https://benchmarkdotnet.org/


This is similar to the previous tuple code, but this time the example uses records and an
inlined inner function.

When you benchmark these functions with a statistical benchmarking tool like
BenchmarkDotNet , you'll find that processStructPoint  runs nearly 60% faster and
allocates nothing on the managed heap.

The previous observations about performance with struct tuples and records also holds
for F# Discriminated Unions. Consider the following code:

F#

It's common to define single-case Discriminated Unions like this for domain modeling.
When you benchmark these functions with a statistical benchmarking tool like
BenchmarkDotNet , you'll find that structReverseName  runs about 25% faster than
reverseName  for small strings. For large strings, both perform about the same. So, in this
case, it's always preferable to use a struct. As previously mentioned, always measure and
do not operate on assumptions or intuition.

Although the previous example showed that a struct Discriminated Union yielded better
performance, it is common to have larger Discriminated Unions when modeling a

        let r = offsetValues p offset 
        processStructPoint r offset (times - 1) 

Consider struct discriminated unions when the data type is small
with high allocation rates

    type Name = Name of string 

    [<Struct>] 
    type SName = SName of string 

    let reverseName (Name s) = 
        s.ToCharArray() 
        |> Array.rev 
        |> System.String 
        |> Name 

    let structReverseName (SName s) = 
        s.ToCharArray() 
        |> Array.rev 
        |> System.String 
        |> SName 

https://benchmarkdotnet.org/
https://benchmarkdotnet.org/


domain. Larger data types like that may not perform as well if they are structs
depending on the operations on them, since more copying could be involved.

F# values are immutable by default, which allows you to avoid certain classes of bugs
(especially those involving concurrency and parallelism). However, in certain cases, in
order to achieve optimal (or even reasonable) efficiency of execution time or memory
allocations, a span of work may best be implemented by using in-place mutation of
state. This is possible in an opt-in basis with F# with the mutable  keyword.

Use of mutable  in F# may feel at odds with functional purity. This is understandable, but
functional purity everywhere can be at odds with performance goals. A compromise is
to encapsulate mutation such that callers need not care about what happens when they
call a function. This allows you to write a functional interface over a mutation-based
implementation for performance-critical code.

With referential transparency as a goal, it is critical to write code that does not expose
the mutable underbelly of performance-critical functions. For example, the following
code implements the Array.contains  function in the F# core library:

F#

Calling this function multiple times does not change the underlying array, nor does it
require you to maintain any mutable state in consuming it. It is referentially transparent,
even though almost every line of code within it uses mutation.

The previous example used a single function to encapsulate operations using mutable
data. This is not always sufficient for more complex sets of data. Consider the following

Immutability and mutation

Wrap mutable code in immutable interfaces

[<CompiledName("Contains")>] 
let inline contains value (array:'T[]) = 
    checkNonNull "array" array 
    let mutable state = false 
    let mutable i = 0 
    while not state && i < array.Length do 
        state <- value = array[i]
        i <- i + 1 
    state 

Consider encapsulating mutable data in classes



sets of functions:

F#

This code is performant, but it exposes the mutation-based data structure that callers
are responsible for maintaining. This can be wrapped inside of a class with no
underlying members that can change:

F#

Closure1Table  encapsulates the underlying mutation-based data structure, thereby not
forcing callers to maintain the underlying data structure. Classes are a powerful way to
encapsulate data and routines that are mutation-based without exposing the details to
callers.

open System.Collections.Generic 

let addToClosureTable (key, value) (t: Dictionary<_,_>) = 
    if t.ContainsKey(key) then 
        t[key] <- value 
    else 
        t.Add(key, value) 

let closureTableCount (t: Dictionary<_,_>) = t.Count 

let closureTableContains (key, value) (t: Dictionary<_, HashSet<_>>) = 
    match t.TryGetValue(key) with 
    | (true, v) -> v.Equals(value) 
    | (false, _) -> false 

open System.Collections.Generic 

/// The results of computing the LALR(1) closure of an LR(0) kernel 
type Closure1Table() = 
    let t = Dictionary<Item0, HashSet<TerminalIndex>>() 

    member _.Add(key, value) = 
        if t.ContainsKey(key) then 
            t[key] <- value 
        else 
            t.Add(key, value) 

    member _.Count = t.Count 

    member _.Contains(key, value) = 
        match t.TryGetValue(key) with 
        | (true, v) -> v.Equals(value) 
        | (false, _) -> false 



Reference cells are a way to represent the reference to a value rather than the value
itself. Although they can be used for performance-critical code, they are not
recommended. Consider the following example:

F#

The use of a reference cell now "pollutes" all subsequent code with having to
dereference and re-reference the underlying data. Instead, consider let mutable :

F#

Aside from the single point of mutation in the middle of the lambda expression, all
other code that touches acc  can do so in a manner that is no different to the usage of a
normal let -bound immutable value. This will make it easier to change over time.

Nulls should generally be avoided in F#. By default F#-declared types do not support
the use of the null  literal, and all values and objects are initialized. However, some
common .NET APIs return or accept nulls, and some common .NET-declared types such
as arrays and strings allow nulls. However, the occurrence of null  values is very rare in
F# programming and one of the benefits of using F# is to avoid null reference errors in
most cases.

Prefer let mutable  to ref

let kernels = 
    let acc = ref Set.empty 

    processWorkList startKernels (fun kernel -> 
        if not ((!acc).Contains(kernel)) then 
            acc := (!acc).Add(kernel) 
        ...) 

    !acc |> Seq.toList 

let kernels = 
    let mutable acc = Set.empty 

    processWorkList startKernels (fun kernel -> 
        if not (acc.Contains(kernel)) then 
            acc <- acc.Add(kernel) 
        ...) 

    acc |> Seq.toList 

Nulls and default values



By default F#-declared types do not support the use of the null  literal. You can
manually annotate F# types with AllowNullLiteral  to allow this. However, it is almost
always better to avoid doing this.

It is possible to generate a null  or zero-initialized value for an F# type by using
Unchecked.defaultof<_> . This can be useful when initializing storage for some data
structures, or in some high-performance coding pattern, or in interoperability. However
the use of this construct should be avoided.

By default F# records and objects must be properly initialized on construction. The
DefaultValue  attribute can be used to populate some fields of objects with a null  or
zero-initialized value. This construct is rarely needed and its use should be avoided.

When writing new F# code, in practice there's no need to check for null inputs, unless
you expect that code to be used from C# or other .NET languages.

If you do decide to add checks for null inputs, perform the checks at first opportunity
and raise an exception. For example:

F#

Avoid the use of the AllowNullLiteral  attribute

Avoid the use of the Unchecked.defaultof<_>  attribute

Avoid the use of the DefaultValue  attribute

If you check for null inputs, raise exceptions at first
opportunity

let inline checkNonNull argName arg = 
    if isNull arg then 
        nullArg argName 

module Array = 
    let contains value (array:'T[]) = 
        checkNonNull "array" array 
        let mutable result = false 
        let mutable i = 0 
        while not state && i < array.Length do 
            result <- value = array[i] 
            i <- i + 1 
        result 



For legacy reasons some string functions in FSharp.Core still treat nulls as empty strings
and do not fail on null arguments. However do not take this as guidance, and do not
adopt coding patterns that attribute any semantic meaning to "null".

F# has full support for objects and object-oriented (OO) concepts. Although many OO
concepts are powerful and useful, not all of them are ideal to use. The following lists
offer guidance on categories of OO features at a high level.

Consider using these features in many situations:

Dot notation (x.Length )
Instance members
Implicit constructors
Static members
Indexer notation (arr[x] ), by defining an Item  property
Slicing notation (arr[x..y] , arr[x..] , arr[..y] ), by defining GetSlice  members
Named and Optional arguments
Interfaces and interface implementations

Don't reach for these features first, but do judiciously apply them when they are
convenient to solve a problem:

Method overloading
Encapsulated mutable data
Operators on types
Auto properties
Implementing IDisposable  and IEnumerable
Type extensions
Events
Structs
Delegates
Enums

Generally avoid these features unless you must use them:

Inheritance-based type hierarchies and implementation inheritance
Nulls and Unchecked.defaultof<_>

Object programming

Prefer composition over inheritance



Composition over inheritance  is a long-standing idiom that good F# code can adhere
to. The fundamental principle is that you should not expose a base class and force
callers to inherit from that base class to get functionality.

Object Expressions allow you to implement interfaces on the fly, binding the
implemented interface to a value without needing to do so inside of a class. This is
convenient, especially if you only need to implement the interface and have no need for
a full class.

For example, here is the code that is run in Ionide  to provide a code fix action if
you've added a symbol that you don't have an open  statement for:

F#

Because there is no need for a class when interacting with the Visual Studio Code API,
Object Expressions are an ideal tool for this. They are also valuable for unit testing, when
you want to stub out an interface with test routines in an improvised manner.

Use object expressions to implement interfaces if you
don't need a class

    let private createProvider () = 
        { new CodeActionProvider with 
            member this.provideCodeActions(doc, range, context, ct) = 
                let diagnostics = context.diagnostics 
                let diagnostic = diagnostics |> Seq.tryFind (fun d -> 
d.message.Contains "Unused open statement") 
                let res = 
                    match diagnostic with 
                    | None -> [||] 
                    | Some d -> 
                        let line = doc.lineAt d.range.start.line 
                        let cmd = createEmpty<Command> 
                        cmd.title <- "Remove unused open" 
                        cmd.command <- "fsharp.unusedOpenFix" 
                        cmd.arguments <- Some ([| doc |> unbox; line.range 
|> unbox; |] |> ResizeArray) 
                        [|cmd |] 
                res 
                |> ResizeArray 
                |> U2.Case1 
        } 

Consider Type Abbreviations to shorten
signatures

https://en.wikipedia.org/wiki/Composition_over_inheritance
https://ionide.io/


Type Abbreviations are a convenient way to assign a label to another type, such as a
function signature or a more complex type. For example, the following alias assigns a
label to what's needed to define a computation with CNTK, a deep learning library:

F#

The Computation  name is a convenient way to denote any function that matches the
signature it is aliasing. Using Type Abbreviations like this is convenient and allows for
more succinct code.

Although Type Abbreviations are convenient for giving a name to function signatures,
they can be confusing when abbreviating other types. Consider this abbreviation:

F#

This can be confusing in multiple ways:

BufferSize  is not an abstraction; it is just another name for an integer.
If BufferSize  is exposed in a public API, it can easily be misinterpreted to mean
more than just int . Generally, domain types have multiple attributes to them and
are not primitive types like int . This abbreviation violates that assumption.
The casing of BufferSize  (PascalCase) implies that this type holds more data.
This alias does not offer increased clarity compared with providing a named
argument to a function.
The abbreviation will not manifest in compiled IL; it is just an integer and this alias
is a compile-time construct.

F#

open CNTK 

// DeviceDescriptor, Variable, and Function all come from CNTK 
type Computation = DeviceDescriptor -> Variable -> Function 

Avoid using Type Abbreviations to represent your domain

// Does not actually abstract integers. 
type BufferSize = int 

module Networking = 
    ... 
    let send data (bufferSize: int) = ... 

https://learn.microsoft.com/en-us/cognitive-toolkit/


In summary, the pitfall with Type Abbreviations is that they are not abstractions over the
types they are abbreviating. In the previous example, BufferSize  is just an int  under
the covers, with no extra data, nor any benefits from the type system besides what int
already has.

An alternative approach to using type abbreviations to represent a domain is to use
single-case discriminated unions. The previous sample can be modeled as follows:

F#

If you write code that operates in terms of BufferSize  and its underlying value, you
need to construct one rather than pass in any arbitrary integer:

F#

This reduces the likelihood of mistakenly passing an arbitrary integer into the send
function, because the caller must construct a BufferSize  type to wrap a value before
calling the function.

type BufferSize = BufferSize of int 

module Networking = 
    ... 
    let send data (BufferSize size) = 
    ... 



F# component design guidelines
Article • 11/04/2021

This document is a set of component design guidelines for F# programming, based on
the F# Component Design Guidelines, v14, Microsoft Research, and a version that was
originally curated and maintained by the F# Software Foundation.

This document assumes you are familiar with F# programming. Many thanks to the F#
community for their contributions and helpful feedback on various versions of this
guide.

This document looks at some of the issues related to F# component design and coding.
A component can mean any of the following:

A layer in your F# project that has external consumers within that project.
A library intended for consumption by F# code across assembly boundaries.
A library intended for consumption by any .NET language across assembly
boundaries.
A library intended for distribution via a package repository, such as NuGet .

Techniques described in this article follow the Five principles of good F# code, and thus
utilize both functional and object programming as appropriate.

Regardless of the methodology, the component and library designer faces a number of
practical and prosaic issues when trying to craft an API that is most easily usable by
developers. Conscientious application of the .NET Library Design Guidelines will steer
you towards creating a consistent set of APIs that are pleasant to consume.

There are a few universal guidelines that apply to F# libraries, regardless of the intended
audience for the library.

Regardless of the kind of F# coding you are doing, it is valuable to have a working
knowledge of the .NET Library Design Guidelines. Most other F# and .NET programmers
will be familiar with these guidelines, and expect .NET code to conform to them.

Overview

General guidelines

Learn the .NET Library Design Guidelines

https://nuget.org/
https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/
https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/


The .NET Library Design Guidelines provide general guidance regarding naming,
designing classes and interfaces, member design (properties, methods, events, etc.) and
more, and are a useful first point of reference for a variety of design guidance.

XML documentation on public APIs ensures that users can get great Intellisense and
Quickinfo when using these types and members, and enable building documentation
files for the library. See the XML Documentation about various xml tags that can be used
for additional markup within xmldoc comments.

F#

You can use either the short form XML comments (/// comment ), or standard XML
comments (///<summary>comment</summary> ).

Using explicit signatures files in an F# library provides a succinct summary of public API,
which helps to ensure that you know the full public surface of your library, and provides
a clean separation between public documentation and internal implementation details.
Signature files add friction to changing the public API, by requiring changes to be made
in both the implementation and signature files. As a result, signature files should
typically only be introduced when an API has become solidified and is no longer
expected to change significantly.

Follow Best Practices for Using Strings in .NET guidance. In particular, always explicitly
state cultural intent in the conversion and comparison of strings (where applicable).

Add XML documentation comments to your code

/// A class for representing (x,y) coordinates 
type Point = 

    /// Computes the distance between this point and another 
    member DistanceTo: otherPoint:Point -> float 

Consider using explicit signature files (.fsi) for stable
library and component APIs

Always follow best practices for using strings in .NET

Guidelines for F#-facing libraries

https://learn.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings


This section presents recommendations for developing public F#-facing libraries; that is,
libraries exposing public APIs that are intended to be consumed by F# developers. There
are a variety of library-design recommendations applicable specifically to F#. In the
absence of the specific recommendations that follow, the .NET Library Design Guidelines
are the fallback guidance.

The following table follows .NET naming and capitalization conventions. There are small
additions to also include F# constructs.

Construct Case Part Examples Notes

Concrete
types

PascalCase Noun/
adjective

List, Double, Complex Concrete types are structs,
classes, enumerations,
delegates, records, and unions.
Though type names are
traditionally lowercase in
OCaml, F# has adopted the
.NET naming scheme for types.

DLLs PascalCase Fabrikam.Core.dll

Union tags PascalCase Noun Some, Add, Success Do not use a prefix in public
APIs. Optionally use a prefix
when internal, such as type
Teams = TAlpha | TBeta |

TDelta.

Event PascalCase Verb ValueChanged /
ValueChanging

Exceptions PascalCase WebException Name should end with
"Exception".

Field PascalCase Noun CurrentName

Interface
types

PascalCase Noun/
adjective

IDisposable Name should start with "I".

Method PascalCase Verb ToString

Naming conventions

Use .NET naming and capitalization conventions



Construct Case Part Examples Notes

Namespace PascalCase Microsoft.FSharp.Core Generally use <Organization>.
<Technology>[.<Subnamespace>] ,
though drop the organization if
the technology is independent
of organization.

Parameters camelCase Noun typeName, transform,
range

let values
(internal)

camelCase
or
PascalCase

Noun/
verb

getValue, myTable

let values
(external)

camelCase
or
PascalCase

Noun/verb List.map, Dates.Today let-bound values are often
public when following
traditional functional design
patterns. However, generally
use PascalCase when the
identifier can be used from
other .NET languages.

Property PascalCase Noun/
adjective

IsEndOfFile,
BackColor

Boolean properties generally
use Is and Can and should be
affirmative, as in IsEndOfFile,
not IsNotEndOfFile.

The .NET guidelines discourage the use of abbreviations (for example, "use
OnButtonClick  rather than OnBtnClick "). Common abbreviations, such as Async  for
"Asynchronous", are tolerated. This guideline is sometimes ignored for functional
programming; for example, List.iter  uses an abbreviation for "iterate". For this reason,
using abbreviations tends to be tolerated to a greater degree in F#-to-F# programming,
but should still generally be avoided in public component design.

The .NET guidelines say that casing alone cannot be used to disambiguate name
collisions, since some client languages (for example, Visual Basic) are case-insensitive.

Avoid abbreviations

Avoid casing name collisions

Use acronyms where appropriate



Acronyms such as XML are not abbreviations and are widely used in .NET libraries in
uncapitalized form (Xml). Only well-known, widely recognized acronyms should be used.

Do use PascalCase for generic parameter names in public APIs, including for F#-facing
libraries. In particular, use names like T , U , T1 , T2  for arbitrary generic parameters, and
when specific names make sense, then for F#-facing libraries use names like Key , Value ,
Arg  (but not for example, TKey ).

camelCase is used for public functions that are designed to be used unqualified (for
example, invalidArg ), and for the "standard collection functions" (for example,
List.map). In both these cases, the function names act much like keywords in the
language.

Each F# file in a component should begin with either a namespace declaration or a
module declaration.

F#

or

F#

Use PascalCase for generic parameter names

Use either PascalCase or camelCase for public functions and values
in F# modules

Object, Type, and Module design

Use namespaces or modules to contain your types and modules

namespace Fabrikam.BasicOperationsAndTypes 

type ObjectType1() = 
    ... 

type ObjectType2() = 
     ... 

module CommonOperations = 
    ... 



The differences between using modules and namespaces to organize code at the top
level are as follows:

Namespaces can span multiple files
Namespaces cannot contain F# functions unless they are within an inner module
The code for any given module must be contained within a single file
Top-level modules can contain F# functions without the need for an inner module

The choice between a top-level namespace or module affects the compiled form of the
code, and thus will affect the view from other .NET languages should your API eventually
be consumed outside of F# code.

When working with objects, it is best to ensure that consumable functionality is
implemented as methods and properties on that type.

F#

The bulk of functionality for a given member need not necessarily be implemented in
that member, but the consumable piece of that functionality should be.

module Fabrikam.BasicOperationsAndTypes 

type ObjectType1() = 
    ... 

type ObjectType2() = 
    ... 

module CommonOperations = 
    ... 

Use methods and properties for operations intrinsic to object types

type HardwareDevice() =

    member this.ID = ... 

    member this.SupportedProtocols = ... 

type HashTable<'Key,'Value>(comparer: IEqualityComparer<'Key>) = 

    member this.Add(key, value) = ... 

    member this.ContainsKey(key) = ... 

    member this.ContainsValue(value) = ... 



In F#, this only needs to be done where that state is not already encapsulated by
another language construct, such as a closure, sequence expression, or asynchronous
computation.

F#

Use interface types to represent a set of operations. This is preferred to other options,
such as tuples of functions or records of functions.

F#

In preference to:

F#

Interfaces are first-class concepts in .NET, which you can use to achieve what Functors
would normally give you. Additionally, they can be used to encode existential types into
your program, which records of functions cannot.

When you define a collection type, consider providing a standard set of operations like
CollectionType.map  and CollectionType.iter ) for new collection types.

Use classes to encapsulate mutable state

type Counter() = 
    // let-bound values are private in classes. 
    let mutable count = 0 

    member this.Next() = 
        count <- count + 1 
        count 

Use interfaces to group related operations

type Serializer = 
    abstract Serialize<'T> : preserveRefEq: bool -> value: 'T -> string 
    abstract Deserialize<'T> : preserveRefEq: bool -> pickle: string -> 'T 

type Serializer<'T> = { 
    Serialize: bool -> 'T -> string 
    Deserialize: bool -> string -> 'T 
} 

Use a module to group functions that act on collections



F#

If you include such a module, follow the standard naming conventions for functions
found in FSharp.Core.

For example, Microsoft.FSharp.Core.Operators  is an automatically opened collection of
top-level functions (like abs  and sin ) provided by FSharp.Core.dll.

Likewise, a statistics library might include a module with functions erf  and erfc , where
this module is designed to be explicitly or automatically opened.

Adding the [<RequireQualifiedAccess>]  attribute to a module indicates that the module
may not be opened and that references to the elements of the module require explicit
qualified access. For example, the Microsoft.FSharp.Collections.List  module has this
attribute.

This is useful when functions and values in the module have names that are likely to
conflict with names in other modules. Requiring qualified access can greatly increase the
long-term maintainability and evolvability of a library.

Adding the [<AutoOpen>]  attribute to a module means the module will be opened when
the containing namespace is opened. The [<AutoOpen>]  attribute may also be applied to
an assembly to indicate a module that is automatically opened when the assembly is
referenced.

For example, a statistics library MathsHeaven.Statistics might contain a module
MathsHeaven.Statistics.Operators  containing functions erf  and erfc . It is reasonable
to mark this module as [<AutoOpen>] . This means open MathsHeaven.Statistics  will also
open this module and bring the names erf  and erfc  into scope. Another good use of
[<AutoOpen>]  is for modules containing extension methods.

module CollectionType = 
    let map f c = 
        ... 
    let iter f c = 
        ... 

Use a module to group functions for common, canonical functions,
especially in math and DSL libraries

Consider using RequireQualifiedAccess and carefully apply
AutoOpen attributes



Overuse of [<AutoOpen>]  leads to polluted namespaces, and the attribute should be
used with care. For specific libraries in specific domains, judicious use of [<AutoOpen>]
can lead to better usability.

Sometimes classes are used to model mathematical constructs such as Vectors. When
the domain being modeled has well-known operators, defining them as members
intrinsic to the class is helpful.

F#

This guidance corresponds to general .NET guidance for these types. However, it can be
additionally important in F# coding as this allows these types to be used in conjunction
with F# functions and methods with member constraints, such as List.sumBy.

Sometimes you may wish to name something in one style for F# consumers (such as a
static member in lower case so that it appears as if it were a module-bound function),
but have a different style for the name when it is compiled into an assembly. You can
use the [<CompiledName>]  attribute to provide a different style for non F# code
consuming the assembly.

F#

Consider defining operator members on classes where using well-
known operators is appropriate

type Vector(x: float) =

    member v.X = x 

    static member (*) (vector: Vector, scalar: float) = Vector(vector.X * 
scalar) 

    static member (+) (vector1: Vector, vector2: Vector) = Vector(vector1.X 
+ vector2.X) 

let v = Vector(5.0) 

let u = v * 10.0 

Consider using CompiledName to provide a .NET-friendly name for
other .NET language consumers

type Vector(x:float, y:float) = 

    member v.X = x 



By using [<CompiledName>] , you can use .NET naming conventions for non F# consumers
of the assembly.

Method overloading is a powerful tool for simplifying an API that may need to perform
similar functionality, but with different options or arguments.

F#

In F#, it is more common to overload on number of arguments rather than types of
arguments.

Avoid revealing concrete representations of objects. For example, the concrete
representation of DateTime values is not revealed by the external, public API of the .NET
library design. At run time, the Common Language Runtime knows the committed
implementation that will be used throughout execution. However, compiled code
doesn't itself pick up dependencies on the concrete representation.

In F#, implementation inheritance is rarely used. Furthermore, inheritance hierarchies are
often complex and difficult to change when new requirements arrive. Inheritance
implementation still exists in F# for compatibility and rare cases where it is the best

    member v.Y = y 

    [<CompiledName("Create")>] 
    static member create x y = Vector (x, y) 

let v = Vector.create 5.0 3.0 

Use method overloading for member functions, if doing so
provides a simpler API

type Logger() = 

    member this.Log(message) = 
        ... 
    member this.Log(message, retryPolicy) = 
        ... 

Hide the representations of record and union types if the design of
these types is likely to evolve

Avoid the use of implementation inheritance for extensibility

https://learn.microsoft.com/en-us/dotnet/api/system.datetime


solution to a problem, but alternative techniques should be sought in your F# programs
when designing for polymorphism, such as interface implementation.

Here is a good example of using a tuple in a return type:

F#

For return types containing many components, or where the components are related to
a single identifiable entity, consider using a named type instead of a tuple.

If there is a corresponding synchronous operation named Operation  that returns a T ,
then the async operation should be named AsyncOperation  if it returns Async<T>  or
OperationAsync  if it returns Task<T> . For commonly used .NET types that expose
Begin/End methods, consider using Async.FromBeginEnd  to write extension methods as a
façade to provide the F# async programming model to those .NET APIs.

F#

See Error Management to learn about appropriate use of exceptions, results, and
options.

Function and member signatures

Use tuples for return values when returning a small number of
multiple unrelated values

val divrem: BigInteger -> BigInteger -> BigInteger * BigInteger 

Use Async<T>  for async programming at F# API boundaries

type SomeType = 
    member this.Compute(x:int): int = 
        ... 
    member this.AsyncCompute(x:int): Async<int> = 
        ... 

type System.ServiceModel.Channels.IInputChannel with 
    member this.AsyncReceive() = 
        ... 

Exceptions



F# extension members should generally only be used for operations that are in the
closure of intrinsic operations associated with a type in the majority of its modes of use.
One common use is to provide APIs that are more idiomatic to F# for various .NET types:

F#

Tree-like structures are recursively defined. This is awkward with inheritance, but elegant
with Discriminated Unions.

F#

Representing tree-like data with Discriminated Unions also allows you to benefit from
exhaustiveness in pattern matching.

You may find yourself in a domain where the same name is the best name for different
things, such as Discriminated Union cases. You can use [<RequireQualifiedAccess>]  to

Extension Members

Carefully apply F# extension members in F#-to-F# components

type System.ServiceModel.Channels.IInputChannel with 
    member this.AsyncReceive() = 
        Async.FromBeginEnd(this.BeginReceive, this.EndReceive) 

type System.Collections.Generic.IDictionary<'Key,'Value> with 
    member this.TryGet key = 
        let ok, v = this.TryGetValue key 
        if ok then Some v else None 

Union Types

Use discriminated unions instead of class hierarchies for tree-
structured data

type BST<'T> = 
    | Empty 
    | Node of 'T * BST<'T> * BST<'T> 

Use [<RequireQualifiedAccess>]  on union types whose case names
are not sufficiently unique



disambiguate case names in order to avoid triggering confusing errors due to
shadowing dependent on the ordering of open  statements

Unions types rely on F# pattern-matching forms for a succinct programming model. As
mentioned previously, you should avoid revealing concrete data representations if the
design of these types is likely to evolve.

For example, the representation of a discriminated union can be hidden using a private
or internal declaration, or by using a signature file.

F#

If you reveal discriminated unions indiscriminately, you may find it hard to version your
library without breaking user code. Instead, consider revealing one or more active
patterns to permit pattern matching over values of your type.

Active patterns provide an alternate way to provide F# consumers with pattern matching
while avoiding exposing F# Union Types directly.

Arithmetic member constraints and F# comparison constraints are a standard for F#
programming. For example, consider the following code:

F#

Hide the representations of discriminated unions for binary
compatible APIs if the design of these types is likely to evolve

type Union = 
    private 
    | CaseA of int 
    | CaseB of string 

Inline Functions and Member Constraints

Define generic numeric algorithms using inline functions with
implied member constraints and statically resolved generic types

let inline highestCommonFactor a b = 
    let rec loop a b = 
        if a = LanguagePrimitives.GenericZero<_> then b 
        elif a < b then loop a (b - a) 
        else loop (a - b) b 
    loop a b 



The type of this function is as follows:

F#

This is a suitable function for a public API in a mathematical library.

It is possible to simulate "duck typing" using F# member constraints. However, members
that make use of this should not in general be used in F#-to-F# library designs. This is
because library designs based on unfamiliar or non-standard implicit constraints tend to
cause user code to become inflexible and tied to one particular framework pattern.

Additionally, there is a good chance that heavy use of member constraints in this
manner can result in very long compile times.

Custom operators are essential in some situations and are highly useful notational
devices within a large body of implementation code. For new users of a library, named
functions are often easier to use. In addition, custom symbolic operators can be hard to
document, and users find it more difficult to look up help on operators, due to existing
limitations in IDE and search engines.

As a result, it is best to publish your functionality as named functions and members, and
additionally expose operators for this functionality only if the notational benefits
outweigh the documentation and cognitive cost of having them.

val inline highestCommonFactor : ^T -> ^T -> ^T 
                when ^T : (static member Zero : ^T) 
                and ^T : (static member ( - ) : ^T * ^T -> ^T) 
                and ^T : equality 
                and ^T : comparison 

Avoid using member constraints to simulate type classes and duck
typing

Operator Definitions

Avoid defining custom symbolic operators

Units of Measure

Carefully use units of measure for added type safety in F# code



Additional typing information for units of measure is erased when viewed by other .NET
languages. Be aware that .NET components, tools, and reflection will see types-sans-
units. For example, C# consumers will see float  rather than float<kg> .

.NET components, tools, and reflection will not see abbreviated names for types.
Significant usage of type abbreviations can also make a domain appear more complex
than it actually is, which could confuse consumers.

In this case, the type being abbreviated reveals too much about the representation of
the actual type being defined. Instead, consider wrapping the abbreviation in a class
type or a single-case discriminated union (or, when performance is essential, consider
using a struct type to wrap the abbreviation).

For example, it is tempting to define a multi-map as a special case of an F# map, for
example:

F#

However, the logical dot-notation operations on this type are not the same as the
operations on a Map – for example, it is reasonable that the lookup operator map[key]
return the empty list if the key is not in the dictionary, rather than raising an exception.

When designing libraries for use from other .NET languages, it is important to adhere to
the .NET Library Design Guidelines. In this document, these libraries are labeled as
vanilla .NET libraries, as opposed to F#-facing libraries that use F# constructs without
restriction. Designing vanilla .NET libraries means providing familiar and idiomatic APIs

Type Abbreviations

Carefully use type abbreviations to simplify F# code

Avoid type abbreviations for public types whose members and
properties should be intrinsically different to those available on the
type being abbreviated

type MultiMap<'Key,'Value> = Map<'Key,'Value list> 

Guidelines for libraries for Use from other .NET
Languages

https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/


consistent with the rest of the .NET Framework by minimizing the use of F#-specific
constructs in the public API. The rules are explained in the following sections.

Pay special attention to the use of abbreviated names and the .NET capitalization
guidelines.

F#

All files containing public functionality should begin with a namespace  declaration, and
the only public-facing entities in namespaces should be types. Do not use F# modules.

Use non-public modules to hold implementation code, utility types, and utility functions.

Static types should be preferred over modules, as they allow for future evolution of the
API to use overloading and other .NET API design concepts that may not be used within
F# modules.

For example, in place of the following public API:

F#

Namespace and Type design (for libraries for use from
other .NET Languages)

Apply the .NET naming conventions to the public API of your
components

type pCoord = ... 
    member this.theta = ... 

type PolarCoordinate = ... 
    member this.Theta = ... 

Use namespaces, types, and members as the primary
organizational structure for your components

module Fabrikam 

module Utilities = 
    let Name = "Bob" 
    let Add2 x y = x + y 
    let Add3 x y z = x + y + z 



Consider instead:

F#

F# record types compile to a simple .NET class. These are suitable for some simple,
stable types in APIs. Consider using the [<NoEquality>]  and [<NoComparison>]  attributes
to suppress the automatic generation of interfaces. Also avoid using mutable record
fields in vanilla .NET APIs as these expose a public field. Always consider whether a class
would provide a more flexible option for future evolution of the API.

For example, the following F# code exposes the public API to a C# consumer:

F#:

F#

C#:

C#

namespace Fabrikam 

[<AbstractClass; Sealed>] 
type Utilities = 
    static member Name = "Bob" 
    static member Add(x,y) = x + y 
    static member Add(x,y,z) = x + y + z 

Use F# record types in vanilla .NET APIs if the design of the types
won't evolve

[<NoEquality; NoComparison>] 
type MyRecord = 
    { FirstThing: int 
        SecondThing: string } 

public sealed class MyRecord 
{ 
    public MyRecord(int firstThing, string secondThing); 
    public int FirstThing { get; } 
    public string SecondThing { get; } 
} 

Hide the representation of F# union types in vanilla .NET APIs



F# union types are not commonly used across component boundaries, even for F#-to-
F# coding. They are an excellent implementation device when used internally within
components and libraries.

When designing a vanilla .NET API, consider hiding the representation of a union type
by using either a private declaration or a signature file.

F#

You may also augment types that use a union representation internally with members to
provide a desired .NET-facing API.

F#

There are many different frameworks available within .NET, such as WinForms, WPF, and
ASP.NET. Naming and design conventions for each should be used if you are designing
components for use in these frameworks. For example, for WPF programming, adopt
WPF design patterns for the classes you are designing. For models in user interface
programming, use design patterns such as events and notification-based collections
such as those found in System.Collections.ObjectModel.

type PropLogic = 
    private 
    | And of PropLogic * PropLogic 
    | Not of PropLogic 
    | True 

type PropLogic = 
    private 
    | And of PropLogic * PropLogic 
    | Not of PropLogic 
    | True 

    /// A public member for use from C# 
    member x.Evaluate = 
        match x with 
        | And(a,b) -> a.Evaluate && b.Evaluate 
        | Not a -> not a.Evaluate
        | True -> true 

    /// A public member for use from C# 
    static member CreateAnd(a,b) = And(a,b) 

Design GUI and other components using the design patterns of the
framework

https://learn.microsoft.com/en-us/dotnet/api/system.collections.objectmodel


Construct a DelegateEvent  with a specific .NET delegate type that takes an object and
EventArgs  (rather than an Event , which just uses the FSharpHandler  type by default) so
that the events are published in the familiar way to other .NET languages.

F#

Tasks are used in .NET to represent active asynchronous computations. Tasks are in
general less compositional than F# Async<T>  objects, since they represent "already
executing" tasks and can't be composed together in ways that perform parallel
composition, or which hide the propagation of cancellation signals and other contextual
parameters.

However, despite this, methods that return Tasks are the standard representation of
asynchronous programming on .NET.

F#

Object and Member design (for libraries for use from
other .NET Languages)

Use the CLIEvent attribute to expose .NET events

type MyBadType() = 
    let myEv = new Event<int>() 

    [<CLIEvent>] 
    member this.MyEvent = myEv.Publish 

type MyEventArgs(x: int) = 
    inherit System.EventArgs() 
    member this.X = x 

    /// A type in a component designed for use from other .NET languages 
type MyGoodType() = 
    let myEv = new DelegateEvent<EventHandler<MyEventArgs>>() 

    [<CLIEvent>] 
    member this.MyEvent = myEv.Publish 

Expose asynchronous operations as methods that return .NET tasks

/// A type in a component designed for use from other .NET languages 
type MyType() = 

    let compute (x: int): Async<int> = async { ... } 



You will frequently also want to accept an explicit cancellation token:

F#

Here "F# function types" mean "arrow" types like int -> int .

Instead of this:

F#

Do this:

F#

The F# function type appears as class FSharpFunc<T,U>  to other .NET languages, and is
less suitable for language features and tooling that understands delegate types. When
authoring a higher-order method targeting .NET Framework 3.5 or higher, the
System.Func  and System.Action  delegates are the right APIs to publish to enable .NET
developers to consume these APIs in a low-friction manner. (When targeting .NET
Framework 2.0, the system-defined delegate types are more limited; consider using
predefined delegate types such as System.Converter<T,U>  or defining a specific
delegate type.)

On the flip side, .NET delegates are not natural for F#-facing libraries (see the next
Section on F#-facing libraries). As a result, a common implementation strategy when
developing higher-order methods for vanilla .NET libraries is to author all the

    member this.ComputeAsync(x) = compute x |> Async.StartAsTask 

/// A type in a component designed for use from other .NET languages 
type MyType() = 
    let compute(x: int): Async<int> = async { ... } 
    member this.ComputeAsTask(x, cancellationToken) = 
Async.StartAsTask(compute x, cancellationToken) 

Use .NET delegate types instead of F# function types

member this.Transform(f: int->int) = 
    ... 

member this.Transform(f: Func<int,int>) = 
    ... 



implementation using F# function types, and then create the public API using delegates
as a thin façade atop the actual F# implementation.

Common patterns of use for the F# option type in APIs are better implemented in
vanilla .NET APIs using standard .NET design techniques. Instead of returning an F#
option value, consider using the bool return type plus an out parameter as in the
"TryGetValue" pattern. And instead of taking F# option values as parameters, consider
using method overloading or optional arguments.

F#

Avoid the use of concrete collection types such as .NET arrays T[] , F# types list<T> ,
Map<Key,Value>  and Set<T> , and .NET concrete collection types such as
Dictionary<Key,Value> . The .NET Library Design Guidelines have good advice regarding
when to use various collection types like IEnumerable<T> . Some use of arrays (T[] ) is
acceptable in some circumstances, on performance grounds. Note especially that
seq<T>  is just the F# alias for IEnumerable<T> , and thus seq is often an appropriate type
for a vanilla .NET API.

Instead of F# lists:

F#

Use the TryGetValue pattern instead of returning F# option values,
and prefer method overloading to taking F# option values as
arguments

member this.ReturnOption() = Some 3 

member this.ReturnBoolAndOut(outVal: byref<int>) = 
    outVal <- 3 
    true 

member this.ParamOption(x: int, y: int option) = 
    match y with 
    | Some y2 -> x + y2 
    | None -> x 

member this.ParamOverload(x: int) = x 

member this.ParamOverload(x: int, y: int) = x + y 

Use the .NET collection interface types IEnumerable<T> and
IDictionary<Key,Value> for parameters and return values



Use F# sequences:

F#

Avoid other uses of the unit type. These are good:

F#

This is bad:

F#

F# implementation code tends to have fewer null values, due to immutable design
patterns and restrictions on use of null literals for F# types. Other .NET languages often
use null as a value much more frequently. Because of this, F# code that is exposing a
vanilla .NET API should check parameters for null at the API boundary, and prevent
these values from flowing deeper into the F# implementation code. The isNull  function
or pattern matching on the null  pattern can be used.

F#

member this.PrintNames(names: string list) = 
    ... 

member this.PrintNames(names: seq<string>) = 
    ... 

Use the unit type as the only input type of a method to define a
zero-argument method, or as the only return type to define a void-
returning method

✔ member this.NoArguments() = 3 

✔ member this.ReturnVoid(x: int) = () 

member this.WrongUnit( x: unit, z: int) = ((), ()) 

Check for null values on vanilla .NET API boundaries

let checkNonNull argName (arg: obj) = 
    match arg with 
    | null -> nullArg argName 
    | _ -> () 



Instead, prefer returning a named type holding the aggregate data, or using out
parameters to return multiple values. Although tuples and struct tuples exist in .NET
(including C# language support for struct tuples), they will most often not provide the
ideal and expected API for .NET developers.

Instead, use .NET calling conventions Method(arg1,arg2,…,argN) .

F#

Tip: If you're designing libraries for use from any .NET language, then there's no
substitute for actually doing some experimental C# and Visual Basic programming to
ensure that your libraries "feel right" from these languages. You can also use tools such
as .NET Reflector and the Visual Studio Object Browser to ensure that libraries and their
documentation appear as expected to developers.

Consider the following class:

F#

let checkNonNull` argName (arg: obj) = 
    if isNull arg then nullArg argName 
    else () 

Avoid using tuples as return values

Avoid the use of currying of parameters

member this.TupledArguments(str, num) = String.replicate num str 

Appendix

End-to-end example of designing F# code for use by
other .NET languages

open System 

type Point1(angle,radius) = 
    new() = Point1(angle=0.0, radius=0.0) 
    member x.Angle = angle 
    member x.Radius = radius 
    member x.Stretch(l) = Point1(angle=x.Angle, radius=x.Radius * l) 
    member x.Warp(f) = Point1(angle=f(x.Angle), radius=x.Radius) 



The inferred F# type of this class is as follows:

F#

Let's take a look at how this F# type appears to a programmer using another .NET
language. For example, the approximate C# "signature" is as follows:

C#

There are some important points to notice about how F# represents constructs here. For
example:

Metadata such as argument names has been preserved.

F# methods that take two arguments become C# methods that take two
arguments.

    static member Circle(n) = 
        [ for i in 1..n -> Point1(angle=2.0*Math.PI/float(n), radius=1.0) ] 

type Point1 = 
    new : unit -> Point1 
    new : angle:double * radius:double -> Point1 
    static member Circle : n:int -> Point1 list 
    member Stretch : l:double -> Point1 
    member Warp : f:(double -> double) -> Point1 
    member Angle : double 
    member Radius : double 

// C# signature for the unadjusted Point1 class 
public class Point1 
{ 
    public Point1(); 

    public Point1(double angle, double radius); 

    public static Microsoft.FSharp.Collections.List<Point1> Circle(int 
count); 

    public Point1 Stretch(double factor); 

    public Point1 Warp(Microsoft.FSharp.Core.FastFunc<double,double> 
transform); 

    public double Angle { get; } 

    public double Radius { get; } 
} 



Functions and lists become references to corresponding types in the F# library.

The following code shows how to adjust this code to take these things into account.

F#

The inferred F# type of the code is as follows:

F#

The C# signature is now as follows:

C#

namespace SuperDuperFSharpLibrary.Types 

type RadialPoint(angle:double, radius:double) = 

    /// Return a point at the origin 
    new() = RadialPoint(angle=0.0, radius=0.0)

    /// The angle to the point, from the x-axis 
    member x.Angle = angle 

    /// The distance to the point, from the origin 
    member x.Radius = radius 

    /// Return a new point, with radius multiplied by the given factor 
    member x.Stretch(factor) = 
        RadialPoint(angle=angle, radius=radius * factor) 

    /// Return a new point, with angle transformed by the function
    member x.Warp(transform:Func<_,_>) = 
        RadialPoint(angle=transform.Invoke angle, radius=radius) 

    /// Return a sequence of points describing an approximate circle using 
    /// the given count of points
    static member Circle(count) = 
        seq { for i in 1..count -> 
                RadialPoint(angle=2.0*Math.PI/float(count), radius=1.0) } 

type RadialPoint = 
    new : unit -> RadialPoint 
    new : angle:double * radius:double -> RadialPoint 
    static member Circle : count:int -> seq<RadialPoint>
    member Stretch : factor:double -> RadialPoint 
    member Warp : transform:System.Func<double,double> -> RadialPoint 
    member Angle : double 
    member Radius : double 



The fixes made to prepare this type for use as part of a vanilla .NET library are as follows:

Adjusted several names: Point1 , n , l , and f  became RadialPoint , count , factor ,
and transform , respectively.

Used a return type of seq<RadialPoint>  instead of RadialPoint list  by changing
a list construction using [ ... ]  to a sequence construction using
IEnumerable<RadialPoint> .

Used the .NET delegate type System.Func  instead of an F# function type.

This makes it far nicer to consume in C# code.

public class RadialPoint 
{ 
    public RadialPoint(); 

    public RadialPoint(double angle, double radius); 

    public static System.Collections.Generic.IEnumerable<RadialPoint> 
Circle(int count); 

    public RadialPoint Stretch(double factor);

    public RadialPoint Warp(System.Func<double,double> transform); 

    public double Angle { get; } 

    public double Radius { get; } 
} 



Machine Learning with F#
Article • 11/05/2021

F# excels at data science and machine learning. This article gives links to some
significant resources related to this mode of use of F#.

For information about other options that are available for machine learning and data
science, see the F# Software Foundation's Guide to Data Science with F# .

ML.NET  is an open source and cross-platform machine learning framework built for
.NET developers. With ML.NET, you can create custom ML models using C# or F#
without having to leave the .NET ecosystem. ML.NET lets you reuse all the knowledge,
skills, code, and libraries you already have as a .NET developer so that you can easily
integrate machine learning into your web, mobile, desktop, games, and IoT apps.

TorchSharp  is an open source set of bindings for the Pytorch engine usable for deep-
learning from F#. Examples in F# are available in TorchSharpExamples .

FsLab  is an F# community incubation space for data science with F#.

F# Notebooks
A Guide to Data Access with F#
A Guide to Data Science with F#

ML.NET

Deep Learning with TorchSharp

FsLab

See also

https://fsharp.org/guides/data-science/
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://github.com/dotnet/TorchSharp/
https://github.com/dotnet/TorchSharpExamples
https://fslab.org/
https://fsharp.org/guides/data-access/
https://fsharp.org/guides/data-science/


F# for Web Development
Article • 07/26/2022

F# excels at building efficient, scalable, and robust web solutions. This article gives links
to some significant resources related to web programming with F#. Some frameworks
for web programming with F# are listed below.

Other web development options are documented in the F# Software Foundation's Guide
to Web Programming with F# .

ASP.NET Core is a modern, cross-platform, high-performance, open-source framework
for building modern, cloud-based, Internet-connected applications. It runs on .NET Core
and supports F# out of the box. If you install the .NET SDK, there are F# templates
available via the dotnet new  command.

Giraffe  is a community-driven F# library for building rich web applications with superb
performance. It has been specifically designed with ASP.NET Core in mind and can be
added into ASP.NET Core pipelines.

Saturn  is a community-driven F# web development framework that implements the
server-side MVC pattern. Many of its components and concepts will seem familiar to
anyone with experience in other web frameworks like Ruby on Rails or Python’s Django.
It’s built on top of Giraffe and ASP.NET Core - a modern, cross-platform, high-
performance development platform for building cloud-ready web applications.

Fable  is a compiler that brings F# into the JavaScript ecosystem. It generates modern
JavaScript output, interoperates with JavaScript packages, and supports multiple
development models including React.

ASP.NET Core

Giraffe

Saturn

Fable

SAFE Stack

https://fsharp.org/guides/web
https://learn.microsoft.com/en-us/aspnet/core/
https://github.com/giraffe-fsharp/Giraffe#giraffe
https://saturnframework.org/
https://fable.io/


SAFE Stack  is a community-driven technology stack for functional-first web
applications using Azure. SAFE Stack allows you to quickly develop compelling web
applications that use industry-standard technologies whilst using F# to ensure an
enjoyable development experience. SAFE includes Giraffe, Saturn, and other
components.

WebSharper  is a community-driven, full-stack, functional reactive web programming
technology for .NET, allowing you to develop microservices, client-server web
applications, reactive SPAs, and more in F#.

Falco  is a community-driven toolkit for building fast, functional-first, and fault-tolerant
web applications using F#. It's built upon the high-performance components of ASP.NET
Core and is optimized for building HTTP applications quickly. Falco has a built-in view
engine and seamlessly integrates with existing .NET Core middleware and frameworks.

F# for JavaScript
A Guide to Web Programming with F#

WebSharper

Falco

See also

https://safe-stack.github.io/
https://github.com/dotnet-websharper/core
https://github.com/pimbrouwers/Falco
https://fsharp.org/guides/web/


Deploying and Managing Azure
Resources with F#
Article • 11/05/2021

F# may be used to configure, deploy, and manage Azure resources. This articles
provides links for the F#-specific technology Farmer .

Other options for Azure resource deployment and management are documented in
Azure Resource Manager. This includes the Bicep language.

For F# programmers, Farmer  is a free, open-source, community-driven technology
providing an easy-to-learn library for rapidly authoring and deploying entire Azure
architectures. Farmer generates Azure Resource Manager (ARM) templates that define
the infrastructure and configuration for your project.

Farmer provides simple code snippets that allow you to rapidly construct complex
topologies and idempotent deployments. Farmer is cross-platform and completely
backwards compatible with ARM templates. Farmer generates standard ARM templates
so you can continue to use existing deployment processes.

Azure Resource Manager
Bicep
Farmer

Farmer

See also

https://compositionalit.github.io/farmer/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep
https://compositionalit.github.io/farmer/
https://learn.microsoft.com/en-us/azure/azure-resource-manager
https://learn.microsoft.com/en-us/azure/azure-resource-manager/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep
https://compositionalit.github.io/farmer/


Get started with Azure Blob Storage
using F#
Article • 11/05/2021

Azure Blob Storage is a service that stores unstructured data in the cloud as
objects/blobs. Blob storage can store any type of text or binary data, such as a
document, media file, or application installer. Blob storage is also referred to as object
storage.

This article shows you how to perform common tasks using Blob storage. The samples
are written using F# using the Azure Storage Client Library for .NET. The tasks covered
include how to upload, list, download, and delete blobs.

For a conceptual overview of blob storage, see the .NET guide for blob storage.

To use this guide, you must first create an Azure storage account. You also need your
storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To
create an F# script, create a file with the .fsx  extension, for example blobs.fsx , in your
F# development environment.

F# Interactive, dotnet fsi , can be launched interactively, or it can be launched from the
command line to run a script. The command-line syntax is

.NET

Prerequisites

Create an F# script and start F# interactive

How to execute scripts

> dotnet fsi [options] [ script-file [arguments] ] 

Add packages in a script

https://learn.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-create


Next, use #r  nuget:package name  to install the Azure.Storage.Blobs  package and open
namespaces.Such as

F#

Add the following open  statements to the top of the blobs.fsx  file:

F#

You need an Azure Storage connection string for this tutorial. For more information
about connection strings, see Configure Storage Connection Strings.

For the tutorial, you enter your connection string in your script, like this:

F#

Before you begin, create some dummy local data in the directory of our script. Later you
upload this data.

F#

> #r "nuget: Azure.Storage.Blobs"
open Azure.Storage.Blobs 
open Azure.Storage.Blobs.Models 
open Azure.Storage.Blobs.Specialized 

Add namespace declarations

open System 
open System.IO 
open Azure.Storage.Blobs // Namespace for Blob storage types 
open Azure.Storage.Blobs.Models 
open Azure.Storage.Blobs.Specialized 
open System.Text 

Get your connection string

let storageConnString = "..." // fill this in from your storage account 

Create some local dummy data

// Create a dummy file to upload 
let localFile = "./myfile.txt" 
File.WriteAllText(localFile, "some data") 

https://learn.microsoft.com/en-us/azure/storage/storage-configure-connection-string


The BlobContainerClient  type enables you to create containers and retrieve blobs
stored in Blob storage. Here's one way to create the container client:

F#

Now you are ready to write code that reads data from and writes data to Blob storage.

This example shows how to create a container if it does not already exist:

F#

By default, the new container is private, meaning that you must specify your storage
access key to download blobs from this container. If you want to make the files within
the container available to everyone, you can set the container to be public using the
following code:

F#

Anyone on the Internet can see blobs in a public container, but you can modify or
delete them only if you have the appropriate account access key or a shared access
signature.

Azure Blob Storage supports block blobs and page blobs. In most cases, a block blob is
the recommended type to use.

To upload a file to a block blob, get a container client and use it to get a block blob
reference. Once you have a blob reference, you can upload any stream of data to it by

Create the blob service client

let container = BlobContainerClient(storageConnString, "myContainer") 

Create a container

container.CreateIfNotExists() 

let permissions = PublicAccessType.Blob 
container.SetAccessPolicy(permissions) 

Upload a blob into a container



calling the Upload  method. This operation overwrites the contents of the blob, creating
a new block blob if none exists.

F#

To list the blobs in a container, first get a container reference. You can then use the
container's GetBlobs  method to retrieve the blobs and/or directories within it. To access
the rich set of properties and methods for a returned BlobItem .

F#

For example, consider the following set of block blobs in a container named photos :

photo1.jpg 
2015/architecture/description.txt
2015/architecture/photo3.jpg 
2015/architecture/photo4.jpg 
2016/architecture/photo5.jpg 
2016/architecture/photo6.jpg 
2016/architecture/description.txt
2016/photo7.jpg\

When you call GetBlobsByHierarchy  on a container (as in the above sample), a
hierarchical listing is returned.

Console

// Retrieve reference to a blob named "myblob.txt". 
let blockBlob = container.GetBlobClient("myblob.txt") 

// Create or overwrite the "myblob.txt" blob with contents from the local 
file. 
use fileStream = new FileStream(localFile, FileMode.Open, FileAccess.Read, 
FileShare.Read) 
do blockBlob.Upload(fileStream) 

List the blobs in a container

for item in container.GetBlobsByHierarchy() do 
    printfn $"Blob name: {item.Blob.Name}" 

Directory: https://<accountname>.blob.core.windows.net/photos/2015/ 
Directory: https://<accountname>.blob.core.windows.net/photos/2016/ 



To download blobs, first retrieve a blob reference and then call the DownloadTo  method.
The following example uses the DownloadTo  method to transfer the blob contents to a
stream object that you can then persist to a local file.

F#

You can also use the DownloadContent  method to download the contents of a blob as a
text string.

F#

To delete a blob, first get a blob reference and then call the Delete  method on it.

F#

If you are listing a large number of blobs, or you want to control the number of results
you return in one listing operation, you can list blobs in pages of results. This example

Block blob of length 505623: 
https://<accountname>.blob.core.windows.net/photos/photo1.jpg 

Download blobs

// Retrieve reference to a blob named "myblob.txt". 
let blobToDownload = container.GetBlobClient("myblob.txt") 

// Save blob contents to a file. 
do 
    use fileStream = File.OpenWrite("path/download.txt")
    blobToDownload.DownloadTo(fileStream) 

let text = blobToDownload.DownloadContent().Value.Content.ToString() 

Delete blobs

// Retrieve reference to a blob named "myblob.txt". 
let blobToDelete = container.GetBlobClient("myblob.txt") 

// Delete the blob. 
blobToDelete.Delete() 

List blobs in pages asynchronously



shows how to return results in pages.

This example shows a hierarchical listing, by using the GetBlobsByHierarchy  method of
the BlobClient  .

F#

We can now use this hierarchical listing routine as follows. First, upload some dummy
data (using the local file created earlier in this tutorial).

F#

Now, call the routine.

F#

An append blob is optimized for append operations, such as logging. Like a block blob,
an append blob is composed of blocks, but when you add a new block to an append
blob, it is always appended to the end of the blob. You cannot update or delete an
existing block in an append blob. The block IDs for an append blob are not exposed as
they are for a block blob.

let ListBlobsSegmentedInHierarchicalListing(container:BlobContainerClient) = 
        // List blobs to the console window, with paging. 
        printfn "List blobs in pages:" 

        // Call GetBlobsByHierarchy to return an async collection  
        // of blobs in this container. AsPages() method enumerate the values  
        //a Page<T> at a time. This may make multiple service requests. 

        for page in container.GetBlobsByHierarchy().AsPages() do 
            for blobHierarchyItem in page.Values do  
                printf $"The BlobItem is : {blobHierarchyItem.Blob.Name} " 

        printfn "" 

for i in 1 .. 100 do 
    let blob  = container.GetBlobClient($"myblob{i}.txt") 
    use fileStream = System.IO.File.OpenRead(localFile) 
    blob.Upload(localFile) 

ListBlobsSegmentedInHierarchicalListing container 

Writing to an append blob



Each block in an append blob can be a different size, up to a maximum of 4 MB, and an
append blob can include a maximum of 50,000 blocks. The maximum size of an append
blob is therefore slightly more than 195 GB (4 MB X 50,000 blocks).

The following example creates a new append blob and appends some data to it,
simulating a simple logging operation.

F#

See Understanding Block Blobs, Page Blobs, and Append Blobs for more information
about the differences between the three types of blobs.

// Get a reference to a container. 
let appendContainer = BlobContainerClient(storageConnString, "my-append-
blobs") 

// Create the container if it does not already exist. 
appendContainer.CreateIfNotExists() |> ignore 

// Get a reference to an append blob. 
let appendBlob = appendContainer.GetAppendBlobClient("append-blob.log") 

// Create the append blob. Note that if the blob already exists, the  
// CreateOrReplace() method will overwrite it. You can check whether the  
// blob exists to avoid overwriting it by using CloudAppendBlob.Exists(). 
appendBlob.CreateIfNotExists() 

let numBlocks = 10 

// Generate an array of random bytes. 
let rnd = Random() 
let bytesArray = Array.zeroCreate<byte>(numBlocks) 
rnd.NextBytes(bytesArray) 

// Simulate a logging operation by writing text data and byte data to the  
// end of the append blob. 
for i in 0 .. numBlocks - 1 do 
    let msg = sprintf $"Timestamp: {DateTime.UtcNow} \tLog Entry: 
{bytesArray.[i]}\n" 
    let array = Encoding.ASCII.GetBytes(msg); 
    use stream = new MemoryStream(array) 
    appendBlob.AppendBlock(stream) 

// Read the append blob to the console window. 
let downloadedText = appendBlob.DownloadContent().ToString() 
printfn $"{downloadedText}" 

Concurrent access

https://learn.microsoft.com/en-us/rest/api/storageservices/Understanding-Block-Blobs--Append-Blobs--and-Page-Blobs


To support concurrent access to a blob from multiple clients or multiple process
instances, you can use ETags or leases.

Etag - provides a way to detect that the blob or container has been modified by
another process

Lease - provides a way to obtain exclusive, renewable, write, or delete access to a
blob for a period of time

For more information, see Managing Concurrency in Microsoft Azure Storage .

Every blob in Azure storage must reside in a container. The container forms part of the
blob name. For example, mydata  is the name of the container in these sample blob URIs:

https://storagesample.blob.core.windows.net/mydata/blob1.txt

https://storagesample.blob.core.windows.net/mydata/photos/myphoto.jpg

A container name must be a valid DNS name, conforming to the following naming rules:

1. Container names must start with a letter or number, and can contain only letters,
numbers, and the dash (-) character.

2. Every dash (-) character must be immediately preceded and followed by a letter or
number; consecutive dashes are not permitted in container names.

3. All letters in a container name must be lowercase.
4. Container names must be from 3 through 63 characters long.

The name of a container must always be lowercase. If you include an upper-case letter
in a container name, or otherwise violate the container naming rules, you may receive a
400 error (Bad Request).

By default, Azure Storage keeps your data secure by limiting access to the account
owner, who is in possession of the account access keys. When you need to share blob
data in your storage account, it is important to do so without compromising the security
of your account access keys. Additionally, you can encrypt blob data to ensure that it is
secure going over the wire and in Azure Storage.

Naming containers

Managing security for blobs

Controlling access to blob data

https://azure.microsoft.com/blog/managing-concurrency-in-microsoft-azure-storage-2/


By default, the blob data in your storage account is accessible only to storage account
owner. Authenticating requests against Blob storage requires the account access key by
default. However, you might want to make certain blob data available to other users.

Azure Storage supports encrypting blob data both at the client and on the server.

Azure Storage APIs for .NET
Azure Storage Services REST API Reference
Get started with AzCopy
Configure Azure Storage connection strings
Quickstart: Use .NET to create a blob in object storage

Encrypting blob data

See also

https://learn.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://learn.microsoft.com/en-us/rest/api/storageservices/
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet


Get started with Azure Files using F#
Article • 09/27/2022

Azure Files is a service that offers file shares in the cloud using the standard Server
Message Block (SMB) protocol. Both SMB 2.1 and SMB 3.0 are supported. With Azure
Files, you can migrate legacy applications that rely on file shares to Azure quickly and
without costly rewrites. Applications running in Azure virtual machines or cloud services
or from on-premises clients can mount a file share in the cloud, just as a desktop
application mounts a typical SMB share. Any number of application components can
then mount and access the file storage share simultaneously.

For a conceptual overview of file storage, see the .NET guide for file storage.

To use this guide, you must first create an Azure storage account. You'll also need your
storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To
create an F# script, create a file with the .fsx  extension, for example files.fsx , in your
F# development environment.

F# Interactive, dotnet fsi , can be launched interactively, or it can be launched from the
command line to run a script. The command-line syntax is

.NET

Use #r  nuget:package name  to install the Azure.Storage.Blobs  and
Azure.Storage.Common  and Azure.Storage.Files  packages and open  namespaces. Such
as

Prerequisites

Create an F# script and start F# interactive

How to execute scripts

> dotnet fsi [options] [ script-file [arguments] ] 

Add packages in a script

https://learn.microsoft.com/en-us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-protocol-overview
https://learn.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-files
https://learn.microsoft.com/en-us/azure/storage/storage-create-storage-account


F#

Add the following open  statements to the top of the files.fsx  file:

F#

You'll need an Azure Storage connection string for this tutorial. For more information
about connection strings, see Configure Storage Connection Strings.

For the tutorial, you'll enter your connection string in your script, like this:

F#

The ShareClient  type enables you to programmatically use files stored in File storage.
Here's one way to create the service client:

F#

> #r "nuget: Azure.Storage.Blobs"
> #r "nuget: Azure.Storage.Common" 
> #r "nuget: Azure.Storage.Files"
open Azure.Storage.Blobs 
open Azure.Storage.Sas 
open Azure.Storage.Files 
open Azure.Storage.Files.Shares 
open Azure.Storage.Files.Shares.Models 

Add namespace declarations

open System 
open System.IO 
open Azure 
open Azure.Storage // Namespace for StorageSharedKeyCredential 
open Azure.Storage.Blobs // Namespace for BlobContainerClient 
open Azure.Storage.Sas // Namespace for ShareSasBuilder 
open Azure.Storage.Files.Shares // Namespace for File storage types 
open Azure.Storage.Files.Shares.Models // Namespace for 
ShareServiceProperties 

Get your connection string

let storageConnString = "..." // fill this in from your storage account 

Create the file service client

https://learn.microsoft.com/en-us/azure/storage/storage-configure-connection-string


Now you are ready to write code that reads data from and writes data to File storage.

This example shows how to create a file share if it does not already exist:

F#

Here, you get the directory. You create if it doesn't already exist.

F#

This example shows how to upload a file to the sample directory.

F#

let share = ShareClient(storageConnString, "shareName") 

Create a file share

share.CreateIfNotExistsAsync() 

Create a directory

// Get a reference to the directory 
let directory = share.GetDirectoryClient("directoryName") 

// Create the directory if it doesn't already exist 
directory.CreateIfNotExistsAsync() 

Upload a file to the sample directory

let file = directory.GetFileClient("fileName") 

let writeToFile localFilePath = 
    use stream = File.OpenRead(localFilePath) 
    file.Create(stream.Length) 
    file.UploadRange( 
        HttpRange(0L, stream.Length), 
        stream) 

writeToFile "localFilePath" 

Download a file to a local file



Here you download the file just created, appending the contents to a local file.

F#

The example below shows how to check the current usage for a share and how to set
the quota for the share.

F#

You can generate a shared access signature (SAS) for a file share or for an individual file.
You can also create a shared access policy on a file share to manage shared access
signatures. Creating a shared access permissions is recommended, as it provides a
means of revoking the SAS if it should be compromised.

Here, you create a shared access permissions on a share, and then set that permissions
to provide the constraints for a SAS on a file in the share.

F#

let download = file.Download() 

let copyTo saveDownloadPath = 
    use downStream = File.OpenWrite(saveDownloadPath) 
    download.Value.Content.CopyTo(downStream) 

copyTo "Save_Download_Path" 

Set the maximum size for a file share

// stats.Usage is current usage in GB 
let ONE_GIBIBYTE = 10_737_420_000L // Number of bytes in 1 gibibyte 
let stats = share.GetStatistics().Value 
let currentGiB = int (stats.ShareUsageInBytes / ONE_GIBIBYTE) 

// Set the quota to 10 GB plus current usage 
share.SetQuotaAsync(currentGiB + 10) 

// Remove the quota 
share.SetQuotaAsync(0) 

Generate a shared access signature for a file or file share

let accountName = "..." // Input your storage account name 
let accountKey = "..." // Input your storage account key

// Create a 24-hour read/write policy. 



For more information about creating and using shared access signatures, see Using
Shared Access Signatures (SAS) and Create and use a SAS with Blob storage.

You can copy a file to another file or to a blob, or a blob to a file. If you are copying a
blob to a file, or a file to a blob, you must use a shared access signature (SAS) to
authenticate the source object, even if you are copying within the same storage account.

Here, you copy a file to another file in the same share. Because this copy operation
copies between files in the same storage account, you can use Shared Key
authentication to perform the copy.

F#

let expiration = DateTimeOffset.UtcNow.AddHours(24.) 
let fileSAS = ShareSasBuilder( 
      ShareName = "shareName", 
      FilePath = "filePath", 
      Resource = "f", 
      ExpiresOn = expiration) 

// Set the permissions for the SAS 
let permissions = ShareFileSasPermissions.All 
fileSAS.SetPermissions(permissions) 

// Create a SharedKeyCredential that we can use to sign the SAS token 
let credential = StorageSharedKeyCredential(accountName, accountKey) 

// Build a SAS URI 
let fileSasUri = 
UriBuilder($"https://{accountName}.file.core.windows.net/{fileSAS.ShareName}
/{fileSAS.FilePath}") 
fileSasUri.Query = fileSAS.ToSasQueryParameters(credential).ToString() 

Copy files

Copy a file to another file

let sourceFile = ShareFileClient(storageConnString, "shareName", 
"sourceFilePath") 
let destFile = ShareFileClient(storageConnString, "shareName", 
"destFilePath") 
destFile.StartCopyAsync(sourceFile.Uri) 

Copy a file to a blob

https://learn.microsoft.com/en-us/azure/storage/storage-dotnet-shared-access-signature-part-1
https://learn.microsoft.com/en-us/azure/storage/storage-dotnet-shared-access-signature-part-2


Here, you create a file and copy it to a blob within the same storage account. You create
a SAS for the source file, which the service uses to authenticate access to the source file
during the copy operation.

F#

You can copy a blob to a file in the same way. If the source object is a blob, then create
a SAS to authenticate access to that blob during the copy operation.

Azure Storage Analytics supports metrics for File storage. With metrics data, you can
trace requests and diagnose issues.

You can enable metrics for File storage from the Azure portal , or you can do it from F#
like this:

F#

// Create a new file SAS 
let fileSASCopyToBlob = ShareSasBuilder( 
    ShareName = "shareName", 
    FilePath = "sourceFilePath", 
    Resource = "f", 
    ExpiresOn = DateTimeOffset.UtcNow.AddHours(24.)) 
let permissionsCopyToBlob = ShareFileSasPermissions.Read 
fileSASCopyToBlob.SetPermissions(permissionsCopyToBlob) 
let fileSasUriCopyToBlob = 
UriBuilder($"https://{accountName}.file.core.windows.net/{fileSASCopyToBlob.
ShareName}/{fileSASCopyToBlob.FilePath}") 

// Get a reference to the file. 
let sourceFileCopyToBlob = ShareFileClient(fileSasUriCopyToBlob.Uri) 

// Get a reference to the blob to which the file will be copied. 
let containerCopyToBlob = BlobContainerClient(storageConnString, 
"containerName"); 
containerCopyToBlob.CreateIfNotExists() 
let destBlob = containerCopyToBlob.GetBlobClient("blobName") 
destBlob.StartCopyFromUriAsync(sourceFileCopyToBlob.Uri) 

Troubleshooting File storage using metrics

// Instantiate a ShareServiceClient 
let shareService = ShareServiceClient(storageConnString); 

// Set metrics properties for File service 
let props = ShareServiceProperties() 

props.HourMetrics = ShareMetrics(
    Enabled = true, 

https://portal.azure.com/


For more information about Azure Files, see these links.

Azure Files Storage: a frictionless cloud SMB file system for Windows and Linux
How to use Azure Files with Linux

Using Azure PowerShell with Azure Storage
How to use AzCopy with Microsoft Azure Storage
Create, download, and list blobs with Azure CLI

Storage Client Library for .NET reference
File Service REST API reference

Azure Files storage is now generally available
Inside Azure Files Storage
Introducing Azure File Service
Persisting connections to Azure Files

    IncludeApis = true, 
    Version = "1.0", 
    RetentionPolicy = ShareRetentionPolicy(Enabled = true,Days = 14)) 

props.MinuteMetrics = ShareMetrics( 
    Enabled = true, 
    IncludeApis = true, 
    Version = "1.0", 
    RetentionPolicy = ShareRetentionPolicy(Enabled = true,Days = 7)) 

shareService.SetPropertiesAsync(props) 

Next steps

Conceptual articles and videos

Tooling support for File storage

Reference

Blog posts

https://azure.microsoft.com/resources/videos/azurecon-2015-azure-files-storage-a-frictionless-cloud-smb-file-system-for-windows-and-linux/
https://learn.microsoft.com/en-us/azure/storage/storage-how-to-use-files-linux
https://learn.microsoft.com/en-us/azure/storage/storage-powershell-guide-full
https://learn.microsoft.com/en-us/azure/storage/storage-use-azcopy
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli#create-and-manage-file-shares
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://learn.microsoft.com/en-us/rest/api/storageservices/fileservices/File-Service-REST-API
https://azure.microsoft.com/blog/azure-file-storage-now-generally-available/
https://azure.microsoft.com/blog/inside-azure-file-storage/
https://learn.microsoft.com/en-us/archive/blogs/windowsazurestorage/introducing-microsoft-azure-file-service
https://learn.microsoft.com/en-us/archive/blogs/windowsazurestorage/persisting-connections-to-microsoft-azure-files


Get started with Azure Queue Storage
using F#
Article • 07/07/2023

Azure Queue Storage provides cloud messaging between application components. In
designing applications for scale, application components are often decoupled, so that
they can scale independently. Queue storage delivers asynchronous messaging for
communication between application components, whether they are running in the
cloud, on the desktop, on an on-premises server, or on a mobile device. Queue storage
also supports managing asynchronous tasks and building process work flows.

This tutorial shows how to write F# code for some common tasks using Azure Queue
Storage. Tasks covered include creating and deleting queues and adding, reading, and
deleting queue messages.

For a conceptual overview of queue storage, see the .NET guide for queue storage.

To use this guide, you must first create an Azure storage account. You'll also need your
storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To
create an F# script, create a file with the .fsx  extension, for example queues.fsx , in
your F# development environment.

F# Interactive, dotnet fsi , can be launched interactively, or it can be launched from the
command line to run a script. The command-line syntax is

.NET

About this tutorial

Prerequisites

Create an F# script and start F# interactive

How to execute scripts

> dotnet fsi [options] [ script-file [arguments] ]

https://learn.microsoft.com/en-us/azure/storage/queues/storage-quickstart-queues-dotnet
https://learn.microsoft.com/en-us/azure/storage/storage-create-storage-account


Next, use #r  nuget:package name  to install the Azure.Storage.Queues  package and open
namespaces.Such as

F#

Add the following open  statements to the top of the queues.fsx  file:

F#

You'll need an Azure Storage connection string for this tutorial. For more information
about connection strings, see Configure Storage Connection Strings.

For the tutorial, you'll enter your connection string in your script, like this:

F#

The QueueClient  class enables you to retrieve queues stored in Queue storage. Here's
one way to create the client:

F#

Now you are ready to write code that reads data from and writes data to Queue storage.

Add packages in a script

> #r "nuget: Azure.Storage.Queues"
open Azure.Storage.Queues

Add namespace declarations

open Azure.Storage.Queues // Namespace for Queue storage types
open System
open System.Text

Get your connection string

let storageConnString = "..." // fill this in from your storage account

Create the queue service client

let queueClient = QueueClient(storageConnString, "myqueue")

https://learn.microsoft.com/en-us/azure/storage/storage-configure-connection-string


This example shows how to create a queue if it doesn't already exist:

F#

To insert a message into an existing queue, first create a new Message. Next, call the
SendMessage  method. A Message can be created from either a string (in UTF-8 format)
or a byte  array, like this:

F#

You can peek at the message in the front of a queue, without removing it from the
queue, by calling the PeekMessage  method.

F#

You can retrieve the message at the front of a queue for processing by calling the
ReceiveMessage  method.

F#

Create a queue

queueClient.CreateIfNotExists()

Insert a message into a queue

queueClient.SendMessage("Hello, World") // Insert a String message into a 
queue
queueClient.SendMessage(BinaryData.FromBytes(Encoding.UTF8.GetBytes("Hello, 
World"))) // Insert a BinaryData message into a queue

Peek at the next message

let peekedMessage = queueClient.PeekMessage()
let messageContents = peekedMessage.Value.Body.ToString()

Get the next message for processing

let updateMessage = queueClient.ReceiveMessage().Value



You later indicate successful processing of the message by using DeleteMessage .

You can change the contents of a retrieved message in-place in the queue. If the
message represents a work task, you could use this feature to update the status of the
work task. The following code updates the queue message with new contents, and sets
the visibility timeout to extend another 60 seconds. This saves the state of work
associated with the message, and gives the client another minute to continue working
on the message. You could use this technique to track multi-step workflows on queue
messages, without having to start over from the beginning if a processing step fails due
to hardware or software failure. Typically, you would keep a retry count as well, and if
the message is retried more than some number of times, you would delete it. This
protects against a message that triggers an application error each time it is processed.

F#

Your code de-queues a message from a queue in two steps. When you call
ReceiveMessage , you get the next message in a queue. A message returned from
ReceiveMessage  becomes invisible to any other code reading messages from this queue.
By default, this message stays invisible for 30 seconds. To finish removing the message
from the queue, you must also call DeleteMessage . This two-step process of removing a
message assures that if your code fails to process a message due to hardware or
software failure, another instance of your code can get the same message and try again.
Your code calls DeleteMessage  right after the message has been processed. All of the
Queue methods we've shown so far have Async  alternatives.

F#

Change the contents of a queued message

queueClient.UpdateMessage(
    updateMessage.MessageId,
    updateMessage.PopReceipt,
    "Updated contents.",
    TimeSpan.FromSeconds(60.0))

De-queue the next message

let deleteMessage = queueClient.ReceiveMessage().Value
queueClient.DeleteMessage(deleteMessage.MessageId, deleteMessage.PopReceipt)



This example shows how to use an async workflow with common Queue storage APIs.

F#

There are two ways you can customize message retrieval from a queue. First, you can
get a batch of messages (up to 32). Second, you can set a longer or shorter invisibility
timeout, allowing your code more or less time to fully process each message. The
following code example uses ReceiveMessages  to get 20 messages in one call and then
processes each message. It also sets the invisibility timeout to five minutes for each
message. The 5 minutes starts for all messages at the same time, so after 5 minutes have
passed since the call to ReceiveMessages , any messages that have not been deleted will
become visible again.

F#

You can get an estimate of the number of messages in a queue. The GetProperties
method asks the Queue service to retrieve the queue attributes, including the message

Use Async workflows with common Queue
storage APIs

async {
    let! exists = queueClient.CreateIfNotExistsAsync() |> Async.AwaitTask

    let! delAsyncMessage = queueClient.ReceiveMessageAsync() |> 
Async.AwaitTask

    // ... process the message here ...

    // Now indicate successful processing:
    queueClient.DeleteMessageAsync(delAsyncMessage.Value.MessageId, 
delAsyncMessage.Value.PopReceipt) |> Async.AwaitTask
}

Additional options for de-queuing messages

for dequeueMessage in queueClient.ReceiveMessages(20, 
Nullable(TimeSpan.FromMinutes(5.))).Value do
        // Process the message here.
        queueClient.DeleteMessage(dequeueMessage.MessageId, 
dequeueMessage.PopReceipt)

Get the queue length



count. The ApproximateMessagesCount  property returns the last value retrieved by the
GetProperties  method.

F#

To delete a queue and all the messages contained in it, call the Delete  method on the
queue object.

F#

If you're migrating from the old libraries, they Base64-encoded messages by default, but
the new libraries don't because it's more performant. For information on how to set up
encoding, see MessageEncoding.

Azure Storage APIs for .NET
Configure Azure Storage connection strings
Azure Storage Services REST API Reference

let properties = queueClient.GetProperties().Value
let count = properties.ApproximateMessagesCount

Delete a queue

queueClient.DeleteIfExists()

Note

See also

https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclientoptions.messageencoding#azure-storage-queues-queueclientoptions-messageencoding
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/rest/api/storageservices/Azure-Storage-Services-REST-API-Reference


Get started with Azure Table Storage
and the Azure Cosmos DB Table api
using F#
Article • 07/29/2022

Azure Table Storage is a service that stores structured NoSQL data in the cloud. Table
storage is a key/attribute store with a schemaless design. Because Table storage is
schemaless, it's easy to adapt your data as the needs of your application evolve. Access
to data is fast and cost-effective for all kinds of applications. Table storage is typically
significantly lower in cost than traditional SQL for similar volumes of data.

You can use Table storage to store flexible datasets, such as user data for web
applications, address books, device information, and any other type of metadata that
your service requires. You can store any number of entities in a table, and a storage
account may contain any number of tables, up to the capacity limit of the storage
account.

Azure Cosmos DB provides the Table API for applications that are written for Azure Table
Storage and that require premium capabilities such as:

Turnkey global distribution.
Dedicated throughput worldwide.
Single-digit millisecond latencies at the 99th percentile.
Guaranteed high availability.
Automatic secondary indexing.

Applications written for Azure Table Storage can migrate to Azure Cosmos DB by using
the Table API with no code changes and take advantage of premium capabilities. The
Table API has client SDKs available for .NET , Java , Python , and Node.js .

For more information, see Introduction to Azure Cosmos DB Table API.

This tutorial shows how to write F# code to do some common tasks using Azure Table
Storage or the Azure Cosmos DB Table API, including creating and deleting a table and
inserting, updating, deleting, and querying table data.

About this tutorial

Prerequisites

https://www.nuget.org/packages/Azure.Data.Tables/
https://mvnrepository.com/artifact/com.azure/azure-data-tables
https://pypi.org/project/azure-data-tables/
https://www.npmjs.com/package/@azure/data-tables
https://learn.microsoft.com/en-us/azure/cosmos-db/table-introduction


To use this guide, you must first create an Azure storage account or Azure Cosmos DB
account .

The samples in this article can be used in either an F# application or an F# script. To
create an F# script, create a file with the .fsx  extension, for example, tables.fsx , in
your F# development environment.

F# Interactive, dotnet fsi , can be launched interactively, or it can be launched from the
command line to run a script. The command-line syntax is

.NET

Next, use #r  nuget:package name  to install the Azure.Data.Tables  package and open
namespaces. Such as

F#

Add the following open  statements to the top of the tables.fsx  file:

F#

Create an F# script and start F# interactive

How to execute scripts

> dotnet fsi [options] [ script-file [arguments] ] 

Add packages in a script

> #r "nuget: Azure.Data.Tables" 
open Azure.Data.Tables 

Add namespace declarations

open System 
open Azure 
open Azure.Data.Tables // Namespace for Table storage types 

Get your Azure Storage connection string

https://learn.microsoft.com/en-us/azure/storage/storage-create-storage-account
https://azure.microsoft.com/free/cosmos-db/


If you're connecting to Azure Storage Table service, you'll need your connection string
for this tutorial. You can copy your connection string from the Azure portal. For more
information about connection strings, see Configure Storage Connection Strings.

If you're connecting to Azure Cosmos DB, you'll need your connection string for this
tutorial. You can copy your connection string from the Azure portal. In the Azure portal,
in your Cosmos DB account, go to Settings > Connection String, and select the Copy
button to copy your Primary Connection String.

For the tutorial, enter your connection string in your script, like the following example:

F#

The TableServiceClient  class enables you to retrieve tables and entities in Table
storage. Here's one way to create the service client:

F#

Now you are ready to write code that reads data from and writes data to Table storage.

This example shows how to create a table if it does not already exist:

F#

Get your Azure Cosmos DB connection string

let storageConnString = "UseDevelopmentStorage=true" // fill this in from 
your storage account 

Create the table service client

let tableClient = TableServiceClient storageConnString 

Create a table

// Retrieve a reference to the table. 
let table = tableClient.GetTableClient "people" 

// Create the table if it doesn't exist. 
table.CreateIfNotExists () |> ignore 

Add an entity to a table

https://learn.microsoft.com/en-us/azure/storage/storage-configure-connection-string


An entity has to have a type that implements ITableEntity . You can extend
ITableEntity  in any way you like, but your type must have a parameter-less constructor.
Only properties that have both get  and set  are stored in your Azure Table.

An entity's partition and row key uniquely identify the entity in the table. Entities with
the same partition key can be queried faster than those with different partition keys, but
using diverse partition keys allows for greater scalability of parallel operations.

Here's an example of a Customer  that uses the lastName  as the partition key and the
firstName  as the row key.

F#

Now add Customer  to the table. To do so, we can use the AddEntity() method.

F#

You can insert a batch of entities into a table using a single write operation. Batch
operations allow you to combine operations into a single execution, but they have some
restrictions:

You can perform updates, deletes, and inserts in the same batch operation.
A batch operation can include up to 100 entities.
All entities in a batch operation must have the same partition key.
While it is possible to perform a query in a batch operation, it must be the only
operation in the batch.

type Customer (firstName, lastName, email: string, phone: string) = 
    interface ITableEntity with 
        member val ETag = ETag "" with get, set 
        member val PartitionKey = "" with get, set 
        member val RowKey = "" with get, set 
        member val Timestamp = Nullable() with get, set 

    new() = Customer(null, null, null, null) 
    member val Email = email with get, set 
    member val PhoneNumber = phone with get, set 
    member val PartitionKey = lastName with get, set 
    member val RowKey = firstName with get, set 

let customer = Customer ("Walter", "Harp", "Walter@contoso.com", "425-555-
0101") 
table.AddEntity customer 

Insert a batch of entities



Here's some code that combines two inserts into a batch operation:

F#

To query a table for all entities in a partition, use a Query<T>  object. Here, you filter for
entities where "Smith" is the partition key.

F#

If you don't want to query all the entities in a partition, you can specify a range by
combining the partition key filter with a row key filter. Here, you use two filters to get all
entities in the "Smith" partition where the row key (first name) starts with a letter earlier
than "M" in the alphabet.

F#

To retrieve a single, specific entity, use GetEntityAsync  to specify the customer "Ben
Smith". Instead of a collection, you get back a Customer . Specifying both the partition
key and the row key in a query is the fastest way to retrieve a single entity from the
Table service.

let customers = 
    [ 
        Customer("Jeff", "Smith", "Jeff@contoso.com", "425-555-0102") 
        Customer("Ben", "Smith", "Ben@contoso.com", "425-555-0103") 
    ] 

// Add the entities to be added to the batch and submit it in a transaction. 
customers 
|> List.map (fun customer -> TableTransactionAction 
(TableTransactionActionType.Add, customer)) 
|> table.SubmitTransaction 

Retrieve all entities in a partition

table.Query<Customer> "PartitionKey eq 'Smith'" 

Retrieve a range of entities in a partition

table.Query<Customer> "PartitionKey eq 'Smith' and RowKey lt 'J'" 

Retrieve a single entity



F#

You now print the results:

F#

To update an entity, retrieve it from the Table service, modify the entity object, and then
save the changes back to the Table service using a TableUpdateMode.Replace  operation.
This causes the entity to be fully replaced on the server, unless the entity on the server
has changed since it was retrieved, in which case the operation fails. This failure is to
prevent your application from inadvertently overwriting changes from other sources.

F#

Sometimes, you don't know whether an entity exists in the table. And if it does, the
current values stored in it are no longer needed. You can use UpsertEntity  method to
create the entity or replace it if it exists, regardless of its state.

F#

let singleResult = table.GetEntity<Customer>("Smith", "Ben").Value 

// Evaluate this value to print it out into the F# Interactive console 
singleResult 

Update an entity

singleResult.PhoneNumber <- "425-555-0103" 
try 
    table.UpdateEntity (singleResult, ETag "", TableUpdateMode.Replace) |> 
ignore 
    printfn "Update succeeded" 
with 
| :? RequestFailedException as e -> 
    printfn $"Update failed: {e.Status} - {e.ErrorCode}" 

Upsert an entity

singleResult.PhoneNumber <- "425-555-0104" 
table.UpsertEntity (singleResult, TableUpdateMode.Replace) 

Query a subset of entity properties



A table query can retrieve just a few properties from an entity instead of all of them. This
technique, called projection, can improve query performance, especially for large
entities. Here, you return only email addresses using Query<T>  and Select . Projection is
not supported on the local storage emulator, so this code runs only when you're using
an account on the Table service.

F#

If you are reading a large number of entities, and you want to process them as they are
retrieved rather than waiting for them all to return, you can use a segmented query.
Here, you return results in pages by using an async workflow so that execution is not
blocked while you're waiting for a large set of results to return.

F#

You can delete an entity after you have retrieved it. As with updating an entity, this fails
if the entity has changed since you retrieved it.

F#

You can delete a table from a storage account. A table that has been deleted will be
unavailable to be re-created for some time following the deletion.

query { 
    for customer in table.Query<Customer> () do 
    select customer.Email 
} 

Retrieve entities in pages asynchronously

let pagesResults = table.Query<Customer> () 

for page in pagesResults.AsPages () do 
    printfn "This is a new page!"
    for customer in page.Values do 
        printfn $"customer: {customer.RowKey} {customer.PartitionKey}" 

Delete an entity

table.DeleteEntity ("Smith", "Ben") 

Delete a table



F#

Introduction to Azure Cosmos DB Table API
Storage Client Library for .NET reference
Configuring Connection Strings

table.Delete () 

See also

https://learn.microsoft.com/en-us/azure/cosmos-db/table-introduction
https://learn.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string


Using other Azure services with F#
Article • 11/05/2021

In the following sections, you will find resources on how to use a range of other Azure
services with F#.

Azure supports a wide range of virtual machine (VM) configurations, see Linux and
Azure Virtual Machines .

To install F# on a virtual machine for execution, compilation and/or scripting see Using
F# on Linux  and Using F# on Windows .

Azure Cosmos DB  is a NoSQL service for highly available, globally distributed apps.

Azure Cosmos DB can be used with F# in two ways:

1. Through the creation of F# Azure Functions which react to or cause changes to
Azure Cosmos DB collections. See Azure Cosmos DB bindings for Azure Functions,
or

2. By using the Azure Cosmos DB .NET SDK for SQL API. The related samples are in
C#.

Azure Event Hubs  provide cloud-scale telemetry ingestion from websites, apps, and
devices.

Azure Event Hubs can be used with F# in two ways:

７ Note

If a particular Azure service isn't in this documentation set, please consult either the
Azure Functions or .NET documentation for that service. Some Azure services are
language-independent and require no language-specific documentation and are
not listed here.

Using Azure Virtual Machines with F#

Using Azure Cosmos DB with F#

Using Azure Event Hubs with F#

https://azure.microsoft.com/services/virtual-machines/
https://fsharp.org/use/linux
https://fsharp.org/use/windows
https://azure.microsoft.com/services/cosmos-db
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-cosmosdb
https://learn.microsoft.com/en-us/azure/cosmos-db/sql-api-sdk-dotnet
https://azure.microsoft.com/services/event-hubs/


1. Through the creation of F# Azure Functions which are triggered by events. See
Azure Function triggers for Event Hubs, or

2. By using the .NET SDK for Azure. Note these examples are in C#.

Azure Functions  is a solution for easily running small pieces of code, or "functions," in
the cloud. You can write just the code you need for the problem at hand, without
worrying about a whole application or the infrastructure to run it. Your functions are
connected to events in Azure storage and other cloud-hosted resources. Data flows into
your F# functions via function arguments. You can use your development language of
choice, trusting Azure to scale as needed.

Azure Functions provide efficient, reactive, scalable execution of F# code. See the Azure
Functions F# Developer Reference for reference documentation on how to use F# with
Azure Functions.

Azure App Service  is a cloud platform to build powerful web and mobile apps that
connect to data anywhere, in the cloud or on-premises.

F# Azure Web API example
Hosting F# in a web application on Azure

Azure Notification Hubs are multiplatform, scaled-out push infrastructure that enable
you to send mobile push notifications from any backend (in the cloud or on-premises)
to any mobile platform.

Azure Notification Hubs can be used with F# in two ways:

1. Through the creation of F# Azure Functions which send results to a notification
hub. See Azure Function output triggers for Notification Hubs, or

2. By using the .NET SDK for Azure. Note these examples are in C#.

A Webhook  is a callback triggered via a web request. Webhooks are used by sites
such as GitHub to signal events.

Using Azure Functions with F#

Using Azure App Service with F#

Using Azure Notification Hubs with F#

Implementing WebHooks on Azure with F#

https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-csharp-ephcs-getstarted
https://azure.microsoft.com/services/functions/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-fsharp
https://azure.microsoft.com/services/app-service/
https://github.com/fsprojects/azure-webapi-example
https://github.com/isaacabraham/fsharp-demonstrator
https://learn.microsoft.com/en-us/azure/notification-hubs/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-notification-hubs
https://learn.microsoft.com/en-us/archive/blogs/azuremobile/push-notifications-using-notification-hub-and-net-backend
https://en.wikipedia.org/wiki/Webhook


Webhooks can be implemented in F# and hosted on Azure via an Azure Function in F#
with a Webhook Binding.

Webjobs are programs you can run in your App Service web app in three ways: on
demand, continuously, or on a schedule.

Example F# Webjob

Timer triggers call functions based on a schedule, one time or recurring.

Timers can be implemented in F# and hosted on Azure via an Azure Function in F# with
a Timer Trigger.

Full documentation on all Azure services

Using Webjobs with F#

Implementing Timers on Azure with F#

Other resources

https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook
https://learn.microsoft.com/en-us/azure/app-service-web/web-sites-create-web-jobs
https://github.com/jrr/webjob-project-examples
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://learn.microsoft.com/en-us/azure/

	F# documentation
	What is F#
	F# language strategy
	Get started
	Install F#
	F# in Visual Studio
	F# in Visual Studio Code
	F# with the .NET CLI
	F# in Visual Studio for Mac

	F# language guide
	Overview
	Literals
	Strings
	Interpolated strings

	Values
	let Bindings
	Overview
	do Bindings
	Fixed keyword

	Functions
	Functions
	Recursive Functions
	Inline Functions
	Function Expressions

	Loops and conditionals
	if...then...else
	for...in loops
	for...to loops
	while...do loops

	Pattern matching
	Overview
	Match Expressions
	Active Patterns

	Exception handling
	Overview
	Exception Types
	The try...with Expression
	The try...finally Expression
	The use Keyword
	The raise & reraise Functions
	The failwith Function
	The invalidArg Function
	Assertions

	Types and inference
	Overview
	Basic Types
	Unit Type
	Type Inference
	Type Abbreviations
	Casting and Conversions
	Generics
	Automatic Generalization
	Constraints
	Statically Resolved Type Parameters
	Flexible Types
	Units of Measure
	Byrefs

	Tuples, options, results
	Tuples
	Options
	Value Options
	Results

	Collections
	Collections
	Lists
	Arrays
	Slices
	Sequences
	Reference cells

	Records and unions
	Records
	Copy and update expressions
	Anonymous records

	Discriminated unions

	Object programming
	Classes
	Interfaces
	Members
	Constructors
	let bindings in classes
	do bindings in classes
	Properties
	Methods
	Method parameters
	Indexed properties
	Operator overloading
	Explicit fields
	Object expressions
	Type extensions
	Inheritance
	Abstract classes

	Structs
	Struct types

	Computations
	Computation expressions
	Async expressions
	Task expressions
	Lazy expressions

	Organizing code
	Namespaces
	Modules
	open declarations
	Signature files
	Access control
	XML documentation
	Entry point

	Queries
	Query expressions

	Interoperability
	Null values
	Nullable value types
	Delegates
	Enums
	Events
	External functions

	Reflection
	Attributes
	Code quotations
	nameof
	Caller information
	Source line, file, and path identifiers
	Plain text formatting

	Type providers
	Overview
	Create a Type Provider
	Type provider Security
	Troubleshooting Type Providers


	F# language reference
	Compiler directives
	Keyword reference
	Verbose syntax
	Symbol and operator reference
	Overview
	Arithmetic operators
	Boolean operators
	Bitwise operators
	Nullable operators

	Compiler options
	F# Interactive options
	Compiler errors and warnings

	Tutorials
	Tour of F#
	Functional programming concepts
	Asynchronous programming
	Using functions

	What's new
	F# 8
	F# 7
	F# 6
	F# 5
	F# 4.7
	F# 4.6
	F# 4.5

	F# tools
	F# Development tools
	F# Interactive
	F# Notebooks
	F# for JavaScript

	F# style guide
	Overview
	F# code formatting guidelines
	F# coding conventions
	F# component design guidelines

	F# for machine learning
	F# for web development
	F# for Azure
	Azure resource management
	Azure storage
	Blob storage
	File storage
	Queue storage
	Table storage

	Other Azure services


