
Tell us about your PDF experience.

Microsoft 365 PDF Accessibility
Article • 11/26/2024

Microsoft 365 Apps for Windows including Word, Excel, and PowerPoint allow users to
export documents in PDF format. Furthermore, add-ins can use the object model to
automate PDF export using either the exporter built in to each app or their own exporter
that implements the IMsoDocExporter COM interface.

An important part of exporting to PDF is writing PDF/UA tags that provide the
semantic information to preserve the accessibility of the content. This allows people with
disabilities to consume the PDF using assistive technologies such as screen readers. This
documentation provides details about the PDF/UA tags written by the exporter built in
to Word, Excel, and PowerPoint as well as the APIs that add-ins need to implement to
provide their own exporter.

Extending Office PDF Export

Office 2024 PDF Accessibility Improvements

Excel PDF Accessibility

Excel.Workbook.ExportAsFixedFormat

PowerPoint PDF Accessibility

PowerPoint.Presentation.ExportAsFixedFormat3

Word PDF Accessibility

Extending Office PDF Export

Office 2024

Excel

PowerPoint

Word

https://www.iso.org/standard/64599.html
https://www.iso.org/standard/64599.html
https://learn.microsoft.com/en-us/windows/win32/accessibility/accessibility-atdev
https://learn.microsoft.com/en-us/office/vba/api/excel.workbook.exportasfixedformat
https://learn.microsoft.com/en-us/office/vba/api/powerpoint.presentation.exportasfixedformat3
https://aka.ms/learn-pdf-feedback

Word.Document.ExportAsFixedFormat2

https://learn.microsoft.com/en-us/office/vba/api/word.document.exportasfixedformat2

Extending Office PDF Export
Article • 11/26/2024

Summary: Create a COM add-in for Office 2024, Office LTSC 2024, and Microsoft 365
Version 2408 and later applications with your own logic for exporting to PDF format. The
technique described requires knowledge of C++ and COM.

Applies to: Excel, OneNote, PowerPoint, Publisher, Visio, and Word in Office 2024, Office
LTSC 2024, Microsoft 365 Version 2408 and later.

This article explains how third-party software developers can hook in to the fixed-format
export feature available in the Office 2024, Office LTSC 2024, Microsoft 365 Version 2408
and later applications so that they can add their own exporter.

The applications include built in exporters for Microsoft XML Paper Specification (XPS)
and Portable Document Format (PDF). Fixed-file formats expose the content of a
document in a paginated form that is both application-independent and platform-
independent.

Software developers can add their own exporter, by writing an Office add-in that
implements the IMsoDocExporter COM interface. This article describes
IMsoDocExporter and its interaction with a hosting Microsoft 365 application, such as
Word.

Fixed-format export has been available since the Office 2007 release, and this article
includes information on the features that are new in the Office 2024, Office LTSC 2024,
Microsoft 365 Version 2408 releases.

Important

The fixed-format export feature is available in all the applications listed in the preceding Applies
to section. However, the discussion below uses Publisher as an example application, except in
those cases where an explanation is more relevant to a different application.

Introduction to the Office (2024) Fixed-Format
Export Feature

ﾉ Expand table

Initializing Add-Ins

https://learn.microsoft.com/en-us/previous-versions/office/developer/office-2007/aa338206(v=office.12)

For the user to access add-in functionality, the add-in should add a new menu item or a
new toolbar button to application. When the user selects this menu item or button, the
add-in should use the Microsoft Office Object Model to obtain a pointer to the active
document. It should then call the active document's ExportAsFixedFormat method with
an IUnknown interface pointer that supports the IMsoDocExporter interface through a
call to the QueryInterface method. The object model parameter for the interface pointer
is a VARIANT with VT_UNKNOWN type.

Note

For OneNote, the add-in calls the Publish method with a string parameter that is the class ID of
the add-in's implementation of the IMsoDocExporter interface. OneNote then calls
CoCreateInstance with the class ID to get an IUnknown interface pointer from the add-in's class
factory.

After Publisher has a pointer to the IMsoDocExporter interface, it calls back the add-in
through the methods exposed by IMsoDocExporter. Through these callbacks, Word
provides the add-in with document content and other information about the document.

An excellent source of information about building COM add-ins for Microsoft Office
applications is the codeproject.com article Building an Office2K COM Add-in with
VC++/ATL .

The IMsoDocExporter interface exposes the following methods.

Table 1. Methods exposed by the IMsoDocExporter interface

Method Description

HrCreateDoc Called at the start of the fixed-format export process.

HrAddPageFromEmf Called to pass the add-in an enhanced metafile (EMF) that
represents a rendered view of the content to export.

HrAddDocumentMetadataString Called to specify string-format metadata for the document.

HrAddDocumentMetadataDate Called to specify date-format metadata for the document.

HrSetDefaultLcid Called to specify the default locale ID (LCID) for the content to

ﾉ Expand table

IMsoDocExporter

ﾉ Expand table

http://www.codeproject.com/kb/com/outlookaddin.aspx
http://www.codeproject.com/kb/com/outlookaddin.aspx
http://www.codeproject.com/kb/com/outlookaddin.aspx

Method Description

export.

HrAddOutlineNode Called to specify user-navigable document outline
information.

HrGetPageBreaks Called to obtain pagination information from the add-in.

HrSetPageHeightForPagination Called to specify the page height to enable the add-in to
paginate the document.

HrFinalize Called at the end of the fixed-format export process. Allows
the add-in to perform any final processing.

HrBeginStructNode Called to pass the add-in the starting structure for a
document-structure node that spans multiple pages.

HrEndStructNode Called to pass the add-in the ending structure for a
document-structure node that spans multiple pages.

EnableCancel Called to pass the add-in a pointer to an IDocExCancel
interface.

GetOutputOption Called to retrieve fixed-format output options.

SetOutputOption Called by Office to set fixed-format output options.

SetDocExporterSite Called to provide the add-in with a pointer to an
IMsoDocExporterSite interface for extended color support.

In addition, IMsoDocExporter also exposes the following methods that are inherited
from the IUnknown interface.

Table 2. Methods inherited from the IUnknown interface

Method Description

AddRef Increments the reference count.

QueryInterface Returns pointers to supported interfaces. The add-in's implementation of
QueryInterface should support returning an IMsoDocExporter interface pointer
from IID_IMsoPdfWriter.

Release Decrements the reference count.

For information about implementing the IUnknown interface methods, see IUnknown
(COM).

ﾉ Expand table

The following diagram shows the sequence in which Publisher calls the methods
exposed in IMsoDocExporter. Not all of the methods are used by each Microsoft Office
application and not all of the methods are used for every document that is exported.

Figure 1. Calling methods from the IMsoDocExporter interface

The following sections further describe the methods exposed by the IMsoDocExporter
interface. The methods are described in approximately the order in which they would be
called by Publisher.

Publisher calls the GetOutputOption and SetOutputOption methods to retrieve and set
output options for the fixed-format export process.

Call Flow

GetOutputOption and SetOutputOption

C++

The docexoption parameter specifies the output option and the (p)dwVal parameter
specifies the value for the option.

While the built in exporter in Office uses GetOutputOption and SetOutputOption, an
add-in can implement its own method of getting and setting options and it own user
experience for the options.

For the implementation of fixed-format export in Office, Publisher calls the
GetOutputOption method to retrieve output options for display to the user in the
Publish as PDF or XPS dialog box. For add-ins developed by third-party software
developers, Publisher calls GetOutputOption with only the
msodocexOptionTargetDPIColor value. This is the only value that an add-in needs to
support. If the add-in's implementation of GetOutputOption is called with this value, it
should return the target dots-per-inch (DPI) for 3-D effect rasterization.

Microsoft Office Calls SetOutputOption for Fixed-Format Add-Ins

For both the implementation of fixed-format export in Office and for add-in
implementations, Publisher calls SetOutputOption at the beginning of the fixed-format
export process. In the implementation in Office, the parameter values passed in specify
fixed-format output options. However, if the add-in implements its own set of options,
the add-in can disregard the options passed to it by Publisher.

Publisher calls the EnableCancel method to pass the add-in a pointer to an
IMsoDocExCancel interface. The add-in can use this interface to query whether a user
chooses to cancel a long document-export operation.

void GetOutputOption(
 MSODOCEXOPTION docexoption,
 DWORD* pdwVal
);
void SetOutputOption(
 MSODOCEXOPTION docexoption,
 DWORD dwVal
);

Microsoft Office Calls GetOutputOption Only with
msodocexOptionTargetDPIColor for Fixed-Format Add-
Ins

EnableCancel

C++

Publisher calls the HrBeginStructNode method to specify the start of a document-
structure node for content that encompasses multiple complete pages in the document.
Document-structure nodes for elements of the document that reside entirely within a
page (for example, paragraphs) are embedded by Publisher in the enhanced metafile
(EMF) itself using the DocExComment_BeginStructNode and
DocExComment_EndStructNode structures. For more information about document-
structure nodes, see the sections HrAddPageFromEmf and
DocExComment_BeginStructNode in this article.

C++

The idNodeParent parameter specifies the ID of the node that is the parent of the node
being passed to the add-in. If this parameter is 0, the node is located under the root of
the document-structure tree. Multiple sibling nodes may be located under the root. If
this parameter is -1, the node is located under the currently open node, that is, under
the last node specified by HrBeginStructNode that has not been closed by a call to
HrEndStructNode.

The iSortOrder parameter specifies the sort order of the structure node among its
siblings. No two nodes can have the same sort order. However, the set of integers that
constitute the sort order need not be contiguous. A value of -1 indicates that the sibling
sort order is the same order in which the nodes appear in the EMF comments.

The pnode parameter points to an MSODOCEXSTRUCTNODE structure, which has the
following declaration:

C++

void EnableCancel(
 IMsoDocExCancel* pdec
);

HrBeginStructNode

HRESULT HrBeginStructNode(
 int idNodeParent,
 int iSortOrder,
 const MSODOCEXSTRUCTNODE* pnode,
 BOOL fNoEndNode
);

The idNode member specifies the ID of the node being passed in the call to
HrBeginStructNode. This member may not have a value of 0. A value of -1 indicates that
child nodes do not use the idNodeParent parameter to specify this node as their parent.
Instead, this node can be a parent only by enclosing child nodes in the EMF. Multiple
nodes can have an ID of -1. If the ID is not -1, the value is unique across the document.

The embedded union at the end of the MSODOCEXSTRUCTNODE is interpreted
differently depending on the type of node:

iHeadingLevel is the heading level for an msodocexStructTypeHeading.
idPara is the paragraph id for a P, TOCI, or ListBody.
idDropCap is the id of an msodocexStructTypeDropCap.
iPage is the page number for an msodocexStructTypePage.
bt is the line break type for an msodocexStructTypeTextLine.
iListLevel is the list level for an msodocexStructTypeList or
msodocexStructTypeListItem.
listType is the list type for an msodocexStructTypeListItem.
idAtn is the id of an msodocexStructTypeAnnotationBegin or
msodocexStructTypeAnnotationEnd.
cpLim is used to determine the nesting order of tables within tables for an
msodocexStructTypeTable, msodocexStructTypeTOC, or
msodocexStructTypeListBody.

typedef struct _MsoDocexStructNode
{
 int idNode;
 MSODOCEXSTRUCTTYPE nodetype;
 WCHAR* pwchAltText;
 union
 {
 int iHeadingLevel;
 ULONG idPara;
 ULONG idDropCap;
 int iPage;
 WCHAR* pwchActualText;
 MSODOCEXLINEBREAKTYPE bt;
 int iListLevel;
 MSODOCEXLISTTYPE listType;
 ULONG idAtn;
 long cpLim;
 int shapeProperty;
 MsoDocexTableAttr tableAttr;
 WCHAR* idTableHeader;
 int iTargetParentId;
 };
} MSODOCEXSTRUCTNODE;

shapeProperty is for a msodocexStructTypeFigure where the content is a shape,
text box, or table cell and contains bit fields from the MSODOCEXSHAPEPROPERTY
enumeration.
tableAttr is the table cell attributes for a msodocexStructTypeTH or
msodocexStructTypeTD.
idTableHeader is the unique id for an msodocexStructTypeTH or
msodocexStructTypeTD.
iTargetParentId is the id of the node to reparent an msodocexStructTypeDiagram
to.

Table 3. Enumerated values of MSODOCEXLINEBREAKTYPE

Value Description

msodocexLineBreakTypeNormal Normal line break.

msodocexLineBreakTypeManual Manual line break.

msodocexLineBreakTypeEOP End of paragraph.

Table 4. Enumerated values of MSODOCEXLISTTYPE

Value Description

msodocexListTypeNone No bullets or numbering.

msodocexListTypeBulletDisc Disc-shaped bullets.

msodocexListTypeBulletCircle Circle-shaped bullets.

msodocexListTypeBulletSquare Square-shaped bullets.

msodocexListTypeBulletDecimal Decimal numbering.

msodocexListTypeUpperRoman Uppercase Roman numeral numbering.

msodocexListTypeLowerRoman Lowercase Roman numberal numbering.

msodocexListTypeUpperAlpha Uppercase alphabetic numbering.

msodocexListTypeLowerAlpha Lowercase alphabetic numbering.

Table 5. Enumerated values of MSODOCEXSHAPEPROPERTY bit fields

ﾉ Expand table

ﾉ Expand table

Value Numeric Value Description

msodocexShape 0x00000001 The object is a shape or text box.

msodocexShapeText 0x00000002 The object has non-whitespace text.

msodocexShapePath 0x00000004 The object has a fill and/or outline.

msodocexShapeAltText 0x00000008 The object has Alt Text.

msodocexShapeEquation 0x00000010 The object has text that contains an equation.

msodocexShapeTabelCell 0x00000020 The object is a cell in a table.

The MsoDocexTableAttr structure fits in 32 bits and includes the row and column span
and header scope information for a table cell.

C++

The members of MsoDocexTableAttr structure are as follows:

MaxSpanBits Specifies the number of bits available for the rowSpan and colSpan
values, which is 15.

MaxSpanValue Specifies the maximum value that can be specified for the
rowSpan and colSpan.

rowSpan Specifies the number of rows that a table cell spans.

fRowScope Specifies whether the header is Row/Both or Column.

colSpan Specifies the number of columns that a table cell spans.

ﾉ Expand table

MsoDocexTableAttr

struct MsoDocexTableAttr
{
 static constexpr unsigned int MaxSpanBits = sizeof(unsigned int) * 8 / 2
- 1;
 static constexpr unsigned int MaxSpanValue = (1u << MaxSpanBits) - 1;

 unsigned int rowSpan : MaxSpanBits;
 unsigned int fRowScope : 1;
 unsigned int colSpan : MaxSpanBits;
 unsigned int fColScope : 1;
};

fColScope Specifies whether the header is Column/Both or Row.

For table structure nodes, the union is interpreted as an ordering of the table ends
relative to other tables by using cpLim, which can be used to determine the nesting
order of tables within tables.

In the context of the DocExComment_BeginStructNode, the add-in can ignore the
pwchActualText member of this union.

The pwchAltText member specifies alternate text for the structure node.

The fNoEndNode parameter to HrBeginStructNode specifies whether Publisher calls the
HrEndStructNode method to mark the end of the structure node. If fNoEndNode is false,
then Publisher calls HrEndStructNode to close off the content bounded by the node. If
this parameter has a true value, then the node does not bound any content.

The fNoEndNode parameter affects the interpretation of the parent ID value of
subsequent nodes. If fNoEndNode is false, nodes inserted between this call to
HrBeginStructNode and the subsequent call to HrEndStructNode, and that have a
parent ID of -1, are children of this node. However, if fNoEndNode is true, then nodes
inserted after this call to HrBeginStructNode, and that have a parent ID of -1, are not
children of this node but are children of the next-most-recently specified node that has
fNoEndNode equal to false.

Document structure nodes can be nested to arbitrary depth.

The nodes specified by HrBeginStructNode and those specified by
DocExComment_BeginStructNode share the same ID space and exist in the same
document structure tree. HrBeginStructNode and DocExComment_BeginStructNode
are two alternative ways of adding nodes to this tree. For example, if the most recently
opened node was opened by HrBeginStructNode and the next node encountered is
from a DocExComment_BeginStructNode EMFcommentrecord with idNodeParent equal
to -1, it means that the node from HrBeginStructNode is the parent of the node from
the DocExComment_BeginStructNode record.

Publisher calls the HrEndStructNode method to specify the end of a document-
structure node for content that encompasses multiple pages in the document. The
structure node ended by the HrEndStructNode was begun previously by a call to the
HrBeginStructNode method. For more information, see HrBeginStructNode in this
article.

HrEndStructNode

C++

Publisher calls the HrCreateDoc method to specify the creation of a new, empty fixed-
format document.

C++

Publisher calls the HrCreateDoc method at the beginning of the fixed-format export
process to specify the creation of an empty fixed-format document. The wzDocExFile
parameter specifies a name for the output file to which to write the fixed-format
document.

For an add-in implementation, Publisher calls HrCreateDoc with the file name that the
add-in provided in the call to the ExportToFixedFormat method in the Microsoft Office
object model. However, because add-ins typically provide configuration UI to allow the
user to specify an output file name, the add-in could disregard this file name during the
export process.

For Microsoft Office applications that require the add-in to paginate the document,
HrCreateDoc is called twice, once at the start of the pagination-calling sequence, and
again after the add-in has paginated the document. For more information, see the
descriptions for the HrSetPageHeightForPagination method and the HrGetPageBreaks
method.

Publisher calls the HrSetDefaultLcid method to specify the default locale ID (LCID) for
the content to be exported.

C++

HRESULT HrEndStructNode();

HrCreateDoc

HRESULT HrCreateDoc(
 const WCHAR* wzDocExFile
);

HrSetDefaultLcid

HRESULT HrSetDefaultLcid(
 DWORD lcid
);

For a list of valid LCIDs, see List of Locale ID (LCID) Values as Assigned by Microsoft.

Publisher calls the HrAddPageFromEmf method to pass the add-in a handle to an in-
memory EMF that represents the content in the document to export.

C++

The EMF passed by Microsoft Office to the add-in is the primary source of the content
that the add-in exports as a fixed-format file. Microsoft Office calls HrAddPageFromEmf
once for each page of content in the application's source document.

An EMF is a sequence of drawing commands (GDI and GDI+ commands) that specify
how to render the visual elements of the document. The EMF does not contain any
information beyond these commands (for example, "draw an image here," or "draw a
line over there"). In particular, conventional EMF do not support semantic aspects of the
document, such as hyperlinks, locale information, and accessibility information. To
preserve semantic information in the exported document, Publisher injects special
records in the EMF. These records contain the semantic information.

The records that represent the semantic information are implemented as special-
formatted EMF comments. The EMF format allows for comment record types that are
ignored by the rendering engine for Graphics Device Interface (GDI), but can contain
arbitrary information.

As an example, consider a document that contains alternate text. (Alternate text is used
by document readers to describe images for users with sight impairments.) Publisher
injects EMF comments before and after rendering the image, and these EMF comments
specify the alternate text for the image. The add-in interprets the comments and writes
the information to the fixed-format export file.

The following table shows the semantic records types supported by the Microsoft Office
fixed-format export feature. These types are enumerated by the
MSODOCEXSTRUCTTYPE enumeration. Each type corresponds to a structure type that
describes the format for the record.

HrAddPageFromEmf

HRESULT HrAddPageFromEmf(
 HENHMETAFILE hemf
);

EMF Comments Convey Semantic Information

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/a9eac961-e77d-41a6-90a5-ce1a8b0cdb9c

Table 6. Semantic record types supported by fixed-format export

Comment Value Structure Type

msodocexcommentExternalHyperlink DocExComment_ExternalHyperlink

msodocexcommentExternalHyperlinkRctfv DocExComment_ExternalHyperlink

msodocexcommentInternalHyperlink DocExComment_InternalHyperlink

msodocexcommentInternalHyperlinkRctfv DocExComment_InternalHyperlink

msodocexcommentColorInfo DocExComment_ColorInfo

msodocexcommentColorMapEnable DocExComment_ColorEnable

msodocexcommentBeginTextRun DocExComment_BeginTextRun

msodocexcommentBeginTextRunRTL DocExComment_BeginTextRun

msodocexcommentEndTextRun DocExComment_EndTextRun

msodocexcommentBeginStructNode DocExComment_BeginStructNode

msodocexcommentEndStructNode DocExComment_EndStructNode

msodocexcommentUnicodeForNextTextOut DocExComment_UnicodeForNextTextOut

msodocexcommentUnicodeForNextTextOutRTL DocExComment_UnicodeForNextTextOut

msodocexcommentEPSColor DocExComment_EPSColor

msodocexcommentEPSCMYKJPEG DocExComment_EPSColorCMYKJPEG

msodocexcommentEPSSpotImage DocExComment_EPSColorSpotImage

msodocexcommentEPSStart DocExComment_EPSStart

msodocexcommentPageName DocExComment_PageName

msodocexcommentTransparent DocExComment_Transparent

The DocExComment_ExternalHyperlink(Rctfv) structure describes a hyperlink that links
to outside of the document, for example to a Web site on the Internet.

C++

ﾉ Expand table

DocExComment_ExternalHyperlink(Rctfv)

The members of DocExComment_ExternalHyperlink(Rctfv) structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentExternalHyperlink or msodocexcommentExternalHyperlinkRctfv.

rcdvRegion and rctfvRegion A union that specifies the region of the page that is
the source location of the hyperlink. The region can be represented as a RECT type
(rcdvRegion) that uses device pixels as the unit of measure, or as a structure that
contains floating-point coordinates (rctfvRegion), in which case the unit of
measure is points.

If the iComment member is equal to msodocexcommentExternalHyperlink, the
add-in should use rcdvRegion. In this case, the add-in needs to apply the current
EMF transformation matrix to rcdvRegion to convert it to the page space.

If the iComment member is equal to msodocexcommentExternalHyperlinkRctfv,
the add-in should use rctfvRegion. In this case, rctfvRegion is already in the page
space, so no transformation is needed.

wzLink[MAX_PATH] Specifies the destination URL for this hyperlink.

The DocExComment_InternalHyperlink(Rctfv) structure describes a hyperlink that links
to a location within the document. Note that, although Publisher passes a separate EMF

struct DocExComment_ExternalHyperlink
{
 DWORD ident {};
 DWORD iComment {};
 union
 {
 RECT rcdvRegion;
 struct
 {
 float xLeft;
 float yTop;
 float dxWidth;
 float dyHeight;
 } rctfvRegion;
 };
 WCHAR wzLink[MAX_PATH];
};

DocExComment_InternalHyperlink(Rctfv)

for each page of the document, the destination of the hyperlink specified by
DocExComment_InternalHyperlink(Rctfv) could be on a different page than the source
location.

C++

The members of DocExComment_InternalHyperlink(Rctfv) structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentInternalHyperlink or msodocexcommentInternalHyperlinkRctfv.

rcdvRegion and rctfvRegion As with the DocExComment_ExternalHyperlink
structure, this member is a union that specifies the region of the page that is the
source location of the hyperlink. The region can be represented as a RECT type
(rcdvRegion) that uses device pixels as the unit of measure, or as a structure that
contains floating-point coordinates (rctfvRegion), in which case the unit of
measure is points.

If the iComment member is equal to msodocexcommentInternalHyperlink, the
add-in should use rcdvRegion. In this case, the add-in needs to apply the current
EMF transformation matrix to rcdvRegion to convert it to the page space.

If the iComment member is equal to msodocexcommentInternalHyperlinkRctfv,
the add-in should use rctfvRegion. In this case, rctfvRegion is already in the page

struct DocExComment_InternalHyperlink
{
 DWORD ident {};
 DWORD iComment {};
 union
 {
 RECT rcdvRegion;
 struct
 {
 float xLeft;
 float yTop;
 float dxWidth;
 float dyHeight;
 } rctfvRegion;
 };
 DWORD iTargetPage {};
 float xtfvTarget {};
 float ytfvTarget {};
 float dytfTargetPage {};
};

space, so no transformation is needed.

iTargetPage Specifies the page number of the destination page within the
document.

xtfvTarget Specifies the x-coordinate of the target location on the destination
page. The unit of measure for this value is points.

ytfvTarget Specifies the y-coordinate of the target location on the destination
page. The unit of measure for this value is points.

dytfTargetPage The height of the destination page in points. The offset specified
by the ytfvTarget member is relative to the upper-left corner of the page.
However, some fixed-format types use a coordinate system that is relative to the
bottom-left corner of the page. For these types of documents, the page height is
required to convert the offset.

The DocExComment_ColorInfo structure specifies color-state information for the EMF.
For more information about this structure, see the section Extended Color Support.

C++

The members of the DocExComment_ColorInfo structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentColorInfo.

clr Specifies a color ID that represents a current color state in the EMF.

fForeColor Specifies whether the color ID in the clr member represents a
foreground color or a background color. If this member has a value of true, the

DocExComment_ColorInfo

struct DocExComment_ColorInfo
{
 DWORD ident {};
 DWORD iComment {};
 COLORREF clr { 0 };
 BOOL fForeColor {};
};

color ID represents a foreground color. If this member has a value of false, the
color ID represents a background color.

The DocExComment_ColorEnable structure specifies whether color mapping is enabled
for subsequent content in the EMF. For more information about this structure, see the
section Extended Color Support.

C++

The members of the DocExComment_ColorEnable structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentColorMapEnable.

fEnable Specifies whether color mapping is enabled for subsequent content. A
value of true indicates that color mapping is enabled. A value of false indicates
that color mapping is disabled.

The DocExComment_BeginStructNode structure marks the start of a document
structure node. Structure nodes serve one of two possible purposes:

Structure nodes can identify the type of content they contain and specify the
hierarchical relationship between that content and other content in the document.

Structure nodes can specify alternate text for elements in the document.

If the fContentNode member has a true value, the DocExComment_BeginStructNode is
followed later in the document by a DocExComment_EndStructNode. The
DocExComment_EndStructNode marks the end of the content that is wrapped by the
information in the DocExComment_BeginStructNode.

DocExComment_ColorEnable

struct DocExComment_ColorEnable
{
 DWORD ident {};
 DWORD iComment {};
 BOOL fEnable {};
};

DocExComment_BeginStructNode

The collection of structure nodes within the document forms a tree; each node has a
parent node and may also have sibling nodes. The idNodeParent and iSortOrder
members describe the structure of this tree. Note that a child node may or may not
appear between the DocExComment_BeginStructNode and
DocExComment_EndStructNode structures of the parent node in the EMF.

C++

The members of the DocExComment_BeginStructNode structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentBeginStructNode.

idNodeParent Specifies the ID of the parent node. A value of 0 specifies the root
node. A value of -1 specifies the currently open structure node, that is, the
enclosing structure node.

iSortOrder Specifies the sort order of the structure node among its sibling nodes.
The sort order enables the add-in to order the content correctly in the exported
document.

No two nodes can have the same sort order. However, the set of integers that
constitute the sort order do not need to be contiguous.

A value of -1 indicates that the sibling order is the same order in which the nodes
appear in the EMF comments. Note that the order in which the content appears in
the EMF is not necessarily the order in which the content is consumed by a user of
the document.

desn Specifies a MSODOCEXSTRUCTTYPE structure, which is defined earlier in
the document.

struct DocExComment_BeginStructNode
{
 DWORD ident {};
 DWORD iComment {};
 int idNodeParent {};
 int iSortOrder {};
 MSODOCEXSTRUCTNODE desn;
 BOOL fContentNode {};
 int cwchAltText {};
};

The idNode member specifies the ID of the node. This member may not have a value of
0. A value of -1 indicates that child nodes do not use the idNodeParent member to
specify this node as their parent. Instead, this node can be a parent only by enclosing
child nodes in the EMF. Multiple nodes can have a ID of -1. If the ID is not -1, the value is
unique across the document.

The nodetype specifies the type of structure node. This member is equal to one of the
values from the MSODOCEXSTRUCTTYPE enumeration type. The following table lists
examples of document structure node types.

Table 7. Document structure node types

Type Value Description

msodocexStructTypePara A block of text within an article. Its parent node
must be an article.

msodocexStructTypeFigure A graphical element (for example, an image or
collection of shapes) that has a textual
representation. The textual representation is the
alternate text used for reading or searching the
document.

msodocexStructTypeArticle A group of nodes forming a single flow of text that
should be read or searched as a contiguous block
of content. Some documents have a single article
and others have multiple articles.

msodocexStructTypeHeading A heading in the text.

msodocexStructTypeTable A block of text forming a table.

msodocexStructTypeTR A block of text forming a single row of a table.

msodocexStructTypeTD A block of text forming a single cell in a table row.

msodocexStructTypeTH A block of text forming a single header cell in a
table row.

msodocexStructTypeList A block of text forming a list.

msodocexStructTypeListItem A block of text forming a list item.

msodocexStructTypeListBody A block of text forming the body of a list item.

msodocexStructTypeDocument A document.

msodocexStructTypePage A page in the document.

ﾉ Expand table

Type Value Description

msodocexStructTypeTOC A table of contents.

msodocexStructTypeTOCI An item in a table of contents.

msodocexStructTypeExtLink A link to an external resource.

msodocexStructTypeIntLink A link to an internal resource.

msodocexStructTypeFootnote A footnote.

msodocexStructTypeEndnote An endnote.

msodocexStructTypeTextbox A text box.

msodocexStructTypeHeader A block of text forming a header.

msodocexStructTypeFooter A footer.

msodocexStructInlineShape An inline shape.

msodocexStructAnnotation An annotation.

msodocexStructTypeSpanBlock A block of text.

msodocexStructTypeWorkbook A workbook.

msodocexStructTypeWorksheet A worksheet.

msodocexStructTypeMacrosheet A macrosheet.

msodocexStructTypeChartsheet A chartsheet.

msodocexStructTypeDialogsheet A dialogsheet.

msodocexStructTypeSlide A slide.

msodocexStructTypeChart A chart.

msodocexStructTypeDiagram A SmartArt diagram.

msodocexStructTypeBulletText Buller text.

msodocexStructTypeTextLine A line of text.

msodocexStructTypeDropCap A drop cap.

msodocexStructTypeSection A section.

msodocexStructTypeAnnotationBegin The beginning of an annotation.

msodocexStructTypeAnnotationEnd The end of an annotation.

Type Value Description

msodocexStructTypeParaRTLAttr A block of text within an article with right-to-left
layout.

msodocexStructTypeTableRTLAttr A block of text forming a table with right-to-left
layout.

msodocexStructTypeHeadingRTLAttr A heading in the text with right-to-left layout.

msodocexStructTypeListItemRTLAttr A block of text forming a list item with right-to-left
layout.

msodocexStructTypeParaUnannotatableAttr A block of text within an article that is not
annotatable.

msodocexStructTypeTHead The header row area in a table.

msodocexStructTypeTBody The body area in a table, i.e. the portion between
the THead and TFoot.

msodocexStructTypeLabel A label.

msodocexStructTypeEquation An equation.

msodocexStructTypeIntLinkNoteRef A footnote or endnote reference mark link.

msodocexStructTypeTFoot The footer row area in a table.

fContentNode Specifies whether a DocExComment_EndStructNode structure marks
the end of this structure node. If fContentNode is true, a
DocExComment_EndStructNode structure closes off the content bounded by the node.
If this fContentNode has a false value, then the node does not bound any content.

The fContentNode member affects the interpretation of the parent ID value of
subsequent nodes. If fContentNodeis true, nodes that are inserted between this
DocExComment_BeginStructNode and a subsequent DocExComment_EndStructNode,
and that have a parent ID of -1, are children of this node. However, if fContentNode is
true, nodes inserted after this DocExComment_BeginStructNode, and that have a
parent ID of -1, are not children of this node. They are children of the next-most-recently
specified node that has fContentNode equal to false.

You can nest document structure nodes to arbitrary depth.

cwchAltText Specifies the number of Unicode characters in the block of alternate text
that follows the structure. This Unicode string specifies alternate text for the node (for
example, alternate text for an image).

The DocExComment_EndStructNode structure marks the end of the content that is
decorated by the information in the DocExComment_BeginStructNode.

C++

The members of the DocExComment_EndStructNode structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentEndStructNode.

The DocExComment_BeginTextRun structure identifies the language of a sequence of
text in the document and provides the Unicode code points for the text.

Although some text-rendering EMF records use Unicode as the text representation,
others use the glyphs that are drawn on the screen, rather than the original source text.
A glyph is the index of a given shape in the font, which can be different from font to
font.

There can be cases where several Unicode code points are combined into a single glyph
or where a single Unicode code point is broken into multiple glyphs. Because the
mapping from code points to glyphs is context-dependent, a user cannot text search or
copy/paste in a document that contains only glyphs. Therefore, Publisher sometimes
provides the Unicode text as well as the glyphs.

C++

DocExComment_EndStructNode

struct DocExComment_EndStructNode
{
 DWORD ident {};
 DWORD iComment {};
};

DocExComment_BeginTextRun

struct DocExComment_BeginTextRun
{
 DWORD ident {};
 DWORD iComment {};
 DWORD lcid {};
 int cGlyphIndex {};

The members of the DocExComment_BeginTextRun structure are as follows:

Ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentBeginTextRun.

lcid Specifies the LCID for the text sequence.

cGlyphIndex Specifies the size of an array that follows this structure. This array
implements a glyph index table that maps Unicode code points in the actual text
to the corresponding glyphs in the EMF. Each element of the array corresponds to
a code point in the text. The value of that element specifies the first glyph used to
render that code point in the EMF. Two or more adjacent code points may have the
same value in the array, which means that they both resolve to the same glyph.
The value can also be 0, which means that this code point does not map to any
glyph.

cwchActualText Specifies the size of the sequence of Unicode code points that
follow the glyph index table. This is the text that a consumer of the document can
use for searching, copying/pasting, and accessibility. The value of this member can
be 0, which means that no Unicode text is provided.

The DocExComment_EndTextRun structure marks the end of a text sequence, the
beginning of which was marked by a DocExComment_BeginTextRun structure.

C++

The members of the DocExComment_EndTextRun structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

 int cwchActualText {};
};

DocExComment_EndTextRun

struct DocExComment_EndTextRun
{
 DWORD ident {};
 DWORD iComment {};
};

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentEndTextRun.

The DocExComment_UnicodeForNextTextOut structure functions similarly to the
DocExComment_BeginTextRun and DocExComment_EndTextRun structures. However,
DocExComment_UnicodeForNextTextOut specifies Unicode code points for only the
following EMF TextOut record, rather than for a block of EMF content bounded by begin
and end structures.

C++

The members of the DocExComment_UnicodeForNextTextOut structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentUnicodeForNextTextOut.

cGlyphIndex Specifies the size of an array that follows this structure. This array
implements a glyph index table that maps Unicode code points in the actual text
to the corresponding glyphs in the EMF. Each element of the array corresponds to
a code point in the text. The value of that element specifies the first glyph used to
render that code point in the EMF. Two or more adjacent code points may have the
same value in the array, which means that they both resolve to the same glyph.

cwchActualText Specifies the size of the sequence of Unicode code points that
follow the glyph index table. This is the text that a consumer of the document can
use for searching, copying/pasting, and accessibility.

The DocExComment_EPSColor structure specifies color information for an encapsulated
PostScript (EPS) file embedded in the EMF. For more information about this structure,

DocExComment_UnicodeForNextTextOut

struct DocExComment_UnicodeForNextTextOut
{
 DWORD ident {};
 DWORD iComment {};
 int cGlyphIndex {};
 int cwchActualText {};
};

DocExComment_EPSColor

see the section Extended Color Support.

C++

The members of the DocExComment_EPSColor structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentEPSColor.

colorInfo[] Specifies the color information for the EPS file. The add-in should pass
this information to Publisher using the IMsoDocExporterSite::SetEPSInfo method.

The DocExComment_EPSColorCMYKJPEG structure specifies the start, in the EMF, of a
binary object that is a CMYKJPEG file stream. For more information about this structure,
see the section Extended Color Support.

C++

The members of the DocExComment_EPSColorCMYKJPEG structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentEPSCMYKJPEG;

typedef struct
{
 DWORD ident {};
 DWORD iComment {};
 BYTE colorInfo[];
} DocExComment_EPSColor;

DocExComment_EPSColorCMYKJPEG

typedef struct
{
 DWORD ident {};
 DWORD iComment {};
} DocExComment_EPSColorCMYKJPEG;

DocExComment_EPSColorSpotImage

The DocExComment_EPSColorSpotImage structure provides spot color information for
the subsequent RGB image. For more information about this structure, see the section
Extended Color Support.

C++

The members of the DocExComment_EPSColorSpotImage structure are as follows:

ident Specifies the constant value, msodocexsignature, which identifies this EMF
comment as containing semantic information.

iComment Specifies the MSODOCEXCOMMENT value,
msodocexcommentEPSSpotImage.

cmykAlt Specifies a CMYK color ID.

rgbAlt Specifies an RGB color ID.

flTintMin Specifies the minimum tint.

flTintMax Specifies the maximum tint.

szSpotName[1] Specifies a variable length, zero-terminated string that contains
the spot name.

To support extended color spaces in Publisher, additional EMF semantic records and
interfaces are needed because EMF only supports RGB (red-green-black) colors.
Extended color spaces include CMYK (cyan-magenta-yellow-black) and spot color space,
which are commonly used in commercial printing.

Publisher uses color mapping to represent extended colors in the document EMF.
Publisher builds a color table for all colors used in the document and replaces actual
colors with color IDs in the EMF. The type for the color ID is COLORREF, which is the

typedef struct
{
 DWORD ident {};
 DWORD iComment {};
 COLORREF cmykAlt { 0 };
 COLORREF rgbAlt { 0 };
 float flTintMin {};
 float flTintMax {};
 char szSpotName[1];
} DocExComment_EPSColorSpotImage;

Extended Color Support

same type that is used for RGB color. For information about the COLORREF structure,
see COLORREF.

To resolve color IDs in the EMF back to the extend color space, the add-in calls back to
Publisher through the HrResolveColor method of the IMsoDocExporterSite interface.
The add-in passes Publisher an interface pointer to an IDOCEXCOLOR interface as one
of the parameters to HrResolveColor. Publisher takes the color IDs, also specified in the
call to HrResolveColor, converts them to extended color (RGB, CMYK, or spot color), and
passes them back to the add-in through the methods in the IDOCEXCOLOR interface.

Vector colors are any COLORREF values that the add-in receives from Publisher. For
example, text color, line stroke color, and color for metafile recolor. When color
mapping is enabled, Publisher uses a color ID for COLORREF rather than a real RGB
color value. If Publisher provides the add-in an IMsoDocExporterSite interface pointer
by calling the SetDocExporterSite method of the IMsoDocExporter interface, the add-in
should always call the IMsoDocExporterSite::HrResolveColor method to convert the
COLORREF to an extended color, which the add-in receives through the methods in the
IDOCEXCOLOR interface.

To support vector color mapping, the add-in needs to do the following:

Implement class support for an IDOCEXCOLOR interface. The methods in this
interface enable Publisher to pass extended color back to the add-in.

Cache the following color state values from the semantic records in the EMF.

Set foreground color for recoloring. This is set through the
DocExComment_ColorInfo structure.

Set background color for recoloring. This is set through the
DocExComment_ColorInfo structure.

Determine when color mapping is enabled. This is set through the
DocExComment_ColorEnable structure.

For a vector color, create an IDOCEXCOLOR interface with the color ID, so that
IDOCEXCOLOR::GetUnresolvedRGB returns the color ID. The add-in should call the
IMsoDocExporterSite::HrResolveColor method with the IDOCEXCOLOR interface
and cached color states. Publisher calls the IDOCEXCOLOR interface methods with
the final color, which can be RGB, CMYK, spot, or registration tint.

Vector Color and Recolored Images

When either foreground color or background color for recoloring is specified from
an EMF semantic record, the add-in should recolor images in the add-in (for
example, metafiles or raster pictures).

EMF supports CMYK images using GDI+. Therefore, images in the EMF may be either
RGB or CMYK. If the image is a CMYK image, the add-in needs to convert the image to
the target color space.

Publisher maintains a target color space for the document. The add-in can use this
target color space by calling the IMsoDocExporterSite::HrConvertImageColorSpace
method with the image's color space.

Encapsulated Postscript (EPS) is a metafile type that supports extended color spaces.
User who embed EPS images in a Publisher document expect the color information to
be used in the fixed-format output. Inside Publisher, the EPS is converted to an EMF with
EPS-related semantic records. This EMF is then embedded in the page EMF file that the
application passes to the add-in.

To support color in EPS files, the add-in needs to do the following:

Call the IMsoDocExporterSite::SetEPSInfo method for DocExComment_EPSColor
records encountered in the EMF.

Extract the CMYK image from the DocExComment_EPSColorCMYKJPEG record in
the EMF. This record contains a binary object that is the actual CMYK JPEG file
stream. Use it to replace the RGB image specified in the subsequent call to the
StretchDIBits function.

The DocExComment_EPSColorSpotImage record provides spot color information
for the subsequent RGB image, which is always an index image. The add-in needs
to convert the spot image to the target color space.

The add-in can optionally call the IMsoDocExporterSite:: HrGetSpotRecolorInfo
method to obtain the document's target color from Publisher. Then the add-in can
recolor the subsequent RGB image by mapping colors from the palette of the RGB
image to flTintMin and flTintMax tints specified in the
DoxExComment_EPSColorSpotImage record. The luminosity for each color of the
palette is used for the mapping.

Non-Recolored Images

Color from EPS Files

Note that the DocExComment_EPSStart record is only informational. The add-in can
ignore this record.

Publisher calls SetDocExporterSite to provide the add-in with a pointer to an
IMsoDocExporterSite interface. The IMsoDocExporterSite interface exposes methods
that enable extended color support.

C++

The pDocExporterSite parameter specifies the interface pointer to the
IMsoDocExporterSite interface.

An application can call the HrSetPageHeightForPagination method to specify the page
height in points.

C++

Some applications maintain the user's document in an unpaginated format. In these
cases, the add-in paginates the document using the page height specified by the
application in the call to HrSetPageHeightForPagination. The dytfPageHeight parameter
specifies the page height in points.

After specifying the page height information, the application passes the add-in the
entire document as a single in-memory EMF file in a call to HrAddPageFromEmf. The
add-in then uses the page-height and EMF file to paginate the document.

The add-in returns the pagination information back to the application in subsequent
calls to the HrGetPageBreaks method.

SetDocExporterSite

void SetDocExporterSite(
 IMsoDocExporterSite* pDocExporterSite
);

HrSetPageHeightForPagination

HRESULT HrSetPageHeightForPagination(
 float dytfPageHeight
);

HrGetPageBreaks

An application can call the HrGetPageBreaks method to obtain the number and location
of page breaks for documents that are paginated by the add-in.

C++

After the add-in paginates a document using the page height specified by the
HrSetPageHeightForPagination method, it returns the pagination information in
subsequent calls that the application makes to the HrGetPageBreaks method.

The rgdytfPageBreaks parameter is a pointer to an array of float values that specify the
locations of the page breaks in points. The first element in the array (index 0) is the
location of the first page break, the second element is the location of the second page
break, and so on. Therefore, the values of these elements are successively increasing.

The pcchPageBreaks parameter is a pointer to an integer value that specifies the number
of page breaks in the document.

The pfCanTrustLastBreakIsEndOfDocument parameter specifies whether the location of
the last page break is the end of the document or the beginning of the last page of the
document. A true value indicates that the last page break is the end of the document.

The application calls HrGetPageBreaks twice to obtain the pagination information. On
the first call, the application calls HrGetPageBreaks to obtain the number of page
breaks.

C++

The application then calls HrGetPageBreaks a second time to obtain the actual
locations. On the second call, the application passes a buffer of sufficient size to hold
the array of page-break locations.

C++

HRESULT HrGetPageBreaks(
 float* rgdytfPageBreaks,
 int* pcchPageBreaks,
 BOOL* pfCanTrustLastBreakIsEndOfDocument
);

HrGetPageBreaks(NULL, &nPageBreaks, NULL);

HrGetPageBreaks(rgPageBreaks, &nPageBreaks, fCanStopAtLastPageBreak);

After receiving the page break information from the add-in, the application re-initiates
the fixed-format export process, beginning with a call to the HrCreateDoc method,
followed by a call to HrAddPageFromEmf for each of the pages given by the page-
break information.

Publisher calls the HrAddOutlineNode method to pass the add-in a structure that
describes a node within a user-navigable outline for the exported document.

C++

The fixed-format export code can use the information passed by the
HrAddOutlineNode method to construct a user-navigable outline of the export
document. From the user's perspective, each node in the outline is represented by some
title text that maps to a particular location within the document.

Each call to HrAddOutlineNode specifies information for a single node in this outline.
Each node is identified by a node ID that is unique within the outline. An ID of 0 is
reserved for the root node. The outline is hierarchical, that is, it has a tree structure in
which each node has a single parent and zero or more child nodes.

The first parameter to HrAddOutlineNode provides the ID of the node that is the parent
of the node being passed in.

Publisher always calls HrAddOutlineNode for a parent node before calling the method
for any of the parent node's children. In other words, the export code is assured of
already having the node information for the node identified by the idNodeParent
parameter. The only exception is the initial call to HrAddOutlineNode that specifies the
root node. For this call, the value of idNodeParent is 0.

Additional information that the export code needs for each node is passed by
HrAddOutlineNode in an MSODOCEXOUTLINENODE structure pointed to by the
pNode parameter.

C++

HrAddOutlineNode

HRESULT HrAddOutlineNode(
 int idNodeParent
 const MSODOCEXOUTLINENODE* pNode
);

typedef struct _MsoDocexOutlineNode
{

The members of the MSODOCEXOUTLINENODE are described as follows:

idNode The ID for the node. A value of -1 indicates that this node cannot have
child nodes in the outline. Otherwise, this member has a value that is unique across
the document.

rgwchNodeText A Unicode string that represents the title text for each node. This
text is not required to be unique across the outline.

iDestPage The page number of the page that contains the destination location
within the document.

dytfvDestPage The height of the destination page in points. The offset specified
by the dytfvDestOffset member is relative to the upper-left corner of the page.
However, some fixed-format types use a coordinate system that is relative to the
bottom-left corner of the page. For these types of documents, the page height is
required to convert the offset.

dxtfvDestOffset The horizontal offset of the destination location on the
destination page.

dytfvDestOffset The vertical offset of the destination location on the destination
page.

Publisher calls the HrAddDocumentMetadataString method to specify document
metadata in the form of a Unicode string.

C++

 int idNode {};
 WCHAR rgwchNodeText[cwchMaxNodeText];
 int iDestPage {};
 float dytfvDestPage {};
 float dxtfvDestOffset {};
 float dytfvDestOffset {};
} MSODOCEXOUTLINENODE;

HrAddDocumentMetadataString

HRESULT HrAddDocumentMetadataString(
 MSODOCEXMETADATA metadataType,
 const WCHAR* pwchValue
);

The metadatatype parameter specifies the type of metadata represented by the string.
The metadatatype parameter must be one of the following values from the
MSODOCEXMETADATA enumeration type.

Table 8. Enumerated values of MSODOCEXMETADATA

Value Description

msodocexMetadataTitle The title of the document.

msodocexMetadataAuthor The author of the document

msodocexMetadataSubject String that describes the subject matter of the document (for
example, business or science).

msodocexMetadataKeywords Keyword relevant to the document content.

msodocexMetadataCreator The creator of the document, possibly distinct from the author.

msodocexMetadataProducer The producer of the document, possibly distinct from the author
or creator.

msodocexMetadataCategory String that describes the type of document (for example, memo,
article, or book).

msodocexMetadataStatus Status of the document. This field can reflect where the
document is in the publication process (for example, draft or
final).

msodocexMetadataComments Miscellaneous comments relevant to the document.

For a given document, each metadata type can have only one string associated with it.
So, for example, if the document has multiple keywords, they are passed to the add-in
as one concatenated string.

The pwchValue parameter specifies a Unicode string that contains the metadata itself.

How the add-in incorporates the text-string metadata into the exported document
depends on the implementation details of the export code and the type of fixed-format
used in the exported document.

Publisher calls the HrAddDocumentMetadataDate method to specify document
metadata in the form of a FILETIME structure.

ﾉ Expand table

HrAddDocumentMetadataDate

C++

The metadatatype parameter specifies the type of metadata represented by the
FILETIME structure. The metadatatype parameter must be one of the following values
from the MSODOCEXMETADATA enumeration type.

Table 9. Enumerated values of MSODOCEXMETADATA

Value Description

msodocexMetadataCreationDate The creation date for the document.

msodocexMetadataModDate The last-modified date for the document.

The pftLocalTime parameter specifies a pointer to a FILETIME structure that contains the
date and time information for the metadata. The following code snippet demonstrates
how to extract this information from the structure.

C++

How the add-in incorporates the date and time metadata into the exported document
depends on the implementation details of the export code and the type of fixed-format
used in the exported document.

Publisher calls the HrFinalize method at the end of the document-export process.

C++

HRESULT HrAddDocumentMetadataDate(
 MSODOCEXMETADATA metadataType,
 const FILETIME* pftLocalTime
);

ﾉ Expand table

SYSTEMTIME st = { 0 };
WCHAR s[100];
FileTimeToSystemTime(pfiletime, &st);
swprintf(s, 99, L" %04d-%02d-%02dT%02d:%02d:%02dZ", st.wYear % 10000,
 st.wMonth % 100, st.wDay % 100, st.wHour % 100, st.wMinute % 100,
 st.wSecond % 100);

HrFinalize

The code that implements fixed-format export should use HrFinalize to perform tasks
such as flushing data buffers, writing remaining data to disk, and freeing memory and
other resources.

You can extend the fixed-format export feature of Office applications by implementing
the IMsoDocExporter interface. The methods of this interface provide a channel for
Office applications to communicate to the add-in the visual content and semantic
information in the document to export. The visual content of the document is provided
to the add-in as one or more in-memory enhanced metafiles. The semantic information
is provided as specially formatted comment records within this EMF. Additional methods
in the interface enable Office applications to communicate metadata and structural
information about the document.

For more information, see the following resources:

Word.Document.ExportAsFixedFormat2

Excel.Workbook.ExportAsFixedFormat

PowerPoint.Presentation.ExportAsFixedFormat3

Project.Project.ExportAsFixedFormat

Publisher.Documents.ExportAsFixedFormat

Visio.Document.ExportAsFixedFormat

OneNote.Application.Publish

HRESULT HrFinalize();

Conclusion

Additional Resources

https://learn.microsoft.com/en-us/office/vba/api/word.document.exportasfixedformat2
https://learn.microsoft.com/en-us/office/vba/api/excel.workbook.exportasfixedformat
https://learn.microsoft.com/en-us/office/vba/api/powerpoint.presentation.exportasfixedformat3
https://learn.microsoft.com/en-us/office/vba/api/project.project.exportasfixedformat
https://learn.microsoft.com/en-us/office/vba/api/publisher.document.exportasfixedformat
https://learn.microsoft.com/en-us/office/vba/api/visio.document.exportasfixedformat
https://learn.microsoft.com/en-us/office/client-developer/onenote/application-interface-onenote#publish-method

Office 2024 PDF Accessibility
Article • 11/26/2024

Accessibility of PDFs exported by Word, Excel, and PowerPoint is greatly improved in
Office 2024, Office LTSC 2024, and Microsoft 365 Version 2408 and later. This page has a
summary of the improvements to help add-in developers and template providers adapt
to the changes.

Number Improvement Word Excel PowerPoint

1 Document has <Document> tag Yes

2 Chart has <Figure> tag with Alt Text Yes Yes Yes

3 Add-in has <Figure> tag with Alt Text Yes Yes Yes

4 3D Model has <Figure> tag with Alt Text Yes Yes Yes

5 Ink has <Figure> tag with Alt Text Yes Yes Yes

6 Animated Ink has <Figure> tag with Alt Text Yes

7 Table with Alt Text has <Figure> tag with Alt Text Yes

8 SmartArt has single <Figure> tag (no <Figure> tags for
child elements)

Yes Yes Yes

9 SmartArt without Alt Text has <Figure> tag Alt Text set
to text outline of SmartArt

Yes Yes Yes

10 Group with Alt Text has single <Figure> tag (no
<Figure> tags for child elements)

Yes Yes

11 Graphical Object other than Shape without Alt Text has
<Figure> tag with blank Alt Text

Yes Yes Yes

12 Shape with whitespace text or no text has <Figure> tag
with blank Alt Text

Yes Yes

13 Shape with Equation without Alt Text or Decorative has
<Formula> tag with Alt Text

Yes Yes

14 Shape with non-whitespace text without Equation, Alt Yes Yes Yes

Summary

ﾉ Expand table

Number Improvement Word Excel PowerPoint

Text, or Decorative has <Sect> tag with text content

15 Shape with Alt Text and non-whitespace text without
Equation has <Figure> tag with Alt Text

Yes Yes

16 Table Cell with Equation in a Table without Alt Text has
<Formula> tag with Alt Text

Yes

17 Summary Zoom, Section Zoom, and Slide Zoom has
<TOC> tag without Alt Text

Yes

18 WordArt preserved as text Yes Yes Yes

19 Alt Text includes the Alt Text Title as well as Alt Text
Description

Yes Yes Yes

20 Alt Text includes the Object type Yes Yes Yes

21 Alt Text for Shape with Alt Text includes the text
content

Yes Yes

22 Header Row in a Table has <THead> tag Yes

23 Total Row in a Table has <TFoot> tag Yes

24 Header Cell in Table has Scope=Row, Column, or Both
in <TH> tag

Yes

25 Cell in a Table has Row span and Column span set
properly on <TH> or <TD> tag

Yes

26 For lists in PowerPoint, bullet or number is in <Lbl> tag Yes

27 For lists in Word, bullet or number is in <Lbl> tag Yes

28 For picture bullets, no <Lbl> tag is included Yes Yes

29 For nested lists, <L> tag is in <LBody> tag Yes Yes

30 Document language in PDF set as the document
language in PowerPoint

Yes

31 Document language in PDF set as the document
language in Word

Yes

32 Text in different language has tag with Lang
property in PowerPoint

Yes

33 Text in different language has tag with Lang
property in Word

Yes

Number Improvement Word Excel PowerPoint

34 Actual Text property removed from tag for text
in different language in PowerPoint

Yes

35 Actual Text property removed from tag for text
in different language in Word

Yes

36 <H1> tag for Title Placeholder on Title or Section
Header layout in PowerPoint

Yes

37 <H2> tag for Title Placeholder on other slides in
PowerPoint

Yes

38 <H1> and <H2> tag logic in PowerPoint works for
custom templates

Yes

39 Hyperlinks aren’t nested in <Figure> tags Yes Yes

40 Hyperlinks are preserved even for Decorative Objects
and Objects on the Slide Master or Slide Layout

Yes

41 For a Hyperlink on a Graphical Object, <Link> tag is a
sibling of the tag for the Object

Yes Yes

42 For a Hyperlink on text in a Shape with Alt Text,
Equation, or Decorative, <Link> tag is a sibling of the
tag for the Object

Yes Yes

43 For a Hyperlink on text in a Table Cell with Alt Text,
Equation, or Decorative, <Link> tag is a sibling of the
tag for the Object

Yes

44 Document Title in PDF set as Document Title in Word Yes

45 Comment Anchor has tag in Word Yes

46 Quote Style has <Quote> tag in Word Yes

47 Caption has <Caption> tag in Word Yes

48 Paragraph spanning multiple pages has single <P> tag
in Word

Yes

49 Footnote and Endnote have <Link> tag in Word Yes

50 Footnote and Endnote have <Note> tag in Word Yes

51 Paragraph Quote and Intense Quote Styles have
<BlockQuote> tag in Word

Yes

52 Title Style has <Title> tag in Word Yes

Number Improvement Word Excel PowerPoint

53 Heading Levels beyond Heading 6 have <H6> tag Yes

54 Table Header Cell has unique ID Yes

55 Cell with Header Style has <H1> tag Yes

56 Marked as artifact and no tags for Shape without Alt
Text, text, fill, or outline

Yes Yes

57 Marked as artifact and no tags for Decorative Shapes Yes Yes Yes

58 Marked as artifact and no tags for Decorative Ink Yes Yes Yes

59 Marked as artifact and no tags for Decorative Add-ins Yes Yes Yes

60 Marked as artifact and no tags for Decorative Group Yes Yes

61 Marked as artifact and no tags for Decorative Chart Yes Yes Yes

62 Marked as artifact and no tags for Decorative SmartArt Yes Yes Yes

63 Marked as artifact and no tags for Decorative Table Yes

64 Marked as artifact and no tags for Objects on the Slide
Master and Slide Layout

Yes

65 Marked as artifact and no tags for text formatting
marks such as underline, strike-through, and highlight

Yes Yes

66 Marked as artifact and no tags for picture bullets Yes Yes

67 Marked as artifact and no tags for Comment anchor
text shading, brackets, bubbles, and lines in Word

Yes

68 Marked as artifact and no tags for paragraph borders,
text borders, and text underlines in Word

Yes

69 Marked as artifact and no tags for paragraph borders,
text borders, and text underlines in Word

Yes

70 Marked as artifact and no tags for text box container in
Word

Yes

71 Marked as artifact and no tags for Slicer scrollbar in
Excel

Yes

72 Marked as artifact and no tags for grid lines and cell
borders in Excel

Yes

73 Marked as artifact and no tags for cell shading in Excel Yes

Number Improvement Word Excel PowerPoint

74 Removed unnecessary tags for text with
justified or distributed alignment

Yes

75 Removed unnecessary tags for text runs with
different formatting

Yes

76 Removed unnecessary tags for text formatting
marks such as highlight

Yes

77 Removed unnecessary tags for WordArts that
have text on a path

Yes Yes Yes

78 Removed unnecessary tags for WordArts that
have warped text

Yes Yes Yes

79 Removed unnecessary tags for graphical effect
on WordArts such as shadow and reflection

Yes Yes Yes

80 Removed unnecessary tags for the slide
background in PowerPoint for macOS and web

Yes

81 Removed unnecessary <P> tags Yes

82 Fixed a problem in Word where Save as Adobe PDF did
not preserve headings properly

Yes

83 Fixed a problem in PowerPoint where <TD> and <TH>
were omitted for empty Table Cells

Yes

84 Fixed a problem in PowerPoint where Hyperlinks to
slides within the presentation were going to the
bottoms of the slides rather than the tops of the slides

Yes

85 Fixed a problem in PowerPoint where Hyperlinks in
Notes Pages and Outline View were not preserved

Yes

86 Fixed a problem in PowerPoint in Notes Pages where
the wrong tags were written for Decorative shapes

Yes

87 Fixed a problem in PowerPoint in Notes Pages where
when the notes for a slide spill onto the multiple slides,
the wrong tags were written

Yes

88 Fixed a problem in PowerPoint in Notes Pages where
for a list that spills across pages, the partial list item on
the next page is outside of the <L> tag. Now the
partial list item is included in the <L> tag. There is a
separate <L> tag in each page.

Yes

Number Improvement Word Excel PowerPoint

89 Fixed a problem in PowerPoint for the web where
Decorative Charts were not marked as Artifact

Yes

90 Fixed a problem in PowerPoint for the web where
Hyperlinks to slides within the presentation were going
to the bottoms of the slides rather than the tops of the
slides

Yes

91 Fixed a problem in PowerPoint for the web where the
Alt Text on the <Figure> tag for a SmartArt doesn’t
include the diagram type

Yes

92 Fixed a problem in PowerPoint for the web where the
<Link> tag was missing for a hyperlink to a slide within
the presentation

Yes

93 Fixed a problem in PowerPoint for macOS where
sometimes the wrong tags are included

Yes

94 Fixed a problem in PowerPoint for macOS where export
as PDF fails for a presentation with custom slide
numbering

Yes

95 Fixed a problem in PowerPoint for macOS where
sometimes hidden slides are included

Yes

96 Fixed a problem in PowerPoint for macOS where
sometimes a slide with a Summary Zoom, Section
Zoom, and Slide Zoom is blank

Yes

97 Fixed a problem in Excel and PowerPoint where spaces
between words were omitted in some cases

Yes Yes

98 Fixed a problem in Excel and PowerPoint where trailing
spaces in a text element were omitted

Yes Yes

99 Fixed a problem in Excel and PowerPoint where when
there are multiple copies of the same SVG in a
presentation, the wrong tags were written

Yes Yes

100 Fixed a problem in Excel and PowerPoint where the
wrong tags are written when there are empty
paragraphs

Yes Yes

101 Fixed a problem in Excel where images in cells were
marked as artifact

Yes

102 Fixed a problem in Excel where export as PDF fails
when the Workbook contains an Object with a

Yes

Number Improvement Word Excel PowerPoint

Hyperlink to Sheet within the Workbook

103 Added bookmarks for sections and slides Yes

104 Added the Presentation.ExportAsFixedFormat3 method
to the Object Model in PowerPoint to export as PDF
with all of the accessibility improvements listed here
enabled

Yes

Excel PDF Accessibility
Article • 11/26/2024

Authors can ensure that their Execl workbooks are accessible to people with disabilities
even when distributing them in PDF format using the following approach:

1. First, they should follow the practices in Accessibility best practices with Excel
spreadsheets .

2. Next, they should follow the steps in Create accessible PDFs to preserve the
accessibility of the workbook in PDF format.

This article provides details about the information Excel includes in the PDF to make it
accessible.

1. PDF/UA tags are included to provide semantic information about the content in
the document.

2. Decorative content does not need to be read, so it is marked as <Artifact> in the
Content Tree in the PDF and no PDF/UA tags are included.

Type of content Tags

Workbook

<Document>
 Type=Workbook

Range of Cells

<Table>
 <TR>
 <TD>
 text content

Table

<Table>
 <THead>
 <TR>

Summary

PDF/UA Tags

ﾉ Expand table

https://support.microsoft.com/office/6cc05fc5-1314-48b5-8eb3-683e49b3e593
https://support.microsoft.com/office/6cc05fc5-1314-48b5-8eb3-683e49b3e593
https://support.microsoft.com/office/6cc05fc5-1314-48b5-8eb3-683e49b3e593
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://www.iso.org/standard/64599.html
https://www.iso.org/standard/64599.html

Type of content Tags

 <TH>
 text content
 <TH>
 text content
 <TBody>
 <TR>
 <TH>
 text content
 <TD>
 text content

Table Header Cell

<TH>
 ID=unique id

Cell with Header Style

<H1>

Header and Footer

no tags

Comment

no content

Decorative Graphical Object

no tags

Graphical Object other Group with Alt Text

<Figure>
 Alt=alt text (object type)

Graphical Object other than Shape without Alt Text

<Figure>
 Alt=blank

Shape without Alt Text, text, fill, outline, or hyperlink

no tags

Type of content Tags

Shape without Alt Text with whitespace text or no text

<Figure>
 Alt=blank

Shape without Alt Text with Equation

<Formula>
 Alt=equation spelled out
in words

Shape without Alt Text with non-whitespace text
without Equation

<Sect>
 text content

Shape with Alt Text with non-whitespace text without
Equation

<Figure>
 Alt=alt text + text (shape
type)

WordArt without Alt Text or Decorative

<Sect>
 text content

Group without Alt Text

tags for child objects

Group with Alt Text

<Figure>
 Alt=alt text (object type)
 tags for child objects

Decorative Picture in Cell

<TD>
 no tags

Picture without Alt Text in Cell

<TD>
 no tags

Type of content Tags

Picture with Alt Text in Cell

<TD>
 <Figure>
 Alt=alt text

Hyperlink on Cell

<TD>
 <P>
 <Link>
 Link - OBJR

 text content

Hyperlink on Object

tag for object
 <Link>
 Link - OBJR

The following types of content are marked as <Artifact> in the PDF Content Tree and
have no PDF/UA tags:

Slicer scrollbar
Grid lines
Cell borders
Cell shading
Decorative graphical objects
Text in SmartArt objects

The information in this article is applicable to the following versions of Excel.

Excel for Windows Version 2408 and later.
Excel for Mac Version 16.89 and later.
Excel for iOS Version 2.89 and later.
Excel for Android Build 16.0.18025.XXXXX or later.

Artifacts

Availability

It is available to customers with Office 2024 or Office LTSC 2024 and to customers with a
Microsoft 365 subscription on Current Channel or Monthly Enterprise Channel. For
customers with a Microsoft 365 subscription on Semi-Annual Enterprise Channel it will
be available on January 14, 2025.

Currently, Excel for the web does not support saving as an accessible PDF.

PowerPoint PDF Accessibility
Article • 11/26/2024

Authors can ensure that their PowerPoint presentations are accessible to people with
disabilities even when distributing them in PDF format using the following approach:

1. First, they should follow the practices in Make your PowerPoint presentations
accessible to people with disabilities .

2. Next, they should follow the steps in Create accessible PDFs to preserve the
accessibility of the presentation in PDF format.

This article provides detailed information about the information PowerPoint includes in
the PDF to make it accessible.

1. PDF/UA tags are included to provide semantic information about the content in
the presentation.

2. Decorative content does not need to be read, so it is marked as <Artifact> in the
Content Tree in the PDF and no PDF/UA tags are included.

3. Bookmarks for each section and slide are included to make it easier to navigate the
content.

Type of content Tags

Document

<Document>

Slide

<Sect>

Comment

no tags

Summary

PDF/UA Tags

ﾉ Expand table

https://support.microsoft.com/office/6f7772b2-2f33-4bd2-8ca7-dae3b2b3ef25
https://support.microsoft.com/office/6f7772b2-2f33-4bd2-8ca7-dae3b2b3ef25
https://support.microsoft.com/office/6f7772b2-2f33-4bd2-8ca7-dae3b2b3ef25
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://www.iso.org/standard/64599.html
https://www.iso.org/standard/64599.html

Type of content Tags

Decorative Object

no tags

Object with Alt Text

<Figure>
 Alt=alt text (object
type)

Object other than Shape without Alt Text

<Figure>
 Alt=blank

Shape without Alt Text, text, fill, outline, or hyperlink

no tags

Shape without Alt Text with whitespace text or no text

<Figure>
 Alt=blank

Shape without Alt Text with Equation

<Formula>
 Alt=equation spelled
out in words

Shape without Alt Text with non-whitespace text without
Equation

<Sect>
 text content

Shape with Alt Text with non-whitespace text without
Equation

<Figure>
 Alt=alt text + text
(shape type)

WordArt without Alt Text or Decorative

<Sect>
 text content

Type of content Tags

Table without Alt Text

<Table>
 <THead>
 <TR>
 <TH>
 text content
 <TH>
 text content
 <TBody>
 <TR>
 <TH>
 text content
 <TD>
 text content
 <TFoot>
 <TR>
 <TH>
 text content
 <TD>
 text content

Table Header Cell

<TH>
 Scope=Row, Column,
or Both

Table Merged Cell

<TH> or <TD>
 Row span=r
 Column span=c

Group without Alt Text

tags for child objects

Summary Zoom, Section Zoom, and Slide Zoom

<TOC>
 Alt=alt text
 <TOCI>
 <Link>
 Link - OBJR

Type of content Tags

Paragraph

<P>

Bullets and Numbering

<L>

 <Lbl>
 bullet or number
 <LBody>
 text content

Picture Bullets

<L>

 <LBody>
 text content

Nested Bullets and Numbering

<L>

 <Lbl>
 bullet or number
 <LBody>
 text content
 <L>

 <Lbl>
 bullet or
number
 <LBody>
 text
content
 ...

Text in different language

 Lang=language code

Header and Footer

no tags

Type of content Tags

Objects that appear in Slide Master View

no tags (except
hyperlinks)

Title Placeholder on first slide in presentation or section or
slide with Title or Section Header layout

<H1>

Title Placeholder on all other slides

<H2>

Hyperlink on Text

<Link>
 Link - OBJR
 text content

Hyperlink on Object

tag for object
<Link>
 Link - OBJR
 alt text

Note: the <Link> is a sibling of
the tag for the object.

The following types of content are marked as <Artifact> in the PDF Content Tree and
have no PDF/UA tags:

Decorative objects
Header and footer
Objects that appear in Slide Master View
Table borders
Text formatting marks including underline, strikethrough, highlight, and shadow
Text in SmartArt objects

Artifacts

Bookmarks

Bookmarks are included in the PDF for each section and slide in the presentation. The
bookmarks use the section names and slide titles given in PowerPoint. Authors should
provide a unique and meaningful title for each slide. See Title a slide .

The PowerPoint object model includes the Presentation.ExportAsFixedFormat3 method
to export the presentation as PDF with accessibility as described here.

1. Bookmarks for each section and slide are only included when Bookmarks:=True is
specified.

2. PDF/UA tags are only included when DocStructureTags:=True is specified.
3. The <Document> tag is only included when DocumentMarkup:=True is specified.
4. A <Link> tag is only written as a sibling of the tag for the object when

PromotedHyperlinkShape:=True is specified.

The older Presentation.ExportAsFixedFormat2 method does not include the Bookmarks,
DocumentMarkup, and PromotedHyperlinkShape parameters. It works the same as the
Presentation.ExportAsFixedFormat3 method with these 3 parameters set to False.

The information in this article is applicable to the following versions of PowerPoint.

PowerPoint for Windows Version 2408 and later.
PowerPoint for Mac Version 16.89 and later.
PowerPoint for iOS Version 2.89 and later.
PowerPoint for Android Build 16.0.18025.XXXXX or later.
PowerPoint for the web Build 16.0.18025.XXXXX or later.

It is available to customers with Office 2024 or Office LTSC 2024 and to customers with a
Microsoft 365 subscription on Current Channel or Monthly Enterprise Channel. For
customers with a Microsoft 365 subscription on Semi-Annual Enterprise Channel it will
be available on January 14, 2025.

Object Model

Availability

https://support.microsoft.com/office/c5286802-495a-4b47-a8ae-212fb8a7dc74
https://support.microsoft.com/office/c5286802-495a-4b47-a8ae-212fb8a7dc74
https://learn.microsoft.com/en-us/office/vba/api/powerpoint.presentation.exportasfixedformat3
https://learn.microsoft.com/en-us/office/vba/api/powerpoint.presentation.exportasfixedformat2
https://learn.microsoft.com/en-us/office/vba/api/powerpoint.presentation.exportasfixedformat3

Word PDF Accessibility
Article • 04/07/2025

Summary
Authors can ensure that their Word documents are accessible to people with disabilities even
when distributing them in PDF format using the following approach:

1. First, they should follow the practices in Make your Word documents accessible to people
with disabilities .

2. Next, they should follow the steps in Create accessible PDFs to preserve the
accessibility of the document in PDF format.

This article provides details about the information Word includes in the PDF to make it
accessible.

1. PDF/UA tags are included to provide semantic information about the content in the
document.

2. Decorative content does not need to be read, so it is marked as <Artifact> in the Content
Tree in the PDF and no PDF/UA tags are included.

3. Bookmarks for headings or Word bookmarks (depending on the option selected) are
available to make it easier to navigate the content.

PDF/UA Tags

Type of content Tags

Document

<Document>

Title

<Title>

H1, H2, etc.

<H1>, <H2>, etc.

ﾉ Expand table

https://support.microsoft.com/office/d9bf3683-87ac-47ea-b91a-78dcacb3c66d
https://support.microsoft.com/office/d9bf3683-87ac-47ea-b91a-78dcacb3c66d
https://support.microsoft.com/office/d9bf3683-87ac-47ea-b91a-78dcacb3c66d
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://support.microsoft.com/office/064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://www.iso.org/standard/64599.html
https://www.iso.org/standard/64599.html

Type of content Tags

Paragraph, Subtitle, Content Controls,
and Legacy Controls

<P>

Paragraph Quote and Intense Quote

<BlockQuote>

Inline Quote (Version ≥
16.0.17004.20000)

<Quote>

Caption

<Caption>

Table of Contents

<TOC>
 <TOCI>
 Table of Contents
 <TOCI>
 <Link>
 Link – OBJR

 Complete line text

 empty
 <TOCI>
 ...
 <TOCI>
 ...

Header and Footer

no tags

Comment (Version ≥
16.0.16831.20002)

<P>
 paragraph content
 <CommentAnchor>

 anchor text
 <Annot>
 comment content

Type of content Tags

Footnotes and Endnotes

<P>
 paragraph content
<Link>
 Link – OBJR

 footnote number
 <Note>
 footnote text

Signature Line, ActiveX Controls, and
OLE Objects

<P>
 <Sect>

Text in different language (Version ≥
16.0.16922.20000)

 Lang=language code

Bullets and Numbering

<L>

 <Lbl>
 bullet or number
 <LBody>
 text content

Picture Bullets

<L>

 <LBody>
 text content

Nested Bullets and Numbering

<L>

 <Lbl>
 bullet or number
 <LBody>
 text content
 <L>

 <Lbl>
 bullet or number

Type of content Tags

 <LBody>
 text content
 ...

Table

<Table>
 <THead>
 <TR>
 <TH>
 text content
 <TH>
 text content
 <TBody>
 <TR>
 <TH>
 text content
 <TD>
 text content

Table Header Cell

<TH>

Layout Table (Version ≥
16.0.18526.20168, beta channel)

If a table does not have borders or shaded cells, it is treated as a
layout table. In this case, a <P> tag is created for each cell.

Decorative Graphical Object

no tags

Graphical Object with Alt Text

<Figure>
 Alt=alt text (object type)

Graphical Object other than Shape
without Alt Text

<Figure>
 Alt=blank

Shape without Alt Text with text

<Sect>
 text content

Type of content Tags

Shape with Alt Text with text

<Figure>
 Alt=alt text + text (shape type)

WordArt without Alt Text or
Decorative

<Sect>
 text content

Picture with Attribution

<Figure>
 Alt=alt text
<Sect>
 text content

Group without Alt Text

tags for child objects

Hyperlink on Text

<Link>
 Link - OBJR
 text content

Hyperlink on Object

tag for object
<Link>
 Link - OBJR
 alt text

Note: the <Link> is a sibling of the tag for the object.

Equation (Version ≥
16.0.18526.20168)

<Formula>
 Alt=alt text
 Attribute MSFT_MathML=MathML string

Artifacts
The following types of content are marked as <Artifact> in the PDF Content Tree and have no
PDF/UA tags:

Header and footer
Decorative graphical objects
Gray space on the right side of the page for comments
Pictures in picture bullets
Underlines
Borders around text and quote paragraphs
Lines above footnotes/endnotes
Text in SmartArt objects

Availability
The information in this article is applicable to the following versions of Word.

Word for Windows Version 2408 and later.
Word for Mac Version 16.89 and later.
Word for iOS Version 2.89 and later.
Word for Android Build 16.0.18025.XXXXX or later.
Word for the web Build 16.0.18025.XXXXX or later.

It is available to customers with Office 2024 or Office LTSC 2024 and to customers with a
Microsoft 365 subscription on Current Channel or Monthly Enterprise Channel. For customers
with a Microsoft 365 subscription on Semi-Annual Enterprise Channel it will be available on
January 14, 2025.

	Office PDF Accessibility Documentation
	Extending Office PDF Export
	Office 2024 PDF Accessibility Improvements
	Excel PDF Accessibility
	PowerPoint PDF Accessibility
	Word PDF Accessibility

