
Tell us about your PDF experience.

Windows Subsystem for Linux
Documentation
Article • 06/27/2022

Windows Subsystem for Linux (WSL) lets developers run a GNU/Linux environment --
including most command-line tools, utilities, and applications -- directly on Windows,
unmodified, without the overhead of a traditional virtual machine or dual-boot setup.

What is the Windows Subsystem for Linux (WSL)?
What's new with WSL 2?
Comparing WSL 1 and WSL 2
Frequently Asked Questions

Install WSL
Install Linux on Windows Server
Manual install steps
Best practices for setting up a WSL development environment

To try the most recent features or updates to WSL, join the Windows Insiders
Program . Once you have joined Windows Insiders, you can choose the channel you
would like to receive preview builds from inside the Windows settings menu. You can
choose from:

Dev channel: Most recent updates, but low stability.
Beta channel: Ideal for early adopters, more reliable builds than the Dev channel.
Release Preview channel: Preview fixes and key features on the next version of
Windows just before its available to the general public.

Install WSL

Learn more

Get started

Try WSL preview features by joining the
Windows Insiders Program

https://insider.windows.com/getting-started
https://aka.ms/learn-pdf-feedback

Overview post with a collection of videos and blogs
Command-Line blog (Active)
Windows Subsystem for Linux Blog (Historical)

GitHub issue tracker: WSL
GitHub issue tracker: WSL documentation

WSL BASICS

1. What is the Windows Subsystem for Linux (WSL)? | One Dev Question (0:40)
2. I'm a Windows developer. Why should I use WSL? | One Dev Question (0:58)
3. I'm a Linux developer. Why should I use WSL? | One Dev Question (1:04)
4. What is Linux? | One Dev Question (1:31)
5. What is a Linux distro? | One Dev Question (1:04)
6. How is WSL different than a virtual machine or dual booting? | One Dev

Question
7. Why was the Windows Subsystem for Linux created? | One Dev Question (1:14)
8. How do I access files on my computer in WSL? | One Dev Question (1:41)
9. How is WSL integrated with Windows? | One Dev Question (1:34)

10. How do I configure a WSL distro to launch in the home directory in Terminal? |
One Dev Question (0:47)

11. Can I use WSL for scripting? | One Dev Question (1:04)
12. Why would I want to use Linux tools on Windows? | One Dev Question (1:20)
13. In WSL, can I use distros other than the ones in the Microsoft Store? | One Dev

Question (1:03)

WSL DEMOS

1. WSL2: Code faster on the Windows Subsystem for Linux! | Tabs vs Spaces (13:42)
2. WSL: Run Linux GUI Apps | Tabs vs Spaces (17:16)
3. WSL 2: Connect USB devices | Tabs vs Spaces (10:08)
4. GPU Accelerated Machine Learning with WSL 2 | Tabs vs Spaces (16:28)
5. Visual Studio Code: Remote Dev with SSH, VMs, and WSL | Tabs vs Spaces (29:33)
6. Windows Dev Tool Updates: WSL, Terminal, Package Manager, and more | Tabs

vs Spaces (20:46)

Team blogs

Provide feedback

Related videos

https://blogs.msdn.microsoft.com/commandline/learn-about-windows-console-and-windows-subsystem-for-linux-wsl/
https://blogs.msdn.microsoft.com/commandline/
https://learn.microsoft.com/en-us/archive/blogs/wsl/
https://github.com/microsoft/WSL/issues
https://github.com/MicrosoftDocs/WSL/issues
https://www.youtube.com/watch?v=NYGMY9c90Oo
https://www.youtube.com/watch?v=sqdHy1rC2t4
https://www.youtube.com/watch?v=75JBKfAqH3I
https://www.youtube.com/watch?v=jx5I-8_arqM
https://www.youtube.com/watch?v=WnzKfwL3Iy0
https://www.youtube.com/watch?v=UMQ5GQix0rs
https://www.youtube.com/watch?v=b9I7NZHni5c
https://www.youtube.com/watch?v=uUaFNRRS9yo&t=2s
https://www.youtube.com/watch?v=JuJ_Nx_bFEM
https://www.youtube.com/watch?v=n1YSFT5VK-Y
https://www.youtube.com/watch?v=teI6WA48_Rg
https://www.youtube.com/watch?v=OeomwrHLAR4
https://www.youtube.com/watch?v=AfhDwVASD2c
https://www.youtube.com/watch?v=MrZolfGm8Zk&t=3s
https://www.youtube.com/watch?v=kC3eWRPzeWw
https://www.youtube.com/watch?v=I2jOuLU4o8E
https://www.youtube.com/watch?v=PdxXlZJiuxA
https://www.youtube.com/watch?v=XkLjxr9iQ-8&t=1s
https://www.youtube.com/watch?v=m5tt9mDRPSw

7. Build Node.JS apps with WSL | Highlight (3:15)
8. New memory reclaim feature in WSL 2 | Demo (6:01)
9. Web development on Windows (in 2019) | Demo (10:39)

WSL DEEP DIVES

1. WSL on Windows 11 - Demos with Craig Loewen and Scott Hanselman |
Windows Wednesday (35:48)

2. WSL and Linux Distributions – Hayden Barnes and Kayla Cinnamon | Windows
Wednesday (37:00)

3. Customize your terminal with Oh My Posh and WSL Linux distros | Windows
Wednesday (33:14)

4. Web dev Sarah Tamsin and Craig Loewen chat about web development, content
creation, and WSL | Dev Perspectives (12:22)

5. How WSL accesses Linux files from Windows | Deep dive (24:59)
6. Windows subsystem for Linux architecture: a deep dive | Build 2019 (58:10)

https://www.youtube.com/watch?v=lOXatmtBb88
https://www.youtube.com/watch?v=K9GPOHrZgr4
https://www.youtube.com/watch?v=UxWN1BBr1bM
https://www.youtube.com/watch?v=pNwatyeXplY
https://www.youtube.com/watch?v=kCB3gO32SPs
https://www.youtube.com/watch?v=uO_F5W2LbSk
https://www.youtube.com/watch?v=ySS8Re6LDTQ
https://www.youtube.com/watch?v=63wVlI9B3Ac&t=45s
https://www.youtube.com/watch?v=lwhMThePdIo

What is the Windows Subsystem for
Linux?
Article • 11/28/2023

Windows Subsystem for Linux (WSL) is a feature of Windows that allows you to run a
Linux environment on your Windows machine, without the need for a separate virtual
machine or dual booting. WSL is designed to provide a seamless and productive
experience for developers who want to use both Windows and Linux at the same time.

Use WSL to install and run various Linux distributions, such as Ubuntu, Debian, Kali,
and more. Install Linux distributions and receive automatic updates from the
Microsoft Store, import Linux distributions not available in the Microsoft Store, or
build your own customer Linux distribution.
Store files in an isolated Linux file system, specific to the installed distribution.
Run command-line tools, such as BASH.
Run common BASH command-line tools such as grep , sed , awk , or other ELF-64
binaries.
Run Bash scripts and GNU/Linux command-line applications including:

Tools: vim, emacs, tmux
Languages: NodeJS, JavaScript, Python, Ruby, C/C++, C# & F#, Rust, Go, etc.
Services: SSHD, MySQL, Apache, lighttpd, MongoDB, PostgreSQL.

Install additional software using your own GNU/Linux distribution package
manager.
Invoke Windows applications using a Unix-like command-line shell.
Invoke GNU/Linux applications on Windows.
Run GNU/Linux graphical applications integrated directly to your Windows
desktop
Use your device GPU to accelerate Machine Learning workloads running on Linux.

WSL 2 is the default distro type when installing a Linux distribution. WSL 2 uses
virtualization technology to run a Linux kernel inside of a lightweight utility virtual
machine (VM). Linux distributions run as isolated containers inside of the WSL 2
managed VM. Linux distributions running via WSL 2 will share the same network

Install WSL

https://www.youtube-nocookie.com/embed/48k317kOxqg

What is WSL 2?

https://learn.microsoft.com/en-us/windows/nodejs/setup-on-wsl2
https://learn.microsoft.com/en-us/windows/python/web-frameworks
https://www.youtube-nocookie.com/embed/48k317kOxqg

namespace, device tree (other than /dev/pts), CPU/Kernel/Memory/Swap, /init binary,
but have their own PID namespace, Mount namespace, User namespace, Cgroup
namespace, and init process.

WSL 2 increases file system performance and adds full system call compatibility in
comparison to the WSL 1 architecture. Learn more about how WSL 1 and WSL 2
compare.

Individual Linux distributions can be run with either the WSL 1 or WSL 2 architecture.
Each distribution can be upgraded or downgraded at any time and you can run WSL 1
and WSL 2 distributions side by side. See the Set WSL version command.

Learn more about Linux resources at Microsoft, including Microsoft tools that run on
Linux, Linux training courses, Cloud Solution Architecture for Linux, and Microsoft +
Linux news, events, and partnerships. Microsoft Loves Linux!

https://www.youtube-nocookie.com/embed/MrZolfGm8Zk

Microsoft Loves Linux

https://learn.microsoft.com/en-us/linux
https://www.youtube-nocookie.com/embed/MrZolfGm8Zk

Comparing WSL Versions
Article • 12/15/2023

Learn more about different WSL versions, including why WSL 2 is now the default and
the specific scenarios or exceptions that may warrant switching your installed Linux
distribution to the earlier WSL 1 architecture.

This guide will compare WSL 1 and WSL 2, including exceptions for using WSL 1 rather
than WSL 2. The primary differences between WSL 1 and WSL 2 are the use of an actual
Linux kernel inside a managed VM, support for full system call compatibility, and
performance across the Linux and Windows operating systems. WSL 2 is the current
default version when installing a Linux distribution and uses the latest and greatest in
virtualization technology to run a Linux kernel inside of a lightweight utility virtual
machine (VM). WSL2 runs Linux distributions as isolated containers inside the managed
VM. If your distribution is currently running WSL 1 and you want to update to WSL 2,
see update from WSL 1 to WSL 2.

Feature WSL 1 WSL 2

Integration between Windows and Linux ✅ ✅

Fast boot times ✅ ✅

Small resource foot print compared to traditional Virtual Machines ✅ ✅

Runs with current versions of VMware and VirtualBox ✅ ❌

Managed VM ❌ ✅

Full Linux Kernel ❌ ✅

Full system call compatibility ❌ ✅

Performance across OS file systems ✅ ❌

systemd support ❌ ✅

IPv6 support ✅ ✅

Comparing WSL 1 and WSL 2

Comparing features

ﾉ Expand table

As you can tell from the comparison table above, the WSL 2 architecture outperforms
WSL 1 in several ways, with the exception of performance across OS file systems, which
can be addressed by storing your project files on the same operating system as the
tools you are running to work on the project.

WSL 2 is only available in Windows 11 or Windows 10, Version 1903, Build 18362 or
later. Check your Windows version by selecting the Windows logo key + R, type winver,
select OK. (Or enter the ver command in Windows Command Prompt). You may need
to update to the latest Windows version. For builds lower than 14393, WSL is not
supported at all.

For more info on the latest WSL 2 updates, see the Windows Command Line blog ,
including Systemd support is now available in WSL and WSL September 2023
update for more info on IPv6 support.

WSL 2 is a major overhaul of the underlying architecture and uses virtualization
technology and a Linux kernel to enable new features. The primary goals of this update
are to increase file system performance and add full system call compatibility.

WSL 2 system requirements
Set your Linux distribution version from WSL 1 to WSL 2
Frequently Asked Questions about WSL 2

A traditional VM experience can be slow to boot up, is isolated, consumes a lot of
resources, and requires your time to manage it. WSL 2 does not have these attributes.

WSL 2 provides the benefits of WSL 1, including seamless integration between Windows
and Linux, fast boot times, a small resource footprint, and requires no VM configuration
or management. While WSL 2 does use a VM, it is managed and run behind the scenes,
leaving you with the same user experience as WSL 1.

７ Note

WSL 2 will work with VMware 15.5.5+ and although VirtualBox 6+ states that
there is WSL support, there are still significant challenges that make it unsupported.
Learn more in our FAQs.

What's new in WSL 2

WSL 2 architecture

ms-settings:windowsupdate
https://devblogs.microsoft.com/commandline/
https://devblogs.microsoft.com/commandline/
https://devblogs.microsoft.com/commandline/systemd-support-is-now-available-in-wsl/
https://devblogs.microsoft.com/commandline/systemd-support-is-now-available-in-wsl/
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://www.virtualbox.org/wiki/Changelog-6.0
https://www.virtualbox.org/wiki/Changelog-6.0

The Linux kernel in WSL 2 is built by Microsoft from the latest stable branch, based on
the source available at kernel.org. This kernel has been specially tuned for WSL 2,
optimizing for size and performance to provide an amazing Linux experience on
Windows. The kernel will be serviced by Windows updates, which means you will get the
latest security fixes and kernel improvements without needing to manage it yourself.

The WSL 2 Linux kernel is open source . If you'd like to learn more, check out the blog
post Shipping a Linux Kernel with Windows written by the team that built it.

Learn more in the Release Notes for Windows Subsystem for Linux kernel.

File intensive operations like git clone, npm install, apt update, apt upgrade, and more
are all noticeably faster with WSL 2.

The actual speed increase will depend on which app you're running and how it is
interacting with the file system. Initial versions of WSL 2 run up to 20x faster compared
to WSL 1 when unpacking a zipped tarball, and around 2-5x faster when using git
clone, npm install and cmake on various projects.

Linux binaries use system calls to perform functions such as accessing files, requesting
memory, creating processes, and more. Whereas WSL 1 used a translation layer that was
built by the WSL team, WSL 2 includes its own Linux kernel with full system call
compatibility. Benefits include:

A whole new set of apps that you can run inside of WSL, such as Docker and more.

Any updates to the Linux kernel are immediately ready for use. (You don't have to
wait for the WSL team to implement updates and add the changes).

We recommend that you use WSL 2 as it offers faster performance and 100% system call
compatibility. However, there are a few specific scenarios where you might prefer using
WSL 1. Consider using WSL 1 if:

Full Linux kernel

Increased file IO performance

Full system call compatibility

Exceptions for using WSL 1 rather than WSL 2

https://github.com/microsoft/WSL2-Linux-Kernel
https://github.com/microsoft/WSL2-Linux-Kernel
https://devblogs.microsoft.com/commandline/shipping-a-linux-kernel-with-windows/
https://devblogs.microsoft.com/commandline/shipping-a-linux-kernel-with-windows/

Your project files must be stored in the Windows file system. WSL 1 offers faster
access to files mounted from Windows.

If you will be using your WSL Linux distribution to access project files on the
Windows file system, and these files cannot be stored on the Linux file system,
you will achieve faster performance across the OS files systems by using WSL 1.

A project which requires cross-compilation using both Windows and Linux tools on
the same files.

File performance across the Windows and Linux operating systems is faster in
WSL 1 than WSL 2, so if you are using Windows applications to access Linux
files, you will currently achieve faster performance with WSL 1.

Your project needs access to a serial port or USB device. However, USB device
support is now available for WSL 2 via the USBIPD-WIN project. See Connect USB
devices for set up steps.
WSL 2 does not include support for accessing serial ports. Learn more in the FAQs
or in WSL GitHub repo issue on serial support .
You have strict memory requirements

WSL 2's memory usage grows and shrinks as you use it. When a process frees
memory this is automatically returned to Windows. However, as of right now
WSL 2 does not yet release cached pages in memory back to Windows until the
WSL instance is shut down. If you have long running WSL sessions, or access a
very large amount of files, this cache can take up memory on Windows. We are
tracking the work to improve this experience on the WSL GitHub repository
issue 4166 .

For those using VirtualBox, be sure to use the latest version of both VirtualBox and
WSL 2. See the related FAQ.
If you rely on a Linux distribution to have an IP address in the same network as
your host machine, you may need to set up a workaround in order to run WSL 2.
WSL 2 is running as a hyper-v virtual machine. This is a change from the bridged
network adapter used in WSL 1, meaning that WSL 2 uses a Network Address
Translation (NAT) service for its virtual network, instead of making it bridged to the
host Network Interface Card (NIC) resulting in a unique IP address that will change
on restart. To learn more about the issue and workaround that forwards TCP ports
of WSL 2 services to the host OS, see WSL GitHub repository issue 4150, NIC
Bridge mode (TCP Workaround) .

７ Note

Consider trying the VS Code Remote WSL Extension to enable you to store your
project files on the Linux file system, using Linux command line tools, but also
using VS Code on Windows to author, edit, debug, or run your project in an

https://github.com/microsoft/WSL/issues/4322
https://github.com/microsoft/WSL/issues/4322
https://github.com/microsoft/WSL/issues/4166
https://github.com/microsoft/WSL/issues/4166
https://github.com/microsoft/WSL/issues/4166
https://github.com/microsoft/WSL/issues/4150
https://github.com/microsoft/WSL/issues/4150
https://github.com/microsoft/WSL/issues/4150
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl

WSL has lifted the update functionality out of the Windows OS Image into a package
that is available via the Microsoft Store. This means faster updates and servicing as soon
as they're available, rather than needing to wait for an update of your Windows
operating system.

WSL was originally included in the Windows operating system as an optional
component that need to be enabled in order to install a Linux distribution. WSL in the
Store has the same user experience, and is the same product, but receives updates and
servicing as a store package, rather than as an entire OS update. Beginning in Windows
version 19044 or higher, running the wsl.exe --install command will install the WSL
servicing update from the Microsoft Store. (See the blog post announcing this
update). If you are already using WSL, you can update to ensure that you're receiving
the latest WSL features and servicing from the store by running wsl.exe --update .

internet browser without any of the performance slow-downs associated with
working across the Linux and Windows file systems. Learn more.

WSL in the Microsoft Store

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/
https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/
https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fcompare-versions&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fcompare-versions.md&documentVersionIndependentId=10a6919c-5152-2aa3-4d90-ccfa45cbbcc5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+5f5d8ca6-c500-72ca-60ae-73ef0ac489ad+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Basic commands for WSL
Article • 11/28/2023

The WSL commands below are listed in a format supported by PowerShell or Windows
Command Prompt. To run these commands from a Bash / Linux distribution command
line, you must replace wsl with wsl.exe . For a full list of commands, run wsl --help . If
you have not yet done so, we recommend updating to the version of WSL installed from
Microsoft Store in order to receive WSL updates as soon as they are available. (Learn
more about installing WSL via Microsoft Store.).

PowerShell

Install WSL and the default Ubuntu distribution of Linux. Learn more. You can also use
this command to install additional Linux distributions by running wsl --install
<Distribution Name> . For a valid list of distribution names, run wsl --list --online .

Options include:

--distribution : Specify the Linux distribution to install. You can find available
distributions by running wsl --list --online .
--no-launch : Install the Linux distribution but do not launch it automatically.

--web-download : Install from an online source rather than using the Microsoft
Store.

When WSL is not installed options include:

--inbox : Installs WSL using the Windows component instead of using the
Microsoft Store. (WSL updates will be received via Windows updates, rather than
pushed out as-available via the store).
--enable-wsl1 : Enables WSL 1 during the install of the Microsoft Store version of
WSL by also enabling the "Windows Subsystem for Linux" optional component.
--no-distribution : Do not install a distribution when installing WSL.

Install

wsl --install

７ Note

https://apps.microsoft.com/detail/9P9TQF7MRM4R
https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/

PowerShell

See a list of the Linux distributions available through the online store. This command
can also be entered as: wsl -l -o .

PowerShell

See a list of the Linux distributions installed on your Windows machine, including the
state (whether the distribution is running or stopped) and the version of WSL running
the distribution (WSL 1 or WSL 2). Comparing WSL 1 and WSL 2. This command can also
be entered as: wsl -l -v . Additional options that can be used with the list command
include: --all to list all distributions, --running to list only distributions that are
currently running, or --quiet to only show distribution names.

PowerShell

To designate the version of WSL (1 or 2) that a Linux distribution is running on, replace
<distribution name> with the name of the distribution and replace <versionNumber>
with 1 or 2. Comparing WSL 1 and WSL 2. WSL 2 is only available in Windows 11 or
Windows 10, Version 1903, Build 18362 or later.

If you run WSL on Windows 10 or an older version, you may need to include the -d
flag with the --install command to specify a distribution: wsl --install -d
<distribution name> .

List available Linux distributions

wsl --list --online

List installed Linux distributions

wsl --list --verbose

Set WSL version to 1 or 2

wsl --set-version <distribution name> <versionNumber>

２ Warning

PowerShell

To set a default version of WSL 1 or WSL 2, replace <Version> with either the number 1
or 2. For example, wsl --set-default-version 2 . The number represents the version of
WSL to default to for new Linux distribution installations. Comparing WSL 1 and WSL 2.
WSL 2 is only available in Windows 11 or Windows 10, Version 1903, Build 18362 or
later.

PowerShell

To set the default Linux distribution that WSL commands will use to run, replace
<Distribution Name> with the name of your preferred Linux distribution.

PowerShell

The ~ can be used with wsl to start in the user's home directory. To jump from any
directory back to home from within a WSL command prompt, you can use the
command: cd ~ .

Switching between WSL 1 and WSL 2 can be time-consuming and result in failures
due to the differences between the two architectures. For distributions with large
projects, we recommend backing up files before attempting a conversion.

Set default WSL version

wsl --set-default-version <Version>

Set default Linux distribution

wsl --set-default <Distribution Name>

Change directory to home

wsl ~

Run a specific Linux distribution from
PowerShell or CMD

PowerShell

To run a specific Linux distribution with a specific user, replace <Distribution Name> with
the name of your preferred Linux distribution (ie. Debian) and <User Name> with the
name of an existing user (ie. root). If the user doesn't exist in the WSL distribution, you
will receive an error. To print the current user name, use the command whoami .

PowerShell

Update your WSL version to the latest version. Options include:

--web-download : Download the latest update from the GitHub rather than the
Microsoft Store.

PowerShell

See general information about your WSL configuration, such as default distribution type,
default distribution, and kernel version.

PowerShell

Check the version information about WSL and its components.

wsl --distribution <Distribution Name> --user <User Name>

Update WSL

wsl --update

Check WSL status

wsl --status

Check WSL version

wsl --version

Help command

PowerShell

See a list of options and commands available with WSL.

PowerShell

To run WSL as a specified user, replace <Username> with the name of a user that exists in
the WSL distribution.

PowerShell

Change the default user for your distribution log-in. The user has to already exist inside
the distribution in order to become the default user.

For example: ubuntu config --default-user johndoe would change the default user for
the Ubuntu distribution to the "johndoe" user.

wsl --help

Run as a specific user

wsl --user <Username>

Change the default user for a distribution

<DistributionName> config --default-user <Username>

７ Note

If you are having trouble figuring out the name of your distribution, use the
command wsl -l .

２ Warning

This command will not work for imported distributions, because these distributions
do not have an executable launcher. You can instead change the default user for
imported distributions using the /etc/wsl.conf file. See the Automount options in
the Advanced Settings Configuration doc.

PowerShell

Immediately terminates all running distributions and the WSL 2 lightweight utility virtual
machine. This command may be necessary in instances that require you to restart the
WSL 2 virtual machine environment, such as changing memory usage limits or making a
change to your .wslconfig file.

PowerShell

To terminate the specified distribution, or stop it from running, replace <Distribution
Name> with the name of the targeted distribution.

wsl hostname -i for the IP address of your Linux distribution installed via WSL 2
(the WSL 2 VM address)
cat /etc/resolv.conf for the IP address of the Windows machine as seen from
WSL 2 (the WSL 2 VM)

PowerShell

Exports a snapshot of the specified distribution as a new distribution file. Defaults to tar
format. The filename can be - for standard input. Options include:

--vhd : Specifies the export distribution should be a .vhdx file instead of a tar file
(this is only supported using WSL 2)

Shutdown

wsl --shutdown

Terminate

wsl --terminate <Distribution Name>

Identify IP address

Export a distribution

wsl --export <Distribution Name> <FileName>

https://learn.microsoft.com/en-us/windows/wsl/manage#

PowerShell

Imports the specified tar file as a new distribution. The filename can be - for standard
input. Options include:

--vhd : Specifies the import distribution should be a .vhdx file instead of a tar file
(this is only supported using WSL 2)
--version <1/2> : Specifies whether to import the distribution as a WSL 1 or WSL 2
distribution

PowerShell

Imports the specified .vhdx file as a new distribution. The virtual hard disk must be
formatted in the ext4 filesystem type.

While Linux distributions can be installed through the Microsoft Store, they can't be
uninstalled through the store.

To unregister and uninstall a WSL distribution:

PowerShell

Replacing <DistributionName> with the name of your targeted Linux distribution will
unregister that distribution from WSL so it can be reinstalled or cleaned up. Caution:
Once unregistered, all data, settings, and software associated with that distribution will
be permanently lost. Reinstalling from the store will install a clean copy of the
distribution. For example, wsl --unregister Ubuntu would remove Ubuntu from the
distributions available in WSL. Running wsl --list will reveal that it is no longer listed.

Import a distribution

wsl --import <Distribution Name> <InstallLocation> <FileName>

Import a distribution in place

wsl --import-in-place <Distribution Name> <FileName>

Unregister or uninstall a Linux distribution

wsl --unregister <DistributionName>

You can also uninstall the Linux distribution app on your Windows machine just like any
other store application. To reinstall, find the distribution in the Microsoft Store and
select "Launch".

PowerShell

Attach and mount a physical disk in all WSL2 distributions by replacing <DiskPath> with
the directory\file path where the disk is located. See Mount a Linux disk in WSL 2.
Options include:

--vhd : Specifies that <Disk> refers to a virtual hard disk.
--name : Mount the disk using a custom name for the mountpoint
--bare : Attach the disk to WSL2, but don't mount it.
--type <Filesystem> : Filesystem type to use when mounting a disk, if not specified
defaults to ext4. This command can also be entered as: wsl --mount -t
<Filesystem> .You can detect the filesystem type using the command: blkid
<BlockDevice> , for example: blkid <dev/sdb1> .
--partition <Partition Number> : Index number of the partition to mount, if not
specified defaults to the whole disk.
--options <MountOptions> : There are some filesystem-specific options that can be
included when mounting a disk. For example, ext4 mount options like: wsl --
mount -o "data-ordered" or wsl --mount -o "data=writeback . However, only
filesystem-specific options are supported at this time. Generic options, such as ro ,
rw , or noatime , are not supported.

PowerShell

Mount a disk or device

wsl --mount <DiskPath>

７ Note

If you're running a 32-bit process in order to access wsl.exe (a 64-bit tool), you may
need to run the command in the following manner: C:\Windows\Sysnative\wsl.exe
--command .

Unmount disks

https://www.kernel.org/doc/Documentation/filesystems/ext4.txt

Unmount a disk given at the disk path, if no disk path is given then this command will
unmount and detach ALL mounted disks.

PowerShell

PowerShell

PowerShell

These commands were the original wsl syntax for configuring Linux distributions
installed with WSL, but have been replaced with the wsl or wsl.exe command syntax.

wsl --unmount <DiskPath>

Deprecated WSL commands

wslconfig.exe [Argument] [Options]

bash [Options]

lxrun /[Argument]

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fbasic-commands&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fbasic-commands.md&documentVersionIndependentId=ea2f6a7b-28f2-2af8-e8fc-7f7b3624f88a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+3cb425ee-c5e3-fc01-93a7-c87c9fa0b89a+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

How to install Linux on Windows with
WSL
Article • 08/28/2023

Developers can access the power of both Windows and Linux at the same time on a
Windows machine. The Windows Subsystem for Linux (WSL) lets developers install a
Linux distribution (such as Ubuntu, OpenSUSE, Kali, Debian, Arch Linux, etc) and use
Linux applications, utilities, and Bash command-line tools directly on Windows,
unmodified, without the overhead of a traditional virtual machine or dualboot setup.

You must be running Windows 10 version 2004 and higher (Build 19041 and higher) or
Windows 11 to use the commands below. If you are on earlier versions please see the
manual install page.

You can now install everything you need to run WSL with a single command. Open
PowerShell or Windows Command Prompt in administrator mode by right-clicking and
selecting "Run as administrator", enter the wsl --install command, then restart your
machine.

PowerShell

This command will enable the features necessary to run WSL and install the Ubuntu
distribution of Linux. (This default distribution can be changed).

If you're running an older build, or just prefer not to use the install command and would
like step-by-step directions, see WSL manual installation steps for older versions.

The first time you launch a newly installed Linux distribution, a console window will open
and you'll be asked to wait for files to de-compress and be stored on your machine. All
future launches should take less than a second.

Prerequisites

Install WSL command

wsl --install

７ Note

By default, the installed Linux distribution will be Ubuntu. This can be changed using the
-d flag.

To change the distribution installed, enter: wsl --install -d <Distribution Name> .
Replace <Distribution Name> with the name of the distribution you would like to
install.
To see a list of available Linux distributions available for download through the
online store, enter: wsl --list --online or wsl -l -o .
To install additional Linux distributions after the initial install, you may also use the
command: wsl --install -d <Distribution Name> .

If you run into an issue during the install process, check the installation section of the
troubleshooting guide.

To install a Linux distribution that is not listed as available, you can import any Linux
distribution using a TAR file. Or in some cases, as with Arch Linux , you can install using
an .appx file. You can also create your own custom Linux distribution to use with WSL.

Once you have installed WSL, you will need to create a user account and password for
your newly installed Linux distribution. See the Best practices for setting up a WSL
development environment guide to learn more.

The above command only works if WSL is not installed at all. If you run wsl --
install and see the WSL help text, please try running wsl --list --online to see a
list of available distros and run wsl --install -d <DistroName> to install a distro. To
uninstall WSL, see Uninstall legacy version of WSL or unregister or uninstall a
Linux distribution.

Change the default Linux distribution installed

 Tip

If you want to install additional distributions from inside a Linux/Bash command
line (rather than from PowerShell or Command Prompt), you must use .exe in the
command: wsl.exe --install -d <Distribution Name> or to list available
distributions: wsl.exe -l -o .

Set up your Linux user info

https://wsldl-pg.github.io/ArchW-docs/How-to-Setup/

We recommend following our Best practices for setting up a WSL development
environment guide for a step-by-step walk-through of how to set up a user name and
password for your installed Linux distribution(s), using basic WSL commands, installing
and customizing Windows Terminal, set up for Git version control, code editing and
debugging using the VS Code remote server, good practices for file storage, setting up
a database, mounting an external drive, setting up GPU acceleration, and more.

You can list your installed Linux distributions and check the version of WSL each is set to
by entering the command: wsl -l -v in PowerShell or Windows Command Prompt.

To set the default version to WSL 1 or WSL 2 when a new Linux distribution is installed,
use the command: wsl --set-default-version <Version#> , replacing <Version#> with
either 1 or 2.

To set the default Linux distribution used with the wsl command, enter: wsl -s
<DistributionName> or wsl --set-default <DistributionName> , replacing
<DistributionName> with the name of the Linux distribution you would like to use. For
example, from PowerShell/CMD, enter: wsl -s Debian to set the default distribution to
Debian. Now running wsl npm init from Powershell will run the npm init command in
Debian.

To run a specific wsl distribution from within PowerShell or Windows Command Prompt
without changing your default distribution, use the command: wsl -d
<DistributionName> , replacing <DistributionName> with the name of the distribution you
want to use.

Learn more in the guide to Basic commands for WSL.

New Linux installations, installed using the wsl --install command, will be set to WSL
2 by default.

The wsl --set-version command can be used to downgrade from WSL 2 to WSL 1 or to
update previously installed Linux distributions from WSL 1 to WSL 2.

Set up and best practices

Check which version of WSL you are running

Upgrade version from WSL 1 to WSL 2

To see whether your Linux distribution is set to WSL 1 or WSL 2, use the command: wsl
-l -v .

To change versions, use the command: wsl --set-version <distro name> 2 replacing
<distro name> with the name of the Linux distribution that you want to update. For
example, wsl --set-version Ubuntu-20.04 2 will set your Ubuntu 20.04 distribution to
use WSL 2.

If you manually installed WSL prior to the wsl --install command being available, you
may also need to enable the virtual machine optional component used by WSL 2 and
install the kernel package if you haven't already done so.

To learn more, see the Command reference for WSL for a list of WSL commands,
Comparing WSL 1 and WSL 2 for guidance on which to use for your work scenario, or
Best practices for setting up a WSL development environment for general guidance on
setting up a good development workflow with WSL.

WSL supports running as many different Linux distributions as you would like to install.
This can include choosing distributions from the Microsoft Store , importing a custom
distribution, or building your own custom distribution.

There are several ways to run your Linux distributions once installed:

Install Windows Terminal (Recommended) Using Windows Terminal supports as
many command lines as you would like to install and enables you to open them in
multiple tabs or window panes and quickly switch between multiple Linux
distributions or other command lines (PowerShell, Command Prompt, Azure CLI,
etc). You can fully customize your terminal with unique color schemes, font styles,
sizes, background images, and custom keyboard shortcuts. Learn more.
You can directly open your Linux distribution by visiting the Windows Start menu
and typing the name of your installed distributions. For example: "Ubuntu". This
will open Ubuntu in its own console window.
From Windows Command Prompt or PowerShell, you can enter the name of your
installed distribution. For example: ubuntu
From Windows Command Prompt or PowerShell, you can open your default Linux
distribution inside your current command line, by entering: wsl.exe .
From Windows Command Prompt or PowerShell, you can use your default Linux
distribution inside your current command line, without entering a new one, by

Ways to run multiple Linux distributions with
WSL

https://aka.ms/wslstore
https://learn.microsoft.com/en-us/windows/terminal/get-started
https://learn.microsoft.com/en-us/windows/terminal

entering: wsl [command] . Replacing [command] with a WSL command, such as: wsl -
l -v to list installed distributions or wsl pwd to see where the current directory
path is mounted in wsl. From PowerShell, the command get-date will provide the
date from the Windows file system and wsl date will provide the date from the
Linux file system.

The method you select should depend on what you're doing. If you've opened a WSL
command line within a Windows Prompt or PowerShell window and want to exit, enter
the command: exit .

Try the most recent features or updates to WSL by joining the Windows Insiders
Program . Once you have joined Windows Insiders, you can choose the channel you
would like to receive preview builds from inside the Windows settings menu to
automatically receive any WSL updates or preview features associated with that build.
You can choose from:

Dev channel: Most recent updates, but low stability.
Beta channel: Ideal for early adopters, more reliable builds than the Dev channel.
Release Preview channel: Preview fixes and key features on the next version of
Windows just before its available to the general public.

Windows Command Line Blog: Install WSL with a single command now available in
Windows 10 version 2004 and higher

Want to try the latest WSL preview features?

Additional resources

https://insider.windows.com/getting-started
https://devblogs.microsoft.com/commandline/install-wsl-with-a-single-command-now-available-in-windows-10-version-2004-and-higher/

Manual installation steps for older
versions of WSL
Article • 11/20/2023

For simplicity, we generally recommend using the wsl --install to install Windows
Subsystem for Linux, but if you're running an older build of Windows, that may not be
supported. We have included the manual installation steps below. If you run into an
issue during the install process, check the installation section of the troubleshooting
guide.

You must first enable the "Windows Subsystem for Linux" optional feature before
installing any Linux distributions on Windows.

Open PowerShell as Administrator (Start menu > PowerShell > right-click > Run as
Administrator) and enter this command:

PowerShell

We recommend now moving on to step #2, updating to WSL 2, but if you wish to only
install WSL 1, you can now restart your machine and move on to Step 6 - Install your
Linux distribution of choice. To update to WSL 2, wait to restart your machine and move
on to the next step.

To update to WSL 2, you must be running Windows 10...

For x64 systems: Version 1903 or later, with Build 18362.1049 or later.
For ARM64 systems: Version 2004 or later, with Build 19041 or later.

or Windows 11.

Step 1 - Enable the Windows Subsystem for
Linux

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-
Linux /all /norestart

Step 2 - Check requirements for running WSL 2

７ Note

To check your version and build number, select Windows logo key + R, type winver,
select OK. Update to the latest Windows version in the Settings menu.

Before installing WSL 2, you must enable the Virtual Machine Platform optional feature.
Your machine will require virtualization capabilities to use this feature.

Open PowerShell as Administrator and run:

PowerShell

Restart your machine to complete the WSL install and update to WSL 2.

The Linux kernel update package installs the most recent version of the WSL 2 Linux
kernel for running WSL inside the Windows operating system image. (To run WSL
from the Microsoft Store, with more frequently pushed updates, use wsl.exe --install
or wsl.exe --update .).

Builds lower than 18362 do not support WSL 2. Use the Windows Update
Assistant to update your version of Windows. The Windows version 1903
support is also only for x64 systems. If you are using an Arm64 version of Windows,
you will need to upgrade to Windows 10 version 2004 or later for full access to WSL
2. For more info, see WSL 2 support coming to Windows 10 Versions 1903 and
1909 .

７ Note

If you are running Windows 10 version 1903 or 1909, open "Settings" from your
Windows menu, navigate to "Update & Security" and select "Check for Updates".
Your Build number must be 18362.1049+ or 18363.1049+, with the minor build #
over .1049. Read more: WSL 2 Support is coming to Windows 10 Versions 1903
and 1909 .

Step 3 - Enable Virtual Machine feature

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all
/norestart

Step 4 - Download the Linux kernel update
package

ms-settings:windowsupdate
https://github.com/microsoft/WSL2-Linux-Kernel
https://www.microsoft.com/software-download/windows10
https://devblogs.microsoft.com/commandline/wsl-2-support-is-coming-to-windows-10-versions-1903-and-1909
https://devblogs.microsoft.com/commandline/wsl-2-support-is-coming-to-windows-10-versions-1903-and-1909/

1. Download the latest package:

WSL2 Linux kernel update package for x64 machines

2. Run the update package downloaded in the previous step. (Double-click to run -
you will be prompted for elevated permissions, select ‘yes’ to approve this
installation.)

Once the installation is complete, move on to the next step - setting WSL 2 as your
default version when installing new Linux distributions. (Skip this step if you want your
new Linux installs to be set to WSL 1).

Open PowerShell and run this command to set WSL 2 as the default version when
installing a new Linux distribution:

PowerShell

1. Open the Microsoft Store and select your favorite Linux distribution.

７ Note

If you're using an ARM64 machine, please download the ARM64 package
instead. If you're not sure what kind of machine you have, open Command
Prompt or PowerShell and enter: systeminfo | find "System Type" . Caveat:
On non-English Windows versions, you might have to modify the search text,
translating the "System Type" string. You may also need to escape the
quotations for the find command. For example, in German systeminfo | find
'"Systemtyp"' .

７ Note

For more information, read the article changes to updating the WSL2 Linux
kernel , available on the Windows Command Line Blog .

Step 5 - Set WSL 2 as your default version

wsl --set-default-version 2

Step 6 - Install your Linux distribution of choice

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://aka.ms/wslstore
https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_arm64.msi
https://devblogs.microsoft.com/commandline/wsl2-will-be-generally-available-in-windows-10-version-2004
https://aka.ms/cliblog

The following links will open the Microsoft store page for each distribution:

Ubuntu 18.04 LTS
Ubuntu 20.04 LTS
Ubuntu 22.04 LTS
openSUSE Leap 15.1
SUSE Linux Enterprise Server 12 SP5
SUSE Linux Enterprise Server 15 SP1
Kali Linux
Debian GNU/Linux
Fedora Remix for WSL
Pengwin
Pengwin Enterprise
Alpine WSL
Raft(Free Trial)
Alma Linux

2. From the distribution's page, select "Get".

https://www.microsoft.com/store/apps/9N9TNGVNDL3Q
https://www.microsoft.com/store/apps/9n6svws3rx71
https://www.microsoft.com/store/apps/9PN20MSR04DW
https://www.microsoft.com/store/apps/9NJFZK00FGKV
https://www.microsoft.com/store/apps/9MZ3D1TRP8T1
https://www.microsoft.com/store/apps/9PN498VPMF3Z
https://www.microsoft.com/store/apps/9PKR34TNCV07
https://www.microsoft.com/store/apps/9MSVKQC78PK6
https://www.microsoft.com/store/apps/9n6gdm4k2hnc
https://www.microsoft.com/store/apps/9NV1GV1PXZ6P
https://www.microsoft.com/store/apps/9N8LP0X93VCP
https://www.microsoft.com/store/apps/9p804crf0395
https://www.microsoft.com/store/apps/9msmjqd017x7
https://apps.microsoft.com/search?query=alma+linux

The first time you launch a newly installed Linux distribution, a console window will open
and you'll be asked to wait for a minute or two for files to de-compress and be stored
on your PC. All future launches should take less than a second.

You will then need to create a user account and password for your new Linux
distribution.

CONGRATULATIONS! You've successfully installed and set up a Linux distribution that
is completely integrated with your Windows operating system!

If you run into an issue during the install process, check the installation section of the
troubleshooting guide.

Troubleshooting installation

Downloading distributions

There are some scenarios in which you may not be able (or want) to, install WSL Linux
distributions using the Microsoft Store. You may be running a Windows Server or Long-
Term Servicing (LTSC) desktop OS SKU that doesn't support Microsoft Store, or your
corporate network policies and/or admins do not permit Microsoft Store usage in your
environment. In these cases, while WSL itself is available, you may need to download
Linux distributions directly.

If the Microsoft Store app is not available, you can download and manually install Linux
distributions using these links:

Ubuntu
Ubuntu 22.04 LTS
Ubuntu 20.04
Ubuntu 20.04 ARM
Ubuntu 18.04
Ubuntu 18.04 ARM
Ubuntu 16.04
Debian GNU/Linux
Kali Linux
SUSE Linux Enterprise Server 12
SUSE Linux Enterprise Server 15 SP2
SUSE Linux Enterprise Server 15 SP3
openSUSE Tumbleweed
openSUSE Leap 15.3
openSUSE Leap 15.2
Oracle Linux 8.5
Oracle Linux 7.9
Fedora Remix for WSL

This will cause the <distro>.appx packages to download to a folder of your choosing.

If you prefer, you can also download your preferred distribution(s) via the command
line, you can use PowerShell with the Invoke-WebRequest cmdlet. For example, to
download Ubuntu 20.04:

PowerShell

Invoke-WebRequest -Uri https://aka.ms/wslubuntu2004 -OutFile Ubuntu.appx -
UseBasicParsing

 Tip

https://aka.ms/wslubuntu
https://aka.ms/wslubuntu2204
https://aka.ms/wslubuntu2004
https://aka.ms/wslubuntu2004arm
https://aka.ms/wsl-ubuntu-1804
https://aka.ms/wsl-ubuntu-1804-arm
https://aka.ms/wsl-ubuntu-1604
https://aka.ms/wsl-debian-gnulinux
https://aka.ms/wsl-kali-linux-new
https://aka.ms/wsl-sles-12
https://aka.ms/wsl-SUSELinuxEnterpriseServer15SP2
https://aka.ms/wsl-SUSELinuxEnterpriseServer15SP3
https://aka.ms/wsl-opensuse-tumbleweed
https://aka.ms/wsl-opensuseleap15-3
https://aka.ms/wsl-opensuseleap15-2
https://aka.ms/wsl-oraclelinux-8-5
https://aka.ms/wsl-oraclelinux-7-9
https://github.com/WhitewaterFoundry/WSLFedoraRemix/releases/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-webrequest

You also have the option to use the curl command-line utility for downloading. To
download Ubuntu 20.04 with curl:

Console

In this example, curl.exe is executed (not just curl) to ensure that, in PowerShell, the
real curl executable is invoked, not the PowerShell curl alias for Invoke-WebRequest.

Once the distribution has been downloaded, navigate to the folder containing the
download and run the following command in that directory, where app-name is the
name of the Linux distribution .appx file.

Powershell

Once the Appx package has finished downloading, you can start running the new
distribution by double-clicking the appx file. (The command wsl -l will not show that
the distribution is installed until this step is complete).

If you are using Windows server, or run into problems running the command above you
can find the alternate install instructions on the Windows Server documentation page to
install the .appx file by changing it to a zip file.

Once your distribution is installed, follow the instructions to create a user account and
password for your new Linux distribution.

Using Windows Terminal enables you to open multiple tabs or window panes to display
and quickly switch between multiple Linux distributions or other command lines
(PowerShell, Command Prompt, Azure CLI, etc). You can fully customize your terminal
with unique color schemes, font styles, sizes, background images, and custom keyboard
shortcuts. Learn more.

Install Windows Terminal.

If the download is taking a long time, turn off the progress bar by setting
$ProgressPreference = 'SilentlyContinue'

curl.exe -L -o ubuntu-2004.appx https://aka.ms/wslubuntu2004

Add-AppxPackage .\app_name.appx

Install Windows Terminal (optional)

https://curl.se/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-webrequest
https://learn.microsoft.com/en-us/windows/terminal
https://learn.microsoft.com/en-us/windows/terminal/get-started

Windows Server Installation Guide
Article • 06/20/2022

The Windows Subsystem for Linux (WSL) is available for installation on Windows Server
2019 (version 1709) and later. This guide will walk through the steps of enabling WSL on
your machine.

Windows Server 2022 now supports a simple WSL installation using the command:

Bash

You can now install everything you need to run WSL on Windows Server 2022 by
entering this command in an administrator PowerShell or Windows Command Prompt
and then restarting your machine.

This command will enable the required optional components, download the latest Linux
kernel, set WSL 2 as your default, and install a Linux distribution for you (Ubuntu by
default).

See the standard WSL docs for more information on how to:

Change the default Linux distribution installed.
Set up your Linux username and password.
Check which version of WSL you are running
Update and upgrade packages.
Add additional distributions.
Use Git with WSL.

To install WSL on Windows Server 2019 (version 1709+), you can follow the manual
install steps below.

Install WSL on Windows Server 2022

wsl --install

Install WSL on previous versions of Windows
Server

Enable the Windows Subsystem for Linux

https://learn.microsoft.com/en-us/windows-server/get-started/whats-new-in-windows-server-2022

Before you can run Linux distributions on Windows, you must enable the "Windows
Subsystem for Linux" optional feature and reboot.

Open PowerShell as Administrator and run:

PowerShell

See the Downloading distributions section of the manual installation page for
instructions and links to download your preferred Linux distribution.

Now that you've downloaded a Linux distribution, in order to extract its contents and
manually install, follow these steps:

1. Extract the <DistributionName>.appx package's contents, using PowerShell:

PowerShell

2. Once the distribution has been downloaded, navigate to the folder containing the
download and run the following command in that directory, where app-name is the
name of the Linux distribution .appx file.

Powershell

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-
Subsystem-Linux

Download a Linux distribution

Extract and install a Linux distribution

Rename-Item .\Ubuntu.appx .\Ubuntu.zip
Expand-Archive .\Ubuntu.zip .\Ubuntu

Add-AppxPackage .\app_name.appx

Ｕ Caution

Installation failed with error 0x8007007e: If you receive this error, then your
system doesn't support WSL. Ensure that you're running Windows build 16215
or later. Check your build. Also check to confirm that WSL is enabled and
your computer was restarted after the feature was enabled.

3. Add your Linux distribution path to the Windows environment PATH
(C:\Users\Administrator\Ubuntu in this example), using PowerShell:

PowerShell

You can now launch your distribution from any path by typing <DistributionName>.exe .
For example: ubuntu.exe .

Once installation is complete, you can create a user account and password for your new
Linux distribution.

$userenv = [System.Environment]::GetEnvironmentVariable("Path", "User")
[System.Environment]::SetEnvironmentVariable("PATH", $userenv +
";C:\Users\Administrator\Ubuntu", "User")

Set up a WSL development environment
Article • 11/20/2023

A step-by-step guide to the best practices for setting up a WSL development
environment. Learn how to run the command to install the default Bash shell that uses
Ubuntu or can be set to install other Linux distributions, use basic WSL commands, set
up Visual Studio Code or Visual Studio, Git, Windows Credential Manager, databases like
MongoDB, Postgres, or MySQL, set up GPU acceleration, run GUI apps, and more.

Windows Subsystem for Linux comes with the Windows operating system, but you must
enable it and install a Linux distribution before you can begin using it.

To use the simplified --install command, you must be running a recent build of Windows
(Build 20262+). To check your version and build number, select Windows logo key + R,
type winver, select OK. You can update using the Settings menu or Windows Update
Assistant .

If you prefer to install a Linux distribution other than Ubuntu, or would prefer to
complete these steps manually, see the WSL installation page for more details.

Open PowerShell (or Windows Command Prompt) and enter:

PowerShell

The --install command performs the following actions:

Enables the optional WSL and Virtual Machine Platform components
Downloads and installs the latest Linux kernel
Sets WSL 2 as the default
Downloads and installs the Ubuntu Linux distribution (reboot may be required)

You will need to restart your machine during this installation process.

Get started

wsl --install

ms-settings:windowsupdate
https://www.microsoft.com/software-download/

Check the troubleshooting installation article if you run into any issues.

Once the process of installing your Linux distribution with WSL is complete, open the
distribution (Ubuntu by default) using the Start menu. You will be asked to create a User
Name and Password for your Linux distribution.

This User Name and Password is specific to each separate Linux distribution that
you install and has no bearing on your Windows user name.

Please note that whilst entering the Password, nothing will appear on screen. This
is called blind typing. You won't see what you are typing, this is completely normal.

Once you create a User Name and Password, the account will be your default user
for the distribution and automatically sign-in on launch.

This account will be considered the Linux administrator, with the ability to run sudo
(Super User Do) administrative commands.

Each Linux distribution running on WSL has its own Linux user accounts and
passwords. You will have to configure a Linux user account every time you add a
distribution, reinstall, or reset.

To change or reset your password, open the Linux distribution and enter the command:
passwd . You will be asked to enter your current password, then asked to enter your new
password, and then to confirm your new password.

If you forgot the password for your Linux distribution:

Set up your Linux username and password

７ Note

Linux distributions installed with WSL are a per-user installation and can't be shared
with other Windows user accounts. Encountering a username error?
StackExchange: What characters should I use or not use in usernames on Linux?

https://serverfault.com/questions/73084/what-characters-should-i-use-or-not-use-in-usernames-on-linux

1. Open PowerShell and enter the root of your default WSL distribution using the
command: wsl -u root

If you need to update the forgotten password on a distribution that is not your
default, use the command: wsl -d Debian -u root , replacing Debian with the
name of your targeted distribution.

2. Once your WSL distribution has been opened at the root level inside PowerShell,
you can use this command to update your password: passwd <username> where
<username> is the username of the account in the distribution whose password
you've forgotten.

3. You will be prompted to enter a new UNIX password and then confirm that
password. Once you're told that the password has updated successfully, close WSL
inside of PowerShell using the command: exit .

We recommend that you regularly update and upgrade your packages using the
preferred package manager for the distribution. For Ubuntu or Debian, use the
command:

Bash

Windows does not automatically update or upgrade your Linux distribution(s). This is a
task that most Linux users prefer to control themselves.

To add additional Linux distributions, you can install via the Microsoft Store , via the --
import command, or by sideloading your own custom distribution. You may also want to
set up custom WSL images for distribution across your enterprise company.

Windows Terminal can run any application with a command line interface. Its main
features include multiple tabs, panes, Unicode and UTF-8 character support, a GPU

Update and upgrade packages

sudo apt update && sudo apt upgrade

Add additional distributions

Set up Windows Terminal

https://aka.ms/wslstore

accelerated text rendering engine, and the ability to create your own themes and
customize text, colors, backgrounds, and shortcuts.

Whenever a new WSL Linux distribution is installed, a new instance will be created for it
inside the Windows Terminal that can be customized to your preferences.

We recommend using WSL with Windows Terminal, especially if you plan to work with
multiple command lines. See the Windows Terminal docs for help with setting it up and
customizing your preferences, including:

Install Windows Terminal or Windows Terminal (Preview) from the Microsoft Store
Use the Command Palette
Set up custom actions like keyboard shortcuts to make the terminal feel natural to
your preferences
Set up the default startup profile
Customize the appearance: theme, color schemes, name and starting directory,
background image, etc.
Learn how to use command line arguments like opening a terminal with multiple
command lines split into window panes or tabs
Learn about the search feature
Find tips and tricks, like how to rename or color a tab, use mouse interactions, or
enable "Quake mode"
Find tutorials on how to set up a customized command prompt, SSH profiles, or
tab titles
Find a custom terminal gallery and a troubleshooting guide

https://learn.microsoft.com/en-us/windows/terminal/get-started
https://learn.microsoft.com/en-us/windows/terminal/get-started#invoke-the-command-palette
https://learn.microsoft.com/en-us/windows/terminal/#custom-actions
https://learn.microsoft.com/en-us/windows/terminal/customize-settings/startup
https://learn.microsoft.com/en-us/windows/terminal/customize-settings/appearance#theme
https://learn.microsoft.com/en-us/windows/terminal/customize-settings/color-schemes
https://learn.microsoft.com/en-us/windows/terminal/customize-settings/profile-general
https://learn.microsoft.com/en-us/windows/terminal/customize-settings/profile-appearance#background-image
https://learn.microsoft.com/en-us/windows/terminal/command-line-arguments?tabs=windows
https://learn.microsoft.com/en-us/windows/terminal/search
https://learn.microsoft.com/en-us/windows/terminal/tips-and-tricks
https://learn.microsoft.com/en-us/windows/terminal/tutorials/custom-prompt-setup
https://learn.microsoft.com/en-us/windows/terminal/tutorials/ssh
https://learn.microsoft.com/en-us/windows/terminal/tutorials/tab-title
https://learn.microsoft.com/en-us/windows/terminal/custom-terminal-gallery/custom-schemes
https://learn.microsoft.com/en-us/windows/terminal/troubleshooting

To open your WSL project in Windows File Explorer, enter: explorer.exe .
Be sure to add the period at the end of the command to open the current directory.

Store your project files on the same operating system as the tools you plan to use.
For the fastest performance speed, store your files in the WSL file system if you are
working on them with Linux tools in a Linux command line (Ubuntu, OpenSUSE,
etc). If you're working in a Windows command line (PowerShell, Command Prompt)
with Windows tools, store your files in the Windows file system. Files can be
accessed across the operating systems, but it may significantly slow down
performance.

For example, when storing your WSL project files:

Use the Linux file system root directory: \\wsl$\<DistroName>\home\
<UserName>\Project

Not the Windows file system root directory: C:\Users\<UserName>\Project or
/mnt/c/Users/<UserName>/Project$

We recommend using Visual Studio Code or Visual Studio, as they directly support
remote development and debugging with WSL. Visual Studio Code allows you to use
WSL as a full-featured development environment. Visual Studio offers native WSL
support for C++ cross-platform development.

Follow this step-by-step guide to Get started using Visual Studio Code with WSL, which
includes installing the Remote Development extension pack . This extension enables

File storage

Set up your favorite code editor

Use Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

you to run WSL, SSH, or a development container for editing and debugging with the
full set of Visual Studio Code features. Quickly swap between different, separate
development environments and make updates without worrying about impacting your
local machine.

Once VS Code is installed and set up, you can open your WSL project with a VS Code
remote server by entering: code .

Be sure to add the period at the end of the command to open the current directory.

Follow this step-by-step guide to Get started using Visual Studio with WSL for C++
cross-platform development. Visual Studio 2022 enables you to build and debug CMake
projects on Windows, WSL distributions, and SSH connections from the same instance
of Visual Studio.

Follow this step-by-step guide to Get started using Git on WSL and connect your project
to the Git version control system, along with using the credential manager for

Use Visual Studio

Set up version management with Git

https://learn.microsoft.com/en-us/cpp/build/walkthrough-build-debug-wsl2

authentication, using Git Ignore files, understanding Git line endings, and using the Git
commands built-in to VS Code.

Follow this step-by-step guide to Get started with Docker remote containers on WSL 2
and connect your project to a remote development container with Docker Desktop for
Windows.

Follow this step-by-step guide to Get started with databases on WSL and connect your
project to a database in the WSL environment. Get started with MySQL, PostgreSQL,
MongoDB, Redis, Microsoft SQL Server, or SQLite.

Set up remote development containers with
Docker

Set up a database

https://learn.microsoft.com/en-us/windows/wsl/media/git-versions.gif

Follow this step-by-step guide to set up GPU accelerated machine learning training in
WSL and leverage your computer's GPU (graphics processing unit) to accelerate
performance heavy workloads.

The Linux distributions that you install via WSL are best managed using PowerShell or
Windows Command Prompt (CMD). See the WSL command reference guide for a list of
basic commands to be familiar with when using WSL.

In addition, many commands are interoperable between Windows and Linux. Here are a
couple of examples:

Run Linux tools from a Windows command line: Open PowerShell and display the
directory contents of C:\temp> using the Linux ls -la command by entering: wsl
ls -la

Set up GPU acceleration for faster performance

Basic WSL commands

https://learn.microsoft.com/en-us/windows/wsl/media/gpu-acceleration.gif

Mix Linux and Windows commands: In this example, the Linux command ls -la is
used to list files in the directory, then the PowerShell command findstr is used to
filter the results for words containing "git": wsl ls -la | findstr "git" . This could
also be done mixing the Windows dir command with the Linux grep command:
dir | wsl grep git .

Run a Windows tool directly from the WSL command line: <tool-name>.exe For
example, to open your .bashrc file (the shell script that runs whenever your Linux
command line is started), enter: notepad.exe .bashrc

Run the Windows ipconfig.exe tool with the Linux Grep tool: From Bash enter the
command ipconfig.exe | grep IPv4 | cut -d: -f2 or from PowerShell enter

ipconfig.exe | wsl grep IPv4 | wsl cut -d: -f2 This example demonstrates the
ipconfig tool on the Windows file system being used to display the current TCP/IP
network configuration values and then being filtered to only the IPv4 result with
grep, a Linux tool.

Follow this step-by-step guide to Get started mounting a Linux disk in WSL 2.

Mount an external drive or USB

Run Linux GUI apps

Follow this tutorial to learn how to set up and run Linux GUI apps on WSL.

Set up your development environment on Windows: Learn more about setting up
your development environment for your preferred language or framework, such as
React, Python, NodeJS, Vue, etc.
Troubleshooting: Find common issues, where to report bugs, where to request new
features, and how to contribute to the docs.
FAQs: Find a list of frequently asked questions.
Release Notes: Review the WSL Release Notes for a history of past build updates.
You can also find the release notes for the WSL Linux Kernel.

Additional resources

https://learn.microsoft.com/en-us/windows/dev-environment/

Get started using Visual Studio Code
with Windows Subsystem for Linux
Article • 10/04/2022

Visual Studio Code, along with the WSL extension, enables you to use WSL as your full-
time development environment directly from VS Code. You can:

develop in a Linux-based environment
use Linux-specific toolchains and utilities
run and debug your Linux-based applications from the comfort of Windows while
maintaining access to productivity tools like Outlook and Office
use the VS Code built-in terminal to run your Linux distribution of choice
take advantage of VS Code features like Intellisense code completion , linting ,
debug support , code snippets , and unit testing
easily manage your version control with VS Code's built-in Git support
run commands and VS Code extensions directly on your WSL projects
edit files in your Linux or mounted Windows filesystem (for example /mnt/c)
without worrying about pathing issues, binary compatibility, or other cross-OS
challenges

Visit the VS Code install page and select the 32 or 64 bit installer. Install Visual
Studio Code on Windows (not in your WSL file system).

When prompted to Select Additional Tasks during installation, be sure to check
the Add to PATH option so you can easily open a folder in WSL using the code
command.

Install the Remote Development extension pack . This extension pack includes
the WSL extension, in addition to the Remote - SSH, and Dev Containers
extensions, enabling you to open any folder in a container, on a remote machine,
or in WSL.

Install VS Code and the WSL extension

） Important

In order to install the WSL extension, you will need the 1.35 May release version
or later of VS Code. We do not recommend using WSL in VS Code without the WSL
extension as you will lose support for auto-complete, debugging, linting, etc. Fun

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/nodejs/nodejs-debugging
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://code.visualstudio.com/docs/python/testing
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://code.visualstudio.com/updates/v1_35

Some WSL Linux distributions are lacking libraries that are required by the VS Code
server to start up. You can add additional libraries into your Linux distribution by using
its package manager.

For example, to update Debian or Ubuntu, use:

Bash

To add wget (to retrieve content from web servers) and ca-certificates (to allow SSL-
based applications to check for the authenticity of SSL connections), enter:

Bash

To open a project from your WSL distribution, open the distribution's command line and
enter: code .

fact: this WSL extension is installed in $HOME/.vscode/extensions (enter the
command ls $HOME\.vscode\extensions\ in PowerShell).

Update your Linux distribution

sudo apt-get update

sudo apt-get install wget ca-certificates

Open a WSL project in Visual Studio Code

From the command-line

https://learn.microsoft.com/en-us/windows/wsl/media/wsl-open-vs-code.gif

You can also access more VS Code WSL options by using the shortcut: CTRL+SHIFT+P in
VS Code to bring up the command palette. If you then type WSL you will see a list of the
options available, allowing you to reopen the folder in a WSL session, specify which
distribution you want to open in, and more.

The WSL extension splits VS Code into a “client-server” architecture, with the client (the
user interface) running on your Windows machine and the server (your code, Git,
plugins, etc) running "remotely" in your WSL distribution.

When running the WSL extension, selecting the 'Extensions' tab will display a list of
extensions split between your local machine and your WSL distribution.

Installing a local extension, like a theme , only needs to be installed once.

Some extensions, like the Python extension or anything that handles things like linting
or debugging, must be installed separately on each WSL distribution. VS Code will
display a warning icon ⚠, along with a green "Install in WSL" button, if you have an
extension locally installed that is not installed on your WSL distribution.

From VS Code

Extensions inside of VS Code WSL

https://marketplace.visualstudio.com/search?target=VSCode&category=Themes&sortBy=Installs
https://marketplace.visualstudio.com/items?itemName=ms-python.python

For further information, see the VS Code docs:

When VS Code is started in WSL, no shell startup scripts are run. See this advanced
environment setup script article for more info on how to run additional
commands or modify the environment.

Having problems launching VS Code from your WSL command line? This
troubleshooting guide includes tips on changing path variables, resolving
extension errors about missing dependencies, resolving Git line ending issues,
installing a local VSIX on a remote machine, launching a browser window, blocker
localhost port, web sockets not working, errors storing extension data, and more.

If you plan to collaborate with others, or host your project on an open-source site (like
GitHub), VS Code supports version control with Git . The Source Control tab in VS
Code tracks all of your changes and has common Git commands (add, commit, push,
pull) built right into the UI.

To install Git, see set up Git to work with Windows Subsystem for Linux.

The new Windows Terminal enables multiple tabs (quickly switch between Command
Prompt, PowerShell, or multiple Linux distributions), custom key bindings (create your
own shortcut keys for opening or closing tabs, copy+paste, etc.), emojis ☺, and custom

Install Git (optional)

Install Windows Terminal (optional)

https://code.visualstudio.com/docs/remote/wsl#_advanced-environment-setup-script
https://code.visualstudio.com/docs/remote/troubleshooting#_fixing-problems-with-the-code-command-not-working
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support

themes (color schemes, font styles and sizes, background image/blur/transparency).
Learn more in the Windows Terminal docs.

1. Get Windows Terminal in the Microsoft Store : By installing via the store, updates
are handled automatically.

2. Once installed, open Windows Terminal and select Settings to customize your
terminal using the profile.json file.

VS Code WSL documentation
VS Code WSL tutorial
Remote development tips and tricks
Using Docker with WSL 2 and VS Code
Using C++ and WSL in VS Code
Remote R Service for Linux

A few additional extensions you may want to consider include:

Keymaps from other editors : These extensions can help your environment feel
right at home if you're transitioning from another text editor (like Atom, Sublime,
Vim, eMacs, Notepad++, etc).
Settings Sync : Enables you to synchronize your VS Code settings across different
installations using GitHub. If you work on different machines, this helps keep your
environment consistent across them.

Additional Resources

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/en-us/windows/terminal
https://www.microsoft.com/store/apps/9n0dx20hk701
https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/wsl-tutorial
https://code.visualstudio.com/docs/remote/troubleshooting
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2
https://code.visualstudio.com/docs/cpp/config-wsl
https://learn.microsoft.com/en-us/visualstudio/rtvs/setting-up-remote-r-service-on-linux
https://marketplace.visualstudio.com/search?target=VSCode&category=Keymaps&sortBy=Downloads
https://marketplace.visualstudio.com/items?itemName=Shan.code-settings-sync
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ftutorials%2Fwsl-vscode&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ftutorials%2Fwsl-vscode.md&documentVersionIndependentId=312f71d9-db7d-52a5-b03d-9b6d4c680c2a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+782a4458-6a56-63e5-efaf-d1868762ed06+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Get started using Git on Windows
Subsystem for Linux
Article • 06/21/2023

Git is the most commonly used version control system. With Git, you can track changes
you make to files, so you have a record of what has been done, and have the ability to
revert to earlier versions of the files if needed. Git also makes collaboration easier,
allowing changes by multiple people to all be merged into one source.

An important consideration: when you enable WSL and install a Linux distribution, you
are installing a new file system, separated from the Windows NTFS C:\ drive on your
machine. In Linux, drives are not given letters. They are given mount points. The root of
your file system / is the mount point of your root partition, or folder, in the case of
WSL. Not everything under / is the same drive. For example, on my laptop, I've installed
two version of Ubuntu (20.04 and 18.04), as well as Debian. If I open those distributions,
select the home directory with the command cd ~ , and then enter the command

explorer.exe . , Windows File Explorer will open and show me the directory path for
that distribution.

Linux distro Windows Path to access home folder

Ubuntu 20.04 \\wsl$\Ubuntu-20.04\home\username

Ubuntu 18.04 \\wsl$\Ubuntu-18.04\home\username

Debian \\wsl$\Debian\home\username

Windows PowerShell C:\Users\username

Git can be installed on Windows AND on WSL

ﾉ Expand table

 Tip

If you are seeking to access the Windows file directory from your WSL distribution
command line, instead of C:\Users\username , the directory would be accessed
using /mnt/c/Users/username , because the Linux distribution views your Windows
file system as a mounted drive.

You will need to install Git on each file system that you intend to use it with.

Git comes already installed with most of the Windows Subsystem for Linux distributions,
however, you may want to update to the latest version. You also will need to set up your
git config file.

To install Git, see the Git Download for Linux site. Each Linux distribution has their own
package manager and install command.

For the latest stable Git version in Ubuntu/Debian, enter the command:

Bash

To set up your Git config file, open a command line for the distribution you're working in
and set your name with this command (replacing "Your Name" with your preferred
username):

Bash

Set your email with this command (replacing "youremail@domain.com" with the email
you prefer):

Installing Git

sudo apt-get install git

７ Note

You also may want to install Git for Windows if you haven't already.

Git config file setup

git config --global user.name "Your Name"

https://learn.microsoft.com/en-us/windows/wsl/media/git-versions.gif
https://learn.microsoft.com/en-us/windows/wsl/media/git-versions.gif
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/win
https://git-scm.com/download/win

Bash

We recommend that you secure your account with two-factor authentication (2FA) .

Git Credential Manager (GCM) is a secure Git credential helper built on .NET that
can be used with both WSL1 and WSL2. It enables multi-factor authentication support
for GitHub repos, Azure DevOps , Azure DevOps Server, and Bitbucket.

GCM integrates into the authentication flow for services like GitHub and, once you're
authenticated to your hosting provider, requests a new authentication token. It then
stores the token securely in the Windows Credential Manager . After the first time, you
can use Git to talk to your hosting provider without needing to re-authenticate. It will
just access the token in the Windows Credential Manager.

In order to use GCM with WSL you must be on Windows 10 Version 1903 or later. This is
the first version of Windows that includes the required wsl.exe tool that GCM uses to
interoperate with Git in your WSL distributions.

It is recommended to install the latest Git for Windows in order to share credentials &
settings between WSL and the Windows host. Git Credential Manager is included with
Git for Windows and the latest version is included in each new Git for Windows release.
During the installation, you will be asked to select a credential helper, with GCM set as
the default.

If you have a reason not to install Git for Windows, you can install GCM as a Linux
application directly in your WSL distribution, but note that doing so means GCM is
running as a Linux application and cannot utilize the authentication or credential
storage features of the host Windows operating system. See the GCM repo for
instructions on how to configure WSL without Git for Windows .

git config --global user.email "youremail@domain.com"

 Tip

If you don't yet have a GitHub account, you can sign-up for one on GitHub . If
you've never worked with Git before, GitHub Guides can help you get started. If
you need to edit your Git config, you can do so with a built-in text editor like nano:
nano ~/.gitconfig .

Git Credential Manager setup

https://help.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa
https://help.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa
https://github.com/GitCredentialManager/git-credential-manager
https://github.com/GitCredentialManager/git-credential-manager
https://dotnet.microsoft.com/
https://dotnet.microsoft.com/
https://dev.azure.com/
https://dev.azure.com/
https://support.microsoft.com/help/4026814/windows-accessing-credential-manager
https://support.microsoft.com/help/4026814/windows-accessing-credential-manager
https://github.com/git-for-windows/git/releases/latest
https://github.com/git-for-windows/git/releases/latest
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/wsl.md#configuring-wsl-without-git-for-windows
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/wsl.md#configuring-wsl-without-git-for-windows
https://github.com/join
https://github.com/join
https://guides.github.com/
https://guides.github.com/

To set up GCM for use with a WSL distribution, open your distribution and enter this
command:

If GIT installed is >= v2.39.0

Bash

else if GIT installed is >= v2.36.1

Bash

else if version is < v2.36.1 enter this command:

Bash

Git Credential Manager only works with HTTP(S) remotes. You can still use Git with SSH:

Azure DevOps SSH
GitHub SSH

git config --global credential.helper "/mnt/c/Program\
Files/Git/mingw64/bin/git-credential-manager.exe"

git config --global credential.helper "/mnt/c/Program\
Files/Git/mingw64/libexec/git-core/git-credential-manager.exe"

git config --global credential.helper "/mnt/c/Program\
Files/Git/mingw64/bin/git-credential-manager-core.exe"

７ Note

Using GCM as a credential helper for a WSL Git installation means that any
configuration set in WSL Git is NOT respected by GCM (by default). This is because
GCM is running as a Windows application, and therefore will use the Git for
Windows installation to query configuration. This means things like proxy settings
for GCM need to be set in Git for Windows as well as WSL Git as they are stored in
different files (%USERPROFILE%\.gitconfig vs \\wsl$\distro\home\$USER\.gitconfig).
You can configure WSL so that GCM will use the WSL Git configuration, but this
means that proxy settings will be unique to the specific WSL installation and not
shared with others or the Windows host.

Git with SSH

https://learn.microsoft.com/en-us/azure/devops/repos/git/use-ssh-keys-to-authenticate
https://help.github.com/en/articles/connecting-to-github-with-ssh
https://help.github.com/en/articles/connecting-to-github-with-ssh

Bitbucket SSH

If you intend to work with Azure Repos or Azure DevOps , some additional
configuration is required:

Bash

Now any git operation you perform within your WSL distribution will use GCM. If you
already have credentials cached for a host, it will access them from the credential
manager. If not, you'll receive a dialog response requesting your credentials, even if
you're in a Linux console.

We recommend adding a .gitignore file to your projects. GitHub offers a collection of
useful .gitignore templates with recommended .gitignore file setups organized
according to your use-case. For example, here is GitHub's default gitignore template for
a Node.js project .

If you choose to create a new repo using the GitHub website , there are check boxes
available to initialize your repo with a README file, .gitignore file set up for your specific
project type, and options to add a license if you need one.

Visual Studio Code comes with built-in support for Git, including a source control tab
that will show your changes and handle a variety of git commands for you. Learn more
about VS Code's Git support .

Additional configuration for Azure

git config --global credential.https://dev.azure.com.useHttpPath true

 Tip

If you are using a GPG key for code signing security, you may need to associate
your GPG key with your GitHub email .

Adding a Git Ignore file

Git and VS Code

Git line endings

https://confluence.atlassian.com/bitbucket/ssh-keys-935365775.html
https://confluence.atlassian.com/bitbucket/ssh-keys-935365775.html
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/configuration.md#credentialprovider
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/configuration.md#credentialprovider
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/wsl.md#configuring-wsl-with-git-for-windows-recommended
https://github.com/GitCredentialManager/git-credential-manager/blob/main/docs/wsl.md#configuring-wsl-with-git-for-windows-recommended
https://help.github.com/en/articles/ignoring-files
https://help.github.com/en/articles/ignoring-files
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore
https://github.com/github/gitignore/blob/master/Node.gitignore
https://github.com/github/gitignore/blob/master/Node.gitignore
https://github.com/github/gitignore/blob/master/Node.gitignore
https://help.github.com/articles/create-a-repo
https://help.github.com/articles/create-a-repo
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://help.github.com/en/github/authenticating-to-github/associating-an-email-with-your-gpg-key
https://help.github.com/en/github/authenticating-to-github/associating-an-email-with-your-gpg-key
https://help.github.com/en/github/authenticating-to-github/associating-an-email-with-your-gpg-key

If you are working with the same repository folder between Windows, WSL, or a
container, be sure to set up consistent line endings.

Since Windows and Linux use different default line endings, Git may report a large
number of modified files that have no differences aside from their line endings. To
prevent this from happening, you can disable line ending conversion using a
.gitattributes file or globally on the Windows side. See this VS Code doc about
resolving Git line ending issues .

WSL & VS Code
GitHub Learning Lab: Online courses
Git Visualization Tool
Git Tools - Credential Storage

Additional resources

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://code.visualstudio.com/docs/remote/troubleshooting#_resolving-git-line-ending-issues-in-wsl-resulting-in-many-modified-files
https://code.visualstudio.com/docs/remote/troubleshooting#_resolving-git-line-ending-issues-in-wsl-resulting-in-many-modified-files
https://code.visualstudio.com/docs/remote/troubleshooting#_resolving-git-line-ending-issues-in-wsl-resulting-in-many-modified-files
https://github.com/apps/github-learning-lab
https://github.com/apps/github-learning-lab
http://git-school.github.io/visualizing-git/
http://git-school.github.io/visualizing-git/
https://git-scm.com/book/it/v2/Git-Tools-Credential-Storage
https://git-scm.com/book/it/v2/Git-Tools-Credential-Storage
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ftutorials%2Fwsl-git&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ftutorials%2Fwsl-git.md&documentVersionIndependentId=12e275fa-8010-5e5a-af8c-120f11ab0932&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+31aade8d-62a2-6d91-b0bd-3bc5880042f8+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Get started with databases on Windows
Subsystem for Linux
Article • 09/19/2023

This step-by-step guide will help you get started connecting your project in WSL to a
database. Get started with MySQL, PostgreSQL, MongoDB, Redis, Microsoft SQL Server,
or SQLite.

Running Windows 11 or Windows 10, updated to version 2004, Build 19041 or
later.
Install a Linux distribution using WSL and create a Linux user name and password.

Some popular choices for a database system include:

MySQL (SQL)
PostgreSQL (SQL)
Microsoft SQL Server (SQL)
SQLite (SQL)
MongoDB (NoSQL)
Redis (NoSQL)

MySQL is an open-source SQL relational database, organizing data into one or more
tables in which data types may be related to each other. It is vertically scalable, which
means one ultimate machine will do the work for you. It is currently the most widely
used of the four database systems.

PostgreSQL (sometimes referred to as Postgres) is also an open-source SQL relational
database with an emphasis on extensibility and standards compliance. It can handle
JSON now too, but it is generally better for structured data, vertical scaling, and ACID-
compliant needs like eCommerce and financial transactions.

Microsoft SQL Server includes SQL Server on Windows, SQL Server on Linux, and SQL
on Azure. These are also relational database management systems set up on servers
with primary function of storing and retrieving data as requested by software
applications.

Prerequisites

Differences between database systems

ms-settings:windowsupdate
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-databases
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-databases
https://www.mysql.com/why-mysql/
https://www.mysql.com/why-mysql/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://learn.microsoft.com/en-us/sql
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://redis.io/topics/introduction
https://redis.io/topics/introduction

SQLite is an open-source self-contained, file-based, “serverless” database, known for its
portability, reliability, and good performance even in low-memory environments.

MongoDB is an open-source NoSQL document database designed to work with JSON
and store schema-free data. It is horizontally scalable, which means multiple smaller
machines will do the work for you. It's good for flexibility and unstructured data, and
caching real-time analytics.

Redis is an open-source NoSQL in-memory data structure store. It uses key-value pairs
for storage instead of documents.

To install MySQL on a Linux distribution running on WSL, just follow the Installing
MySQL on Linux instructions in the MySQL docs. You may need to first enable
systemd support in your wsl.conf configuration file.

Example using the Ubuntu distribution:

1. Open your Ubuntu command line and update the packages available: sudo apt
update

2. Once the packages have updated, install MySQL with: sudo apt install mysql-
server

3. Confirm installation and get the version number: mysql --version
4. Start MySQL Server / check status: systemctl status mysql
5. To open the MySQL prompt, enter: sudo mysql
6. To see what databases you have available, in the MySQL prompt, enter: SHOW

DATABASES;

7. To create a new database, enter: CREATE DATABASE database_name;
8. To delete a database, enter: DROP DATABASE database_name;

For more about working with MySQL databases, see the MySQL docs .

To work with MySQL databases in VS Code, try the MySQL extension .

You may also want to run the included security script. This changes some of the less
secure default options for things like remote root logins and sample users. This script
also includes steps to change password for MySQL root user. To run the security script:

1. Start a MySQL server: sudo service mysql start
2. Start the security script prompts: sudo mysql_secure_installation

Install MySQL

https://dev.mysql.com/doc/mysql-installation-excerpt/5.7/en/linux-installation.html
https://dev.mysql.com/doc/mysql-installation-excerpt/5.7/en/linux-installation.html
https://dev.mysql.com/doc/mysql-installation-excerpt/5.7/en/linux-installation.html
https://dev.mysql.com/doc/mysql-getting-started/en/
https://dev.mysql.com/doc/mysql-getting-started/en/
https://marketplace.visualstudio.com/items?itemName=cweijan.vscode-mysql-client2
https://marketplace.visualstudio.com/items?itemName=cweijan.vscode-mysql-client2

3. The first prompt will ask whether you’d like to set up the VALIDATE PASSWORD
COMPONENT, which can be used to test the strength of your MySQL password. If
you want to set some simple password, you should not set this component.

4. You will then set/change password for the MySQL root user, decide whether or not
to remove anonymous users, decide whether to allow the root user to login both
locally and remotely, decide whether to remove the test database, and, lastly,
decide whether to reload the privilege tables immediately.

To install PostgreSQL on WSL (ie. Ubuntu):

1. Open your WSL terminal (ie. Ubuntu).
2. Update your Ubuntu packages: sudo apt update
3. Once the packages have updated, install PostgreSQL (and the -contrib package

which has some helpful utilities) with: sudo apt install postgresql postgresql-
contrib

4. Confirm installation and get the version number: psql --version

There are 3 commands you need to know once PostgreSQL is installed:

sudo service postgresql status for checking the status of your database.

sudo service postgresql start to start running your database.
sudo service postgresql stop to stop running your database.

The default admin user, postgres , needs a password assigned in order to connect to a
database. To set a password:

1. Enter the command: sudo passwd postgres
2. You will get a prompt to enter your new password.
3. Close and reopen your terminal.

To run PostgreSQL with psql shell:

1. Start your postgres service: sudo service postgresql start
2. Connect to the postgres service and open the psql shell: sudo -u postgres psql

Once you have successfully entered the psql shell, you will see your command line
change to look like this: postgres=#

Install PostgreSQL

７ Note

https://www.postgresql.org/docs/10/app-psql.html
https://www.postgresql.org/docs/10/app-psql.html

To exit postgres=# enter: \q or use the shortcut key: Ctrl+D

To see what user accounts have been created on your PostgreSQL installation, use from
your WSL terminal: psql --command="\du" ...or just \du if you have the psql shell open.
This command will display columns: Account User Name, List of Roles Attributes, and
Member of role group(s). To exit back to the command line, enter: q .

For more about working with PostgreSQL databases, see the PostgreSQL docs .

To work with PostgreSQL databases in VS Code, try the PostgreSQL extension .

To install MongoDB, see the Mongodb docs: Install MongoDB Community Edition on
Linux

Installing MongoDB may require slightly different steps depending on the Linux
distribution being used for installation. Also note that MongoDB installation may differ
depending on the version # that you are aiming to install. Use the version drop-down
list in the top-left corner of the MongoDB documentation to select the version that
aligns with your goal. Lastly, you may need to enable systemd support in the wsl.conf
configuration file of the Linux distribution that you are using with WSL. The systemctl
command is a part of the systemd init system and may not work if your distribution is
using systemv.

VS Code supports working with MongoDB databases via the Azure CosmosDB
extension , you can create, manage and query MongoDB databases from within VS
Code. To learn more, visit the VS Code docs: Working with MongoDB .

Learn more in the MongoDB docs:

Introduction to using MongoDB
Create users
CRUD: Create, Read, Update, Delete
Reference Docs

Alternatively, you can open the psql shell by switching to the postgres user with: su
- postgres and then entering the command: psql .

Install MongoDB

Install Microsoft SQL Server

https://www.postgresql.org/docs/13/tutorial-createdb.html
https://www.postgresql.org/docs/13/tutorial-createdb.html
https://marketplace.visualstudio.com/items?itemName=ms-ossdata.vscode-postgresql
https://marketplace.visualstudio.com/items?itemName=ms-ossdata.vscode-postgresql
https://www.mongodb.com/docs/manual/administration/install-on-linux/
https://www.mongodb.com/docs/manual/administration/install-on-linux/
https://www.mongodb.com/docs/manual/administration/install-on-linux/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-cosmosdb
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-cosmosdb
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-cosmosdb
https://code.visualstudio.com/docs/azure/mongodb
https://code.visualstudio.com/docs/azure/mongodb
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/tutorial/create-users/
https://docs.mongodb.com/manual/tutorial/create-users/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/reference/
https://docs.mongodb.com/manual/reference/

To install SQL Server on a Linux distribution run by WSL: SQL Server on Linux. To work
with Microsoft SQL Server databases in VS Code, try the MSSQL extension .

To install SQLite on WSL (ie. Ubuntu):

1. Open your WSL terminal (ie. Ubuntu).
2. Update your Ubuntu packages: sudo apt update
3. Once the packages have updated, install SQLite3 with: sudo apt install sqlite3
4. Confirm installation and get the version number: sqlite3 --version

To create a test database, called "example.db", enter: sqlite3 example.db

To see a list of your SQLite databases, enter: .databases

To see the status of your database, enter: .dbinfo ?DB?

Database will be empty after creation. You can create a new table for your database with
CREATE TABLE empty (kol INTEGER); .

Now entering the .dbinfo ?DB? will show the database you have created.

To exit the SQLite prompt, enter: .exit

For more information about working with a SQLite database, see the SQLite docs .

To work with SQLite databases in VS Code, try the SQLite extension .

To install Redis on WSL (ie. Ubuntu):

1. Open your WSL terminal (ie. Ubuntu).
2. Update your Ubuntu packages: sudo apt update
3. Once the packages have updated, install Redis with: sudo apt install redis-

server

4. Confirm installation and get the version number: redis-server --version

To start running your Redis server: sudo service redis-server start

Check to see if redis is working (redis-cli is the command line interface utility to talk with
Redis): redis-cli ping this should return a reply of "PONG".

Install SQLite

Install Redis

https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-overview
https://marketplace.visualstudio.com/items?itemName=ms-mssql.mssql
https://marketplace.visualstudio.com/items?itemName=ms-mssql.mssql
https://www.sqlite.org/quickstart.html
https://www.sqlite.org/quickstart.html
https://marketplace.visualstudio.com/items?itemName=mtxr.sqltools
https://marketplace.visualstudio.com/items?itemName=mtxr.sqltools

To stop running your Redis server: sudo service redis-server stop

For more information about working with a Redis database, see the Redis docs .

To work with Redis databases in VS Code, try the Redis extension .

To see the services that you currently have running on your WSL distribution, enter:
service --status-all

Typing out sudo service mongodb start or sudo service postgres start and sudo -u
postgrest psql can get tedious. However, you could consider setting up aliases in your
.profile file on WSL to make these commands quicker to use and easier to remember.

To set up your own custom alias, or shortcut, for executing these commands:

1. Open your WSL terminal and enter cd ~ to be sure you're in the root directory.

2. Open the .profile file, which controls the settings for your terminal, with the
terminal text editor, Nano: sudo nano .profile

3. At the bottom of the file (don't change the # set PATH settings), add the following:

Bash

This will allow you to enter start-pg to start running the postgresql service and
run-pg to open the psql shell. You can change start-pg and run-pg to whatever
names you want, just be careful not to overwrite a command that postgres already
uses!

4. Once you've added your new aliases, exit the Nano text editor using Ctrl+X --
select Y (Yes) when prompted to save and Enter (leaving the file name as
.profile).

5. Close and re-open your WSL terminal, then try your new alias commands.

See services running and set up profile aliases

My Aliases
alias start-pg='sudo service postgresql start'
alias run-pg='sudo -u postgres psql'

Troubleshooting

https://redis.io/topics/quickstart
https://redis.io/topics/quickstart
https://marketplace.visualstudio.com/items?itemName=cweijan.vscode-redis-client
https://marketplace.visualstudio.com/items?itemName=cweijan.vscode-redis-client

Ensure that you are running your Linux distribution in WSL 2 mode. For help switching
from WSL 1 to WSL 2, see Set your distribution version to WSL 1 or WSL 2.

Setting up your development environment on Windows

Error: directory-sync fdatasync Invalid argument

Additional resources

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/en-us/windows/dev-environment/
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ftutorials%2Fwsl-database&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ftutorials%2Fwsl-database.md&documentVersionIndependentId=88516d79-15be-0cf2-bb25-d20a17d1a37e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+080023f0-501e-b638-b22c-9d2cbcbdb66a+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Get started with Docker remote
containers on WSL 2
Article • 01/10/2024

This step-by-step guide will help you get started developing with remote containers by
setting up Docker Desktop for Windows with WSL 2 (Windows Subsystem for Linux,
version 2).

Docker Desktop for Windows provides a development environment for building,
shipping, and running dockerized apps. By enabling the WSL 2 based engine, you can
run both Linux and Windows containers in Docker Desktop on the same machine.
(Docker Desktop is free for personal use and small businesses, for info on Pro, Team, or
Business pricing, see the Docker site FAQs).

Docker is a tool used to create, deploy, and run applications using containers.
Containers enable developers to package an app with all of the parts it needs (libraries,
frameworks, dependencies, etc) and ship it all out as one package. Using a container
ensures that the app will run the same regardless of any customized settings or
previously installed libraries on the computer running it that could differ from the
machine that was used to write and test the app's code. This permits developers to
focus on writing code without worrying about the system that code will be run on.

Docker containers are similar to virtual machines, but don't create an entire virtual
operating system. Instead, Docker enables the app to use the same Linux kernel as the
system that it's running on. This allows the app package to only require parts not
already on the host computer, reducing the package size and improving performance.

７ Note

We recommend using Docker Desktop due to its integration with Windows and
Windows Subsystem for Linux . However, while Docker Desktop supports
running both Linux and Windows containers, you can not run both simultaneously.
To run Linux and Windows containers simultaneously, you would need to install and
run a separate Docker instance in WSL. If you need to run simultaneous containers
or just prefer to install a container engine directly in your Linux distribution, follow
the Linux installation instructions for that container service, such as Install Docker
Engine on Ubuntu or Install Podman for running Linux containers .

Overview of Docker containers

https://www.docker.com/pricing/faq
https://www.docker.com/pricing/faq
https://docs.docker.com/desktop/windows/wsl/
https://docs.docker.com/desktop/windows/wsl/
https://docs.docker.com/desktop/windows/wsl/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://podman.io/getting-started/installation#windows
https://podman.io/getting-started/installation#windows

Continuous availability, using Docker containers with tools like Kubernetes, is another
reason for the popularity of containers. This enables multiple versions of your app
container to be created at different times. Rather than needing to take down an entire
system for updates or maintenance, each container (and its specific microservices) can
be replaced on the fly. You can prepare a new container with all of your updates, set up
the container for production, and just point to the new container once it's ready. You
can also archive different versions of your app using containers and keep them running
as a safety fallback if needed.

To learn more, check out Introduction to Docker containers.

WSL version 1.1.3.0 or later.
Windows 11 64-bit: Home or Pro version 21H2 or higher, or Enterprise or
Education version 21H2 or higher.
Windows 10 64-bit (Recommended): Home or Pro 22H2 (build 19045) or higher, or
Enterprise or Education 22H2 (build 19045) or higher. (Minimum): Home or Pro
21H2 (build 19044) or higher, or Enterprise or Education 21H2 (build 19044) or
higher. Update Windows
64-bit processor with Second Level Address Translation (SLAT) .
4GB system RAM.
Enable hardware virtualization in BIOS.
Install WSL and set up a user name and password for your Linux distribution
running in WSL 2.
Install Visual Studio Code (optional). This will provide the best experience,
including the ability to code and debug inside a remote Docker container and
connected to your Linux distribution.
Install Windows Terminal (optional). This will provide the best experience, including
the ability to customize and open multiple terminals in the same interface
(including Ubuntu, Debian, PowerShell, Azure CLI, or whatever you prefer to use).
Sign up for a Docker ID at Docker Hub (optional).
See the Docker Desktop license agreement for updates on the terms of use.

For more information, see the Docker docs System requirements to Install Docker
Desktop on Windows .

To learn how to install Docker on Windows Server, see Get started: Prep Windows for
containers.

Prerequisites

７ Note

https://learn.microsoft.com/en-us/azure/aks/
https://learn.microsoft.com/en-us/training/modules/intro-to-docker-containers/
ms-settings:windowsupdate
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://learn.microsoft.com/en-us/windows/terminal/get-started
https://hub.docker.com/signup
https://hub.docker.com/signup
https://docs.docker.com/subscription/#docker-desktop-license-agreement
https://docs.docker.com/subscription/#docker-desktop-license-agreement
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment
https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment

With the WSL 2 backend supported in Docker Desktop for Windows, you can work in a
Linux-based development environment and build Linux-based containers, while using
Visual Studio Code for code editing and debugging, and running your container in the
Microsoft Edge browser on Windows.

To install Docker (after already installing WSL):

1. Download Docker Desktop and follow the installation instructions.

2. Once installed, start Docker Desktop from the Windows Start menu, then select the
Docker icon from the hidden icons menu of your taskbar. Right-click the icon to
display the Docker commands menu and select "Settings".

WSL can run distributions in both WSL version 1 or WSL 2 mode. You can check this
by opening PowerShell and entering: wsl -l -v . Ensure that the your distribution is
set to use WSL 2 by entering: wsl --set-version <distro> 2 . Replace <distro>
with the distro name (e.g. Ubuntu 18.04).

In WSL version 1, due to fundamental differences between Windows and Linux, the
Docker Engine couldn't run directly inside WSL, so the Docker team developed an
alternative solution using Hyper-V VMs and LinuxKit. However, since WSL 2 now
runs on a Linux kernel with full system call capacity, Docker can fully run in WSL 2.
This means that Linux containers can run natively without emulation, resulting in
better performance and interoperability between your Windows and Linux tools.

Install Docker Desktop

https://docs.docker.com/docker-for-windows/wsl/#download
https://docs.docker.com/docker-for-windows/wsl/#download

3. Ensure that "Use the WSL 2 based engine" is checked in Settings > General.

4. Select from your installed WSL 2 distributions which you want to enable Docker
integration on by going to: Settings > Resources > WSL Integration.

5. To confirm that Docker has been installed, open a WSL distribution (e.g. Ubuntu)
and display the version and build number by entering: docker --version

6. Test that your installation works correctly by running a simple built-in Docker
image using: docker run hello-world

 Tip

To get started developing apps using Docker with WSL 2, we recommend using VS
Code, along with the WSL, Dev Containers, and Docker extensions.

Install the VS Code WSL extension . This extension enables you to open your
Linux project running on WSL in VS Code (no need to worry about pathing issues,
binary compatibility, or other cross-OS challenges).

Install the VS Code Dev Containers extension . This extension enables you to
open your project folder or repo inside of a container, taking advantage of Visual
Studio Code's full feature set to do your development work within the container.

Install the VS Code Docker extension . This extension adds the functionality to
build, manage, and deploy containerized applications from inside VS Code. (You
need the Dev Containers extension to actually use the container as your dev
environment.)

Let's use Docker to create a development container for an existing app project.

1. For this example, I'll use the source code from my Hello World tutorial for Django
in the Python development environment set up docs. You can skip this step if you
prefer to use your own project source code. To download my HelloWorld-Django
web app from GitHub, open a WSL terminal (Ubuntu for example) and enter: git
clone https://github.com/mattwojo/helloworld-django.git

Here are a few helpful Docker commands to know:

List the commands available in the Docker CLI by entering: docker

List information for a specific command with: docker <COMMAND> --help

List the docker images on your machine (which is just the hello-world image

at this point), with: docker image ls --all

List the containers on your machine, with: docker container ls --all or

docker ps -a (without the -a show all flag, only running containers will be
displayed)

List system-wide information regarding the Docker installation, including

statistics and resources (CPU & memory) available to you in the WSL 2

context, with: docker info

Develop in remote containers using VS Code

７ Note

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://learn.microsoft.com/en-us/windows/python/web-frameworks#hello-world-tutorial-for-django

2. From your WSL terminal, change directories to the source code folder for this
project:

Bash

3. Open the project in VS Code running on the local WSL extension server by
entering:

Bash

Confirm that you are connected to your WSL Linux distro by checking the green
remote indicator in the bottom-left corner of your VS Code instance.

4. From the VS Code command palette (Ctrl + Shift + P), enter: Dev Containers:
Reopen in Container as we are using a folder already opened using the WSL
extension. Alternatively, use Dev Containers: Open Folder in Container... to choose
a WSL folder using the local \\wsl$ share (from the Windows side). See the Visual
Studio Code Quick start: Open an existing folder in a container for more details.
If these commands don't display as you begin to type, check to ensure that you've
installed the Dev Containers extension linked above.

Always store your code in the same file system that you're using tools in. This
will result in faster file access performance. In this example, we are using a
Linux distro (Ubuntu) and want to store our project files on the WSL file
system \\wsl\ . Storing project files on the Windows file system would
significantly slow things down when using Linux tools in WSL to access those
files.

cd helloworld-django

code .

https://code.visualstudio.com/docs/devcontainers/containers#_quick-start-open-an-existing-folder-in-a-container
https://code.visualstudio.com/docs/devcontainers/containers#_quick-start-open-an-existing-folder-in-a-container

5. Select the project folder that you wish to containerize. In my case, this is
\\wsl\Ubuntu-20.04\home\mattwojo\repos\helloworld-django\

6. A list of container definitions will appear, since there is no dev container
configuration in the project folder (repo) yet. The list of container configuration
definitions that appears is filtered based on your project type. For my Django
project, I'll select Python 3.

7. A new instance of VS Code will open, begin building our new image, and once the
build completed, will start our container. You will see that a new .devcontainer
folder has appeared with container configuration information inside a Dockerfile
and devcontainer.json file.

8. To confirm that your project is still connected to both WSL and within a container,
open the VS Code integrated terminal (Ctrl + Shift + ~). Check the operating
system by entering: uname and the Python version with: python3 --version . You
can see that the uname came back as "Linux", so you are still connected to the
WSL 2 engine, and Python version number will be based on the container config
that may differ from the Python version installed on your WSL distribution.

9. To run and debug your app inside of the container using Visual Studio Code, first
open the Run menu (Ctrl+Shift+D or select the tab on the far left menu bar). Then
select Run and Debug to select a debug configuration and choose the
configuration that best suits your project (in my example, this will be "Django").
This will create a launch.json file in the .vscode folder of your project with
instructions on how to run your app.

10. From inside VS Code, select Run > Start debugging (or just press the F5 key). This
will open a terminal inside VS Code and you should see a result saying something
like: "Starting development server at http://127.0.0.1:8000/ Quit the server with
CONTROL-C." Hold down the Control key and select the address displayed to open
your app in your default web browser and see your project running inside of its
container.

You have now successfully configured a remote development container using Docker
Desktop, powered by the WSL 2 backend, that you can code in, build, run, deploy, or
debug using VS Code!

If you were using an early Tech Preview of Docker for WSL, you may have a Docker
context called "wsl" that is now deprecated and no longer used. You can check with the
command: docker context ls . You can remove this "wsl" context to avoid errors with
the command: docker context rm wsl as you want to use the default context for both
Windows and WSL2.

Troubleshooting

WSL docker context deprecated

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Possible errors you might encounter with this deprecated wsl context include: docker
wsl open //./pipe/docker_wsl: The system cannot find the file specified. or error
during connect: Get http://%2F%2F.%2Fpipe%2Fdocker_wsl/v1.40/images/json?all=1:

open //./pipe/docker_wsl: The system cannot find the file specified.

For more on this issue, see How to set up Docker within Windows System for Linux
(WSL2) on Windows 10 .

Docker creates two distro folders to store data:

\wsl$\docker-desktop
\wsl$\docker-desktop-data

You can find these folders by opening your WSL Linux distribution and entering:
explorer.exe . to view the folder in Windows File Explorer. Enter: \\wsl\<distro
name>\mnt\wsl replacing <distro name> with the name of your distribution (ie. Ubuntu-
20.04) to see these folders.

Find more on locating docker storage locations in WSL, see this issue from the WSL
repo or this StackOverflow post .

For more help with general troubleshooting issues in WSL, see the Troubleshooting doc.

Docker docs: Best practices for Docker Desktop with WSL 2
Feedback for Docker Desktop for Windows: File an issue
VS Code Blog: Guidelines for choosing a development environment
VS Code Blog: Using Docker in WSL 2
VS Code Blog: Using Remote Containers in WSL 2
Hanselminutes Podcast: Making Docker lovely for Developers with Simon Ferquel

Trouble finding docker image storage folder

Additional resources

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

https://www.hanselman.com/blog/HowToSetUpDockerWithinWindowsSystemForLinuxWSL2OnWindows10.aspx
https://www.hanselman.com/blog/HowToSetUpDockerWithinWindowsSystemForLinuxWSL2OnWindows10.aspx
https://www.hanselman.com/blog/HowToSetUpDockerWithinWindowsSystemForLinuxWSL2OnWindows10.aspx
https://github.com/microsoft/WSL/issues/4176
https://github.com/microsoft/WSL/issues/4176
https://github.com/microsoft/WSL/issues/4176
https://stackoverflow.com/questions/62380124/where-docker-image-is-stored-with-docker-desktop-for-windows
https://stackoverflow.com/questions/62380124/where-docker-image-is-stored-with-docker-desktop-for-windows
https://docs.docker.com/docker-for-windows/wsl/#best-practices
https://docs.docker.com/docker-for-windows/wsl/#best-practices
https://github.com/docker/for-win/issues
https://github.com/docker/for-win/issues
https://code.visualstudio.com/docs/containers/choosing-dev-environment#_guidelines-for-choosing-a-development-environment
https://code.visualstudio.com/docs/containers/choosing-dev-environment#_guidelines-for-choosing-a-development-environment
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2
https://code.visualstudio.com/blogs/2020/03/02/docker-in-wsl2
https://code.visualstudio.com/blogs/2020/07/01/containers-wsl
https://code.visualstudio.com/blogs/2020/07/01/containers-wsl
https://hanselminutes.com/736/making-docker-lovely-for-developers-with-simon-ferquel
https://hanselminutes.com/736/making-docker-lovely-for-developers-with-simon-ferquel
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits

more information, see our
contributor guide.

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ftutorials%2Fwsl-containers&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ftutorials%2Fwsl-containers.md&documentVersionIndependentId=93b6a9ef-08ba-be90-736e-27515fb0f4da&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+403a33a6-304c-2ded-9ea8-4d70bc5f17ba+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Walkthrough: Build and debug C++
with WSL 2 and Visual Studio 2022
Article • 03/20/2024

Visual Studio 2022 introduces a native C++ toolset for Windows Subsystem for Linux
version 2 (WSL 2) development. This toolset is available now in Visual Studio 2022
version 17.0 or higher.

WSL 2 is the new, recommended version of the Windows Subsystem for Linux (WSL). It
provides better Linux file system performance, GUI support, and full system call
compatibility. Visual Studio's WSL 2 toolset allows you to use Visual Studio to build and
debug C++ code on WSL 2 distros without adding an SSH connection. You can already
build and debug C++ code on WSL 1 distros using the native WSL 1 toolset
introduced in Visual Studio 2019 version 16.1.

Visual Studio's WSL 2 toolset supports both CMake and MSBuild-based Linux projects.
CMake is our recommendation for all C++ cross-platform development with Visual
Studio. We recommend CMake because it build and debug the same project on
Windows, WSL, and remote systems.

For a video presentation of the information in this topic, see Video: Debug C++ with
WSL 2 Distributions and Visual Studio 2022.

C++ cross-platform support in Visual Studio assumes all source files originate in the
Windows file system. When targeting a WSL 2 distro, Visual Studio executes a local
rsync command to copy files from the Windows file system to the WSL file system. The
local rsync copy doesn't require any user intervention. It occurs automatically when
Visual Studio detects you're using a WSL 2 distro. To learn more about the differences
between WSL 1 and WSL 2, see Comparing WSL 1 and WSL 2.

CMake Presets integration in Visual Studio supports the WSL 2 toolset. To learn more,
see CMake Presets integration in Visual Studio and Visual Studio Code and Configure
and build with CMake Presets in Visual Studio. There's also more advanced information
in this article under Advanced WSL 2 and CMake projects considerations.

WSL 2 toolset background

Install the build tools

https://visualstudio.microsoft.com/downloads/
https://devblogs.microsoft.com/cppblog/c-with-visual-studio-2019-and-windows-subsystem-for-linux-wsl/
https://youtu.be/IKI2w75aAow
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170

Install the tools necessary to build and debug on WSL 2. You'll install a recent version of
CMake using Visual Studio's CMake binary deployment in a later step.

1. Install WSL and a WSL 2 distro by following the instructions at Install WSL.

2. Assuming your distro uses apt (this walkthrough uses Ubuntu), use the following
commands to install the required build tools on your WSL 2 distro:

Bash

The apt commands above install:

A C++ compiler
gdb

CMake

rsync

zip

An underlying build system generator

This walkthrough uses GCC and Ninja on Ubuntu. And Visual Studio 2022 version 17.0
Preview 2 or later.

Visual Studio defines a CMake project as a folder with a CMakeLists.txt file at the
project root. In this walkthrough, you create a new CMake project by using the Visual
Studio CMake Project template:

3. From the Visual Studio Get started screen, select Create a new project.

sudo apt update
sudo apt install g++ gdb make ninja-build rsync zip

Cross-platform CMake development with a
WSL 2 distro

https://learn.microsoft.com/en-us/windows/wsl/install-win10

 The available options are:
Clone a repository, Open a project or solution, Open a local folder, Create a new
project, or Continue without code.":::

4. In the Search for templates textbox, type "cmake". Choose the CMake Project type
and select Next. Give the project a name and location, and then select Create.

5. Enable Visual Studio's CMake Presets integration. Select Tools > Options > CMake
> General. Select Prefer using CMake Presets for configure, build, and test, then
select OK. Instead, you could have added a CMakePresets.json file to the root of
the project. For more information, see Enable CMake Presets integration.

6. To activate the integration: from the main menu, select File > Close Folder. The
Get started page appears. Under Open recent, select the folder you just closed to
reopen the folder.

https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#enable-cmakepresets-json-integration

7. There are three dropdowns across the Visual Studio main menu bar. Use the
dropdown on the left to select your active target system. This is the system where
CMake is invoked to configure and build the project. Visual Studio queries for WSL
installations with wsl -l -v . In the following image, WSL2: Ubuntu-20.04 is shown
selected as the Target System.

8. Use the dropdown in the middle to select your active Configure Preset. Configure
Presets tell Visual Studio how to invoke CMake and generate the underlying build
system. In step 7, the active Configure Preset is the linux-default Preset created by
Visual Studio. To create a custom Configure Preset, select Manage
Configurations… For more information about Configure Presets, see Select a
Configure Preset and Edit Presets.

9. Use the dropdown on the right to select your active Build Preset. Build Presets tell
Visual Studio how to invoke build. In the illustration for step 7, the active Build
Preset is the Default Build Preset created by Visual Studio. For more information
about Build Presets, see Select a Build Preset.

10. Configure the project on WSL 2. If project generation doesn't start automatically,
then manually invoke configure with Project > Configure project-name

７ Note

If Visual Studio starts to configure your project automatically, read step 11 to
manage CMake binary deployment, and then continue to the step below. To
customize this behavior, see Modify automatic configuration and cache
notifications.

https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#select-a-configure-preset
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#edit-presets
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#select-a-build-preset
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#modify-automatic-configuration-and-cache-notifications

11. If you don't have a supported version of CMake installed on your WSL 2 distro,
then Visual Studio prompts you beneath the main menu ribbon to deploy a recent
version of CMake. Select Yes to deploy CMake binaries to your WSL 2 distro.

12. Confirm that the configure step completed and that you can see the CMake
generation finished message in the Output window under the CMake pane. Build
files are written to a directory in the WSL 2 distro's file system.

13. Select the active debug target. The debug dropdown menu lists all the CMake
targets available to the project.

14. Expand the project subfolder in the Solution Explorer. In the CMakeProject.cpp file,
set a breakpoint in main() . You can also navigate to CMake targets view by

selecting the View Picker button in the Solution Explorer, highlighted in following
screenshot:

15. Select Debug > Start, or press F5. Your project builds, the executable launches on
your WSL 2 distro, and Visual Studio halts execution at the breakpoint. The output
of your program (in this case, "Hello CMake.") is visible in the Linux Console
Window:

You've now built and debugged a C++ app with WSL 2 and Visual Studio 2022.

Visual Studio only provides native support for WSL 2 for CMake projects that use
CMakePresets.json as the active configuration file. To migrate from CMakeSettings.json
to CMakePresets.json , see Enable CMake Presets integration in Visual Studio.

Advanced WSL 2 and CMake projects
considerations

https://learn.microsoft.com/en-us/cpp/build/cmake-presets-vs?view=msvc-170#enable-cmakepresets-json-integration

If you're targeting a WSL 2 distribution and you don't want to use the WSL 2 toolset,
then in the Visual Studio Remote Settings vendor map in CMakePresets.json , set
forceWSL1Toolset to true . For more information, see Visual Studio Remote Settings
vendor map.

If forceWSL1Tooslet is set to true, then Visual Studio doesn't maintain a copy of your
source files in the WSL file system. Instead, it accesses source files in the mounted
Windows drive (/mnt/…).

In most cases, it's best to use the WSL 2 toolset with WSL 2 distributions because WSL 2
is slower when project files are instead stored in the Windows file system. To learn more
about file system performance in WSL 2, see Comparing WSL 1 and WSL 2.

Specify advanced settings such as the path to the directory on WSL 2 where the project
is copied, copy source options, and rsync command arguments, in the Visual Studio
Remote Settings vendor map in CMakePresets.json . For more information, see Visual
Studio Remote Settings vendor map.

System headers are still automatically copied to the Windows file system to supply the
native IntelliSense experience. You can customize the headers that are included or
excluded from this copy in the Visual Studio Remote Settings vendor map in
CMakePresets.json .

You can change the IntelliSense mode, or specify other IntelliSense options, in the Visual
Studio Settings vendor map in CMakePresets.json . For details about the vendor map,
see Visual Studio Remote Settings vendor map.

CMake is recommended for all C++ cross-platform development with Visual Studio
because it allows you to build and debug the same project on Windows, WSL, and
remote systems.

But you may have a MSBuild-based Linux project.

If you have a MSBuild-based Linux project, then you can upgrade to the WSL 2 toolset
in Visual Studio. Right-click the project in the solution explorer, then choose Properties
> General > Platform Toolset:

WSL 2 and MSBuild-based Linux projects

https://learn.microsoft.com/en-us/cpp/build/cmake-presets-json-reference?view=msvc-170#visual-studio-remote-settings-vendor-map
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-json-reference?view=msvc-170#visual-studio-remote-settings-vendor-map
https://learn.microsoft.com/en-us/cpp/build/cmake-presets-json-reference?view=msvc-170#visual-studio-remote-settings-vendor-map

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

If you're targeting a WSL 2 distribution and you don't want to use the WSL 2 toolset,
then in the Platform Toolset dropdown, select the GCC for Windows Subsystem for
Linux or Clang for Windows Subsystem for Linux toolset. If either of these toolsets are
selected, Visual Studio doesn't maintain a copy of your source files in the WSL file
system and instead accesses source files over the mounted Windows drive (/mnt/…).
System headers are still automatically copied to the Windows file system to provide a
native IntelliSense experience. Customize the headers that are included or excluded
from this copy in Property Pages > General.

In most cases, it's best to use the WSL 2 toolset with WSL 2 distributions because WSL 2
is slower when project files are stored in the Windows file system. To learn more, see
Comparing WSL 1 and WSL 2.

Video: Debug C++ with WSL 2 Distributions and Visual Studio 2022
Download Visual Studio 2022
Create a CMake Linux project in Visual Studio
Tutorial: Debug a CMake project on a remote Windows machine

See also

 Yes  No

https://developercommunity.visualstudio.com/cpp/
https://learn.microsoft.com/en-us/answers/tags/314/cpp
https://youtu.be/IKI2w75aAow
https://visualstudio.microsoft.com/downloads/
https://learn.microsoft.com/en-us/cpp/linux/cmake-linux-project?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/cmake-remote-debugging?view=msvc-170

Get started with GPU acceleration for
ML in WSL
Article • 03/20/2023

Machine learning (ML) is becoming a key part of many development workflows.
Whether you're a data scientist, ML engineer, or starting your learning journey with ML
the Windows Subsystem for Linux (WSL) offers a great environment to run the most
common and popular GPU accelerated ML tools.

There are lots of different ways to set up these tools. For example, NVIDIA CUDA in
WSL , TensorFlow-DirectML and PyTorch-DirectML all offer different ways you can
use your GPU for ML with WSL. To learn more about the reasons for choosing one
versus another, see GPU accelerated ML training.

This guide will show how to set up:

NVIDIA CUDA if you have an NVIDIA graphics card and run a sample ML
framework container
TensorFlow-DirectML and PyTorch-DirectML on your AMD, Intel, or NVIDIA
graphics card

Ensure you are running Windows 11 or Windows 10, version 21H2 or higher.
Install WSL and set up a username and password for your Linux distribution.

1. Download and install the latest driver for your NVIDIA GPU

2. Install Docker Desktop or install the Docker engine directly in WSL by running the
following command

Bash

Bash

Prerequisites

Setting up NVIDIA CUDA with Docker

curl https://get.docker.com | sh

sudo service docker start

https://developer.nvidia.com/cuda/wsl
https://pypi.org/project/tensorflow-directml/
https://pypi.org/project/pytorch-directml/
https://learn.microsoft.com/en-us/windows/ai/directml/gpu-accelerated-training
https://microsoft.com/software-download/windows11
https://microsoft.com/software-download/windows10
https://www.nvidia.com/Download/index.aspx

3. If you installed the Docker engine directly then install the NVIDIA Container
Toolkit following the steps below.

Set up the stable repository for the NVIDIA Container Toolkit by running the
following commands:

Bash

Bash

Bash

Install the NVIDIA runtime packages and dependencies by running the commands:

Bash

Bash

4. Run a machine learning framework container and sample.

To run a machine learning framework container and start using your GPU with this
NVIDIA NGC TensorFlow container, enter the command:

Bash

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo gpg --
dearmor -o /usr/share/keyrings/nvidia-docker-keyring.gpg

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | sed 's#deb https://#deb [signed-
by=/usr/share/keyrings/nvidia-docker-keyring.gpg] https://#g' | sudo
tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update

sudo apt-get install -y nvidia-docker2

docker run --gpus all -it --shm-size=1g --ulimit memlock=-1 --ulimit
stack=67108864 nvcr.io/nvidia/tensorflow:20.03-tf2-py3

https://docs.nvidia.com/cuda/wsl-user-guide/index.html#ch04-sub02-install-nvidia-docker

You can run a pre-trained model sample that is built into this container by running
the commands:

Bash

Bash

cd nvidia-examples/cnn/

python resnet.py --batch_size=64

https://user-images.githubusercontent.com/2146704/165867329-fae2f8ec-e86d-412e-9e2c-dcfec0ec2429.gif

Additional ways to get setup and utilize NVIDIA CUDA can be found in the NVIDIA
CUDA on WSL User Guide .

1. Download and install the latest driver from your GPU vendors website: AMD ,
Intel , or NVIDIA .

2. Setup a Python environment.

We recommend setting up a virtual Python environment. There are many tools you
can use to setup a virtual Python environment — for these instructions, we'll use
Anaconda's Miniconda .

Bash

Bash

Bash

Bash

3. Install the machine learning framework backed by DirectML of your choice.

TensorFlow-DirectML:

Bash

PyTorch-DirectML:

Setting up TensorFlow-DirectML or PyTorch-
DirectML

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-
x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh

conda create --name directml python=3.7 -y

conda activate directml

pip install tensorflow-directml

https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl
https://www.amd.com/en/support
https://www.intel.com/content/www/us/en/download/19344/intel-graphics-windows-dch-drivers.html
https://www.nvidia.com/Download/index.aspx
https://docs.conda.io/en/latest/miniconda.html

Bash

Bash

4. Run a quick addition sample in an interactive Python session for TensorFlow-
DirectML or PyTorch-DirectML to make sure everything is working.

If you have questions or run into issues, visit the DirectML repo on GitHub .

If you have multiple GPUs on your machine you can also access them inside of WSL.
However, you will only be able to access one at a time. To choose a specific GPU please
set the environment variable below to the name of your GPU as it appears in device
manager:

Bash

This will do a string match, so if you set it to "NVIDIA" it will match the first GPU that
starts with "NVIDIA".

Guidance for setting up NVIDIA CUDA in WSL
Guidance for setting up TensorFlow with DirectML in WSL
TensorFlow with DirectML Samples
Guidance for setting up PyTorch with DirectML in WSL
PyTorch with DirectML Samples

sudo apt install libblas3 libomp5 liblapack3

pip install pytorch-directml

Multiple GPUs

export MESA_D3D12_DEFAULT_ADAPTER_NAME="<NameFromDeviceManager>"

Additional Resources

https://learn.microsoft.com/en-us/windows/ai/directml/gpu-tensorflow-wsl#install-the-tensorflow-with-directml-package
https://learn.microsoft.com/en-us/windows/ai/directml/gpu-pytorch-wsl#install-the-pytorch-with-directml-package
https://github.com/microsoft/DirectML#feedback
https://docs.nvidia.com/cuda/wsl-user-guide/index.html
https://learn.microsoft.com/en-us/windows/ai/directml/gpu-tensorflow-wsl
https://github.com/microsoft/DirectML/tree/master/TensorFlow
https://learn.microsoft.com/en-us/windows/ai/directml/gpu-pytorch-wsl
https://github.com/microsoft/DirectML/tree/master/PyTorch

Run Linux GUI apps on the Windows
Subsystem for Linux
Article • 01/10/2024

Windows Subsystem for Linux (WSL) now supports running Linux GUI applications (X11
and Wayland) on Windows in a fully integrated desktop experience.

WSL 2 enables Linux GUI applications to feel native and natural to use on Windows.

Launch Linux apps from the Windows Start menu
Pin Linux apps to the Windows task bar
Use alt-tab to switch between Linux and Windows apps
Cut + Paste across Windows and Linux apps

You can now integrate both Windows and Linux applications into your workflow for a
seamless desktop experience.

You will need to be on Windows 10 Build 19044+ or Windows 11 to access this
feature.

Installed driver for vGPU

Install support for Linux GUI apps

Prerequisites

To run Linux GUI apps, you should first install the driver matching your system
below. This will enable you to use a virtual GPU (vGPU) so you can benefit from
hardware accelerated OpenGL rendering.

Intel GPU driver
AMD GPU driver
NVIDIA GPU driver

You can now install everything you need to run Windows Subsystem for Linux (WSL) by
entering this command in an administrator PowerShell or Windows Command Prompt
and then restarting your machine.

PowerShell

Once your machine has finished rebooting, installation will continue and you will be
asked to enter a username and password. This will be your Linux credential for the
Ubuntu distribution.

You're now ready to begin using Linux GUI apps on WSL!

For more info check install WSL.

If you already have WSL installed on your machine, you can update to the latest version
that includes Linux GUI support by running the update command from an elevated
command prompt.

1. Select Start, type PowerShell, right-click Windows PowerShell, and then select Run
as administrator.

2. Enter the WSL update command:

PowerShell

3. You will need to restart WSL for the update to take effect. You can restart WSL by
running the shutdown command in PowerShell.

Fresh install - No prior WSL installation

wsl --install

Existing WSL install

wsl --update

https://www.intel.com/content/www/us/en/download/19344/intel-graphics-windows-dch-drivers.html
https://www.amd.com/en/support
https://www.nvidia.com/Download/index.aspx?lang=en-us

PowerShell

You can run the following commands from your Linux terminal to download and install
these popular Linux applications. If you are using a different distribution than Ubuntu, it
may use a different package manager than apt. Once the Linux application is installed,
you can find it in your Start menu under the distribution name. For example: Ubuntu ->
Microsoft Edge .

Bash

Gnome Text Editor is the default text editor of the GNOME desktop environment.

Bash

wsl --shutdown

７ Note

Linux GUI apps are only supported with WSL 2 and will not work with a Linux
distribution configured for WSL 1. Read about how to change your distribution
from WSL 1 to WSL 2.

Run Linux GUI apps

７ Note

Support for GUI apps on WSL does not provide a full desktop experience. It relies
on Windows desktop, so installing desktop-focused tools or apps may not be
supported. To request additional support, you can file an issue in the WSLg repo on
GitHub .

Update the packages in your distribution

sudo apt update

Install Gnome Text Editor

sudo apt install gnome-text-editor -y

https://github.com/microsoft/wslg/issues

To launch your bashrc file in the editor, enter: gnome-text-editor ~/.bashrc

GIMP is a free and open-source raster graphics editor used for image manipulation and
image editing, free-form drawing, transcoding between different image file formats, and
more specialized tasks.

Bash

To launch, enter: gimp

Nautilus, also known as GNOME Files, is the file manager for the GNOME desktop.
(Similar to Windows File Explorer).

Bash

To launch, enter: nautilus

VLC is a free and open source cross-platform multimedia player and framework that
plays most multimedia files.

Bash

７ Note

GNOME Text Editor replaces gedit as GNOME/Ubuntu's default text editor in
Ubuntu 22.10. If you're running an older version of Ubuntu and want to use
gedit , the previous default text editor, use sudo apt install gedit -y .

Install GIMP

sudo apt install gimp -y

Install Nautilus

sudo apt install nautilus -y

Install VLC

sudo apt install vlc -y

https://en.wikipedia.org/wiki/GNOME_Text_Editor
https://en.wikipedia.org/wiki/Gedit

To launch, enter: vlc

X11 is the Linux windowing system and this is a miscellaneous collection of apps and
tools that ship with it, such as the xclock, xcalc calculator, xclipboard for cut and paste,
xev for event testing, etc. See the x.org docs for more info.

Bash

To launch, enter the name of the tool you would like to use. For example:

xcalc , xclock , xeyes

To install the Google Chrome for Linux:

1. Change directories into the temp folder: cd /tmp
2. Use wget to download it: wget https://dl.google.com/linux/direct/google-

chrome-stable_current_amd64.deb

3. Install the package: sudo apt install --fix-missing ./google-chrome-
stable_current_amd64.deb

*The --fix-missing option is used to fix missing dependencies that may arise during
the installation process. The ./ in the command specifies the current directory where
the .deb file is located. If the .deb file is located in a different directory, you will need to
specify the path to the file in the command.

To launch, enter: google-chrome

Find information on how to install the Microsoft Edge browser for Linux using the
command line on the Edge Insider site . Select Get instructions under the Command
line installation section of the page.

To launch, enter: microsoft-edge

Install X11 apps

sudo apt install x11-apps -y

Install Google Chrome for Linux

Install Microsoft Edge browser for Linux

https://www.x.org/wiki/UserDocumentation/GettingStarted/
https://www.microsoftedgeinsider.com/download/?platform=linux-deb

If you have any problem starting GUI applications please check this guide first:
Diagnosing "cannot open display" type issues with WSLg

Troubleshooting

https://github.com/microsoft/wslg/wiki/Diagnosing-%22cannot-open-display%22-type-issues-with-WSLg

Install Node.js on Windows Subsystem
for Linux (WSL2)
Article • 03/01/2024

If you prefer using Node.js in a Linux environment, find performance speed and system
call compatibility important, want to run Docker containers that leverage Linux
workspaces and avoid having to maintain both Linux and Windows build scripts, or just
prefer using a Bash command line, then you want to install Node.js on the Windows
Subsystem for Linux (more specifically, WSL 2).

Using Windows Subsystem for Linux (WSL), might also enable you to install your
preferred Linux distribution (Ubuntu is our default) so that you can have consistency
between your development environment (where you write code) and production
environment (the server where your code is deployed).

WSL 2 is the most recent version available for Windows and we recommend it for
professional Node.js development workflows. To enable and install WSL 2, follow the
steps in the WSL install documentation. These steps will include choosing a Linux
distribution (for example, Ubuntu).

Once you have installed WSL 2 and a Linux distribution, open the Linux distribution (it
can be found in your Windows start menu) and check the version and codename using
the command: lsb_release -dc .

We recommend updating your Linux distribution regularly, including immediately after
you install, to ensure you have the most recent packages. Windows doesn't
automatically handle this update. To update your distribution, use the command: sudo
apt update && sudo apt upgrade .

７ Note

If you are new to developing with Node.js and want to get up and running quickly
so that you can learn, install Node.js on Windows. This recommendation also
applies if you plan to use a Windows Server production environment.

Install WSL 2

Install Windows Terminal (optional)

https://learn.microsoft.com/en-us/windows/wsl/install-win10
https://learn.microsoft.com/en-us/windows/dev-environment/javascript/nodejs-on-windows

Windows Terminal is an improved command line shell that allows you to run multiple
tabs so that you can quickly switch between Linux command lines, Windows Command
Prompt, PowerShell, Azure CLI, or whatever you prefer to use. You can also create
custom key bindings (shortcut keys for opening or closing tabs, copy+paste, etc.), use
the search feature, customize your terminal with themes (color schemes, font styles and
sizes, background image/blur/transparency), and more. Learn more in the Windows
Terminal docs.

Install Windows Terminal using the Microsoft Store : By installing via the store, updates
are handled automatically.

Besides choosing whether to install on Windows or WSL, there are additional choices to
make when installing Node.js. We recommend using a version manager as versions
change very quickly. You will likely need to switch between multiple versions of Node.js
based on the needs of different projects you're working on. Node Version Manager,
more commonly called nvm, is the most popular way to install multiple versions of
Node.js. We will walk through the steps to install nvm and then use it to install Node.js
and Node Package Manager (npm). There are alternative version managers to consider
as well covered in the next section.

For the most current information on installing NVM, see Installing and Updating in the
NVM repo on GitHub .

1. Open your Ubuntu command line (or distribution of your choice).

2. Install cURL (a tool used for downloading content from the internet in the
command-line) with: sudo apt-get install curl

3. Install nvm, with: curl -o- https://raw.githubusercontent.com/nvm-
sh/nvm/master/install.sh | bash

Install nvm, node.js, and npm

） Important

It is always recommended to remove any existing installations of Node.js or npm
from your operating system before installing a version manager as the different
types of installation can lead to strange and confusing conflicts. For example, the
version of Node that can be installed with Ubuntu's apt-get command is currently
outdated. For help with removing previous installations, see How to remove nodejs
from ubuntu .)

https://learn.microsoft.com/en-us/windows/terminal
https://www.microsoft.com/store/apps/9n0dx20hk701
https://github.com/nvm-sh/nvm?tab=readme-ov-file#installing-and-updating
https://askubuntu.com/questions/786015/how-to-remove-nodejs-from-ubuntu-16-04

4. To verify installation, enter: command -v nvm ...this should return 'nvm', if you receive
'command not found' or no response at all, close your current terminal, reopen it,
and try again. Learn more in the nvm github repo .

5. List which versions of Node are currently installed (should be none at this point):
nvm ls

6. Install both the current and stable LTS versions of Node.js. In a later step, you'll
learn how to switch between active versions of Node.js with an nvm command.

Install the current stable LTS release of Node.js (recommended for production
applications): nvm install --lts
Install the current release of Node.js (for testing latest Node.js features and
improvements, but more likely to have issues): nvm install node

7. List what versions of Node are installed: nvm ls ...now you should see the two
versions that you just installed listed.

７ Note

Installing a newer version of NVM using cURL will replace the older one,
leaving the version of Node you've used NVM to install intact. For more
information, see the GitHub project page for the latest release information
on NVM .

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

8. Verify that Node.js is installed and the currently default version with: node --
version . Then verify that you have npm as well, with: npm --version (You can also
use which node or which npm to see the path used for the default versions).

9. To change the version of Node.js you would like to use for a project, create a new
project directory mkdir NodeTest , and enter the directory cd NodeTest , then enter
nvm use node to switch to the Current version, or nvm use --lts to switch to the
LTS version. You can also use the specific number for any additional versions you've
installed, like nvm use v8.2.1 . (To list all of the versions of Node.js available, use
the command: nvm ls-remote).

If you are using NVM to install Node.js and NPM, you should not need to use the SUDO
command to install new packages.

While nvm is currently the most popular version manager for node, there are a few
alternatives to consider:

n is a long-standing nvm alternative that accomplishes the same thing with
slightly different commands and is installed via npm rather than a bash script.
fnm is a newer version manager, claiming to be much faster than nvm . (It also
uses Azure Pipelines.)
Volta is a new version manager from the LinkedIn team that claims improved
speed and cross-platform support.

Alternative version managers

https://www.npmjs.com/package/n#installation
https://github.com/Schniz/fnm#using-a-script
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://github.com/volta-cli/volta#installing-volta

asdf-vm is a single CLI for multiple languages, like ike gvm, nvm, rbenv & pyenv
(and more) all in one.
nvs (Node Version Switcher) is a cross-platform nvm alternative with the ability to
integrate with VS Code .

We recommend using Visual Studio Code with the Remote-development extension
pack for Node.js projects. This splits VS Code into a “client-server” architecture, with
the client (the VS Code user interface) running on your Windows operating system and
the server (your code, Git, plugins, etc) running "remotely" on your WSL Linux
distribution.

Linux-based Intellisense and linting is supported.
Your project will automatically build in Linux.
You can use all your extensions running on Linux (ES Lint, NPM Intellisense, ES6
snippets, etc.).

Other code editors, like IntelliJ, Sublime Text, Brackets, etc. will also work with a WSL 2
Node.js development environment, but may not have the same sort of remote features
that VS Code offers. These code editors may run into trouble accessing the WSL shared
network location (\wsl$\Ubuntu\home) and will try to build your Linux files using
Windows tools, which likely not what you want. The Remote-WSL Extension in VS Code
handles this compatibility for you, with other IDEs you may need to set up an X server.
Support for running GUI apps in WSL (like a code editor IDE) is coming soon.

Terminal-based text editors (vim, emacs, nano) are also helpful for making quick
changes from right inside your console. The article, Emacs, Nano, or Vim: Choose your
Terminal-Based Text Editor Wisely does a nice job explaining some differences and a
bit about how to use each.

To install VS Code and the Remote-WSL Extension:

Install Visual Studio Code

７ Note

This “remote” scenario is a bit different than you may be accustomed to. WSL
supports an actual Linux distribution where your project code is running, separately
from your Windows operating system, but still on your local machine. The Remote-
WSL extension connects with your Linux subsystem as if it were a remote server,
though it’s not running in the cloud… it’s still running on your local machine in the
WSL environment that you enabled to run alongside Windows.

https://asdf-vm.com/#/core-manage-asdf-vm
https://github.com/jasongin/nvs
https://github.com/jasongin/nvs/blob/master/doc/VSCODE.md
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=waderyan.nodejs-extension-pack
https://twitter.com/craigaloewen/status/1308452901266751488?lang=en
https://medium.com/linode-cube/emacs-nano-or-vim-choose-your-terminal-based-text-editor-wisely-8f3826c92a68

1. Download and install VS Code for Windows . VS Code is also available for Linux,
but Windows Subsystem for Linux does not support GUI apps, so we need to
install it on Windows. Not to worry, you'll still be able to integrate with your Linux
command line and tools using the Remote - WSL Extension.

2. Install the Remote - WSL Extension on VS Code. This allows you to use WSL as
your integrated development environment and will handle compatibility and
pathing for you. Learn more .

While VS Code comes with many features for Node.js development out of the box, there
are some helpful extensions to consider installing available in the Node.js Extension
Pack . Install them all or pick and choose which seem the most useful to you.

To install the Node.js extension pack:

1. Open the Extensions window (Ctrl+Shift+X) in VS Code.

The Extensions window is now divided into three sections (because you installed
the Remote-WSL extension).

"Local - Installed": The extensions installed for use with your Windows
operating system.
"WSL:Ubuntu-18.04-Installed": The extensions installed for use with your
Ubuntu operating system (WSL).
"Recommended": Extensions recommended by VS Code based on the file
types in your current project.

） Important

If you already have VS Code installed, you need to ensure that you have the 1.35
May release or later in order to install the Remote - WSL Extension . We do not
recommend using WSL in VS Code without the Remote-WSL extension as you will
lose support for auto-complete, debugging, linting, etc. Fun fact: This WSL
extension is installed in $HOME/.vscode-server/extensions.

Helpful VS Code Extensions

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://code.visualstudio.com/docs/remote/remote-overview
https://marketplace.visualstudio.com/items?itemName=waderyan.nodejs-extension-pack
https://code.visualstudio.com/updates/v1_35
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl

2. In the search box at the top of the Extensions window, enter: Node Extension Pack
(or the name of whatever extension you are looking for). The extension will be
installed for either your Local or WSL instances of VS Code depending on where
you have the current project opened. You can tell by selecting the remote link in
the bottom-left corner of your VS Code window (in green). It will either give you
the option to open or close a remote connection. Install your Node.js extensions in
the "WSL:Ubuntu-18.04" environment.

A few additional extensions you may want to consider include:

JavaScript Debugger : Once you finish developing on the server side with
Node.js, you'll need to develop and test the client side. This extension is a DAP-
based JavaScript debugger. It debugs Node.js, Chrome, Edge, WebView2, VS Code
extensions, and more.

https://marketplace.visualstudio.com/items?itemName=ms-vscode.js-debug

Keymaps from other editors : These extensions can help your environment feel
right at home if you're transitioning from another text editor (like Atom, Sublime,
Vim, eMacs, Notepad++, etc).
Settings Sync : Enables you to synchronize your VS Code settings across different
installations using GitHub. If you work on different machines, this helps keep your
environment consistent across them.

To set up Git for a Node.js project on WSL, see the article Get started using Git on
Windows Subsystem for Linux in the WSL documentation.

Set up Git (optional)

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows developer
feedback
Windows developer is an open
source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://marketplace.visualstudio.com/search?target=VSCode&category=Keymaps&sortBy=Downloads
https://marketplace.visualstudio.com/items?itemName=Shan.code-settings-sync
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/windows-dev-docs/issues/new?template=1-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fdev-environment%2Fjavascript%2Fnodejs-on-wsl&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwindows-dev-docs%2Fblob%2Fdocs%2Fhub%2Fdev-environment%2Fjavascript%2Fnodejs-on-wsl.md&documentVersionIndependentId=504dcc6c-fc86-bd6a-8944-2c0f2280dda7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40mattwojo&metadata=*+ID%3A+39f94295-ca73-b090-6347-21e123925177+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-javascript**&labels=needs-triage
https://github.com/microsoft/Windows-Dev-Performance/issues

Getting started with Linux and Bash
Article • 11/28/2022

This tutorial will help those new to Linux to get started installing and updating packages
using the Ubuntu distribution of Linux that is installed by default using WSL, as well as
using some basic commands with the Bash command line.

You can install and update software programs directly from the command line using the
preferred package manager for the distribution you are running.

In Ubuntu, for example, first update the list of software available by running ‘sudo apt
update’. Then, you can directly get software by using the ‘sudo apt-get install’ command
followed by the name of the program you wish to install:

Bash

To update programs that have already been installed, you can run:

Bash

Installing and Updating Software

sudo apt-get install <app_name>

sudo apt update && sudo apt upgrade

 Tip

Different distributions of Linux often have different package managers and will
require using an install command specific to the associated package manager. For
example, the main package manager for Arch Linux is called pacman and the
install command would be sudo pacman -S <app_name> . The main package manager

https://user-images.githubusercontent.com/98557455/183468063-35b00e76-d11a-4260-aa3c-9f8e0dab2e47.gif
https://wiki.archlinux.org/title/pacman

To view the path of the directory you are currently in, use the ‘pwd’ command:

Bash

To create a new directory, use the ‘mkdir’ command followed by the name of the
directory you want to create:

Bash

To change directories, use the ‘cd’ command followed by the name of the directory you
want to navigate to:

Bash

To see the contents within the directory you are currently in, type ‘ls’ into the command
line:

Bash

for OpenSuse is called Zypper and the install command would be sudo zypper
install <app_name> . The main package manager for Alpine is called apk and the
install command would be sudo apk add <app_name> . The two main package
managers for Red Hat distributions, like CentOS, are YUM and RPM and an install
command could be sudo yum install <app_name> or sudo rpo -i <app_name> . Refer
to the documentation of the distribution you are working with to find out what
tools are available for you to install and update software.

Working with files and directories

pwd

mkdir hello_world

cd hello_world

ls

https://doc.opensuse.org/documentation/leap/archive/42.2/reference/html/book.opensuse.reference/cha.sw_cl.html#sec.zypper
https://wiki.alpinelinux.org/wiki/Package_management
https://www.redhat.com/sysadmin/how-manage-packages

By default, the ‘ls’ command will print the name of all the files and directories only. To
get additional information such as the last time a file was modified or file permissions,
use the flag “-l”:

Bash

You can create a new file via the ‘touch’ command followed by the name of the file you
would like to create:

Bash

You can edit files using any downloaded graphical text-editor or the VS Code Remote –
WSL extension. You can learn more about getting started with VS Code here

If you prefer to edit a file directly from the command-line, you’ll need to use a
command-line editor such as vim, emacs, or nano. Many distributions come with one or
more of these programs installed, but you can always install these programs by
following the installation instructions outlined in the guide from above .

To edit your file with your preferred method of editing, simply run the program name
followed by the name of the file you’d like to edit:

Bash

Bash

ls -l

touch hello_world.txt

code hello_world.txt

notepad.exe hello_world.txt

https://user-images.githubusercontent.com/98557455/183470971-7b188fdd-bb01-44e0-ac17-56f246ffd78e.gif
https://github.com/MicrosoftDocs/WSL/edit/linux-tutorial/WSL/tutorials/linux.md#installing-and-updating-software

To see the contents of a file in the command line, use the ‘cat’ command followed by
the file you’d like to read:

Bash

A pipe ‘|’ redirects the output from one command as input into another command. For
example, lhscmd | rhscmd would direct the output from lhscmd to rhscmd. Pipes can be
used in a variety of ways to quickly accomplish tasks through the command line. Below
are just a few simple examples of how pipes can be used.

Imagine you want to quickly sort the contents of a file. Take the fruits.txt example below:

Bash

You can quickly sort this list by using a pipe:

cat hello_world.txt

Using Pipes and Redirect Operators

cat fruits.txt

Orange

Banana

Apple

Pear

Plum

Kiwi

Strawberry

Peach

https://user-images.githubusercontent.com/98557455/183481394-25bc0b2f-3d6d-465f-8f0b-aa5393f88727.gif

Bash

By default, the output of the ‘cat’ command is sent to standard output; however, the ‘|’
allows us to instead redirect the output as the input to another command, ‘sort’.

Another use case is searching. You can use ‘grep’ which is a helpful command that
searches input for a particular search string.

Bash

You can also use redirect operators like ‘>’ to pass the output to a file or stream. For
example, if you wanted to create a new .txt file with the sorted contents of fruit.txt:

Bash

Bash

$ cat fruits.txt | sort

Apple

Banana

Kiwi

Orange

Peach

Pear

Plum

Strawberry

cat fruits.txt | grep P

Pear

Plum

Peach

cat fruits.txt | sort > sorted_fruit.txt

$ cat sorted_fruit.txt

Apple

By default, the output of the sort command is sent to standard output; however, the ‘>’
operator allows us to instead redirect the output into a new file named sorted_fruits.txt.

You can use pipes and redirect operators in many interesting ways to more efficiently
complete tasks directly from the command line.

Microsoft Learn: Introduction to Bash

Command Line for Beginners

Microsoft Learn: Get Started with WSL

Banana

Kiwi

Orange

Peach

Pear

Plum

Strawberry

Recommended content

https://learn.microsoft.com/en-us/learn/modules/bash-introduction/
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://learn.microsoft.com/en-us/learn/modules/get-started-with-windows-subsystem-for-linux/

Working across Windows and Linux file
systems
Article • 03/03/2022

There are a number of considerations to keep in mind when working between Windows
and Linux file systems. We have outlined a few of them for you in this guide, including
some examples of interoperability support for mixing Windows and Linux-based
commands.

We recommend against working across operating systems with your files, unless you
have a specific reason for doing so. For the fastest performance speed, store your files in
the WSL file system if you are working in a Linux command line (Ubuntu, OpenSUSE,
etc). If you're working in a Windows command line (PowerShell, Command Prompt),
store your files in the Windows file system.

For example, when storing your WSL project files:

Use the Linux file system root directory: \\wsl$\Ubuntu\home\<user name>\Project
Not the Windows file system root directory: /mnt/c/Users/<user name>/Project$ or
C:\Users\<user name>\Project

When you see /mnt/ in the file path of a WSL command line, it means that you are
working from a mounted drive. So the Windows file system C:/ drive (C:\Users\<user
name>\Project) will look like this when mounted in a WSL command line:
/mnt/c/Users/<user name>/Project$. It is possible to store your project files on a
mounted drive, but your performance speed will improve if you store them directly on
the \\wsl$ drive.

You can view the directory where your files are stored by opening the Windows File
Explorer from the command line, using:

Bash

File storage and performance across file
systems

View your current directory in Windows File
Explorer

Alternatively, you can also use the command: powershell.exe /c start . Be sure to add
the period at the end of the command to open the current directory.

To view all of your available Linux distributions and their root file systems in Windows
File explorer, in the address bar enter: \\wsl$

Case sensitivity determines whether uppercase (FOO.txt) and lowercase (foo.txt) letters
are handled as distinct (case-sensitive) or equivalent (case-insensitive) in a file name or
directory. Windows and Linux file systems handle case sensitivity in different ways -
Windows is case-insensitive and Linux is case-sensitive. Learn more about how to adjust
case sensitivity, particularly when mounting disks with WSL, in the Adjust case sensitivity
how-to article.

Windows and Linux tools and commands can be used interchangeably with WSL.

Run Windows tools (ie. notepad.exe) from a Linux command line (ie. Ubuntu).
Run Linux tools (ie. grep) from a Windows command line (ie. PowerShell).
Share environment variables between Linux and Windows. (Build 17063+)

explorer.exe .

Filename and directory case sensitivity

Interoperability between Windows and Linux
commands

Run Linux tools from a Windows command line

Run Linux binaries from the Windows Command Prompt (CMD) or PowerShell using wsl
<command> (or wsl.exe <command>).

For example:

PowerShell

Binaries invoked in this way:

Use the same working directory as the current CMD or PowerShell prompt.
Run as the WSL default user.
Have the same Windows administrative rights as the calling process and terminal.

The Linux command following wsl (or wsl.exe) is handled like any command run in
WSL. Things such as sudo, piping, and file redirection work.

Example using sudo to update your default Linux distribution:

PowerShell

Your default Linux distribution user name will be listed after running this command and
you will be asked for your password. After entering your password correctly, your
distribution will download updates.

Here are a few examples of mixing Linux and Windows commands using PowerShell.

To use the Linux command ls -la to list files and the PowerShell command findstr to
filter the results for words containing "git", combine the commands:

PowerShell

To use the PowerShell command dir to list files and the Linux command grep to filter
the results for words containing "git", combine the commands:

C:\temp> wsl ls -la

<- contents of C:\temp ->

C:\temp> wsl sudo apt-get update

Mixing Linux and Windows commands

wsl ls -la | findstr "git"

PowerShell

To use the Linux command ls -la to list files and the PowerShell command > out.txt
to print that list to a text file named "out.txt", combine the commands:

PowerShell

The commands passed into wsl.exe are forwarded to the WSL process without
modification. File paths must be specified in the WSL format.

To use the Linux command ls -la to list files in the /proc/cpuinfo Linux file system
path, using PowerShell:

PowerShell

To use the Linux command ls -la to list files in the C:\Program Files Windows file
system path, using PowerShell:

PowerShell

WSL can run Windows tools directly from the WSL command line using [tool-
name].exe . For example, notepad.exe .

Applications run this way have the following properties:

Retain the working directory as the WSL command prompt (for the most part --
exceptions are explained below).
Have the same permission rights as the WSL process.
Run as the active Windows user.
Appear in the Windows Task Manager as if directly executed from the CMD
prompt.

C:\temp> dir | wsl grep git

C:\temp> wsl ls -la > out.txt

C:\temp> wsl ls -la /proc/cpuinfo

C:\temp> wsl ls -la "/mnt/c/Program Files"

Run Windows tools from Linux

Windows executables run in WSL are handled similarly to native Linux executables --
piping, redirects, and even backgrounding work as expected.

To run the Windows tool ipconfig.exe , use the Linux tool grep to filter the "IPv4"
results, and use the Linux tool cut to remove the column fields, from a Linux
distribution (for example, Ubuntu) enter:

Bash

Let's try an example mixing Windows and Linux commands. Open your Linux
distribution (ie. Ubuntu) and create a text file: touch foo.txt . Now use the Linux
command ls -la to list the direct files and their creation details, plus the Windows
PowerShell tool findstr.exe to filter the results so only your foo.txt file shows in the
results:

Bash

Windows tools must include the file extension, match the file case, and be executable.
Non-executables including batch scripts. CMD native commands like dir can be run
with cmd.exe /C command.

For example, list the contents of your Windows files system C:\ directory, by entering:

Bash

Or use the ping command to send an echo request to the microsoft.com website:

Bash

Parameters are passed to the Windows binary unmodified. As an example, the following
command will open C:\temp\foo.txt in notepad.exe :

Bash

ipconfig.exe | grep IPv4 | cut -d: -f2

ls -la | findstr.exe foo.txt

cmd.exe /C dir

ping.exe www.microsoft.com

notepad.exe "C:\temp\foo.txt"

This will also work:

Bash

WSL and Windows share a special environment variable, WSLENV , created to bridge
Windows and Linux distributions running on WSL.

Properties of WSLENV variable:

It is shared; it exists in both Windows and WSL environments.
It is a list of environment variables to share between Windows and WSL.
It can format environment variables to work well in Windows and WSL.
It can assist in the flow between WSL and Win32.

There are four flags available in WSLENV to influence how the environment variable is
translated.

WSLENV flags:

/p - translates the path between WSL/Linux style paths and Win32 paths.
/l - indicates the environment variable is a list of paths.
/u - indicates that this environment variable should only be included when
running WSL from Win32.
/w - indicates that this environment variable should only be included when
running Win32 from WSL.

notepad.exe C:\\temp\\foo.txt

Share environment variables between Windows
and WSL with WSLENV

７ Note

Prior to 17063, only Windows environment variable that WSL could access was
PATH (so you could launch Win32 executables from under WSL). Starting in 17063,
WSLENV begins being supported.
WSLENV is case sensitive.

WSLENV flags

Flags can be combined as needed.

Read more about WSLENV , including FAQs and examples of setting the value of
WSLENV to a concatenation of other pre-defined environment vars, each suffixed with a
slash followed by flags to specify how the value should be translated and passing
variables with a script. This article also includes an example for setting up a dev
environment with the Go programming language , configured to share a GOPATH
between WSL and Win32.

Users may disable the ability to run Windows tools for a single WSL session by running
the following command as root:

Bash

To re-enable Windows binaries, exit all WSL sessions and re-run bash.exe or run the
following command as root:

Bash

Disabling interop will not persist between WSL sessions -- interop will be enabled again
when a new session is launched.

Disable interoperability

echo 0 > /proc/sys/fs/binfmt_misc/WSLInterop

echo 1 > /proc/sys/fs/binfmt_misc/WSLInterop

https://devblogs.microsoft.com/commandline/share-environment-vars-between-wsl-and-windows/
https://golang.org/

Advanced settings configuration in WSL
Article • 01/17/2024

The wsl.conf and .wslconfig files are used to configure advanced settings options, on a
per-distribution basis (wsl.conf) and globally across all WSL 2 distributions
(.wslconfig). This guide will cover each of the settings options, when to use each file
type, where to store the file, sample settings files and tips.

You can configure the settings for your installed Linux distributions that will
automatically be applied every time you launch WSL in two ways, by using:

.wslconfig to configure global settings across all installed distributions running on
WSL 2.
wsl.conf to configure local settings per-distribution for each Linux distribution
running on WSL 1 or WSL 2.

Both file types are used for configuring WSL settings, but the location where the file is
stored, the scope of the configuration, the type of options that can be configured, and
the version of WSL running your distribution all impact which file type to choose.

WSL 1 and WSL 2 run with different architecture and will impact the configuration
settings. WSL 2 runs as a lightweight virtual machine (VM), so uses virtualization settings
that allow you to control the amount of memory or processors used (which may be
familiar if you use Hyper-V or VirtualBox). Check which version of WSL you are running.

You must wait until the subsystem running your Linux distribution completely stops
running and restarts for configuration setting updates to appear. This typically takes
about 8 seconds after closing ALL instances of the distribution shell.

If you launch a distribution (e.g. Ubuntu), modify the configuration file, close the
distribution, and then re-launch it, you might assume that your configuration changes
have immediately gone into effect. This is not currently the case as the subsystem could
still be running. You must wait for the subsystem to stop before relaunching in order to
give enough time for your changes to be picked up. You can check to see whether your
Linux distribution (shell) is still running after closing it by using PowerShell with the

What is the difference between wsl.conf and
.wslconfig?

The 8 second rule for configuration changes

command: wsl --list --running . If no distributions are running, you will receive the
response: "There are no running distributions." You can now restart the distribution to
see your configuration updates applied.

The command wsl --shutdown is a fast path to restarting WSL 2 distributions, but it will
shut down all running distributions, so use wisely. You can also use wsl --terminate
<distroName> to terminate a specific distribution that's running instantly.

Configure local settings with wsl.conf per-distribution for each Linux distribution
running on WSL 1 or WSL 2.

Stored in the /etc directory of the distribution as a unix file.
Used to configure settings on a per-distribution basis. Settings configured in this
file will only be applied to the specific Linux distribution that contains the directory
where this file is stored.
Can be used for distributions run by either version, WSL 1 or WSL 2.
To get to the /etc directory for an installed distribution, use the distribution's
command line with cd / to access the root directory, then ls to list files or
explorer.exe . to view in Windows File Explorer. The directory path should look
something like: /etc/wsl.conf .

The wsl.conf file configures settings on a per-distribution basis. (For global configuration
of WSL 2 distributions see .wslconfig).

The wsl.conf file supports four sections: automount , network , interop , and user .
(Modeled after .ini file conventions, keys are declared under a section, like .gitconfig files.)
See wsl.conf for info on where to store the wsl.conf file.

wsl.conf

７ Note

Adjusting per-distribution settings with the wsl.conf file is only available in
Windows Build 17093 and later.

Configuration settings for wsl.conf

systemd support

Many Linux distributions run "systemd" by default (including Ubuntu) and WSL has
recently added support for this system/service manager so that WSL is even more
similar to using your favorite Linux distributions on a bare metal machine. You will need
version 0.67.6+ of WSL to enable systemd. Check your WSL version with command wsl
--version . If you need to update, you can grab the latest version of WSL in the
Microsoft Store . Learn more in blog announcement .

To enable systemd, open your wsl.conf file in a text editor using sudo for admin
permissions and add these lines to the /etc/wsl.conf :

Bash

You will then need to close your WSL distribution using wsl.exe --shutdown from
PowerShell to restart your WSL instances. Once your distribution restarts, systemd
should be running. You can confirm using the command: systemctl list-unit-files --
type=service , which will show the status of your services.

wsl.conf section label: [automount]

key value default notes

enabled boolean true true causes fixed drives (i.e C:/ or D:/) to be
automatically mounted with DrvFs under /mnt .
false means drives won't be mounted
automatically, but you could still mount them
manually or via fstab .

mountFsTab boolean true true sets /etc/fstab to be processed on WSL
start. /etc/fstab is a file where you can declare
other filesystems, like an SMB share. Thus, you
can mount these filesystems automatically in
WSL on start up.

root string /mnt/ Sets the directory where fixed drives will be
automatically mounted. By default this is set to
/mnt/ , so your Windows file system C-drive is
mounted to /mnt/c/ . If you change /mnt/ to

[boot]
systemd=true

Automount settings

ﾉ Expand table

https://aka.ms/wslstorepage
https://aka.ms/wslstorepage
https://aka.ms/wslstorepage
https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/
https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/

key value default notes

/windir/ , you should expect to see your fixed
C-drive mounted to /windir/c .

options comma-separated
list of values, such as
uid, gid, etc, see
automount options
below

empty
string

The automount option values are listed below
and are appended to the default DrvFs mount
options string. Only DrvFs-specific options can
be specified.

The automount options are applied as the mount options for all automatically mounted
drives. To change the options for a specific drive only, use the /etc/fstab file instead.
Options that the mount binary would normally parse into a flag are not supported. If
you want to explicitly specify those options, you must include every drive for which you
want to do so in /etc/fstab .

Setting different mount options for Windows drives (DrvFs) can control how file
permissions are calculated for Windows files. The following options are available:

Key Description Default

uid The User ID used for the owner of all files The default User ID of
your WSL distro (on first
installation this defaults to
1000)

gid The Group ID used for the owner of all files The default group ID of
your WSL distro (on first
installation this defaults to
1000)

umask An octal mask of permissions to exclude for all files and
directories

022

fmask An octal mask of permissions to exclude for all files 000

dmask An octal mask of permissions to exclude for all
directories

000

metadata Whether metadata is added to Windows files to support
Linux system permissions

disabled

Automount options

ﾉ Expand table

Key Description Default

case Determines directories treated as case sensitive and
whether new directories created with WSL will have the
flag set. See case sensitivity for a detailed explanation of
the options. Options include off , dir , or force .

off

By default, WSL sets the uid and gid to the value of the default user. For example, in
Ubuntu, the default user is uid=1000, gid=1000. If this value is used to specify a
different gid or uid option, the default user value will be overwritten. Otherwise, the
default value will always be appended.

User file-creation mode mask (umask) sets permission for newly created files. The
default is 022, only you can write data but anyone can read data. Values can be changed
to reflect different permission settings. For example, umask=077 changes permission to
be completely private, no other user can read or write data. To further specify
permission, fmask (files) and dmask (directories) can also be used.

DrvFs is a filesystem plugin to WSL that was designed to support interop between WSL
and the Windows filesystem. DrvFs enables WSL to mount drives with supported file
systems under /mnt, such as /mnt/c, /mnt/d, etc. For more information about specifying
the default case sensitivity behavior when mounting Windows or Linux drives or
directories, see the case sensitivity page.

wsl.conf section label: [network]

key value default notes

generateHosts boolean true true sets WSL to generate /etc/hosts . The
hosts file contains a static map of hostnames
corresponding IP address.

７ Note

The permission masks are put through a logical OR operation before being applied
to files or directories.

What is DrvFs?

Network settings

ﾉ Expand table

key value default notes

generateResolvConf boolean true true sets WSL to generate /etc/resolv.conf .
The resolv.conf contains a DNS list that are
capable of resolving a given hostname to its IP
address.

hostname string Windows
hostname

Sets hostname to be used for WSL distribution.

wsl.conf section label: [interop]

These options are available in Insider Build 17713 and later.

key value default notes

enabled boolean true Setting this key will determine whether WSL will
support launching Windows processes.

appendWindowsPath boolean true Setting this key will determine whether WSL will add
Windows path elements to the $PATH environment
variable.

wsl.conf section label: [user]

These options are available in Build 18980 and later.

key value default notes

default string The initial username
created on first run

Setting this key specifies which user to run as
when first starting a WSL session.

The Boot setting is only available on Windows 11 and Server 2022.

wsl.conf section label: [boot]

Interop settings

ﾉ Expand table

User settings

ﾉ Expand table

Boot settings

key value default notes

command string "" A string of the command that you would like to run when the WSL
instance starts. This command is run as the root user. e.g: service
docker start .

The wsl.conf sample file below demonstrates some of the configuration options
available. In this example, the distribution is Ubuntu-20.04 and the file path is
\\wsl.localhost\Ubuntu-20.04\etc\wsl.conf .

Bash

ﾉ Expand table

Example wsl.conf file

Automatically mount Windows drive when the distribution is launched
[automount]

Set to true will automount fixed drives (C:/ or D:/) with DrvFs under the
root directory set above. Set to false means drives won't be mounted
automatically, but need to be mounted manually or with fstab.
enabled = true

Sets the directory where fixed drives will be automatically mounted. This
example changes the mount location, so your C-drive would be /c, rather than
the default /mnt/c.
root = /

DrvFs-specific options can be specified.
options = "metadata,uid=1003,gid=1003,umask=077,fmask=11,case=off"

Sets the `/etc/fstab` file to be processed when a WSL distribution is
launched.
mountFsTab = true

Network host settings that enable the DNS server used by WSL 2. This
example changes the hostname, sets generateHosts to false, preventing WSL
from the default behavior of auto-generating /etc/hosts, and sets
generateResolvConf to false, preventing WSL from auto-generating
/etc/resolv.conf, so that you can create your own (ie. nameserver 1.1.1.1).
[network]
hostname = DemoHost
generateHosts = false
generateResolvConf = false

Set whether WSL supports interop processes like launching Windows apps and
adding path variables. Setting these to false will block the launch of
Windows processes and block adding $PATH environment variables.
[interop]
enabled = false

Configure global settings with .wslconfig across all installed distributions running on
WSL.

The .wslconfig file does not exist by default. It must be created and stored in your
%UserProfile% directory to apply these configuration settings.
Used to configure settings globally across all installed Linux distributions running
as the WSL 2 version.
Can be used only for distributions run by WSL 2. Distributions running as WSL 1
will not be affected by this configuration as they are not running as a virtual
machine.
To get to your %UserProfile% directory, in PowerShell, use cd ~ to access your
home directory (which is typically your user profile, C:\Users\<UserName>) or you
can open Windows File Explorer and enter %UserProfile% in the address bar. The
directory path should look something like: C:\Users\<UserName>\.wslconfig .

WSL will detect the existence of these files, read the contents, and automatically apply
the configuration settings every time you launch WSL. If the file is missing or malformed
(improper markup formatting), WSL will continue to launch as normal without the
configuration settings applied.

The .wslconfig file configures settings globally for all Linux distributions running with
WSL 2. (For per-distribution configuration see wsl.conf).

See .wslconfig for info on where to store the .wslconfig file.

appendWindowsPath = false

Set the user when launching a distribution with WSL.
[user]
default = DemoUser

Set a command to run when a new WSL instance launches. This example starts
the Docker container service.
[boot]
command = service docker start

.wslconfig

Configuration settings for .wslconfig

７ Note

This file can contain the following options that affect the VM that powers any WSL 2
distribution:

.wslconfig section label: [wsl2]

key value default notes

kernel path The Microsoft built kernel provided inbox An absolute
Windows path to
a custom Linux
kernel.

memory size 50% of total memory on Windows How much
memory to
assign to the
WSL 2 VM.

processors number The same number of logical processors on
Windows

How many
logical
processors to
assign to the
WSL 2 VM.

localhostForwarding boolean true Boolean
specifying if
ports bound to
wildcard or
localhost in the
WSL 2 VM
should be
connectable
from the host via
localhost:port .

kernelCommandLine string Blank Additional kernel
command line
arguments.

Configuring global settings with .wslconfig are only available for distributions
running as WSL 2 in Windows Build 19041 and later. Keep in mind you may need to
run wsl --shutdown to shut down the WSL 2 VM and then restart your WSL
instance for these changes to take effect.

Main WSL settings

ﾉ Expand table

key value default notes

safeMode boolean false Run WSL in "Safe
Mode" which
disables many
features and is
intended to be
used to recover
distributions that
are in bad states.
Only available
for Windows 11
and WSL version
0.66.2+.

swap size 25% of memory size on Windows rounded
up to the nearest GB

How much swap
space to add to
the WSL 2 VM, 0
for no swap file.
Swap storage is
disk-based RAM
used when
memory demand
exceeds limit on
hardware device.

swapFile path %USERPROFILE%\AppData\Local\Temp\swap.vhdx An absolute
Windows path to
the swap virtual
hard disk.

pageReporting boolean true Default true
setting enables
Windows to
reclaim unused
memory
allocated to WSL
2 virtual
machine.

guiApplications boolean* true Boolean to turn
on or off support
for GUI
applications
(WSLg) in
WSL. Only
available for
Windows 11.

https://github.com/microsoft/wslg
https://github.com/microsoft/wslg

key value default notes

debugConsole boolean* false Boolean to turn
on an output
console Window
that shows the
contents of
dmesg upon start
of a WSL 2 distro
instance. Only
available for
Windows 11.

nestedVirtualization boolean* true Boolean to turn
on or off nested
virtualization,
enabling other
nested VMs to
run inside WSL
2. Only available
for Windows 11.

vmIdleTimeout number* 60000 The number of
milliseconds that
a VM is idle,
before it is shut
down. Only
available for
Windows 11.

dnsProxy bool true Only applicable
to
networkingMode
= NAT. Boolean
to inform WSL to
configure the
DNS Server in
Linux to the NAT
on the host.
Setting to false
will mirror DNS
servers from
Windows to
Linux.

networkingMode** string NAT If the value is
mirrored then
this turns on
mirrored
networking

key value default notes

mode. Default or
unrecognized
strings result in
NAT networking.

firewall** bool true Setting this to
true allows the
Windows
Firewall rules, as
well as rules
specific to
Hyper-V traffic,
to filter WSL
network traffic.

dnsTunneling** bool false Changes how
DNS requests
are proxied from
WSL to Windows

autoProxy* bool false Enforces WSL to
use Windows’
HTTP proxy
information

Entries with the path value must be Windows paths with escaped backslashes, e.g:
C:\\Temp\\myCustomKernel

Entries with the size value must be a size followed by a unit, for example, 8GB or 512MB .

Entries with an * after the value type are only available on Windows 11.

Entries with an ** after the value type require Windows 11 version 22H2 or higher.

These settings are opt-in previews of experimental features that we aim to make default
in the future.

.wslconfig section label: [experimental]

Experimental settings

ﾉ Expand table

https://blogs.windows.com/windows-insider/2023/09/14/releasing-windows-11-build-22621-2359-to-the-release-preview-channel/
https://blogs.windows.com/windows-insider/2023/09/14/releasing-windows-11-build-22621-2359-to-the-release-preview-channel/

Setting name Value Default Notes

autoMemoryReclaim string disabled Automatically releases cached memory after
detecting idle CPU usage. Set to gradual for slow
release, and dropcache for instant release of
cached memory.

sparseVhd bool false When set to true, any newly created VHD will be
set to sparse automatically.

useWindowsDnsCache ** bool false Only applicable when wsl2.dnsTunneling is set to
true. When this option is set to false, DNS
requests tunneled from Linux will bypass cached
names within Windows to always put the requests
on the wire.

bestEffortDnsParsing ** bool false Only applicable when wsl2.dnsTunneling is set to
true. When set to true, Windows will extract the
question from the DNS request and attempt to
resolve it, ignoring the unknown records.

initialAutoProxyTimeout * string 1000 Only applicable when wsl2.autoProxy is set to
true. Configures how long (in milliseconds) WSL
will wait for retrieving HTTP proxy information
when starting a WSL container. If proxy settings
are resolved after this time, the WSL instance
must be restarted to use the retrieved proxy
settings.

ignoredPorts ** string null Only applicable when wsl2.networkingMode is set
to mirrored . Specifies which ports Linux
applications can bind to, even if that port is used
in Windows. This enables applications to listen on
a port for traffic purely within Linux, so those
applications are not blocked even when that port
is used for other purposes on Windows. For
example, WSL will allow binding to port 53 in
Linux for Docker Desktop, as it is listening only to
requests from within the Linux container. Should
be formatted in a comma separated list, e.g:
3000,9000,9090

hostAddressLoopback ** bool false Only applicable when wsl2.networkingMode is set
to mirrored . When set to True , will allow the
Container to connect to the Host, or the Host to
connect to the Container, by an IP address that's
assigned to the Host. The 127.0.0.1 loopback
address can always be used,this option allows for
all additionally assigned local IP addresses to be

Setting name Value Default Notes

used as well. Only IPv4 addresses assigned to the
host are supported.

Entries with an * after the value type are only available on Windows 11.

Entries with an ** after the value type require Windows version 22H2 or higher.

The .wslconfig sample file below demonstrates some of the configuration options
available. In this example, the file path is C:\Users\<UserName>\.wslconfig .

Bash

Example .wslconfig file

Settings apply across all Linux distros running on WSL 2
[wsl2]

Limits VM memory to use no more than 4 GB, this can be set as whole
numbers using GB or MB
memory=4GB

Sets the VM to use two virtual processors
processors=2

Specify a custom Linux kernel to use with your installed distros. The
default kernel used can be found at https://github.com/microsoft/WSL2-Linux-
Kernel
kernel=C:\\temp\\myCustomKernel

Sets additional kernel parameters, in this case enabling older Linux base
images such as Centos 6
kernelCommandLine = vsyscall=emulate

Sets amount of swap storage space to 8GB, default is 25% of available RAM
swap=8GB

Sets swapfile path location, default is
%USERPROFILE%\AppData\Local\Temp\swap.vhdx
swapfile=C:\\temp\\wsl-swap.vhdx

Disable page reporting so WSL retains all allocated memory claimed from
Windows and releases none back when free
pageReporting=false

Turn on default connection to bind WSL 2 localhost to Windows localhost.
Setting is ignored when networkingMode=mirrored
localhostforwarding=true

Disables nested virtualization

https://blogs.windows.com/windows-insider/2023/09/14/releasing-windows-11-build-22621-2359-to-the-release-preview-channel/
https://blogs.windows.com/windows-insider/2023/09/14/releasing-windows-11-build-22621-2359-to-the-release-preview-channel/

Windows Command Line Blog: Automatically Configuring WSL
Windows Command Line Blog: Chmod/Chown, DrvFs, file metadata

nestedVirtualization=false

Turns on output console showing contents of dmesg when opening a WSL 2
distro for debugging
debugConsole=true

Enable experimental features
[experimental]
sparseVhd=true

Additional resources

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://devblogs.microsoft.com/commandline/automatically-configuring-wsl/
https://devblogs.microsoft.com/commandline/automatically-configuring-wsl/
https://devblogs.microsoft.com/commandline/chmod-chown-wsl-improvements/
https://devblogs.microsoft.com/commandline/chmod-chown-wsl-improvements/
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fwsl-config&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fwsl-config.md&documentVersionIndependentId=9f406c77-415c-80db-d596-0a7fa4ea2ba9&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+deab370f-a7a1-ed3f-89ae-22194fd8fb78+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

File Permissions for WSL
Article • 12/29/2021

This page details how Linux file permissions are interpreted across the Windows
Subsystem for Linux, especially when accessing resources inside of Windows on the NT
file system. This documentation assumes a basic understanding of the Linux file system
permissions structure and the umask command .

When accessing Windows files from WSL the file permissions are either calculated from
Windows permissions, or are read from metadata that has been added to the file by
WSL. This metadata is not enabled by default.

When metadata is enabled as a mount option in WSL, extended attributes on Windows
NT files can be added and interpreted to supply Linux file system permissions.

WSL can add four NTFS extended attributes:

Attribute Name Description

$LXUID User Owner ID

$LXGID Group Owner ID

$LXMOD File mode (File systems permission octals and type, e.g: 0777)

$LXDEV Device, if it is a device file

Additionally, any file that is not a regular file or directory (e.g: symlinks, FIFOs, block
devices, unix sockets, and character devices) also have an NTFS reparse point. This
makes it much faster to determine the kind of file in a given directory without having to
query its extended attributes.

Below is a description of how permissions are determined when accessing files in
different ways using the Windows Subsystem for Linux.

WSL metadata on Windows files

ﾉ Expand table

File Access Scenarios

https://wiki.archlinux.org/title/File_permissions_and_attributes
https://en.wikipedia.org/wiki/Umask
https://learn.microsoft.com/en-us/windows/win32/fileio/reparse-points

These scenarios occur when you are accessing your Windows files from WSL, most likely
via /mnt/c .

The result depends on if the file already has existing metadata.

If the file has no metadata associated with it then we translate the effective permissions
of the Windows user to read/write/execute bits and set them to this as the same value
for user, group, and other. For example, if your Windows user account has read and
execute access but not write access to the file then this will be shown as r-x for user,
group and other. If the file has the 'Read Only' attribute set in Windows then we do not
grant write access in Linux.

If the file has metadata present, we simply use those metadata values instead of
translating effective permissions of the Windows user.

The result depends on if the file already has existing metadata.

Chmod will only have one effect, if you remove all the write attributes of a file then the
'read only' attribute on the Windows file will be set, since this is the same behavior as
CIFS (Common Internet File System) which is the SMB (Server Message Block) client in
Linux.

Chmod will change or add metadata depending on the file's already existing metadata.

Please keep in mind that you cannot give yourself more access than what you have on
Windows, even if the metadata says that is the case. For example, you could set the

Accessing Files in the Windows drive file system (DrvFS)
from Linux

Reading file permissions from an existing Windows file

DrvFS file does not have metadata (default)

The file has metadata

Changing file permissions on an existing Windows file using chmod

chmod file does not have metadata (default)

chmod file has metadata

metadata to display that you have write permissions to a file using chmod 777 , but if you
tried to access that file you would still not be able to write to it. This is thanks to
interoperability, as any read or write commands to Windows files are routed through
your Windows user permissions.

The result depends on if metadata is enabled.

The Windows permissions of the newly created file will be the same as if you created the
file in Windows without a specific security descriptor, it will inherit the parent's
permissions.

The file's permission bits are set to follow the Linux umask, and the file will be saved
with metadata.

The result depends on if the file already has existing metadata.

In the default scenario, when automounting Windows drives, we specify that the user ID
(UID) for any file is set to the user ID of your WSL user and the group ID (GID) is set to
the principal group ID of your WSL user.

The UID and GID specified in the metadata is applied as the user owner and group
owner of the file.

Accessing Linux files via \\wsl$ will use the default user of your WSL distribution.
Therefore any Windows app accessing Linux files will have the same permissions as the
default user.

Creating a file in DriveFS

Metadata is not enabled (default)

Metadata is enabled

Which Linux user and Linux group owns the file?

User file does not have metadata (default)

User file has metadata

Accessing Linux files from Windows using \\wsl$

The default umask is applied when creating a new file inside of a WSL distribution from
Windows. The default umask is 022 , or in other words it allows all permissions except
write permissions to groups and others.

Any files created, modified, or accessed in the Linux root file system follow standard
Linux conventions, such as applying the umask to a newly created file.

You can configure your file permissions inside of your Windows drives using the mount
options in wsl.conf. The mount options allow you to set umask , dmask and fmask
permissions masks. The umask is applied to all files, the dmask is applied just to
directories and the fmask is applied just to files. These permission masks are then put
through a logical OR operation when being applied to files, e.g: If you have a umask
value of 023 and an fmask value of 022 then the resulting permissions mask for files will
be 023 .

Learn more: Per distribution configuration options with wsl.conf.

Creating a new file

Accessing files in the Linux root file system from Linux

Configuring file permissions

Accessing network applications with
WSL
Article • 11/16/2023

There are a few considerations to be aware of when working with networking apps and
WSL. By default WSL uses a NAT based architecture, and we recommend trying the new
Mirrored networking mode to get the latest features and improvements.

By default, WSL uses a NAT (Network Address Translation) based architecture for
networking. Keep the following considerations in mind when working with a NAT-based
networking architecture:

If you are building a networking app (for example an app running on a NodeJS or SQL
server) in your Linux distribution, you can access it from a Windows app (like your Edge
or Chrome internet browser) using localhost (just like you normally would).

If you want to access a networking app running on Windows (for example an app
running on a NodeJS or SQL server) from your Linux distribution (ie Ubuntu), then you
need to use the IP address of your host machine. While this is not a common scenario,
you can follow these steps to make it work.

1. Obtain the IP address of your host machine by running this command from your
Linux distribution: ip route show | grep -i default | awk '{ print $3}'

2. Connect to any Windows server using the copied IP address.

The picture below shows an example of this by connecting to a Node.js server running
in Windows via curl.

Default networking mode: NAT

Accessing Linux networking apps from Windows
(localhost)

Accessing Windows networking apps from Linux (host IP)

When using remote IP addresses to connect to your applications, they will be treated as
connections from the Local Area Network (LAN). This means that you will need to make
sure your application can accept LAN connections.

For example, you may need to bind your application to 0.0.0.0 instead of 127.0.0.1 . In
the example of a Python app using Flask, this can be done with the command:
app.run(host='0.0.0.0') . Keep security in mind when making these changes as this will
allow connections from your LAN.

When using a WSL 1 distribution, if your computer was set up to be accessed by your
LAN, then applications run in WSL could be accessed on your LAN as well.

This isn't the default case in WSL 2. WSL 2 has a virtualized ethernet adapter with its
own unique IP address. Currently, to enable this workflow you will need to go through
the same steps as you would for a regular virtual machine. (We are looking into ways to
improve this experience.)

Here's an example of using the Netsh interface portproxy Windows command to add a
port proxy that listens on your host port and connects that port proxy to the IP address
for the WSL 2 VM.

PowerShell

Connecting via remote IP addresses

Accessing a WSL 2 distribution from your local area
network (LAN)

netsh interface portproxy add v4tov4 listenport=<yourPortToForward>
listenaddress=0.0.0.0 connectport=<yourPortToConnectToInWSL> connectaddress=
(wsl hostname -I)

https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-interface-portproxy

In this example, you will need to update <yourPortToForward> to a port number, for
example listenport=4000 . listenaddress=0.0.0.0 means that incoming requests will be
accepted from ANY IP address. The Listen Address specifies the IPv4 address for which
to listen and can be changed to values that include: IP address, computer NetBIOS
name, or computer DNS name. If an address isn't specified, the default is the local
computer. You need to update the <yourPortToConnectToInWSL> value to a port number
where you want WSL to connect, for example connectport=4000 . Lastly, the
connectaddress value needs to be the IP address of your Linux distribution installed via
WSL 2 (the WSL 2 VM address), which can be found by entering the command: wsl.exe
hostname -I .

So this command may look something like:

PowerShell

To obtain the IP address, use:

wsl hostname -I for the IP address of your Linux distribution installed via WSL 2
(the WSL 2 VM address)
cat /etc/resolv.conf for the IP address of the Windows machine as seen from
WSL 2 (the WSL 2 VM)

Using listenaddress=0.0.0.0 will listen on all IPv4 ports .

wsl hostname -i for the IP address of your Linux distribution installed via WSL 2
(the WSL 2 VM address)

netsh interface portproxy add v4tov4 listenport=4000 listenaddress=0.0.0.0
connectport=4000 connectaddress=192.168.101.100

７ Note

Using a lowercase "i" with the hostname command will generate a different result
than using an uppercase "I". wsl hostname -i is your local machine (127.0.1.1 is a
placeholder diagnostic address), whereas wsl hostname -I will return your local
machine's IP address as seen by other machines and should be used to identify the
connectaddress of your Linux distribution running via WSL 2.

IPv6 access

https://stackoverflow.com/questions/9987409/want-to-know-what-is-ipv4-and-ipv6#:%7E:text=The%20basic%20difference%20is%20the,whereas%20IPv6%20has%20128%20bits.
https://stackoverflow.com/questions/9987409/want-to-know-what-is-ipv4-and-ipv6#:%7E:text=The%20basic%20difference%20is%20the,whereas%20IPv6%20has%20128%20bits.

ip route show | grep -i default | awk '{ print $3}' for the IP address of the
Windows machine as seen from WSL 2 (the WSL 2 VM)

Using listenaddress=0.0.0.0 will listen on all IPv4 ports .

You can set networkingMode=mirrored under [wsl2] in the .wslconfig file to enable
mirrored mode networking. Enabling this changes WSL to an entirely new networking
architecture which has the goal of 'mirroring' the network interfaces that you have on
Windows into Linux, to add new networking features and improve compatibility.

Here are the current benefits to enabling this mode:

IPv6 support
Connect to Windows servers from within Linux using the localhost address
127.0.0.1 . IPv6 localhost address ::1 is not supported
Improved networking compatibility for VPNs
Multicast support
Connect to WSL directly from your local area network (LAN)

This new mode addresses networking issues seen with using a NAT (Network Address
Translation) based architecture. Find known issues or file feedback on any bugs
identified in the WSL product repo on GitHub .

Setting dnsTunneling=true under [wsl2] in the .wslconfig file has WSL use a
virtualization feature to answer DNS requests from within WSL, instead of requesting
them over a networking packet. This feature is aimed to improve compatibility with
VPNs, and other complex networking set ups.

Mirrored mode networking

７ Note

Run the following command in PowerShell window with admin privileges to
Configure Hyper-V firewall settings to allow inbound connections: Set-
NetFirewallHyperVVMSetting -Name '{40E0AC32-46A5-438A-A0B2-2B479E8F2E90}' -

DefaultInboundAction Allow or New-NetFirewallHyperVRule -Name "MyWebServer" -
DisplayName "My Web Server" -Direction Inbound -VMCreatorId '{40E0AC32-46A5-

438A-A0B2-2B479E8F2E90}' -Protocol TCP -LocalPorts 80 .

DNS Tunneling

https://stackoverflow.com/questions/9987409/want-to-know-what-is-ipv4-and-ipv6#:%7E:text=The%20basic%20difference%20is%20the,whereas%20IPv6%20has%20128%20bits.
https://stackoverflow.com/questions/9987409/want-to-know-what-is-ipv4-and-ipv6#:%7E:text=The%20basic%20difference%20is%20the,whereas%20IPv6%20has%20128%20bits.
https://github.com/microsoft/wsl
https://github.com/microsoft/wsl
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall

Setting autoProxy=true under [wsl2] in the .wslconfig file enforces WSL to use Windows'
HTTP proxy information. If you have a proxy already set up in Windows, enabling this
feature will make that proxy be set automatically in WSL as well.

On machines running Windows 11 22H2 and higher, with WSL 2.0.9 and higher, the
Hyper-V firewall feature will be turned on by default. This will ensure that:

See Windows Defender Firewall with Advanced Security to learn more about
Windows security features that will automatically apply to WSL.
See Configure Hyper-V firewall to learn more about applying these rules and
settings both locally and via online tools like Intune.

Auto Proxy

WSL and firewall

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/windows-firewall-with-advanced-security
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fnetworking&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fnetworking.md&documentVersionIndependentId=f9e21bfa-6316-7d45-3b34-834a78bcaf0f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+f5f3211d-52bd-3566-874a-5c78cb01ddd0+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Use systemd to manage Linux services
with WSL
Article • 06/16/2023

Windows Subsystem for Linux (WSL) now supports systemd, an init system and service
manager used by many popular Linux distributions such as Ubuntu, Debian, and more.
(What is systemd?).

The init system default has recently changed from SystemV, with systemd now the
default for the current version of Ubuntu that will be installed using the wsl --install
command default. Linux distributions other than the current version of Ubuntu may still
use the WSL init, similar to SystemV init. To change to systemd, see How to enable
systemd.

According to systemd.io : "systemd is a suite of basic building blocks for a Linux
system. It provides a system and service manager that runs as PID 1 and starts the rest
of the system."

Primarily an init system and service manager, systemd includes features like on-demand
starting of daemons, mount and automount point maintenance, snapshot support, and
processes tracking using Linux control groups.

Most major Linux distributions now run systemd, so enabling it on WSL brings the
experience even closer to using bare-metal Linux. See the video announcement with
systemd demos or examples of using systemd below to learn more about what systemd
has to offer.

Systemd is now the default for the current version of Ubuntu that will be installed
using the wsl --install command default.

To enable systemd for any other Linux distributions running on WSL 2 (changing the
default from using the systemv init):

1. Ensure that your WSL version is 0.67.6 or newer. (To check, run wsl --version . To
update, run wsl --update or download the latest version from the Microsoft
Store .)

What is systemd in Linux?

How to enable systemd?

https://canonical.com/blog/ubuntu-desktop-23-04-release-roundup#:%7E:text=Systemd%20becomes%20the%20default%20for%20Ubuntu%20on%20WSL
https://systemd.io/
https://canonical.com/blog/ubuntu-desktop-23-04-release-roundup#:%7E:text=Systemd%20becomes%20the%20default%20for%20Ubuntu%20on%20WSL
https://aka.ms/wslstorepage

2. Open a command line for your Linux distribution and enter cd / to access the root
directory, then ls to list the files. You will see a directory named "etc" that
contains the WSL configuration file for the distribution. Open this file so that you
can make an update with the Nano text editor by entering: nano /etc/wsl.conf .

3. Add these lines in the wsl.conf file that you now have open to change the init
used to systemd:

Bash

4. Exit the Nano text editor (Ctrl + X, select Y to save your change). You will then need
to close the Linux distribution. You can use the command wsl.exe --shutdown in
PowerShell to restart all WSL instances.

Once your Linux distribution restarts, systemd will be running. You can confirm using the
command: systemctl list-unit-files --type=service , which will show the status of any
services associated with your Linux distribution.

Learn more about Advanced settings configuration in WSL, including the difference
between the wsl.conf (distribution-specific) and .wslconfig (global) config files, how to
update automount settings, etc.

Microsoft partnered with Canonical to bring systemd support to WSL. See Craig Loewen
(PM for WSL at Microsoft) and Oliver Smith (PM for Ubuntu on WSL at Canonical)
announce systemd support and show some demos of what it enables.

[boot]
systemd=true

Systemd demo video

https://learn-video.azurefd.net/vod/player?show=tabs-vs-spaces&ep=wsl-partnering-
with-canonical-to-support-systemd&locale=en-
us&embedUrl=%2Fwindows%2Fwsl%2Fsystemd

https://learn-video.azurefd.net/vod/player?show=tabs-vs-spaces&ep=wsl-partnering-with-canonical-to-support-systemd&locale=en-us&embedUrl=%2Fwindows%2Fwsl%2Fsystemd

Systemd support blog announcement

Oliver's tutorials based on these demos on the Ubuntu blog - includes "Use snap
to create a Nextcloud instance in minutes on WSL", "Manage your web projects
with LXD", and "Run a .Net Echo Bot as a systemd service on Ubuntu WSL"

Craig's microk8s demo on GitHub

A few examples of Linux applications that depend on systemd are:

snap : a software packaging and deployment system developed by Canonical for
operating systems that use the Linux kernel and the systemd init system. The
packages are called "snaps", the command line tool for building snaps is called
"Snapcraft", the central repository where snaps can be downloaded/installed is
called the "Snap Store", and the daemon required to run snaps (download from
the store, mount into place, confine, and run apps out of them) is called "snapd".
The entire system is sometimes referred to as "snappy." Try running the command:
snap install spotify or snap install postman .

microk8s : an open-source, low-ops, minimal production Kubernetes that
automates deployment, scaling, and management of containerized apps. Follow
the instructions to Install MicroK8s on WSL2 , check out the Get Started
Tutorial , or watch the video on Kubernetes on Windows with MicroK8s and WSL
2 .

systemctl : a command-line utility used to control and inspect systemd and to
help you interact with services on your Linux distribution. Try the command:
systemctl list-units --type=service to see which services are available and their
status.

A few related tutorials demonstrating ways to use systemd:

Understanding and Using Systemd

Systemd Essentials: Working with the Services, Units, and the Journal

How To Sandbox Processes With Systemd On Ubuntu 20.04

Systemd examples

How does enabling systemd affect WSL
architecture?

https://devblogs.microsoft.com/commandline/systemd-support-is-now-available-in-wsl/
https://ubuntu.com/blog/ubuntu-wsl-enable-systemd
https://ubuntu.com/tutorials/run-dotnet-echo-bot-with-systemd-on-ubuntu-wsl#1-overview
https://github.com/craigloewen-msft/microk8sdemo
https://snapcraft.io/
https://microk8s.io/
https://microk8s.io/docs/install-wsl2
https://microk8s.io/docs/getting-started
https://ubuntu.com/blog/kubernetes-on-windows-with-microk8s-and-wsl-2
https://www.linode.com/docs/guides/introduction-to-systemctl/
https://www.linux.com/training-tutorials/understanding-and-using-systemd/
https://www.digitalocean.com/community/tutorials/systemd-essentials-working-with-services-units-and-the-journal
https://www.digitalocean.com/community/tutorials/how-to-sandbox-processes-with-systemd-on-ubuntu-20-04

Enabling support for systemd required changes to the WSL architecture. As systemd
requires PID 1, the WSL init process started within the Linux distribution becomes a child
process of the systemd. Because the WSL init process is responsible for providing the
infrastructure for communication between the Linux and Windows components,
changing this hierarchy required rethinking some of the assumptions made with the
WSL init process. Additional modifications had to be made to ensure a clean shutdown
(as that shutdown is controlled by systemd now) and to have compatibility with WSLg,
the component of WSL that runs Linux Graphical User Interfaces (GUIs), or the Linux
apps that display in windows rather than the command line.

It is also important to note that with these changes, systemd services will NOT keep your
WSL instance alive. Your WSL instance will stay alive in the same way it did previous to
this update, which you can read more about in this Background Task Support blog post
from 2017 .

https://devblogs.microsoft.com/commandline/background-task-support-in-wsl/

Import any Linux distribution to use
with WSL
Article • 02/14/2022

You can use any Linux distribution inside of the Windows Subsystem for Linux (WSL),
even if it is not available in the Microsoft Store , by importing it with a tar file.

This article shows how to import the Linux distribution, CentOS , for use with WSL by
obtaining its tar file using a Docker container. This process can be applied to import any
Linux distribution.

First you'll need to obtain a tar file that contains all the Linux binaries for the
distribution.

You can obtain a tar file in a variety of ways, two of which include:

Download a provided tar file. You can find an example for Alpine in the "Mini Root
Filesystem" section of the Alpine Linux downloads site.
Find a Linux distribution container and export an instance as a tar file. The example
below will show this process using the CentOS container .

In this example, we'll use Docker inside of a WSL distribution to obtain the tar file for
CentOS.

You must have WSL enabled with a Linux distribution installed running WSL 2.
You must have Docker Desktop for Windows installed with the WSL 2 engine
enabled and integration checked See the Docker Desktop license agreement for
updates on the terms of use.

1. Open the command line (Bash) for a Linux distribution that you've already installed
from the Microsoft Store (Ubuntu in this example).

Obtain a tar file for the distribution

Obtaining a tar file for CentOS example

Prerequisites

Export the tar from a container

https://www.microsoft.com/en-us/search/shop/apps?q=linux
https://www.centos.org/
https://alpinelinux.org/downloads/
https://hub.docker.com/_/centos
https://docs.docker.com/subscription/#docker-desktop-license-agreement

2. Start the Docker service:

Bash

3. Run the CentOS container inside Docker:

Bash

4. Grab the CentOS container ID using grep and awk:

Bash

5. Export the container ID to a tar file on your mounted c-drive:

Bash

This process exports the CentOS tar file from the Docker container so that we can now
import it for use locally with WSL.

sudo service docker start

docker run -t centos bash ls /

dockerContainerID=$(docker container ls -a | grep -i centos | awk
'{print $1}')

docker export $dockerContainerID > /mnt/c/temp/centos.tar

Import the tar file into WSL

Once you have a tar file ready, you can import it using the command: wsl --import
<Distro> <InstallLocation> <FileName> .

To import the CentOS distribution tar file into WSL:

1. Open PowerShell and ensure that you have a folder created where you'd like the
distribution to be stored.

PowerShell

2. Use the command wsl --import <DistroName> <InstallLocation>
<InstallTarFile> to import the tar file.

PowerShell

3. Use the command wsl -l -v to check which distributions you have installed.

Importing CentOS example

cd C:\temp

mkdir E:\wslDistroStorage\CentOS

wsl --import CentOS E:\wslDistroStorage\CentOS .\centos.tar

4. Finally, use the command wsl -d CentOS to run your newly imported CentOS Linux
distribution.

By default when using --import, you are always started as the root user. You can set up
your own user account, but note that the set up process will vary slightly based on each
different Linux distribution.

To set up user account with the CentOS distribution we just imported, first open
PowerShell and boot into CentOS, using the command:

PowerShell

Next, open your CentOS command line. Use this command to install sudo and password
setting tools into CentOS, create a user account, and set it as the default user. In this
example, the username will be 'caloewen'.

Bash

You must now quit out of that instance and ensure that all WSL instances are
terminated. Start your distribution again to see your new default user by running this
command in PowerShell:

PowerShell

Add WSL specific components like a default
user

wsl -d CentOS

７ Note

You will want to add the username to the sudoers file so that enables the user to
use sudo. The command adduser -G wheel $myUsername adds the user myUsername
to the wheel group. Users in the wheel group are automatically granted sudo
privileges and can perform tasks requiring elevated permission.

yum update -y && yum install passwd sudo -y

myUsername=caloewen

adduser -G wheel $myUsername

echo -e "[user]\ndefault=$myUsername" >> /etc/wsl.conf

passwd $myUsername

You will now see [caloewen@loewen-dev]$ as the output based on this example.

To learn more about configuring WSL settings, see Configure settings with .wslconfig
and wsl.conf.

You can create your own customized Linux distribution, packaged as a UWP app, that
will behave exactly like the WSL distributions available in the Microsoft Store. To learn
how, see Creating a Custom Linux Distribution for WSL.

wsl --terminate CentOS

wsl -d CentOS

Use a custom Linux distribution

Creating a Custom Linux Distribution for
WSL
Article • 09/28/2021

Use our open source WSL sample to build WSL distro packages for the Microsoft Store
and/or to create custom Linux distro packages for sideloading. You can find the distro
launcher repo on GitHub.

This project enables:

Linux distribution maintainers to package and submit a Linux distribution as an
appx that runs on WSL
Developers to create custom Linux distributions that can be sideloaded onto their
dev machine

We distribute Linux distros for WSL as UWP applications through the Microsoft Store.
You can install those applications that will then run on WSL - the subsystem that sits in
the Windows kernel. This delivery mechanism has many benefits as discussed in an
earlier blog post .

You can create a custom Linux distro package as an application to sideload on your
personal machine. Please note that your custom package would not be distributed
through the Microsoft Store unless you submit as a distribution maintainer.
To set up
your machine to sideload apps, you will need to enable this in the system settings under
“For Developers”. Be sure to either have developer mode, or sideload apps selected

To submit to the Store, you will need to work with us to receive publishing approval. If
you are a Linux distribution owner interested in adding your distribution to the
Microsoft Store, please contact wslpartners@microsoft.com.

Background

Sideloading a Custom Linux Distro Package

For Linux Distro Maintainers

Getting Started

https://github.com/Microsoft/WSL-DistroLauncher
https://blogs.msdn.microsoft.com/commandline/2017/07/10/ubuntu-now-available-from-the-windows-store/

Follow the instructions on the Distro Launcher GitHub repo to create a custom Linux
distro package.

Open Sourcing a WSL Sample for Linux Distribution Maintainers and Sideloading
Custom Linux Distributions
Command-Line blog

Distro Launcher GitHub repo
GitHub issue tracker for WSL

Team Blogs

Provide Feedback

https://github.com/Microsoft/WSL-DistroLauncher
https://blogs.msdn.microsoft.com/commandline/2018/03/26/wsl-distro-launcher/
https://blogs.msdn.microsoft.com/commandline/
https://github.com/Microsoft/WSL-DistroLauncher
https://github.com/Microsoft/BashOnWindows/issues

Mount a Linux disk in WSL 2
Article • 07/18/2023

If you want to access a Linux disk format that isn't supported by Windows, you can use
WSL 2 to mount your disk and access its content. This tutorial will cover the steps to
identify the disk and partition to attach to WSL2, how to mount them, and how to
access them.

If you are connecting an external drive and do not have success with these mounting
instructions, you may want to try the instructions to Connect USB devices. The wsl --
mount command does not currently support USB/flash drives/SD card readers, (learn
more about this issue).

You will need to be on Windows 11 Build 22000 or later, or be running the Microsoft
Store version of WSL. To check your WSL and Windows version, use the command:
wsl.exe --version

External drives formatted for Windows typically use the NTFS file system formatting.
External drives formatted for Linux typically use the Ext4 file system formatting.

If you have mounted an NTFS-formatted drive on your Windows file system, you can
access that drive from your Linux distribution using WSL by creating a mounted
directory (sudo mkdir /mnt/d , replacing 'd' with whatever drive letter you'd like to use)
and then using the drvfs file system interop plugin, with the command:

７ Note

Administrator access is required to attach a disk to WSL 2. The WSL 2 mount
command does not support mounting a disk (or partitions that belong to the disk)
that is currently in use. wsl --mount always attaches the entire disk even if only a
partition is requested. You can't mount the Windows installation disk.

Prerequisites

Differences between mounting an external
drive with Windows formatting versus Linux
formatting

https://github.com/microsoft/WSL/issues/6011
https://github.com/microsoft/WSL/issues/6011
https://github.com/microsoft/WSL/issues/6011

Bash

Learn more about mounting scenarios .

If you have an Ext4-formatted drive, you cannot mount it on your Windows file system.
In order to mount an Ext4-formatted drive on your Linux distribution with WSL, you can
use the wsl --mount command following the instructions below.

If you have a disk that doesn't have any partitions, you can mount it directly using the
wsl --mount command. First you need to identify the disk.

1. Identify the disk - To list the available disks in Windows, run:

PowerShell

The disks paths are available under the 'DeviceID' columns. Usually under the
\\.\PHYSICALDRIVE* format.

2. Mount the disk - Using PowerShell, you can mount the disk using the Disk path
discovered above, run:

PowerShell

sudo mount -t drvfs D: /mnt/d

Mounting an unpartitioned disk

GET-CimInstance -query "SELECT * from Win32_DiskDrive"

wsl --mount <DiskPath>

https://superuser.com/questions/1734353/is-there-a-way-to-mount-an-external-drive-when-it-becomes-available-in-wsl
https://superuser.com/questions/1734353/is-there-a-way-to-mount-an-external-drive-when-it-becomes-available-in-wsl

If you have a disk that you aren't sure what file format it is in, or what partitions it has,
you can follow the steps below to mount it.

1. Identify the disk - To list the available disks in Windows, run:

PowerShell

The disks paths are listed after 'DeviceID', usually in the \\.\PHYSICALDRIVE*
format.

2. List and select the partitions to mount in WSL 2 - Once the disk is identified, run:

PowerShell

This will make the disk available in WSL 2. (In the case of our example, the
<DiskPath> is \\.\PHYSICALDRIVE* .

3. Once attached, the partition can be listed by running the following command
inside WSL 2:

Mounting a partitioned disk

GET-CimInstance -query "SELECT * from Win32_DiskDrive"

wsl --mount <DiskPath> --bare

Bash

This will display the available block devices and their partitions.

Inside Linux, a block device is identified as /dev/<Device><Partition> . For example,
/dev/sdb3, is the partition number 3 of disk sdb .

Example output:

Bash

If you don't know the type of filesystem of a disk or partition, you can use this
command:

Bash

This will output the detected filesystem type (under the TYPE="<Filesystem>" format).

Once you have identified the partitions you want to mount, run this command on each
partition:

PowerShell

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdb 8:16 0 1G 0 disk
├─sdb2 8:18 0 50M 0 part
├─sdb3 8:19 0 873M 0 part
└─sdb1 8:17 0 100M 0 part
sdc 8:32 0 256G 0 disk /
sda 8:0 0 256G 0 disk

Identifying the filesystem type

blkid <BlockDevice>

Mount the selected partitions

wsl --mount <DiskPath> --partition <PartitionNumber> --type <Filesystem>

７ Note

Once mounted, the disk can be accessed under the path pointed to by the config value:
automount.root . The default value is /mnt/wsl .

From Windows, the disk can be accessed from File Explorer by navigating to: \\wsl$\\
<Distro>\\<Mountpoint> (pick any Linux distribution).

If you want to unmount and detach the disk from WSL 2, run:

PowerShell

You can also mount virtual hard disk files (VHD) into WSL using wsl --mount . To do this,
you first need to mount the VHD into Windows using the Mount-VHD command in
Windows. Be sure to run this command with administrator privileges. Below is an
example where we use this command, and also output the disk path. Be sure to replace
<pathToVHD> with your actual VHD path.

PowerShell

If you wish to mount the entire disk as a single volume (i.e. if the disk isn't
partitioned), --partition can be omitted.

If omitted, the default filesystem type is "ext4".

Access the disk content

Unmount the disk

wsl --unmount <DiskPath>

Mount a VHD in WSL

７ Note

WSL from the Microsoft Store introduces a new argument to directly mount a
VHD: wsl --mount --vhd <pathToVHD>

Write-Output "\\.\PhysicalDrive$((Mount-VHD -Path <pathToVHD> -PassThru |
Get-Disk).Number)"

https://learn.microsoft.com/en-us/powershell/module/hyper-v/mount-vhd
https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/
https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/

You can use the output above to obtain the disk path for this VHD and mount that into
WSL following the instructions in the previous section.

You can also use this technique to mount and interact with the virtual hard disks of
other WSL distros, as each WSL 2 distro is stored via a virtual hard disk file called:
ext4.vhdx . By default the VHDs for WSL 2 distros are stored in this path: C:\Users\
[user]\AppData\Local\Packages\[distro]\LocalState\[distroPackageName] , please
exercise caution accessing these system files, this is a power user workflow. Make sure
to run wsl --shutdown before interacting with this disk to ensure the disk is not in use.

By default, WSL 2 will attempt to mount the device as ext4. To specify another
filesystem, run:

PowerShell

For example, to mount a disk as fat, run:

Command line reference

Mounting a specific filesystem

wsl --mount <DiskPath> -t <FileSystem>

wsl --mount <Diskpath> -t vfat

７ Note

To list the available filesystems in WSL2, run: cat /proc/filesystems
When a disk has been mounted via WSL2 (Linux file system), it is no longer

By default, WSL 2 attempts to mount the entire disk. To mount a specific partition, run:

This only works if the disk is either MBR (Master Boot Record) or GPT (GUID Partition
Table). Read about partition styles - MBR and GPT.

To specify mount options, run:

PowerShell

Example:

PowerShell

If the disk scheme isn't supported by any of the above options, you can attach the disk
to WSL 2 without mounting it by running:

PowerShell

available to mount via an ext4 driver on the Windows file system.

Mounting a specific partition

wsl --mount <Diskpath> -p <PartitionIndex>

Specifying mount options

wsl --mount <DiskPath> -o <MountOptions>

wsl --mount <DiskPath> -o "data=ordered"

７ Note

Only filesystem specific options are supported at this time. Generic options such as
ro, rw, noatime, ... are not supported.

Attaching the disk without mounting it

wsl --mount <DiskPath> --bare

https://learn.microsoft.com/en-us/windows-server/storage/disk-management/initialize-new-disks#about-partition-styles---gpt-and-mbr

This will make the block device available inside WSL 2 so it can be mounted manually
from there. Use lsblk to list the available block devices inside WSL 2.

By default the mountpoint name is generated based on the physical disk or VHD name.
This can be overridden with --name . Example:

PowerShell

To detach a disk from WSL 2, run:

PowerShell

If Diskpath is omitted, all attached disks are unmounted and detached.

At this time, only entire disks can be attached to WSL 2, meaning that it's not
possible to attach only a partition. Concretely, this means that it's not possible to
use wsl --mount to read a partition on the boot device, because that device can't
be detached from Windows.

Specifying the mount name

７ Note

This option is only available with WSL from the Microsoft Store

wsl --mount <DiskPath> --name myDisk

Detaching a disk

wsl --unmount [DiskPath]

７ Note

If one disk fails to unmount, WSL 2 can be forced to exit by running wsl --
shutdown , which will detach the disk.

Limitations

https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/
https://devblogs.microsoft.com/commandline/a-preview-of-wsl-in-the-microsoft-store-is-now-available/

Only filesystems that are natively supported in the kernel can be mounted by wsl
--mount . This means that it's not possible to use installed filesystem drivers (such
as ntfs-3g for example) by calling wsl --mount .

Filesystems not directly supported by the kernel can be mounted via a --bare
attach and then invoking the relevant FUSE driver.

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fwsl2-mount-disk&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fwsl2-mount-disk.md&documentVersionIndependentId=a9d73ca3-7026-5b5a-f3fe-3511e976cde4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+17e255b0-71c7-adc6-cac0-6df3b76a971f+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Connect USB devices
Article • 02/02/2024

This guide will walk through the steps necessary to connect a USB device to a Linux
distribution running on WSL 2 using the USB/IP open-source project, usbipd-win .

Setting up the USB/IP project on your Windows machine will enable common developer
USB scenarios like flashing an Arduino or accessing a smartcard reader.

Running Windows 11 (Build 22000 or later). (Windows 10 support is possible, see
note below).
A machine with an x64 processor is required. (x86 and Arm64 are currently not
supported with usbipd-win).
WSL is installed and set up with the latest version.
Linux distribution installed and set to WSL 2.

Prerequisites

７ Note

To check your Windows version and build number, select Windows logo key + R,
type winver, select OK. You can update to the latest Windows version by selecting
Start > Settings > Windows Update > Check for updates. To check your Linux
kernel version, open your Linux distribution and enter the command: uname -a . To
manually update to the latest kernel, open PowerShell and enter the command: 'wsl
--update`.

） Important

WSL now supports both Windows 10 and Windows 11 via the Microsoft Store,
meaning that Windows 10 users now have access to the latest kernel versions
without needing to compile from source. See WSL in the Microsoft Store is now
generally available on Windows 10 and 11 for info on how to update to the
Store-supported version of WSL. If you are unable to update to the Store-
supported version of WSL and automatically receive kernel updates, see the
USBIPD-WIN project repo for instructions on connecting USB devices to a Linux
distribution running on WSL 2 by building your own USBIP enabled WSL 2 kernel.

https://github.com/dorssel/usbipd-win
ms-settings:windowsupdate
https://devblogs.microsoft.com/commandline/the-windows-subsystem-for-linux-in-the-microsoft-store-is-now-generally-available-on-windows-10-and-11/
https://github.com/dorssel/usbipd-win/wiki/WSL-support

Support for connecting USB devices is not natively available in WSL, so you will need to
install the open-source usbipd-win project.

1. Go to the latest release page for the usbipd-win project .
2. Select the .msi file, which will download the installer. (You may get a warning

asking you to confirm that you trust this download).
3. Run the downloaded usbipd-win_x.msi installer file.

This will install:

A service called usbipd (display name: USBIP Device Host). You can check the
status of this service using the Services app from Windows.
A command line tool usbipd . The location of this tool will be added to the PATH
environment variable.
A firewall rule called usbipd to allow all local subnets to connect to the service. You
can modify this firewall rule to fine tune access control.

Before attaching your USB device, ensure that a WSL command line is open. This will
keep the WSL 2 lightweight VM active.

1. List all of the USB devices connected to Windows by opening PowerShell in
administrator mode and entering the following command. Once the devices are
listed, select and copy the bus ID of the device you’d like to attach to WSL.

Install the USBIPD-WIN project

７ Note

Alternatively, you can also install the usbipd-win project using Windows Package
Manager (winget). If you have already installed winget, just use the command:
winget install --interactive --exact dorssel.usbipd-win to install usbipd-win. If
you leave out --interactive, winget may immediately restart your computer if that is
required to install the drivers.

Attach a USB device

７ Note

This doc assumes that you have usbipd-win 4.0.0 or higher installed

https://github.com/dorssel/usbipd-win/releases
https://learn.microsoft.com/en-us/windows/package-manager/winget/
https://github.com/dorssel/usbipd-win/releases/latest

PowerShell

2. Before attaching the USB device, the command usbipd bind must be used to share
the device, allowing it to be attached to WSL. This requires administrator privileges.
Select the bus ID of the device you would like to use in WSL and run the following
command. After running the command, verify that the device is shared using the
command usbipd list again.

PowerShell

3. To attach the USB device, run the following command. (You no longer need to use
an elevated administrator prompt.) Ensure that a WSL command prompt is open in
order to keep the WSL 2 lightweight VM active. Note that as long as the USB
device is attached to WSL, it cannot be used by Windows. Once attached to WSL,
the USB device can be used by any distribution running as WSL 2. Verify that the
device is attached using usbipd list . From the WSL prompt, run lsusb to verify
that the USB device is listed and can be interacted with using Linux tools.

PowerShell

4. Open Ubuntu (or your preferred WSL command line) and list the attached USB
devices using the command:

Bash

You should see the device you just attached and be able to interact with it using
normal Linux tools. Depending on your application, you may need to configure
udev rules to allow non-root users to access the device.

5. Once you are done using the device in WSL, you can either physically disconnect
the USB device or run this command from PowerShell:

PowerShell

usbipd list

usbipd bind --busid 4-4

usbipd attach --wsl --busid <busid>

lsusb

To learn more about how this works, see the Windows Command Line Blog and the
usbipd-win repo on GitHub .

For a video demonstration, see WSL 2: Connect USB devices (Tabs vs Spaces show) .

usbipd detach --busid <busid>

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://devblogs.microsoft.com/commandline/connecting-usb-devices-to-wsl/#how-it-works
https://devblogs.microsoft.com/commandline/connecting-usb-devices-to-wsl/#how-it-works
https://www.youtube.com/watch?v=I2jOuLU4o8E
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fconnect-usb&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fconnect-usb.md&documentVersionIndependentId=e99de78d-d27a-664d-98ba-91116b7157c8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+e99de78d-d27a-664d-98ba-91116b7157c8+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Adjust case sensitivity
Article • 04/27/2022

Case sensitivity determines whether uppercase (FOO.txt) and lowercase (foo.txt) letters
are handled as distinct (case-sensitive) or equivalent (case-insensitive) in a file name or
directory.

Case-sensitive: FOO.txt ≠ foo.txt ≠ Foo.txt
Case-insensitive: FOO.txt = foo.txt = Foo.txt

When working with both Linux and Windows files and directories, you may need to
adjust how case sensitivity is handled.

Standard behavior:

Windows file system treats file and directory names as case-insensitive. FOO.txt
and foo.txt will be treated as equivalent files.
Linux file system treats file and directory names as case-sensitive. FOO.txt and
foo.txt will be treated as distinct files.

The Windows file system supports setting case sensitivity with attribute flags per
directory. While the standard behavior is to be case-insensitive, you can assign an
attribute flag to make a directory case sensitive, so that it will recognize Linux files and
folders that may differ only by case.

This may be especially true when mounting drives to the Windows Subsystem for Linux
(WSL) file system. When working in the WSL file system, you are running Linux, thus files
and directories are treated as case-sensitive by default.

Differences between Windows and Linux case
sensitivity

７ Note

In the past, if you had files whose name differed only by case, these files could not
be accessed by Windows, because Windows applications treat the file system as
case insensitive and cannot distinguish between files whose names only differ in
case. While Windows File Explorer will show both files, only one will open
regardless of which you select.

The following steps explain how to change a directory on the Windows file system so
that it is case-sensitive and will recognize files and folders that differ only by case.

To check if a directory is case sensitive in the Windows filesystem, run the command:

PowerShell

Replace <path> with your file path. For a directory in the Windows (NTFS) file system,
the <path> will look like: C:\Users\user1\case-test or if you are already in the user1
directory, you could just run: fsutil.exe file setCaseSensitiveInfo case-test

Support for per-directory case sensitivity began in Windows 10, build 17107. In
Windows 10, build 17692, support was updated to include inspecting and modifying the
case sensitivity flag for a directory from inside WSL. Case sensitivity is exposed using an
extended attribute named system.wsl_case_sensitive . The value of this attribute will be
0 for case insensitive directories, and 1 for case sensitive directories.

Changing the case-sensitivity of a directory requires that you run elevated permissions
(run as Administrator). Changing the case-sensitivity flag also requires “Write attributes”,

Change the case sensitivity of files and
directories

２ Warning

Some Windows applications, using the assumption that the file system is case
insensitive, don’t use the correct case to refer to files. For example, it’s not
uncommon for applications to transform filenames to use all upper or lower case.
In directories marked as case sensitive, this means that these applications can no
longer access the files. Additionally, if Windows applications create new directories
in a directory tree where you are using case sensitive files, these directories are not
case sensitive. This can make it difficult to work with Windows tools in case
sensitive directories, so exercise caution when changing Windows file system case-
sensitivity settings.

Inspect current case sensitivity

fsutil.exe file queryCaseSensitiveInfo <path>

Modify case sensitivity

“Create files”, “Create folders” and “Delete subfolders and files” permissions on the
directory. See the troubleshooting section for more about this.

To change a directory in the Windows file system so that it is case-sensitive (FOO ≠ foo),
run PowerShell as Administrator and use the command:

PowerShell

To change a directory in the Windows file system back to the case-insensitive default
(FOO = foo), run PowerShell as Administrator and use the command:

PowerShell

A directory must be empty in order to change the case sensitivity flag attribute on that
directory. You cannot disable the case sensitivity flag on a directory containing
folders/files whose names differ on only by case.

When creating new directories, those directories will inherit the case sensitivity from its
parent directory.

Case sensitivity can be managed when mounting a drive on the Windows Subsystem for
Linux using the WSL config file. Each Linux distribution that you have installed can have
it's own WSL config file, called /etc/wsl.conf . For more information about how to
mount a drive, see Get started mounting a Linux disk in WSL 2.

fsutil.exe file setCaseSensitiveInfo <path> enable

fsutil.exe file setCaseSensitiveInfo <path> disable

Case sensitivity inheritance

２ Warning

There is an exception to this inheritance policy when running in WSL 1 mode. When
a distribution is running in WSL 1 mode, the per-directory case sensitivity flag is not
inherited; directories created in a case sensitive directory are not automatically case
sensitive themselves. You must explicitly mark each directory as case sensitive

Case sensitivity options for mounting a drive in
WSL configuration file

To configure the case sensitivity option in the wsl.conf file when mounting a drive:

1. Open the Linux distribution you will be using (ie. Ubuntu).
2. Change directories up until you see the etc folder (this may require you to cd ..

up from the home directory).
3. List the files in the etc directory to see if a wsl.conf file already exists (use the ls

command, or explorer.exe . to view the directory with Windows File Explorer).
4. If the wsl.conf file does not already exist, you can create it using: sudo touch

wsl.conf or by running sudo nano /etc/wsl.conf , which will create the file upon
saving from the Nano editor.

5. The following options are available for you to add into your wsl.conf file:

Default setting: dir for enabling case sensitivity per directory.

Bash

Case sensitivity unavailable (all directories on mounted NTFS drives will be case
insensitive): off

Bash

Treat all directories on the (NTFS) drive as case sensitive: force

Bash

This option is only supported for mounting drives on Linux distributions running as WSL
1 and may require a registration key. To add a registration key, you can use this
command from an elevated (admin) command prompt: reg.exe add
HKLM\SYSTEM\CurrentControlSet\Services\lxss /v DrvFsAllowForceCaseSensitivity /t

REG_DWORD /d 1 .

You will need to restart WSL after making any changes to the wsl.conf file in order for
those changes to take effect. You can restart WSL using the command: wsl --shutdown

[automount]

options = case = dir

[automount]

options = case = off

[automount]

options = case = force

NTFS-formatted drives mounted to a WSL distribution will be case-insensitive by
default. To change the case sensitivity for a directory on a drive mounted to a WSL
distribution (ie. Ubuntu), follow the same steps as listed above for the Windows file
system. (EXT4 drives will be case-sensitive by default).

To enable case-sensitivity on a directory (FOO ≠ foo), use the command:

Bash

To disable case-sensitivity on a directory and return to the case-insensitive default (FOO
= foo), use the command:

Bash

 Tip

To mount a drive (which uses the DrvFs filesystem plugin to make the disk available
under /mnt, such as /mnt/c, /mnt/d, etc) with a specific case sensitivity setting for
ALL drives, use /etc/wsl.conf as described above. To set the default mount options
for one specific drive, use the /etc/fstab file to specify these options.
For more
WSL configuration options, see Configure per distro launch settings with wslconf.

Changing the case sensitivity on a drive mounted to a
WSL distribution

fsutil.exe file setCaseSensitiveInfo <path> enable

fsutil.exe file setCaseSensitiveInfo <path> disable

７ Note

If you change the case sensitive flag on an existing directory for a mounted drive
while WSL is running, ensure WSL has no references to that directory or else the
change will not be effective. This means the directory must not be open by any
WSL processes, including using the directory (or its descendants) as the current
working directory.

Configure case sensitivity with Git

http://manpages.ubuntu.com/manpages/xenial/man5/fstab.5.html

The Git version control system also has a configuration setting that can be used to
adjust case sensitivity for the files you are working with. If you are using Git, you may
want to adjust the git config core.ignorecase setting.

To set Git to be case-sensitive (FOO.txt ≠ foo.txt), enter:

git config core.ignorecase false

To set Git to be case-insensitive (FOO.txt = foo.txt), enter:

git config core.ignorecase true

Setting this option to false on a case-insensitive file system may lead to confusing
errors, false conflicts, or duplicate files.

For more information, see the Git Config documentation .

To use Windows file system tools to work on a Linux directory that contains mixed case
files, you will need to create a brand new directory and set it to be case-sensitive, then
copy the files into that directory (using git clone or untar). The files will remain mixed
case. (Note that if you have already tried moving the files to a case-insensitive directory
and there were conflicts, there were likely some files that were overwritten and will no
longer be available.)

You cannot change the case sensitivity setting on a directory that contains other files or
directories. Try creating a new directory, changing the setting, then copying your mixed-
case files into it.

Ensure that you have the “Write attributes”, “Create files”, “Create folders” and “Delete
subfolders and files” permissions on the directory required for changing case-sensitivity.
To check these settings, open the directory in Windows File Explorer (from command

Troubleshooting

My directory has files that are mixed case and require
case sensitivity but Windows FS tools will not recognize
these files

Error: The directory is not empty

Error: Access denied

https://git-scm.com/docs/git-config/#Documentation/git-config.txt-coreignoreCase
https://git-scm.com/docs/git-config/

line, use the command: explorer.exe .). Right-click the directory and select Properties
to open the Document Properties window, then select Edit to view or change
permissions for the directory.

The case sensitivity attribute can only be set on directories within an NTFS-formatted file
system. Directories in the WSL (Linux) file system are case sensitive by default (and
cannot be set to be case insensitive using the fsutil.exe tool).

DevBlog: Per-directory case sensitivity and WSL
DevBlog: Improved per-directory case sensitivity support in WSL

Error: A local NTFS volume is required for this operation

Additional resources

https://devblogs.microsoft.com/commandline/per-directory-case-sensitivity-and-wsl/
https://devblogs.microsoft.com/commandline/improved-per-directory-case-sensitivity-support-in-wsl/

How to manage WSL disk space
Article • 11/10/2023

This guide covers how to manage the disk space used by Linux distributions installed
using WSL 2, including:

How to check the amount of disk space available in the VHD
How to expand the size of the VHD
How to repair the VHD if an error occurs
How to locate the .vhdx file and disk path for any installed Linux distributions

Windows Subsystem for Linux (WSL 2) uses a virtualization platform to install Linux
distributions alongside the host Windows operating system, creating a Virtual Hard Disk
(VHD) to store files for each of the Linux distributions that you install. These VHDs use
the ext4 file system type and are represented on your Windows hard drive as an
ext4.vhdx file.

WSL 2 automatically resizes these VHD files to meet storage needs. By default each VHD
file used by WSL 2 is initially allocated a 1TB maximum amount of disk space (prior to
WSL release 0.58.0 this default was set to a 512GB max and 256GB max prior to that).

If the storage space required by your Linux files exceeds this maximum size, you will see
errors stating that you've run out of disk space. To fix this error, follow the guidance
below on How to expand the size of your WSL 2 Virtual Hard Disk.

Check the amount of disk space available in the VHD for a Linux distribution installed
with WSL 2 by using the Linux Df command.

To check available disk space, open a PowerShell command line and enter this command
(replacing <distribution-name> with the actual distribution name):

PowerShell

If this command does not work for you please upgrade to the Store version of WSL
using the wsl --update command, or try wsl df -h / .

The output will include:

How to check your available disk space

wsl.exe --system -d <distribution-name> df -h /mnt/wslg/distro

https://opensource.com/article/17/5/introduction-ext4-filesystem
https://opensource.com/article/17/5/introduction-ext4-filesystem
https://github.com/microsoft/WSL/releases/tag/0.58.0
https://github.com/microsoft/WSL/releases/tag/0.58.0

Filesystem: Identifier for the VHD file system
Size: Total size of the disk (the maximum amount of space allocated to the VHD)
Used: Amount of space currently being used in the VHD
Avail: Amount of space left in the VHD (Allocated size minus amount used)
Use%: Percentage of disk space remaining (Used / Allocated size)
Mounted on: Directory path where the disk is mounted

If you see that you are near to reaching the available amount of disk space allocated to
your VHD, or have already received an error due to no disk space remaining, see the
next section for steps on how to expand the maximum amount of disk space allocated
to the VHD associated with your Linux distribution. The amount of disk space allocated
to your VHD by WSL will always show the default maximum amount (1TB in the most
recent version of WSL), even if the amount of disk space on your actual Windows device
is less than that. WSL mounts a VHD that will expand in size as you use it, so your Linux
distribution sees that it can grow to the allocated maximum size of 1TB.

To expand the VHD size for a Linux distribution beyond the default 1TB maximum
amount of allocated disk space, follow the steps below. (For earlier WSL releases that
have not yet been updated, this max default may be set to 512GB or 256GB).

1. Terminate all WSL instances using the command: wsl.exe --shutdown

2. Copy the directory path to the ext4.vhdx file associated with the Linux distribution
installed on your machine. For help, see How to locate the vhdx file and disk path
for your Linux distribution.

3. Open Windows Command Prompt with admin privileges and then open the
diskpart command interpreter by entering:

Windows Command Prompt

4. You will now have a DISKPART> prompt. Enter the following command, replacing
<pathToVHD> with the directory path to the ext4.vhdx file associated with the Linux
distribution (copied in step #2).

Windows Command Prompt

How to expand the size of your WSL 2 Virtual
Hard Disk

diskpart

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/diskpart

5. Display the details associated with this virtual disk, including the Virtual size,
representing the current maximum size the VHD is allocated:

Windows Command Prompt

6. You will need to convert the Virtual size to megabytes. For example, if Virtual size:
512 GB, this is equal to 512000 MB. The new value you enter must be greater than
this original value. To double the virtual size of 512 GB to 1024 GB, you would
enter the value in MB as: 1024000. Be careful not to enter a value higher than you
actually want as the process of reducing a virtual disk size is much more
complicated.

7. Enter the value for the new maximum size you want to allocate to this Linux
distribution using the Windows Command Prompt DISKPART> prompt:

Windows Command Prompt

8. Exit the DISKPART> prompt:

Windows Command Prompt

9. Launch this Linux distribution. (Ensure it is running in WSL 2. You can confirm this
using the command: wsl.exe -l -v . WSL 1 is not supported).

10. Make WSL aware that it can expand the file system size for this distribution by
running these commands from your WSL distribution command line. You may see
this message in response to the first mount command: "/dev: none already
mounted on /dev." This message can safely be ignored.

Bash

Select vdisk file="<pathToVHD>"

detail vdisk

expand vdisk maximum=<sizeInMegaBytes>

exit

sudo mount -t devtmpfs none /dev
mount | grep ext4

11. Copy the name of this entry, which will look like: /dev/sdX (with the X representing
any other character). In the following example the value of X is b:

Bash

Using the example from above, we changed the vhd size to 2048000, so the command
would be: sudo resize2fs /dev/sdb 2048000M .

The output will look similar to the following:

Bash

The virtual drive (ext4.vhdx) for this Linux distribution has now successfully been
expanded to the new size.

 sudo resize2fs /dev/sdb <sizeInMegabytes>M

７ Note

You may need to install resize2fs. If so, you can use this command to install it: sudo
apt install resize2fs .

resize2fs 1.44.1 (24-Mar-2021)
Filesystem at /dev/sdb is mounted on /; on-line resizing required
old_desc_blocks = 32, new_desc_blocks = 38
The filesystem on /dev/sdb is now 78643200 (4k) blocks long.

） Important

We recommend that you do not modify, move, or access the WSL related files
located inside of your AppData folder using Windows tools or editors. Doing so
could cause your Linux distribution to become corrupted. If you would like to
access your Linux files from Windows, that is possible via the path \\wsl$\
<distribution-name>\ . Open your WSL distribution and enter explorer.exe . to
view that folder. To learn more, see the blog post: Accessing Linux files from
Windows .

How to repair a VHD mounting error

https://devblogs.microsoft.com/commandline/whats-new-for-wsl-in-windows-10-version-1903/#accessing-linux-files-from-windows
https://devblogs.microsoft.com/commandline/whats-new-for-wsl-in-windows-10-version-1903/#accessing-linux-files-from-windows
https://devblogs.microsoft.com/commandline/whats-new-for-wsl-in-windows-10-version-1903/#accessing-linux-files-from-windows

If you encounter an error related to "mounting the distribution disk", this could be due
to a sudden shutdown or power outage and may result in the Linux distribution VHD
being switched to read-only to avoid data loss. You can repair and restore the
distribution using the e2fsck Linux command by following the steps below.

When WSL 2 installs a Linux distribution, it is mounting the distribution as a Virtual Hard
Disk (VHD) with it's own file system. Linux refers to these hard drives as "block devices"
and you can view information about them by using the lsblk command.

To find the names of the block devices currently being used by WSL 2, open your
distribution and enter the command: lsblk . (Or open PowerShell and enter the
command: wsl.exe lsblk .) The output will look something like this:

Bash

Information about the block device includes:

NAME: The name assigned to the device will be sd[a-z], referring to the SCSI Disk
with a letter designation for each disk being used. sda is always the system
distribution.
MAJ:MIN: Represents numbers used by the Linux kernel to internally identify the
devices with the first number representing the device type (8 is used for Small
Computer System Interface/SCSI disks).
RM: Let's us know if the device is removable (1) or not (0).
SIZE: Total size of the volume.
RO: Let's us know if the device is read-only (1) or not (0).
TYPE: Refers to the device type (disk in this case).
MOUNTPOINTS: Refers to the current directory on the files system where the
block device is located (SWAP is for preconfigured inactive memory so no
mountpoint).

Use the lsblk command to identify the block device name

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 363.1M 1 disk
sdb 8:16 0 8G 0 disk [SWAP]
sdc 8:32 0 1.5T 0 disk
sdd 8:48 0 1T 0 disk /mnt/wslg/distro

Read-only fallback error

If WSL encounters a "mounting error" when opening a Linux distribution, the
distribution may be set as read-only as a fallback. If that happens, the distribution may
display the following error during startup:

PowerShell

When a distribution is started as read-only, any attempts to write to the filesystem will
fail with an error like this:

Bash

To repair a disk mount error in WSL, and restore it back to a usable / writeable state
again, you can use the wsl.exe --mount command to re-mount the disk with the
following steps:

1. Shutdown all WSL distributions by opening PowerShell and entering the command:

PowerShell

2. Open PowerShell as administrator (in an elevated command prompt) and enter the
mount command, replacing <path-to-ext4.vhdx> with the path to the
distribution's .vhdx file. For help locating this file, see How to locate the VHD file
and disk path for your Linux distribution.

PowerShell

3. Use the wsl.exe lsblk command from PowerShell to identify the block device
name for the distribution (sd[a-z]) and then enter the following command to repair
the disk (replacing <device> with the correct block device name, like "sdc"). The
e2fsck command checks ext4 file systems (the type used by distributions installed
with WSL) for errors and repairs them accordingly.

PowerShell

An error occurred mounting the distribution disk, it was mounted read-only
as a fallback.

$ touch file
touch: cannot touch 'file': Read-only file system

wsl.exe --shutdown

wsl.exe --mount <path-to-ext4.vhdx> --vhd --bare

4. Once the repair is complete, unmount the disk in PowerShell by entering:

PowerShell

To locate the .vhdx file and directory path for a Linux distribution, open PowerShell and
use the following script, replacing <distribution-name> with the actual distribution
name:

PowerShell

The result will display a path looking something like %LOCALAPPDATA%\Packages\
<PackageFamilyName>\LocalState\<disk>.vhdx . For example:

PowerShell

wsl.exe sudo e2fsck -f /dev/<device>

７ Note

If you only have a single Linux distribution installed, you may encounter an "ext file
in use" error and will need to install an additional distribution in order to run
wsl.exe lsblk . You can uninstall the distribution once the repair is complete.

wsl.exe --unmount

２ Warning

You can use the command: sudo mount -o remount,rw / to return a read-only
distribution to a usable/writable state, but all changes will be in-memory and so will
be lost when the distribution is restarted. We recommend using the steps listed
above to mount and repair the disk instead.

How to locate the .vhdx file and disk path for
your Linux distribution

(Get-ChildItem -Path HKCU:\Software\Microsoft\Windows\CurrentVersion\Lxss |
Where-Object { $_.GetValue("DistributionName") -eq '<distribution-name>'
}).GetValue("BasePath") + "\ext4.vhdx"

This is the path to the ext4.vhdx file associated with the Linux distribution that you
listed.

C:\Users\User\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_7
9rhkp1fndgsc\LocalState\ext4.vhdx

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fdisk-space&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fdisk-space.md&documentVersionIndependentId=73eaaa84-4649-3c39-6116-1c62b713a4c3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+73eaaa84-4649-3c39-6116-1c62b713a4c3+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

WSL Plugins
Article • 11/15/2023

Windows applications can now create and interact with Linux processes running inside
of the Windows Subsystem for Linux (WSL) with WSL plugins. This article gives an
overview of how they work, and how to get started using them.

WSL plugins provide these core functionalities:

Allows applications to specify a Windows executable that starts when the WSL
virtual machine is started
The Windows executable can create Linux processes inside of WSL, and it can
communicate directly to them using a virtualized socket

Using these, Windows applications can build ontop of WSL experiences and provide
additional functionality related to the Windows Subsystem for Linux.

As a WSL plugin creator, you can install your plugin on a machine by setting a registry
key to point to your plugin’s DLL file.

And as a WSL user, any application that you use will automatically install WSL plugins as
part of their normal install process.

To start a plugin project you will need to build a Win32 dll. The simplest way to get set
up with this is to try our WSL plugin sample project. You can do this by cloning the WSL
plugin sample repository to a local folder with git clone and open it in Visual Studio.

When you open the project please navigate to the dllmain.cpp file
(https://github.com/microsoft/wsl-plugin-sample/blob/main/plugin.cpp) and you will
see the list of functions available to WSL plugins.

You can then press the “Build” tab and build your project, which will output a DLL ready
you to use, likely under wsl-plugin-sample\x64\Debug\WSLPluginSample.dll .

Understanding Plugin functionality

Installing a Plugin

Creating your own Plugin

https://github.com/microsoft/wsl-plugin-sample
https://github.com/microsoft/wsl-plugin-sample/blob/main/plugin.cpp

WSL plugins will only run if they are digitally signed. To test this you will need to enable
test signing on your machine.

Open an elevated PowerShell Window and enable test signing by running this
command:

PowerShell

Once test signing is enabled (A reboot may required), in an elevated Powershell
command prompt that is at the directory of your WSLPluginSample.dll file created
above we will create a WSL test certificate:

PowerShell

Last import the certificate to the Trusted Root Certification Authority:

PowerShell

See the how to create a self signed certificate docs page for more info.

Testing your Plugin

Enabling test signing and creating a test certification

If this command results in "The value is protected by Secure Boot policy
and cannot be modified or deleted"
Then reboot the PC, go into BIOS settings, and disable Secure Boot.
BitLocker may also affect your ability to modify this setting.
Bcdedit.exe -set TESTSIGNING ON

Create the cert
$certname = "WSLPluginTestCert"
$cert = New-SelfSignedCertificate -Subject "CN=$certname" -CertStoreLocation
"Cert:\CurrentUser\My" -KeyExportPolicy Exportable -KeySpec Signature -
KeyLength 2048 -KeyAlgorithm RSA -HashAlgorithm SHA256 -Type CodeSigningCert

Export it to a local path
Export-Certificate -Cert $cert -FilePath ".\$certname.cer"

Sign the DLL file
Set-AuthenticodeSignature -FilePath "C:\dev\Path\To\Your\WSLPlugin.dll" -
Certificate $cert

certutil -addstore "Root" ".\$certname.cer"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/digital-signatures
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option#enable-or-disable-use-of-test-signed-code
https://learn.microsoft.com/en-us/entra/identity-platform/howto-create-self-signed-certificate

In the same elevated PowerShell window, run the command below to install the plugin,
and be sure to change the path to the plugin DLL to your existing path:

PowerShell

To use the plugin, restart the wsl service via:

PowerShell

Your plugin should now be loaded. See the Troubleshooting and additional information
section for more information if the plugin failed to load.

And then when you are finished, you can run this command to remove the plugin
(Please keep in mind you will need to restart the WSL service for it to take effect):

PowerShell

Common error codes:

Wsl/Service/CreateInstance/CreateVm/Plugin/ERROR_MOD_NOT_FOUND -> The
plugin DLL could not be loaded. Check that the plugin registration path is correct
Wsl/Service/CreateInstance/CreateVm/Plugin/TRUST_E_NOSIGNATURE -> The
plugin DLL is not signed, or its signature is not trusted by the computer

Please enable test signing and see the signing section above on how to set up a
test certificate.

Wsl/Service/CreateInstance/CreateVm/Plugin/* -> The plugin DLL returned an
error in WSLPLUGINAPI_ENTRYPOINTV1 or OnVmStarted()

Install the plugin

Reg.exe add
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Lxss\Plugins /v
demo-plugin /t REG_SZ /d C:\Path\to\plugin.dll /f

sc.exe stop wslservice
wsl.exe echo “test”

Reg.exe delete
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Lxss\Plugins /v
demo-plugin

Troubleshooting and additional information

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option#enable-or-disable-use-of-test-signed-code

Wsl/Service/CreateInstance/Plugin/* -> The plugin DLL returned an error in
OnDistributionStarted()

Linux processes created via ExecuteBinary() will run in the root namespace of the WSL2
Virtual Machine. This namespace is not associated to any distribution and has a very
minimal Mariner based root file system.

That file system is a writable tmpfs, meaning that all changes made to it will be dropped
when the WSL2 Virtual Machine is shut down.

You can inspect the content of the root namespace by running wsl --debug-shell while
WSL is running.

All WSL plugin hooks are synchronous, meaning that WSL will wait for the plugin
hooks to be completed before continuing.
Any error returned by a plugin is considered fatal by WSL (meaning that the user’s
distribution will not start)
The plugin code runs in the same address space as the WSL service. Any crash in a
plugin will crash the entire WSL service, potentially causing data loss

Plugins Linux user space

Additional considerations

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fwsl-plugins&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fwsl-plugins.md&documentVersionIndependentId=46308d03-ca3c-60c4-3d79-063320c9a853&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+46308d03-ca3c-60c4-3d79-063320c9a853+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Enterprise environment: Set up
Windows Subsystem for Linux for your
company
Article • 11/16/2023

This guidance is intended for IT Administrators or Security Analysts responsible for
setting up enterprise work environments with the goal of distributing software across
multiple machines and maintaining a consistent level of security settings across those
work machines.

Many companies use Microsoft Intune and Microsoft Defender to manage these security
settings. However, setting up WSL and accessing Linux distributions in this context
requires some specific setup. This guidance provides what you need to know to enable
the secure use of Linux with WSL in an enterprise environment.

There are a variety of ways to set up a secure enterprise environment, but we
recommend the following for setting up a secure environment that utilizes WSL.

To get started ensure that all enterprise devices have the following minimum versions
installed:

Windows 10 22H2 or higher, or Windows 11 22H2 or higher
Advanced networking features are only available on Windows 11 22H2 or
higher.

WSL version 2.0.9 or higher
You can check the WSL version by running wsl --version .

Recommended Enterprise set up with Microsoft
Defender for Endpoint, Intune, and Advanced
Networking Controls

Pre-requisites

Enable Microsoft Defender for Endpoint (MDE)
integration

https://learn.microsoft.com/en-us/mem/intune/
https://learn.microsoft.com/en-us/microsoft-365/security/defender/
https://github.com/microsoft/WSL/releases

Microsoft Defender for Endpoint is an enterprise endpoint security platform designed to
help enterprise networks prevent, detect, investigate, and respond to advanced threats.
MDE now integrates with WSL as a WSL plugin, which allows security teams to see and
continuously monitor for security events in all running WSL distributions with Defender
for Endpoint while minimally impacting performance on developer workloads.

See Microsoft Defender for Endpoint plug-in for WSL to learn more about how to get
started.

Microsoft Intune is a cloud-based endpoint management solution. It manages user
access to organizational resources and simplifies app and device management across
your many devices, including mobile devices, desktop computers, and virtual endpoints.
You can use Microsoft Intune to manage devices inside of your organization, which now
also includes managing access to WSL and its key security settings.

See Intune settings for WSL for guidance on using InTune to manage WSL as a Windows
component and the recommended settings.

Starting from Windows 11 22H2 and WSL 2.0.9 or later, Windows firewall rules will
automatically apply to WSL. This ensures that the firewall rules set on the Windows host
will automatically apply to all WSL distributions by default. For guidance on customizing
the firewall settings for WSL, visit Configure Hyper-V firewall.

Additionally, we recommend configuring settings under [wsl2] in the .wslconfig file to
suit your specific Enterprise scenario.

networkingMode=mirrored enables mirrored mode networking. This new networking
mode improves compatibility with complex networking environments, especially VPNs
and more, as well as adding support for new networking features unavailable in the
default NAT mode like IPv6.

dnsTunneling=true changes how WSL obtains DNS information. This setting improves
compatibility in different networking environments, and makes use of virtualization

Configure recommended settings with Intune

Use advanced networking features and controls

Mirrored mode networking

DNS Tunneling

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/mde-plugin-wsl
https://learn.microsoft.com/en-us/mem/intune/fundamentals/what-is-intune
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall

features to obtain DNS information rather than a networking packet. It's recommended
to turn this on if experiencing any connectivity issues, and can be especially helpful
when using VPNs, advanced firewall settings, and more.

autoProxy=true enforces WSL to use Windows' HTTP proxy information. We recommend
turning this setting on when using a proxy on Windows, as it will make that proxy
automatically apply to your WSL distributions.

What is commonly referred to as an "image", is simply a snapshot of your software and
its components saved to a file. In the case of the Windows Subsystem for Linux, your
image would consist of the subsystem, its distributions, and whatever software and
packages are installed on the distribution.

To begin creating your WSL image, first install the Windows Subsystem for Linux.

Once installed, use The Microsoft Store for Business to download and install the Linux
distribution that’s right for you. Create an account with the Microsoft Store for
Business .

Export your custom WSL image by running wsl --export <Distro> <FileName> , which will
wrap your image in a tar file and make it ready for distribution on to other machines.
You can create custom distributions including CentOS, RedHat and more using the
custom distro guide.

Distribute the WSL image from a share or storage device by running wsl --import
<Distro> <InstallLocation> <FileName> , which will import the specified tar file as a new
distribution.

Auto proxy

Creating a custom WSL image

Exporting your WSL image

Distributing your WSL image

Update and patch Linux distributions and
packages

https://businessstore.microsoft.com/

Using Linux configuration manager tools is strongly recommended for monitoring and
managing Linux user space. There are a host of Linux configuration managers to choose
from. See this blog post on Running Puppet quickly in WSL 2 .

When a Linux binary inside of WSL accesses a Windows file, it does so with the user
permissions of the Windows user that ran wsl.exe . So even though a Linux user has
root access inside of WSL, they cannot do Windows administrator level operations on
Windows if the Windows user does not have those permission. With regards to
Windows file and Windows executable access from WSL, running a shell like bash has
the same security level permissions as running powershell from Windows as that user.

Sharing an approved image internally using wsl --import and wsl --export
Creating your own WSL distro for your Enterprise using the WSL Distro Launcher
repo
Monitor security events inside of WSL distros using Microsoft Defender for
Endpoint (MDE)
Use firewall settings to control networking in WSL (Includes syncing Windows
firewall settings to WSL)
Control access to WSL and its key security settings with Intune or group policy

Here's a list of features for which we don't yet have support for, but are investigating.

Below is a list of commonly asked features that are currently unsupported within WSL.
These requests are on our backlog and we are investigating ways to add them.

Managing updates and patching of the Linux distributions and packages using
Windows tools
Having Windows update also update WSL distro contents
Controlling which distributions users in your Enterprise can access
Controlling root access for users

Windows file system access

Supported

Currently unsupported

http://www.craigloewen.com/blog/2019/12/04/running-puppet-quickly-in-wsl2/
https://github.com/microsoft/WSL-DistroLauncher

Intune settings for WSL
Article • 01/10/2024

You can now use management tools like Intune to manage WSL as a Windows
component.

To access these settings please navigate to your Microsoft Intune admin center portal,
and then select: Devices -> Configuration Profiles -> Create -> New Policy ->
Windows 10 and later -> Settings catalog , create a name for the new profile and
search for "Windows Subsystem for Linux" to see and add the full list of available
settings.

To maximize security in an enterprise environment, we recommend that you specify
these settings:

Setting Name Value Description

Allow the Inbox
version of the
Windows Subsystem
for Linux

Disabled When set to disabled, this policy disables the inbox version
(optional component) of the Windows Subsystem For Linux.
If this policy is disabled, only the store version of WSL can be
used.

Allow WSL1 Disabled When set to disabled, this policy disables WSL1. When
disabled, only WSL2 distributions can be used.

Allow the debug shell Disabled When set to disabled, this policy disables the debug shell
(wsl.exe --debug-shell). This policy only applies to Store
WSL.

Allow custom kernel
configuration

Disabled When set to disabled, this policy disables custom kernel
configuration via .wslconfig (wsl2.kernel). This policy only
applies to Store WSL.

Allow kernel command
line configuration

Disabled When set to disabled, this policy disables kernel command
line configuration via .wslconfig (wsl2.kernelCommandLine).
This policy only applies to Store WSL.

Allow custom system
distribution
configuration

Disabled When set to disabled, this policy disables custom system
distribution configuration via .wslconfig (wsl2.systemDistro).
This policy only applies to Store WSL.

Recommended settings

ﾉ Expand table

Setting Name Value Description

Allow custom
networking
configuration

Disabled When set to disabled, this policy disables custom networking
configuration via .wslconfig (wsl2.networkingmode). This
policy only applies to Store WSL.

Allow user setting
firewall configuration

Disabled When set to disabled, this policy disables firewall
configuration via .wslconfig (wsl2.firewall). This policy only
applies to Store WSL.

Allow nested
virtualization

Disabled When set to disabled, this policy disables nested
virtualization configuration via .wslconfig
(wsl2.nestedVirtualization). This policy only applies to Store
WSL.

Allow kernel
debugging

Disabled When set to disabled, this policy disables kernel debugging
configuration via .wslconfig (wsl2.kernelDebugPort). This
policy only applies to Store WSL.

The AllowWSL , AllowInboxWSL , and AllowWSL1 settings control user access to WSL. You
can configure these settings to enable or disable access to the in-Windows version of
WSL, WSL 1 distros, or WSL itself.

This will allow you to configure WSL to ensure that users are only using the latest
version of WSL with Enterprise feature support.

AllowDebugShell and AllowDiskMount control whether users can run the wsl --debug-
shell and wsl --mount commands. Learn more about how to Mount a disk in WSL 2
using the wsl --mount command.

The last group of settings that end with *UserSettingConfigurable control access to
WSL advanced settings in .wslconfig . When these are set to disabled then users will
only be able to use the default value for that setting, and not able to configure it to
custom values. Learn more about Configuration setting for .wslconfig, including a list of
settings that can be configured globally for all Linux distributions running with WSL 2.

Control access to WSL

Control WSL commands

Control access to WSL settings in .wslconfig

Setting Name Description

Allow the Windows
Subsystem For Linux

When set to disabled, this policy disables access to the Windows
Subsystem For Linux for all users on the machine.

Allow the Inbox version
of the Windows
Subsystem For Linux

When set to disabled, this policy disables the inbox version (optional
component) of the Windows Subsystem For Linux. If this policy is
disabled, only the store version of WSL can be used.

Allow WSL1 When set to disabled, this policy disables WSL1. When disabled, only
WSL2 distributions can be used.

Allow the debug shell When set to disabled, this policy disables the debug shell (wsl.exe --
debug-shell). This policy only applies to Store WSL.

Allow passthrough disk
mount

When set to disabled, this policy disables passthrough disk mounting
in WSL2 (wsl.exe --mount). This policy only applies to Store WSL.

Allow custom kernel
configuration

When set to disabled, this policy disables custom kernel
configuration via .wslconfig (wsl2.kernel). This policy only applies to
Store WSL.

Allow kernel command
line configuration

When set to disabled, this policy disables kernel command line
configuration via .wslconfig (wsl2.kernelCommandLine). This policy
only applies to Store WSL.

Allow custom system
distribution configuration

When set to disabled, this policy disables custom system distribution
configuration via .wslconfig (wsl2.systemDistro). This policy only
applies to Store WSL.

Allow custom networking
configuration

When set to disabled, this policy disables custom networking
configuration via .wslconfig (wsl2.networkingmode). This policy only
applies to Store WSL.

Allow user setting firewall
configuration

When set to disabled, this policy disables firewall configuration via
.wslconfig (wsl2.firewall). This policy only applies to Store WSL.

Allow nested
virtualization

When set to disabled, this policy disables nested virtualization
configuration via .wslconfig (wsl2.nestedVirtualization). This policy
only applies to Store WSL.

Allow kernel debugging When set to disabled, this policy disables kernel debugging
configuration via .wslconfig (wsl2.kernelDebugPort). This policy only
applies to Store WSL.

Full list of available settings

ﾉ Expand table

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fintune&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fintune.md&documentVersionIndependentId=982d84ed-c3d0-968d-fc20-39b8169d32b3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+982d84ed-c3d0-968d-fc20-39b8169d32b3+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Frequently Asked Questions about
Windows Subsystem for Linux
FAQ

The Windows Subsystem for Linux (WSL) is a feature of the Windows operating system
that enables you to run a Linux file system, along with Linux command-line tools and
GUI apps, directly on Windows, alongside your traditional Windows desktop and apps.

See the about page for more details.

This is primarily a tool for developers, especially web developers, those working on open
source projects, or deploying to Linux server environments. WSL is for anyone who likes
using Bash, common Linux tools (sed , awk , etc.) and Linux-first frameworks (Ruby,
Python, etc.) but also enjoys using Windows productivity tools.

WSL enables you to run Linux in a Bash shell with your choice of distribution (Ubuntu,
Debian, OpenSUSE, Kali, Alpine, etc). Using Bash, you can run command-line Linux tools
and apps. For example, type lsb_release -a and hit enter; you’ll see details of the Linux
distro currently running:

General

What is Windows Subsystem for Linux (WSL)?

Who is WSL for?

What can I do with WSL?

You can also access your local machine’s file system from within the Linux Bash shell –
you’ll find your local drives mounted under the /mnt folder. For example, your C: drive
is mounted under /mnt/c :

WSL targets a developer audience with the intent to be used as part of an inner
development loop. Let's say that Sam is creating a CI/CD pipeline (Continuous
Integration & Continuous Delivery) and wants to test it first on a local machine (laptop)
before deploying it to the cloud. Sam can enable WSL (& WSL 2 to improve speed and
performance), and then use a genuine Linux Ubuntu instance locally (on the laptop) with
whatever Bash commands and tools they prefer. Once the development pipeline is
verified locally, Sam can then push that CI/CD pipeline up to the cloud (i.e. Azure) by
making it into a Docker container and pushing the container to a cloud instance where it
runs on a production-ready Ubuntu VM.

Bash is a popular text-based shell and command-language. It is the default shell
included within Ubuntu and other Linux distros. Users type commands into a shell to
execute scripts and/or run commands and tools to accomplish many tasks.

Could you describe a typical development
workflow that incorporates WSL?

What is Bash?

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

Check out this article on the Windows Command Line blog: A Deep Dive Into How WSL
Allows Windows to Access Linux Files which goes into detail about the underlying
technology.

WSL requires fewer resources (CPU, memory, and storage) than a full virtual machine.
WSL also allows you to run Linux command-line tools and apps alongside your
Windows command-line, desktop and store apps, and to access your Windows files
from within Linux. This enables you to use Windows apps and Linux command-line tools
on the same set of files if you wish.

Some cross-platform tools were built assuming that the environment in which they run
behaves like Linux. For example, some tools assume that they are able to access very
long file paths or that specific files/folders exist. This often causes problems on Windows
which often behaves differently from Linux.

Many languages like Ruby and Node.js are often ported to, and run great, on Windows.
However, not all of the Ruby Gem or node/NPM library owners port their libraries to
support Windows, and many have Linux-specific dependencies. This can often result in
systems built using such tools and libraries suffering from build and sometimes runtime
errors or unwanted behaviors on Windows.

These are just some of issues that caused many people to ask Microsoft to improve
Windows’ command-line tools and what drove us to partner with Canonical to enable
native Bash and Linux command-line tools to run on Windows.

While working with OSS projects, there are numerous scenarios where it’s immensely
useful to drop into Bash from a PowerShell prompt. Bash support is complementary and
strengthens the value of the command-line on Windows, allowing PowerShell and the
PowerShell community to leverage other popular technologies.

Read more on the PowerShell team blog -- Bash for Windows: Why it’s awesome and
what it means for PowerShell

How does this work?

Why would I use WSL rather than Linux in a VM?

Why would I use, for example, Ruby on Linux
instead of on Windows?

What does this mean for PowerShell?

https://devblogs.microsoft.com/commandline/a-deep-dive-into-how-wsl-allows-windows-to-access-linux-files/
https://devblogs.microsoft.com/powershell/bash-for-windows-why-its-awesome-and-what-it-means-for-powershell/

WSL supports x64 and Arm CPUs.

Mount points for hard drives on the local machine are automatically created and
provide easy access to the Windows file system.

/mnt/<drive letter>/

Example usage would be cd /mnt/c to access c:\

See the tutorial Get started using Git on Windows Subsystem for Linux, which features a
section on setting up Git Credential Manager and storing authentication tokens in
Windows Credential Manager.

One of the benefits of WSL is being able to access your files via both Windows and
Linux apps or tools.

WSL mounts your machine's fixed drives under the /mnt/<drive> folder in your Linux
distros. For example, your C: drive is mounted under /mnt/c/ .

Using your mounted drives, you can edit code in, for example, C:\dev\myproj\ using
Visual Studio or VS Code , and build/test that code in Linux by accessing the same
files via /mnt/c/dev/myproj .

Learn more in Working across Windows and Linux file systems article.

1. Files under the Linux root (i.e. /) are controlled by WSL which aligns with Linux
behavior, including but not limited to:

Files which contain invalid Windows filename characters

What processors does WSL support?

How do I access my C: drive?

How do I set up Git Credential Manager? (How
do I use my Windows Git permissions in WSL?)

How do I use a Windows file with a Linux app?

Are files in the Linux drive different from the
mounted Windows drive?

https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/

Symlinks created for non-admin users
Changing file attributes through chmod and chown
File/folder case sensitivity

2. Files in mounted drives are controlled by Windows and have the following
behaviors:

Support case sensitivity
All permissions are set to best reflect the Windows permissions

To remove a distribution from WSL and delete all of the data associated with that Linux
distribution, run wsl --unregister <distroName> where <distroName> is the name of
your Linux distro, which can be seen from the list in the wsl -l command.

Additionally, you can then uninstall the Linux distro app on your machine just like any
other store application.

To learn more about wsl commands, see the article, Basic commands for WSL.

OpenSSH ships with Windows as an optional feature. See the Install OpenSSH doc.
Administrator privileges in Windows are required to run OpenSSH in WSL. To run an
OpenSSH server, run your WSL distribution (i.e. Ubuntu) or Windows Terminal as an
administrator. There are several resources out there covering SSH scenarios with WSL.
Check out Scott Hanselman's blog articles: How to SSH into a Windows 10 Machine
from Linux OR Windows OR anywhere , How to SSH into WSL2 on Windows 10 from
an external machine , THE EASY WAY how to SSH into Bash and WSL2 on Windows 10
from an external machine , and How to use Windows 10's built-in OpenSSH to
automatically SSH into a remote Linux machine .

WSL install will try to automatically change the Ubuntu locale to match the locale of
your Windows install. If you do not want this behavior you can run this command to
change the Ubuntu locale after install completes. You will have to relaunch your WSL
distribution for this change to take effect.

The below example changes the locale to en-US:

How do I uninstall a WSL Distribution?

How do I run an OpenSSH server?

How do I change the display language of WSL?

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://www.hanselman.com/blog/how-to-ssh-into-a-windows-10-machine-from-linux-or-windows-or-anywhere
https://www.hanselman.com/blog/how-to-ssh-into-wsl2-on-windows-10-from-an-external-machine
https://www.hanselman.com/blog/the-easy-way-how-to-ssh-into-bash-and-wsl2-on-windows-10-from-an-external-machine
https://www.hanselman.com/blog/how-to-use-windows-10s-builtin-openssh-to-automatically-ssh-into-a-remote-linux-machine

Bash

Some users have reported issues with specific firewall applications blocking internet
access in WSL. The firewalls reported are:

1. Kaspersky
2. AVG
3. Avast
4. Symantec Endpoint Protection
5. F-Secure

In some cases turning off the firewall allows for access. In some cases simply having the
firewall installed looks to block access.

WSL shares the IP address of Windows, as it is running on Windows. As such you can
access any ports on localhost e.g. if you had web content on port 1234 you could
https://localhost:1234 into your Windows browser. For more information, see Accessing
network applications.

The best way to backup or move your distributions is via the export/import commands
available in Windows Version 1809 and later. You can export your entire distribution to a
tarball using the wsl --export command. You can then import this distribution back
into WSL using the wsl --import command, which can name a new drive location for
the import, allowing you to backup and save states of (or move) your WSL distributions.
To learn more about moving your WSL distributions, see How can I transfer my WSL files
from one machine to another?.

Traditional backup services that backup files in your AppData folders (like Windows
Backup) will not corrupt your Linux files.

sudo update-locale LANG=en_US.UTF8

Why do I not have internet access from WSL?

How do I access a port from WSL in Windows?

How can I back up my WSL distributions?

Can I use WSL for production scenarios?

WSL has been designed and built to use with inner loop development workflows. There
are design features in WSL that make it great for this purpose but may make it
challenging for production-related scenarios compared to other products. Our goal is to
make clear how WSL differs from a regular VM environment, so you can make the
decision on whether it fits your business needs.

The main differences between WSL and a traditional production environment are:

WSL has a lightweight utility VM that starts, stops and manages resources
automatically.
If you have no open file handles to Windows processes, the WSL VM will
automatically be shut down. This means if you are using it as a web server, SSH
into it to run your server and then exit, the VM could shut down because it is
detecting that users are finished using it and will clean up its resources.
WSL users have full access to their Linux instances. The lifetime of the VM, the
registered WSL distributions, etc., are all accessible by the user and can be
modified by the user.
WSL automatically gives file access to Windows files.
Windows paths are appended to your path by default, which could cause
unexpected behavior for certain Linux applications compared to a traditional Linux
environment.
WSL can run Windows executables from Linux, which could also lead to a different
environment than a traditional Linux VM.
The Linux kernel used by WSL is updated automatically.
GPU access in WSL happens through a /dev/dxg device, which routes GPU calls
out to the Windows GPU. This setup is different than a traditional Linux set up.
There are other smaller differences compared to bare metal Linux and more
differences are expected to arise in the future as the inner loop development
workflow is prioritized.

There are a few ways you can accomplish this task:

The easiest way is to use the wsl --export --vhd command to export your WSL
distribution to a VHD file. You can then copy this file to another machine, and
import it using wsl --import --vhd . See the import and export commands in the
WSL basic commands doc for more information.
The implementation above requires a lot of disk space. If you don't have a lot of
disk space you can use Linux techniques to move your files over:

How can I transfer my WSL files from one
machine to another?

Use tar -czf <tarballName> <directory> to create a tarball of your files. You
can then copy these specific files over to your new machine and run tar -xzf
<tarballName> to extract them.
You can also export a list of installed packages via apt with a command like so:
dpkg --get-selections | grep -v deinstall | awk '{print $1}' >

package_list.txt and then reinstall those same packages on another machine
with a command like sudo apt install -y $(cat package_list.txt) after
transferring the file over.

You can do this using PowerShell. Below are the necessary commands and explanations
for each step. Please open a PowerShell window and adjust the values in between the <
tags to fit your specific use case:

PowerShell

How can I move my WSL distribution to a
different drive or location?

Create a folder where you would like to store your distro
New-Item -ItemType Directory -Path <Install location, e.g:
D:\WSLDistros\Ubuntu>

Export your distro to that folder as a VHD
wsl --export --vhd <Distroname, e.g: Ubuntu> <Install Location with
filename, e.g: D:\WSLDistros\Ubuntu\ext4.vhdx>

Unregister your old distro
Please note this will erase your existing distro's file contents, please
ensure the backup file you created in the 2nd step is present at the
location and that the export operation completed successfully.
Please exercise caution when using this command, as it is destructive and
could cause data loss.
wsl --unregister <Distroname>

Import your VHD backup
wsl --import-in-place <Distroname> <Install Location with filename>

WSL 2

Is WSL 2 available on Windows 10 Home and
Windows 11 Home?

Yes. WSL 2 is available on all Desktop SKUs where WSL is available, including Windows
10 Home and Windows 11 Home.

Specifically, WSL2 requires two features to be enabled:

1. "Virtual Machine Platform" (a subset of Hyper-V)
2. "Windows Subsystem for Linux"

The newest version of WSL uses a subset of Hyper-V architecture to enable its
virtualization. This subset is provided as an optional component named "Virtual Machine
Platform," available on all Desktop SKUs.

We currently have no plans to deprecate WSL 1. You can run WSL 1 and WSL 2 distros
side by side, and can upgrade and downgrade any distro at any time. Adding WSL 2 as a
new architecture presents a better platform for the WSL team to deliver features that
make WSL an amazing way to run a Linux environment in Windows.

Some 3rd party applications cannot work when Hyper-V is in use, which means they will
not be able to run when WSL 2 is enabled, such as VMware and VirtualBox. However,
recently both VirtualBox and VMware have released versions that support Hyper-V and
WSL2. Learn more about VirtualBox's changes here and VMware's changes here . For
troubleshooting issues, take a look at the VirtualBox issue discussions in the WSL repo
on GitHub . StackOverflow also offers a helpful tip: How to get VirtualBox 6.0 and WSL
working at the same time .

We are consistently working on solutions to support third-party integration of Hyper-V.
For example, we expose a set of APIs called Hypervisor Platform that third-party
virtualization providers can use to make their software compatible with Hyper-V. This
lets applications use the Hyper-V architecture for their emulation such as the Google
Android Emulator , and VirtualBox 6 and above which are both now compatible with
Hyper-V.

Does WSL 2 use Hyper-V?

What will happen to WSL 1? Will it be
abandoned?

Will I be able to run WSL 2 and other 3rd party
virtualization tools such as VMware, or
VirtualBox?

https://www.virtualbox.org/wiki/Changelog-6.0
https://blogs.vmware.com/workstation/2020/01/vmware-workstation-tech-preview-20h1.html
https://github.com/MicrosoftDocs/WSL/issues?q=is%3Aissue+virtualbox+sort%3Acomments-desc
https://stackoverflow.com/questions/58031941/how-to-get-virtualbox-6-0-and-wsl-working-at-the-same-time
https://learn.microsoft.com/en-us/virtualization/api/
https://devblogs.microsoft.com/visualstudio/hyper-v-android-emulator-support/

See the WSL issues repo for more background and discussion on WSL 2 issues with
VirtualBox 6.1 .

*If you're looking for a Windows virtual machine, VMWare, Hyper-V, VirtualBox, and
Parallels VM downloads are available on the Windows Dev Center.

We have released support for accessing the GPU inside of WSL 2 distributions! This
means you can now use WSL for machine learning, artificial intelligence, and data
science scenarios more easily when big data sets are involved. Check out the get started
with GPU support tutorial. As of right now WSL 2 does not include serial support, or USB
device support. We are investigating the best way to add these features. However, USB
support is now available through the USBIPD-WIN project. See Connect USB devices for
steps to set up USB device support.

Yes, in general networking applications will work better and be faster with WSL 2 since it
offers full system call compatibility. However, the WSL 2 architecture uses virtualized
networking components, which means that WSL 2 will behave similarly to a virtual
machine -- WSL 2 distributions will have a different IP address than the host machine
(Windows OS). For more information, see Accessing network applications with WSL.

Yes! You need to make sure that the virtual machine has nested virtualization enabled.
This can be enabled in your parent Hyper-V host by running the following command in
a PowerShell window with Administrator privileges:

Set-VMProcessor -VMName <VMName> -ExposeVirtualizationExtensions $true

Make sure to replace '<VMName>' with the name of your virtual machine.

WSL 2 supports the same wsl.conf file that WSL 1 uses. This means that any
configuration options that you had set in a WSL 1 distro, such as automounting
Windows drives, enabling or disabling interop, changing the directory where Windows
drives will be mounted, etc. will all work inside of WSL 2. You can learn more about the

Can I access the GPU in WSL 2? Are there plans
to increase hardware support?

Can WSL 2 use networking applications?

Can I run WSL 2 in a virtual machine?

Can I use wsl.conf in WSL 2?

https://github.com/MicrosoftDocs/WSL/issues/798
https://developer.microsoft.com/windows/downloads/virtual-machines/

configuration options in WSL in the Distribution Management page. Learn more about
support for mounting drives, disks, devices, or virtual hard disks (VHDs) in the Mount a
Linux disk in WSL 2 article.

The WSL product repo issues enables you to:

Search existing issues to see if there are any associated with a problem that you
are having. Note that in the search bar, you can remove "is:open" to include issues
that have already been resolved in your search. Please consider commenting or
giving a thumbs up to any open issues that you would like to express your interest
in moving forward as a priority.
File a new issue. If you have found a problem with WSL and there does not appear
to be an existing issue, you can select the green New issue button and then choose
WSL - Bug Report. You will need to include a title for the issue, your Windows build
number (run cmd.exe /c ver to see your current build #), whether you're running
WSL 1 or 2, your current Linux Kernel version # (run wsl.exe --status or cat
/proc/version), the version # of your distribution (run lsb_release -r), any other
software versions involved, the repro steps, expected behavior, actual behavior,
and diagnostic logs if available and appropriate. For more info, see contributing to
WSL .
File a feature request by selecting the green New issue button and then select
Feature request. You will need to address a few questions describing your request.

You can also:

File a documentation issue using the WSL docs repo . To contribute to the WSL
docs, see the Microsoft Docs contributor guide.
File a Windows Terminal issue using the the Windows Terminal product repo if
your problem is related more to the Windows Terminal, Windows Console, or the
command-line UI.

If you'd like to stay up to date with the latest WSL news you can do so with:

Our command-line team blog
Twitter. Please follow @craigaloewen on Twitter to learn of news, updates, etc.

Where can I provide feedback?

６ Collaborate with us on
GitHub

Windows Subsystem for
Linux feedback

https://github.com/Microsoft/wsl/issues
https://github.com/microsoft/WSL/blob/master/CONTRIBUTING.md
https://github.com/MicrosoftDocs/wsl/issues
https://learn.microsoft.com/en-us/contribute
https://github.com/microsoft/terminal/issues
https://devblogs.microsoft.com/commandline/
https://twitter.com/craigaloewen

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ffaq&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ffaq.yml&documentVersionIndependentId=156d9535-c2a5-bc8d-af24-342a13832abf&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+9bd5bfb4-8a38-1f09-0d36-6b9abe9b8b08+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Troubleshooting Windows Subsystem
for Linux
Article • 02/22/2024

We have covered some common troubleshooting scenarios associated with WSL below,
but please consider searching the issues filed in the WSL product repo on GitHub as
well.

The WSL product repo issues enables you to:

Search existing issues to see if there are any associated with a problem that you
are having. Note that in the search bar, you can remove "is:open" to include issues
that have already been resolved in your search. Please consider commenting or
giving a thumbs up to any open issues that you would like to express your interest
in moving forward as a priority.
File a new issue. If you have found a problem with WSL and there does not appear
to be an existing issue, you can select the green New issue button and then choose
WSL - Bug Report. You will need to include a title for the issue, your Windows build
number (run cmd.exe /c ver to see your current build #), whether you're running
WSL 1 or 2, your current Linux Kernel version # (run wsl.exe --status or cat
/proc/version), the version # of your distribution (run lsb_release -r), any other
software versions involved, the repro steps, expected behavior, actual behavior,
and diagnostic logs if available and appropriate. For more info, see contributing to
WSL .
File a feature request by selecting the green New issue button and then select
Feature request. You will need to address a few questions describing your request.

You can also:

File a documentation issue using the WSL docs repo . To contribute to the WSL
docs, see the Microsoft Docs contributor guide.
File a Windows Terminal issue using the Windows Terminal product repo if your
problem is related more to the Windows Terminal, Windows Console, or the
command-line UI.

File an issue, bug report, feature request

Installation issues

https://github.com/Microsoft/wsl/issues
https://github.com/Microsoft/wsl/issues
https://github.com/Microsoft/wsl/issues
https://github.com/Microsoft/wsl/issues
https://github.com/microsoft/WSL/blob/master/CONTRIBUTING.md
https://github.com/microsoft/WSL/blob/master/CONTRIBUTING.md
https://github.com/microsoft/WSL/blob/master/CONTRIBUTING.md
https://github.com/MicrosoftDocs/wsl/issues
https://github.com/MicrosoftDocs/wsl/issues
https://learn.microsoft.com/en-us/contribute
https://github.com/microsoft/terminal/issues
https://github.com/microsoft/terminal/issues

Installation failed with error 0x80070003
The Windows Subsystem for Linux only runs on your system drive (usually this is
your C: drive). Make sure that distributions are stored on your system drive:
On Windows 10 open Settings -> System -> Storage -> More Storage
Settings: Change where new content is saved

On Windows 11 open Settings -> System -> Storage -> Advanced storage
settings -> Where new content is saved

WslRegisterDistribution failed with error 0x8007019e
The Windows Subsystem for Linux optional component is not enabled:
Open Control Panel -> Programs and Features -> Turn Windows Feature on or
off -> Check Windows Subsystem for Linux or using the PowerShell cmdlet
mentioned at the beginning of this article.

Installation failed with error 0x80070003 or error 0x80370102
Please make sure that virtualization is enabled inside of your computer's BIOS.
The instructions on how to do this will vary from computer to computer, and
will most likely be under CPU related options.
WSL2 requires that your CPU supports the Second Level Address Translation
(SLAT) feature, which was introduced in Intel Nehalem processors (Intel Core 1st
Generation) and AMD Opteron. Older CPUs (such as the Intel Core 2 Duo) will
not be able to run WSL2, even if the Virtual Machine Platform is successfully
installed.

Error when trying to upgrade: Invalid command line option: wsl --set-version
Ubuntu 2

Ensure that you have the Windows Subsystem for Linux enabled, and that you're
using Windows Build version 18362 or later. To enable WSL run this command
in a PowerShell prompt with admin privileges: Enable-WindowsOptionalFeature -
Online -FeatureName Microsoft-Windows-Subsystem-Linux .

The requested operation could not be completed due to a virtual disk system
limitation. Virtual hard disk files must be uncompressed and unencrypted and
must not be sparse.

Deselect "Compress contents" (as well as "Encrypt contents" if that’s checked)
by opening the profile folder for your Linux distribution. It should be located in
a folder on your Windows file system, something like:
%USERPROFILE%\AppData\Local\Packages\CanonicalGroupLimited...

In this Linux distro profile, there should be a LocalState folder. Right-click this
folder to display a menu of options. Select Properties > Advanced and then
ensure that the "Compress contents to save disk space" and "Encrypt contents
to secure data" checkboxes are unselected (not checked). If you are asked
whether to apply this to just to the current folder or to all subfolders and files,
select "just this folder" because you are only clearing the compress flag. After
this, the wsl --set-version command should work.

The term 'wsl' is not recognized as the name of a cmdlet, function, script file, or
operable program.

７ Note

In my case, the LocalState folder for my Ubuntu 18.04 distribution was located at
C:\Users<my-user-
name>\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu18.04onWindows_
79rhkp1fndgsc

Check WSL Docs GitHub thread #4103 where this issue is being tracked for
updated information.

https://github.com/microsoft/WSL/issues/4103
https://github.com/microsoft/WSL/issues/4103

Ensure that the Windows Subsystem for Linux Optional Component is installed.
Additionally, if you are using an ARM64 device and running this command from
PowerShell, you will receive this error. Instead run wsl.exe from PowerShell
Core, or Command Prompt.

Error: Windows Subsystem for Linux has no installed distributions.
If you receive this error after you have already installed WSL distributions:

1. Run the distribution at least once before invoking it from the command line.
2. Check whether you may be running separate user accounts. Running your

primary user account with elevated permissions (in admin mode) should not
result in this error, but you should ensure that you aren't accidentally running
the built-in Administrator account that comes with Windows. This is a
separate user account and will not show any installed WSL distributions by
design. For more info, see Enable and Disable the Built-in Administrator
Account.

3. The WSL executable is only installed to the native system directory. When
you’re running a 32-bit process on 64-bit Windows (or on ARM64, any non-
native combination), the hosted non-native process actually sees a different
System32 folder. (The one a 32-bit process sees on x64 Windows is stored on
disk at \Windows\SysWOW64.) You can access the "native" system32 from a
hosted process by looking in the virtual folder: \Windows\sysnative . It won’t
actually be present on disk, mind you, but the filesystem path resolver will
find it.

Error: This update only applies to machines with the Windows Subsystem for
Linux.

To install the Linux kernel update MSI package, WSL is required and should be
enabled first. If it fails, it you will see the message: This update only applies to
machines with the Windows Subsystem for Linux .
There are three possible reason you see this message:

1. You are still in old version of Windows which doesn't support WSL 2. See step
#2 for version requirements and links to update.

2. WSL is not enabled. You will need to return to step #1 and ensure that the
optional WSL feature is enabled on your machine.

3. After you enabled WSL, a reboot is required for it to take effect, reboot your
machine and try again.

Error: WSL 2 requires an update to its kernel component. For information please
visit https://aka.ms/wsl2kernel .

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/enable-and-disable-the-built-in-administrator-account
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/enable-and-disable-the-built-in-administrator-account
https://aka.ms/wsl2kernel
https://aka.ms/wsl2kernel

If the Linux kernel package is missing in the %SystemRoot%\system32\lxss\tools
folder, you will encounter this error. Resolve it by installing the Linux kernel
update MSI package in step #4 of these installation instructions. You may need
to uninstall the MSI from 'Add or Remove Programs', and install it again.

This is likely because your machine has not yet taken the backport for WSL 2. The
simplest way to resolve this is by going to Windows Settings and clicking 'Check for
Updates' to install the latest updates on your system. See the full instructions on taking
the backport .

If you hit 'Check for Updates' and still do not receive the update you can install KB
KB4566116 manually .

This may happen when 'Display Language' or 'System Locale' setting is not English.

PowerShell

The actual error for 0x1bc is:

PowerShell

For more information, please refer to issue 5749

Common issues

I'm on Windows 10 version 1903 and I still do not see
options for WSL 2

Error: 0x1bc when wsl --set-default-version 2

wsl --set-default-version 2
Error: 0x1bc
For information on key differences with WSL 2 please visit
https://aka.ms/wsl2

WSL 2 requires an update to its kernel component. For information please
visit https://aka.ms/wsl2kernel

Cannot access WSL files from Windows

ms-settings:appsfeatures-app
https://devblogs.microsoft.com/commandline/wsl-2-support-is-coming-to-windows-10-versions-1903-and-1909/#how-do-i-get-it
https://devblogs.microsoft.com/commandline/wsl-2-support-is-coming-to-windows-10-versions-1903-and-1909/#how-do-i-get-it
https://devblogs.microsoft.com/commandline/wsl-2-support-is-coming-to-windows-10-versions-1903-and-1909/#how-do-i-get-it
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4566116
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4566116
https://www.catalog.update.microsoft.com/Search.aspx?q=KB4566116
https://github.com/microsoft/WSL/issues/5749
https://github.com/microsoft/WSL/issues/5749

A 9p protocol file server provides the service on the Linux side to allow Windows to
access the Linux file system. If you cannot access WSL using \\wsl$ on Windows, it
could be because 9P did not start correctly.

To check this, you can check the start up logs using: dmesg |grep 9p , and this will show
you any errors. A successful output looks like the following:

Bash

Please see this GitHub thread for further discussion on this issue.

If your display language is not English, then it is possible you are seeing a truncated
version of an error text.

PowerShell

To resolve this issue, please visit https://aka.ms/wsl2kernel and install the kernel
manually by following the directions on that doc page.

Users can run Windows executables like notepad.exe directly from Linux. Sometimes,
you may hit "command not found" like below:

Bash

If there are no Win32 paths in your $PATH, interop isn't going to find the .exe. You can
verify it by running echo $PATH in Linux. It's expected that you will see a Win32 path (for

[0.363323] 9p: Installing v9fs 9p2000 file system support
[0.363336] FS-Cache: Netfs '9p' registered for caching
[0.398989] 9pnet: Installing 9P2000 support

Can't start WSL 2 distribution and only see 'WSL 2' in
output

C:\Users\me>wsl
WSL 2

command not found when executing Windows .exe in Linux

$ notepad.exe
-bash: notepad.exe: command not found

https://github.com/microsoft/wsl/issues/5307
https://github.com/microsoft/wsl/issues/5307

example, /mnt/c/Windows) in the output. If you can't see any Windows paths then most
likely your PATH is being overwritten by your Linux shell.

Here is an example that /etc/profile on Debian contributed to the problem:

Bash

The correct way on Debian is to remove above lines. You may also append $PATH during
the assignment like below, but this lead to some other problems with WSL and
VSCode..

Bash

For more information, see issue 5296 and issue 5779 .

Please enable the Virtual Machine Platform Windows feature and ensure virtualization is
enabled in the BIOS.

1. Check the Hyper-V system requirements

2. If your machine is a VM, enable nested virtualization manually. Launch powershell
with admin, and run the following command, replacing <VMName> with the name of
the virtual machine on your host system (you can find the name in your Hyper-V
Manager):

PowerShell

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
else
 PATH="/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games"
fi

if ["`id -u`" -eq 0]; then
 PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:$PATH"
else
 PATH="/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:$PATH"
fi

"Error: 0x80370102 The virtual machine could not be
started because a required feature is not installed."

Set-VMProcessor -VMName <VMName> -ExposeVirtualizationExtensions $true

https://salsa.debian.org/debian/WSL/-/commit/7611edba482fd0b3f67143aa0fc1e2cc1d4100a6
https://salsa.debian.org/debian/WSL/-/commit/7611edba482fd0b3f67143aa0fc1e2cc1d4100a6
https://github.com/microsoft/WSL/issues/5296
https://github.com/microsoft/WSL/issues/5296
https://github.com/microsoft/WSL/issues/5779
https://github.com/microsoft/WSL/issues/5779
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/system-requirements-for-hyper-v-on-windows#:%7E:text=on%20Windows%20Server.-,General%20requirements,the%20processor%20must%20have%20SLAT.

3. Please follow guidelines from your PC's manufacturer on how to enable
virtualization. In general, this can involve using the system BIOS to ensure that
these features are enabled on your CPU. Instructions for this process can vary from
machine to machine, please see this article from Bleeping Computer for an
example.

4. Restart your machine after enabling the Virtual Machine Platform optional
component.

5. Make sure that the hypervisor launch is enabled in your boot configuration. You
can validate this by running (elevated powershell):

PowerShell

If you see hypervisorlaunchtype Off , then the hypervisor is disabled. To enable it
run in an elevated powershell:

6. Additionally, if you have 3rd party hypervisors installed (Such as VMware or
VirtualBox) then please ensure you have these on the latest versions which can
support HyperV (VMware 15.5.5+ and VirtualBox 6+) or are turned off.

7. If you are receiving this error on an Azure Virtual Machine, check to ensure that
Trusted Launch is disabled. Nested Virtualization is not supported on Azure virtual
machines.

Learn more about how to Configure Nested Virtualization when running Hyper-V in a
Virtual Machine.

Business or Enterprise environments may have Windows Defender Firewall settings
configured to block unauthorized network traffic. If local rule merging is set to "No"
then WSL networking will not work by default, and your administrator will need to add a
firewall rule to allow it.

You can confirm local rule merging's setting by following these steps:

 bcdedit /enum | findstr -i hypervisorlaunchtype

 bcdedit /set hypervisorlaunchtype Auto

WSL has no network connection on my work machine or
in an Enterprise environment

https://www.bleepingcomputer.com/tutorials/how-to-enable-cpu-virtualization-in-your-computer-bios/
https://www.bleepingcomputer.com/tutorials/how-to-enable-cpu-virtualization-in-your-computer-bios/
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://www.virtualbox.org/wiki/Changelog-6.0
https://www.virtualbox.org/wiki/Changelog-6.0
https://learn.microsoft.com/en-us/azure/virtual-machines/trusted-launch
https://learn.microsoft.com/en-us/azure/virtual-machines/trusted-launch#unsupported-features
https://learn.microsoft.com/en-us/azure/virtual-machines/trusted-launch#unsupported-features
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization#configure-nested-virtualization
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/best-practices-configuring
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/best-practices-configuring
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpfas/2c979624-900a-4b6e-b4ef-09b387cd62ab

1. Open "Windows Defender Firewall with advanced security" (this is different than
"Windows Defender Firewall" in the Control Panel)

2. Right-click on the "Windows Defender Firewall with advanced security on Local
Computer" tab

3. Select "Properties"
4. Select the "Public Profile" tab on the new Window that opens
5. Select "Customize" under the "Settings" section
6. Check in the "Customize Settings for the Public Profile" window that opens to see

if "Rule Merging" is set to "No". This will block access to WSL.

You can find instructions on how to change this Firewall setting in Configure Hyper-V
firewall.

If after connecting to a VPN on Windows, bash loses network connectivity, try this
workaround from within bash. This workaround will allow you to manually override the
DNS resolution through /etc/resolv.conf .

1. Take a note of the DNS server of the VPN from doing ipconfig.exe /all
2. Make a copy of the existing resolv.conf sudo cp /etc/resolv.conf

/etc/resolv.conf.new

3. Unlink the current resolv.conf sudo unlink /etc/resolv.conf
4. sudo mv /etc/resolv.conf.new /etc/resolv.conf
5. Edit /etc/wsl.conf and add this content to the file. (More info on this set up can

be found in Advanced settings configuration)

WSL has no network connectivity once connected to a
VPN

https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall

6. Open /etc/resolv.conf and
a. Delete the first line from the file which has a comment describing automatic
generation
b. Add the DNS entry from (1) above as the very first entry in the list of DNS
servers.
c. Close the file.

Once you have disconnected the VPN, you will have to revert the changes to
/etc/resolv.conf . To do this, do:

1. cd /etc
2. sudo mv resolv.conf resolv.conf.new
3. sudo ln -s ../run/resolvconf/resolv.conf resolv.conf

The Cisco AnyConnect VPN modifies routes in a way which prevents NAT from working.
There is a workaround specific to WSL 2: See Cisco AnyConnect Secure Mobility Client
Administrator Guide, Release 4.10 - Troubleshoot AnyConnect .

Mirrored networking mode is currently an experimental setting in the WSL
Configuration. The traditional NAT networking architecture of WSL can be updated to an
entirely new networking mode called “Mirrored networking mode”. When the
experimental networkingMode is set to mirrored , the network interfaces that you have on
Windows are mirrored into Linux to improve compatibility. Learn more in the Command
Line blog: WSL September 2023 update .

Some VPNs have been tested and confirmed to be incompatible with WSL, including:

"Bitdefender" version 26.0.2.1
"OpenVPN" version 2.6.501
"Mcafee Safe Connect" version 2.16.1.124

[network]
generateResolvConf=false

Cisco Anyconnect VPN issues with WSL in NAT mode

WSL connectivity issues with VPNs when Mirrored
networking mode is on

https://www.cisco.com/c/en/us/td/docs/security/vpn_client/anyconnect/anyconnect410/administration/guide/b-anyconnect-admin-guide-4-10/troubleshoot-anyconnect.html#Cisco_Task_in_List_GUI.dita_3a9a8101-f034-4e9b-b24a-486ee47b5e9f
https://www.cisco.com/c/en/us/td/docs/security/vpn_client/anyconnect/anyconnect410/administration/guide/b-anyconnect-admin-guide-4-10/troubleshoot-anyconnect.html#Cisco_Task_in_List_GUI.dita_3a9a8101-f034-4e9b-b24a-486ee47b5e9f
https://www.cisco.com/c/en/us/td/docs/security/vpn_client/anyconnect/anyconnect410/administration/guide/b-anyconnect-admin-guide-4-10/troubleshoot-anyconnect.html#Cisco_Task_in_List_GUI.dita_3a9a8101-f034-4e9b-b24a-486ee47b5e9f
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#new-networking-mode-mirrored
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#new-networking-mode-mirrored

HTTP/S proxy mirroring can be configured using the autoProxy setting in the
experimental section of the WSL Configuration file. When applying this setting, note
these considerations:

PAC Proxy: WSL will configure the setting in Linux by Setting the "WSL_PAC_URL"
environment variable. Linux does not support PAC proxies by default.
Interactions with WSLENV: User defined environment variables take precedence
over those specified by this feature.

When enabled, the following apply to proxy settings on your Linux distributions:

The Linux environment variable, HTTP_PROXY , is set to the one or more HTTP
proxies found installed in the Windows HTTP proxy configuration.
The Linux environment variable, HTTPS_PROXY , is set to the one or more HTTPS
proxies found installed in the Windows HTTP proxy configuration.
The Linux environment variable, NO_PROXY , is set to bypass any HTTP/S proxies
found in the Windows configuration targets.
Every environment variable, except WSL_PAC_URL , is set to both lower case and
upper case. For example: HTTP_PROXY and http_proxy .

Learn more in the Command Line blog: WSL September 2023 update .

When WSL can’t connect to the internet, it might be because the DNS call to the
Windows host is blocked. This is because the networking packet for DNS sent by the
WSL VM to the Windows host is blocked by the existing networking configuration. DNS
tunneling fixes this by using a virtualization feature to communicate with Windows
directly, allowing the DNS name to be resolved without sending a networking packet.
This feature should improve network compatibility and allow you to get better internet
connectivity even if you have a VPN, specific firewall setup, or other networking
configurations.

DNS Tunneling can be configured using the dnsTunneling setting in the experimental
section of the WSL Configuration file. When applying this setting, note these
considerations:

Native Docker can have connectivity issues in WSL when DNS tunneling is enabled
– if the network has a policy to block DNS traffic to: 8.8.8.8

Considerations when using autoProxy for HttpProxy
Mirroring in WSL

Networking considerations with DNS tunneling

https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#autoproxy
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#autoproxy

If you use a VPN with WSL, turn on DNS tunneling. Many VPNs use NRPT policies,
which are only applied to WSL DNS queries when DNS tunneling is enabled.
The /etc/resolv.conf file in your Linux distribution has a 3 DNS servers maximum
limitation, while Windows may use more than 3 DNS servers. Using DNS tunneling
removes this limitation – all Windows DNS servers can now be used by Linux.
WSL will use Windows DNS suffixes in the following order (similar to the order
used by the Windows DNS client):

1. Global DNS suffixes
2. Supplemental DNS suffixes
3. Per-interface DNS suffixes
4. If DNS encryption (DoH, DoT) is enabled on Windows, encryption will be

applied to DNS queries from WSL. If users want to enable DoH, DoT inside
Linux, they need to disable DNS tunneling.

DNS queries from Docker containers (either Docker Desktop or native Docker
running in WSL) will bypass DNS tunneling. DNS tunneling cannot be leveraged to
apply host DNS settings and policies to Docker DNS traffic.
Docker Desktop has its own way (different from DNS tunneling) of applying host
DNS settings and policies to DNS queries from Docker containers.

Learn more in the Command Line blog: WSL September 2023 update .

When using Mirrored networking mode (the experimental networkingMode set to
mirrored), some inbound traffic received by the Windows host will never be steered to
the Linux VM. This traffic is as follows:

UDP port 68 (DHCP)
TCP port 135 (DCE endpoint resolution)
UDP port 5353 (mDNS)
TCP port 1900 (UPnP)
TCP port 2869 (SSDP)
TCP port 5004 (RTP)
TCP port 3702 (WSD)
TCP port 5357 (WSD)
TCP port 5358 (WSD)

WSL will automatically configure certain Linux networking settings when using mirrored
networking mode. Any user configurations of these settings while using mirrored

Issues with steering the inbound traffic received by the
Windows host to the WSL Virtual Machine

https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#dns-tunneling
https://devblogs.microsoft.com/commandline/windows-subsystem-for-linux-september-2023-update/#dns-tunneling

networking mode is not supported. Here is the list of settings WSL will configure:

Setting Name Value

https://sysctl-explorer.net/net/ipv4/accept_local/ Enabled (1)

https://sysctl-explorer.net/net/ipv4/route_localnet/ Enabled (1)

https://sysctl-explorer.net/net/ipv4/rp_filter/ Disabled (0)

https://sysctl-explorer.net/net/ipv6/accept_ra/ Disabled (0)

https://sysctl-explorer.net/net/ipv6/autoconf/ Disabled (0)

https://sysctl-explorer.net/net/ipv6/use_tempaddr/ Disabled (0)

addr_gen_mode Disabled (0)

disable_ipv6 Disabled (0)

https://sysctl-explorer.net/net/ipv4/arp_filter/ Enabled (1)

There is a known issue in which Docker Desktop containers with published ports (docker
run –publish/-p) will fail to be created. The WSL team is working with the Docker
Desktop team to address this issue. To work around the issue, use the host’s networking
namespace in the Docker container. Set the network type via the "--network host"
option used in the "docker run" command. An alternative workaround is to list the
published port number in the ignoredPorts setting of the experimental section in the
WSL Configuration file.

There is a known issue with Docker containers which have the Network Manager service
running. Symptoms include failures when trying to make loopback connections to the
host. It is recommended to stop the Network Manager service for WSL networking to be
configured properly.

Bash

ﾉ Expand table

Docker container issues in WSL2 with Mirrored
networking mode enabled when running under the
default networking namespace

Docker container issues when its Network Manager is
running

https://sysctl-explorer.net/net/ipv4/accept_local/
https://sysctl-explorer.net/net/ipv4/accept_local/
https://sysctl-explorer.net/net/ipv4/route_localnet/
https://sysctl-explorer.net/net/ipv4/route_localnet/
https://sysctl-explorer.net/net/ipv4/rp_filter/
https://sysctl-explorer.net/net/ipv4/rp_filter/
https://sysctl-explorer.net/net/ipv6/accept_ra/
https://sysctl-explorer.net/net/ipv6/accept_ra/
https://sysctl-explorer.net/net/ipv6/autoconf/
https://sysctl-explorer.net/net/ipv6/autoconf/
https://sysctl-explorer.net/net/ipv6/use_tempaddr/
https://sysctl-explorer.net/net/ipv6/use_tempaddr/
https://sysctl-explorer.net/net/ipv4/arp_filter/
https://sysctl-explorer.net/net/ipv4/arp_filter/

Depending on the configurations in the .wslconfig file, WSL will have the following
behavior wrt DNS suffixes:

When networkingMode is set to NAT:

Case 1) By default no DNS suffix is configured in Linux

Case 2) If DNS tunneling is enabled (dnsTunneling is set to true in .wslconfig) All
Windows DNS suffixes are configured in Linux, in the "search" setting of /etc/resolv.conf

The suffixes are configured in /etc/resolv.conf in the following order, similar to the order
in which Windows DNS client tries suffixes when resolving a name: global DNS suffixes
first, then supplemental DNS suffixes, then per-interface DNS suffixes.

When there is a change in the Windows DNS suffixes, that change will be automatically
reflected in Linux

Case 3) If DNS tunneling is disabled and SharedAccess DNS proxy is disabled
(dnsTunneling is set to false and dnsProxy is set to false in .wslconfig) A single DNS
suffix is configured in Linux, in the "domain" setting of /etc/resolv.conf

When there is a change in the Windows DNS suffixes, that change is not reflected in
Linux

The single DNS suffix configured in Linux is chosen from the per-interface DNS suffixes
(global and supplemental suffixes are ignored)

if Windows has multiple interfaces, a heuristic is used to choose the single DNS suffix
that will be configured in Linux. For example if there is a VPN interface on Windows, the
suffix is chosen from that interface. If no VPN interface is present, the suffix is chosen
from the interface that is most likely to give Internet connectivity.

When networkingMode is set to Mirrored:

All Windows DNS suffixes are configured in Linux, in the "search" setting of
/etc/resolv.conf

The suffixes are configured in /etc/resolv.conf in the same order as in case 2) from NAT
mode

sudo systemctl disable network-manager.service

DNS suffixes in WSL

When there is a change in the Windows DNS suffixes, that change will be automatically
reflected in Linux

Note: supplemental DNS suffixes can be configured in Windows using
SetInterfaceDnsSettings - Win32 apps | Microsoft Learn, with the flag
DNS_SETTING_SUPPLEMENTAL_SEARCH_LIST set in the Settings parameter

The default DNS configuration when WSL starts a container in NAT mode is to have the
NAT device on the Windows Host serve as the DNS ‘server’ for the WSL container. When
DNS queries are sent from the WSL container to that NAT device on the Windows Host,
the DNS packet is forwarded from the NAT device to the shared access service on the
Host; the response is sent in the reverse direction back to the WSL container. This packet
forwarding process to shared access requires a Firewall rule to allow that inbound DNS
packet, which is created by the HNS service when WSL initially asks HNS to create the
NAT virtual network for its WSL container.

Due to this NAT - shared access design, there are a few known configurations which can
break name resolution from WSL.

1. An Enterprise can push policy that does not allow locally defined Firewall rules, only
allowing Enterprise-policy defined rules.

When this is set by an Enterprise, the HNS-created Firewall rule is ignored, as it’s a
locally defined rule. For this configuration to work the Enterprise must create a Firewall
rule to allow UDP port 53 to the shared access service, or WSL can be set to use DNS
Tunneling. One can see if this is configured to not allow locally defined Firewall rules by
running the following. Note that this will show settings for all 3 profiles: Domain, Private,
and Public. If it’s set on any profile, then packets will be blocked if the WSL vNIC is
assigned that profile (default is Public). This is only a snippet of the first Firewall profile
that is returned in Powershell:

PowerShell

Troubleshooting DNS in WSL

PS C:\> Get-NetFirewallProfile -PolicyStore ActiveStore
Name : Domain
Enabled : True
DefaultInboundAction : Block
DefaultOutboundAction : Allow
AllowInboundRules : True
AllowLocalFirewallRules : False

https://learn.microsoft.com/en-us/windows/win32/api/netioapi/nf-netioapi-setinterfacednssettings

AllowLocalFirewallRules:False means the locally defined firewall rules, like that

by HNS, will not be applied or used.

2. And Enterprise can push down Group Policy and MDM policy settings that block all
inbound rules.

These settings override any Allow-Inbound Firewall rule. This setting will thus block the
HNS-created UDP Firewall rule, and thus will prevent WSL from resolving names. For this
configuration to work, WSL must be set to use DNS Tunneling. This setting will always
block the NAT DNS proxy.

From Group Policy:

Computer Configuration \ Administrative Templates \ Network \ Network Connections \
Windows Defender Firewall \ Domain Profile | Standard Profile

"Windows Defender Firewall: Do not allow exceptions" - Enabled

From MDM Policy:

./Vendor/MSFT/Firewall/MdmStore/PrivateProfile/Shielded

./Vendor/MSFT/Firewall/MdmStore/DomainProfile/Shielded

./Vendor/MSFT/Firewall/MdmStore/PublicProfile/Shielded

One can see if this is configured to not allow any inbound Firewall rules by running the
following (see above caveats on Firewall Profiles). This is only a snippet of the first
Firewall profile that is returned in Powershell:

powerShell

AllowInboundRules: False means that no inbound Firewall rules will be applied.

3. A user goes through the Windows Security setting apps and checks the control for
"Blocks all incoming connections, including those in the list of allowed apps."

Windows supports a user-opt-in for the same setting that can be applied by an
Enterprise referenced in #2 above. Users can open the “Windows Security” settings

PS C:\> Get-NetFirewallProfile -PolicyStore ActiveStore
Name : Domain
Enabled : True
DefaultInboundAction : Block
DefaultOutboundAction : Allow
AllowInboundRules : False

page, selects the “Firewall & network protection” option, selects the Firewall Profile they
want to configure (Domain, Private, or Public), and under “Incoming connections” check
the control labeled "Blocks all incoming connections, including those in the list of
allowed apps."

If this is set for the Public profile (this is the default profile for the WSL vNIC), the
Firewall rule created by HNS to allow the UDP packets to shared access will be blocked.

This must be unchecked for the NAT DNS proxy configuration to work from WSL, or
WSL can be set to use DNS Tunneling.

4. The HNS Firewall rule to allow the DNS packets to shared access can become
invalid, referencing a previous WSL interface identifier. This is a flaw within HNS which
has been fixed with the latest Windows 11 release. On earlier releases, if this occurs, it’s
not easily discoverable, but it has a simple work around:

Stop WSL

wsl.exe –shutdown

Delete the old HNS Firewall rule. This Powershell command should work in most
cases:

Get-NetFirewallRule -Name "HNS*" | Get-NetFirewallPortFilter | where Protocol

-eq UDP | where LocalPort -eq 53 | Remove-NetFirewallRule

Remove all HNS endpoints. Note: if HNS is used to manage other containers, such
as MDAG or Windows Sandbox, those should also be stopped.

hnsdiag.exe delete all

Reboot or restart the HNS service

Restart-Service hns

When WSL is restarted, HNS will create new Firewall rules, correctly targeting the
WSL interface.

If you have no network access, it might be due to a misconfiguration. Please see if the
FSE driver is running: ‘sc queryex FSE’. If that does not show FSE running, please check if
the PortTrackerEnabledMode registry value exits under this registry key: reg query
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters. If FSE is not running or

Troubleshooting Network Access Issues on Windows

installed, and PortTrackerEnabledMode exists, please delete that registry value and
reboot

Ghost adapters, or phantom Plug and Play (PnP) devices, refer to hardware components
that appear in your system but are not physically connected. These “ghost” devices can
cause confusion and clutter in your system settings. If you see ghost adapters when
running WSL in a Virtual Machine (VM), follow these manual steps to find and delete
these Phantom PnP devices. Microsoft is working on an automated solution that will not
require manual intervention. More information will be coming soon.

1. Open Device Manager
2. View > Show hidden devices

3. Open Network adapters

4. Right-click over the Ghosted network adapter and select Uninstall Device

Manual way to delete phantom adapters

Follow the instructions to Collect WSL logs in the WSL repo on GitHub to collect
detailed logs and file an issue on our GitHub.

There are two components of Windows Subsystem for Linux that can require updating.

1. To update the Windows Subsystem for Linux itself, use the command wsl --update
in PowerShell or CMD.

2. To update the specific Linux distribution user binaries, use the command: apt-get
update | apt-get upgrade in the Linux distribution that you are seeking to update.

Some packages use features that we haven't implemented yet. udev , for example, isn't
supported yet and causes several apt-get upgrade errors.

To fix issues related to udev , follow the following steps:

1. Write the following to /usr/sbin/policy-rc.d and save your changes.

Bash

2. Add execute permissions to /usr/sbin/policy-rc.d :

Starting WSL or installing a distribution returns an error
code

Updating WSL

Apt-get upgrade errors

#!/bin/sh
exit 101

https://github.com/Microsoft/WSL/blob/master/CONTRIBUTING.md#8-detailed-logs
https://github.com/Microsoft/WSL/blob/master/CONTRIBUTING.md#8-detailed-logs

Bash

3. Run the following commands:

Bash

This has to do with the fact that we do not support legacy console. To turn off legacy
console:

1. Open cmd.exe
2. Right click title bar -> Properties -> Uncheck Use legacy console
3. Click OK

The Windows Subsystem for Linux feature may be disabled during a Windows update. If
this happens the Windows feature must be re-enabled. Instructions for enabling the
Windows Subsystem for Linux can be found in the Manual Installation Guide.

WSL install will try to automatically change the Ubuntu locale to match the locale of
your Windows install. If you do not want this behavior you can run this command to
change the Ubuntu locale after install completes. You will have to relaunch bash.exe for
this change to take effect.

The below example changes to locale to en-US :

Bash

chmod +x /usr/sbin/policy-rc.d

dpkg-divert --local --rename --add /sbin/initctl
ln -s /bin/true /sbin/initctl

"Error: 0x80040306" on installation

"Error: 0x80040154" after Windows update

Changing the display language

sudo update-locale LANG=en_US.UTF8

Installation issues after Windows system restore

1. Delete the %windir%\System32\Tasks\Microsoft\Windows\Windows Subsystem for
Linux folder.
Note: Do not do this if your optional feature is fully installed and working.

2. Enable the WSL optional feature (if not already)
3. Reboot
4. lxrun /uninstall /full
5. Install bash

Some users have reported issues with specific firewall applications blocking internet
access in WSL. The firewalls reported are:

1. Kaspersky
2. AVG
3. Avast
4. Symantec Endpoint Protection

In some cases turning off the firewall allows for access. In some cases simply having the
firewall installed looks to block access.

If you are using Microsoft Defender Firewall, unchecking "Blocks all incoming
connections, including those in the list of allowed apps." allows for access.

For Windows Anniversary Update, version 1607, administrator privileges in Windows
are required to run ping in WSL. To run ping, run Bash on Ubuntu on Windows as an
administrator, or run bash.exe from a CMD/PowerShell prompt with administrator
privileges.

For later versions of Windows, Build 14926+, administrator privileges are no longer
required.

If while working with bash, you find that bash is hung (or deadlocked) and not
responding to inputs, help us diagnose the issue by collecting and reporting a memory
dump. Note that these steps will crash your system. Do not do this if you are not
comfortable with that or save your work prior to doing this.

To collect a memory dump

No internet access in WSL

Permission Denied error when using ping

Bash is hung

1. Change the memory dump type to "complete memory dump". While changing the
dump type, take a note of your current type.

2. Use the steps to configure crash using keyboard control.

3. Repro the hang or deadlock.

4. Crash the system using the key sequence from (2).

5. The system will crash and collect the memory dump.

6. Once the system reboots, report the memory.dmp to secure@microsoft.com. The
default location of the dump file is %SystemRoot%\memory.dmp or
C:\Windows\memory.dmp if C: is the system drive. In the email, note that the
dump is for the WSL or Bash on Windows team.

7. Restore the memory dump type to the original setting.

To find your PC's architecture and Windows build number, open
Settings > System > About

Look for the OS Build and System Type fields.

To find your Windows Server build number, run the following in PowerShell:

Check your build number

https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/How-to-Force-a-Diagnostic-Memory-Dump-When-a-Computer-Hangs/ba-p/257809
https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/How-to-Force-a-Diagnostic-Memory-Dump-When-a-Computer-Hangs/ba-p/257809

PowerShell

You can confirm that the Windows Subsystem for Linux is enabled by running the
following in an elevated PowerShell window:

PowerShell

Trying to connect your SSH server is failed with the following error: "Connection closed
by 127.0.0.1 port 22".

1. Make sure your OpenSSH Server is running:

Bash

and you've followed this tutorial: https://ubuntu.com/server/docs/service-openssh

2. Stop the sshd service and start sshd in debug mode:

Bash

3. Check the startup logs and make sure HostKeys are available and you don't see log
messages such as:

BASH

systeminfo | Select-String "^OS Name","^OS Version"

Confirm WSL is enabled

Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-
Linux

OpenSSH-Server connection issues

sudo service ssh status

sudo service ssh stop
sudo /usr/sbin/sshd -d

debug1: sshd version OpenSSH_7.2, OpenSSL 1.0.2g 1 Mar 2016
debug1: key_load_private: incorrect passphrase supplied to decrypt
private key
debug1: key_load_public: No such file or directory
Could not load host key: /etc/ssh/ssh_host_rsa_key

https://ubuntu.com/server/docs/service-openssh
https://ubuntu.com/server/docs/service-openssh

If you do see such messages and the keys are missing under /etc/ssh/ , you will have to
regenerate the keys or just purge&install openssh-server:

BASH

This error is related to being in a bad install state. Please complete the following steps
to try and fix this issue:

If you are running the enable WSL feature command from PowerShell, try using the
GUI instead by opening the start menu, searching for 'Turn Windows features on
or off' and then in the list select 'Windows Subsystem for Linux' which will install
the optional component.

Update your version of Windows by going to Settings, Updates, and clicking
'Check for Updates'

If both of those fail and you need to access WSL please consider upgrading in
place by reinstalling Windows using installation media and selecting 'Keep
Everything' to ensure your apps and files are preserved. You can find instructions
on how to do so at the Reinstall Windows 10 page .

If you're seeing this error:

Bash

debug1: key_load_private: No such file or directory
debug1: key_load_public: No such file or directory
Could not load host key: /etc/ssh/ssh_host_dsa_key
debug1: key_load_private: No such file or directory
debug1: key_load_public: No such file or directory
Could not load host key: /etc/ssh/ssh_host_ecdsa_key
debug1: key_load_private: No such file or directory
debug1: key_load_public: No such file or directory
Could not load host key: /etc/ssh/ssh_host_ed25519_key

sudo apt-get purge openssh-server
sudo apt-get install openssh-server

"The referenced assembly could not be found." when
enabling the WSL optional feature

Correct (SSH related) permission errors

https://support.microsoft.com/help/4000735/windows-10-reinstall
https://support.microsoft.com/help/4000735/windows-10-reinstall

To fix this, append the following to the /etc/wsl.conf file:

Bash

Please note that adding this command will include metadata and modify the file
permissions on the Windows files seen from WSL. Please see the File System Permissions
for more information.

If you are using openssh-server on Windows and trying to access WSL remotely, you
many see this error:

Windows Command Prompt

It's a known issue, when using the Store version of WSL. You can work around this today
by using WSL 1, or by using the in-Windows version of WSL. See
https://aka.ms/wslstoreinfo for more info.

Some distributions available in Microsoft Store are yet not fully compatible to run
Windows commands out of the box. If you get an error -bash: powershell.exe: command
not found running powershell.exe /c start . or any other Windows command, you
can resolve it following these steps:

1. In your WSL distribution run echo $PATH .
If it does not include: /mnt/c/Windows/system32 something is redefining the
standard PATH variable.

2. Check profile settings with cat /etc/profile .
If it contains assignment of the PATH variable, edit the file to comment out PATH

@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions 0777 for '/home/user/.ssh/private-key.pem' are too open.

[automount]
enabled = true
options = metadata,uid=1000,gid=1000,umask=0022

Fails to use WSL remotely by using OpenSSH on Windows

The file cannot be accessed by the system.

Running Windows commands fails inside a distribution

https://aka.ms/wslstoreinfo
https://aka.ms/wslstoreinfo

assignment block with a # character.
3. Check if wsl.conf is present cat /etc/wsl.conf and make sure it does not contain

appendWindowsPath=false , otherwise comment it out.
4. Restart distribution by typing wsl -t followed by distribution name or run wsl --

shutdown either in cmd or PowerShell.

We are aware of an issue affecting users where they are unable to boot after installing
WSL 2. While we fully diagnose those issue, users have reported that changing the
buffer size or installing the right drivers can help address this. Please view this
GitHub issue to see the latest updates on this issue.

Internet Connection Sharing (ICS) is a required component of WSL 2. The ICS service is
used by the Host Network Service (HNS) to create the underlying virtual network which
WSL 2 relies on for NAT, DNS, DHCP, and host connection sharing.

Disabling the ICS service (SharedAccess) or disabling ICS through group policy will
prevent the WSL HNS network from being created. This will result in failures when
creating a new WSL version 2 image, and the following error when trying to convert a
version 1 image to version 2.

Console

Systems that require WSL 2 should leave the ICS service (SharedAccess) in it's default
start state, Manual (Trigger Start), and any policy that disables ICS should be overwritten
or removed. While disabling the ICS service will break WSL 2, and we do not
recommend disabling ICS, portions of ICS can be disabled using these instructions

There are several differences to note if you're running an older version of Windows and
WSL, like the Windows 10 Creators Update (Oct 2017, Build 16299) or Anniversary
Update (Aug 2016, Build 14393). We recommend that you update to the latest Windows
version, but if that's not possible, we have outlined some of the differences below.

Interoperability command differences:

Unable to boot after installing WSL 2

WSL 2 errors when ICS is disabled

There are no more endpoints available from the endpoint mapper.

Using older versions of Windows and WSL

https://github.com/microsoft/WSL/issues/4784#issuecomment-639219363
https://github.com/microsoft/WSL/issues/4784#issuecomment-639219363
https://github.com/microsoft/WSL/issues/4784#issuecomment-639219363
https://github.com/microsoft/WSL/issues/4784#issuecomment-675702244
https://github.com/microsoft/WSL/issues/4784#issuecomment-675702244
https://github.com/microsoft/WSL/issues/4784
https://github.com/microsoft/WSL/issues/4784
https://aka.ms/DisableIPNat
https://aka.ms/DisableIPNat
ms-settings:windowsupdate
ms-settings:windowsupdate

bash.exe has been replaced with wsl.exe . Linux commands can be run from the
Windows Command Prompt or from PowerShell, but for early Windows versions,
you may need to use the bash command. For example: C:\temp> bash -c "ls -
la" . The WSL commands passed into bash -c are forwarded to the WSL process
without modification. File paths must be specified in the WSL format and care
must be taken to escape relevant characters. For example: C:\temp> bash -c "ls -
la /proc/cpuinfo" or C:\temp> bash -c "ls -la \"/mnt/c/Program Files\"" .
To see what commands are available for a particular distribution, run [distro.exe]
/? . For example, with Ubuntu: C:\> ubuntu.exe /? .
Windows path is included in the WSL $PATH .
When calling a Windows tool from a WSL distribution in an earlier version of
Windows 10, you will need to specify the directory path. For example, to call the
Windows Notepad app from your WSL command line, enter:
/mnt/c/Windows/System32/notepad.exe

To change the default user to root use this command in PowerShell: C:\> lxrun
/setdefaultuser root and then run Bash.exe to log in: C:\> bash.exe . Reset your
password using the distributions password command: $ passwd username and then
close the Linux command line: $ exit . From Windows command prompt or
Powershell, reset your default user back to your normal Linux user account: C:\>
lxrun.exe /setdefaultuser username .

If you originally installed WSL on a version of Windows 10 prior to Creators update (Oct
2017, Build 16299), we recommend that you migrate any necessary files, data, etc. from
the older Linux distribution you installed, to a newer distribution installed via the
Microsoft Store. To remove the legacy distribution from your machine, run the following
from a Command Line or PowerShell instance: wsl --unregister Legacy . You also have
the option to manually remove the older legacy distribution by deleting the
%localappdata%\lxss\ folder (and all it's sub-contents) using Windows File Explorer or
with PowerShell: rm -Recurse $env:localappdata/lxss/ .

Uninstall legacy version of WSL

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

issues and pull requests. For
more information, see our
contributor guide.

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Ftroubleshooting&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Ftroubleshooting.md&documentVersionIndependentId=91d93e7d-8206-77bf-ace0-f8c44810bf17&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+d83a849a-3167-a76c-7a10-caa1eb11b025+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Release Notes for Windows Subsystem
for Linux
Article • 06/27/2022

For general Windows information on build 21364 visit the Windows blog .

GUI apps are now available! For more information see this blog post .
Resolve error when accessing files via \\wsl.localhost\.
Fix potential deadlock in LxssManager service.

For general Windows information on build 21354 visit the Windows blog .

Switch the \wsl prefix to \wsl.localhost to avoid issues when there is a machine on
the network named "wsl". \wsl$ will continue to work.
Enable Linux quick access icon for wow processes.
Update issue where version 2 was always being passed via wslapi
RegisterDistribution.
Change the fmask of the /usr/lib/wsl/lib directory to 222 so files are marked as
executable [GH 3847]
Fix wsl service crash if Virtual Machine Platform is not enabled.

For general Windows information on build 21286 visit the Windows blog .

Introduce wsl.exe --cd command to set current working directory of a command.
Improve mapping of NTSTATUS to Linux error codes. [GH 6063]
Improve wsl.exe --mount error reporting.
Added an option to /etc/wsl.conf to enable start up commands:

Console

Build 21364

Build 21354

Build 21286

[boot]
command=<string>

https://blogs.windows.com/windows-insider/2021/04/21/announcing-windows-10-insider-preview-build-21364/
https://devblogs.microsoft.com/commandline/the-initial-preview-of-gui-app-support-is-now-available-for-the-windows-subsystem-for-linux-2/
https://blogs.windows.com/windows-insider/2021/04/07/announcing-windows-10-insider-preview-build-21354/
https://blogs.windows.com/windows-insider/2021/01/06/announcing-windows-10-insider-preview-build-21286/

For general Windows information on build 20226 visit the Windows blog .

Fix crash in LxssManager service. [GH 5902]

For general Windows information on build 20211 visit the Windows blog .

Introduce wsl.exe --mount for mounting physical or virtual disks. For more
information see Access Linux filesystems in Windows and WSL 2 .
Fix crash in LxssManager service when checking if the VM is idle. [GH 5768]
Support for compressed VHD files. [GH 4103]
Ensure that Linux user mode libs installed to c:\windows\system32\lxss\lib are
preserved across OS upgrade. [GH 5848]
Added the ability to list available distributions that can be installed with wsl --
install --list-distributions .
WSL instances are now terminated when the user logs off.

For general Windows information on build 20190 visit the Windows blog .

Fix bug preventing WSL1 instances from launching. [GH 5633]
Fix hang when redirecting Windows process output. [GH 5648]
Add %userprofile%\.wslconfig option to control the VM idle timeout
(wsl2.vmIdleTimeout=<time_in_ms>).
Support launching app execution aliases from WSL.
Added support for installing the WSL2 kernel and distributions to wsl.exe --install.

For general Windows information on build 20175 visit the Windows blog .

Adjust default memory assignment of WSL2 VM to be 50% of host memory or
8GB, whichever is less [GH 4166].
Change \\wsl$ prefix to \\wsl to support URI parsing. The old \\wsl$ path is still
supported.
Enable nested virtualization for WSL2 by default on amd64. You can disable this via
%userprofile%\.wslconfig ([wsl2] nestedVirtualization=false).

Build 20226

Build 20211

Build 20190

Build 20175

https://blogs.windows.com/windows-insider/2020/09/30/announcing-windows-10-insider-preview-build-20226/
https://blogs.windows.com/windows-insider/2020/09/10/announcing-windows-10-insider-preview-build-20211/
https://devblogs.microsoft.com/commandline/access-linux-filesystems-in-windows-and-wsl-2/
https://blogs.windows.com/windowsexperience/2020/08/12/announcing-windows-10-insider-preview-build-20190/
https://blogs.windows.com/windowsexperience/2020/07/22/announcing-windows-10-insider-preview-build-20175/

Make wsl.exe --update demand start Microsoft Update.
Support renaming over a read-only file in DrvFs.
Ensure error messages are always printed in the correct codepage.

For general Windows information on build 20150 visit the Windows blog .

WSL2 GPU compute see Windows blog for more information.
Introduce wsl.exe --install command line option to easily set up WSL.
Introduce wsl.exe --update command line option to manage updates to the WSL2
kernel.
Set WSL2 as the default.
Increase WSL2 vm graceful shutdown timeout.
Fix virtio-9p race condition when mapping device memory.
Don't run an elevated 9p server if UAC is disabled.

For general Windows information on build 19640 visit the Windows blog .

[WSL2] Stability improvements for virtio-9p (drvfs).

For general Windows information on build 19555 visit the Windows blog .

[WSL2] Use a memory cgroup to limit the amount of memory used by install and
conversion operations [GH 4669]
Make wsl.exe present when the Windows Subsystem for Linux optional component
is not enabled to improve feature discoverability.
Change wsl.exe to print help text if the WSL optional component is not installed
Fix race condition when creating instances
Create wslclient.dll that contains all command line functionality
Prevent crash during LxssManagerUser service stop
Fix wslapi.dll fast fail when distroName parameter is NULL

For general Windows information on build 19041 visit the Windows blog .

Build 20150

Build 19640

Build 19555

Build 19041

https://blogs.windows.com/windowsexperience/2020/06/17/announcing-windows-10-insider-preview-build-20150/
https://blogs.windows.com/windowsexperience/2020/06/17/announcing-windows-10-insider-preview-build-20150/
https://blogs.windows.com/windowsexperience/2020/06/03/announcing-windows-10-insider-preview-build-19640/
https://blogs.windows.com/windowsexperience/2020/01/30/announcing-windows-10-insider-preview-build-19555/
https://blogs.windows.com/windowsexperience/2019/12/10/announcing-windows-10-insider-preview-build-19041/

[WSL2] Clear the signal mask before launching the processes
[WSL2] Update Linux kernel to 4.19.84
Handle creation of /etc/resolv.conf symlink when the symlink is non-relative

For general Windows information on build 19028 visit the Windows blog .

[WSL2] Update Linux kernel to 4.19.81
[WSL2] Change the default permission of /dev/net/tun to 0666 [GH 4629]
[WSL2] Tweak default amount of memory assigned to Linux VM to be 80% of host
memory
[WSL2] fix interop server to handle requests with a timeout so bad callers cannot
hang the server

For general Windows information on build 19018 visit the Windows blog .

[WSL2] Use cache=mmap as the default for 9p mounts to fix dotnet apps
[WSL2] Fixes for localhost relay [GH 4340]
[WSL2] Introduce a cross-distro shared tmpfs mount for sharing state between
distros
Fix restoring persistent network drive for \\wsl$

For general Windows information on build 19013 visit the Windows blog .

[WSL2] Improve memory performance of WSL utility VM. Memory that is no longer
in use will be freed back to the host.
[WSL2] Update kernel version to 4.19.79. (add CONFIG_HIGH_RES_TIMERS,
CONFIG_TASK_XACCT, CONFIG_TASK_IO_ACCOUNTING, CONFIG_SCHED_HRTICK,
and CONFIG_BRIDGE_VLAN_FILTERING).
[WSL2] Fix input relay to handle cases where stdin is a pipe handle that is not
closed [GH 4424]
Make the check for \\wsl$ case-insensitive.

Console

Build 19028

Build 19018

Build 19013

[wsl2]
pageReporting = <bool> # Enable or disable the free memory page reporting

https://blogs.windows.com/windowsexperience/2019/11/19/announcing-windows-10-insider-preview-build-19028/
https://blogs.windows.com/windowsexperience/2019/11/05/announcing-windows-10-insider-preview-build-19018/
https://blogs.windows.com/windowsexperience/2019/10/29/announcing-windows-10-insider-preview-build-19013/

For general Windows information on build 19002 visit the Windows blog .

[WSL] Fix issue with handling of some Unicode characters:
https://github.com/microsoft/terminal/issues/2770
[WSL] Fix rare cases where distros could be unregistered if launched immediately
after a build-to-build upgrade.
[WSL] Fix minor issue with wsl.exe --shutdown where instance idle timers were not
cancelled.

For general Windows information on build 18995 visit the Windows blog .

[WSL2] Fix an issue where DrvFs mounts stopped working after an operation was
interrupted (e.g. ctrl-c) [GH 4377]
[WSL2] Fix handling of very large hvsocket messages [GH 4105]
[WSL2] Fix issue with interop when stdin is a file [GH 4475]
[WSL2] Fix service crash when unexpected network state is encountered [GH 4474]
[WSL2] Query the distro name from the interop server if the current process does
not have the environment variable
[WSL2] Fix issue with interop whe stdin is a file
[WSL2] Update Linux kernel version to 4.19.72
[WSL2] Add ability to specify additional kernel command line parameters via
.wslconfig

For general Windows information on build 18990 visit the Windows blog .

Improve the performance for directory listings in \\wsl$

feature (default true).
idleThreshold = <integer> # Set the idle threshold for memory compaction, 0
disables the feature (default 1).

Build 19002

Build 18995

[wsl2]
kernelCommandLine = <string> # Additional kernel command line arguments

Build 18990

https://blogs.windows.com/windowsexperience/2019/10/17/announcing-windows-10-insider-preview-build-19002/
https://github.com/microsoft/terminal/issues/2770
https://blogs.windows.com/windowsexperience/2019/10/03/announcing-windows-10-insider-preview-build-18995/
https://blogs.windows.com/windowsexperience/2019/09/24/announcing-windows-10-insider-preview-build-18990/

[WSL2] Inject additional boot entropy [GH 4416]
[WSL2] Fix for Windows interop when using su / sudo [GH 4465]

For general Windows information on build 18980 visit the Windows blog .

Fix reading symlinks that deny FILE_READ_DATA. This includes all the symlinks
Windows creates for backwards compatibility such as "C:\Document and Settings"
and a bunch of symlinks in the user profile directory
Make unexpected filesystem state non-fatal [GH 4334, 4305]
[WSL2] Add support for arm64 if your CPU / firmware supports virtualization
[WSL2] Allow unprivileged users to view kernel log
[WSL2] Fix output relay when stdout / stderr sockets have been closed [GH 4375]
[WSL2] Support battery and AC adapter passthrough
[WSL2] Update Linux kernel to 4.19.67
Add the ability to set default username in /etc/wsl.conf:

For general Windows information on build 18975 visit the Windows blog .

[WSL2] Fixed a number of localhost reliability issues [GH 4340]

For general Windows information on build 18970 visit the Windows blog .

[WSL2] Sync time with host time when system resumes from sleep state [GH 4245]
[WSL2] Create NT symlinks on the Windows volumes when possible.
[WSL2] Create distros in UTS, IPC, PID, and Mount namespaces.
[WSL2] Fix localhost port relay when server binds to localhost directly [GH 4353]
[WSL2] Fix interop when output is redirected [GH 4337]
[WSL2] Support translating absolute NT symlinks.
[WSL2] Update kernel to 4.19.59
[WSL2] Properly set subnet mask for eth0.

Build 18980

[user]
default=<string>

Build 18975

Build 18970

https://blogs.windows.com/windowsexperience/2019/09/11/announcing-windows-10-insider-preview-build-18980/
https://blogs.windows.com/windowsexperience/2019/09/06/announcing-windows-10-insider-preview-build-18975/
https://blogs.windows.com/windowsexperience/2019/08/29/announcing-windows-10-insider-preview-build-18970/

[WSL2] Change logic to break out of console worker loop when exit event is
signaled.
[WSL2] Eject distribution vhd when the distro is not running.
[WSL2] Fix config parsing library to correctly handle empty values.
[WSL2] Support Docker Desktop by creating cross distro mounts. A distro can opt-
in to this behavior by adding the following line to the /etc/wsl.conf file:

For general Windows information on build 18945 visit the Windows blog .

[WSL2] Allow listening tcp sockets in WSL2 to be accessible from the host by using
localhost:port
[WSL2] Fixes for install / conversion failures and additional diagnostics to track
down future issues [GH 4105]
[WSL2] Improve diagnosability of WSL2 network issues
[WSL2] Update kernel version to 4.19.55
[WSL2] Update kernel with config options required for docker [GH 4165]
[WSL2] Increase the number of CPUs assigned to the lightweight utility VM to be
the same as the host (was previously capped at 8 by CONFIG_NR_CPUS in the
kernel config) [GH 4137]
[WSL2] Create a swap file for the WSL2 lightweight VM
[WSL2] Allow user mounts to be visible via \\wsl$\distro (for example sshfs) [GH
4172]
[WSL2] Improve 9p filesystem performance
[WSL2] Ensure vhd ACL does not grow unbounded [GH 4126]
[WSL2] Update kernel config to support squashfs and xt_conntrack [GH 4107,
4123]
[WSL2] Fix for interop.enabled /etc/wsl.conf option [GH 4140]
[WSL2] Return ENOTSUP if the file system does not support EAs
[WSL2] Fix CopyFile hang with \\wsl$
Switch default umask to 0022 and add filesystem.umask setting to /etc/wsl.conf
Fix wslpath to properly resolve symlinks, this was regressed in 19h1 [GH 4078]

[automount]
crossDistro = true

Build 18945

WSL

https://blogs.windows.com/windowsexperience/2019/07/26/announcing-windows-10-insider-preview-build-18945/

Introduce %UserProfile%\.wslconfig file for tweaking WSL2 settings

For general Windows information on build 18917 visit the Windows blog .

WSL 2 is now available! Please see blog for more details.
Fix a regression where launching Windows processes via symlinks did not work
correctly [GH 3999]
Add wsl.exe --list --verbose, wsl.exe --list --quiet, and wsl.exe --import --version
options to wsl.exe
Add wsl.exe --shutdown option
Plan 9: Allow opening a directory for write to succeed

For general Windows information on build 18890 visit the Windows blog .

Non-blocking socket leak [GH 2913]
EOF input to terminal can block subsequent reads [GH 3421]
Update resolv.conf header to refer to wsl.conf [discussed in GH 3928]

[wsl2]
kernel=<path> # An absolute Windows path to a custom Linux
kernel.
memory=<size> # How much memory to assign to the WSL2 VM.
processors=<number> # How many processors to assign to the WSL2 VM.
swap=<size> # How much swap space to add to the WSL2 VM. 0
for no swap file.
swapFile=<path> # An absolute Windows path to the swap vhd.
localhostForwarding=<bool> # Boolean specifying if ports bound to wildcard
or localhost in the WSL2 VM should be connectable from the host via
localhost:port (default true).

<path> entries must be absolute Windows paths with escaped backslashes,
for example C:\\Users\\Ben\\kernel
<size> entries must be size followed by unit, for example 8GB or 512MB

Build 18917

WSL

Build 18890

WSL

https://blogs.windows.com/windowsexperience/2019/06/12/announcing-windows-10-insider-preview-build-18917/
https://devblogs.microsoft.com/commandline/wsl-2-is-now-available-in-windows-insiders/
https://blogs.windows.com/windowsexperience/2019/05/01/announcing-windows-10-insider-preview-build-18890/

Deadlock in epoll delete code [GH 3922]
Handle spaces in arguments to --import and –export [GH 3932]
Extending mmap'd files does not work properly [GH 3939]
Fix issue with ARM64 \\wsl$ access not working properly
Add better default icon for wsl.exe

For general Windows information on build 18342 visit the Windows blog .

We've added the ability for users to access Linux files in a WSL distro from
Windows. These files can be accessed through the command line, and also
Windows apps, like file explorer, VSCode, etc. can interact with these files. Access
your files by navigating to \\wsl$\<distro_name>, or see a list of running
distributions by navigating to \\wsl$
Add additional CPU info tags and fix Cpus_allowed[_list] values [GH 2234]
Support exec from non-leader thread [GH 3800]
Treat configuration update failures as non-fatal [GH 3785]
Update binfmt to properly handle offsets [GH 3768]
Enable mapping network drives for Plan 9 [GH 3854]
Support Windows -> Linux and Linux -> Windows path translation for bind
mounts
Create read-only sections for mappings on files opened read-only

For general Windows information on build 18334 visit the Windows blog .

Redesign the way that Windows time zone is mapped to a Linux time zone [GH
3747]
Fix memory leaks and add new string translation functions [GH 3746]
SIGCONT on a threadgroup with no threads is a no-op [GH 3741]
Correctly display socket and epoll file descriptors in /proc/self/fd

Build 18342

WSL

Build 18334

WSL

Build 18305

https://blogs.windows.com/windowsexperience/2019/02/20/announcing-windows-10-insider-preview-build-18342/
https://blogs.windows.com/windowsexperience/2019/02/08/announcing-windows-10-insider-preview-build-18334/

For general Windows information on build 18305 visit the Windows blog .

pthreads lose access to files when the primary thread exits [GH 3589]
TIOCSCTTY should ignore the "force" parameter unless it is required [GH 3652]
wsl.exe command line improvements and addition of import / export functionality.

WSL

Usage: wsl.exe [Argument] [Options...] [CommandLine]

Arguments to run Linux binaries:

 If no command line is provided, wsl.exe launches the default shell.

 --exec, -e <CommandLine>
 Execute the specified command without using the default Linux shell.

 --
 Pass the remaining command line as is.

Options:
 --distribution, -d <DistributionName>
 Run the specified distribution.

 --user, -u <UserName>
 Run as the specified user.

Arguments to manage Windows Subsystem for Linux:

 --export <DistributionName> <FileName>
 Exports the distribution to a tar file.
 The filename can be - for standard output.

 --import <DistributionName> <InstallLocation> <FileName>
 Imports the specified tar file as a new distribution.
 The filename can be - for standard input.

 --list, -l [Options]
 Lists distributions.

 Options:
 --all
 List all distributions, including distributions that are
currently
 being installed or uninstalled.

 --running
 List only distributions that are currently running.

 -setdefault, -s <DistributionName>

https://blogs.windows.com/windowsexperience/2018/12/19/announcing-windows-10-insider-preview-build-18305/

For general Windows information on build 18277 visit the Windows blog .

Fix "no such interface supported" error introduced in build 18272 [GH 3645]
Ignore the MNT_FORCE flag for umount syscall [GH 3605]
Switch WSL interop to use the official CreatePseudoConsole API
Maintain no timeout value when FUTEX_WAIT restarts

For general Windows information on build 18272 visit the Windows blog .

WARNING: There is an issue in this build that makes WSL inoperable. When trying
to launch your distribution you will see a "No such interface supported" error. The
issue has been fixed and will be in next week's Insider Fast build. If you've installed
this build you can roll back to the previous Windows build using "Go back to the
previous version of Windows 10" in Settings->Update & Security->Recovery.

For general Windows information on build 18267 visit the Windows blog .

 Sets the distribution as the default.

 --terminate, -t <DistributionName>
 Terminates the distribution.

 --unregister <DistributionName>
 Unregisters the distribution.

 --upgrade <DistributionName>
 Upgrades the distribution to the WslFs file system format.

 --help
 Display usage information.

Build 18277

WSL

Build 18272

WSL

Build 18267

WSL

https://blogs.windows.com/windowsexperience/2018/11/07/announcing-windows-10-insider-preview-build-18277/
https://blogs.windows.com/windowsexperience/2018/10/31/announcing-windows-10-insider-preview-build-18272/
https://blogs.windows.com/windowsexperience/2018/10/24/announcing-windows-10-insider-preview-build-18267/

Fix issue where zombie process may not be reaped and remain indefinitely.
WslRegisterDistribution hangs if error message exceeds max length [GH 3592]
Allow fsync to succeed for read-only files on DrvFs [GH 3556]
Ensure that /bin and /sbin directories exist before creating symlinks inside [GH
3584]
Added an instance termination timeout mechanism for WSL instances. The timeout
is currently set to 15 seconds, meaning the instance will terminate 15 seconds after
the last WSL process exits. To terminate a distribution immediately, use:

For general Windows information on build 17763 visit the Windows blog .

Setpriority syscall permission check too strict for changing same thread priority
[GH 1838]
Ensure that unbiased interrupt time is used for boot time to avoid returning
negative values for clock_gettime(CLOCK_BOOTTIME) [GH 3434]
Handle symlinks in the WSL binfmt interpreter [GH 3424]
Better handling of threadgroup leader file descriptor cleanup.
Switch WSL to use KeQueryInterruptTimePrecise instead of
KeQueryPerformanceCounter to avoid overflow [GH 3252]
Ptrace attach may cause bad return value from system calls [GH 1731]
Fix several AF_UNIX related issues [GH 3371]
Fix issue that could cause WSL interop to fail if the current working directory is less
than 5 characters long [GH 3379]
Avoid one second delay failing loopback connections to non-existent ports [GH
3286]
Add /proc/sys/fs/file-max stub file [GH 2893]
More accurate IPV6 scope information.
PR_SET_PTRACER support [GH 3053]
Pipe filesystem inadvertently clearing edge-triggered epoll event [GH 3276]
Win32 executable launched via NTFS symlink doesn't respect symlink name [GH
2909]
Improved zombie support [GH 1353]

wslconfig.exe /terminate <DistributionName>

Build 17763 (1809)

WSL

https://blogs.windows.com/windowsexperience/2018/10/02/how-to-get-the-windows-10-october-2018-update/

Add wsl.conf entries for controlling Windows interop behavior [GH 1493]

Fix for getsockname not always returning UNIX socket family type [GH 1774]
Add support for TIOCSTI [GH 1863]
Non-blocking sockets in the process of connecting should return EAGAIN for write
attempts [GH 2846]
Support interop on mounted VHDs [GH 3246, 3291]
Fix permission checking issue on root folder [GH 3304]
Limited support for TTY keyboard ioctls KDGKBTYPE, KDGKBMODE and
KDSKBMODE.
Windows UI apps should execute even when launched in the background.
Add wsl -u or --user option [GH 1203]
Fix WSL launch issues when fast startup is enabled [GH 2576]
Unix sockets need to retain disconnected peer credentials [GH 3183]
Non-blocking Unix sockets failing indefinitely with EAGAIN [GH 3191]
case=off is the new default drvfs mount type [GH 2937, 3212, 3328]

See blog for more information.
Add wslconfig /terminate to stop running distributions.
Fix issue with the WSL shell context menu entries that do not correctly handle
paths with spaces.
Expose per-directory case sensitivity as an extended attribute
ARM64: Emulate cache maintenance operations. Resolve dotnet issue .
DrvFs: only unescape characters in the private range that correspond to an
escaped character.
Fix off-by-one error in ELF parser interpreter length validation [GH 3154]
WSL absolute timers with a time in the past do not fire [GH 3091]
Ensure newly created reparse points are listed as such in the parent directory.
Atomically create case sensitive directories in DrvFs.
Fixed an additional issue where multithreaded operations could return ENOENT
even though the file exists. [GH 2712]
Fixed WSL launch failure when UMCI is enabled. [GH 3020]
Add explorer context menu to launch WSL [GH 437, 603, 1836]. To use, hold shift
and right-click when in an explorer window.
Fix Unix socket non-blocking behavior [GH 2822, 3100]

 [interop]

 enabled=false # enable launch of Windows binaries; default is true

 appendWindowsPath=false # append Windows path to $PATH variable;
default is true

https://blogs.msdn.microsoft.com/commandline/2018/06/14/improved-per-directory-case-sensitivity-support-in-wsl/
https://github.com/dotnet/core/issues/1561

Fix hanging NETLINK command as reported in GH 2026.
Add support for mount propagation flags [GH 2911].
Fix issue with truncate not causing inotify events [GH 2978].
Add --exec option for wsl.exe to invoke a single binary without a shell.
Add --distribution option for wsl.exe to select a specific distro.
Limited support for dmesg. Applications can now log to dmesg. WSL driver logs
limited information to dmesg. In future, this can be extended to carry other
information/diagnostics from the driver.

Note: dmesg is currently supported through the /dev/kmsg device interface.
syslog syscall interface is not yet supported. And, so, some of the dmesg
command line options such as -S , -C don't work.

Change default gid and mode of serial devices to match native [GH 3042]
DrvFs now supports extended attributes.

Note: DrvFs has some limitations on the name of extended attributes. Some
characters (like '/', ':' and '*') are not allowed, and extended attribute names are
not case sensitive on DrvFs

For general Windows information on build 18252 visit the Windows Blog .

Move init and bsdtar binaries out of lxssmanager dll and into a separate tools
folder
Fix race around closing file descriptor when using CLONE_FILES
Handle optional fields in /proc/pid/mountinfo when translating DrvFs paths
Allow DrvFs mknod to succeed without metadata support for S_IFREG
Readonly files created on DrvFs should have the readonly attribute set [GH 3411]
Add /sbin/mount.drvfs helper to handle DrvFs mounting
Use POSIX rename in DrvFs.
Allow path translation on volumes without a volume GUID.

For general Windows information on build 17738 visit the Windows Blog .

Build 18252 (Skip Ahead)

WSL

Build 17738 (Fast)

WSL

https://blogs.windows.com/windowsexperience/2018/10/03/announcing-windows-10-insider-preview-build-18252/
https://blogs.windows.com/windowsexperience/2018/08/14/announcing-windows-10-insider-preview-build-17738/

Setpriority syscall permission check too strict for changing same thread priority
[GH 1838]
Ensure that unbiased interrupt time is used for boot time to avoid returning
negative values for clock_gettime(CLOCK_BOOTTIME) [GH 3434]
Handle symlinks in the WSL binfmt interpreter [GH 3424]
Better handling of threadgroup leader file descriptor cleanup.

For general Windows information on build 17728 visit the Windows Blog .

Switch WSL to use KeQueryInterruptTimePrecise instead of
KeQueryPerformanceCounter to avoid overflow [GH 3252]
Ptrace attach may cause bad return value from system calls [GH 1731]
Fix a number of AF_UNIX related issues [GH 3371]
Fix issue that could cause WSL interop to fail if the current working directory is less
than 5 characters long [GH 3379]

For general Windows information on build 18204 visit the Windows Blog .

Pipe filesystem inadvertently clearing edge-triggered epoll event [GH 3276]
Win32 executable launched via NTFS symlink doesn't respect symlink name [GH
2909]

For general Windows information on build 17723 visit the Windows Blog .

Avoid one second delay failing loopback connections to non-existent ports [GH
3286]
Add /proc/sys/fs/file-max stub file [GH 2893]

Build 17728 (Fast)

WSL

Build 18204 (Skip Ahead)

WSL

Build 17723 (Fast)

WSL

https://blogs.windows.com/windowsexperience/2018/07/31/announcing-windows-10-insider-preview-build-17728/
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204/
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204/

More accurate IPV6 scope information.
PR_SET_PTRACER support [GH 3053]
Pipe filesystem inadvertently clearing edge-triggered epoll event [GH 3276]
Win32 executable launched via NTFS symlink doesn't respect symlink name [GH
2909]

For general Windows information on build 17713 visit the Windows Blog .

Improved zombie support [GH 1353]
Add wsl.conf entries for controlling Windows interop behavior [GH 1493]

Fix for getsockname not always returning UNIX socket family type [GH 1774]
Add support for TIOCSTI [GH 1863]
Non-blocking sockets in the process of connecting should return EAGAIN for write
attempts [GH 2846]
Support interop on mounted VHDs [GH 3246, 3291]
Fix permission checking issue on root folder [GH 3304]
Limited support for TTY keyboard ioctls KDGKBTYPE, KDGKBMODE and
KDSKBMODE.
Windows UI apps should execute even when launched in the background.

For general Windows information on build 17704 visit the Windows Blog .

Add wsl -u or --user option [GH 1203]
Fix WSL launch issues when fast startup is enabled [GH 2576]

Build 17713

WSL

 [interop]

 enabled=false # enable launch of Windows binaries; default is true

 appendWindowsPath=false # append Windows path to $PATH variable;
default is true

Build 17704

WSL

https://blogs.windows.com/windowsexperience/2018/07/11/announcing-windows-10-insider-preview-build-17713/
https://blogs.windows.com/windowsexperience/2018/06/27/announcing-windows-10-insider-preview-build-17704/

Unix sockets need to retain disconnected peer credentials [GH 3183]
Non-blocking Unix sockets failing indefinitely with EAGAIN [GH 3191]
case=off is the new default drvfs mount type [GH 2937, 3212, 3328]

See blog for more information.
Add wslconfig /terminate to stop running distributions.

For general Windows information on build 17692 visit the Windows Blog .

Fix issue with the WSL shell context menu entries that do not correctly handle
paths with spaces.
Expose per-directory case sensitivity as an extended attribute
ARM64: Emulate cache maintenance operations. Resolve dotnet issue .
DrvFs: only unescape characters in the private range that correspond to an
escaped character.

For general Windows information on build 17686 visit the Windows Blog .

Fix off-by-one error in ELF parser interpreter length validation [GH 3154]
WSL absolute timers with a time in the past do not fire [GH 3091]
Ensure newly created reparse points are listed as such in the parent directory.
Atomically create case sensitive directories in DrvFs.

For general Windows information on build 17677 visit the Windows Blog .

Fixed an additional issue where multithreaded operations could return ENOENT
even though the file exists. [GH 2712]
Fixed WSL launch failure when UMCI is enabled. [GH 3020]

Build 17692

WSL

Build 17686

WSL

Build 17677

WSL

https://blogs.msdn.microsoft.com/commandline/2018/06/14/improved-per-directory-case-sensitivity-support-in-wsl/
https://blogs.windows.com/windowsexperience/2018/06/14/announcing-windows-10-insider-preview-build-17692
https://github.com/dotnet/core/issues/1561
https://blogs.windows.com/windowsexperience/2018/06/06/announcing-windows-10-insider-preview-build-17686
https://blogs.windows.com/windowsexperience/2018/05/24/announcing-windows-10-insider-preview-build-17677/

For general Windows information on build 17666 visit the Windows Blog .

Add explorer context menu to launch WSL [GH 437, 603, 1836]. To use hold shift
and right-click when in an explorer window.
Fix unix socket non-blocking behavior [GH 2822, 3100]
Fix hanging NETLINK command as reported in GH 2026.
Add support for mount propagation flags [GH 2911].
Fix issue with truncate not causing inotify events [GH 2978].
Add --exec option for wsl.exe to invoke a single binary without a shell.
Add --distribution option for wsl.exe to select a specific distro.

For general Windows information on build 17655 visit the Windows Blog .

Limited support for dmesg. Applications can now log to dmesg. WSL driver logs
limited information to dmesg. In future, this can be extended to carry other
information/diagnostics from the driver.

Note: dmesg is currently supported through the /dev/kmsg device interface.
syslog sycall interface is not yet supported. And, so, some of the dmesg
command line options such as -S , -C don't work.

Fixed an issue where multithreaded operations could return ENOENT even though
the file exists. [GH 2712]

For general Windows information on build 17639 visit the Windows Blog .

Build 17666

WSL

WARNING: There is an issue preventing WSL from running on some
AMD chipsets [GH 3134]. A fix is ready and making its way to the
Insider Build branch.

Build 17655 (Skip Ahead)

WSL

Build 17639 (Skip Ahead)

WSL

https://blogs.windows.com/windowsexperience/2018/05/09/announcing-windows-10-insider-preview-build-17666/
https://blogs.windows.com/windowsexperience/2018/04/25/announcing-windows-10-insider-preview-build-17655-for-skip-ahead/
https://blogs.windows.com/windowsexperience/2018/04/04/announcing-windows-10-insider-preview-build-17639-for-skip-ahead/

Change default gid and mode of serial devices to match native [GH 3042]
DrvFs now supports extended attributes.

Note: DrvFs has some limitations on the name of extended attributes. In
particular, some characters (like '/', ':' and '*') are not allowed, and extended
attribute names are not case sensitive on DrvFs

For general Windows information on build 17133 visit the Windows Blog .

Fix for hang in WSL. [GH 3039, 3034]

For general Windows information on build 17128 visit the Windows Blog .

None

For general Windows information on build 17627 visit the Windows Blog .

Add support for the futex pi-aware operations. [GH 1006]
Note that priorities are not currently a supported WSL feature so there are
limitations, but standard usage should be unblocked.

Windows firewall support for WSL processes. [GH 1852]
For example, to allow the WSL python process to listen on any port, use the
elevated Windows cmd: netsh.exe advfirewall firewall add rule
name=wsl_python dir=in action=allow program="C:\users\

<username>\appdata\local\packages\canonicalgrouplimited.ubuntuonwindows_79r

hkp1fndgsc\localstate\rootfs\usr\bin\python2.7" enable=yes

For additional details on how to add firewall rules, see link
Respect user's default shell when using wsl.exe. [GH 2372]

Build 17133 (Fast)

WSL

Build 17128 (Fast)

WSL

Build 17627 (Skip Ahead)

WSL

https://blogs.windows.com/windowsexperience/2018/03/27/announcing-windows-10-insider-preview-build-17133-for-fast/
https://blogs.windows.com/windowsexperience/2018/03/23/announcing-windows-10-insider-preview-build-17128-for-fast/
https://blogs.windows.com/windowsexperience/2018/03/21/announcing-windows-10-insider-preview-build-17627-for-skip-ahead/
https://support.microsoft.com/help/947709/how-to-use-the-netsh-advfirewall-firewall-context-instead-of-the-netsh

Report all network interfaces as ethernet. [GH 2996]
Better handling of corrupt /etc/passwd file. [GH 3001]

No fixes.

Testing in progress.

For general Windows information on build 17618 visit the Windows Blog .

Introduce pseudoconsole functionality for NT interop [GH 988, 1366, 1433, 1542,
2370, 2406].
The legacy install mechanism (lxrun.exe) has been deprecated. The supported
mechanism for installing distributions is through the Microsoft Store.

No fixes.

Testing in progress.

For general Windows information on build 17110 visit the Windows Blog .

Allow /init to be terminated from Windows [GH 2928].
DrvFs now uses per-directory case sensitivity by default (equivalent to the
"case=dir" mount option).

Console

LTP Results:

Build 17618 (Skip Ahead)

WSL

Console

LTP Results:

Build 17110

WSL

https://blogs.windows.com/windowsexperience/2018/03/07/announcing-windows-10-insider-preview-build-17618-skip-ahead/
https://blogs.windows.com/windowsexperience/2018/02/27/announcing-windows-10-insider-preview-build-17110-fast/

Using "case=force" (the old behavior) requires setting a registry key. Run the
following command to enable "case=force" if you need to use it: reg add
HKLM\SYSTEM\CurrentControlSet\Services\lxss /v
DrvFsAllowForceCaseSensitivity /t REG_DWORD /d 1
If you have existing directories created with WSL in older version of Windows
which need to be case sensitive, use fsutil.exe to mark them as case sensitive:
fsutil.exe file setcasesensitiveinfo <path> enable

NULL terminate strings returned from the uname syscall.

No fixes.

Testing in progress.

For general Windows information on build 17107 visit the Windows Blog .

Support TCSETSF and TCSETSW on master pty endpoints [GH 2552].
Starting simultaneous interop processes can result in EINVAL [GH 2813].
Fix PTRACE_ATTACH to show proper tracing status in /proc/pid/status.
Fix race where short-lived processes cloned with both the CLEARTID and SETTID
flags could exit without clearing the TID address.
Display a message when upgrading the Linux file system directories when moving
from a pre-17093 build. For more details on the 17093 file system changes, see the
release notes for 17093 .

No fixes.

Testing in progress.

Console

LTP Results:

Build 17107

WSL

Console

LTP Results:

https://blogs.windows.com/windowsexperience/2018/02/23/announcing-windows-10-insider-preview-build-17107-fast-ring/
https://github.com/MicrosoftDocs/WSL/blob/live/WSL/release-notes.md#build-17093

For general Windows information on build 17101 visit the Windows Blog .

Support for signalfd. [GH 129]
Support file-names containing illegal NTFS characters by encoding them as private
Unicode characters. [GH 1514]
Auto mount will fallback to read-only when write is not supported. [GH 2603]
Allow pasting of Unicode surrogate pairs (like emoji characters). [GH 2765]
Pseudo-files in /proc and /sys should return read and write ready from select, poll,
epoll, et al. [GH 2838]
Fix issue that could cause service to go into infinite loop when the registry has
been tampered with or is corrupt.
Fix netlink messages to work with newer (upstream 4.14) version of iproute2.

No fixes.

Testing in progress.

For general Windows information on build 17093 visit the Windows Blog .

When starting WSL for the first time after upgrading to this build, it needs to perform
some work upgrading the Linux file system directories. This may take up to several
minutes, so WSL may appear to start slowly. This should only happen once for each
distribution you have installed from the store.

Improved case sensitivity support in DrvFs.
DrvFs now supports per-directory case sensitivity. This is a new flag that can be
set on directories to indicate all operations in those directories should be

Build 17101

WSL

Console

LTP Results:

Build 17093

Important:

https://blogs.windows.com/windowsexperience/2018/02/14/announcing-windows-10-insider-preview-build-17101-fast-build-17604-skip-ahead/
https://blogs.windows.com/windowsexperience/2018/02/07/announcing-windows-10-insider-preview-build-17093-pc/

treated as case sensitive, which allows even Windows applications to correctly
open files that differ only by case.
DrvFs has new mount options controlling case sensitivity on a per-directory
basis

case=force: all directories are treated as case sensitive (except for the drive
root). New directories created with WSL are marked as case sensitive. This is
the legacy behavior except for marking new directories case sensitive.
case=dir: only directories with the per-directory case sensitivity flag are
treated as case sensitive; other directories are case insensitive. New
directories created with WSL are marked as case sensitive.
case=off: only directories with the per-directory case sensitivity flag are
treated as case sensitive; other directories are case insensitive. New
directories created with WSL are marked as case insensitive.

Note: directories created by WSL in previous releases do not have this flag set,
so will not be treated as case sensitive if you use the "case=dir" option. A way to
set this flag on existing directories is coming soon.
Example of mounting with these options (for existing drives, you must first
unmount before you can mount with different options): sudo mount -t drvfs C:
/mnt/c -o case=dir
For now, case=force is still the default option. This will be changed to case=dir
in the future.

You can now use forward slashes in Windows paths when mounting DrvFs, e.g.:
sudo mount -t drvfs //server/share /mnt/share
WSL now processes the /etc/fstab file during instance start [GH 2636].

This is done prior to automatically mounting DrvFs drives; any drives that were
already mounted by fstab will not be remounted automatically, allowing you to
change the mount point for specific drives.
This behavior can be turned off using wsl.conf.

The mount, mountinfo and mountstats files in /proc properly escape special
characters like backslashes and spaces [GH 2799]
Special files created with DrvFs such as WSL symbolic links, or fifos and sockets
when metadata is enabled, can now be copied and moved from Windows.

We added a method for you to automatically configure certain functionality in WSL that
will be applied every time you launch the subsystem. This includes automount options
and network configuration. Learn more about it in our blog post at:
https://aka.ms/wslconf

WSL is more configurable with wsl.conf

https://aka.ms/wslconf

WSL and Windows applications can now communicate with each other over Unix
sockets. Imagine you want to run a service in Windows and make it available to both
Windows and WSL apps. Now, that's possible with Unix sockets. Read more in our blog
post at https://aka.ms/afunixinterop

Support mmap() with MAP_NORESERVE [GH 121, 2784]
Support CLONE_PTRACE and CLONE_UNTRACED [GH 121, 2781]
Handle non-SIGCHLD termination signal in clone [GH 121, 2781]
Stub /proc/sys/fs/inotify/max_user_instances and
/proc/sys/fs/inotify/max_user_watches [GH 1705]
Error loading ELF binaries that contain load headers with non-zero offsets [GH
1884]
Zero out trailing page bytes when loading images.
Reduce cases where execve silently terminates process

No fixes.

Testing in progress.

For general Windows information on build 17083 visit the Windows Blog .

Fixed bugcheck related to epoll [GH 2798, 2801, 2857]
Fixed hangs when turning off ASLR [GH 1185, 2870]
Ensure mmap operations appear atomic [GH 2732]

AF_UNIX allows socket connections between Linux processes on
WSL and Windows native processes

WSL

Console

LTP Results:

Build 17083

WSL

Console

https://aka.ms/afunixinterop
https://blogs.windows.com/windowsexperience/2018/01/24/announcing-windows-10-insider-preview-build-17083-for-pc/

No fixes.

Testing in progress.

For general Windows information on build 17074 visit the Windows Blog .

Fixed storage format of DrvFs metadata [GH 2777]
Important: DrvFs metadata created before this build will show up incorrectly or
not at all. To fix affected files, use chmod and chown to re-apply the metadata.
Fixed issue with multiple signals and restartable syscalls.

No fixes.

Testing in progress.

For general Windows information on build 17063 visit the Windows Blog .

DrvFs supports additional Linux metadata. This allows setting the owner and mode
of files using chmod/chown, and also the creation of special files such as fifos, unix
sockets and device files. This is disabled by default for now since it's still
experimental. Note: We fixed a bug in the metadata format used by DrvFs. While
metadata works on this build for experimentation, future builds will not correctly
read metadata created by this build. You might need to manually update owner for
modified files and devices with a custom device ID will have to be recreated.

LTP Results:

Build 17074

WSL

Console

LTP Results:

Build 17063

WSL

https://blogs.windows.com/windowsexperience/2018/01/11/announcing-windows-10-insider-preview-build-17074-pc/
https://blogs.windows.com/windowsexperience/2017/12/19/announcing-windows-10-insider-preview-build-17063-pc/

To enable, mount DrvFs with the metadata option (to enable it on an existing
mount, you must first unmount it):

Bash

Linux permissions are added as additional metadata to the file; they do not affect
the Windows permissions. Remember, editing a file using a Windows editor may
remove the metadata. In this case, the file will revert to its default permissions.

Added mount options to DrvFs to control files without metadata.
uid: the user ID used for the owner of all files.
gid: the group ID used for the owner of all files.
umask: an octal mask of permissions to exclude for all files and directories.
fmask: an octal mask of permissions to exclude for all regular files.
dmask: an octal mask of permissions to exclude for all directories.

For example:

Combine with the metadata option to specify default permissions for files without
metadata.

Introduced a new environment variable, WSLENV , to configure how environment
variables flow between WSL and Win32.

For example:

Bash

WSLENV is a colon-delimited list of environment variables that can be included
when launching WSL processes from Win32 or Win32 processes from WSL. Each
variable can be suffixed with a slash followed by flags to specify how it is
translated.

p: The value is a path that should be translated between WSL paths and Win32
paths.

mount -t drvfs C: /mnt/c -o metadata

mount -t drvfs C: /mnt/c -o uid=1000,gid=1000,umask=22,fmask=111

WSLENV=GOPATH/l:USERPROFILE/pu:DISPLAY

l: The value is a list of paths. In WSL, it is a colon-delimited list. In Win32, it is a
semicolon-delimited list.
u: The value should only be included when invoking WSL from Win32
w: The value should only be included when invoking Win32 from WSL

You can set WSLENV in .bashrc or in the custom Windows environment for your
user.

drvfs mounts correctly preserves timestamps from tar, cp -p (GH 1939)

drvfs symlinks report the correct size (GH 2641)

read/write works for very large IO sizes (GH 2653)

waitpid works with process group IDs (GH 2534)

significantly improved mmap performance for large reserve regions; improves ghc
performance (GH 1671)

personality supports for READ_IMPLIES_EXEC; fixes maxima and clisp (GH 1185)

mprotect supports PROT_GROWSDOWN; fixes clisp (GH 1128)

page fault fixes in overcommit mode; fixes sbcl (GH 1128)

clone supports more flags combinations

Support select/epoll of epoll files (previously a no-op).

Notify ptrace of unimplemented syscalls.

Ignore interfaces that are not up when generating resolv.conf nameservers [GH
2694]

Enumerate network interfaces with no physical address. [GH 2685]

Additional bug fixes and improvements.

Windows Command line Toolchain includes bsdtar (tar) and curl. Read this blog
to learn more about the addition of these two new tools and see how they're
shaping the developer experience on Windows.

AF_UNIX is available in the Windows Insider SDK (17061+). Read this blog to
learn more about AF_UNIX and how developers on Windows can use it.

Linux tools available to developers on Windows

https://aka.ms/tarcurlwindows
https://blogs.msdn.microsoft.com/commandline/2017/12/19/af_unix-comes-to-windows/

No fixes.

Testing in progress.

For general Windows information on build 17046 visit the Windows Blog .

Allow processes to run without an active terminal. [GH 709, 1007, 1511, 2252, 2391,
et al.]
Better support of CLONE_VFORK and CLONE_VM. [GH 1878, 2615]
Skip TDI filter drivers for WSL networking operations. [GH 1554]
DrvFs creates NT symlinks when certain conditions are met. [GH 353, 1475, 2602]

The link target must be relative, must not cross any mount points or symlinks,
and must exist.
The user must have SE_CREATE_SYMBOLIC_LINK_PRIVILEGE (this normally
requires you to launch wsl.exe elevated), unless Developer Mode is turned on.
In all other situations, DrvFs still creates WSL symlinks.

Allow running elevated and non-elevated WSL instances simultaneously.
Support /proc/sys/kernel/yama/ptrace_scope
Add wslpath to do WSL<->Windows path conversions. [GH 522, 1243, 1834, 2327,
et al.]

Console

LTP Results:

Build 17046

Fixed

WSL

 wslpath usage:
 -a force result to absolute path format
 -u translate from a Windows path to a WSL path (default)
 -w translate from a WSL path to a Windows path
 -m translate from a WSL path to a Windows path, with '/' instead
of '\\'

 EX: wslpath 'c:\users'

https://blogs.windows.com/windowsexperience/2017/11/22/announcing-windows-10-insider-preview-build-17046-pc

Console
No fixes.

Testing in progress.

For general Windows information on build 17040 visit the Windows Blog .

No fixes since 17035.

No fixes since 17035.

Testing in progress.

For general Windows information on build 17035 visit the Windows Blog .

Accessing files on DrvFs could occasionally fail with EINVAL. [GH 2448]

Some color loss when inserting/deleting lines in VT mode.

LTP Results:

Build 17040

Fixed

WSL

Console

LTP Results:

Build 17035

Fixed

WSL

Console

https://blogs.windows.com/windowsexperience/2017/11/16/announcing-windows-10-insider-preview-build-17040-pc
https://blogs.windows.com/windowsexperience/2017/11/08/announcing-windows-10-insider-preview-build-17035-pc

Testing in progress.

For general Windows information on build 17025 visit the Windows Blog .

Start initial processes in a new foreground process group [GH 1653, 2510].
SIGHUP delivery fixes [GH 2496].
Generate default virtual bridge name if none provided [GH 2497].
Implement /proc/sys/kernel/random/boot_id [GH 2518].
More interop stdout/stderr pipe fixes.
Stub syncfs system call.

Fix input VT translation for third party consoles [GH 111]

Testing in progress.

For general Windows information on build 17017 visit the Windows Blog .

Ignore empty ELF program headers [GH 330].
Allow LxssManager to create WSL instances for non-interactive users (ssh and
scheduled task support) [GH 777, 1602].
Support WSL->Win32->WSL ("inception") scenarios [GH 1228].

LTP Results:

Build 17025

Fixed

WSL

Console

LTP Results:

Build 17017

Fixed

WSL

https://blogs.windows.com/windowsexperience/2017/10/25/announcing-windows-10-insider-preview-build-17025-pc
https://blogs.windows.com/windowsexperience/2017/10/13/announcing-windows-10-insider-preview-build-17017-pc

Limited support for termination of console apps invoked via interop [GH 1614].
Support mount options for devpts [GH 1948].
Ptrace blocking child startup [GH 2333].
EPOLLET missing some events [GH 2462].
Return more data for PTRACE_GETSIGINFO.
Getdents with lseek gives incorrect results.
Fix some Win32 interop app hangs, waiting for input on a pipe that has no more
data.
O_ASYNC support for tty/pty files.
Additional improvements and bug fixes

No Console related changes in this release.

Testing in progress.

For general Windows information on build 16288 visit the Windows Blog .

Correctly initialize and report uid, gid, and mode for socket file descriptors [GH
2490]
Additional improvements and bug fixes

No Console related changes in this release.

Console

LTP Results:

Fall Creators Update

Build 16288

Fixed

WSL

Console

LTP Results:

https://blogs.windows.com/windowsexperience/2017/09/12/announcing-windows-10-insider-preview-build-16288-pc-build-15250-mobile/#7pLWQbj23JisfzV5.97/

No change since 16273

For general Windows information on build 162738 visit the Windows Blog .

Explicitly unmap mapped views of file backed sections when tearing down LX MM
state [GH 2415]
Additional improvements and bug fixes

No Console related changes in this release.

No change since 16273

For general Windows information on build 162735 visit the Windows Blog .

No WSL related changes in this release.

No Console related changes in this release.

No change since 16273

Build 16278

Fixed

WSL

Console

LTP Results:

Build 16275

Fixed

WSL

Console

LTP Results:

https://blogs.windows.com/windowsexperience/2017/08/29/announcing-windows-10-insider-preview-build-16278-pc/#HMz6Xq7Su68WKi0t.97/
https://blogs.windows.com/windowsexperience/2017/08/25/announcing-windows-10-insider-preview-build-16275-pc-build-15245-mobile/#8QkxWqQbY37yZslV.97/

For general Windows information on build 16273 visit the Windows Blog .

Fixed an issue where DrvFs sometimes reported the wrong file type for directories
[GH 2392]
Allow creation of NETLINK_KOBJECT_UEVENT sockets to unblock programs that
use uevent [GH 1121, 2293, 2242, 2295, 2235, 648, 637]
Add support for non-blocking connect [GH 903, 1391, 1584, 1585, 1829, 2290,
2314]
Implement CLONE_FS clone system call flag [GH 2242]
Fix issues around not handling tabs or quotes correctly in NT interop [GH 1625,
2164]
Resolve access denied error when trying to re-launch WSL instances [GH 651,
2095]
Implement futex FUTEX_REQUEUE and FUTEX_CMP_REQUEUE operations [GH
2242]
Fix permissions for various SysFs files [GH 2214]
Fix Haskell stack hang during setup [GH 2290]
Implement binfmt_misc 'C' 'O' and 'P' flags [GH 2103]
Add /proc/sys/kernel /shmmax /shmmni & /threads-max [GH 1753]
Add partial support for ioprio_set system call [GH 498]
Stub SO_REUSEPORT & adding support for SO_PASSCRED for netlink sockets [GH
69]
Return different error codes from RegisterDistribution if a distribution is currently
being installed or uninstalled.
Allow unregistration of partially installed WSL distributions via wslconfig.exe
Fix python socket test hang from udp::msg_peek
Additional improvements and bug fixes

No Console related changes in this release.

Build 16273

Fixed

WSL

Console

LTP Results:

https://blogs.windows.com/windowsexperience/2017/08/23/announcing-windows-10-insider-preview-build-16273-pc/

Total Tests: 1904
Total Skipped Tests: 209
Total Failures: 229

For general Windows information on build 16257 visit the Windows Blog .

Implement prlimit64 system call
Add support for ulimit -n (setrlimit RLIMIT_NOFILE) [GH 1688]
Stub MSG_MORE for TCP sockets [GH 2351]
Fix invalid AT_EXECFN auxiliary vector behavior [GH 2133]
Fix copy/paste behavior for console/tty, and add better full buffer handling [GH
2204, 2131]
Set AT_SECURE in auxiliary vector for set-user-ID and set-group-ID programs [GH
2031]
Pseudo-terminal master endpoint not handling TIOCPGRP [GH 1063]
Fix lseek does to rewind directories in LxFs [GH 2310]
/dev/ptmx locks up after heavy usage [GH 1882]
Additional improvements and bug fixes

Fix for horizontal Lines/Underscores Everywhere [GH 2168]
Fix for process order changed making NPM harder to close [GH 2170]
Added our new color scheme:
https://blogs.msdn.microsoft.com/commandline/2017/08/02/updating-the-
windows-console-colors/

No change since 16251

Build 16257

Fixed

WSL

Console

LTP Results:

Syscall Support

https://blogs.windows.com/windowsexperience/2017/08/02/announcing-windows-10-insider-preview-build-16257-pc-build-15237-mobile/
https://blogs.msdn.microsoft.com/commandline/2017/08/02/updating-the-windows-console-colors/

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

prlimit64

In build 16257, WSL has issues when enumerating Windows files/folders via /mnt/c/... .
This issue has been fixed and should be released in Insiders build during week
commencing 8/14/2017.

For general Windows information on build 16251 visit the Windows Blog .

Remove beta tag from WSL optional component, see blog post for details.
Correctly initialize saved-set uid and gid for set-user-ID and set-group-ID binaries
on exec [GH 962, 1415, 2072]
Added support for ptrace PTRACE_O_TRACEEXIT [GH 555]
Added support for ptrace PTRACE_GETFPREGS and PTRACE_GETREGSET with
NT_FPREGSET [GH 555]
Fixed ptrace to stop on ignored signals
Additional improvements and bug fixes

No Console related changes in this release.

Known Issues

GitHub Issue 2392: Windows Folders not recognized by WSL ...

Build 16251

Fixed

WSL

Console

LTP Results:

https://blogs.windows.com/windowsexperience/2017/07/26/announcing-windows-10-insider-preview-build-16251-pc-build-15235-mobile/
https://blogs.msdn.microsoft.com/commandline/2017/07/28/windows-subsystem-for-linux-out-of-beta/
https://github.com/Microsoft/BashOnWindows/issues/2392

Number of Passing Tests: 768
Number of Failing Tests: 244
Number of Skipped Tests: 96

For general Windows information on build 16241 visit the Windows Blog .

No WSL related changes in this release.

Fix for outputting the wrong character for the crossing-lines DEC, originally
reported here
Fix for no output text being displayed in codepage 65001 (utf8)
Do not transfer changes made to one color's RGB values to other parts of the
palette on selection change. This will make the console properties sheet a lot
easier to use.
Ctrl+S doesn't appear to work correctly
Un-Bold/-Dim completely absent from ANSI escape codes [GH 2174]
Console doesn't correctly support Vim color themes [GH 1706]
Cannot paste particular characters [GH 2149]
Reflow resize interacts strangely with resizing a bash window when stuff is on the
edit/command line [GH ConEmu 1123]
Ctrl-L leaves the screen dirty [GH 1978]
Console rendering bug when displaying VT on HDPI [GH 1907]
Japanese characters look strange with Unicode Character U+30FB [GH 2146]
Additional improvements and bug fixes

For general Windows information on build 16237 visit the Windows Blog .

Build 16241

Fixed

WSL

Console

Build 16237

https://blogs.windows.com/windowsexperience/2017/07/13/announcing-windows-10-insider-preview-build-16241-pc-build-15230-mobile/
https://www.reddit.com/r/Windows10/comments/6in82t/i_believe_ive_found_the_most_obscure_bug_ever/
https://blogs.windows.com/windowsexperience/2017/07/07/announcing-windows-10-insider-preview-build-16237-pc/

Use default attributes for files without EAs in lxfs (root, root, 0000)
Added support for distributions that use extended attributes
Fix padding for entries returned by getdents and getdents64
Fix permissions check for the shmctl SHM_STAT system call [GH 2068]
Fixed incorrect initial epoll state for ttys [GH 2231]
Fix DrvFs readdir not returning all entries [GH 2077]
Fix LxFs readdir when files are unlinked [GH 2077]
Allow unlinked drvfs files to be reopened through procfs
Added global registry key override for disabling WSL features (interop / drive
mounting)
Fix incorrect block count in "stat" for DrvFs (and LxFs) [GH 1894]
Additional improvements and bug fixes

For general Windows information on build 16232 visit the Windows Blog .

No WSL related changes in this release.

For general Windows information on build 16226 visit the Windows Blog .

xattr related syscalls support (getxattr, setxattr, listxattr, removexattr).
security.capability xattr support.
Improved compatibility with certain file systems and filters, including non-MS SMB
servers. [GH #1952]
Improved support for OneDrive placeholders, GVFS placeholders, and Compact OS
compressed files.
Additional improvements and bug fixes

Fixed

Build 16232

Fixed

Build 16226

Fixed

https://blogs.windows.com/windowsexperience/2017/06/28/announcing-windows-10-insider-preview-build-16232-pc-build-15228-mobile/
https://blogs.windows.com/windowsexperience/2017/06/21/announcing-windows-10-insider-preview-build-16226-pc/

For general Windows information on build 16215 visit the Windows Blog .

WSL no longer requires developer mode.
Support directory junctions in drvfs.
Handle uninstalling of WSL distribution appx packages.
Update procfs to show private and shared mappings.
Add ability for wslconfig.exe to clean up distributions that are partially installed or
uninstalled.
Added support for IP_MTU_DISCOVER for TCP sockets. [GH 1639, 2115, 2205]
Infer protocol family for routes to AF_INADDR.
Serial device improvements [GH 1929].

For general Windows information on build 16199 visit the Windows Blog .

No WSL related changes in these releases.

For general Windows information on build 16193 visit the Windows Blog .

Race condition between sending SIGCONT and a threadgroup terminating [GH
1973]
change tty and pty devices to report FILE_DEVICE_NAMED_PIPE instead of
FILE_DEVICE_CONSOLE [GH 1840]

Build 16215

Fixed

Build 16199

Fixed

Build 16193

Fixed

https://blogs.windows.com/windowsexperience/2017/06/08/announcing-windows-10-insider-preview-build-16215-pc-build-15222-mobile/
https://blogs.windows.com/windowsexperience/2017/05/17/announcing-windows-10-insider-preview-build-16199-pc-build-15215-mobile/
https://blogs.windows.com/windowsexperience/2017/05/11/announcing-windows-10-insider-preview-build-16193-pc-build-15213-mobile/

SSH fix for IP_OPTIONS
Moved DrvFs mounting to init daemon [GH 1862, 1968, 1767, 1933]
Added support in DrvFs for following NT symlinks.

For general Windows information on build 16184 visit the Windows Blog .

Removed apt package maintenance task (lxrun.exe /update)
Fixed output not showing up in from Windows processes in node.js [GH 1840]
Relax alignment requirements in lxcore [GH 1794]
Fixed handling of the AT_EMPTY_PATH flag in a numer of system calls.
Fixed issue where deleting DrvFs files with open handles will cause the file to
exhibit undefined behavior [GH 544,966,1357,1535,1615]
/etc/hosts will now inherit entries from the Windows hosts file
(%windir%\system32\drivers\etc\hosts) [GH 1495]

For general Windows information on build 16179 visit the Windows Blog .

No WSL changes this week.

For general Windows information on build 16176 visit the Windows Blog .

Enabled serial support

Build 16184

Fixed

Build 16179

Fixed

Build 16176

Fixed

https://blogs.windows.com/windowsexperience/2017/04/28/announcing-windows-10-insider-preview-build-16184-pc-build-15208-mobile/
https://blogs.windows.com/windowsexperience/2017/04/19/announcing-windows-10-insider-preview-build-16179-pc-build-15205-mobile/
https://blogs.windows.com/windowsexperience/2017/04/14/announcing-windows-10-insider-preview-build-16176-pc-build-15204-mobile/
https://learn.microsoft.com/en-us/archive/blogs/wsl/serial-support-on-the-windows-subsystem-for-linux

Added IP socket option IP_OPTIONS [GH 1116]
Implemented pwritev function (while uploading file to nginx/PHP-FPM) [GH 1506]
Added IP socket options IP_MULTICAST_IF & IPV6_MULTICAST_IF [GH 990]
Support for socket option IP_MULTICAST_LOOP & IPV6_MULTICAST_LOOP [GH
1678]
Added IP(V6)_MTU socket option for apps node, traceroute, dig, nslookup, host
Added IP socket option IPV6_UNICAST_HOPS
Filesystem Improvements

Allow mounting of UNC paths
Enable CDFS support in drvfs
Correctly handle permissions for network file systems in drvfs
Add support for remote drives to drvfs
Enable FAT support in drvfs

Additional fixes and Improvements

No changes since 15042

For general Windows information on build 16170 visit the Windows Blog .

We released a new blog post discussing our efforts to test WSL.

Support socket option IP_ADD_MEMBERSHIP & IPV6_ADD_MEMBERSHIP [GH
1678]
Add support for PTRACE_OLDSETOPTIONS. [GH 1692]
Additional fixes and improvements

No changes since 15042

LTP Results

Build 16170

Fixed

LTP Results

Build 15046 to Windows 10 Creators Update

https://learn.microsoft.com/en-us/archive/blogs/wsl/file-system-improvements-to-the-windows-subsystem-for-linux
https://blogs.windows.com/windowsexperience/2017/04/07/announcing-windows-10-insider-preview-build-16170-pc/
https://learn.microsoft.com/en-us/archive/blogs/wsl/testing-the-windows-subsystem-for-linux

There are no more WSL fixes or features planned for inclusion in the Creators Update to
Windows 10. Release notes for WSL will resume in the coming weeks for additions
targeting the next major Windows Update. For general Windows information on build
15046 and future Insider releases visit the Windows Blog .

For general Windows information on build 15042 visit the Windows Blog .

Fix for a deadlock when removing a path ending in ".."
Fixed an issue where FIONBIO not returning 0 on success [GH 1683]
Fixed issue with zero-length reads of inet datagram sockets
Fix possible deadlock due to race condition in drvfs inode lookup [GH 1675]
Extended support for unix socket ancillary data; SCM_CREDENTIALS and
SCM_RIGHTS [GH 514, 613, 1326]
Additional fixes and improvements

Number of Passing Test: 737
Number of non-Passing (failing, skipped, etc…): 255

For general Windows information on build 15031 visit the Windows Blog .

Fixed a bug where time(2) would sporadically misbehave.
Fixed and issue where *SIGPROCMASK syscalls could corrupt signal mask.
Now return full command line length in WSL process creation notification. [GH
1632]
WSL now reports thread exit through ptrace for GDB hangs. [GH 1196]
Fixed bug where ptys would hang after heavy tmux IO. [GH 1358]

Build 15042

Fixed

LTP Results:

Build 15031

Fixed

https://blogs.windows.com/windowsexperience/2017/02/28/announcing-windows-10-insider-preview-build-15046-pc/
https://blogs.windows.com/windowsexperience/2017/02/24/announcing-windows-10-insider-preview-build-15042-pc-build-15043-mobile/
https://blogs.windows.com/windowsexperience/2017/02/08/announcing-windows-10-insider-preview-build-15031-pc/

Fixed timeout validation in many system calls (futex, semtimedop, ppoll,
sigtimedwait, itimer, timer_create)
Added eventfd EFD_SEMAPHORE support [GH 452]
Additional fixes and improvements

Number of Passing Test: 737
Number of non-Passing (failing, skipped, etc…): 255

For general Windows information on build 15025 visit the Windows Blog .

Fix for bug that broke grep 2.27 [GH 1578]
Implemented EFD_SEMAPHORE flag for eventfd2 syscall [GH 452]
Implemented /proc/[pid]/net/ipv6_route [GH 1608]
Signal driven IO support for unix stream sockets [GH 393, 68]
Support F_GETPIPE_SZ and F_SETPIPE_SZ [GH 1012]
Implement recvmmsg() syscall [GH 1531]
Fixed bug where epoll_wait() wasn't waiting [GH 1609]
Implement /proc/version_signature
Tee syscall now returns failure if both file descriptors refer to the same pipe
Implemented correct behavior for SO_PEERCRED for Unix sockets
Fixed tkill syscall invalid parameter handling
Changes to increase the performance of drvfs
Minor fix for Ruby IO blocking
Fixed recvmsg() returning EINVAL for the MSG_DONTWAIT flag for inet sockets
[GH 1296]
Additional fixes and improvements

Number of Passing Test: 732
Number of non-Passing (failing, skipped, etc…): 255

LTP Results:

Build 15025

Fixed

LTP Results:

https://blogs.windows.com/windowsexperience/2017/02/01/announcing-windows-10-insider-preview-build-15025-pc/

For general Windows information on build 15019 visit the Windows Blog .

Fixed bug that incorrectly reported CPU usage in procfs for tools like htop (GH 823,
945, 971)
When calling open() with O_TRUNC on an existing file inotify now generates
IN_MODIFY before IN_OPEN
Fixes to unix socket getsockopt SO_ERROR to enable postgres [GH 61, 1354]
Implement /proc/sys/net/core/somaxconn for the GO language
Apt-get package update background task now runs hidden from view
Clear scope for ipv6 localhost (Spring-Framework(Java) failure).
Additional fixes and improvements

Number of Passing Test: 714
Number of non-Passing (failing, skipped, etc…): 249

For general Windows information on build 15014 visit the Windows Blog .

Ctrl+C now works as intended
htop and ps auxw now show correct resource utilization (GH #516)
Basic translation of NT exceptions to signals. (GH #513)
fallocate now fails with ENOSPC when running out of space instead of EINVAL (GH
#1571)
Added /proc/sys/kernel/sem.
Implemented semop and semtimedop system calls
Fixed nslookup errors with IP_RECVTOS & IPV6_RECVTCLASS socket option (GH 69)
Support for socket options IP_RECVTTL and IPV6_RECVHOPLIMIT
Additional fixes and improvements

Build 15019

Fixed

LTP Results:

Build 15014

Fixed

https://blogs.windows.com/windowsexperience/2017/01/27/announcing-windows-10-insider-preview-build-15019-pc/
https://blogs.windows.com/windowsexperience/2017/01/19/announcing-windows-10-insider-preview-build-15014-for-pc-and-mobile-hello-windows-insiders-today-we-are-excited-to-be-releasing-windows-10-insider-preview-build-15014-for-pc-and-mobile

Number of Passing Test: 709
Number of non-Passing (failing, skipped, etc…): 255

Total Syscalls: 384
Total Implemented: 235
Total Stubbed: 22
Total Unimplemented: 127

For general Windows information on build 15007 visit the Windows Blog .

There is a known bug where the console does not recognize some Ctrl + <key>
input. This includes the ctrl-c command which will act as a normal 'c' keypress.

Workaround: Map an alternate key to Ctrl+C. For example, to map Ctrl+K to
Ctrl+C do: stty intr \^k . This mapping is per terminal and will have to be
done every time bash is launched. Users can explore the option to include this
in their .bashrc

Corrected the issue where running WSL would consume 100% of a CPU core
Socket option IP_PKTINFO, IPV6_RECVPKTINFO now supported. (GH #851, 987)
Truncate network interface physical address to 16 bytes in lxcore (GH #1452, 1414,
1343, 468, 308)
Additional fixes and improvements

Number of Passing Test: 709
Number of non-Passing (failing, skipped, etc…): 255

LTP Results:

Syscall Summary

Build 15007

Known Issue

Fixed

LTP Results:

https://blogs.windows.com/windowsexperience/2017/01/12/announcing-windows-10-insider-preview-build-15007-pc-mobile

For general Windows information on build 15002 visit the Windows Blog .

Two known issues:

There is a known bug where the console does not recognize some Ctrl + <key>
input. This includes the ctrl-c command which will act as a normal 'c' keypress.

Workaround: Map an alternate key to Ctrl+C. For example, to map Ctrl+K to
Ctrl+C do: stty intr \^k . This mapping is per terminal and will have to be
done every time bash is launched. Users can explore the option to include this
in their .bashrc

While WSL is running a system thread will consume 100% of a CPU core. The root
cause has been addressed and fixed internally.

All bash sessions must now be created at the same permission level. Attempting to
start a session at a different level will be blocked. This means admin and non-
admin consoles cannot run at the same time. (GH #626)
Implemented the following NETLINK_ROUTE messages (requires Windows admin)

RTM_NEWADDR (supports ip addr add)
RTM_NEWROUTE (supports ip route add)
RTM_DELADDR (supports ip addr del)
RTM_DELROUTE (supports ip route del)

Scheduled task checking for packages to update will no longer run on a metered
connection (GH #1371)
Fixed error where piping gets stuck i.e. bash -c "ls -alR /" | bash -c "cat" (GH #1214)
Implemented TCP_KEEPCNT socket option (GH #843)
Implemented IP_MTU_DISCOVER INET socket option (GH #720, 717, 170, 69)
Removed legacy functionality to run NT binaries from init with NT path lookup.
(GH #1325)
Fix mode of /dev/kmsg to allow group / other read access (0644) (GH #1321)
Implemented /proc/sys/kernel/random/uuid (GH #1092)
Corrected error where process start time was showing as year 2432 (GH #974)
Switched default TERM environment variable to xterm-256color (GH #1446)

Build 15002

Known Issue

Fixed

https://blogs.windows.com/windowsexperience/2017/01/09/announcing-windows-10-insider-preview-build-15002-pc/

Modified the way that process commit is calculated during process fork. (GH
#1286)
Implemented /proc/sys/vm/overcommit_memory. (GH #1286)
Implemented /proc/net/route file (GH #69)
Fixed error where shortcut name was incorrectly localized (GH #696)
Fixed elf parsing logic that is incorrectly validating the program headers must be
less than (or equal to) PATH_MAX. (GH #1048)
Implemented statfs callback for procfs, sysfs, cgroupfs, and binfmtfs (GH #1378)
Fixed AptPackageIndexUpdate windows that won't close (GH #1184, also discussed
in GH #1193)
Added ASLR personality ADDR_NO_RANDOMIZE support. (GH #1148, 1128)
Improved PTRACE_GETSIGINFO, SIGSEGV, for proper gdb stack traces during AV
(GH #875)
Elf parsing no longer fails for patchelf binaries. (GH #471)
VPN DNS propagated to /etc/resolv.conf (GH #416, 1350)
Improvements to TCP close for more reliable data transfer. (GH #610, 616, 1025,
1335)
Now return correct error code when too many files are opened (EMFILE). (GH
#1126, 2090)
Windows Audit log now reports the image name in process create audit.
Now gracefully fail when launching bash.exe from within a bash window
Added error message when interop is unable to access a working directory under
LxFs (i.e. notepad.exe .bashrc)
Fixed issue where Windows path was truncated in WSL
Additional fixes and improvements

Number of Passing Test: 690
Number of non-Passing (failing, skipped, etc…): 274

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

shmctl

shmget

LTP Results:

Syscall Support

shmdt

shmat

For general Windows information on build 14986 visit the Windows Blog .

Fixed bugchecks with Netlink and Pty IOCTLs
Kernel version now reports 4.4.0-43 for consistency with Xenial
Bash.exe now launches when input directed to 'nul:' (GH #1259)
Thread IDs now reported correctly in procfs (GH #967)
IN_UNMOUNT | IN_Q_OVERFLOW | IN_IGNORED | IN_ISDIR flags now supported in
inotify_add_watch() (GH #1280)
Implement timer_create and related system calls. This enables GHC support (GH
#307)
Fixed issue where ping returned a time of 0.000ms (GH #1296)
Return correct error code when too many files are opened.
Fixed issue in WSL where Netlink request for network interface data would fail with
EINVAL if the interface's hardware address is 32-bytes (such as the Teredo
interface)

Note that the Linux "ip" utility contains a bug where it will crash if WSL reports a
32-byte hardware address. This is a bug in "ip", not WSL. The "ip" utility hard-
codes the length of the string buffer used to print the hardware address, and
that buffer is too small to print a 32-byte hardware address.

Additional fixes and improvements

Number of Passing Test: 669
Number of non-Passing (failing, skipped, etc…): 258

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

Build 14986

Fixed

LTP Results:

Syscall Support

https://blogs.windows.com/windowsexperience/2016/12/07/announcing-windows-10-insider-preview-build-14986-pc/

timer_create

timer_delete

timer_gettime

timer_settime

For general Windows information on build 14971 visit the Windows Blog .

Due to circumstances beyond our control there are no updates in this build for the
Windows Subsystem for Linux. Regularly scheduled updates will resume on the
next release.

Unchanged from 14965
Number of Passing Test: 664
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14965 visit the Windows Blog .

Support for Netlink sockets NETLINK_ROUTE protocol's RTM_GETLINK and
RTM_GETADDR (GH #468)

Enables ifconfig and ip commands for network enumeration

/sbin is now in the user's path by default

NT user path now appended to the WSL path by default (i.e. you can now type
notepad.exe without adding System32 to the Linux path)

Added support for /proc/sys/kernel/cap_last_cap

Build 14971

Fixed

LTP Results:

Build 14965

Fixed

https://blogs.windows.com/windowsexperience/2016/11/17/announcing-windows-10-insider-preview-build-14971-for-pc/
https://blogs.windows.com/windowsexperience/2016/11/09/announcing-windows-10-insider-preview-build-14965-for-mobile-and-pc/

NT Binaries can now be launched from WSL when the current working directory
contains non-ansi characters (GH #1254)

Allow shutdown on disconnected unix stream socket.

Added support for PR_GET_PDEATHSIG.

Added support for CLONE_PARENT

Fixed error where piping gets stuck i.e. bash -c "ls -alR /" | bash -c "cat" (GH #1214)

Handle requests to connect to the current terminal.

Mark /proc/<pid>/oom_score_adj as writable.

Add /sys/fs/cgroup folder.

sched_setaffinity should return number of affinity bits mask

Fix ELF validation logic which incorrectly assumes interpreter paths must be less
than 64 characters long. (GH #743)

Open file descriptors can keep console window open (GH #1187)

Fixed error where rename() failed with trailing slash on target name (GH #1008)

Implement /proc/net/dev file

Fixed 0.000ms pings due to timer resolution.

Implemented /proc/self/environ (GH #730)

Additional bugfixes and improvements

Number of Passing Test: 664
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14959 visit the Windows Blog .

LTP Results:

Build 14959

Fixed

https://blogs.windows.com/windowsexperience/2016/11/03/announcing-windows-10-insider-preview-build-14959-for-mobile-and-pc/#iI82GufJxMF3POU1.97

Improved Pico Process notification for Windows. Additional information found on
the WSL Blog.
Improved stability with Windows interoperability
Fixed error 0x80070057 when launching bash.exe when Enterprise Data Protection
(EDP) is enabled
Additional bugfixes and improvements

Number of Passing Test: 665
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14955 visit the Windows Blog .

Due to circumstances beyond our control there are no updates in this build for the
Windows Subsystem for Linux. Regularly scheduled updates will resume on the
next release.

Number of Passing Test: 665
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14951 visit the Windows Blog .

Windows binaries can now be invoked directly from the WSL command line. This gives
users the ability to interact with their Windows environment and system in a way that
has not been possible. As a quick example, it is now possible for users to run the
following commands:

LTP Results:

Build 14955

Fixed

LTP Results:

Build 14951

New Feature: Windows / Ubuntu Interoperability

https://learn.microsoft.com/en-us/archive/blogs/wsl/wsl-antivirus-and-firewall-compatibility
https://blogs.windows.com/windowsexperience/2016/10/25/announcing-windows-10-insider-preview-build-14955-for-mobile-and-pc/#guGXQzKVFrZIDUYR.97
https://blogs.windows.com/windowsexperience/2016/10/19/announcing-windows-10-insider-preview-build-14951-for-mobile-and-pc/

Bash

More information can be found at:

WSL Team Blog for Interop
WSL File Systems Documentation

Ubuntu 16.04 (Xenial) is now installed for all new WSL instances. Users with
existing 14.04 (Trusty) instances will not be automatically upgraded.
Locale set during install is now displayed
Terminal improvements including bug where redirecting a WSL process to a file
does not always work
Console lifetime should be tied to bash.exe lifetime
Console window size should use visible size, not buffer size
Additional bugfixes and improvements

Number of Passing Test: 665
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14946 visit the Windows Blog .

Fixed an issue that prevented creating WSL user accounts for users with NT
usernames that contain spaces or quotes.

Change VolFs and DrvFs to return 0 for directory's link count in stat

Support IPV6_MULTICAST_HOPS socket option.

$ export PATH=$PATH:/mnt/c/Windows/System32
$ notepad.exe
$ ipconfig.exe | grep IPv4 | cut -d: -f2
$ ls -la | findstr.exe foo.txt
$ cmd.exe /c dir

Fixed

LTP Results:

Build 14946

Fixed

https://learn.microsoft.com/en-us/archive/blogs/wsl/windows-and-ubuntu-interoperability
https://blogs.windows.com/windowsexperience/2016/10/13/announcing-windows-10-insider-preview-build-14946-for-pc-and-mobile/#xj8GdVooEqo4H7H7.97

Limit to a single console I/O loop per tty. Example: the following command is
possible:

bash -c "echo data" | bash -c "ssh user@example.com 'cat > foo.txt'"

replace spaces with tabs in /proc/cpuinfo (GH #1115)

DrvFs now appears in mountinfo with a name that matches mounted Windows
volume

/home and /root now appear in mountinfo with correct names

Additional bugfixes and improvements

Number of Passing Test: 665
Number of non-Passing (failing, skipped, etc…): 263

For general Windows information on build 14942 visit the Windows Blog .

A number of bugchecks addressed, including the "ATTEMPTED EXECUTE OF
NOEXECUTE MEMORY" networking crash which was blocking SSH
inotify support for notifications generated from Windows applications on DrvFs is
now in
Implement TCP_KEEPIDLE and TCP_KEEPINTVL for mongod. (GH #695)
Implement the pivot_root system call
Implement socket option for SO_DONTROUTE
Additional bugfixes and improvements

Number of Passing Test: 665
Number of non-Passing (failing, skipped, etc…): 263

LTP Results:

Build 14942

Fixed

LTP Results:

Syscall Support

https://aka.ms/onefourninefourtwoooooo

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

pivot_root

For general Windows information on build 14936 visit the Windows Blog .

Note: WSL will install Ubuntu version 16.04 (Xenial) instead of Ubuntu 14.04 (Trusty) in
an upcoming release. This change will apply to Insiders installing new instances
(lxrun.exe /install or first run of bash.exe). Existing instances with Trusty will not be
upgraded automatically. Users can upgrade their Trusty image to Xenial using the do-
release-upgrade command.

WSL is experiencing an issue with some socket implementations. The bugcheck
manifests itself as a crash with the error "ATTEMPTED EXECUTE OF NOEXECUTE
MEMORY". The most common manifestation of this issue is a crash when using ssh. The
root cause is fixed on internal builds and will be pushed to Insiders at the earliest
opportunity.

Implemented the chroot system call
Improvements in inotify including support for notifications generated from
Windows applications on DrvFs

Correction: Inotify support for changes originating from Windows applications
not available at this time.

Socket binding to IPV6::<port n> now supports IPV6_V6ONLY (GH #68, #157, #393,
#460, #674, #740, #982, #996)
WNOWAIT behavior for waitid systemcall implemented (GH #638)
Support for IP socket options IP_HDRINCL and IP_TTL
Zero-length read() should return immediately (GH #975)
Correctly handle filenames and filename prefixes that don't include a NULL
terminator in a .tar file.
epoll support for /dev/null
Fix /dev/alarm time source

Build 14936

Known Issue

Fixed

https://blogs.windows.com/windowsexperience/2016/09/28/announcing-windows-10-insider-preview-build-14936-for-pc/

Bash -c now able to redirect to a file
Additional bugfixes and improvements

Number of Passing Test: 664
Number of non-Passing (failing, skipped, etc…): 264

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

chroot

For general Windows information on build 14931 visit the Windows Blog .

Due to circumstances beyond our control there are no updates in this build for the
Windows Subsystem for Linux. Regularly scheduled updates will resume in the next
release.

For general Windows information on build 14926 visit the Windows Blog .

Ping now works in consoles which do not have administrator privileges
Ping6 now supported, also without administrator privileges
Inotify support for files modified through WSL. (GH #216)

Flags supported:
inotify_init1: LX_O_CLOEXEC, LX_O_NONBLOCK

LTP Results:

Syscall Support

Build 14931

Fixed

Build 14926

Fixed

https://blogs.windows.com/windowsexperience/2016/09/21/announcing-windows-10-insider-preview-build-14931-for-pc/
https://blogs.windows.com/windowsexperience/2016/09/14/announcing-windows-10-insider-preview-build-14926-for-pc-and-mobile/

inotify_add_watch events: LX_IN_ACCESS, LX_IN_MODIFY, LX_IN_ATTRIB,
LX_IN_CLOSE_WRITE, LX_IN_CLOSE_NOWRITE, LX_IN_OPEN,
LX_IN_MOVED_FROM, LX_IN_MOVED_TO, LX_IN_CREATE, LX_IN_DELETE,
LX_IN_DELETE_SELF, LX_IN_MOVE_SELF
inotify_add_watch attributes: LX_IN_DONT_FOLLOW, LX_IN_EXCL_UNLINK,
LX_IN_MASK_ADD, LX_IN_ONESHOT, LX_IN_ONLYDIR
read output: LX_IN_ISDIR, LX_IN_IGNORED

Known issue: Modifying files from Windows applications does not generate any
events

Unix socket now supports SCM_CREDENTIALS

Number of Passing Test: 651
Number of non-Passing (failing, skipped, etc…): 258

For general Windows information on build 14915 visit the Windows Blog .

Socketpair for unix datagram sockets (GH #262)
Unix socket support for SO_REUSEADDR
UNIX socket support for SO_BROADCAST (GH #568)
Unix socket support for SOCK_SEQPACKET (GH #758, #546)
Adding support for unix datagram socket send, recv and shutdown
Fix bugcheck due to invalid mmap parameter validation for non-fixed addresses.
(GH #847)
Support for suspend / resume of terminal states
Support for TIOCPKT ioctl to unblock the Screen utility (GH #774)

Known issue: Function keys not operational
Corrected a race in TimerFd that could cause a freed member 'ReaderReady' to be
accessed by LxpTimerFdWorkerRoutine (GH #814)
Enable restartable system call support for futex, poll, and clock_nanosleep
Added bind mount support
unshare for mount namespace support

Known issue: When creating a new mount namespace with
unshare(CLONE_NEWNS) the current working directory will continue to point to the

LTP Results:

Build 14915

Fixed

https://blogs.windows.com/windowsexperience/2016/08/31/announcing-windows-10-insider-preview-build-14915-for-pc-and-mobile

old namespace
Additional improvements and bug fixes

For general Windows information on build 14905 visit the Windows Blog .

Restartable system calls are now supported (GH #349, GH #520)
Symlinks to directories ending in / now operational (GH #650)
Implemented RNDGETENTCNT ioctl for /dev/random
Implemented the /proc/[pid]/mounts, /proc/[pid]/mountinfo and
/proc/[pid]/mountstats files
Additional bugfixes and improvements

First Insider build for the post Windows 10 Anniversary Update release.

For general Windows information on build 14901 visit the Windows Blog .

Fixed trailing slash issue
Commands such as $ mv a/c/ a/b/ now work

Installing now prompts if Ubuntu locale should be set to Windows locale
Procfs support for ns folder
Added mount and unmount for tmpfs, procfs and sysfs file systems
Fix mknod[at] 32-bit ABI signature
Unix sockets moved to dispatch model
INET socket recv buffer size set using the setsockopt should be honored
Implement MSG_CMSG_CLOEXEC unix socket receive message flag
Linux process stdin/stdout pipe redirection (GH #2)

Allows for piping of bash -c commands in CMD. Example: >dir | bash -c "grep
foo"

Bash can now be installed on systems with multiple pagefiles (GH #538, #358)

Build 14905

Fixed

Build 14901

Fixed

https://blogs.windows.com/windowsexperience/2016/08/17/announcing-windows-10-insider-preview-build-14905-for-pc-mobile/
https://blogs.windows.com/windowsexperience/2016/08/11/announcing-windows-10-insider-preview-build-14901-for-pc/

Default INET Socket buffer size should match that of default Ubuntu setup
Align xattr syscalls to listxattr
Only return interfaces with a valid IPv4 address from SIOCGIFCONF
Fix signal default action when injected by ptrace
implement /proc/sys/vm/min_free_kbytes
Use machine context register values when restoring context in sigreturn

This resolves the issue where java and javac were hanging for some users
Implement /proc/sys/kernel/hostname

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

waitid

epoll_pwait

For general Windows information on build 14388 visit the Windows Blog .

Fixes to prepare for the Windows 10 Anniversary Update on 8/2
More information about WSL in the Anniversary Update can be found on our
blog

For general Windows information on build 14376 visit the Windows Blog .

Removed some instances where apt-get hangs (GH #493)
Fixed an issue where empty mounts were not handled correctly
Fixed an issue where ramdisks were not mounted correctly

Syscall Support

Build 14388 to Windows 10 Anniversary Update

Fixed

Build 14376

Fixed

https://aka.ms/14388wip
https://learn.microsoft.com/en-us/archive/blogs/wsl/
https://blogs.windows.com/windowsexperience/2016/06/28/announcing-windows-10-insider-preview-build-14376-for-pc-and-mobile/

Change unix socket accept to support flags (partial GH #451)
Fixed common network related bluescreen
Fixed bluescreen when accessing /proc/[pid]/task (GH #523)
Fixed high CPU utilization for some pty scenarios (GH #488, #504)
Additional bugfixes and improvements

For general Windows information on build 14371 visit the Windows Blog .

Corrected timing race with SIGCHLD and wait() when using ptrace
Corrected some behavior when paths have a trailing / (GH #432)
Fixed issue with rename/unlink failing due to open handles to children
Additional bugfixes and improvements

For general Windows information on build 14366 visit the Windows Blog .

Fix in file creation through symlinks
Added listxattr for Python (GH 385)
Additional bugfixes and improvements

Below are a list of new or enhanced syscalls that have some implementation in
WSL. The syscalls on this list are supported in at least one scenario, but may not
have all parameters supported at this time.

listxattr

Build 14371

Fixed

Build 14366

Fixed

Syscall Support

https://blogs.windows.com/windowsexperience/2016/06/22/announcing-windows-10-insider-preview-build-14371-for-pc/
https://blogs.windows.com/windowsexperience/2016/06/14/announcing-windows-10-insider-preview-build-14366-mobile-build-14364/

For general Windows information on build 14361 visit the Windows Blog .

DrvFs is now case sensitive when running in Bash on Ubuntu on Windows.
Users may case.txt and CASE.TXT on their /mnt/c drives
Case sensitivity is only supported within Bash on Ubuntu on Windows. When
outside of Bash NTFS will report the files correctly, but unexpected behavior
may occur interacting with the files from Windows.
The root of each volume (i.e. /mnt/c) is not case sensitive
More information on handling these files in Windows can be found here.

Greatly enhanced pty / tty support. Applications like TMUX now supported (GH
#40)
Fixed install issue where user accounts not always created
Optimized command line arg structure allowing for extremely long argument list.
(GH #153)
Now able to delete and chmod read_only files from DrvFs
Fixed some instances where the terminal hangs on disconnect (GH #43)
chmod and chown now work on tty devices
Allow connection to 0.0.0.0 and :: as localhost (GH #388)
Sendmsg/recvmsg now handle an IO vector length of >1 (partial GH #376)
Users can now opt-out of auto-generated hosts file (GH #398)
Automatically match Linux locale to the NT locale during install (GH #11)
Added the /proc/sys/vm/swappiness file (GH #306)
strace now exits correctly
Allow pipes to be reopened through /proc/self/fd (GH #222)
Hide directories under %LOCALAPPDATA%\lxss from DrvFs (GH #270)
Better handling of bash.exe ~. Commands like "bash ~ -c ls" now supported (GH
#467)
Sockets now notify epoll read available during shutdown (GH #271)
lxrun /uninstall does a better job of deleting the files and folders
Corrected ps -f (GH #246)
Improved support for x11 apps such as xEmacs (GH #481)
Updated initial thread stack size to match default Ubuntu setting and reporting the
size correctly to the get_rlimit syscall (GH #172, #258)
Improved reporting of pico process image names (e.g., for auditing)
Implemented /proc/mountinfo for df command
Fixed symlink error code for child name . and ..

Build 14361

Fixed

https://aka.ms/wip14361

Additional improvements bugfixes and improvements

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

GETTIMER

MKNODAT

RENAMEAT

SENDFILE

SENDFILE64

SYNC_FILE_RANGE

For general Windows information on build 14352 visit the Windows Blog .

Fixed issue where large files were not downloaded / created correctly. This should
unblock npm and other scenarios (GH #3, GH #313)
Removed some instances where sockets hang
Corrected some ptrace errors
Fixed issue with WSL allowing filenames longer than 255 characters
Improved support for non-English characters
Add current Windows timezone data and set as default
Unique device id's for each mount point (jre fix – GH #49)
Correct issue with paths containing "." and ".."
Added Fifo support (GH #71)
Updated format of resolv.conf to match native Ubuntu format
Some procfs cleanup
Enabled ping for Administrator consoles (GH #18)

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all

Syscall Support

Build 14352

Fixed

Syscall Support

https://aka.ms/wip14352

parameters supported at this time.

FALLOCATE

EXECVE

LGETXATTR

FGETXATTR

For general Windows information on build 14342 the Windows Blog .

Information on VolFs and DriveFs can be found on the WSL Blog.

Fixed install issue when the Windows user had Unicode characters in the username
The apt-get update udev workaround in the FAQ is now provided by default on
first run
Enabled symlinks in DriveFs (/mnt/<drive>) directories
Symlinks now work between DriveFs and VolFs
Addressed top level path parsing issue: ls .// will now work as expected
npm install on DriveFs and the -g options are now working
Fixed issue preventing PHP server from launching
Updated default environment values, such as $PATH to closer match native Ubuntu
Added a weekly maintenance task in Windows to update the apt package cache
Fixed issue with ELF header validation, WSL now supports all Melkor options
Zsh shell is functional
Precompiled Go binaries are now supported
Prompting on Bash.exe first run is now localized correctly
/proc/meminfo now returns correct information
Sockets now supported in VFS
/dev now mounted as tempfs
Fifo now supported
Multi-core systems now showing correctly in /proc/cpuinfo
Additional improvements and error messages downloading during first run
Syscall improvements and bugfixes. Supported syscall list below.
Additional bugfixes and improvements

Build 14342

Fixed

Known Issues

https://aka.ms/wip14342
https://learn.microsoft.com/en-us/archive/blogs/wsl/

Not resolving '..' correctly on DriveFs in some cases

Below are a list of new or enhanced syscalls that have some implementation in WSL. The
syscalls on this list are supported in at least one scenario, but may not have all
parameters supported at this time.

FCHOWNAT

GETEUID

GETGID

GETRESUID

GETXATTR

PTRACE

SETGID

SETGROUPS

SETHOSTNAME

SETXATTR

For general Windows information on build 14332 visit the Windows Blog .

Better resolv.conf generation including prioritizing DNS entries
Issue with moving files and directories between /mnt and non-/mnt drives
Tar files can now be created with symlinks
Added default /run/lock directory on instance creation
Update /dev/null to return proper stat info
Additional errors when downloading during first run
Syscall improvements and bugfixes. Supported syscall list below.
Additional improvements bugfixes and improvements

Below is the new syscall that has some implementation in WSL. The syscall on this list is
supported in at least one scenario, but may not have all parameters supported at this

Syscall Support

Build 14332

Fixed

Syscall Support

https://aka.ms/wip14332

time.

READLINKAT

For general Windows information on build 14332 visit the Windows Blog .

Now support Linux users. Installing Bash on Ubuntu on Windows will prompt for
creation of a Linux user. For more information, visit https://aka.ms/wslusers
Hostname is now set to the Windows computer name, no more @localhost
For more information on build 14328, visit: https://aka.ms/wip14328

Symlink improvements for non /mnt/<drive> files
npm install now works
jdk / jre now installable using instructions found here .
known issue: symlinks do not work for Windows mounts. Functionality will be
available in a later build

top and htop now display
Additional error messages for some install failures
Syscall improvements and bugfixes. Supported syscall list below.
Additional improvements bugfixes and improvements

Below is a list of syscalls that have some implementation in WSL. Syscalls on this list are
supported in at least one scenario, but may not have all parameters supported at this
time.

ACCEPT

ACCEPT4

ACCESS

ALARM

ARCH_PRCTL

BIND

Build 14328

New Features

Fixed

Syscall Support

https://aka.ms/wip14328
https://aka.ms/wslusers
https://aka.ms/wip14328
https://xubuntugeek.blogspot.com/2012/09/how-to-install-oracle-jdk-7-manually-in.html

BRK

CAPGET

CAPSET

CHDIR

CHMOD

CHOWN

CLOCK_GETRES

CLOCK_GETTIME

CLOCK_NANOSLEEP

CLONE

CLOSE

CONNECT

CREAT

DUP

DUP2

DUP3

EPOLL_CREATE

EPOLL_CREATE1

EPOLL_CTL

EPOLL_WAIT

EVENTFD

EVENTFD2

EXECVE

EXIT

EXIT_GROUP

FACCESSAT

FADVISE64

FCHDIR

FCHMOD

FCHMODAT

FCHOWN

FCHOWNAT

FCNTL64

FDATASYNC

FLOCK

FORK

FSETXATTR

FSTAT64

FSTATAT64

FSTATFS64

FSYNC

FTRUNCATE

FTRUNCATE64

FUTEX

GETCPU

GETCWD

GETDENTS

GETDENTS64

GETEGID

GETEGID16

GETEUID

GETEUID16

GETGID

GETGID16

GETGROUPS

GETPEERNAME

GETPGID

GETPGRP

GETPID

GETPPID

GETPRIORITY

GETRESGID

GETRESGID16

GETRESUID

GETRESUID16

GETRLIMIT

GETRUSAGE

GETSID

GETSOCKNAME

GETSOCKOPT

GETTID

GETTIMEOFDAY

GETUID

GETUID16

GETXATTR

GET_ROBUST_LIST

GET_THREAD_AREA

INOTIFY_ADD_WATCH

INOTIFY_INIT

INOTIFY_RM_WATCH

IOCTL

IOPRIO_GET

IOPRIO_SET

KEYCTL

KILL

LCHOWN

LINK

LINKAT

LISTEN

LLSEEK

LSEEK

LSTAT64

MADVISE

MKDIR

MKDIRAT

MKNOD

MLOCK

MMAP

MMAP2

MOUNT

MPROTECT

MREMAP

MSYNC

MUNLOCK

MUNMAP

NANOSLEEP

NEWUNAME

OPEN

OPENAT

PAUSE

PERF_EVENT_OPEN

PERSONALITY

PIPE

PIPE2

POLL

PPOLL

PRCTL

PREAD64

PROCESS_VM_READV

PROCESS_VM_WRITEV

PSELECT6

PTRACE

PWRITE64

READ

READLINK

READV

REBOOT

RECV

RECVFROM

RECVMSG

RENAME

RMDIR

RT_SIGACTION

RT_SIGPENDING

RT_SIGPROCMASK

RT_SIGRETURN

RT_SIGSUSPEND

RT_SIGTIMEDWAIT

SCHED_GETAFFINITY

SCHED_GETPARAM

SCHED_GETSCHEDULER

SCHED_GET_PRIORITY_MAX

SCHED_GET_PRIORITY_MIN

SCHED_SETAFFINITY

SCHED_SETPARAM

SCHED_SETSCHEDULER

SCHED_YIELD

SELECT

SEND

SENDMMSG

SENDMSG

SENDTO

SETDOMAINNAME

SETGID

SETGROUPS

SETHOSTNAME

SETITIMER

SETPGID

SETPRIORITY

SETREGID

SETRESGID

SETRESUID

SETREUID

SETRLIMIT

SETSID

SETSOCKOPT

SETTIMEOFDAY

SETUID

SETXATTR

SET_ROBUST_LIST

SET_THREAD_AREA

SET_TID_ADDRESS

SHUTDOWN

SIGACTION

SIGALTSTACK

SIGPENDING

SIGPROCMASK

SIGRETURN

SIGSUSPEND

SOCKET

SOCKETCALL

SOCKETPAIR

SPLICE

STAT64

STATFS64

SYMLINK

SYMLINKAT

SYNC

SYSINFO

TEE

TGKILL

TIME

TIMERFD_CREATE

TIMERFD_GETTIME

TIMERFD_SETTIME

TIMES

TKILL

TRUNCATE

TRUNCATE64

UMASK

UMOUNT

UMOUNT2

UNLINK

UNLINKAT

UNSHARE

UTIME

UTIMENSAT

UTIMES

VFORK

WAIT4

WAITPID

WRITE

WRITEV

Release Notes for Windows Subsystem
for Linux kernel
Article • 08/19/2022

We've added support for WSL 2 distributions, which use a full Linux kernel . This Linux
kernel is open source, with its source code available at the WSL2-Linux-Kernel
repository. This Linux kernel is delivered to your machine via Microsoft Update, and
follows a separate release schedule to the Windows Subsystem for Linux which is
delivered as part of the Windows image.

Release Date: Prerelease 2022/08/02

Official GitHub release link

Initial release of the WSL2 kernel based on the v5.15 kernel series
Release rolling-lts/wsl/5.15.57.1
Update to stable kernel version v5.15.57
Enable Retbleed mitigations in x86_64 builds
Enable nftables and traffic control
Enable VGEM driver
Fix 9p filesystem regressions since the last v5.10 WSL2 kernel
Enable support for the Precision Time Protocol (PTP) clock device
Enable the Landlock Linux Security Module (LSM)

https://landlock.io/
Enable the Miscellaneous Control Group (CGroup)

https://www.kernel.org/doc/html/v5.15/admin-guide/cgroup-v2.html#misc
Disable support for the Ceph Distributed File System

Release Date: Prerelease 2022/05/09

Official Github release link

Release rolling-lts/wsl/5.10.102.1
Update to upstream stable kernel release 5.10.102
Disable unprivileged BPF by default
It can be re-enabled by setting the kernel.unprivileged_bpf_disabled sysctl to 0

5.15.57.1

5.10.102.1

https://devblogs.microsoft.com/commandline/shipping-a-linux-kernel-with-windows/
https://github.com/microsoft/WSL2-Linux-Kernel
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.15.57.1
https://landlock.io/
https://www.kernel.org/doc/html/v5.15/admin-guide/cgroup-v2.html#misc
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.102.1

Update Dxgkrnl Version to 2216
Fix out of bounds array access for ioctls[]
Implement wait for sync VM bus messages as “killable” to allow killing a process
waiting for a synchronous call to the host
Flush device for termination when process is destroyed to avoid a deadlock when
the guest process is killed

Release Date: Prerelease 2022/02/08

Official Github release link

Release rolling-lts/wsl/5.10.93.2
Update to upstream stable kernel release 5.10.93
Enable CH341 and CP210X USB Serial drivers
Fix README.md build instructions to include dwarves dependency for pahole
Switched Dxgkrnl Version to 2111
Removed the limit of existing and total sysmem allocations
Properly flush the device for termination during process cleanup
Fixed SPDX-License-Identifier for d3dkmthk.h

Release Date: Prerelease 2022/02/01

Official Github release link

Release rolling-lts/wsl/5.10.81.1
Update to upstream stable kernel release 5.10.81
Unify the kernel configurations by enabling missing options on arm64
Enable non-arch specific ACPI options
Enable options related to device-mapper RAID
Enable Btrfs
Enable LZO and ZSTD compression

Release Date: Prerelease 2021/11/10

Official Github release link

5.10.93.2

5.10.81.1

5.10.74.3

https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.93.2
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.81.1
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.74.3

Release rolling-lts/wsl/5.10.74.3
Update to upstream stable kernel release 5.10.74
Enable BPF Type Format (CONFIG_DEBUG_INFO_BTF) for use by eBPF tools
(microsoft/WSL#7437)
Updated Dxgkrnl version to 2110
Enable the Buffer Sharing and Sync File Frameworks
(CONFIG_DMA_SHARED_BUFFER, CONFIG_SYNC_FILE) for Dxgkrnl usage
Fix Dxgkrnl build failure with GCC versions older than 8.1 (microsoft/WSL#7558)

Release Date: 2021/11/02 (Prerelease 2021/10/05)

Official Github release link

Release rolling-lts/wsl/5.10.60.1
Update to upstream stable kernel release 5.10.60
Enable virtio-pmem with support for PCI BAR-relative addresses
Enable vPCI support under Hyper-V for arm64
Enable io_uring support
Enable USB over IP support
Enable paravirtualized spinlock support for x86_64
Refresh dxgkrnl driver to pick up bug fixes and code cleanups
Enable NFS client support for NFSv4.1
Enable USB kernel configuration options for interacting with an Arduino over USB
Provide a WSL2-specific README.md

Release Date: Prerelease 2021/07/12

Official Github release link

Version rolling-lts/wsl/5.10.43.3
Update to upstream stable kernel release 5.10.43
Improved dxgkrnl driver
New revision of arm64 Linux on Hyper-V series (v9)
Always use the Hyper-V hypercall interface on arm64 guests to support running on
all versions of Windows

5.10.60.1

5.10.43.3

5.10.16.3

https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.60.1
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.43.3

Release Date: 2021/07/20 (Prerelease 2021/04/16)

Official Github release link

Fixes GH 5324
Adds support for LUKS encrypted disks using wsl --mount

Release Date: Prerelease 2021/02/22

Official Github release link

Release Date: 2021/01/21

Official Github release link

Fix config for 5.4.72

Release Date: Prerelease - 2020/10/22

Official Github release link .

Stable release of 5.4.51

Release Date: 2020/09/15

Official Github release link .

This is a stable release of 4.19.128
Fix dxgkrnl driver IOCTL memory corruption

Release Date: Prerelease

Official Github release link .

5.4.91

5.4.72

5.4.51-microsoft-standard

4.19.128-microsoft-standard

4.19.121-microsoft-standard

https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-wsl-5.10.16.3
https://github.com/microsoft/WSL/issues/5324
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-5.4.91
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-5.4.72
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/linux-msft-5.4.51
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/4.19.128-microsoft-standard
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/4.19.121-microsoft-standard

Drivers: hv: vmbus: hook up dxgkrnl
Added support for GPU Compute

Release Date: 2020/06/09

Official Github release link .

Update WSL config for 4.19.104

Release Date: 2019/12/11

Official Github release link .

This is the 4.19.84 stable release

4.19.104-microsoft-standard

4.19.84-microsoft-standard

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/4.19.104-microsoft-standard
https://github.com/microsoft/WSL2-Linux-Kernel/releases/tag/4.19.84-microsoft-standard
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fkernel-release-notes&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fkernel-release-notes.md&documentVersionIndependentId=bab7575b-205e-1700-2d7c-ff14c6cf4797&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+657ce15d-3385-5d58-d836-2d147266e6bd+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

Release Notes for Windows Subsystem
for Linux in the Microsoft Store
Article • 02/22/2024

The release notes for WSL inside of the Microsoft Store can be found on the
Microsoft/WSL GitHub repository releases page . Please see that list for latest updates.

Launching Windows Subsystem for Linux from session zero does not currently
work (for example from an ssh connection).

Known Issues:

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows Subsystem for
Linux feedback
Windows Subsystem for Linux is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://aka.ms/wslstorepage
https://github.com/microsoft/WSL/releases
https://learn.microsoft.com/contribute/content/how-to-write-quick-edits
https://github.com/MicrosoftDocs/wsl/issues/new?template=doc-issue.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows%2Fwsl%2Fstore-release-notes&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwsl%2Fblob%2Fmain%2FWSL%2Fstore-release-notes.md&documentVersionIndependentId=7f92be9c-9fca-ff8c-ed96-ee73b992b2c0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40craigloewen-msft&metadata=*+ID%3A+020bba29-bab1-d972-4905-a2cd7e9fda26+%0A*+Service%3A+**dev-environment**%0A*+Sub-service%3A+**windows-subsystem-for-linux**&labels=needs-triage
https://github.com/Microsoft/WSL/issues

	WSL Documentation
	Overview
	What is WSL?
	Comparing WSL Versions
	Basic wsl commands

	Install
	Install WSL
	Manual install steps for older versions
	Install on Windows Server

	Tutorials
	Best practices for set up
	Get started with VS Code
	Get started with Git
	Get started with databases
	Get started with Docker remote containers
	Get started with Visual Studio for C++ development
	Set up GPU acceleration (NVIDIA CUDA/DirectML)
	Run Linux GUI apps
	Install NodeJS on WSL
	Get started with Linux and Bash

	Concepts
	Working across file systems
	Advanced settings configuration
	File access and permissions
	Networking considerations
	Use systemd to manage services

	How-to
	Import any Linux distribution
	Build a custom distribution
	Mount a disk in WSL 2
	Connect USB devices
	Adjust case sensitivity
	Manage available disk space
	Create WSL plugins

	Enterprise security
	Set up WSL for your company
	Intune settings for WSL

	Frequently Asked Questions
	Troubleshooting
	Release Notes
	General Release Notes
	Linux kernel Release Notes
	Microsoft Store Release Notes

